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Abstract. The meeting took place on May 30 - June 3, 2011, with over 55
people in attendance. Each day had 6 to 7 talks of varying length (some talks
were 30 minutes long), except for Thursday: the traditional hike was moved
to Thursday due to the weather (and weather on thursday was indeed fine).

The talks reviewed directions in which progress in the general field of sto-
chastic analysis occurred since the last meeting of this theme in Oberwolfach
three years ago. Several themes were covered in some depth, in addition to
a broad overview of recent developments. Among these themes a prominent
role was played by random matrices, random surfaces/planar maps and their
scaling limits, the KPZ universality class, and the interplay between SLE
(Schramm-Loewner equation) and the GFF (Gaussian free field).
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Introduction by the Organisers

The workshop opened in a bang with a description, by J.-F. Le Gall and by
G. Miermont, of the recent proofs of the universal convergence (in the Gromov-
Hausdorff metric) of random planar maps (q-angulations, with q = 3, 2k with k
integer) toward the Brownian map, an object identified earlier by J.-F. Le Gall.
The importance of confluence of geodesics was stressed in both talks. These talks
were completed by a talk of M. Bousquet-Mélou on combinatorial aspects of the
Potts model on planar maps, and later in the week, by B. Eynard who derived
general (universal) equations for the enumeration of maps and other objects, and
discussed the link with random matrices. Later in the week, N. Curien presented
natural examples (joint work with Le Gall and with Werner) of triangulations
of the unit disc (splittings of the unit disc into triangles that have their three
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corners on the boundary of the disc) of a different type than the “uniform” random
triangulation that had been studied by Aldous and that plays an important role
in the understanding of planar maps.

Several talks discussed random surfaces and models from the SLE perspective.
S. Sheffield introduced the “quantum zipper”, that allows to sew together two
random surfaces along an SLE curve – here the random surfaces are defined in a
generalized sense via the Gaussian free field, that is a rather central object in the
study of continuous two-dimensional random geometries; Sheffield also discussed
the link with work in progress with J. Miller and with B. Duplantier. Later in the
week, J. Miller reported on his work with Sheffield concerning the identification of
the geometry of “altimeter-compass lines” and “light cones” within the geometry
defined via the Gaussian free field. J. Dubédat addressed questions related to
dimers. In the direction pioneered by Kenyon on dimer configurations in planar
graphs, he explained how when one controls analytically the quantities involved,
one can get powerful results by estimating the behavior of suitably perturbed
Laplacians and their determinant, in the scaling limit when the mesh-size of the
lattice vanishes. This is one of the cases where the scaling limit of discrete models
on discrete graphs can be connected to continuous limitting structures such as
SLE curves and the Gaussian free field. V. Vargas recalled results by Jean-Pierre
Kahane on mulitplicative cascades and constructions of limiting measures such
as the one appearing in Sheffield’s lecture (the “exponential of the Gaussian free
field”) and that is conjecturally related to the Brownian map, and his recent work
with Allez and Rhodes, that generalizes the construction of characterization of
these measures for continuous cascades.

C. Garban described scaling limits for magnetization in the Ising model at
criticality (where non-trivial scaling exponents appear), and G. Pete used again
SLE methods to study near critical dynamics for the planar FK Ising model.

More classical topics related to percolation and Ising models were also present:
G. Grimmett presented his recent work with I. Manolescu that enables to bound
crossing probabilities of boxes for a wide class of critical planar percolation models,
and A. Holroyd described his joint work with Grimmett on aspects of the geometry
of supercritical percolation clusters (can one embed in a Lipschitz way a two-
dimensional plane into a three-dimensional cluster etc.). In a different direction,
H. Lacoin described a derivation of an upper bound on relaxation times for the
zero temperature stochastic Ising dynamics. C. Bordenave described his joint work
with Lelarge and Salez on the understanding of random configurations of dimers
on a discrete graph, in the scaling limit (questions like “what is the asymptotic
density of holes in such configurations”?).

Another cluster of talks discussed recent progress around scaling limits for mod-
els inspired by first passage percolation and the KPZ universality class. T. Sep-
palainen described an explicitely solvable model of a directed polymer with gamma
weights, and his talk was continued by I. Corwin who reported on a follow up joint
work with O’Connell, Seppalainen and Zygouras that uses a geometric RSK cor-
respondence, a criterion of Rogers and Pitman, and Whittaker functions, to give
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a Fredholm determinant representation for endpoint fluctuations of a family of di-
rected polymers, including the gamma-weighted one. The KPZ theme was taken
up by Sasamoto, who described his results on convergence to the KPZ equation
with appropriate initial conditions, and by J. Quastell, who gave an overview of
his results (joint with Corwin, Remenik and Moreno) on fluctuations of extrema of
the Airy2 process around a parabolic barrier. He discussed a model of continuous
Brownian polymer, studied by him, Alberts and Khanin, and its relation with the
KPZ equation. Later in the week, H. Widom discussed his fundamental result
with C. Tracy concerning the asymmetric exclusion process (ASEP), explaining
an earlier gap in the proof and the way it is fixed, allowing for multi-type ASEP.
Back on the first passage percolation theme, S. Chatterjee discussed his recent
geometric proof of a universal relation between different scaling exponents.

A third cluster of talks was centered around random matrices and random
Schroedinger operators. M. Aizenman and S. Warzel described their recent results
on the boundary of the delocalization region for the random Schroedinger operator
on the regular tree; this work revises the conjectured picture and provides a rigor-
ous description of the boundary at weak disorder. Recursions of Green functions
play a fundamental role in the proof. Another aspect of the spectrum of RSE was
discussed by B. Virag, who reported on results with Kritchevski and Valko con-
cerning convergence to a Brownian caroussel process for a 1-D RSE problem with
scaled down potential, and to GOE statistics for a particular scaling of the RSE
on a strip. A. Knowles described recent work with Erdos, Yau and Yin on univer-
sality results for the eigenvalues of the adjacency matrix of random Erdos-Renyi
graphs, in the regime where the row sum goes to infinity. He introduced the steps,
developed earlier by Erdos, Schlein, Yau and Yin, to prove universality for random
matrices by deriving a local semi-circle law, (modified) Dyson flow and a matching
lemma. This was followed up by H.-T. Yau, who gave more details on the Dyson
flow and explained how that step can be bypassed in universal beta-ensembles by
proving a version of local equilibrium for Gibbs measures.

Other talks given during the week covered other stochastic analysis themes. E.
Bolthausen described his his joint work with F. Rubin on the asymmetric weakly
self-avoiding walk in high dimension, and the use of appropriate recursions and
induction to prove a CLT. H. Duminil-Copin gave an essentially complete proof of a
recent work in progress with Benjamini, Kozma and Yadin concerning the control
of coupling (and hence, Harmonic functions) by entropic methods for random
walks on a variety of graphs. J.-D. Deuschel described his work with Berger
on the invariance principle (quenched) for certain non-elliptic environments. A.
Hammond talked about his joint work with Fribergh on biased random walk in
random environment (such as supercritical percolation clusters) that allows to
describe and understand the transition between a ballistic regime (when the drift
is not too large) to slow regime (when the drift is too large, the walk is slowed
down by traps). A. Bovier discussed the limiting law of the particles in a branching
Brownian motion viewed from the leading edge, obtained with Arguin and Kistler,
and explained the spin-glass motivation behind this work. T. Kumagai discussed
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an approach, based on the notion of spectral Gromov-Hausdorff distance, that
allows to prove convergence of (Lp) mixing times on a family of graphs to the
mixing time of a diffusion on a limiting object.
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Abstracts

Resonant delocalization for random Schrödinger operators on tree
graphs

Michael Aizenman, Simone Warzel

Abstract: We resolve an existing question concerning the location of the mobility

edge for operators with a hopping term and a random potential on the Bethe lattice. For

unbounded potential we find that extended states appear well beyond the spectrum of the

operator’s hopping term, including in a Lifshitz tail regime of very low density of states.

The relevant mechanism is the formation of extended states through disorder enabled res-

onances, for which the exponential increase of the volume plays an essential role. The

general results is shown to have the surprising implication that for bounded random po-

tentials at weak disorder there is no mobility edge in the form that was envisioned before.

A bit more than 50 years ago Anderson, Mott, Twose, and other physicists,
have proposed that the incorporation of random potential in self-adjoint operators
of condensed matter physics results in a transition in the nature of the eigen-
states of a homogeneous operator from extended (e.g., plane waves) to localized,
at least in certain energy ranges. The transition is accompanied in the reduction
of conduction. The study focused on self-adjoint operators of the form

(1) Hλ(ω) = T + λV (ω) ,

acting in the space of square-summable functions ℓ2(T ) over a homogeneous graph
T , with T the graph-adjacency operator, V (ω) a random potential, whose values
at different sites are independent identically distributed, and λ ≥ 0 a disorder-
strength parameter. As linear operators play key roles in many fields, myriads of
other implications, and other interesting aspects (such as changes in the spectral
gap statistics) have since then been noted of this transition. This has led to the
mathematical challenge of explaining the spectral and dynamical properties of such
operators, a task which requires the combination of analysis with probability.

The situation which has emerged from the mathematical studies of the An-
derson localization, is that in a number of different contexts we now have robust
mathematical tools for proving and explaining localization, in particular, in the
sense of existence of pure point spectrum. However, only limited progress was
made in shedding light on the nature of extended eigenstates of operators with
random potential. The only case for which existence of continuous spectrum, and
extended eigenstates, could be established in the presence of random potential
has been the case of homogeneous tree graphs. However, major gaps have re-
mained between the regime for which extended states have been established and
the regimes for which localization was proven. The present work has closed this
gap. It also led to revision of the phase diagram for the case of bounded random
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potentials, for which it is found that the mobility edge sets in (at least in the
previously envisioned form) only if the disorder in sufficiently large.

Of no lesser interest is the mechanism for the formation of extended states,
which can be viewed as based on resonant tunneling between what would locally
appear to be localized states. For this the disorder actually plays a constructive
role, and the exponential increase in the volume is essential. (Such exponential in-
crease is found not only on trees, but also in the configuration spaces of interacting
particles.

For a more explicit statement of the theorem, one should introduce the Green
function

Gλ(0, x;E) :=
〈

δ0, (Hλ − E − i0)−1δx
〉

and its moment generating function (or the ‘free energy’ function) which provides
information on the large deviations of |Gλ(0, x;E + i0)|, and which is defined for
|s| < 1 by:

ϕλ(s;E) := lim
|x|→∞

logE [|Gλ(0, x;E + i0)|s]
|x|

and for s = 1 as: ϕλ(1;E) := limsր1 ϕλ(s;E). Past work has produced the
following statement.

Theorem 1 (Localization - Aizenman/Molchanov ‘93, Aizenman ‘94). For the
random operators Hλ on regular tree graphs, with the unbounded random iid po-
tential of an absolutely continuous distribution, satisfying suppρ = R and certain
regularity assumptions: if for almost all energies E in some interval I ⊂ R

ϕλ(1;E) < − logK

then Hλ has only pure point (localized) spectrum in that interval.

The key new, complementary, result is:

Theorem 2 (Delocalization - Aizenman/Warzel ‘11). Under the above assump-
tions, at energies at which

ϕλ(1;E) > − logK

one has: ℑGλ(x, x;E + i0) > 0.

It may be added that if this condition holds for a positive measure of energies
E ∈ I, then Hλ has absolutely continuous (delocalized) spectrum in that inter-
val. The dynamical implication is that the graph conducts, and its transmission
coefficient for current injected at a site is positive at energies in that range.

The new criterion led to the following results for the two cases of bounded and
unbounded random potentials.

Extended states in a Lifshitz tail regime for unbounded random po-
tential:
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extended states

localized states

??

Figure 1. A sketch of the previously known parts of the phase
diagram and the puzzle which was resolved by Theorem 1. The
new result extends the regime of proven delocalization up to the
outer curve, assuming ϕλ(1;E) = − logK holds only along a line.

Localization
(p.p. spectrum)

Extended states 
(a.c. spectrum)
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Figure 2. Sketch of the correction (dotted line) of the previously
expected mobility edge for the Anderson model on the Bethe lat-
tice (the solid line). Our analysis shows that for λ ≤ (

√
k−1)2/2)

absolutely continuous spectrum can be found arbitrarily close to
the spectral edge, suggesting that at week disorder there is no
localization.

Using Theorem 2, we prove that in case of unbounded random potential (e.g.,
Gaussian or Cauchy distributions) under weak disorder (λ→ 0) the regime of abso-
lutely continuous spectrum spreads discontinuously beyond the spectrum σ(T ) =

[−2
√
K, 2

√
K] of the unperturbed operator T , see Figure 1. A notable aspect of

the result is that extended states are proven to occur also in regimes where the

density of states is extremely low (e.g. in the Gaussian case vanishing as e−C/λ2

,
for λ→ 0).

Absence of mobility edge for bounded random potentials at weak
disorder:
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For the Anderson model with bounded potential, Theorem 2 has the surprising
implication that at weak disorder there is no transition to a spectral regime of
Anderson localization. This corrects a picture of the phase diagram which has
been widely quoted and not challenged before, as depicted in Figure 2. (The com-
plete statement requires improved understanding of the regularity of the Lyapunov
exponent, on which work is in progress.)

A more extended discussion and can be found in [1, 2].

References
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Asymmetric weakly self-avoiding random walks

Erwin Bolthausen

(joint work with F. Rubin)

We consider the weakly self-avoiding random walk on Zd with jump distribution
S, and self-avoidance parameter λ ∈ [0, 1] . Here S is a probability distribution
on Zd with finite range, i.e. S ∈ PR for some R > 0 where PR denotes the set
of probability distributions with support inside the ball of radius R. For a path
ω = (ω0, ω1, . . . , ωn) of length n, and ω0 = 0, we define

PS,λ,n (ω)
def
=

1

cn

n
∏

i=1

S (ωi − ωi−1)
∏

0≤i<j≤n

(

1− λ1ωi=ωj

)

,

where cn is the appropriate norming constant.
We also consider the unnormalized transition function

Cn (x)
def
= cn

∑

ω:ωn=x

PS,λ,n (ω) .

The case of a symmetric one-jump distribution S in dimensions d ≥ 5 has been
treated by many authors, first by Brydges and Spencer [2], and later for instance
by [3].

Theorem 1. Assume d ≥ 9, and that S0 is an element in PR which is invariant
under lattice isometries. Then there exists ε (d, S0) such that for any S ∈ PR

satisfying
∑

x |S (x)− S0 (x)| ≤ ε, and λ ≤ ε, there exist κ (S, λ) ∈ Rd, and a
positive definite symmetric matrix Σ (S, λ) , such that

Cn (· − nκ)

cn
→ N (0,Σ) ,

weakly, as n→ ∞, where N (0,Σ) is the centered normal distribution with covari-
ance matrix Σ.
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The method of proof is a modification of the contraction method introduced in
the thesis of Christine Ritzmann.

By the lace expansion of Brydges-Spencer, one has a representation

Cn = S ∗ Cn−1 + λ
n
∑

k=1

Πk ∗ Cn−k

with complicated kernels Πk which however should be small for dimensions d ≥ 5.
Writing Πk = ckBk, and gets

Cn = S ∗ Cn−1 + λ

n
∑

k=1

ck (Bk ∗ Cn−k) .

The approach consists in proving a general theorem for solutions {Cn} of these
equations, with an “input” sequence {Bk} , and then later to prove that the “true”
Bk from the self-avoiding walk satisfy the necessary conditions for a central limit
theorem.

In the non-symmetric case, there are considerable additional difficulties when
compared to the symmetric situation which made it necessary (up to now) to
assume d ≥ 9.
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Matchings on infinite graphs

Charles Bordenave

(joint work with M. Lelarge and J. Salez)

A matching on a finite graph G = (V,E) is a subset of pairwise non-adjacent edges
M ⊆ E. The |V | − 2|M | isolated vertices of (V,M) are said to be exposed by M .
We let M(G) denote the set of all possible matchings on G. The matching number
of G is defined as

ν(G) = max
M∈M(G)

|M |,

and those M which achieve this maximum – or equivalently, have the fewest ex-
posed vertices – are called maximum matchings.

Our first result belongs to the theory of convergent graph sequences. Conver-
gence of bounded degree graph sequences was defined by Benjamini and Schramm.
The notion of local weak convergence has then inspired a lot of work. We have
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shown that for any sequence of graphs converging locally, the corresponding se-
quence of normalized matching numbers converges, and this limit can be expressed
only on the limit of the graph sequence.

Our second contribution concerns sequences of graphs converging locally to
Galton-Watson trees. A classical example in this framework is the sequence of
Erdős-Rényi graphs with connectivity c denoted by G(n, c/n): the limiting tree
is then a Galton-Watson tree with degree distribution a Poisson distribution with
parameter c. In this case, Karp and Sipser showed in 1981 that almost surely

ν(G(n, c/n))

n
−−−−→
n→∞

1− tc + e−ctc + ctce
−ctc

2
,

where tc ∈ (0, 1) is the smallest root of t = e−ce−ct

. This explicit formula rests
on the analysis of a heuristic algorithm now called Karp-Sipser algorithm. In
the general case of any sequence of graphs converging locally to a Galton-Watson
tree, this analysis does not carry over. Our first result shows that the normalized
matching number converges. The computation of the limit requires another set of
tools to solve a recursive distributional equation (a usual ingredient of the Aldous
and Steele’s objective method). This has allowed us to derive an explicit formula
for the limit that considerably generalizes the aforementioned result.

The Potts model on planar maps

Mireille Bousquet-Mélou

(joint work with O. Bernardi)

Let q be an integer. We address the enumeration of q-colored planar maps, counted
by the total number of edges and the number of monochromatic edges (those that
have the same colour at both ends). We prove that the associated generating
function is algebraic when q 6= 0, 4 is of the form 2 + 2 cos(jπ/m), for integers j
and m. This includes the two integer values q = 2 and q = 3, for which we give
explicit algebraic equations.

For a generic value of q, we prove that the generating function satisfies a system
of differential equations.

Both results hold as well for planar triangulations, with a strikingly similar
system of differential equations.

The starting point of our approach is a recursive construction of q-coloured
maps, in the spirit of what Tutte did in the seventies and eighties for properly
coloured triangulations.

References
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The extremal process of branching Brownian motion

Anton Bovier

(joint work with L.-P. Arguin and N. Kistler)

We prove that the extremal process of branching Brownian motion, in the limit
of large times, converges weakly to a cluster point process. The limiting process
is a (randomly shifted) Poisson cluster process, where the positions of the clusters
is a Poisson process with exponential density. The law of the individual clusters
is characterized as branching Brownian motions conditioned to perform ”unusu-
ally large displacements”, and its existence is proved. The proof combines three
main ingredients. First, the results of Bramson on the convergence of solutions of
the Kolmogorov-Petrovsky-Piscounov equation with general initial conditions to
standing waves. Second, the integral representations of such waves as first obtained
by Lalley and Sellke in the case of Heaviside initial conditions. Third, a proper
identification of the tail of the extremal process with an auxiliary process, which
fully captures the large time asymptotics of the extremal process. The analysis
through the auxiliary process can be seen as a rigorous formulation of the cavity
method developed in the study of mean field spin glasses.

1. Branching Brownian motion

Branching Brownian Motion (BBM) is a continuous-time Markov branching
process that is constructed as follows.

Start with a single particle which performs standard Brownian Motion x(t)
with x(0) = 0, which it continues for an exponential holding time T independent
of x, with P [T > t] = e−t. At time T , the particle splits independently of x
and T into k offsprings with probability pk, where

∑∞
k=1 pk = 1,

∑∞
k=1 kpk = 2,

and K ≡ ∑

k k(k − 1)pk < ∞. Then continue the same process for each particle
independently and iterate. At time t > 0, there will be n(t) particles located at
positions x1(t), . . . , xn(t)(t), with En(t) = et).

The link between BBM and partial differential equations is provided by the
following observation due to McKean [16]: if one denotes by

(1) u(t, x) ≡ P
[

max
1≤k≤n(t)

xk(t) ≤ x

]

the law of the maximal displacement, a renewal argument shows that u(t, x) solves
the Kolmogorov-Petrovsky-Piscounov or Fisher [F-KPP] equation [12, 13],

ut =
1

2
uxx +

∞
∑

k=1

pku
k − u,(2)

u(0, x) =

{

1, if x ≥ 0,

0, if x < 0.
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The F-KPP equation admits traveling waves: Bramson [7, 8] showed that there
exists a unique solution satisfying

(3) u
(

t,m(t) + x
)

→ ω(x) uniformly in x as t→ ∞,

with the centering term given by

(4) m(t) =
√
2t− 3

2
√
2
log t,

and w(x) the distribution function which solves the o.d.e.

(5)
1

2
ωxx +

√
2ωx + ω2 − ω = 0.

Lalley and Sellke [14] provided a characterization of the limiting law of the
maximal displacement in terms of a random shift of the Gumbel distribution. Let

(6) Z(t) ≡
n(t)
∑

k=1

(√
2t− xk(t)

)

exp−
√
2
(√

2t− xk(t)
)

,

the so-called derivative martingale, Lalley and Sellke proved that Z(t) converges
almost surely to a strictly positive random variable Z, and established the integral
representation

(7) ω(x) = E

[

exp
(

−CZe−
√
2x
)]

,

for some specific constant C.
Understanding the extremal process of BBM is a longstanding problem of fun-

damental interest. The classical extremal process in the case of families of inde-
pendent random variables are Poisson point processes, and it is well know that this
feature persists even under relatively strong correlations citeleadbetter. Bramson’s
result shows that this cannot be the case for BBM. A class of models where a more
complex structure of Poisson cascades was shown to emerge are the generalized
random energy models of Derrida [9, 5]. These models, however, have a rather
simple hierarchical structure involving a finite number of levels only which greatly
simplifies the analysis, which cannot be carried over to models with infinite levels
of branching such as BBM or the continuous random energy models studied in [6].
BBM is a case right at the borderline where correlations just start to effect the
extremes and the structure of the extremal process. Our results thus allows to
peek into the world beyond the simple Poisson structures and hopefully open the
gate towards the rigorous understanding of complex extremal structures.

2. Main result: the extremal process of branching Brownian motion

Define the random measure:

(8) Et ≡
∑

k≤n(t)

δxk(t)−m(t).

Few papers have addressed so far the large time limit of the extremal process of
branching Brownian motion.
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On the physical literature side, we mention the contributions by Brunet and
Derrida [10, 11], who reduce the problem of the statistical properties of particles
”at the edge” of BBM to that of identifying the finer properties of the delay of
traveling waves.

On the mathematical side, properties of the large time limit of the extremal
process have been established in three papers of ours [2, 3, 4]. In a first paper
we obtained a precise description of the paths of extremal particles which in turn
imply a somewhat surprising restriction of the correlations of particles at the edge
of BBM. These results were instrumental in our second paper on the subject where
we proved that a certain process obtained by a correlation-dependent thinning of
the extremal particles converges to a random shift of a Poisson Point Process
(PPP) with exponential density. In [4] we presented the full characterisation of
the extremal process which we explain below 1

Let us now describe the main result from [4]. Let Z be the limiting derivative
martingale. Conditionally on Z, we consider the Poisson point process (PPP) of

density CZe−
√
2x
dx:

(9) PZ ≡
∑

i∈N

δpi
≡ PPP

(

CZe−
√
2x
dx

)

,

with C as in (7). Now let {xk(t)}k≤n(t) be a BBM of length t. Consider the point
process of the gaps

∑

k δxk(t)−maxj xj(t) conditioned on the event {maxj xj(t) −√
2t > 0}. Remark that, in view of (4), the probability that the maximum of

BBM shifted by −
√
2t does not drift to −∞ is vanishing in the large time limit.

In this sense, the BBM is conditioned to perform ”unusually large displacements”.
The law of this process converges as t ↑ ∞. Write ∆ =

∑

i δ∆j
for a point process

with this law and consider iid copies (∆
(i)
i∈N

).

Theorem 1. Let PZ and ∆(i) be defined as above. Then the family of point
processes Et, defined in (8), converges in distribution to a point process, E, given
by

(10) E ≡ lim
t→∞

Et law−−−−→
N→∞

∑

i,j

δ
pi+∆

(i)
j

.

The key ingredient in the proof of Theorem 1 is an identification of the extremal
process of BBM with an auxiliary process constructed from a Poisson process,with
an explicit density of points in the tail. This is essentially a rigorous implementa-
tion of the cavity approach developed in the study of mean field spin glasses [17]
for the case of BBM, and might be of interest to determine extreme value statistics
for other processes.

1After our paper [4] was posted on the arxive, Aidekon, Berestycki, Brunet, and Shi posted
a paper [1] containing essentially the same result as ours.
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The universal relation between scaling exponents in first-passage
percolation

Sourav Chatterjee

To each edge of the integer lattice Zd, attach a non-negative random variable, and
call it the ‘passage time’ through that edge, or alternatively, the ‘edge-weight’.
Assume that these passage times (edge-weights) are independent and identically
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distributed The first-passage time T (x, y) from a point x to a point y is the mini-
mum total passage time among all lattice paths from x to y. This is the classical
model of first-passage percolation, introduced by Hammersley and Welsh [5].

Assume that the edge-weights are continuous random variables. Then almost
surely there is a unique ‘geodesic’ between any two points x and y. Let D(x, y)
be the maximum deviation (in Euclidean distance) of this path from the straight
line segment joining x and y.

First-passage percolation and related polymer models have attracted consider-
able attention in the theoretical physics literature (see [9] for a survey). Among
other things, the physicists are particularly interested in two ‘scaling exponents’,
sometimes denoted by χ and ξ in the mathematical physics literature. The fluc-
tuation exponent χ is a number that quantifies the order of fluctuations of the
first-passage time T (x, y). Roughly speaking, for any x, y,

the typical value of T (x, y)− ET (x, y) is of the order |x− y|χ.
The wandering exponent ξ quantifies the magnitude of D(x, y). Again, roughly
speaking, for any x, y,

the typical value of D(x, y) is of the order |x− y|ξ.
There are many conjectures related to χ and ξ. The main among these, to be
found in numerous physics papers, including the famous paper of Kardar, Parisi
and Zhang [7], is that although χ and ξ may depend on the dimension, they always
satisfy the relation

χ = 2ξ − 1.

I’ve heard in private conversations the above relation being referred to as the ‘KPZ
relation’ between χ and ξ.

There are a number of rigorous results for χ and ξ, mainly from the late eighties
and early nineties. One of the first non-trivial results is due to Kesten [8], who
proved that χ ≤ 1/2 in any dimension. The only improvement on Kesten’s result
till date is due to Benjamini, Kalai and Schramm [2], who proved that for first-
passage percolation in d ≥ 2 with binary edge-weights,

sup
v∈Zd, |v|>1

VarT (0, v)

|v|/ log |v| <∞.

Benäım and Rossignol [1] extended this result to a large class of edge-weight dis-
tributions that they call ‘nearly gamma’ distributions. The definition of a nearly
gamma distribution is as follows. A positive random variable X is said to have
a nearly gamma distribution if it has a continuous probability density function h
supported on an interval I (which may be unbounded), and its distribution func-
tion H satisfies, for all y ∈ I, Φ′ ◦ Φ−1(H(y)) ≤ A

√
yh(y) for some constant A,

where Φ is the distribution function of the standard normal distribution. Although
the definition may seem a bit strange, Benäım and Rossignol [1] proved that this
class is actually quite large, including e.g. exponential, gamma, beta and uniform
distributions on intervals.
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The only non-trivial lower bound on the fluctuations of passage times is due to
Newman and Piza [11] and Pemantle and Peres [12], who showed that in d = 2,
VarT (0, v) must grow at least as fast as log |v|. Better lower bounds can be proved
if one can show that with high probability, the geodesics lie in ‘thin cylinders’ [4].

For the wandering exponent ξ, the main rigorous results are due to Licea,
Newman and Piza [10] who showed that ξ(2) ≥ 1/2 in any dimension, and ξ(3) ≥
3/5 when d = 2, where ξ(2) and ξ(3) are exponents defined in their paper which
may be equal to ξ.

Besides the bounds on χ and ξ mentioned above, there are some rigorous results
relating χ and ξ through inequalities. Wehr and Aizenman [13] proved the inequal-
ity χ ≥ (1 − (d − 1)ξ)/2 in a related model, and the version of this inequality for
first-passage percolation was proved by Licea, Newman and Piza [10]. The closest
that anyone came to proving χ = 2ξ− 1 is a result of Newman and Piza [11], who
proved that χ′ ≥ 2ξ − 1, where χ′ is a related exponent which may be equal to χ.
This has also been observed by Howard [6] under different assumptions. Inciden-
tally, in the model of Brownian motion in a Poissonian potential, Wüthrich [14]
proved the equivalent of the KPZ relation assuming that the exponents exist.

The following theorem, which is the main result of the preprint [3], establishes
the relation χ = 2ξ − 1 assuming that the exponents χ and ξ exist in a certain
sense, and that the distribution of edge-weights is nearly gamma.

Theorem 1. Consider the first-passage percolation model on Zd, d ≥ 2, with i.i.d.
edge-weights. Assume that the distribution of edge-weights is ‘nearly gamma’ in
the sense of Benäım and Rossignol [1] (which includes exponential, gamma, beta
and uniform distributions, among others), and has a finite moment generating
function in a neighborhood of zero. Let χa and ξa be the smallest real numbers
such that for all χ′ > χa and ξ′ > ξa, there exists α > 0 such that

sup
v∈Zd\{0}

E exp

(

α
|T (0, v)− ET (0, v)|

|v|χ′

)

<∞,(A1)

sup
v∈Zd\{0}

E exp

(

α
D(0, v)

|v|ξ′
)

<∞.(A2)

Let χb and ξb be the largest real numbers such that for all χ′ < χb and ξ′ < ξb,
there exists C > 0 such that

inf
v∈Zd, |v|>C

Var(T (0, v))

|v|2χ′ > 0,(A3)

inf
v∈Zd, |v|>C

ED(0, v)

|v|ξ′ > 0.(A4)

Then 0 ≤ χb ≤ χa ≤ 1/2, 0 ≤ ξb ≤ ξa ≤ 1 and χa ≥ 2ξb − 1. Moreover, if it so
happens that χa = χb and ξa = ξb, and these two numbers are denoted by χ and
ξ, then they must necessarily satisfy the relation χ = 2ξ − 1.

Note that if χa = χb and ξa = ξb and these two numbers are denoted by χ
and ξ, then χ and ξ are characterized by the properties that for every χ′ > χ and
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ξ′ > ξ, there are some positive α and C such that for all v 6= 0,

E exp

(

α
|T (0, v)− ET (0, v)|

|v|χ′

)

< C and E exp

(

α
D(0, v)

|v|ξ′
)

< C,

and for every χ′ < χ and ξ′ < ξ there are some positive B and C such that for all
v with |v| > C,

Var(T (0, v)) > B|v|2χ′

and ED(0, v) > B|v|ξ′ .

It seems reasonable to expect that if the two exponents χ and ξ indeed exist, then
they should satisfy the above properties.
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Exact solvability of directed random polymers via gRSK

Ivan Corwin

The Kardar-Parisi-Zhang (KPZ) universality class encompasses a wide variety of
stochastic growth models, interacting particle systems, polymer models and sto-
chastic PDEs. Progress in providing exact statistics for this class of models has
been due to the discovery of a few such models for which exact formulas can be
derived and asymptotics can be taken. Recent advances have gone through three
approaches: (1) The asymmetric simple exclusion process; (2) The replica ap-
proach for the continuum directed random polymer; (3) The geometric Robinson-
Schensted-Knuth (gRSK) correspondence and finite temperature polymers.

This talk will focus on the gRSK approach.

1. The statistics of the KPZ renormalization fixed point and KPZ
equation

How does one compute exact formulas for statistics of complex, non-linear sto-
chastic processes? Such problems are generally intractable and one can only hope
to compute asymptotic statistics in the large-scale/long-time limit, when minute
differences in models are expected to wash out. In these limits, many disparate
models attract to the same limit laws – or universality classes. Far and away the
most important such class in 1 + 1 dimensions is the Kardar-Parisi-Zhang (KPZ)
class. Among the models in this KPZ class are the asymmetric simple exclu-
sion process (ASEP), directed polymers in random environment (DPRE) and last
passage percolation (LPP), and the KPZ equation (stochastic PDE).

The KPZ equation gives the evolution of a continuum growth profile h(t, x):

(1) ∂th = 1
2∂

2
xh− 1

2 (∂xh)
2 + Ẇ

where Ẇ is space-time white noise. As written this equation is ill-posed (due to the
non-linearity) and the correct interpretation is that of the Hopf-Cole solution in
terms of the multiplicative stochastic heat equation (SHE): h(t, x) = − logZ(t, x),

where ∂tZ = 1
2∂

2
xZ − ZẆ .

The (non-rigorous) prediction of Kardar, Parisi and Zhang [11] was that this
equation scales with a dynamic scaling exponent z = 3/2 and that this same
exponent should hence arise for a whole class of related (discrete) growth processes.
This means that in a large time t, the (properly centered) fluctuations of the height
function for such models should live in the scale t1/z = t2/3. Much more is true
– setting hǫ(T,X) = ǫ1/2h(ǫ−zT, ǫ−1X), [6] provide a (presently non-rigorous)
description of the properly centered limit of hǫ(T,X) as ǫ → 0 in terms of a
random semi-group ST with independent stationary increments constructed in
terms of a process called the Airy sheet. This represents the renormalization fixed
point of the entire KPZ universality class.

The KPZ fixed point and KPZ equation correspond to two different regimes
of growth / polymer models. The first arises as the scaling limit of asymmetric
or finite temperature models, while the second arises under weak asymmetry or
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high temperature scaling. The symmetric or near-infinite temperature regime is
governed by the Edwards Wilkinson fixed point.

Since the seminal work of Baik, Deift and Johansson [2] much progress has
been made in compute the exact statistics associated with the fixed T spatial
marginal of the KPZ renormalization fixed point. In fact, for the six universality
subclasses (corresponding to different growth regimes) the statistics are now known
for the entire spatial process. What enabled the computation of these asymptotic
statistics was the discovery of a class of finite models (last passage percolation
with exponential weights or equivalently the TASEP) for which finite statistics
were exactly solvable and asymptotics were accessible.

1.1. The Tracy Widom ASEP formula. Since the KPZ equation arises only
under weak asymmetric, the statistics of the KPZ equation remained inaccessible
until the work of Tracy and Widom [22, 23, 24] provided exact formulas for the
one-point probability distribution of the height of the ASEP with finite asym-
metry. Using this formula Sasamoto and Spohn [18, 19, 20] and Amir, Corwin
and Quastel [1] simultaneously and independently derived the exact probability
distribution for the Hopf-Cole solution to the KPZ equation.1 The formulas of
Tracy and Widom are formidable and have not yet yielded expressions for joint
probability distributions of the height at distant two locations (same time), as
would be necessary to solve for the multipoint (fixed time) distributions of the
KPZ equation. Additionally, the work of Tracy and Widom presently only covers
two of the six universality classes (see also [25, 5]).

Two other approaches to the solvability of the KPZ equation have arisen and
appear to be able to yield more statistics than above: The replica approach and
Bethe ansatz (non-rigorous), and the geometric Robinson-Schensted-Knuth corre-
spondence (rigorous).

1.2. The replica approach and Bethe ansatz. The stochastic heat equation
can be formulated in terms as a Feynman-Kacs path integral in a space-time
white noise potential. The solution to the SHE then has the interpretation as the
partition function for the continuum directed random polymer (CDRP), and the
KPZ equation governs its free energy. The replica approach [10] uses the polymer
formulation of Z to express the moments of Z(T,X) (with respect to the disorder
induced by the white noise potential) in terms of the solution to a quantum many
body system governed by a the Lieb-Liniger Hamiltonian with two-body attractive
delta interaction. As opposed to the repulsive delta interaction which was solved
by Lieb and Liniger [13] by Bethe ansatz, the attractive case was only just solved
last year by [8] (and later [3] with a different approach). This enabled [8] to write
down expressions for the moments of Z. From this they sought to recover the
large time asymptotics of the probability distribution of logZ. Unfortunately the
moments of Z grow far to rapidly to uniquely identify the distribution of logZ,
and in the course of resuming divergent series and analytically continuing functions

1While the derivation in [18, 19, 20] is formal and non-rigorous, [1] provides a rigorous proof
of the formula.



1594 Oberwolfach Report 29/2011

only a priori defined on the integers, [8] derived the wrong asymptotic formula.
The paper [8] was posted about a month ahead of [18, 19, 20, 1], and about two
months afterwards [7] and [3] repaired the mistakes in the derivation and recovered
the correct formulas.

Though non-rigorous and rather involved, the correctly applied replica trick
has some benefits. Prolhac and Spohn [16, 17] used this approach to derive a
conjectural form of the spatial process for the KPZ equation in the geometry
corresponding to growth in a narrow wedge and confirm that the long time limit
of this spatial process is the Airy2 process.2 In [6] this approach is used to derive a
conjectural form for the transition probabilities of the KPZ renormalization fixed
point operator random non-linear semi-group ST .

1.3. The geometric Robinson-Schensted-Knuth correspondence. The solv-
ability of LPP [9, 2] relies on the combinatorial Robinson-Schensted-Knuth (RSK)
correspondence. RSK maps a matrix of positive entries onto a pair of Gelfand
Zetlin (GZ) patterns, from which one can immediately read off information like
the last passage time for the original matrix. When matrix entries are chosen as
independent exponential random variables, the resulting measure on GZ patterns
is given by the Schur measure. Thus, in this case it is possible to write exact
formulas for the probability distribution for the last passage time – hence the
solvability.

Last passage percolation represents a zero temperature polymer model, and
thus in order to access the statistics of the KPZ equation, it is necessary to find a
solvable finite temperature polymer. This is accomplished in the on-going work of
[4] (building on recent work of [21, 14]) using a finite temperature version of RSK
– the so called geometric Robinson-Schensted-Knuth correspondence introduced by
Kirillov [12] in the context of tropical combinatorics. The RSK correspondence
can be encoded as a combinatorial algorithm over the (max,+) algebra – gRSK
amounts to formally replacing: max 7→ + and + 7→ ×. The image of a matrix
of positive entries under gRSK is now a pair of triangular arrays and from these
one may immediately read off the polymer partition function associated with the
original matrix. Exponential weights are no longer the distinguished solvable dis-
tribution – but rather inverse Gamma distributions. The solvability stems from an
operator intertwining relation (combine with general theory of Markov functions
[15]) and an integrate-out lemma originally developed in the study of automorphic
forms.

The algebraic structure associated with the finite temperature polymer solv-
ability is much better understood than in the context of the ASEP, and thus
much more information about the KPZ equation should be accessible through this
approach. Asymptotics of the resulting formulas are presently being computed.

2This and the work of [6] make a critical factorization assumption in the form of the moments
of Z which may not be true at finite t but which appears to hold in the long-time limit.



Stochastic Analysis 1595

References

[1] G. Amir, I. Corwin, J. Quastel. Probability Distribution of the Free Energy of the Continuum
Directed Random Polymer in 1 + 1 dimensions. Comm. Pure Appl. Math., to appear.

[2] J. Baik, P.A. Deift, K. Johansson On the distribution of the length of the longest increasing
subsequence of random permutations. J. Amer. Math. Soc., 12:1119–1178 (1999).

[3] P. Calabrese, P. Le Doussal, and A. Rosso. Free-energy distribution of the directed polymer
at high temperature. Euro. Phys. Lett., 90, 20002, 2010.
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Some random continuous triangulations

Nicolas Curien

(joint work with J.-F. Le Gall and W. Werner)

Definition 1. A continuous triangulation of the disk D is a closed set T of D that
can be written as a union of non-crossing chords with endpoints located on S1 and
such D\T is a disjoint union of (Euclidean) triangles.

We present three different models of random continuous triangulations of the
disk, relate them to discrete models and compare their properties.

The first model is the Brownian triangulation of Aldous [1, 2]. This random
triangulation takes its name from its intimate link with the Brownian excursion
and Aldous’ Brownian CRT. It can also be obtained as the limit in distribution
(for the Hausdorff distance on closed subsets of D) of uniform triangulations of
the regular polygon with n edges inscribed in D as n→ ∞. This limit is universal
in the sense that various models of uniform non-crossing configurations of convex
polygons converge towards Aldous’ triangulation. This random triangulation al-
most surely has Hausdorff dimension 3/2.

The second model is the recursive triangulation introduced in [3]. This ran-
dom continuous triangulation can be constructed as follows: Consider (Xi)i≥1 a
sequence of independent variables uniformly distributed over S1. We imagine that
the points fall one after the other and we pair the points as soon as possible by
drawing a chord between two points, provided that this chord does not cross any
of the existing chords. The closure of the set obtained after pairing all the points
(Xi)i≥1 is the random recursive triangulation. This object is also universal as
it appears as a limit in distribution of various discrete triangulations of convex
polygons that are built recursively. Its Hausdorff dimension is almost surely equal

to 1 +
√
17−3
2 .

The last model is a model of hyperbolic triangulation: The chords of the trian-
gulation T are drawn using the hyperbolic structure of D instead of the Euclidean
one and we further suppose that T is of empty interior. The main result of [4] is
then the following:

Theorem 2. There exists a unique (law of a) hyperbolic triangulation that is in-
variant (in law) with respect to Möbius transformations, and possesses a natural
spatial Markov property that can be roughly described as the conditional indepen-
dence of the two parts of the triangulation on the two sides of the edge of one of
its triangles.

We show how to construct this object from a certain Poisson point process and
present some open problems and conjectures about it.
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Quenched invariance principle for a balanced, non-elliptic, random
walk in balanced random environment

Jean-Dominique Deuschel

(joint work with N. Berger)

Let Md be all probability measures on {±ei}di=1. An environment is a point

ω ∈ Ω =
(

Md
)Z

d

ω = {ω(x,±ei), i = 1, ..., d}x∈Zd

The law of environment P is an i.i.d. measure, i.e.

P = µZ
d

for some distribution µ on Md.
For an environment ω ∈ Ω, the Random Walk on ω is a time-homogenous

Markov chain with transition kernel

Pω (Xn+1 = z + e|Xn = z) = ω(z, e).

The quenched law P z
ω is defined to be the law on

(

Zd
)N

induced by the kernel
Pω and P z

ω(X0 = z) = 1. An environment ω is said to be balanced if for every
z ∈ Zd and neighbor e of the origin, ω(z, e) = ω(z,−e).

An environment ω is said to be genuinely d-dimensional if for every neighbor e
of the origin, there exists z ∈ Z

d such that ω(z, e) > 0.
Throughout this work we make the following assumption. P -almost surely, ω

is balanced and genuinely d-dimensional.
Set

XN
t =

1√
N
X[tN ] +

tN − [tN ]√
N

(

X[tN ]+1 −X[tN ]

)

, t ≥ 0.

The quenched invariance principle holds if for P a.a. ω the law of {XN
t }t≥0

under P 0
ω converges weakly to a Brownian motion with deterministic non-degenerate

matrix.

Theorem 1. Let d ≥ 2 and assume that the environment is i.i.d., genuinely
d-dimensional and balanced, then the quenched invariance principle holds with
non-degenerate limiting covariance matrix.
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Let d ≥ 2 and assume that the environment is i.i.d., genuinely d-dimensional
Lawler showed in [L] the quenched invariance principle for ergodic uniformly

elliptic environments: that is, if there exits ǫ0 > 0 with

P (∀i = 1, ..., d, ω(z, ei) > ǫ0) = 1.

Guo and Zeitouni showed in [GZ] the quenched invariance principle for i.i.d
elliptic environments

P (∀i = 1, ..., d, ω(z, ei) > 0) = 1.

and for ergodic environments under the moment condition

E[
(

d
∏

i=1

ω(x, ei)
)−p/d

] <∞ for some p > d

One can find an example of ergodic elliptic balanced environment, where the in-
variance principle fails.

Note that, due to the balanced environment, {Xn} is a martingale.
Let {ω̄n}n∈N be the environment viewed from the point of view of the particle:

ω̄n = τXn
ω,

where τ is the shift on Ω This is a Markov chain on Ω under P with transition
kernel

M(ω′, dω) =
d

∑

i=1

[

ω′(0, ei)δτeiω′ + ω′(0,−ei)δτ−ei
ω′

]

The quenched invariant principle follows once we can find a probability measure
Q ≪ P which is an invariant ergodic measure for {ω̄n} and such that P -almost
surely, after some finite time the shifted environment is in the support of Q.

Note that in the elliptic case it follows immediately when Q≪ P that P ≪ Q,
but in our case it is possible to have Q ≪ P but P 6≪ Q. Thus we need to be
more careful.

Our proof is based on analytical methods, in particular on the maximum prin-
ciple which we have to adapt to the non-elliptic setting. The estimates are based
on the rescaled random walk, obtained from the original walk stopped after each
coordinate has been upgraded. The maximum inequality allows us to control for
p > 1 the Lp- norm of the density of the invariant measure of the walk on the
reflected-periodized cube of size N , uniformly in large N . From this we get the
existence of an invariant measure Q ≪ P , however due to the non-ellipticity of
the walk, the proof of the ergodicity of Q, which is related to the uniqueness of
a maximal strongly connected component, is more delicate. In the 2 dimensional
case a simple coupling argument is applicable, while in higher dimensions we need
to adapt the Burton-Keane argument [BK], to our setting, where we only have a
weak version of the finite energy condition. We compensate for the weaker finite
energy condition by using density bounds on the support of the invariant measure.
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Dimers and analytic torsion

Julien Dubédat

The dimer (or perfect matching) model consists in uniformly sampling from perfect
matchings of a fixed graph, ie subsets of the edge set such that each vertex is
adjacent to exactly one of the selected edges. If the graph is planar, Kasteleyn
showed that these matchings are enumerated by the Pfaffian of an appropriately
signed adjacency matrix. If the graph is bipartite and planar, one can associate
to each matching a height function defined on faces, following Thurston. The
large scale behaviour of this height function exhibits a rich phenomelogy: limit
shapes, Gaussian fluctuations, random matrix-type fluctuations at the edge of
frozen regions, ... (Cohn-Kenyon-Propp, Kenyon, Johansson, ...).

In this talk we focus on Gaussian fluctuations in the case where the limit is
conformally invariant (this is dictated by boundary conditions, or lack thereof).
The point of view adopted here is that of families of Cauchy-Riemann operators.
More specifically, the Kasteleyn operator can be thought as a finite difference
version of a Cauchy-Riemann operator ∂̄ : f 7→ fz̄dz̄. One may evaluate the
characteristic functional of the height field by modifying this reference operator
by a degree 0 “potential”, multiplied by a perturbation parameter. The analysis
consists in showing that the logarithmic variation of the discrete determinants
(of finite dimensional, finite difference operators) converges to the logarithmic
variation of the regularised functional determinant along such a family of Cauchy-
Riemann operators. This involves a detailed analysis of the inverting kernel near
the diagonal and relates to Quillen’s curvature formula.

This approach enables to treat various problems on height fluctuations including
compactified free field limit for dimer coverings on a torus; a strong invariance
principle; vertex correlators and monomer correlators. The latter involve CR
operators operating on a line bundle with monodromies around singularities (the
“operator insertions”). The variation considered here fixes the monodromy data
and displaces the singularities, and is based on a study of discrete holomorphic
functions with monodromy (ie multiplicative multivalued).
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Entropy, random walks and harmonic functions

Hugo Duminil-Copin

(joint work with I. Benjamini, G. Kozma and A. Yadin)

Since the work of Yau in 1975, where a Liouville property for positive harmonic
functions on complete manifolds with non-negative Ricci curvature is proved, the
structure of various spaces of harmonic functions have been at the heart of geomet-
ric analysis. We extend this question to the random context, with an emphasize on
the infinite cluster of percolation. We are especially interested in harmonic func-
tions on it (meaning functions f with vanishing laplacian) with sublinear growth.

Theorem 1. For almost every supercritical-cluster of percolation, there are no
non-constant sublinear harmonic functions.

In order to prove this result, we show that the total variation between random
walks starting at two neighbors is controlled by the averaged entropy of the walk.
The natural context in which the averaged entropy appears is the stationary ran-
dom graphs. Let (G, ρ) be a random rooted graph. Consider the measure P on
couples (G, (xn)n∈N), where G is a graph and (xn)n∈N a semi-infinite path such
that conditionally on (G, ρ), (xn)n∈N is distributed according to the simple random
walks on G starting at ρ.

Definition 2. The graph G is called stationary if (G, ρ) and (G,X1) have the
same distribution (under P), where X1 is the first step of the random walk.

The entropy is the averaged Shannon entropy. Consider a stationary random
graph (G, ρ) with law P. Conditionally on (G, ρ), define the entropy of the random
walk started at x at times n,m by

Hn(G, x) =
∑

y∈G

φ
(

Px(Xn = y)
)

where φ(t) = −t log t and φ(0) = 0. The mean entropy is then defined by
hn = E[Hn(G, ρ)]. With this definition, we obtain the following theorem:

Theorem 3. Let (G, ρ) be a stationary random graph. For every n > 0, we have

(1) E

(

∥

∥Pρ(Xn ∈ ·)− PX̃1
(Xn−1 ∈ ·

∥

∥

2

TV

)

≤ hn − hn−1,

where X̃1 is the first step of the random walk and || · ||TV is the total variation.

When the graph has polynomial growth, the entropy grows logarithmically and
there exists an infinite number of n such that hn − hn−1 ≤ C/n. A slight modifi-
cation of Theorem 3 (note that percolation equipped with the stationary measure
is a stationary random graph) allows then to control the gradient of a harmonic
function on the infinite cluster and implies Theorem 1. We mention that this result
has many other consequences, including the uniqueness of the corrector, Lipschitz
regularity for the heat kernel, etc...

The question of harmonic functions in random environment is not closed. One
can ask what is the dimension of linear growth harmonic functions, if there are
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higher order harmonic functions etc... Among the open questions, we mention
that harmonic functions on the Uniform Infinite Planar Triangulation are not
understood at all, and that investigating this subject could provide information
on the random walk.
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Random matrices, combinatorics, algebraic geometry and the
topological recursion

Bertrand Eynard

The generating functions of maps (possibly carrying an Ising model, or a O(n)
model, or other decorations) of different topologies, are related by a recursion
relation. This ”topological recursion” relates the generating functions of maps of
lower Euler characteristics χ to χ + 1. In other words, knowning the generating
function of maps of the highest χ, i.e. planar rooted maps, allows to compute all
the other topologies. Moreover, many other problems of enumerative geometry,
for instance Gromov–Witten invariants, or knot invariants, do satisfy the same
recursion.

Definition 1. Let Mg,n(v) be the set of connected oriented maps of genus g, with
v vertices, made of n3 triangles, n4 4-angles, ..., nd d−angles, and n marked faces
(each marked face having a marked edge, oriented by the orientation of the map),
of respective lengths l1, . . . , ln (umarked faces are at least 3-angles, but marked
faces can have li ≥ 1).

We aslo define M0,1(1) = {.} i.e. we say that there is one rooted map of genus
0 with a single vertex, and with no edges, it has n3 = n4 = · · · = 0 and l1 = 0.

Remark: Mg,n(v) is a finite set (proof: write the Euler characteristics).
We then define the generating functions of maps of genus g with n marked faces,

as formal power series in their number of vertices v:

(1) W (g)
n (x1, . . . , xn; t, t3, . . . , td) =

∞
∑

v=1

tv
∑

Mg,n(v)

tn3
3 . . . tnd

n

#Aut xl1+1
1 . . . xln+1

n

.

The xi’s are catalytic variables associated to the lenghts of marked faces, we shall
need to integrate on them, whereas the tk’s will play a spectator role, so most
often, for shorter notations, we shall note write them:

(2) W (g)
n (x1, . . . , xn; t, t3, . . . , td) ≡W (g)

n (x1, . . . , xn).

The planar maps with 1 marked edge, are in fact planar rooted maps (the
root is the marked edge of the marked face, oriented so that the marked face is
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on the right). Their generating function W
(0)
1 was computed by Tutte and his

collaborators in the 60’s, for instance for quadrangulations (only t4 6= 0), is [8, 9]:

(3) W
(0)
1 (x) =

1

2t

(

x− t4x
3 + t4(x

2 + c(t))
√

x2 − 4γ(t)2
)

where c(t) is a formal series in t which we shall not write, and γ(t) is given by

(4) γ(t)2 =
1

6t4

(

1−
√
1− 12tt4

)

.

In fact, it is much simpler to use another coordinate than x, and write

(5) x(z) = γ (z + 1/z)

with this new variable z, we have
√

x2 − 4γ2 = γ(z − 1/z), and thus W
(0)
1 is a

rational function of z, namely:

(6) W
(0)
1 (x(z)) = y(z) =

t

γz
− t4 γ

3

z3
.

The parameter z is called the uniformizing parameter, we see that W
(0)
1 is a

multivalued function of x, but when we use variable z, it becomes a monovalued
function, in fact rational.

This fact is general, for all sorts of maps, it is more convenient to introduce

a better variable z instead of x, so that x(z) and y(z) = W
(0)
1 (x(z)) are nice

functions of z. For many examples of maps, the parameter z is a complex number
∈ C, but sometimes, like the O(n) model, in fact z can live on a torus, or on some
higher genus Riemann surface.

Universal 2-point function
Then, it was proved, that for all cases where z lives on the Riemann sphere (i.e.

maps, maps with an Ising model,...):

(7) W
(0)
2 (x(z1), x(z2))x

′(z1)x
′(z2) +

x′(z1)x′(z2)

(x(z1)− x(z2))2
=

1

(z1 − z2)2

For the O(n) model, z lives on a torus, and this function is replaced by a n-
deformed Weierstrass function ℘n(z1 − z2), and in all cases, the function in the
RHS, is the ”fundamental 2-form of 2nd kind” on the Riemann surface defined by

W
(0)
1 , i.e. the cannonical function with a double pole.

→ The 2-point function W
(0)
2 thus takes a universal form.

Other topologies, topological recursion
Then, it was proved [3] that all other generating functions satisfy the following

recursion (valid if 2g − 2 + n ≥ 0):

W
(g)
n+1(x0, x1, . . . , xn)(8)

=
∑

ai=branchpoints

Res
z→ai

K(x0, x(z))
[

W
(g−1)
n+2 (x(z), x(z̄), x1, . . . , xn)

+
∑

h

′
∑

I⊎J={x1,...,xn}
W

(h)
1+#I(x(z), I)W

(g−h)
1+#J (x(z̄), J)

]
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where the recursion kernel is given by

(9) K(x0, z) =

∫ z

z′=z̄
W

(0)
2 (x0, x(z

′))x′(z′)dz′

2(W
(0)
1 (x(z)) −W

(0)
1 (x(z̄))

and where z̄ means the value of z which corresponds to the other branch of the

multivalued function W
(0)
1 (x(z)), i.e. it is such that x(z̄) = x(z) (in the example

of quadrangulations above, it is z̄ = 1/z i.e. it corresponds to changing the sign of
the square root). The branch points are those at which x′(z) = 0 (in the example
of quadrangulations, there are two, z = 1 and z = −1). The resiudes are computed
in the z variable, not in the x variable. The prime in

∑

h

∑′
I,J , means that we

exclude from that sum, the terms which are in the left hand side of the recursion,
i.e. namely, we exclude (h = 0, I = ∅) and h = g, I = {x1, . . . , xn}.

We can also compute W
(g)
0 , often denoted Fg by the relation (for g ≥ 2):

W
(g)
0 = Fg

=
1

2− 2g

∑

ai=branchpoints

Res
z→ai

W
(g)
1 (x(z))x′(z) dz

∫ z

z′=z0

W
(0)
1 (z′)x′(z′)dz′

which is independent of the z0 chosen. There is also a formula for F1 and F0,
which we don’t write here, see [4, 5].

→ This recursion means that knowing W
(0)
1 allows to find all the other W

(g)
n ’s

by a systematic algorithm !

This recursion is universal, it holds for many models of maps, like maps, Ising
maps, O(n) model maps, it is natural to conjecture that it holds for Potts model
maps,... Notice that there is no free parameter in that relation, it depends on
nothing.

Other applications. It is remarkable that many different sorts of maps all obey
the same recursion, but even more remarkable, is that many other problems, not
related to maps, also obey the same recursion.

• Gromov–Witten invariants
Let X be a 3dimensional Calabi–Yau manifold with a toric symmetry, and L ⊂ X

a toric sublagrangian manifold. The Gromov–Witten invariants Ng,d,l(X, L) count
the number (divided by automorphisms) of analytical embeddings of a Riemann
surface Σg,n of genus g with n boundaries in X, so that the boundaries end on L.
d = (d1, . . . , db2) ∈ Zb2 is the degree of the embedding (i.e. the homology class
in H2(X,Z), which has dimension b2) and l = (l1, . . . , ln) ∈ Zn are the winding
numbers of the boundaries in L. We define their generating series:

(10) W (g)
n (x1, . . . , xn; t) =

∑

d,l

Ng,d,l(X, L) e
−∑

i diti e−
∑

i lixi

∏

i

li.

Then, it was conjectured [6, 1], and verified on many examples at low g, and proved

on a few cases for all g, that those W
(g)
n ’s satisfy the same topological recursion

(8).
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For example, this result was proved in [2, 10] for X = C
3 with framing f , the

recursion starts with y =W
(0)
1 (x) given by the relation:

(11) e−x = e−fy (1− e−y).

which is the mirror curve of X.
• Weil–Petersson volumes
The moduli space of Riemann surfaces of genus g with n boundaries, is a finite

dimensional manifold (in fact orbifold, because surfaces with a symmetry group
are counted modulo their automorphism group) of dimension 3g− 3+n, endowed
with a natural hyperbolic geometry, and has a natural symplectic volume form,
and its volume is called ”Weil-Pettersson volume”. Let
(12)

Wg,n(L1, . . . , Ln) =

∫ ∞

0

. . .

∫ ∞

0

∏

i

LidLi e
−Li

√
xi Volume(Mg,n(L1, . . . , Ln))

be the Laplace–transform of the volume of the moduli space of Riemann surfaces
of genus g with n boundaries of lenghts L1, . . . , Ln. Then, it was proved that these

W
(g)
n satisfy the same topological recursion (8), starting with

(13) y =W
(0)
1 (x) = sin

√
x

(the uniformizing parameter z is such that x(z) = z2 and y(z) = sin z). The
topological recursion in that case, turns out to coincide with Mirzakhani’s recursion
[7].

• There are many other examples where the topological recursion is satisfied
(some proved, some only conjectured), for instance Hurwitz numbers, knot invari-
ants, sums over plane partitions (like Mac–Mahon formula), and of course matrix
models,...

Conclusion. • We have a universal recursion which is satisfied by an important
set of combinatorial problems.

• That recursion allows to compute everything as soon as we know the first

term, i.e. W
(0)
1 .

• We don’t even need to have a combinatorial problem, we may choose an

arbitrary function W
(0)
1 (x) (it must be multivalued), and see what the recursion

does. It computes some functions W
(g)
n , and some numbers Fg = W

(g)
0 ’s, and

independently of the choice of y =W
(0)
1 , these Fg have remarkable properties:

- The Fg’s are invariant under symplectic transformations of the curve y(x), for
instance they are invariant under the exchange of x and y.

- The Fg’s are almost modular forms, like Eisenstein series, they can easily be
turned into modular forms by adding a simple non–analytical term. They thus
provide a natural basis of modular forms.

- They obey the relations of special geometry, related to form–cycle duality, i.e.
if we make an infinitesimal deformation y → y + ǫ δy such that ω = δy dx is a
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meromorphic differential form, then we have

(14)
∂

∂ǫ
W (g)

n (x1, . . . , xn) =

∫

z∈ω∗

W
(g)
n+1(x(z), x1, . . . , xn)x

′(z) dz

where ω∗ is the cycle dual to the form ω.
- They behave well under taking limits, this allows to easily study the limits of

large maps for instance. This can be used to give an easy rigorous proof that the
generating function of numbers of large maps, satisfy some Painlevé equation.

- They define an integrable system (for example Hirota equations, or determi-
nantal formulae)

- and much more ..., see [4, 5].

• Now it remains to understand why (at the combinatoric level) these equations
are satisfied (the only available proofs are very technical, and very far from the
combinatorics).
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Magnetization field at criticality in the Ising model

Christophe Garban

(joint work with F. Camia and C. Newman)

If one considers an N × N grid with independent coin flips σx ∈ {−1, 1} at each
vertex, it is well known that the renormalized field 1

N

∑

x σx δx/N converges as N

goes to infinity to a Gaussian white noise in the square [0, 1]2. More precisely for
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each “nice” subset A of this square, the field measured in A is a Gaussian random
variable with variance the area of A.

The aim of this talk is to study what happens when the coin flips are no longer
independent of each other. This situation has been considered in various contexts
and one cannot hope for a “universality” result as in the iid case. In particular,
one has to precise what type of dependency structure one is interested in. In this
talk, I will focus on some famous distributions which arise in statistical mechanics
and in particular on the case where the coin flips σx are defined to be the spins
of an Ising model on the N × N grid. In this context, the sum over the spins
corresponds to the so called magnetization field. Away from the critical point,
it is known that this magnetization field (properly renormalized) converges also
towards a Gaussian white noise. It remains to understand the magnetization field
at criticality. In a joint work with Federico Camia and Chuck Newman, we prove
the following facts:

(i) at T = Tc, the discrete magnetization fields have a unique scaling limit.
(ii) This limit is non-Gaussian.
(iii) The limit has an explicit conformally covariant structure.

(iv) The tail probabilities behave like e−cx16

.

Universality for bond percolation in two dimensions

Geoffrey Grimmett

(joint work with I. Manolescu)

The star–triangle transformation has a long history. It dates back at least as far
as the 19th century in the study of electrical networks; it was used by Onsager
and Kramers–Wannier in their work on the Ising model; it was exploited by Sykes
and Essam in their predictions of values of critical points for bond percolation
on triangular and hexagonal lattices; it has proved a standard tool in statistical
physics, known as the Yang–Baxter equation, and so on. The purpose of this
talk is to explain how the star–triangle transformation may be used to show that
inhomogeneous bond percolation on square, triangular, and hexagonal lattices
belong to the same universality class, and that the critical processes have the so-
called ‘box-crossing property’. This work is joint with Ioan Manolescu, see [2, 3].

Consider a ‘lattice’ L = (V,E) embedded in R2. While the arguments of this
talk may be applied to a variety of graphs L, for simplicity here we take L to be
one of the square, triangular, or hexagonal lattices. The configuration space of
bond percolation is Ω = {0, 1}E, and we take as probability measure a product
measure Pp in which each class of parallel edges has the same parameter. Thus
the measure Pp is parametrized by p = (p0, p1) ∈ [0, 1)2 in the square case, and
by p = (p0, p1, p2) ∈ [0, 1)3 otherwise.
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It is standard (see [1]) that these processes are critical when κ(p) = 0, where

κ(p) =

{

p0 + p1 − 1 for the square lattice,

p0 + p1 + p2 − p0p1p2 − 1 for the triangular lattice,

and with a related formula for the hexagonal lattice. There is a singularity as p
passes through the so-called critical surface κ(p) = 0.

Russo and Seymour–Welsh discovered the importance of box-crossing probabil-
ities for the control of the geometry of critical and near-critical percolation. We
say that a measure P on Ω has the box-crossing property if: for all a > 1, there
exists b > 0 such that, for all rectangles R with aspect-ratio a, the probability that
R possesses a long-way open crossing is at least b. Our first theorem is that the
above models have the box-crossing property when κ(p) = 0. This is proved by
studying the transportation of open paths under the star–triangle transformation.

Theorem 1. The inhomogeneous bond percolation models on the square, triangu-
lar, and hexagonal lattices have the box-crossing property when κ(p) = 0.

The singularity that occurs at a critical point of a percolation model is of power-
law type, and is described by a collection of critical exponents. These exponents
may be divided into two classes: those arising at criticality, and those arising
near criticality. The former class includes the one-arm exponent ρ, the volume
exponent δ, the connectivity exponent η, and the 2k alternating arm exponents
ρ2k. The latter class includes, for example, the correlation-length exponent ν, the
percolation exponent β, and the cluster-size exponent γ. A discussion of the phase
transition and of scaling theory may be found in [1, Chap. 10].

The hypothesis of universality asserts for these systems that all bond percolation
models on two-dimensional lattices have equal exponents. Very little universality
indeed has been proved so far for percolation. The two further theorems of this
talk are as follows. No proof is claimed here for the existence of any of the above
exponents, and the statements of the theorems are to be interpreted as being
conditional on such existence. In the context of two-dimensional models, the
existence of critical exponents has been proved essentially only for site percolation
on the triangular lattice.

Theorem 2. The exponents ρ and ρk, k ≥ 1, are constant within the class of
inhomogeneous bond percolation models on the square, triangular, and hexagonal
lattices.

A result of Kesten may now be used to extend the class of such invariant
exponents to include δ and η. Further arguments and results of Kesten allow us
to consider also near-critical exponents. Some further symmetries of the models
under study are helpful at this point, and for simplicity we restrict ourselves to
the following statement.

Theorem 3. The near-critical exponents β, γ, ν are constant for homogeneous
bond percolation on the square, triangular, and hexagonal lattices.
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The methods used in the proofs may be applied also to isoradial graphs and to
critical random-cluster measures.
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The sharpness of the phase transition for speed for biased walk in
supercritical percolation

Alan Hammond

(joint work with A. Fribergh)

I will discuss a joint work with Alex Fribergh in which we study the biased random
walk on the infinite cluster of supercritical percolation. Fixing any d ≥ 2 and
supercritical parameter p > pc, the model has a parameter λ > 0 for the degree of
bias of the walker in a certain preferred direction (which is another parameter, in
Sd−1). We prove that the model has a sharp phase transition, that is, that there
exists a critical value λc > 0 of the bias such that the walk moves at positive speed
if λ < λc and at zero speed if λ > λc. This means that a stronger preference for
the walker to move in a given direction actually causes the walk to slow down. The
reason for this effect is a trapping phenomenon, and, as I will explain, our result
is intimately tied to understanding the random geometry of the local environment
that is trapping the particle at late time in the case when motion is sub-ballistic.

Multi-dimensional Percolation

Alexander E. Holroyd

(joint work with Dirr, Dondl, Grimmett and Scheutzow)

Percolation is concerned with the existence of an infinite path in a (Bernoulli)
random subgraph of the lattice ZD. We can rephrase this as the existence of a
Lipschitz embedding (or equivalently an injective graph homomorphism) of the
infinite line Z into the random subgraph. What happens if we replace the line Z

with another lattice Zd? I’ll answer this for all values of the two dimensions d and
D, and the Lipschitz constant. Based on joint works with Dirr, Dondl, Grimmett
and Scheutzow.
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Spectral and Eigenvector Statistics of Random Matrices

Antti Knowles

(joint work with L. Erdős, H.T. Yau and J. Yin)

I review recent results on the spectral and eigenvector statistics of random matri-
ces. In particular, I cover the bulk and edge universalities of generalized Wigner
matrices. I also outline the universality of eigenvectors associated with eigenvalues
near the spectral edge. In addition to generalized Wigner matrices, I consider the
Erdős-Rényi graph and discuss the complete delocalization of its eigenvectors as
well as its bulk and edge universalities. Finally, I sketch the main ingredients of
the proofs. (Joint work with L. Erdős, H.T. Yau and J. Yin.)

What do the eigenvalues and eigenvectors of a typical large matrix look like? A
naive attempt to give meaning to the word “typical” is to consider the Gaussian
unitary ensemble (GUE), defined as an N ×N Hermitian matrix H = (hij) whose
entries are given by

(1) hij = hji =
1√
N
xij , hjj =

√
2√
N
xii ,

where (xij : i ≤ j) is a family of independent standard Gaussian random variables.
The law of H can also be expressed as

(2) P(dH) =
1

Z
e−N TrH2/2 dH ,

where dH denotes the Lebesgue measure on the space of Hermitian matrices.
Similarly, one may define the Gaussian orthogonal ensemble (GOE) on the space
of real symmetric matrices.

The Gaussian ensembles GUE and GOE are invariant under conjugation by a
unitary (respectively orthogonal) matrices. As a consequence, it is relatively easy
to compute the joint distribution of their eigenvalues ρN (λ1, . . . , λN ). For example
for GUE one finds

ρN (λ1, . . . , λN ) = C
∏

i<j

(λi − λj)
2
∏

i

e−Nλ2
i/2 .

The k-point correlation function is defined as

ρ
(k)
N (λ1, . . . , λk) :=

∫

ρN (λ1, . . . , λN ) dλk+1 · · ·dλN .

In a seminal paper published in 1955, Wigner showed that the macroscopic statis-
tics follow the semicircle law :

lim
N→∞

∫ E+ℓ

E−ℓ

(

ρ
(1)
N (x) − ρsc(x)

)

dx = 0 , ρsc(x) :=
1

2π

√

[4− x2]+ ,

for any fixed ℓ > 0. This provides macroscopic information about the eigenvalue
statistics, in the sense that one considers an interval [E − ℓ, E + ℓ] that typically
contains an order N eigenvalues.
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A much finer question concerns the microscopic eigenvalue statistics. Gaudin,
Mehta, and Dyson proved in the 1960s that the local correlation structure of GUE
is given by a simple determinantal point process. More precisely, for any fixed k
we have

lim
N→∞

1

ρsc(E)k
ρ
(k)
N

(

E +
α1

Nρsc(E)
, . . . , E +

αk

Nρsc(E)

)

= det
[

S(αi − αj)
]k

i,j=1

for any fixed E ∈ (−2, 2), where S(α) := sinπα
πα is the sine kernel.

The question of the distribution of the largest eigenvalue of GUE was settled
in 1994, when Tracy and Widom proved that

lim
N→∞

P(N2/3(λmax − 2) ≤ s) = F2(s) ,

where F2 can be explicitly computed using Painlevé equations.
Wigner’s original vision was that the microscopic spectral statistics of GUE

are universal. He postulated that the spectrum of any strongly correlated phys-
ical model should exhibit GUE or GOE (depending on symmetries) statistics at
a microscopic level. While the macroscopic statistics may vary from model to
model, the microsopic statistics only depend on the details of the model through
its symmetries. A very simple illustration of such universality is the central limit
theorem: the sum of a large number of centred and normalized random variables
is Gaussian, independent of the distribution of the individual random variables.

A mathematical justification of universality entails the analysis of a large class
of random matrices, for which one seeks to establish GUE/GOE microscopic sta-
tistics. There are two natural ways to generalize the Gaussian ensembles. The
first is to replace the quadratic dependence on H in the exponent of (2) with a
more general function V . Thus, one considers the invariant β-ensemble with law

P(H) =
1

Z
e−N TrV (H)/2 dH .

As for GUE, one may easily compute the joint probability density of the eigenvalues
of H ,

ρN (λ1, . . . , λN ) = C
∏

i<j

|λi − λj |β
∏

i

e−NβV (λi)/2 ,

where β is a parameter that describes the symmetry (β = 2 for Hermitian matrices
and β = 1 for real symmetric matrices). More details about the universality of
the β-ensemble are given in Yau’s talk.

The second way of generalizing the Gaussian ensembles is to keep the random
variables xij in (1) independent, but to change their laws. For instance, one may
consider the following class of random matrices, known as generalized Wigner
matrices. Let H = (hij) be an N × N Hermitian or real symmetric matrix with
hij = σijxij , where σij > 0 is deterministic, (xij : i ≤ j) are independent, and

Exij = 0 , E |xij |2 = 1 ,
∑

j

σ2
ij = 1 ,

c

N
≤ σ2

ij ≤
C

N
.
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Theorem 1 (Erdős, K, Schlein, Yau, Yin). Bulk universality holds for generalized
Wigner matrices provided that

E |xij |4+ǫ ≤ C ,

i.e. for −2 < E < 2 and b = N−1+δ we have

lim
N→∞

∫ E+b

E−b

dE′

2b

(

ρ
(k)
N − ρ

(k)
µ,N

)

(

E′ +
α1

N
, . . . , E′ +

αk

N

)

= 0 ,

where µ stands for GUE or GOE depending on the symmetry of H.

We note that bulk universality for Wigner matrices (satisfying σ2
ij = N−1) was

proved by Tao and Vu assuming that E |xij |K < C for some large enough K and
the first four moments of the entries of H match those of GUE/GOE. (Together
with a result of Johansson, this result implies that bulk universality holds for
Hermitian matrices if the first three moments match.)

Similarly, one may establish the edge universality of generalized Wigner matri-
ces. In order to state the result, we order the eigenvalues of H so that λ1 ≤ λ2 ≤
· · · ≤ λN .

Theorem 2 (Erdős, K, Yau, Yin). Suppose that Hv and Hw are generalized
Wigner matrices. Assume that two moments match, i.e.

E(xvij)
2 = E(xwij)

2 ,

and that for both ensembles we have

(3) E |xij |12 ≤ C .

Then for all s ∈ R we have

P
v
(

N2/3(λN − 2) ≤ s
)

− P
w
(

N2/3(λN − 2) ≤ s
)

→ 0 .

Similarly: convergence of correlation functions of eigenvalues near edge.

The moment condition (3) is not optimal. (In fact, with some additional work,
the number 12 may be improved to 7.) Edge universality is believed to hold down
4+ǫmoments of the matrix entries. In fact, Auffinger, Ben Arous, and Péché have

shown that if E |xij |4−ǫ
= ∞, edge universality does not hold. Previously, Sinai,

Soshnikov, Ruzmaikina, and Sodin have shown that edge universality holds if the
law of xij is symmetric and has a finite moment of sufficiently high order. More-
over, Tao and Vu have showed that edge universality holds under the additional
assumption that the first three moments moments vanish and xij has a sufficiently
fast decay.

One may also ask whether the distribution of the eigenvectors of H is universal.
The following result establishes this for eigenvectors associated with eigenvalues
close to the spectral edges ±2. Let u1, . . . ,uN be the ℓ2-normalized eigenvectors
associated with the eigenvalues λ1 ≤ · · · ≤ λN .
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Theorem 3 (K, Yin). Let H be a Wigner matrix whose entries have subexponen-
tial decay, and V be a GUE/GOE matrix. Then for any test function function θ
we have

lim
N→∞

(

E
H − E

V
)

θ
(

Nuα1(i1)uα1(j1), . . . , Nuαk
(ik)uαk

(jk)
)

= 0 ,

provided that α1, . . . , αk ≤ N ǫ for some small ǫ > 0.

Note that this result characterizes the distribution of the eigenvector com-
ponents completely (since eigenvectors are only defined up to a global phase).
We may also include eigenvalues and prove an analogous result about the joint
eigenvalue-eigenvector distribution function.

For bulk eigenvectors, the same result holds under the much stronger assump-
tion that four, instead of two, moments match. This was also recently established
by Tao and Vu.

Instead of generalized Wigner matrices, one may consider many other classes of
random matrices. One such class of particular interest is the Erdős-Rényi graph,
a random graph on N vertices in which each edge of the complete graph is chosen
with probability p independently from all other edges. It may be characterized
through its adjacency matrix A = (aij), a real symmetric matrix satisfying

aij =
γ

q

{

1 with probability p

0 with probability 1− p ,

where q :=
√
pN and γ = (1 − p)−1/2 so that Var aij = N−1. Each column

typically has pN = q2 nonvanishing entries. Typically, one is interested in the
case where the graphs is sparse, i.e. 1 ≤ q ≪ N1/2. Note that the entries of A are
not centred like those of Wigner matrices. Moreover, their fluctuations are much
stronger in the sense that the k-th moment of aij decays much slower than in the
case of a Wigner matrix.

The following result establishes the complete delocalization of the eigenvectors
of A. By delocalization of an eigenvector uα at scale ℓ we mean that ‖uα‖∞ =

O(ℓ−1/2). Informally, this means that uα is supported on at least ℓ sites.

Theorem 4 (Erdős, K, Yau, Yin). Let u1, . . . ,uN denote the eigenvectors of the
Erdős-Rényi graph. Fix ǫ > 0 and let q ≥ (logN)1+ǫ. Then

P

(

max
α

‖uα‖∞ ≤ (logN)4√
N

)

≥ 1− e−(logN)1+ǫ

.

In their seminal paper of 1960, Erdős and Rényi proved that if q ≤ (1−ǫ)√logN ,
then there are a.s. isolated vertices, and consequently not all eigenvectors can be
delocalized. Previously, Tran, Vu, and Wang proved that if λα is away from
the spectral edges ±2, then the weaker estimate ‖uα‖∞ ≤ q−1 holds with high
probability.

Finally, one we address the universality of the Erdős-Rényi graph. It is well
known that its eigenvalues satisfy

λ1, . . . , λN−1 ∈ [−2− o(1), 2 + o(1)] .
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The largest eigenvalue λN satisfies λN ≈ q + q−1; this outlier eigenvalue arises
from fact that the entries aij have nonzero mean. Moreover, λN is known to have

Gaussian fluctuations on scale N−1/2.

Theorem 5 (Erdős, K, Yau, Yin). If q ≫ N1/3 (i.e. p ≫ N−1/3) then the bulk
and edge universalities hold for the Erdős-Rényi graph. Edge universality means
that

lim
N→∞

[

P
A
(

N2/3(λN−1 − 2) ≤ s
)

− P
GOE

(

N2/3(λN − 2) ≤ s
)]

= 0 .

We conclude this summary by outlining the strategy behind the proofs.

Step 1.: The local semicircle law. Control of the Green functions down to
spectral windows of size N−1, which implies localization estimates for the
eigenvalues.

Proof: System of self-consistent equations for the Green functions; er-
rors controlled using large deviations methods.

Step 2.: Bulk universality of Gaussian divisible ensembles

H =
√
1− tH0 +

√
t V , H0 is a Wigner matrix and V is GUE.

(Matrix entries have small Gaussian components, i.e. they are Gaussian
divisible.)

Proof: Estimate the speed of convergence to local equilibrium of Dyson
Brownian motion. More details are given in Yau’s talk.

Step 3.: Density argument: approximation by Gaussian divisible ensembles.
For edge universality: resolvent expansion and moment matching con-

dition.

The main tool behind Step 1 is the resolvent (or Green function) of H . Let
z = E + iη with imaginary part η > 0. Define the Stieltjes transform

msc(z) =

∫

dx
ρsc(x)

x− z

and the resolvent

G(z) = (H − z)−1.

The Stieltjes transform of the empirical eigenvalue density is

m(z) :=
1

N

N
∑

α=1

1

λα − z
=

1

N
TrG(z) .

The parameter η = Im z describes the spectral resolution: Imm(E + iη) is the
density at E averaged over an interval of size η. Indeed,

Imm(z) =
π

N

N
∑

α=1

δη(λα − E) ,

where δη(x) := 1
π

η
x2+η2 is an approximate delta function on scale η. In this

language, the local semicircle may be formulated as follows.
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Theorem 6 (Erdős, K, Yau, Yin). Let H = (hij) be a Hermitian or symmetric
matrix, either generalized Wigner or Erdős-Rényi. Let z = E + iη with η & N−1.
With high probability we have

∣

∣Gij(z)−msc(z)δij
∣

∣ .
1

q
+

1√
Nη

.

The averaged quantity m(z) satisfies the stronger bound

∣

∣m(z)−msc(z)
∣

∣ .
1

q2
+

1

Nη
.

Here q =
√
N if H is a Wigner matrix. Both of these estimates hold in the bulk;

analogous estimates hold near the edges.

Informally, we prove that G(z) ≈ msc(z)1 for η down to the optimal scale
η ≈ N−1

We conclude by mentioning two consequences of this local semicircle law. First,
it immediately implies the complete delocalization of the eigenvectors. Indeed,
setting η ≈ N−1 and using the spectral decomposition of H yields

C ≥ ImGii(λα + iη) =
∑

β

η |uβ(i)|2
(λβ − λα)2 + η2

≥ |uα(i)|2
η

,

which is the claim. A second corollary of the local semicircle law is the eigenvalue
rigidity estimate

(4) |λα − γα| .
(

N−2/3α−1/3 + q−2
)

, (α ≤ N1/2) ,

which may be derived using the Helffer-Sjöstrand functional calculus. Here γα is
the classical location of the α-th eigenvalue, defined through

∫ γα

−∞
ρsc(x) dx =

α

N
.

(The form (4) is true for q ≥ N1/3; a more complicated formula holds for q ≤
N1/3.)

Convergence of mixing times for sequences of random walks on finite
graphs

Takashi Kumagai

(joint work with D.A. Croydon and B.M. Hambly)

We report the main results in our recent preprint [2].
Let G = (V (G), E(G)) be a finite connected graph, and (XG

m)m≥0 be an ir-
reducible Markov chain with transition probability PG(x, y), and the invariant
probability measure πG(·). Let pGm(x, y) := PG

x (Xm = y)/πG({y}) be the transi-
tion density of XG with respect to πG.
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For p ∈ [1,∞], we define the Lp-mixing time of G by

tpmix(G) := inf{m > 0 : sup
x∈V (G)

DG
p (x,m) ≤ 1/4},

where DG
p (x,m) := ‖(pGm(x, ·) + pGm+1(x, ·))/2 − 1‖Lp(πG).

We will discuss the following problem.
(Q) Given a sequence of graphs (GN )N≥1 with irreducible Markov chains,
when does (suitably rescaled) tpmix(G

N ) converge as N → ∞?

1. Framework and theorem

In order to discuss the convergence of mixing times, we will introduce a notion
of spectral Gromov-Hausdorff convergence.

Let (F, dF ) be a compact metric space, and assume there is a conservative
irreducible Hunt process on F with the invariant Borel probability measure (full
support) on F . We also assume that there exists a jointly continuous heat kernel
(qt(x, y))x,y∈F,t>0 of the process on F , and assume

(1) lim
t→∞

‖qt(x, ·) − 1‖Lp(π) = 0, ∀x ∈ F.

Then the Lp-mixing time of F is finite, i.e.

tpmix(F ) := inf{t > 0 : sup
x∈F

‖qt(x, ·)− 1‖Lp(π) ≤ 1/4} <∞.

Let MI be the collection of (an equivalence class of) triples of the form (F, π, q).
Now, for a compact interval I ⊂ (0,∞) and (F, π, q), (F ′, π′, q′) ∈ MI , set

∆I((F, π, q), (F
′, π′, q′)) := inf

Z,φ,φ′,C
{dZH(φ(F ), φ′(F ′)) + dZP (π ◦ φ−1, π′ ◦ φ′−1)

+ sup
(x,x′),(y,y′)∈C

(dZ(φ(x), φ
′(x′)) + dZ(φ(y), φ

′(y′)) + sup
t∈I

|qt(x, y)− q′t(x
′, y′)|)},

where the infimum is taken over all metric spaces Z = (Z, dZ), isometric embed-
dings φ : F → Z, φ′ : F ′ → Z, and correspondences C between F and F ′. Here
dZH is the Hausdorff distance in Z, and dZP is the Prohorov distance between Borel
probabilities on Z. C is a correspondence between F and F ′, i.e. it is a subset
of F × F ′ such that for each x ∈ F , there exists x′ ∈ F ′ with (x, x′) ∈ C, and
conversely for all x′ ∈ F ′, there exists x ∈ F with (x, x′) ∈ C.
Lemma 1. (MI ,∆I) is a separable metric space for each compact interval I.

Now we are ready to define the spectral Gromov-Hausdorff convergence.
(Fn, πn, qn) converges to (F, π, q) in a spectral Gromov-Hausdorff sense if

lim
n→∞

∆I((Fn, πn, qn), (F, π, q)) = 0, ∀I : compact interval.

Remark. We note that similar notion of spectral convergences were introduced in
the setting of compact Riemannian manifolds by Bérard-Besson-Gallot (’94) and
by Kasue-Kumura (’94).
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We now give the theorem.
Assumption 2. Let (GN )N≥1 be a sequence of finite connected graphs for which
there exists a sequence (γ(N))N≥1 such that for any compact interval I ⊂ (0,∞),
(

(

V (GN), dGN

)

, π
N
,
(

q
N
γ(N)t(x, y)

)

x,y∈V (GN ),t∈I

)

→ ((F, dF ) , π, (qt(x, y))x,y∈F,t∈I)

in a spectral Gromov-Hausdorff sense.

Theorem 2. Assume Assumption 2. If limt→∞ ‖qt(x, ·) − 1‖Lp(π) = 0, for all
x ∈ F , where p ∈ [1,∞] and qt(·, ·) is the heat kernel, then

(2) lim
N→∞

γ(N)−1tpmix(G
N ) = tpmix(F ) ∈ (0,∞).

We have the following sufficient condition for Assumption 2.

Proposition 3. Suppose that (V (GN ), dGN ), N ≥ 1, and (F, dF ) can be isomet-
rically embedded into a metric space (E, dE) in such a way that

(3) lim
N→∞

dEH(V (GN ), F ) = 0, lim
N→∞

dEP (π
N , π) = 0.

Assume further there exists a dense set F ∗ in F such that for any compact interval
I ⊂ (0,∞), any x ∈ F ∗, y ∈ F and r > 0,

lim
N→∞

PGN

gN (x)

(

XGN

⌊γ(N)t⌋ ∈ BE(y, r)
)

=

∫

BE(y,r)

qt(x, y)π(dy) uniformly for t ∈ I,

lim
δ→0

lim sup
N→∞

sup
x,y,z∈V (GN ):
d
GN (y,z)≤δ

sup
t∈I

∣

∣

∣
qNγ(N)t(x, y)− qNγ(N)t(x, z)

∣

∣

∣
= 0,

then Assumption 2 holds.

2. Example

We have various examples of sequences of random and non-random graphs
where we can verify Assumption 2. Here we give one interesting example.

Consider the Erdös-Rényi random graph G(N, p) at the critical window, i.e.
p = 1/N + λN−4/3 for fixed λ ∈ R. Let CN be the largest connected component.

It is known ([1]) that N−1/3CN d→ M in Gromov-Hausdorff sense, where M can
be constructed from a random real tree by gluing a (random) finite number of
points. We take distinguished points ρN ∈ CN and ρ ∈ M. Let XN be a simple
random walk on CN started at ρN . Then,

(N−1/3XN
[Nt])t≥0

d→ (BM
t )t≥0,

where BM is the Brownian motion on M started from ρ ([3]). We can verify
Assumption 2 and obtain the following, which improves the result in [4].

Theorem 4. For p ∈ [1,∞], let tpmix(ρ
N ) is the Lp-mixing time of XN . Then

N−1tpmix(ρ
N )→tpmix(ρ), in distribution,

where tpmix(ρ) ∈ (0,∞) is the Lp-mixing time of BM.
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Approximate Lifshitz law for the zero-temperature stochastic Ising
Model in any dimension

Hubert Lacoin

We study the zero-temperature stochastic Ising model in a finite hypercube of
sidelength L in Zd with plus boundary condition. Initially the whole cube is filled
with minus spins. The spins evolve following the majority rule: with rate one each
spin spin takes the same sign of the majority of its neighbors (including those at
the boundary) if the latter is well defined. Otherwise its sign is determined by
tossing a fair coin. Eventually, all minus spins disappear, as a result of the pressure
imposed by plus spins from the boundary.

Our aim is to study the time T+ needed for the spins in the hypercube to become
entirely plus. According to a heuristics from Lifshitz [3], on a macroscopic scale,
each point of the interface between plus and minus spins should move feeling a
local drift proportional to its local mean curvature. This readily implies that, with
high probability, T+ = O(L2).

The result we present is that with high probability, T+ = O(L2(logL)10) for all
dimension d ≥ 4. Our result complements existing analogous bounds for dimension
d = 2 and d = 3 obtained in [2, 1]. It is important to keep in mind that the
cases d = 2 and d = 3 are completely different, mainly because the equilibrium
fluctuations of Ising interfaces in d = 2 and in d = 3 occur on very different scales
(O(L1/2) for d = 2 and O(log(L)) for d = 3). As such, they have been analyzed
by very different approaches. The case d ≥ 4 should be more similar to the case
d = 3 which therefore plays a role of critical dimension. However, contrary to
what has been done in [1], our proof does not attempt to control the local mean
drift of the interface. Such an approach, in fact, would at least require two main
missing tools: (i) a detailed analysis of the local equilibrium fluctuations of Ising
interfaces1; (ii) good estimates on mixing times for (d − 1)-monotone surfaces,
following e.g. the method developed by Wilson [5] for the three dimensional case.
Instead, we use an ad-hoc construction that allows us to bound the hitting time T+
for the d-dimensional dynamics using known sharp estimates for the same hitting
time in three dimensions [1]. One of the reasons why this approach is successful is

1In dimension d ≥ 4 the fluctuations of Ising hypersurfaces are believed to be order one.
Recently a result of this sort has been proved under a Lifshitz condition [4].
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that in dimension three, Ising interfaces are flat with only logarithmic fluctuations
(see e.g. Proposition 4 in [1] for more details).

References

[1] P. Caputo, F. Martinelli, F. Simenhaus and F. Toninelli, “Zero” temperature stochastic 3D
Ising model and Dimer covering fluctuation: a first step towards mean curvature motion,
to appear in Comm. Pure Appl. Math.

[2] L. R. Fontes, R. H. Schonmann, V. Sidoravicius, Stretched Exponential Fixation in Stochas-
tic Ising Models at Zero Temperature, Commun. Math. Phys. 228 (2002) 495-518.

[3] I. M. Lifshitz, Kinetics of ordering during second order phase transitions, Soviet Physics
JETP 15 (1962), 939-942.

[4] R. Peled High-Dimensional Lipschitz Functions are Typically Flat, (2010)preprint,
arXiv:1005.4636 (math-ph).

[5] D.B. Wilson Mixing times of Lozenge tiling and card shuffling Markov chains, Ann. Appl.
Probab. 14 (2004) 274–325.

Uniqueness and universality of the Brownian map

Jean-François Le Gall

We discuss the convergence in distribution in the Gromov-Hausdorff sense of ran-
dom planar maps viewed as random metric spaces. Recall that a planar map is
a proper embedding of a finite connected graph in the two-dimensional sphere,
viewed up to orientation-preserving homeomorphisms of the sphere. The faces
of the map are the connected components of the complement of edges, and the
degree of a face counts the number of edges that are incident to it. Special cases
of planar maps are triangulations, where each face has degree 3, quadrangula-
tions, where each face has degree 4, and more generally q-angulations, where each
face has degree q. For technical reasons, one often considers rooted planar maps,
meaning that there is a distinguished oriented edge. Planar maps have been stud-
ied thoroughly in combinatorics, and they also play an important role in other
areas of mathematics and in theoretical physics, in particular in the theory of
two-dimensional quantum gravity.

Let q ≥ 3 be an integer. We assume that either q = 3 or q is even. The set of all
rooted planar q-angulations with n faces is denoted by Aq

n. For every integer n ≥ 1
(if q = 3 we must restrict our attention to even values of n, since A3

n is empty if n
is odd), we consider a random planar map Mn that is uniformly distributed over
Aq

n. We denote the vertex set of Mn by V (Mn). We equip V (Mn) with the graph
distance dgr , and we view (V (Mn), dgr) as a random variable taking values in the
space K of all isometry classes of compact metric spaces, which is equipped with
the Gromov-Hausdorff distance.

Theorem 1. Set

cq =
( 9

q(q − 2)

)1/4

if q is even, and

c3 = 61/4.
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There exists a random compact metric space (m∞, D∗) called the Brownian map,
which does not depend on q, such that

(V (Mn), cq n
−1/4dgr)

(d)−→
n→∞

(m∞, D
∗)

where the convergence holds in distribution in the space K.

The case of triangulations (q = 3) solves a problem stated by Schramm [6]. The
case q = 4 has been obtained independently by Miermont [5] using very different
methods.

Let us give a precise definition of the Brownian map. We first introduce the
random real tree called the CRT. Let (es)0≤s≤1 be a normalized Brownian ex-
cursion, i.e. a positive excursion of linear Brownian motion conditioned to have
duration 1, and set, for every s, t ∈ [0, 1],

de(s, t) = es + et − 2 min
s∧t≤r≤s∨t

er.

Then de is a (random) pseudometric on [0, 1], and we consider the associated
equivalence relation ∼e: for s, t ∈ [0, 1],

s ∼e t if and only if de(s, t) = 0.

Since 0 ∼e 1, we may as well view ∼e as an equivalence relation on the unit circle
S
1. The CRT is the quotient space Te := S

1/ ∼e, which is equipped with the
distance induced by de. We write pe for the canonical projection from S1 onto Te,
and ρ = pe(1). If u, v ∈ S1, we let [u, v] be the subarc of S1 going from u to v in
clockwise order, and if a, b ∈ Te, we define [a, b] as the image under the canonical
projection pe of the smallest subarc [u, v] of S1 such that pe(u) = a and pe(v) = b.
Roughly speaking, [a, b] corresponds to the set of vertices that one visits when
going from a to b around the tree in clockwise order.

We then introduce Brownian labels on the CRT. We consider a real-valued
process Z = (Za)a∈Te

indexed by the CRT, such that, conditionally on Te, Z
is a centered Gaussian process with Zρ = 0 and E[(Za − Zb)

2] = de(a, b) (this
presentation is slightly informal as we are considering a random process indexed
by a random set). We define, for every a, b ∈ Te,

D◦(a, b) = Za + Zb − 2max
(

min
c∈[a,b]

Zc, min
c∈[b,a]

Zc

)

,

and we put a ≃ b if and only if D◦(a, b) = 0. Although this is not obvious, it turns
out that ≃ is an equivalence relation on Te, and we let

m∞ := Te/ ≃
be the associated quotient space. We write Π for the canonical projection from Te
onto m∞. We then define the distance on m∞ by setting, for every x, y ∈ m∞,

(1) D∗(x, y) = inf
{

k
∑

i=1

D◦(ai−1, ai)
}

,
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where the infimum is over all choices of the integer k ≥ 1 and of the elements
a0, a1, . . . , ak of Te such that Π(a0) = x and Π(ak) = y. It follows from [1,
Theorem 3.4] that D∗ is indeed a distance, and the resulting random metric space
(m∞, D∗) is the Brownian map.

Theorem 1 is the main result of [3], which is a continuation and in a sense a
conclusion to the preceding papers [1] and [2]. In [1], we proved the existence of
sequential Gromov-Hausdorff limits for rescaled uniformly distributed rooted 2p-
angulations with n faces, and we called Brownian map any random compact metric
space that can arise in such limits (the name “Brownian map” first appeared in the
paper of Marckert and Mokkadem [4]). The main result of [1] used a compactness
argument that required the extraction of suitable subsequences in order to get the
desired convergence. The reason why this extraction was needed is the fact that the
limit could not be characterized completely. It was proved in [1] that any Brownian
map can be written in the form (m∞, D), where the set m∞ is as described above,
and D is a distance on m∞, for which only upper and lower bounds were available
in [1, 2]. In particular, the paper [1] provided no characterization of the distance
D and it was conceivable that different sequential limits, or different values of
q, could lead to different metric spaces. This uniqueness problem is solved by
establishing the explicit formula (1), which had been conjectured in [1]. As a
consequence, we obtain the uniqueness of the Brownian map, and we get that this
random metric space is the scaling limit of uniformly distributed q-angulations
with n faces, for the values of q discussed above. Our proofs strongly depend on
the study of geodesics in the Brownian map that was developed in [2].
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The Brownian map is the scaling limit of uniform random plane
quadrangulations

Grégory Miermont

A (plane) map is a proper embedding of a finite, connected graph in the 2-
dimensional sphere, considered up to orientation-preserving homeomorphisms. A
map is called rooted if it has a distinguished oriented edge, and is called a quad-
rangulation if every face (a connected component of the complement of the edges)
is a quadrangle, meaning that it is incident to exactly 4 oriented edges.

Let Qn be the (finite) set of rooted plane quadrangulations with n faces. Let Qn

be a random variable with uniform distribution on Qn. We consider the set V (Qn)
of its vertices as a finite metric space by endowing it with the usual graph distance
dQn

. We prove that the sequence (V (Qn), n
−1/4dQn

) converges in distribution as
n→ ∞ to a limiting metric space, in the sense of the Gromov-Hausdorff topology
[3]. We also show that the limit is, up to a scale constant, the so-called Brownian
map, which was introduced by Marckert & Mokkadem [12] and Le Gall [7] as the
most natural candidate for the scaling limit of many models of random plane maps.
The Brownian map is defined in terms of the Brownian snake [6], which can be
understood as Brownian motion indexed by the Brownian continuum random tree.

The theme of scaling limits of random plane maps has attracted a lot of interest
in the recent years, motivated in part by the physical theory of 2-dimensional quan-
tum gravity [1]. The mathematical study of this problem was initiated by Chas-
saing and Schaeffer [4], who identified, among other things, the 2-point function of
the map, i.e. the limiting distribution of n−1/4dQn

(v1, v2), where v1 and v2 are two
points chosen uniformly at random in V (Qn). Since then, important steps towards
the understanding of the scaling limits of maps have been accomplished. In partic-
ular, Le Gall [7] showed the existence of subsequential limits of (V (Qn), n

−1/4dQn
),

and identified with Paulin the topology of any of these limits, which is that of the
2-sphere [11] (see also [13]). The 3-point function of quadrangulations, that is,
the limit in law of the vector n−1/4(dQn

(v1, v2), dQn
(v1, v3), dQn

(v2, v3)) where
v1, v2, v3 are independent uniform points in V (Qn), was also determined by Bout-
tier and Guitter [2]. Nevertheless, the problem of the determination of the limit of
(V (Qn), n

−1/4dQn
) (“uniqueness of the Brownian map”) had remained open. We

mention, however, that simultaneously with our work, an alternative proof of the
uniqueness of the Brownian map has been obtained by Le Gall [9], using different
methods.

The proof relies strongly on the concept of geodesic stars, which are config-
urations made of several geodesics that only share a common endpoint and do
not meet elsewhere. More precisely, let x1, x2, x3 be randomly chosen points in
a distributional limit of (V (Qn), n

−1/4dQn
) along a subsequence. Then the set

of points x on the geodesic γ from x1 to x2 such that there exists a geodesic γ′

from x to x3 that intersects γ only at x, is a set of Hausdorff dimension stricly
less than 1. Imagining that x3 is fixed once and for all as a distinguished point
in the limiting space, this allows to show the (somewhat surprising) property that
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geodesic paths between “typical” pairs of vertices in the map (say x1, x2), can be
approximated by gluing pieces of geodesic paths originating from x3. It turns out
that structure of the latter paths is well-understood [8], because of the celebrated
Cori-Vauquelin-Schaeffer bijection [5, 16, 4], that allows to code a quadrangulation
with a distinguished vertex by a labeled tree, in which the geodesics to the distin-
guished vertex have a natural interpretation that is preserved after taking scaling
limits. The study of these “star” configurations is performed by making use of a
variant [14] of the Cori-Vauquelin-Schaeffer bijection that encodes quadrangula-
tions with several distinguished points using simpler, “locally tree-like” objects,
namely, labeled maps with a fixed number of faces.
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AC Geometry of the Gaussian Free Field

Jason Miller

(joint work with S. Sheffield)

Fix a constant χ > 0 and let h be an instance of the Gaussian free field on
a planar domain. We study flow lines of the vector fields ei(h/χ+θ) starting at
a fixed boundary point of the domain. Letting θ vary, one obtains a family of
non-crossing curves that look locally like SLEκ processes with κ ∈ (0, 4) (where

χ = 2√
κ
−

√
κ
2 ) and can be interpreted as the rays of a random geometry. So-called

counterflow lines (SLE16/κ) are constructed within the same geometry as “light
cones” of points accessible by angle-restricted trajectories.

Although h is a distribution-valued random variable, we show that these paths
are well-defined and are in fact path-valued functions of h. In contrast to what
happens when h is smooth, these paths bounce off of each other and interact in
interesting ways. As one consequence of our methods, we prove in general that
SLEκ(ρ) processes are almost surely continuous random curves, even when they
intersect the boundary.

Critical versus near-critical dynamics in the planar FK Ising model

Gábor Pete

(joint work with C. Garban)

We study the natural heat-bath dynamics of the Fortuin-Kasteleyn random cluster
measures FK(p, q) on Z2 at the critical density p = pc(q), primarily in the Ising case
q = 2, where the conformal invariance of the spin Ising and FK Ising models are
proved by Smirnov and Chelkak, and the alternating 4-arm (pivotal) exponents are
determined by Garban. Extending our previous joint work with Oded Schramm
on the q = 1 case, Bernoulli percolation, we prove the existence and conformal
covariance of the scaling limit of the properly rescaled heat-bath dynamics for the
critical FK(2) model.

We also consider a kind of “asymmetric dynamics”, a natural monotone coupling
of the FK(p, q) models as p varies, introduced by Grimmett, in the near-critical
regime. Contrary to what happens in the percolation case and what seems to have
been expected by most people in the community, the near-critical window and the
correlation length (found by Onsager) are not governed anymore by the amount
of pivotal edges at criticality. Instead, changes are much faster than in the sym-
metric heat-bath dynamics, due to a fascinating self-organized mechanism that
controls how new edges arrive as one raises p near pc. We prove some simple qual-
itative properties of the near-critical monotone coupling, but the more interesting
quantitative analysis remains to be understood.

For the Glauber dynamics of the critical spin Ising model, the existence of a
scaling limit that would describe the evolution of macroscopic spin clusters remains
completely mysterious, mainly due to the alternating 4-arm exponent being larger
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than 2, hence having more pivotals on small scales than on large ones. On the
other hand, we can use the same exponent to prove that in the dynamics on the
infinite lattice there are no exceptional times where an infinite spin cluster appears
(answering a question of Broman and Steif).

Finally, we conjecture the following interesting phenomenon in the heat-bath
dynamics of critical FK(q) models: there is a regime q ∈ (q∗, 4), or κ ∈ (4, κ∗) in
the SLEκ world, where there exist macroscopic pivotals, but there are no excep-
tional times with an infinite cluster. Probably these are the first natural models
that are expected to be noise- but not dynamically sensitive.

End point distribution for directed random polymers in 1+1
dimensions

Jeremy Quastel

(joint work with I. Corwin, D. Remenik and G. Moreno-Flores)

The Airy2 process A(x) is a stationary process whose finite dimensional distri-
butions are given in terms of certain determinants. In particular, the one point
marginals are the GUE Tracy-Widom distribution from random matrices. The
Airy2 process minus a parabola is important because it approximates the time
rescaled free energy of directed polymer models. In particular, its maximum will
have the GOE Tracy-Widom distribution. Johansson proved this in a very indirect
way, going through polynuclear growth models. With Corwin and Remenik we ob-
tain a direct proof of this fact by taking a fine mesh limit of the determinental
formulas to obtain an asymptotic formula in terms of a Fredholm determinant of
the solution operator of a boundary value problem. The method is extended in
work with Moreno-Flores and Remenik to obtain an exact formula for the joint
density of the max and the argmax of the Airy2 process minus a parabola. In
particular, the distribution of the argmax is the universal asymptotic distribution
of the endpoint of one dimensional directed polymers in random environment.

Replica Bethe ansatz approach to the KPZ equation with half
Brownian motion initial condition

Tomohiro Sasamoto

(joint work with T. Imamura)

The Kardar-Parisi-Zhang (KPZ) equation is a well known equation to describe
stochastic surface growth phenomena. Its one-dimensional version is

(1) ∂th(x, t) =
1
2 (∂xh(x, t))

2 + 1
2∂

2
xh(x, t) + η(x, t),

where η(x, t) is white noise with covariance 〈η(x, t)η(x′, t′)〉 = δ(x − x′)δ(t − t′).
Applying the dynamical renormalization group analysis, they showed that the
exponent for the height fluctuations is 1/3. In 2010, the first exact solution for
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this equation was obtained. The explicit distribution function was determined for
the narrow wedge initial condition, based on those for ASEP.

By the Cole-Hopf transformation

h(x, t) = log (Z(x, t)) ,

the KPZ equation is turned into a problem of directed polymer in random environ-
ment. It turned out that the above distribution function can be computed using
the Bethe ansatz for a replicated system of this directed polymer. An advantage of
this approach is that one can discuss other initial conditions. In this presentation,
we apply this replica Bethe ansatz to study the KPZ equation for a half-Brownian
motion initial condition, given by

h(x, t = 0) =

{

x/δ, δ → 0, x < 0,

B(x), x ≥ 0.

where B(x) is a standard Brownian motion.
Our main result is that the generating function of the moments 〈ZN (x, t)〉,

Gγt
(s;X) =

∞
∑

N=0

(−e−γts)
N

N !

〈

ZN
(

2γ2tX, t
)〉

eN
γ3
t

12 +NγtX
2

, γt =

(

t

2

)1/3

,

is given by a Fredholm determinant with the kernel,

KX(ξj , ξk) =

∫

R

dyAiΓ
(

ξj + y,
1

γt
,−X

γt

)

AiΓ

(

ξk + y,
1

γt
,−X

γt

)

eγty

eγty + eγts
.

Here AiΓ(a, b, c), AiΓ(a, b, c) are deformed Airy functions

AiΓ(a, b, c) =
1

2π

∫

Γi c
b

dzeiza+i z
3

3 Γ (ibz + c),

AiΓ(a, b, c) =
1

2π

∫ ∞

−∞
dzeiza+i z

3

3
1

Γ (−ibz + c)

where the contour Γi c
b
is from −∞ to ∞ and passes below the pole at i cb . From

this one can also obtain the height distribution and take the long time limit. Using
the replica one can also study the multi-point distributions. We obtained again a
Fredholm determinant expression and considered the long time limit.

More details can be found in arxiv:1105.4659.

Quantum Gravity Zippers

Scott Sheffield

I present an overview of the paper ”Conformal weldings of random surfaces:
SLE and the quantum gravity zipper”, recently posted to the arXiv. The main
result is that if one welds together two independent Liouville quantum gravity
surfaces along their boundaries and conformally maps the result to the half-plane,
then the image of the interface is a Schramm-Loewner evolution.
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Fluctuation exponents for a 1+1 dimensional directed random
polymer

Timo Seppäläinen

This talk describes a 1+1 dimensional directed polymer in a random environment
whose random weights are log-gamma distributed. The directed polymer is a
statistical mechanical model of a random walk path in a random potential. To
describe the finite model in a rectangle, fix the lower left and upper right corners
of the rectangle at (0, 0) and (m,n). Here are the elements of the model.

• The set of admissible paths is Πm,n = {up-right paths x · = (xk)
m+n
k=0 from

(0, 0) to (m,n)}
• The environment (Yi, j : (i, j) ∈ Z2

+) consists of independent weights Yi,j
with joint distribution P.

• The quenched polymer measure on paths x · ∈ Πm,n and the partition
function are given by

Qm,n(x ·) =
1

Zm,n

m+n
∏

k=1

Yxk
and Zm,n =

∑

x ·∈Πm,n

m+n
∏

k=1

Yxk
.

• The averaged measure is Pm,n(x ·) = EQm,n(x ·).

The key assumption is on the distributions of the weights. Fix two parameters 0 <
θ < µ < ∞. The weights are reciprocals of gamma distributed random variables,
with these parameters for i, j ≥ 1: Y −1

i,0 ∼ Gamma(θ), Y −1
0,j ∼ Gamma(µ − θ),

and Y −1
i,j ∼ Gamma(µ). Explicitly, a Gamma(θ)-distributed random variable is

supported on the positive reals where it has density Γ(θ)−1xθ−1e−x.
For the asymptotic results the endpoint (m,n) of the polymer is taken to infinity

in a particular characteristic direction as N ր ∞:

|m−NΨ1(µ− θ) | ≤ γN2/3 and |n−NΨ1(θ) | ≤ γN2/3

for some fixed constant γ.
The order of magnitude of the random fluctuations in the model are described

by two exponents ζ and χ, informally defined as follows. In a system of size N ,

• fluctuations of the path x · are of order N ζ , and
• fluctuations of the partition function logZm,n are of order Nχ.

The conjectured values in 1+1 dimensions are ζ = 2/3 and χ = 1/3. Under the
assumptions listed above we have results that verify these conjectured values for
the exponents.

Theorem. There exist constants 0 < C1, C2 <∞ such that, for N ≥ 1,

C1N
2/3 ≤ Var(logZm,n) ≤ C2N

2/3.

Let v0(j) and v1(j) denote the left- and rightmost points of the path on the
horizontal line with ordinate j:

v0(j) = min{i ∈ {0, . . . ,m} : ∃k such that xk = (i, j)}
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and
v1(j) = max{i ∈ {0, . . . ,m} : ∃k such that xk = (i, j)}.

Theorem. Let 0 < τ < 1. Then there exist constants C1, C2 < ∞ such that for

N ≥ 1 and b ≥ C1,

P
{

v0(⌊τn⌋) < τm− bN2/3 or v1(⌊τn⌋) > τm+ bN2/3
}

≤ C2b
−3.

Given ε > 0, there exists δ > 0 such that

lim
N→∞

P{ ∃k such that |xk − (τm, τn)| ≤ δN2/3 } ≤ ε.

Further details can be found in [1].
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Lognormal ⋆-scale invariant measures

Vincent Vargas

(joint work with R. Allez and R. Rhodes)

We consider random measures M in R that satisfy the following conditions:

• Stationarity: for all y, M(dx)
(Law)
= M(dx+ y).

• Lognormal ⋆-scale invariance: for all ǫ < 1, there exists some Gaussian
process (ωǫ(x))x∈R such that:

(1) M(dx)
(Law)
= eωǫ(x)ǫM(

dx

ǫ
).

• Moment condition: there exists δ > 0 such that E[M [0, 1]1+δ] <∞.

Remark 1. With no assumption on the law of ωǫ, one can show the following:
if there exists x such that ǫ → ωǫ(x) is continuous, then relation (1) implies that
(ωǫ(x))x∈R is a Gaussian process.

In order to state our main theorem, we need the theory of Gaussian multiplica-
tive chaos developped by J.P. Kahane: we refer to [1] for an introduction to this
theory. We can know state the main theorem of the talk:

Theorem 2. [Allez, Rhodes, Vargas] Let M be a random measure satisfying the
above conditions. Then M is the product of a random variable Y ∈ L1+δ and an
independent Gaussian multiplicative chaos:

∀A ∈ B(R), M(A) = Y

∫

A

eω(x)−E[ω(x)2]
2 dx

with associated kernel given by:

K(x, y) =

∫ ∞

|y−x|

k(u)

u
du,
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where k is some continuous covariance function such that k(0) ≤ 2
1+δ .

Remark 3. The above result can be generalized to all dimensions.
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Random matrices and random Schrödinger operators

Bálint Virág

(joint work with E. Kritchevski and B. Valkó)

We consider the one-dimensional discrete random Schrödinger operators

(Hnψ)ℓ = ψℓ−1 + ψℓ+1 + vℓψℓ,

ψ0 = ψn+1 = 0 where vk = σωk/
√
n. and the ωk are independent random variables

with mean 0, variance 1 and bounded third absolute moment.
The matrix Hn is a perturbation of the adjacency matrix of a path. When the

variance of vk does not depend on n, eigenvectors are localized and the local sta-
tistics of eigenvalues are Poisson (see [1, 3], from which this abstract was distilled,
for detailed references). Our regime, where the variance of the random variables vℓ
are of order n−1/2 captures the transition between localization an delocalization.

If there is no noise (i.e. σ = 0) then the eigenvalues of the operator are given
by 2 cos(πk/(n+ 1)) with k = 1, . . . , n. The asymptotic density near E ∈ (−2, 2)

is given by ρ
2π with ρ = ρ(E) = 1/

√

1− E2/4. We will study the spectrum Λn of
the scaled operator ρn(Hn − E). By the well-known transfer matrix description
the eigenvalue equation Hnψ = µψ is written as

(1)

(

ψℓ+1

ψℓ

)

= T (µ− vℓ)

(

ψℓ

ψℓ−1

)

=Mλ
ℓ

(

ψ1

ψ0

)

,

where T (x) :=

(

x −1
1 0

)

and with µ = E + λ
ρn and εℓ =

λ
ρn − σωℓ√

n
, we have

(2) Mλ
ℓ = T (E + εℓ)T (E + εℓ−1) · · ·T (E + ε1) for 0 ≤ ℓ ≤ n.

Then µ is an eigenvalue of Hn if and only if Mn

(

1
0

)

= c
(

0
1

)

. The scaling of vℓ =

σωℓ/
√
n ensures that, with high probability, the transfer matricesMλ

ℓ are bounded
and the eigenfunctions are delocalized.

The starting observation is that Mλ
ℓ cannot have a continuous limit, since for

large n the transfer matrix T (E + εk) in (2) is not close to I but to T (E). Thus
we are led to consider, instead of Mλ

ℓ , the regularly-evolving matrices

(3) Xλ
ℓ = T−ℓ(E)Mλ

ℓ , 0 ≤ ℓ ≤ n.

To control the correction factor T−ℓ(E), we diagonalize T (E) = ZDZ−1 with

(4) D =

(

z 0
0 z

)

, Z =

(

z z
1 1

)

, z = E/2 + i
√

1− (E/2)2.
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Theorem 1. Assume 0 < |E| < 2. Let B(t),B2(t),B3(t) be independent stan-
dard Brownian motions in R, W(t) = 1√

2
(B2(t) + iB3(t)). Then the stochastic

differential equation

(5) dXλ =
1

2
Z(

(

iλ 0
0 −iλ

)

dt+

(

idB dW
dW −idB

)

)Z−1Xλ, Xλ(0) = I

has a unique strong solution Xλ(t) : λ ∈ C, t ≥ 0, which is analytic in λ. Moreover
with τ = (σρ)2

(Xλ
⌊nt/τ⌋, 0 ≤ t ≤ τ) ⇒ (Xλ(t), 0 ≤ t ≤ τ),

in the sense of finite dimensional distributions for λ and uniformly in t. Also, for
any given 0 ≤ t ≤ τ the random analytic functions Xλ

⌊nt/τ⌋ converge in distribution

to Xλ(t) with respect to the local uniform topology.
Moreover the shifted eigenvalue process Λn−arg(z2n+2) converges in distribution

to a point process Schτ .

The point process Schτ is only invariant under translation by integer multiples
of 2π. A translation-invariant version (shifted by an independent uniform random
variable) Sch

∗
τ = Schτ + U [0, 2π] can be described through a variant of the the

Brownian carousel introduced in [2].
The Brownian carousel. Let (V(t), t ≥ 0) be Brownian motion on the hy-

perbolic plane H. Pick a point on the boundary ∂H and let xλ(0) equal to this
point for all λ ∈ R. Let xλ(t) be the trajectory of this point rotated continuously
around V(t) at speed λ. Recall that Brownian motion in H converges to a point

V(∞) in the boundary ∂H. Then we have Sch
∗
τ

d
= {λ : xλ/τ (τ) = V(∞)}.

The following properties of Schτ help compare it to random matrices.

Theorem 2 (Eigenvalue repulsion). For µ ∈ R and ε > 0 we have

(6) {Schτ [µ, µ+ ε] ≥ 2} ≤ 4 exp
(

−(log(τ/ε)− τ)2/τ
)

.

whenever the squared expression is nonnegative.

Theorem 3 (Probability of large gaps). The probability that Schτ has a large gap
is

P(Schτ [0, λ] = 0) = exp

{

−λ
2

4τ
(1 + o(1))

}

where o(1) → 0 for a fixed τ as λ→ ∞.

The above results show that the eigenvalue statistics of 1D random Schrödinger
operators are not universal. However, GOE statistics appear for very thin boxes
in Z2. The proof first establishes a fixed higher dimensional version of Theorem 1
and then uses recent results in universality of Wigner matrices.

Theorem 4. [3] There exists a sequence of weighted boxes on Z2 with diameter
converging to ∞ so that the rescaled eigenvalue process of the adjacency matrix
plus diagonal noise converges to the bulk point process limit of the GOE ensemble.
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Recent Results on the Asymmetric Simple Exclusion Process

Harold Widom

(joint work with C. A. Tracy)

In the usual asymmetric simple exclusion process (ASEP) particles are at integer
sites on the line. Each particle waits exponential time, then with probability p it
moves one step to the right if the site is unoccupied, otherwise it stays put; and
with probability q = 1 − p it moves one step to the left if the site is unoccupied,
otherwise it stays put.

In multispecies ASEP particles belong to different species, labelled 1, 2, . . . , n.
Particles of a higher species have priority over those of a lower species. Thus, if a
particle of species α tries to move to a neighboring site occupied by a particles of
species β it is blocked if α ≤ β, but if α > β the particles interchange positions.

A configuration in ASEP with N particles is the set of occupied sites

X = {x1, . . . , xN}, (x1 < · · · < xN ).

In earlier work the authors found a formula for PY (X ; t), the probability that
the system is in configuration X at time t, given the initial configuration was
Y = {y1, . . . , yN}. It is given as a sum over the permutation group SN of N -
dimensional integrals with explicitly given integrands.

In multispecies ASEP a configurationX is a pair (X, π) whereX = {x1, . . . , xN}
as before and π is a function from [1, N ] to [1, n]. If the system is in configuration
X then the ith particle from the left is at xi and belongs to species πi. A special
case is that of first and second class particles, a first class particle having priority
over a second class particle. For example, if π = (1 2 2 2) the left-most particle is
second class and the other three are first class.

The new result establishes for multispecies ASEP a formula for PY(X ; t), the
probability that the system is in configuration X = (X, π) at time t, given that
the initial configuration is Y = (Y, ν). There is a formula analogous to the one for
ordinary ASEP mentioned above. The main difference is that the integrands are
not (except in special cases) given explicitly. They are determined by a family of
relations whose consistency is verified by establishing the Yang-Baxter equations
for these relations.
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Universality of β-ensemble

Horng-Tzer Yau

We prove the universality of the β-ensembles with convex analytic potentials and
for any β > 0, i.e. we show that the spacing distributions of log-gases at any
inverse temperature β coincide with those of the Gaussian β-ensembles.

Reporter: Igor Kortchemski
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