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Introduction by the Organisers

Arithmetic groups such as SL(n,Z) occur naturally in many subjects in mathemat-
ics such as number theory, representation theory, differential geometry, algebraic
geometry and topology. They have been studied intensively. A closely related class
of groups consists of mapping class groups of surfaces and has played a fundamen-
tal role in the low dimensional topology, algebraic geometry and mathematical
physics. Many results about mapping class groups are inspired and motivated by
corresponding results on arithmetic groups. For example, it is a known theorem of
Borel and Serre that the virtual cohomological dimension of arithmetic groups can
be explicitly computed by proving that they are duality groups (i.e., generalized
Poincare duality group) in the sense of Bieri and Eckmann. Similar results were
then proved by Harer for the mapping class groups.

In proving the above result, the natural action of the arithmetic groups on
associated symmetric spaces and the Borel-Serre compactification of the locally
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symmetric spaces are used crucially. Similarly, the mapping class groups act on
the associated Teichmuller spaces, and this action was also used in proving the
above result.

The quotient of the Teichmuller space by the mapping class group is the moduli
space of Riemann surfaces. In order to construct an analogue of the Borel-Serre
compactification of the moduli space, Harvey introduced the notion of curve com-
plex of a surface, which is an analogue of the spherical Tits building of algebraic
group and has since played a fundamental role in the recent study of low dimen-
sional topology and mapping class groups.

There are many other analogous results for arithmetic groups and mapping
class groups. Furthermore, there are also fruitful interactions between them. For
example, there is a Jacobian map from the moduli space of compact Riemann
surfaces of genus g ≥ 2 to the Siegel modular variety of degree g, obtained by
associating to its Riemann surface its Jacobian. This Jacobian map has been
intensively studied in algebraic geometry. For example, the celebrated Schottky
problem is to characterize the image of the Jacobian map. This Jacobian map
was used to first prove that the moduli space of Riemann surfaces is a quasi-
projective variety. It also allows one to relate topological properties of the above
two important classes of groups.

Closely related to the above two classes of groups is the class of outer automor-
phism groups of free groups. Together they form the most important three classes
of groups in geometric group theory.

Some important recent results:
Many important results related to the topics of the proposed workshop have

been obtained. We list some of them for a glimpse of the recent status:

(1) The positivity of Gromov norm for irreducible, closed, locally symmetric
manifolds with no local H2 factors, by Lafont and Schmidt in Simplicial
volume of closed locally symmetric spaces of non-compact type, Acta Math.
197 (2006), no. 1, 129–143.

(2) The proof of the Morita-Mumford-Miller Conjecture on the stable coho-
mology of the mapping class group by Madsen and Weiss in The stable
moduli space of Riemann surfaces: Mumford’s conjecture, Ann. of Math.
(2) 165 (2007), no. 3, 843–941; and its Out(Fn) analogue by Galatius.

(3) The computation of the abstract commensurator of Out(Fn) by Farb and
Handel in Commensurations of Out(Fn), Publ. Math. Inst. Hautes

Études Sci. No. 105 (2007), 1–48. This result is analogous to the arith-
metic group case by Mostow and Borel and the mapping class group case
by Ivanov.

Purpose of the workshop:
The purpose of this workshop is to bring together experts from the following dif-

ferent areas in order to learn from each other and to encourage further interactions
between them:
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(1) locally symmetric spaces and discrete subgroups of Lie groups, in partic-
ular arithmetic groups,

(2) Teichmuller spaces, moduli spaces of Riemann surfaces, and mapping class
groups,

(3) Outer automorphism groups of free groups and other closely related groups.
(4) Geometric group theory.

This workshop is the first workshop of such a nature and is well-attended by over
50 people, consisting of both leading experts and aspiring young mathematicians.
Most talks are of very high quality and the speakers have tried to make their
talks accessible. This is particularly important in view of diversity of participants.
All the above topics have been covered. The atmosphere has been very active
throughout the workshop, and there have been a lot of interaction and discussion
after the talks. Some joint projects between participants have started due to this
workshop.

We believe that such a workshop has achieved its goal and will have a lasting
impact for various reasons:

(1) Each of the subject has been intensively studied by different groups of
people. Many exciting results have been obtained in all these subjects,
and it is difficult for any single person to grasp them all.

(2) There have been many analogues and similar results for different classes
of groups such as arithmetic groups, mapping class groups and outer auto-
morphism groups. It will be valuable to understand better the underlying
unity among them and hence motivate further interactions between them.

(3) In spite of many deep results already obtained, some aspects on interaction
between the different groups and spaces described above have not been
pursued sufficiently. For example, locally symmetric spaces are special
and important examples of complete Riemannian manifolds, and their
spectral theory has played a fundamental role in the celebrated Langlands
program. On the other hand, the modulis space of curves have not been
understood well as Riemannian manifolds, in particular its spectral theory.
So far one does not know a natural and complete metric on the outer space
yet such that the outer automorphism group Out(Fn) acts isometrically
and properly.
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Abstracts

Polynomial Pick differentials differentials and affine spheres over
polygons

Michael Wolf

(joint work with David Dumas)

We report on joint work (in progress) with David Dumas [DW].
Let S be a closed orientable surface of genus g ≤ 2. We are interested in

studying aspects of the space Conv(S) of convex real projective structures on S, a
particular component of Rep(π1(S), SL(3,R). There is already much known about
this space, beginning from Goldman’s [Gol90] description of this space as being a
topological ball of dimension 16g − 16. See also Choi-Goldman [CG93], and Kim.

We will be interested in the point of view developed by Labourie [Lab07] and
Loftin [Lof01], [Lof04], [Lof07]. These authors show that the space Conv(S) may
be parametrized by the bundle C of cubic differentials over Teichmüller space,
where, for a given convex projective structure D, the cubic differential serves as
the Pick differential for the unique affine sphere of mean curvature one whose
convex hull is D. A good survey of this point of view is available in [Lof10].

Fix a Riemann surface X and consider a family Ct of cubic differentials which
leave compacta in C (for example a ray tC0, where C0 is a particular cubic differ-

ential on X). In the metric |Ct|
2

3 , the geometric limit of a subsequence of Ct will
be a polynomial cubic differential on the place C.

The point of this talk is to investigate the affine spheres associated to polynomial
cubic differentials P (z)dz3 on C. We prove that these differentials are precisely the
Pick differentials of affine spheres over convex polygons. The proof of that relies
on an estimate we hope will be important in more careful studies of Conv(S). We
next state these results more precisely.

We prove

Theorem 1. Let S be the affine sphere determined by a polynomial cubic differ-
ential Cdz3 on the complex plane C. Then the convex hull of S̄ is a cone over a
k-gon with k = degC + 3 edges.

We state a converse in terms of a map between a space of polynomial cubic
differentials and a space of polygons. Let Cn denote the space of polynomial
cubic differentials in the plane of degree n up to holomorphic automorphisms. Of
course, we can specify n+1 complex coefficients, but the complex dimension of the
automorphism group of C is two, so Cn has real dimension 2n−2. Let ¶n+3 denote
the space of polygons in RP2 with n+ 3 vertices, up to projective automorphism.
As RP2 has two real dimensions, but the real dimension of PGL(3,R) is eight, we
see that ¶n+3 also has dimension 2(n+ 3)− 8 = 2n− 2.

We can interpret Theorem 1 as defining a map ϕn : Cn → ¶n+3 from the space
Cn of degree n Pick differentials to the space ¶n+3 of projective polygons: given
a cubic polynomial differential C = P (z)dz3 in the plane, (we prove) there is a
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unique affine sphere with C as its Pick differential. Theorem 1 then asserts that
the convex hull of the projection of this affine sphere is bounded by a polygon with
n+ 3 vertices.

Theorem 2. For each n ≥ 0, the map ϕn : Cn → ¶n+3 is a surjective homeomor-
phism.

The proofs depend on an estimate of independent interest. A particularly inter-
esting affine sphere is due to Tzitzeica in the early part of the twentieth century,
and is defined as the locus {xyz = 1} in R3. It is defined over the plane C, has
Pick differential − 1

4dz
3, and obviously has convex hull of a cone over a triangle.

Our central estimate states that as one leaves the zero set of a Pick differential,
the affine sphere becomes rapidly nearly isometric to the Tzitzeica example: the
rate of decay of the quasi-isometry is exponential (with uniform exponent) in the

|C| 23 distance from the zeroes of C.
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Abelian quotients of subgroups of the mapping class group and higher
Prym representations

Andrew Putman

(joint work with Ben Wieland)

A well-known conjecture asserts that the mapping class group of a surface (possibly
with punctures/boundary) does not virtually surject onto Z if the genus of the
surface is large. We prove that if this conjecture holds for some genus, then it also
holds for all larger genera. We also prove that if there is a counterexample to this
conjecture, then there must be a counterexample of a particularly simple form. We
prove these results by relating the conjecture to a family of linear representations
of the mapping class group that we call the higher Prym representations. They
generalize the classical symplectic representation.
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The Steinberg module of the mapping class group

Nathan Broaddus

Harer has shown that the mapping class group is a virtual duality group mirroring
the work of Borel-Serre on arithmetic groups in semisimple Q-groups. Just as
the homology of the rational Tits building provides the dualizing module for any
torsion free arithmetic group, the homology of the curve complex is the dualizing
module for any torsion free, finite index subgroup of the mapping class group. The
homology of the curve complex was previously known to be an infinitely generated
free abelian group, but to date, its structure as a mapping class group module has
gone unexplored. Here we summarize results from [Broa07] on the homology of
the curve complex as a mapping class group module.

1. Introduction

Let Σ1
g be the surface of genus g with one marked point. The mapping class

group Mod(Σ1
g) is a virtual duality group [Hare86] (see §2.1) . Moreover, the du-

alizing module for any torsion-free subgroup of Mod(Σ1
g) is the reduced homology

of the curve complex which we call the Steinberg module St(Σ1
g) (see Definition 2

below). In [Broa07] a (virtually) free Mod(Σ1
g)-module resolution for the reduced

homology of the curve complex is given.

Theorem 6 (Broaddus [Broa07]) The Steinberg module of the mapping class group
St(Σ1

g) has a finite Mod(Σ1
g)-module resolution

0→ F4g−3 → · · · → F1 → F0 → St(Σ1
g).

If one restricts coefficients to Z[Γ] for a torsion free finite index subgroup Γ <
Mod(Σ1

g) then the above resolution is a free Γ-module resolution.

Using the first two terms of this resolution we derive a Mod(Σ1
g)-module presen-

tation for the reduced homology of the curve complex.

Theorem 5 (Broaddus [Broa07]) The Steinberg module of the mapping class group
St(Σ1

g) is finitely presented with a generator for each Mod(Σ1
g)-orbit of filling arc

system with 2g arcs and a relation for each Mod(Σ1
g)-orbit of filling arc system

with 2g + 1 arcs. (See [Broa07, Proposition 3.5] for the precise generators and
relations.)

We then use this presentation to show that as a Mod(Σ1
g)-module the reduced

homology of the curve complex is generated by a single element.

Theorem 7 (Broaddus [Broa07]) The Steinberg module of the mapping class group
St(Σ1

g) is generated by a single element as a Mod(Σ1
g)-module. (See [Broa07,

Theorem 4.2] for a description of the particular generator.)
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2. Background on the Steinberg module

Harvey defined the complex of curves [Harv81, §2] to serve as an analog for the
mapping class group of the Tits building for semisimple Q-groups. This analogy
has proved to be stunningly successful. Some of the early fruits of this comparison
concerned the homology and cohomology of the mapping class group.

2.1. Virtual duality groups. Poincaré Duality relates the homology and coho-
mology of a group Γ when Γ has a K(Γ, 1) which is a compact manifold. More
generally a (necessarily torsion-free) group Γ is called a Bieri-Eckmann Duality
Group (cf. [BieEc73], [Bie76], [Brow82]) or simply a duality group if there is a
Γ-module Ω and a number d such that for any Γ-module A

Hk(Γ;A) ∼= Hd−k(Γ; Ω⊗Z A)

holds for all k where Γ acts on Ω⊗ZA via the diagonal action: γ·(ω⊗a) = (γω⊗γa).
If Γ is a duality group then

H̃k(Γ;ZΓ) =

{
0, k 6= d
Ω, k = d

so both d (the cohomological dimension) and Ω (the dualizing module) are intrinsic
to the group Γ. In fact, if Γ is a duality group and the torsion-free group Γ′ is
commensurable with Γ (i.e. they share a subgroup of finite index) then Γ′ is a
duality group with the same cohomological dimension [Se71] and dualizing module
(restricting coefficients to the group ring of their intersection) [BieEc73, §3]. Thus
we say that W is a virtual duality group if some (and hence every) torsion-free,
finite-index subgroup Γ < W is a duality group. Moreover, taking care with
coefficients, one may view the dualizing module of Γ as an invariant of W .

Bieri-Eckmann [BieEc73, §6.3] provide a useful technique for showing that a
group is a duality group. If Γ has a K(Γ, 1) which is a compact m-manifold

M with boundary and the pullback of the boundary ∂M̃ = p−1(∂M) under the

covering map p : M̃ → M to the universal cover M̃ has the homotopy type of a
wedge of n-spheres then Γ is a duality group with dualizing module

Ω ∼= H̃n(∂M̃ ;Z)

and cohomological dimension d = m− n+ 1.

2.2. Buildings and duality for SL(n,Z). Results concerning the virtual duality
for SL(n,Z) serve as the inspiration for similar results and questions about the
mapping class group. Borel-Serre [BoSe73] establish that SL(n,Z) is a virtual
duality group by bordifying symmetric space

X = SL(n,R)/SO(n,R).

That is, they attach a certain boundary set to symmetric space X to get bordified

symmetric space X̂. They then show that X̂ is still contractible and that ∂X̂ =

X̂ −X has the homotopy type of a wedge of (n − 2)-spheres. In fact they show
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that ∂X̂ is homotopic to the well-known Bruhat-Tits building ∆ for SL(n,Q) (see
[Ron92] or [Brow89]).

Definition 1 (Bruhat-Tits building and apartments). Let K be a field. The
Bruhat-Tits building ∆ = ∆(n,K) for SL(n,K) is the flag complex with a vertex
for each proper nontrivial subspace of Kn and an m-simplex for each sequence
V0 ⊂ V1 ⊂ · · · ⊂ Vm of proper nontrivial subspaces of Kn. For each basis B =
{v1, · · · , vn} of Kn we get an apartment AB of ∆ by considering the subcomplex of
∆ of all simplices whose vertices are all subspaces of Kn spanned by a nonempty
proper subset of B. ‖

Hence by [BieEc73, §6.3] the virtual dualizing module for SL(n,Z) is H̃n−2(∆;Z)
which Borel-Serre call the Steinberg module1.

Definition 2 (Steinberg module for SL(n,Z)). The Steinberg module [BoSe73,
pg. 437] for SL(n,Z) is the SL(n,Z)-module (in fact SL(n,Q)-module)

St(n) = H̃n−2(∆(n,Q);Z). ‖

The Steinberg module St(n) is the dualizing module of every torsion free finite
index subgroup of SL(n,Z) (see [BoSe73, Theorem 11.4.2]).

Note that each apartment of ∆ is the barycentric subdivision of the boundary
of an (n− 1)-simplex which is topologically an (n− 2)-sphere. One may consider
the homology classes of these spheres in St(n) and ask if they form a Z-generating
set. The Solomon-Tits Theorem [So69] (see also [Brow89, §IV.5 Theorem 2] and
[CuLeh82]) provides the answer:

Theorem 3 (Solomon-Tits). The Steinberg module St(n) = H̃n−2(∆;Z) satisfies
the following.

(1) St(n) is generated by the homology classes of the spheres of all apartments
of ∆.

(2) St(n) is generated by the homology class of a single apartment as an
SL(n,Q)-module.

(3) St(n) is has a Z-basis consisting of the orbit of the homology class of
the apartment coming from the standard basis under the subgroup U <
SL(n,Q) consisting of unipotent upper triangular matrices.

Ash-Rudolph [AsRu79] improve on part 2 of Theorem 3 above and show that
upon restricting the coefficient ring from Z[SL(n,Q)] to Z[SL(n,Z)] the Steinberg
module remains cyclic.

Theorem 4 (Ash-Rudolph). The Steinberg module St(n) is generated by the ho-
mology class of a single apartment as anSL(n,Z)-module.

1Steinberg himself (see [Ste51] and [Hum87] for a survey) was interested in the homology
of the Bruhat-Tits building ∆(n,K) for K a finite field. In that case one has an irreducible
representation of PSL(n,K).
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2.3. The curve complex and duality for mapping class groups. Harer
[Hare88] has shown that the mapping class group is a virtual duality group in
a manner that mirrors that of Borel-Serre for SL(n,Z). Just as SL(n,Z) acts on
symmetric space, the mapping class group Mod(Σ1

g) of the surface of genus g with

a marked point Σ1
g acts on Teichmüller space (see [Hub06])

T (Σ1
g) =

{
marked hyperbolic metrics on Σ1

g

} ∼= R6g−4.

Harer introduces the arc complex A(Σ1
g) which acts a sort of bordification of T (Σ1

g)
(see [Hare86]).

Definition 3 (Arc complex). The arc complex A(Σ1
g) of the surface Σ1

g is the cell
complex with vertices corresponding to arcs which are isotopy classes of embedded
loops beginning and ending at the marked point. The arc complex has a k-simplex
for each arc system {α0, α1, · · · , αk} of k + 1 disjoint arcs. ‖

An arc system fills the surface Σ1
g if the complement of the arcs is a union of

disks. Note that any filling arc system must have at least 2g arcs. A subcomplex
of the arc complex is the arc complex at infinity (see [Hare86]).

Definition 4 (Arc complex at infinity). The arc complex at infinity A∞(Σ1
g) of

the surface Σ1
g is the subcomplex of simplices of A(Σ1

g) whose vertices correspond

to arc systems which do not fill Σ1
g. ‖

Using a construction of Strebel (see [Str84] or [Hub06]) one may identify

T (Σ1
g)
∼= A(Σ1

g)−A∞(Σ1
g).

Harer shows thatA(Σ1
g) is contractible, thatA∞(Σ1

g) is homotopic to the boundary

of a true bordification of T (Σ1
g), and that A∞(Σ1

g) has the homotopy type of a
wedge of (2g− 2)-spheres. It then follows that the virtual dualizing module of the

mapping class group Mod(Σ1
g) is H̃2g−2(A∞;Z).

Definition 5 (Curve complex [Harv81]). The curve complex C(Σ1
g) of the surface

Σ1
g is the cell complex with vertices corresponding to isotopy classes of essential

simple closed curves embedded in the complement of the marked point in Σ1
g which

do not bound a disk containing the marked point. The arc complex has a k-simplex
for each arc system {γ0, γ1, · · · , γk} of k + 1 disjoint simple closed curves. ‖

Harer shows that the more familiar curve complex C(Σ1
g) is homotopic to the

arc complex at infinity A∞(Σ1
g).

Definition 6 (Steinberg module of the mapping class group [Hare88]). The Stein-
berg module of the mapping class group is the Mod(Σ1

g)-module

St(Σ1
g) = H̃2g−2(C;Z). ‖
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3. Problems on the Steinberg module

One would like to understand the following.

Problem 1 (Module structure of the Steinberg module). Understand the struc-
ture of the Steinberg module

St(Σ1
g) = H̃2g−2(C;Z)

of the mapping class group Mod(Σ1
g) as a mapping class group module. ‖

Theorems 5, 6 and 7 below represent progress in addressing Problem 1.

3.1. Module structure. Initial results the structure of the Mod(Σ1
g)-module

structure of St(Σ1
g) are described in [Broa07] starting with a finite presentation

for St(Σ1
g).

Theorem 5 (Broaddus). The Steinberg module of the mapping class group St(Σ1
g)

is finitely presented with a generator for each Mod(Σ1
g)-orbit of filling arc system

with 2g arcs and a relation for each Mod(Σ1
g)-orbit of filling arc system with 2g+1

arcs. (See [Broa07, Proposition 3.5] for the precise generators and relations.)

This result can be seen as part 1 of the Solomon-Tits Theorem (Theorem 3
above). In fact the presentation of Theorem 5 is derived from a (virtually) free
Mod(Σ1

g)-module resolution of St(Σ1
g). For k ≥ 0 let

Fk = C2g−1+k(A/A∞;Z)

where C∗(A/A∞;Z) is the chain complex for cellular homology of the quotient
space A/A∞ with the cell complex structure inherited from A.
Theorem 6 (Broaddus). The Steinberg module of the mapping class group St(Σ1

g)

has a finite Mod(Σ1
g)-module resolution

0→ F4g−3 → · · · → F1 → F0 → St(Σ1
g).

If one restricts coefficients to Z[Γ] for a torsion free finite index subgroup Γ <
Mod(Σ1

g) then the above resolution is a free Γ-module resolution.

Finally we show that the Steinberg module is a cyclic (generated by a singleton
set) Mod(Σ1

g)-module.

Theorem 7 (Broaddus). The Steinberg module of the mapping class group St(Σ1
g)

is generated by a single element as a Mod(Σ1
g)-module. (See [Broa07, Theorem 4.2]

for a description of the particular generator.)

One should view this result as an analog for part 2 of the Solomon-Tits Theorem
(Theorem 3 above). In fact, it is more accurately analogous to Ash and Rudolph’s
stronger result (Theorem 4 above).

Problem 2. Give a presentation for the Steinberg module St(Σ1
g) based on the

single generator from [Broa07, Theorem 4.2]. ‖
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A major component missing from our understanding of St(Σ1
g) is a Z-basis

which would give an analog of part 3 of the Solomon-Tits Theorem (Theorem 3
above).

Problem 3 (Give a basis for the Steinberg module). Give a Z-basis for St(Σ1
g). ‖

For g ≥ 2 the Steinberg module St(Σ1
g) is not a faithful Mod(Σ1

g)-module since

it is stabilized by the point pushing subgroup P < Mod1g which is the image of

π1(Σ
1
g) in the Birman exact sequence

1→ π1(Σ
1
g)→ Mod(Σ1

g)→ Mod(Σg)→ 1.

Question 1 (Is the Steinberg module faithful?). Is St(Σ1
g) a faithful Mod(Σg)-

module for g ≥ 1? If not what is the kernel of the action? ‖
A Z-basis for St(Σ1

g) coming from a solution to Problem 3 might help resolve
Question 1.
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Deformations and rigidity of lattices in solvable Lie groups

Oliver Baues

(joint work with Benjamin Klopsch)

Let G be a simply connected, solvable real Lie group. Let X (Γ, G) denote the
space of all homomorphic embeddings of Γ as a lattice into G. By a result of
Weil, X (Γ, G) is an open subset in the space of all homomorphisms Γ → G and
Wang showed subsequently that its components are smooth manifolds. The rigid-
ity properties of lattices in G are reflected in the natural left-action of Aut(G) on
X (Γ, G).

Rigidity of lattices. The lattice Γ is rigid in G if and only if Aut(G) acts tran-
sitively on X (Γ, G). More generally, the orbit space

Aut(G)\X (Γ, G)

provides a quantitative measure for the degree of non-rigidity of Γ in G. We are
particularly interested in describing principal situations where Γ is deformation
rigid in G, that is, situations, where the space Aut(G)\X (Γ, G) is finite or count-
able, and has a totally disconnected topology.

A finiteness theorem. Let Γ be a Zariski-dense lattice in G. Under the addi-
tional hypothesis that G is unipotently connected we prove that the orbit space
Aut(G)\X (Γ, G) is finite. This generalises a classical theorem of Mal’tsev–Saitô
about the rigidity of lattices in solvable Lie groups of real type.

Examples show that both Zariski-denseness of lattices Γ, and unipotent con-
nectedness of the ambient group G are necessary conditions for our finiteness
result. The class of simply connected solvable Lie groups such that the orbit space
Aut(G)\X (Γ, G) is finite for all Zariski-dense lattices Γ seems to be only ’slightly’
larger.

The finiteness theorem also shows that any lattice in some simply connected
solvable Lie group H has a finite index subgroup which can be embedded as a
Zariski-dense and deformation rigid lattice in a simply connected solvable Lie
group G, in such a way that Aut(G)\X (Γ, G) is finite.
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Topology of X (Γ, G). The group Aut(G) has a natural structure of a linear alge-
braic group and its action on X (Γ, G) is continuous. Our results therefore apply to
study topological properties of the space X (Γ, G). In particular, we can estimate
the number of its connected components.

Non-Zariski-dense lattices. In the context of non-Zariski-dense lattices, there
are other situations, where the deformation space of a lattice Γ is a finite-dimen-
sional, non-finite, variety. This variety then admits a non-trivial continuous action
of the arithmetic group Aut(Γ) of automorphisms of Γ.

Strongly rigid lattices. As another corollary of our work we obtain a char-
acterisation of groups Γ which are strongly rigid with respect to Zariski-dense
embeddings. In fact, a lattice is shown to be strongly rigid if and only it it can be
embedded as a lattice into a group G which is of real type.

Methods. Our methods are based on a strong relation which links lattice embed-
dings of Γ into Lie groups to algebraically rigid embeddings of Γ into arithmetic
subgroups of linear algebraic groups in a functorial manner. This construction is
originally due to Mostow.

This report is based on joint work with Benjamin Klopsch, Royal Holloway,
University of London.
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Finiteness Properties of Arithmetic Groups: the Rank Theorem

Kai-Uwe Bux

(joint work with Ralf Köhl née Gramlich, Stefan Witzel)

The arithmetic group SL2(Z) is finitely generated: one can see that by tweaking
the Euclidean algorithm. It is also finitely presented: one can see that using its
action on the hyperbolic plane, which has an invariant tessellation. Generalizing
the latter line of thought, one can deduce that SL2(Z) is of type F∞. Recall that
a group Γ is of type Fm if there it acts freely on a contractible CW-complex X
such that the m-skeleton is cocompact. Γ is of type F∞ if it is of type Fm for all
m. The largest m for which Γ is of type Fm, is called the finiteness length of Γ.
We denote it by φ(Γ).
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Arithmetic groups are relatives of SL2(Z), and we shall be interested in their
finiteness length. Let K be a global field, S be a finite set of places including all
archimedean places, and OS be the ring of S-integers in K. Let G be a linear
algebraic group defined over K faithfully represented as a matrix group. An S-
arithmetic group is a group Γ commensurable to the group G(OS) of OS-points
of G. Although the notion of an OS-point depends on the chosen matrix repre-
sentation for G, the notion of an S-arithmetic group does not: this is the effect of
passing to the commensurability class of G(OS). Finiteness length is constant on
commensurability classes [4].

The group Γ depends on two parameters S and G, which can vary independently.
Hence, we can more specifically ask how the finiteness length of Γ depends on S
and G. The case of reductive groups G has attracted most research. Borel and
Serre [7] have shown that S-arithmetic groups over number fields are of type F∞

if the group scheme G is reductive. This is rare in the function field case. Here,
an arithmetic group is of type F∞ only in the cocompact case: Assume that K is
a global function field. Then, to each place v ∈ S one can associate a euclidean
building Xv. The group Γ acts on the product X :=

∏
v∈S Xv; and Γ is of type F∞

if and only if the orbit space for this action is compact. The “if” part was shown
by Serre [13], the “only if” part was treated in [9].

The dimension of the building Xv is the local rank of G at v. Evidence was
mounting that the sum of the local ranks determines the finiteness length of Γ:
see, e.g., [12], [5], [14], [2], [1], [3], [6], [10], [11], and [8]. All these results pointed
towards the following:

Theorem. Let G be a connected non-commutative absolutely almost simple linear
algebraic group defined and isotropic over K. Then the finiteness length φ(Γ) of
the S-arithmetic group Γ = G(OS) is m− 1 where m :=

∑
v∈S dimXv is the sum

of the local ranks of G.

We remark that the finiteness length of any reductive group can be reduced to
the special case treated in the theorem. The proof of the theorem uses Behr-Harder
reduction theory and the euclidean metric structure of X to find a Γ-invariant co-
compact filtration of X with good relative links. Then, standard techniques allow
one to deduce the finiteness length. The paper can be found at arxiv:1102.0428.
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Surfaces of large genus

Hugo Parlier

Much of my recent research has been focussed on studying surfaces of large
genus and related objects. I’m interested in inequalities on Riemannian surfaces,
the geometry of hyperbolic surfaces, and the geometry of Teichmüller and moduli
spaces. The type of questions that arise in my research are:

(1) What does a surface of large genus look like? What does a “typical” sur-
face look like?

(2) Which hyperbolic surface of given topological type has the largest possible
systole?

(3) What can you say about metrics on Teichmüller space, such as the Te-
ichüller metric or the Weil-Petersson metric, by studying the geometry of
hyperbolic surfaces?

1. Systolic type inequalities

The classical systolic inequality for surfaces, due to Gromov [6, 2.C], states that
the shortest non-trivial curve on a closed Riemannian surface of genus g and area
normalized to 4π(g − 1), is of length at most C log(g) for some constant C > 0.
This result is optimal: indeed their exist families of hyperbolic surfaces, one in
each genus, whose systoles grow like ∼ log(g). The first of these were constructed
by P. Buser and P. Sarnak in their seminal article [4], and there have been other
constructions since by R. Brooks [2] and M. Katz, M. Schaps and U. Vishne [8].
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The same results hold if one restricts oneself to homological systoles, the length
of the shortest homologically non-trivial curve on a surface. As an example of an
application of such results, P. Buser and P. Sarnak also derived new bounds on the
minimal norm of nonzero period lattice vectors of Riemann surfaces. This result
paved the way for a geometric approach of the Schottky problem which consists in
characterizing Jacobians (or period lattices of Riemann surfaces) among abelian
varieties. There are other types of inequalities that exist and are due to different
authors, such as bounds on lengths of pants decompositions of surfaces or homology
bases (see [3] for instance).

As an example of work I’ve done on these types of problems: with F. Balacheff
and S. Sabourau [1], we show that on every closed Riemannian surface of genus g
with normalized area there exist almost g homologically independent loops of
lengths at most ∼ log(g). More precisely, we prove the following.

Theorem 8. Let η : N → N be a function such that λ := sup
g

η(g)

g
< 1. Then

there exists a constant Cλ such that for every closed Riemannian surface M of
genus g there are at least η(g) homologically independent loops α1, . . . , αη(g) which
satisfy

length(αi) ≤ Cλ
log(g + 1)√

g

√
area(M)

for every i ∈ {1, . . . , η(g)}.

Typically, this result applies to η(g) = [λg] where λ ∈ (0, 1). As a corollary, we
are able to extend Buser and Sarnak’s results on Jacobians.

2. The geometry of the Weil-Petersson diameter of moduli space

The Teichmüller space Teich(Σ) of an orientable surface Σ of negative Euler
characteristic with genus g and n punctures is the set of marked hyperbolic metrics
on Σ. The moduli space of curves Mg,n is the space of conformal structures
on a topological surface Σ of genus g with n marked points or equivalently, via
the uniformization theorem, the set of hyperbolic metrics on Σ up to conformal
isometry. Moduli space can be seen as the quotient of Teichmüller space via the
mapping class group Mod(Σ).

Teichmüller space can be endowed with a CAT(0) metric, called the Weil-
Petersson metric, which is defined on the cotangent space at X ∈ Teich(Σ). The
definition itself is quite technical, but through the work of many authors, and in
particular S. Wolpert, the metric can be studied through the geometry of hyper-
bolic surfaces. As an example: a theorem of Brock tells us that the rough scale
geometry of WP can be studied via a combinatorial object related to the curve
complex, called the pants graph and one of the main tools to show this is the use
of Bers’ constants. (Bers proved that there is a genus dependent constant which
bounds the length of a shortest pants decomposition of all hyperbolic surfaces of
a given genus; the optimal constants are Bers’ constants.)
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The Weil-Petersson metric descends toMg but is non-complete. However the

metric completion Mg is (topologically) a well known object called the Deligne-
Mumford compactification of moduli space by stable nodal curves. In terms of
hyperbolic structures, this compactification is given by adjoining “strata” to mod-
uli space whose points correspond to degenerate hyperbolic structures on Σ, which
are appropriate limits of sequences of hyperbolic surfaces in which the lengths some
collection of disjoint simple closed geodesics goes to zero. These strata are lower
dimensional moduli spaces parameterizing families of cusped surfaces, and many
geometric and topological properties ofMg can be understood inductively using
properties of this stratified boundary. Since the completion of the Weil-Petersson
metric onMg is a compact space, the Weil-Petersson diameter ofMg is finite.

With Will Cavendish, we’ve shown the following [5]:

Theorem 9. There exists a genus independent constant D such that

lim
n→∞

diam(Mg,n)√
n

= D.

Theorem 10. There exist a constant C > 0 such that for any n ≥ 0 the Weil-
Petersson diameter diam(Mg,n) satisfies

1

C
≤ lim inf

g→∞

diam(Mg,n)√
g

, lim sup
g→∞

diam(Mg,n)√
g log(g)

≤ C.

The proofs use different tools, but in particular recent bounds on Bers’ con-
stants, which are related to some of the things in the first section.

3. The geometry of random surfaces

With Larry Guth and Robert Young [7], we’ve been interested in short pants
decompositions where the length of a pants decomposition is defined as the sum
of the lengths of the curves in the pants decomposition. The total pants length
has not been studied as much as the usual pants length, but it also seems like a
natural invariant. Since a pants decomposition has 3g − 3 curves in it, estimates
of Buser and Seppälä imply that every genus g hyperbolic surface has total pants
length at most Cg2. This is the best known general upper bound. In the other
direction, it is easy to construct hyperbolic surfaces with total pants length at least
cg for every g by taking covers of a genus 2 surface. The only previous non-trivial
estimate comes from Buser and Sarnak’s examples mentioned in the first section
where they proved that there exist families of surfaces, one in each genus g, with
the property that every topologically non-trivial curve has length at least ∼ log g.
Since each curve in a pants decomposition is non-trivial, the total pants length of
these arithmetic hyperbolic surfaces is at least ∼ g log g.

We were able to show:

Theorem 11. For any ε > 0, a “random” hyperbolic surface of genus g has total
pants length at least g7/6−ε with probability tending to 1 as g →∞. In particular,
for all sufficiently large g, there are hyperbolic surfaces with total pants length at
least g7/6−ε.
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(To define a “random” hyperbolic surface we need a probability measure on
the moduli space of hyperbolic metrics. We use the renormalized Weil-Petersson
volume form.)

Our lower bound is a lot stronger than the one coming from the Buser-Sarnak
estimate. Instead of improving the trivial bound by a factor of log g, we improve
it by a polynomial factor g1/6−ε. We obtain the same type of result for surfaces
coming from random gluings of euclidean equilateral triangles with side length 1.
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Discrete Zariski dense subgroups of SL(n,R)

T. N. Venkataramana

In this talk we consider ways to extend lattices in smaller (semi-)simple groups
to Zariski dense discrete non-lattice subgroups of larger (semi-)simple groups and
show that this can be achieved if the real rank of the ambient group is one. We
exhibit examples where this fails and as a consequence obtain linear discrete groups
which are super-rigid in their Zariski closures and show that in many cases the
super-rigid groups are actually lattices.

Homomorphisms between mapping class groups

Juan Souto

(joint work with J. Aramayona)

I discussed a few results suggesting that whenever X,Y are surfaces of suffi-
ciently large genus then any homomorphism φ : Map(X)→ Map(Y ) between the
corresponding mapping class groups is one of the “usual suspects”. More con-
cretely, if X has genus at least six and Y has genus less than twice that of X ,
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then any nontrivial homomorphism φ : Map(X) → Map(Y ) is a combination of
forgetting punctures, boundary components, and subsurface embeddings.

On classification of arithmetic hyperbolic reflection groups

Viacheslav V. Nikulin

In my short talk, I gave a review of known results about finiteness and classifi-
cation of arithmetic hyperbolic reflection groups.

Constructing finite models for the classifying space of the proper
action of lattices in semisimple Lie groups of R-rank one

Hyosang Kang

1. Introduction

The main result is the following.

Theorem 12. (Kang [8]) For any lattice Γ in a semisimple Lie group of R-rank
one, there exists a cofinite model for the proper classifying space of Γ.

To prove the above theorem, we construct a partial compactification of symmetric
space which generalize the Borel–Serre partial compactification.

Classifying spaces have been actively studied in algebraic K and L-theories.
They appear in long-standing conjectures such as the integral Novikov conjecture,
which is the injectivity of the assembly maps

A : H∗(BΓ,K(Z))→ K∗(ZΓ), and

A : H∗(BΓ,L(Z))→ L∗(ZΓ).(1)

The rational injectivity of A, i.e. the injectivity of A ⊗ Q, is called the Novikov
conjecture, and it is equivalent to Novikov’s original conjecture on the homotopy
invariance of the higher signature of manifolds. For groups with torsion elements,
the integral Novikov conjecture fails. Since many natural groups such as SL(n,Z)
are not torsion-free, it is important to generalize the integral Novikov conjecture.
The generalized integral Novikov conjecture is the injectivity of the assembly maps

A : HΓ
∗ (EΓ,K(Z))→ K∗(ZΓ) and

A : HΓ
∗ (EΓ,L(Z))→ L∗(ZΓ),(2)

where EΓ is the proper classifying space of Γ.
The existence of a cofinite (i.e. cocompact) model for the classifying space of

Γ plays an important role in the proof of the (generalized) integral Novikov con-
jecture. In [19], Yu showed that the integral Novikov conjecture is true for any
group Γ with finite asymptotic dimension which admits a cofinite classifying space
of Γ.1 In [3], Bartels and Rosenthal extended this result to the generalized integral

1This implies that the group Γ must be torsion-free.
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Novikov conjecture. Using a similar idea, Ji [7] formulated geometric conditions on
groups for which the generalized integral Novikov conjecture holds (c.f. Theorem
15). Using the Borel–Serre partial compactification as a cofinite proper classify-
ing space for arithmetic groups, he proved that the generalized integral Novikov
conjecture is true for any arithmetic groups. As an application of Theorem 12,
the generalized integral Novikov conjecture is true for lattices in semisimple Lie
groups also (c.f. Corollary 1).

2. Cofinite proper classifying spaces for arithmetic lattices

Let Γ denote a discrete group. The universal cover EΓ of the classifying space
BΓ is a free Γ-space. The proper classifying space for Γ is a generalization of EΓ
where the free Γ-action is replaced by the proper Γ-action.

Definition 7. A Γ-CW-complex is called a model for the proper classifying
space for Γ, denoted by EΓ, if all isotropy groups are finite, and for every finite
subgroup of Γ the fixed point set is non-empty and contractible. A proper classi-
fying space is called cofinite if it consists of finitely many Γ-equivariant cells, i.e.
cocompact.

If Γ is torsion-free, then EΓ is equal to EΓ. For any discrete subgroup Γ of a
Lie group G of finitely many components, the homogenous space G/K (where K
is a maximal compact subgroup of G) is the proper classifying space for Γ. For
example, the upper half-plane H is the proper classifying space for a Fuchsian
group of Möbius transformations.2

Let us further assume that Γ is an arithmetic subgroup of a semisimple Lie
group G. The corresponding symmetric space X is a proper Γ-space, and the

Borel–Serre partial compactification X
BS

is a cofinite proper classifying space.
This is first observed by Borel and Prasad (c.f. [1, Remark 5.8], [7, Theorem 3.2]).

Let P be a rational parabolic subgroup of G and X = NP × AP ×XP be the
horospherical decomposition with respect to the Langlands decomposition of P .

The space X
BS

is obtained by attaching a boundary component e(P ) = NP ×XP

for every rational parabolic subgroup P ⊂ G:

(3) X
BS

= X ∪
⋃

P : rational

e(P ).

3. Cofinite model for a general lattice Γ

Although arithmetic subgroups of semisimple Lie groups are important exam-
ples of lattices, there are many non-arithmetic lattices in semisimple Lie groups
(c.f. [5]). A natural question is to ask: is there an analogue of the Borel–Serre
compactification for general lattices in semisimple Lie groups? A positive answer

2Other important classes of discrete groups that admit cofinite proper classifying space are
the mapping class groups Modg [10], the groups Out(Fn) of outer automorphisms of the free

groups Fn [11, 18], the p-adic algebraic groups [12], and the hyperbolic groups [15].
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is given in [8] for the case of rank-one semisimple Lie groups, and the complete
answer is given in [9]. In the following sections, we explain these results in detail.

3.1. Lattices in R-rank one semisimple Lie groups. We restate Theorem 12
as follows:

Theorem 13. [8] Let Γ be a lattice in a semisimple Lie group G of R-rank one
and let X be the corresponding symmetric space. Then there exists a partial com-
pactification XΓ of X which is a cofinite proper classifying space of Γ.

The idea of the construction of the space XΓ is similar to the uniform construc-
tion of the Borel–Serre partial compactification in Equation (3).

Definition 8. Let P ⊂ G be a real parabolic subgroup and NP be the unipotent
radical of P . P is called Γ-rational if Γ ∩ NP is a cocompact lattice in NP (c.f.
[2, §3.5 p472]).

The space XΓ is defined by

(4) XΓ = X ∪
∐

P : Γ-rational

e(P ).

Since the R-rank of G is one, each boundary component e(P ) is equal to NP .
Thus, the space XΓ is a manifold with boundary whose interior is the symmetric
space X .3

If Γ is arithmetic, then a parabolic subgroup P ⊂ G is rational if and only
if it is Γ-rational [2, §3.5 p473]. This implies that the space XΓ generalize the
Borel–Serre partial compactification. To show the space XΓ is cocompact, we use
the reduction theory due to Garland and Raghunathan [6]. Roughly, their result
says that the Dirichlet fundamental domain of a lattice in R-rank one semisimple
Lie group has finitely many cusp neighborhoods which are covered by Siegel sets.
I showed that each cups corresponds to Γ-rational real parabolic subgroups, which
gives a group theoretic way of choosing the boundary components.

3.2. Lattices in higher R-rank semisimple Lie groups.

Theorem 14. [9] Let Γ be a lattice in semisimple Lie group G and X be the
corresponding symmetric space. There exists a partial compactification XΓ of X
which is a cofinite model for the proper classifying space EΓ.

Margulis’s arithmeticity theorem [13] states that every irreducible lattice in
semisimple Lie group of R-rank greater than two is arithmetic. Thus we only need
to consider reducible lattices. A lattice Γ ⊂ G is reducible if there exist a subgroup

3Raghunathan [16] prove this result by using Morse theory without extended Γ-action on the
boundary.
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Γ′ ⊂ Γ of finite index and a splitting

G
∼=

// G1 ×G2

Γ
?�

OO

∼=
// Γ1 × Γ2.

?�

OO

By induction on the R-rank of the subgroups G1 and G2, one can assume that, for
each i = 1, 2, either (1) the R-rank of Gi is one, or (2) the lattice Γi is irreducible,
equivalently, arithmetic. Thus, a cofinite model of EΓ′ is given by the product of
two partial compactifications:

(5) EΓ′ = X1 ×X2.

Since every parabolic subgroup is Γ-rational if and only if it is Γ′-rational, the
product is also a cofinite EΓ.

4. Applications

In [7], Ji showed that

Theorem 15. Let Γ be a discrete subgroup of finite asymptotic dimension in a
Lie group with finitely many connected components. If Γ admits a cofinite model
X of the proper classifying space of Γ such that for any pair of subgroups H ⊆ I in
Γ, the fixed point set XH and the quotient NI(H)\XH are uniformly contractible
and of bounded geometry, then the generalized integral Novikov conjecture holds
for Γ.

As a corollary, Ji proved that the generalized integral Novikov conjecture holds
for arithmetic subgroups of semisimple Lie groups. Using the same theorem and
the cofinite model for the proper classifying space in Theorem 14, we showed that

Corollary 1. [9] The generalized integral Novikov conjecture holds for lattices in
semisimple Lie groups.

Theorem 14 generalizes to a general linear Lie groups. Mostow [14] showed
that every linear Lie group G ⊂ GL(N,R) decomposes into G = L⋉U where L is
Levi subgroup and U is unipotent radical, which is called the Levi decomposition.
Moreover, any lattice Γ ⊂ G decomposes into Λ ⋉ Γ′ with respect to the Levi
decomposition.4 Since every lattice in solvable Lie group is cocompact, a cofinite
model for EΓ is obtained by using Theorem 14.

4Venkataramana told me that the existence of the lattices Λ and Γ′ is due to Auslander and
the proof can be found in [17]. Baues suggested a careful reading on this proof because there is
a gap in it. He also said that Mostow first proved the splitting of such lattice.
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Spectral geometry for the Riemann moduli space

Rafe Mazzeo

(joint work with Lizhen Ji, Werner Müller and Andras Vasy)

There are many similarities between the structure of the Riemann moduli spaces
Mg, g > 1, and of locally symmetric spaces, though of course these spaces have
many different features as well. Developing analogies between these types of spaces
has become an interesting field of research, and we point immediately to the paper
of Ji [4] for a thorough exploration of the current knowledge on this topic. By
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locally symmetric spaces we mean Riemannian locally symmetric spaces M =
Γ \ G/K, where Γ is a discrete group of isometries of X , endowed with a locally
symmetric metric. The Riemann moduli space, on the other hand, is the quotient
of Teichmüller space Tg by the mapping class group Mapg. This space carries
several different natural metrics, some Riemannian and others Finsler. We focus
here primarily on the Weil-Petersson metric gWP, which is the natural L2 metric
for the realization of Mg as the moduli space of hyperbolic metrics, and on the
Ricci metric gRic, which is the negative of the Ricci curvature of gWP, or at least
on some smoothings of this metric. The Weil-Petersson metric is incomplete; its
metric completion is called the Deligne-Mumford compactification, denoted Mg;
by contrast, gRic is complete. Increasingly refined information is being discovered
about the geometry of these spaces, particularly for the Weil-Petersson metric. We
refer to Wolpert’s recent survey [8] which gives a good summary of these geometric
and topological developments, and includes an extensive bibliography.

Since the study of the spectral and scattering theory for locally symmetric
spaces is highly developed, it is natural to enquire about the spectral and scattering
properties of the Laplacians, and other natural elliptic operators, associated to
these two metrics onMg. Surprisingly, this question does not seem to have been
considered seriously before. The purpose of this report is to mention a few current
and ongoing projects, in collaboration with L. Ji, W. Müller and A. Vasy, on these
questions. One origin for this new work is the series of papers by the author and
Vasy, see [7] in particular, which employs some tools of geometric scattering theory
to study the resolvent of the Laplacian on an arbitrary Riemannian symmetric
space (X, g). A natural outgrowth of that work would be to extend those methods
to a similar analysis of the resolvent of the Laplacian for arbitrary Riemannian
locally symmetric spaces. This is closely related to the meromorphic continuation
of Eisenstein series. For various (good) historical reasons, the resolvent of the
Laplacian had rarely been studied in this setting except in rank one. During the
work on these extensions (by the author, Müller and Vasy), we became aware that
it should not only be possible to prove similar results for the Laplacian associated
to (a mollified version of) gRic, but should be even easier than for locally symmetric
spaces. This led to the current collaboration and to the work described below on
the spectral theory of gWP. While the techniques needed to study this incomplete
metric are rather different, the overall theme and motivations are similar.

We report here on our analysis of the spectral properties of (Mg, gWP). There
are now many different approaches to studying elliptic operators on various classes
of stratified spaces. Much of this work is aimed at developing general techniques
for studying various types of stratified and metric singularities, and this has now
reached a very refined state for metrics with conic, simple edge, and iterated edge
singularities. We refer to [2], [6], [3], [1] for some examples of all of this.

The types of metric singularities exhibited by the Weil-Petersson metric are
of a slightly more complicated nature. The Deligne-Mumford compactification
Mg is a smooth complex space which is singular along the union of a collection
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D0, . . . , D[g/2] of immersed divisors with simple normal crossings. The approxi-
mate structure of gWP near the singular divisors was first obtained by Masur in
the 1970’s [5]; this was later substantially sharpened by Yamada [9], with further
results on its structure by Wolpert [8]. The upshot of these papers is that if p is
a point in the singular set, then there is a local set of holomorphic coordinates
(z1, . . . , zn, n = 3g − 3, in some punctured neighbourhood, such that if we write
zj = rje

iθj , then

gWP =

k∑

j=1

(dr2j + r6dθ2j )(1 +O(r3)) + gD + k;

here r = |(r1, . . . , rk)| and gD is some induced metric on the singular stratum
where z1 = . . . = zk = 0; the final term k is a higher order remainder term which
is irrelevant for our purposes below. Before carrying out more refined spectral
geometric analysis of this space, it will be necessary to establish higher order
asymptotics of gWP, but these are not yet known.

We announce some basic results about the scalar Laplacian ∆ for the Weil-
Petersson metric.

Theorem 16. The operator ∆ acting on C∞0 (Mg) has a unique self-adjoint ex-

tension to an unbounded operator on L2(Mg), which we continue to denote by ∆.
Furthermore, this operator has discrete spectrum {λj}, and the spectral counting
function N(λ) = #{j : λj ≤ λ} satisfies the Weyl law

N(λ) =
ω6g−6

(2π)6g−6
Vol(Mg)λ

n/2 + o(λn/2).

Here ωℓ is the volume of the Euclidean ball Bℓ.

This sets the stage for further investigations: one expects interesting connec-
tions between spec(∆) and other aspects of the geometry of this space.

Essential self-adjointness is obtained by showing that there are no L2 solu-
tions to (∆ ± i)u = 0. These can be ruled out if we prove the standard identity
〈−∆u, u〉 = ||∇u||2 without additional boundary terms. In other words, it suffices
to prove that if u and ∆u both lie in L2, then we can control the growth of u
near the singular set enough to carry out this integration by parts. This is done
using an elaboration of the Hardy inequality. The discreteness of the spectrum
is then proved by showing that the (now unique) domain Dom(∆) is compactly
contained in L2. Finally, to obtain the Weyl law in this relatively crude form (i.e.
with no analysis of the remainder), we can use standard comparison techniques
(Dirichlet-Neumann bracketing), once we have verified that an arbitrarily small
neighbourhood of the singular set contributes a lower order term. Amongst these
three arguments, the first one is more difficult than the others.

There are many further directions. Current work of Gell-Redman proves a
full asymptotic expansion for the heat kernel associated to metrics with the same
‘crossing cubic cuspidal’ structure as gWP, but assuming that these metrics them-
selves have full asymptotic regularity. The asymptotics of the heat trace involve
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some new and potentially interesting terms. One significant goal is to obtain a
signature formula for (Mg, gWP), and this heat kernel analysis should provide a
crucial tool for this. However, it remains to show that gWP itself does indeed
have full asymptotic regularity or at least that what is known about its asymp-
totic structure suffices to understand enough of the expansion of the heat trace to
obtain such index formulas.
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Rank and divergence for lattices and mapping class groups

Cornelia Drutu

(joint work with J. Behrstock)

This talk pursues the comparison between lattices in semisimple Lie groups
and mapping class groups of surfaces via another aspect: the notion of rank (in
its various forms).

There exist several notions of rank, all of them introduced first in the setting
of Hadamard manifolds (i.e. complete, simply connected, non-positively curved
manifolds). Three will be discussed here.

1. The flat rank

In a Hadamard manifold, by flat is always meant an isometrically embedded
copy of an Euclidean space Rk. The flat rank is usually defined as the maximal
dimension of a flat.

Correspondingly, a group G acting cocompactly on a Hadamard manifold M
contains quasi-flats (i.e. quasi-isometric embeddings of Rk) of the same dimension
as the rank ofM . Thus, for a group (especially one acting on a CAT (0)-space) one
can define the quasi-flat rank as the maximal dimension of a quasi-flat contained
in a Cayley graph of that group.
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When X is a symmetric space, this yields the standard notion of rank, which
coincides also with the quasi-flat rank of a lattice of isometries.

Consider now a surface S of genus g and with p boundary components, and
consider its complexity ξ(S) = 3g+ p− 3. The mapping class group of the surface
Mod(S) contains copies of Zξ(S) coming from groups generated by Dehn twists
around maximal families of disjoint curves. It was proved by Farb, Lubotzky and
Minsky that these are quasi-flats, i.e. they are undistorted subgroups of Mod(S).
Brock and Farb asked whether ξ(S) is the quasi-flat rank of Mod(S). This was
answered in the affirmative independently by Behrstock-Minsky and Hamenstädt.

2. The isoperimetric rank

Again in the setting of a Hadamard manifold X , one can define k-dimensional
spheres and k-dimensional balls as Lipschitz maps of Euclidean spheres and balls of
the appropriate dimension into X . Since by Rademacher theorem such Lipschitz
maps are differentiable almost everywhere, one can define the volume of such
spheres and balls. A (k+1)-dimensional ball is said to fill a k-dimensional sphere
if the corresponding Lipschitz map defining the ball extends that of the sphere.

The filling volume of a sphere is the infimum of the volumes of all the balls
filing it (it is∞ if no filling ball exists). The k-th isoperimetric function Isok(x) is
defined as the supremum of all the filling volumes of all the k-dimensional spheres
of volume at most Axk. Here the constant A is considered large enough, and
assumed fixed for the given space. We nevertheless do not define it explicitly
because, among other things, we want to be able to say that Isok is a quasi-
isometry invariant.

The isoperimetric rank can be defined either as the minimal dimension k such
that Isok(x) ≍ xk, or as the maximal k such that Isok(x) ≍ xk+1 plus one.

For a group, under certain conditions, one can define a notion of k-sphere and
(k + 1)-filling ball and define the functions Isok as above.

For symmetric spaces and uniform lattices this notion of rank coincides to that of
flat rank. For mapping class groups we have proved that likewise the quasi-flat rank
coincides with the isoperimetric rank, because the following holds: Isok(x) ≍ xk+1

for k ≤ ξ(S)− 1 and Isok(x) = o(xk+1) for k ≥ ξ(S).

3. The divergence rank

The divergence functions measure the isoperimetry when both the spheres to
fill and the balls filling them are pushed towards infinity. In other words, we fix
a basepoint p (since all the spaces that we consider are homogeneous the choice
of p is irrelevant) and for each x > 0 we only consider k-dimensional spheres S
of volume ≤ Axk that are disjoint of the ball centred at p and of radius x. We
then fix δ ∈ (0, 1) and for every such sphere S we only consider balls filling it and
disjoint of B(p, δx). The minimal volume of such a ball defines the divergence of
the sphere S.

The k-th divergence function Divk(x) is defined as the supremum over all di-
vergences of spheres S of volume ≤ Axk and disjoint of the ball B(p, x).
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Brady and Farb proved that for products of k rank one symmetric spaces (which
are therefore of flat rank k) the (k − 1)-divergence is exponential. They asked
whether the rank of symmetric spaces can be detected through divergence func-
tions. This was answered in the affirmative later on: Leuzinger proved that in
every symmetric space of rank k the(k − 1)-divergence is exponential, and Hin-
dawi showed that for r ≥ k, the divergence Divr(x) � xr+1.

We prove that for mapping class groups, if k ≤ ξ(S) − 1 then the divergence
is Divk(x) � xk+2, while if k ≥ ξ(S) the divergence is o(xk+1). In particular the
rank of the mapping class groups too can be detected through divergence.

Handlebody groups and mapping class groups

Ursula Hamenstädt

(joint work with Sebastian Hensel)

A handlebody H of genus g ≥ 2 is a compact 3-manifold whose boundary is
a closed surface of genus g. It can be realized as a standard neighborhood of
a bouquet of g circles embedded in R3. The handlebody group Map(H) is the
group of isotopy classes of orientation preserving diffeomorphisms of H . By a
result of Laudenbach, the handlebody group is a subgroup of the mapping class
group Mod(∂H) of ∂H consisting of all mapping classes which can be realized by
diffeomorphisms extending to H . Here the mapping class group of ∂H is the group
of isotopy classes of orientation preserving diffeomorphisms of ∂H .

Each diffeomorphism of H acts as as automorphism on the fundamental group
π1(H) = Fg of H , and isotopy classes of diffeomorphisms act as outer automor-
phisms on π1(H). Thus there is a natural homomorphism of Map(H) into the
outer automorphism group Out(Fg) of the free group with g generators.. This
homomorphism is surjective, but its kernel, the so-called twist group, is infinitely
generated.

As for Mod(∂H) and Out(Fg), the handlebody group Map(H) is finitely pre-
sented. In particular, every finite set of generators defines a word norm ‖ ‖H and
hence a distance on Map(H) which is unique up to quasi-isometry. On the other
hand, the restriction of a word norm on Mod(∂H) also defines a word norm ‖ ‖∂H .
The group Map(H) is undistorted in Mod(∂H) if there is a number L > 0 so that

‖g‖H ≤ L‖g‖∂H for all g ∈Map(H).

It is exponentially distorted if there are numbers ℓ ≤ L so that ‖g‖H ≤ eL‖g‖∂H

for all g and if moreover there is a sequence gi ⊂ Map(H) with ‖gi‖H → ∞ and
‖gi‖H ≥ eℓ‖gi‖∂H .

In [1] the following is shown.

Theorem: The handlebody group is exponentially distorted in the mapping
class group.

As a consequence, the understanding of the geometry of the mapping class
group does not yield an understanding of the geometry of the handlebody group.
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Instead one can try to develop tools for studying the handlebody group which
resemble the tools developed for the mapping class group.

A very important such tool for Mod(∂H) is the curve graph C(S). It is the
locally infinite graph whose vertices are isotopy classes of simple closed curves on
∂H and where two such curves are connected by an edge of length one if they
can be realized disjointly. Masur and Minsky showed that the curve graph is a
hyperbolic geometric metric space.

There are various analogs of a curve graph for a handlebody. Namely, an
essential disk in H is a properly embedded disk whose boundary is not contractible
in ∂H . There are three Map(H)-graphs whose vertices are isotopy classes of
essential disks.

(1) The disk graph is the graph whose vertices are disks and where two such
disks are connected by an edge of length one if and only if they can be
realized disjointly.

(2) The electrified disk graph is obtained from the disk graph by adding an
edge between any two disks which a not disjoint but which are disjoint
from a common essential simple closed curve in ∂H .

(3) The superconducting disk graph is the graph which is obtained from the
electrified disk graph by adding an edge between any two disks which
intersect the same diskbusting I-bundle in exactly two points.

Here a diskbusting I-bundle is a simple closed curve in ∂H which can be realized
as the boundary circle of a bordered surface F with connected boundary and such
that the oriented I-bundle over this surface F is homeomorphic to H .

Masur and Schleimer showed [3]

Theorem: The disk graph is hyperbolic.

We complemented this result in [2] by showing

Theorem:

(1) The superconducting disk graph is quasi-isometrically embedded in the
curve graph.

(2) The electrified disk graph and the disk graph are hyperbolic.

This result can be used to show that the handlebody group for a handlebody
of genus 2 is semi-hyperbolic. The case of higher genus is open.
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Veech groups of translation surfaces

Frank Herrlich

In this talk, a translation surface (X,µ) is a surface X together with an atlas µ
such that all transition maps in µ are translations. More specifically, we require X
to be of the form X − S, where X is a compact oriented surface and S is a finite
subset. Each translation surface carries a flat metric, namely the pullback of the
Euclidean metric on R2. The points in S are cone singularities for this metric.

Example. The basic example of a translation surface is obtained as follows: Let
X be a compact Riemann surface, ω ∈ Ω1(X) a nonzero holomorphic 1-form and S
the set of zeroes of ω. Outside S, in a simply connected neighbourhood of a point

P0, the map P 7→
∫ P

P0

ω is a chart map. Clearly, these charts endow X = X − S
with a translation structure.

In fact, each translation surface in the above sense can be obtained by this con-
struction: any translation structure is in particular a complex structure on X , and
the pullback of the differential dz on C = R2 is a holomorphic differential on X
(with a zero of order k − 1 in s ∈ S, if s is a singularity of total angle 2πk).

Definition 9. For a translation surface (X,µ), let Aff (X,µ) be the set of all
orientation preserving diffeomorphisms of X , that are affine w.r.t. µ.

Here “affine” means that locally in the charts of µ, f is of the form z 7→ Az + b
for some A ∈ GL+

2 (R) and some b ∈ R2. Note that, since the transition maps are
translations, the matrix part A is the same on all charts. Therefore, we have a
well defined homomorphism

D : Aff(X,µ)→ SL2(R).

Note that the determinant of the matrix has to be 1, since f must preserve the
area of X .

Definition 10. Γ(X,µ) = D(Aff (X,µ)) is called the Veech group of (X,µ).

Remark. Slightly more general than translation surfaces is the notion of a flat
surface: in addition to translations, also rotations by an angle of π are allowed as
transition maps. They are obtained from holomorphic quadratic differentials on
a Riemann surface as in the above example. The matrix part of an affine map
is only defined up to sign. Therefore flat surfaces have a well defined projective
Veech group in PSL2(R).

Translation surfaces always come in families: For a translation surface (X,µ) and
a matrix A ∈ SL2(R), denote by (X,Aµ) the translation surface with chart maps
A ◦ ϕ : U → R2 for all charts (U,ϕ) ∈ µ. If we consider (X,µ) as a (reference)
point in the Teichmüller space Tg,n, where g = g(X) is the genus of X and n = |S|,
then (X,Aµ) is another point in the same Teichmüller space (using the identity
map on X as marking). Since rotations do not change the complex structure,
A 7→ (X,Aµ) induces a map

ι : H = SO(2)\SL2(R)→ Tg,n.
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Proposition 1. ι is holomorphic and isometric w.r.t. the hyperbolic metric on H
and the Teichmüller metric on Tg,n.

The image ∆(X,µ) = ι(H) of this embedding is called a Teichmüller disk.

Proposition 2. Aff(X,µ) is equal to the stabilizer of ∆(X,µ) in the mapping
class group Γg,n, and the Veech group Γ(X,µ) is isomorphic to the quotient of this
stabilizer by the pointwise stabilizer.

Denote by C(X,µ) the image of ∆(X,µ) in the moduli space Mg,n = Tg,n/Γg,n,
where Γg,n is the mapping class group that acts on Tg,n. Then we have

Proposition 3. C(X,µ) is an (affine) algebraic curve if and only if Γ(X,µ) is
a lattice in SL2(R). In this case, the induced map q : H/Γ(X,µ) → C(X,µ) is
birational, and C(X,µ) is called a Teichmüller curve.

Examples of Veech groups.
1. The Veech group of the flat torus E is equal to SL2(Z).
2. Origamis: Let p : X → E be a finite covering, ramified over at most one point
∞ ∈ E and endow X = X − p−1(∞) with the translation structure pulled back
from E. The resulting translation surface O is called an origami or square-tiled
surface. It can be shown that the Veech group of an origami is a subgroup of
SL2(Z) of finite index.
3. Veech’s double n-gon: Reflect a regular n-gon over one of its sides and then
glue parallel sides (by translations). Veech proved that the Veech group of the
resulting translation surface is the Hecke triangle group ∆(2, n,∞).
4. Triangle groups: It has been shown by Bouw and Möller [1] and with a different
approach by Hooper [5] that all triangle groups ∆(m,n,∞) (with m,n ≥ 2,mn ≥
6) arise as Veech groups of translation surfaces. For a very readable account of
Hooper’s construction see [6].

In general, for a given subgroup of SL2(R), it is impossible to decide whether it
is the Veech group of some translation surface or not. However, there are two
necessary properties, as was noted already by Veech [8]:

Proposition 4. The Veech group Γ = Γ(X,µ) of a translation surface is a discrete
subgroup of SL2(R), and H/Γ is not compact.

The only class of Fuchsian groups for which there is a good (although by far not
complete) knowledge are the finite index subgroups of SL2(Z), i. e. the Veech
groups of origamis. The basis for this is the following result of G. Schmithüsen:

Theorem 17 ([7]). Let O = (p : X → E) be an origami and H(O) = π1(X)
the subgroup of F2 = π1(E − {∞}) that corresponds to the unramified covering
p|X. Then Γ(O) is the image of Stab(O) in Out+(F2) = SL2(Z), where Stab(O)
denotes the stabilizer of H(O) in Aut+(F2).

Using this theorem, Schmithüsen proved that almost all congruence subgroups of
SL2(Z) are Veech groups, s. [7] for a precise statement. An even more general
result, also relying on the characterization of Veech groups in Theorem 1, was
obtained by Ellenberg and McReynolds:
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Theorem 18 ([2]). Every finite index subgroup of the principle congruence sub-
group Γ(2) ⊂ SL2(Z) that contains −I is the Veech group of a translation surface.

It is still an open question, whether every finite index subgroup of SL2(Z) is a
Veech group.

In the other direction, one might ask how much information about a translation
surface can be recovered from its Veech group. We show by one prominent example
that there can be very different translation surfaces having the same Veech group.
The following proposition is an immediate corollary to Theorem 1:

Proposition 5. Let O be an origami such that H(O) is a characteristic subgroup
of F2. Then Γ(O) = SL2(Z).

F2 contains many characteristic subgroups of finite index. Such groups and thus
origamis with Veech group SL2(Z) can be constructed explicitly:

Proposition 6 ([3]). Let G be a finite group and Φ the set of surjective homo-
morphisms F2 → G; suppose Φ is nonempty. Let h1, . . . , hs be representatives of
Aut(G)\Φ and h = (h1, . . . , hs) : F2 → Gs the diagonal map.
Then K = ker(h) is a characteristic subgroup of F2.

Examples.
1. For the origami L2,2 with 3 squares in L-shape, the construction of Proposition 6
leads to an origami with 108 squares. The group G is the subgroup

{(σ1, σ2, σ3) ∈ S3 × S3 × S3 : sign(σ1) · sign(σ2) · sign(σ3) = 1}.
The genus of the corresponding Riemann surface is 37.
2. The “Wollmilchsau”: For the quaternion group Q8 = {±1,±i,±j,±k}, the
kernel of the homomorphism F2 → Q8, x 7→ i, y 7→ j, is a characteristic subgroup.
The corresponding origami (with 8 squares) is of genus 3 and has many surprising
properties, see [4].
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Cohomology of Locally Symmetric Spaces and the Moduli Space of
Curves

Leslie Saper

Let Γ be a group, E a Γ-module, and consider the group cohomology H ·(Γ;E). If
X is a contractible space on which Γ acts properly one may represent this coho-
mology topologically as H ·(Γ\X ;E) for a certain sheaf E. (In the case Γ acts freely
then E is the local system corresponding to the representation of π1(Γ\X) = Γ.)
Our primary interest is when Γ is arithmetic andX is a symmetric space or when Γ
is a mapping class group andX is Teichmüller space. WhenM = Γ\X is a compact
Riemannian manifold it is profitable to use the Hodge-de Rahm theory and repre-
sent cohomology by harmonic forms; from this one may deduce Poincaré duality.
When M is non-compact, Poincaré duality no longer holds for the ordinary coho-
mology but the same reasoning applies instead to the L2-cohomology H ·

(2)(M ;E),

provided it is finite-dimensional and M is complete. The L2-cohomology is an
invariant of the quasi-isometry class of the metric.

We consider three examples to indicate thatH ·
(2)(M ;E) can represent a topolog-

ical invariant: (1) Cheeger’s analysis [2] of the L2-cohomology of horn metrics on
triangulated pseudomanifolds; (2) Saper’s proof [9] that the L2-cohomology of the
Weil-Petersson metric on the moduli space of curvesMg is the cohomology of the

Deligne-Mumford compactification Mg; and (3) Zucker’s conjecture [12] (proved
by Saper-Stern [11] and Looijenga [7]) that the L2-cohomology of a Hermitian
locally symmetric space Γ\X is the middle perversity intersection cohomology of
the Baily-Borel Satake compactification Γ\X∗ [1]. We conclude this section with
a heuristic for Zucker’s conjecture.

Example (2) above answered a question of Hain and Looijenga, perhaps moti-
vated in analogy with Zucker’s conjecture. A better analogy suggests one consider
the Siegel metric onMg, the pull-back of the locally symmetric metric under the
Torelli embedding τ : Mg → Ag, and the Satake compactification M∗

g, the clo-
sure of τ(Mg) in the Baily-Borel Satake compactification A∗

g. We conjectured
in 1993 that the analogue of Zucker’s conjecture holds in this setting. Although
no progress has been made on this conjecture for g > 3, more recent work on
Rapoport’s conjecture suggests a possible approach.

Rapoport’s conjecture [8] (made independently by Goresky and MacPherson
[6]) asserts that for a Hermitian symmetric space X , either middle perversity in-

tersection cohomology [4, 5] of the reductive Borel-Serre compactification Γ\XRBS

[12] (see also [3]) is isomorphic to the middle perversity intersection cohomology
of Γ\X∗. The conjecture was motivated by Langlands’s program—the point is

that Γ\XRBS
is a far less singular compactification making local calculations eas-

ier. Saper proved the conjecture (actually a generalization to equal-rank spaces)
in 2001 [10] by introducing the theory of L-modules, a combinatorial model of

sheaves on Γ\XRBS
.
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In current work, L-modules are being used to study H ·(Γ;E) itself for Γ arith-
metic. We now suggest that an analogue of L-modules can be applied to address
the 1993 conjecture on the moduli space of curves. NamelyMg could play the role
of the reductive Borel-Serre compactification. What is needed is to understand
the Siegel metric locally onMg (as opposed to locally onM∗

g), to understand the

fibers of the extended Torelli mapMg →M∗
g, and to prove a vanishing theorem

on these fibers. Progress in some simple concrete examples has been made.
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Euler characteristic, simplicial volume and the Schläfli volume formula

Michelle Bucher

The simplicial volume ‖M‖ ∈ R≥0 of a closed oriented n-dimensional manifold M
is defined as

‖M‖ = inf {Σ|aσ| | [Σaσσ] = [M ] ∈ Hn(M,R)} .
It was introduced by Gromov in his seminal paper [2] to give a topological definition
of the volume of certain families of Riemannian manifolds. In turn, it led Gromov
to a new elegant proof of Mostow Rigidity for closed hyperbolic manifolds.

The positivity of the simplicial volume has many consequences for the geometry
of the manifold, such as degree theorems or positivity of the minimal volume.
While the simplicial volume vanishes for some manifolds, for example those with
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amenable fundamental group, it is now known to be positive for many families of
manifolds, typically such exhibiting some nonpositive curvature features. One of
the first result in this direction is due to Gromov:

Theorem 19. (Gromov, [2]) Let M be a closed oriented locally symmetric space
of noncompact type. If χ(M) 6= 0, then ‖M‖ > 0.

Answering a question of Gromov, Lafont and Schmidt later proved that the
simplicial volume of any closed oriented locally symmetric space of noncompact
type is positive, relying on previous computations of Connell and Farb that do not
apply in the case when M has a local SL(2,R)/SO(2) or SL(3,R)/SO(3), in which
case the positivity of the simplicial volume follows from estimates by Thurston,
respectively Savage and myself.

There is another way to generalize Theorem 19 by asking if χ(M) 6= 0 implies
‖M‖ > 0 for any aspherical manifolds, which is also a question of Gromov:

Question 2. [3, Section 8.A4] Let M be an aspherical manifold. Is it true that
‖M‖ = 0 implies χ(M) = 0?

Or an even stronger version of the question:

Question 3. [3, Section 8.A4] Does there exist a constant C(n) depending only
on the dimension n such that

|χ(M)| ≤ C(n) · ‖M‖,
for any aspherical manifold M?

Note that Question 2 is related to another question of Gromov asking if the
vanishing of the simplicial volume of aspherical manifolds implies the vanishing of
their ℓ2-Betti numbers. Since the Euler characteristic is equal to the alternating
sum of ℓ2-Betti numbers, the latter question clearly implies Question 2. Note that
in fact, the two questions would be equivalent if the Singer Conjecture, predicting
the vanishing of all but the middle ℓ2-Betti number, were true.

For a somehow modified version of the simplicial volume, I can answer Question
3: Define the immersive simplicial volume of a closed oriented manifold M as

‖M‖imm = inf {Σ|aσ| | [Σaσσ] = [M ] ∈ Hn(M,R), σ : ∆n →M immersive} .
where a singular simplex σ : ∆n →M is said to be immersive if it is the restriction
of an immersive map defined on an open neighborhood of ∆n. One has the trivial
inequality

‖M‖ ≤ ‖M‖imm,

which is in general not an equality since for example, it is not difficult to show that
‖S2‖imm = 2, while ‖S2‖ = 0. For this modified simplicial volume, I can answer
Question 3 with constant C(n) = 1, and this for any manifold [1]:

Theorem 20. Let M be any smooth closed oriented manifold. Then

|χ(M)| ≤ ‖M‖imm.

In view of Question 3, it is now natural to ask:
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Question 4. Let M be an aspherical manifold. Is it true that

‖M‖ = ‖M‖imm?

This is true for locally symmetric spaces modeled on Hn or SL(n,R)/SO(n) or
their products, since these spaces admit an immersive straightening. Unfortunately
in these cases the answer to Question 3 is already known.

To prove Theorem 20, one needs to exhibit a singular cocycle representing
the Euler class of the tangent bundle of M , whose value on immersive singular
simplices is bounded, in absolute value, by 1. This is done by a generalization of
a classical formula of Schläfli.
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On convex subsets of spherical buildings

Bernhard Leeb

(joint work with Carlos Ramos-Cuevas)

I report on work of Carlos Ramos-Cuevas the initial part of which is joint work.
In the unit sphere one observes that convex subsets are either small in the sense

that they have circumradius ≤ π
2 , or they have special geometry, i.e. are geodesic

subspheres. It is natural to ask whether a similar dichotomy holds in spherical
buildings since these are CAT(1) spaces whose geometry is rigidified by the pres-
ence of ”plenty” of embedded top-dimensional unit spheres. Are sufficiently large
(radius > π

2 ) convex subsets of spherical buildings rigid, i.e. are they subbuild-
ings? A consequence would be a fixed point property for isometric group actions
on spherical buildings, namely that the existence of an invariant convex subset
which is not a subbuilding implies the existence of a fixed point.

These questions seem considerably easier when one restricts to convex subcom-
plexes with respect to the natural polyhedral structure of the spherical building.
The fixed point question in the case of convex subcomplexes has been asked by
Tits already in the 50s and is referred to as his Center Conjecture. For spherical
buildings of the classical types (An, Bn and Dn) it has been proven by Mühlherr
and Tits [MT]. Regarding the exceptional types, the F4 case has been announced
by Parker and Tent (2008), written proofs for the F4 and E6 cases have been given
by Ramos-Cuevas and myself [LR], and the (much harder) E7 and E8 cases have
been proven by Ramos-Cuevas [R]. His results, together with the earlier ones and
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general results by Balser and Lytchak in dimension 2, imply the Center Conjec-
ture for all thick spherical buildings and more generally for all spherical buildings
without factors of type H4.
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Groups, hyperbolic spaces and Teichmüller spaces

Christopher J. Leininger

(joint work with Matt Clay, Richard P. Kent IV, Johanna Mangahas, Saul
Schleimer)

There are a number of analogies between hyperbolic spaces and Teichmüller spaces
of finite type surfaces, and the groups which naturally act on them. For example,
they are both complete unique geodesic metric spaces, both are homeomorphic
to a ball and admit isometry group–invariant compactifications by a “sphere at
infinity”. The action of the mapping class group, and in particular the actions
of its subgroups, on Teichmüller space has some similarities with Kleinian groups
acting on hyperbolic space. For example, the groups act properly discontinuously,
the elements of the mapping class group admit a classification into 3 types similar
to the classification into elliptic, parabolic and hyperbolic isometries of hyperbolic
space, and for subgroups of the mapping class group, a dynamical decomposition
of the action on the sphere at infinity is possible analogous to that studied for
Kleinian groups. See the survey article [2] for a complete list of references.

In joint work with Richard Kent in [3, 4] we extended the notion of convex
cocompactness discovered by Farb and Mosher and proved the equivalence of sev-
eral formulations analogous to those used in the setting of Kleinian groups. There
are subtleties involved, and in [5] for example, Kent and I construct a group us-
ing an analogue of the “Schottky construction” which is nonetheless not convex
cocompact.

The importance of convex cocompactness in the world of Kleinian groups is that
they are the most well behaved types of groups. For example, they form the stable
class of groups in the sense that a small perturbation of a convex cocompact group
is still convex cocompact. In the mapping class group, the importance of convex
cocompactness comes from work of Farb–Mosher and Hamenstädt who prove that
convex cocompactness for a subgroup of the mapping class group is equivalent
to Gromov-hyperbolicity of the associated surface group extension. This group
can be thought of as the fundamental group of a surface bundle with injective
monodromy onto given by the subgroup.
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There are a number of open questions regarding convex cocompactness. A first
question is whether or not every finitely generated, purely pseudo-Anosov subgroup
is convex cocompact. If this is true, then this gives a positive answer to Gromov’s
coarse hyperbolization question for fundamental groups of surface bundles. If it is
false for a sufficiently nice subgroup, then it gives a negative answer to Gromov’s
question in the form of an example. In joint work with Kent and Saul Schleimer
[6], we provide a positive answer to this question for a certain class of subgroups.

Another question is whether there are any non-virtually free convex cocompact
groups. Because of the discussion above, this is equivalent to asking whether there
are surface bundles over spaces B, which have Gromov hyperbolic fundamental
group, when B is essentially more complicated than a graph. A particular in-
stance of this question is whether or not there are surface bundles over surfaces
with Gromov hyperbolic fundamental group, or surface bundles over closed hy-
perbolic n–manifolds with Gromov hyperbolic fundamental group. These latter
questions can be rephrased as questions about homomorphisms of surface groups
and hyperbolic n–manifold groups into the mapping class group, and equivariant
maps of hyperbolic n–space into Teichmüller space with certain geometric prop-
erties. Specifically, we want these to be quasi-isometric embedding, quasi-convex
into the thick part.

In work with Matt Clay and Johanna Mangahas [1], we constructed injective
homomorphisms from surface groups into the mapping class group and equivariant
maps of the hyperbolic plane into Teichmüller space which are quasi-isometric
embeddings. Unfortunately, these fail to have quasi-convex image. In joint work
with Schleimer [7], we were able to construct quasi-isometric embedding of any
real hyperbolic n–space into some Teichmüller space which is quasi-convex and
lies in the thick part. However, there is no group equivariance. In particular,
the existence of surface bundles over closed hyperbolic n–manifolds with Gromov
hyperbolic fundamental group when n ≥ 2 is still open.
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Generating Torelli groups

Dan Margalit

(joint work with Allen Hatcher)

The mapping class group Mod(S) of a surface S is the group of isotopy classes
of orientation-preserving homeomorphisms of S. The mapping class group is a
central object in low-dimensional topology, relating to the theory of surface bun-
dles, moduli space, and 3-manifolds. The Torelli group I(S) is the subgroup of
Mod(S) consisting of all elements that act trivially on H1(Sg;Z). As the action
of Mod(S) on H1(S;Z) is linear, we can think of I(S) as embodying the more
mysterious aspects of Mod(S).

A classical theorem of Dehn states that, when S is a closed, orientable surface,
Mod(S) is generated by Dehn twists [3]. These are elements of Mod(S) supported
on an annulus. The modern proof of Dehn’s theorem is to consider the action of
Mod(S) on the complex of curves, an abstract simplicial complex whose vertices
are in bijection with the isotopy classes of simple closed curves in S. Birman and
Powell proved an analogous theorem for I(S): it is generated by bounding pair
maps, which are each supported on a pair of disjoint annuli [1, 5]. Birman and
Powell proved this result via combinatorial group theory. Recently, Putman give
a proof using group actions on complexes [6].

My work with Allen Hatcher gives a proof of the Birman–Powell result that
is completely analogous to the curve complex proof that Mod(S) is generated by
Dehn twists [4]. Instead of the complex of curves, we consider the complex of
homologous curves, which is the subcomplex of the complex of curves consisting
of all curves lying in a given homology complex. The key step is to show that the
complex of homologous curves is connected.

Tara Brendle and I have shown that the hyperelliptic Torelli group (the sub-
group of I(S) consisting of all elements that commute with some fixed hyperelliptic
involution in Mod(S)) has the property that every reducible element is a product
of Dehn twists [2]. We would like to show that the hyperelliptic Torelli group is
itself generated by Dehn twists, since this would give very concrete information
about the topology of the branch locus of the period mapping from Torelli space
to the Siegel upper half plane. We hope that the new proof of the Birman–Powell
result will shed light on this problem.
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On Weil–Petersson symmetries of Teichmüller spaces

Sumio Yamada

Let Σg be a closed topological surface of genus larger than one. We assume that
Σg is equipped with some hyperbolic metric. In [6], we have studied geometry of

the Weil-Petersson completed Teichmüller space T of the surface Σ. It was shown
that the metric completion T is a CAT(0) space, and the T has a stratification by
its boundary sets. In [7], we have further introduced the Weil-Petersson-Coxeter
spaceD(T , ι) of the surface Σ, also a CAT(0) space, which is geodesically complete.
In this talk, we would like to demonstrate several features of these CAT(0) spaces
which have some parallels to the subject of symmetric spaces of noncompact type.

We recall (see [5]) that the Teichmüller space of the surface Σg is the space of
the hyperbolic metrics defined on Σ up to the diffeormorphism equivalence via the
pull-back action T (Σ) =M−1/Diff0Σ where Diff0Σ is the identity component of
the full (orientation preserving) diffeomorphism group DiffΣ. The Weil–Petersson
metric on the Teichmüller space is the L2 metric on the surface Σ for deformation
tensors of the hyperbolic metric G; 〈h1, h2〉WP =

∫
Σ
〈h1(x), h2(x)〉G(x) dµG(x)

where the tangency condition for the tensors h1, h2 are traceless and divergence-
free with respect to G, which preserves the constant curvature condition as well
as the perpendicularity to the diffeomorphism fibers. We denote by d(x, y) the
Weil–Petersson distance between the points x and y.

The Weil–Petersson completion T , a space of Cauchy sequences in (T , d), con-
sists of the original Teichmüller space T as well as the bordification points of T
so that Σ is allowed to have nodes, which are geometrically interpreted as simple
closed geodesics of zero hyperbolic length. The completed space T (also identified
as augmented Teichmüller space by Bers and Abikoff) has the stratification

T = ∪σ∈C(S)Tσ
where the original Teichmüller space T is expressed as T∅, and where C(S) is the
complex of curves. A k-complex σ in C(S) consists of k + 1 homotopy classes
of mutually disjoint simple closed curves. And each strata Tσ is the Teichmüller
space of the nodal surface Σσ. Here an important fact is that the set of nodal
surfaces exactly corresponds to the set of admissible degenerations of conformal
structures along Weil–Petersson geodesics where the surfaces are uniformized by
hyperbolic metrics.
We showed in [6] that this stratification is very much compatible with the Weil–
Petersson geometry. Namely for each collection σ ∈ C(S), each boundary Te-
ichmüller space Tσ is a Weil–Petersson geodesically convex subset of T . Here
geodesic convexity means that given a pair of points in Tσ, there is a distance-
realizing Weil–Petersson geodesic segment connecting them lying entirely in Tσ.
Note that the Weil–Petersson convexity of the individual stratum says that each
stratum is totally geodesic, namely each set is neither convex or concave with re-
spect to other strata. The non-positive curvature implies the uniqueness of the
geodesics.
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In considering the Weil–Petersson symmetries, we first recall the Thurston clas-
sification theorem of elements of the mapping class group Map(Σ). An element
γ of Map(Σ) is classified as one of the three types; 1) finite order, 2) reducible,
3) pseudo-Anosov (also called irreducible). The classification is relevant to the
Weil–Petersson geometry in the sense that the pseudo-Anosov elements are hyper-
bolic (Wolpert[3], G.Daskalopoulos- R.Wentworth[2].) namely the infimum of the
translation distance d(x, γx) is achieved on a pseudo-Anosov axis in T , and the
reducible (by σ) elements are loxodromic in the respective stratum Tσ.

In order to introduce a new set of symmetries, we first construct an auxil-
iary space. Jacques Tits has introduced abstract “Coxeter group” (W,S) gener-
ated by a set of reflections S, and a collection of relations among the reflections
{(ss′)m(s,s′)}. Here m(s, s′) denotes the order of ss′ and the relations range over
all unordered pairs s, s′ ∈ S with m(s, s′) 6= ∞. In other words, m(s, s′) = ∞
means no relation between s and s′. The linchpin connecting the Weil–Petersson
geometry of T and the Coxeter theory is the following theorem of Wolpert’s[4].
Theorem Given a point p in Tσ ⊂ T , representing a nodal surface Σσ, the Alexan-
drov tangent cone with respect to the Weil–Petersson distance function is isometric

to R
|σ|
≥0 × TpTσ, where R

|σ|
≥0 is the orthant in R|σ| with the standard metric.

The significance of this result in our context is that it describes the geometry
around the vertices, given as the Weil–Petersson tangent cone angles, when T is
seen as a convex polygon. This picture specifies a particular choice of the Cox-
eter matrix. Namely for each σ with |σ| = 1, one can reflect T across the totally
geodesic stratum T σ. Now for τ = σ ∪ σ′ with σ and σ′ representing a pair of
disjoint simple closed geodesics, the relation m(sσ, sσ′) = 2 has a geometric mean-
ing where four copies of T can be glued together around a point q ∈ Tτ to form
a space whose tangent cone at q is a union of four copies of R2

≥0 × TpTτ (each

R2
≥0 is regarded as a quadrant in the plane) isometric to R2 × TpTτ on which the

reflections sσ, sσ′ act as reversing of the orientations of the x, y axes for R2. Hence
we define Coxeter group (W,S) by letting the generating set S be the elements of
S, and the relations among the generating set are specified by the Coxeter matrix
whose components satisfying i) mss = 1, ii) if s 6= s′, and if there is some simplex
σ in C(S) containing s and s′, then define mss′ = 2, and iii) if s 6= s′, and if the
geodesics representing s and s′ intersect on Σ0 then mss′ =∞. This group has a
geometric realization D(T , ι) defined as the set which is the quotient of W ×T by
the following equivalence relation

(g, y) ∼ (g′, y′)⇐⇒ y = y′ and g−1g′ ∈Wσ(y)

where T σ(y) denotes the smallest stratum containing y, and the subgroup Wσ(y)

fixes the stratum T σ(y) pointwise. We write [g, y] to denote the equivalence class
of (g, y). Furthermore ι denotes a simple morphsm of groups, which specifies a
system of subgroupsWσ ⊂W , compatible with the poset structure of the complex
of curves C(S) (see [7] for details.)

The remarkable phenomena here is that despite of the fact that the generat-
ing set is infinite, we have a geometric realization of the Coxeter group (W,S)



Arithmetic Groups vs. Mapping Class Groups 1681

action (which is very far from linear, but still Weil–Petersson isometric) on a
space modeled on a finite dimensional space T , albeit the partial bordification T
encodes non-locally compact geometry due to the singular behavior of the Weil–
Petersson metric tensor. The space obtained by the action of the Coxeter group
on T , which we will call development D(T , ι), is then shown to be CAT(0) via the
Cartan-Hadamard theorem for metric spaces, and also to be geodesically complete.
Furthermore, this construction is used to show that the development D(T , ι), and
it covex subset T , are of finite rank, implying existence of upper bounds for the
dimensions of flats dependent of genus g.

As the Coxeter group W is generated by S, and the group W is completely
determined by the Coxeter matrix [mst]s,t∈S , it follows that each element γ in

M̂apΣ induces an automorphism of W . Such an automorphism of W is called
diagram automorphism [1]. As for the new set of Weil–Petersson symmetries, the
formalism laid out in [1] gives us a natural action (Proposition 9.1.7) of the semi-

direct product G := W ⋊ M̂apΣ on the development D(T , ι) as follows: given
u = (g, γ) ∈ G and [g′, y] ∈ D(T , ι),

u · [g′, y] := [gγ(g′), γy]

where γ(g′) is the image of g′ by the automorphism of W induced by γ : C(S)→
C(S).

Another point which justifies the analogy with the classical Coxeter theory is
that Wolpert([4]) has shown that the Weil–Petersson completion T is the closed
convex hull of the vertex set given by the zero dimensional Teichmüller spaces of
the maximally degenerate surfaces {Tσ : |σ| = 3g − 3}. Each face/stratum T σ

of T is then a simplex spanned by the subset of those vertex sets, which lies as
a complete convex subset in T ; a picture analogous to the standard simplicial
complex theory. This situation encourages us to treat Teichmüller spaces from
the viewpoint of convex geometry within the “ambient space” D(T , ι), a direction
currently under investigation [8].
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The Congruence Subgroup Problem and the Fundamental Group of
Reductive Borel-Serre Compactifications

John Scherk

(joint work with Lizhen Ji, V. Kumar Murty, Les Saper)

Let k be a number field and let S be a finite set of places of k which includes the
infinite places. Suppose that G is an absolutely almost simple, simply connected
algebraic group over k. Let C(S,G) be the congruence subgroup kernel ofG. Then
the following has been established by Raghunathan, Prasad, Gille and others:

Theorem 21. If S-rankG ≥ 2 and if kv-rankG ≥ 1 for all finite places v ∈ S,
then C(S,G) is finite. Furthermore, C(S,G) is a quotient of µ(k), the roots of
unity of k.

Now let O be the ring of S-integers of k. For any ideal a ∈ O let Γ(a) ⊂ G(O)
be the congruence subgroup defined by a (defined with respect to some faithful
representation of G over k). For any S-arithmetic subgroup Γ of G, denote by
EΓ the normal subgroup of unipotent elements in G(k). Then Ragunathan and
Venkataramana show that

Theorem 22. If S-rankG ≥ 2, then

C(S,G) ∼= lim←−
a

Γ(a)/EΓ(a)

We noticed that in some examples, the computations of the fundamental group
of the Baily-Borel compactification of Hermitian locally symmetric spaces also
involved the subgroup of unipotents EΓ. This lead us to a general result which
relates fundamental groups of compactifications of locally symmetric spaces to
C(S,G) via subgroups of unipotents.

Let X∞ be the product of the symmetric spaces associated with G(kv) where v
is an infinite place, and let Xv be the Bruhat-Tits building associated with G(kv)
where v ∈ Sf , the set of finite places in S. Set

X = X∞ ×
∏

v∈Sf

Xv

The group GS = G∞ ×
∏

v∈Sf
G(kv) acts properly on X . We can embed G(k)

diagonally in this group. This also defines an action of Γ on X . Now let X̄RBS
∞

denote the reductive Borel-Serre partial compactification of X∞. Then define

X̄RBS = X̄RBS
S = X̄RBS

∞ ×
∏

v∈Sf

Xv

The action of Γ extends to a discontinuous action on this space, and the quotient
space Γ\X̄RBS is a compact Hausdorff space.

In general, suppose that Γ is a group acting continuously on a topological space
Y . For each point y ∈ Y , let Γy = { g ∈ Γ | gy = y } be the stabilizer subgroup
of y in Γ. Then the fixed subgroup Γf is defined to be the subgroup generated by
the stabilizer subgroups Γy for all y ∈ Y .
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Proposition 7. We have: EΓ ⊆ Γf,RBS. Furthermore, if Γ is neat then equality
holds.

Our result is:

Theorem 23. For any S-arithemtic group Γ, π1(Γ\X̄RBS) ∼= Γ/Γf . If Γ is neat
then π1(Γ\X̄RBS) ∼= Γ/EΓ.

There is an analogous result for Satake compactifications. The two theorems
above imply that under the given conditions these fundamental groups are finite.

The proof is based on the following general result due to Grosche and Arm-
strong:

Proposition 8. Let Y be a simply connected topological space and Γ a discrete
group acting on Y . Assume that either

(1) the Γ-action is discontinuous and admissible, or that
(2) the Γ-action is proper and Y is a locally compact metric space.

Then the natural morphism Γ→ π1(Γ\Y ) induces an isomorphism Γ/Γf
∼= π1(Γ\Y ).

A continuous surjection p : Y → X of topological spaces is admissible if for any
path ω in X with initial point x0 and final point x1 and for any y0 ∈ p−1(x0),
there exists a path ω̃ in Y starting at y0 and ending at y1 ∈ p−1(x1) such that
p ◦ ω̃ is homotopic to ω relative to the endpoints. An action of a group Γ on a
topological space Y is admissible if the quotient map Y → Γ\Y is admissible.

References

[1] L. Ji, V.K. Murty, J. Scherk, L. Saper, The Congruence Subgroup Problem and
the Fundamental Group of the Reductive Borel-Serre Compactification, preprint:
http://arxiv.org/pdf/1106.4810v1 .

Quantum representations of mapping class groups and Zariski density

Louis Funar

Our first aim is to explain a largeness result for images of quantum representations
of mapping class groups in genus at least 3. The main motivation is the construc-
tion of large families of finite quotients of (central extensions of the) mapping class
groups. Some results in this direction are already known. In [6] we proved that the
images are infinite and non-abelian (for all but finitely many explicit cases) using
earlier results of Jones who proved in [12] that the same holds true for the braid
group representations factorizing through the Temperley-Lieb algebra at roots of
unity. Masbaum then found in [14] explicit elements of infinite order in the image.
General arguments concerning Lie groups actually show that the image should
contain a free non-abelian group. Furthermore, Larsen and Wang showed (see
[13]) that the image of the quantum representations of the mapping class groups

at roots of unity of the form ± exp
(

2(r+1)πi
4r

)
, for prime r ≥ 5, is dense in the

projective unitary group.
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In [7] the authors proved that although the images are large in the sense that they
contain (explicit) free non-abelian groups, from another viewpoint these images
are small because they are of infinite index in the group of unitary matrices with
cyclotomic integers entries. The latter group can be embedded as an irreducible
higher rank lattice in a semi-simple Lie group Gp (depending on the genus and the
order of the roots of unity) obtained by restriction of scalars. In this talk we will
strengthen the largeness property above by showing that, in general, the image of
a quantum representation is Zariski dense in the non-compact group Gp.

In order to be precise we have to specify the quantum representations we are
considering. Recall that in [1] the authors defined the TQFT functor Vp, for every
p ≥ 3 and a primitive root of unity A of order 2p. These TQFT should correspond
to the so-called SU(2)-TQFT, for even p and to the SO(3)-TQFT, for odd p (see
also [13] for another SO(3)-TQFT).

Definition 11. Let p ∈ Z+, p ≥ 3 and A be a primitive 2p-th root of unity. The
quantum representation ρp,A is the projective representation of the mapping class
group associated to the TQFT Vp at the root of unity A. We denote therefore

by ρ̃ the linear representation of the central extension M̃g of the mapping class
groups Mg (of the genus g closed orientable surface) which resolves the projective
ambiguity of ρp,A (see [10, 16]). Furthermore N(g, p) will denote the dimension of
the space of conformal blocks associated by the TQFT Vp to the closed orientable
surface of genus g.

Remark 1. The unitary TQFTs arising usually correspond to the following choices
of the root of unity:

Ap =




− exp

(
2πi
2p

)
, if p ≡ 0(mod 2);

− exp
(

(p+1)πi
p

)
, if p ≡ 1(mod 2).

Gilmer and Masbaum proved in [11] that the mapping class group preserves a
certain free lattice within the space of conformal blocks associated to the SO(3)-
TQFT. Let us introduce the following notation. For p ≥ 5 an odd prime we denote
by Op the ring of integers in the cyclotomic field Q(ζp), where ζp is a primitive p-th
root of unity. Thus Op = Z[ζp], if p ≡ −1(mod4) and Op = Z[ζ4p], if p ≡ 1(mod4).

The main result of [11] states that, for every odd prime p ≥ 5, there exists a free
Op -lattice Sg,p in the C-vector space of conformal blocks associated by the TQFT
Vp to the genus g closed orientable surface and a non-degenerate Hermitian Op-
valued form on Sg,p such that (a central extension of) the mapping class group
preserves Sg,p and keeps invariant the Hermitian form. Therefore the image of the
mapping class group consists of unitary matrices (with respect to the Hermitian
form) with entries in Op. Let PU(Op) be the group of all such matrices, up to
scalar multiplication.

A natural question is to compare the image ρp(Mg) and the discrete group PU(Op).
The main result of [7] shows that the image is small with respect to the whole
group:
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Theorem 24 ([7]). Suppose that g ≥ 4 and p 6∈ {3, 4, 5, 8, 12, 16, 24, 40}. Suppose
moreover that in the case p = 8k with k odd there exists a proper divisor of k which
is greater than or equal to 7. Then the group ρp,A(Mg) is not an irreducible lattice
in a higher rank semi-simple Lie group. In particular, if p ≥ 7 is an odd prime,
then ρp,A(Mg) is of infinite index in PU(Op).

It is known that PU(Op) is an irreducible lattice in a semi-simple Lie group PGp

obtained by the so-called restriction of scalars construction from the totally real
cyclotomic field Q(ζp + ζ−1

p ), ζp being a p-th root of unity, to Q. Specifically, let
us denote by Gp the product

∏
σ∈S(p) SU

σ. Here S(p) stands for a set of represen-

tatives for the classes of complex valuations σ of Op modulo complex conjugacy.
The factor SUσ is the special unitary group associated to the Hermitian form con-
jugated by σ, thus corresponding to some Galois conjugate root of unity. Denote
also by ρ̃p and ρp the representations

∏
σ∈S(p) ρ̃p,σ(Ap) and

∏
σ∈S(p) ρp,σ(Ap), re-

spectively. When p is an odd prime p ≥ 5 and g ≥ 3 then it is known that ρ̃p,Ap

takes values in SU (see [2]).
Notice that the real Lie group Gp is a semi-simple algebraic group defined over Q.
Eventually, the main density result from [6] can be stated now as follows:

Theorem 25. Suppose that g ≥ 3 and p ≥ 5 is an odd prime. Then ρ̃p(Mg) is a
discrete Zariski dense subgroup of Gp.

Remark 2. A similar result holds for the SU(2)-TQFT. Specifically let p = 2r
where r ≥ 5 is prime. According to ([1], 1.5) there is an isomorphism of TQFTs
between V2r and V ′

2 ⊗ Vr, and hence the projection on the second factor gives
us a homomorphism π : ρ2r(Mg) → Gr. Furthermore the image of the TQFT
representation associated to V ′

2 is finite. Therefore the π ◦ ρ2r(Mg) is a discrete
Zariski dense subgroup of Gr. Notice that the result holds also for g = 2 and
prime p ≥ 5 using the modifications from [7] in the constructions of free non-
abelian subgroups in the image. We will skip the details.

We will now consider the Johnson filtration by the subgroups Ig(k) of the map-
ping class group Mg of the closed orientable surface of genus g, consisting of those
elements having a trivial outer action on the k-th nilpotent quotient of the funda-
mental group of the surface, for some k ∈ Z+.

The main application of our main density result is the following consequence of
the Nori-Weisfeiler strong approximation theorem (see [18]):

Theorem 26. For every g ≥ 3, prime p ≥ 5 and k ≥ 1 there exists some homo-

morphism M̃g → Gp(Z/q
kZ), whose restriction to Ig(3) is surjective for all large

enough primes q. In particular, the surjectivity holds also for M̃g, the Torelli group
Ig(1) and the Johnson kernel Ig(2), respectively.

Corollary 2. For any prime p, g ≥ 4 and k ≥ 1 there is a homomorphism
Mg → PGp(Z/q

kZ), which is surjective for all large enough primes q ≥ 5. Here
PGp is the product of the projective unitary groups whose associated special unitary
groups occur as factors of Gp.
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Remark 3. (1) The first construction of finite quotients of mapping class
group by this method was given in [17].

(2) A stronger result, namely that every finite group embeds in some finite
quotient of the genus g ≥ 3 mapping class group, was obtained indepen-
dently by Masbaum and Reid (see [15]). This answers a question of U.
Hamenstaedt.

(3) The set of finite quotients of a particular Mg (with g ≥ 4) provided by
Theorem 26 is rather large. Indeed, among the factors of the semi-simple
groups PGp, p running over the primes, we can find indefinite unitary
groups PU(m,n), with arbitrarily large m. In particular, the alternate
group on m elements is contained into PU(m,n)(Z/pZ) and hence into
some finite quotient of Mg. This gives an alternate proof of Hamenstaedt’s
conjecture above, first proved by Masbaum and Reid in [15].

(4) In [8] we already obtained results showing that a given mapping class group
has many more finite quotients than the family of all symplectic groups,
as it can be measured by their 2-homology groups.

(5) The number n(p) of the non-compact factors in Gp goes to infinity with p.

Another consequence of the main density theorem is the following description of

the normalizer NGp
(ρ̃p(M̃g)) of ρ̃p(M̃g) within Gp. This will be a consequence

of a deep result of Eskin and Margulis from [3], valid for arbitrary Zariski dense
subgroups of higher rank lattices, at it was pointed out to us by Yves Benoist.
Specifically, we proved in [9] the following:

Theorem 27. Let g ≥ 4 and p ≥ 7 prime. Then the normalizer NGp
(ρ̃p(M̃g))

contains the lattice normalizer NGp(Z)(ρ̃p(M̃g)) ⊂ Gp(Z) as finite index subgroup
and therefore is a discrete subgroup of Gp of infinite covolume.

It seems that the arithmetic properties of the groups ρ̃p(M̃g) are worth to further
study. We formulate the following questions:
(1) For given g and p find the bad primes q in the sense of Nori-Weisfeiler theorem,

namely for which the homomorphism ρ̃p(M̃g)→ Gp(Z/qZ) is not surjective. The
analogous question for the Apollonian group was recently solved by E.Fuchs in [5],
but the methods used there do not extend to more general Zariski dense subgroups
of Lie groups.

(2) Determine the kernel of the map between the pro-finite completions
̂
ρ̃p(M̃g)→

Ĝp(Z).

(3) Prove that the inclusion ρ̃p(M̃g) →֒ Gp is locally rigid.
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Thurston compactifications of spaces of marked lattices and of the
Torelli space

Thomas Haettel

The content of this report comes from the preprint [7].

1. Thurston compactification of spaces of marked lattices

Let g ≥ 1 be an integer, fix b the standard symplectic form on R2G, and the
standard euclidian norm ‖ · ‖. If Λ ⊂ R2g is a lattice, it is said to be b-self-dual,
or symplectic, if

Λ∗ := {x ∈ R2g : ∀y ∈ Λ, b(x, y) ∈ Z} = Λ.

Consider the space of isometry classes of marked unimodular symplectic lattices
of R2g :

E = {f : Z2g → R2g : f(Z2g) is a covolume 1 symplectic lattice of R2g}/isometry.

It is the symmetric space E = U(g)\Sp2g(R) of Sp2g(R), also known as the Siegel
upper half-plane, and comes with a natural action of Sp2g(Z).
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Let us copy the definition of the Thurston compactification of the Teichmller
space (see [1] for instance) in this setting, by considering the Sp2g(Z)-equivariant
embedding

(1) φ : Eb → P(R+
Z
2g

)
[f ] 7→ [u ∈ Z2g 7→ ‖f(u)‖].

Define the closure of its image ET = φ(E) to be the Thurston compactification of
the symmetric space E .

Let us compare it with the Satake compactification associated with the natural

representation of Sp2g(R) on R2g, namely the closure ES of the embedding

(2)
E = U(g)\Sp2g(R)→ P(Sym2g(R))

U(g)h 7→ [thh],

where P(Sym2g(R) denotes the projective space of the symmetric matrices of size
2g.

Theorem 28. The Thurston compactification ET and the Satake compactification

ES of the symmetric space E are Sp2g(Z)-isomorphic.

This isomorphism extends at least to all classical symmetric spaces of non-
compact type, and to the symmetric space of non-compact of the exceptional Lie
group E6(−26).

2. Thurston compactification of the Torelli space

Let S be a closed surface of genus g ≥ 1. The Torelli space Tor(S) of S is the
quotient of the Teichmller space of S by the Torelli group, which is the subgroup
of the mapping class group of S which has trivial action in homology. It is the
kernel of the surjective map from the mapping class group to Sp2g(Z), so the
Torelli space comes with a natural action of Sp2g(Z). The Torelli groups are still
not completely understood, see [2] for instance.

Fix a marked hyperbolic surface h : S → X , and let us define a euclidian norm
on H1(X,R). The Hodge theorem identifies the vector space of harmonic 1-forms
with the first cohomology group H1(X,R), so the L2 product of harmonic forms
defines an inner product on H1(X,R), and hence an inner product on H1(X,R)
(see [3] for a comparison between this euclidian norm and the stable norm).

Consider the mapping

(3)
ψ : Tor(S)→ P (R+

H1(S,Z))
[X,h] 7→ [u ∈ H1(S,Z) 7→ ‖h∗(u)‖].

Let us define the closure of this map to be the Thurston compactification Tor(S)
T

of the Torelli space.
We will compare it to a Satake compactification of the Siegel upper half-plane.

Consider the mapping

(4)
p : Tor(S)→ E

[X,h] 7→ [h∗ : H1(S,Z)→ H1(X,R)],
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it is well-defined since the lattice h∗(H1(S,Z)) is symplectic with respect to the
intersection form on H1(X,R).

Theorem 29. The map p is the classical period map (see [2], [4], [5], [6]).

We can define the Satake compactification of the Torelli space by Tor(S)
S
=

p(Tor(S)) ⊂ ES . Since ψ = φ ◦ p, we get the following.

Theorem 30. The Thurston compactification Tor(S)
T
and the Satake compacti-

fication Tor(S)
S
of the Torelli space Tor(S) are Sp2g(Z)-isomorphic.

3. Partial stratification of the boundary

We will now describe a subset of the boundary of the compactification, namely
the closure of the image of the map

(5)
ψ̃ : Tor(S)→ R+

H1(S,Z)

[X,h] 7→ (u ∈ H1(S,Z) 7→ ‖h∗(u)‖).
Let Ksep denote the complex of separating simple closed curves, and let σ =

{γ1, . . . , γk} be a (k−1)-simplex. Topologically, S∪σ is the disjoint union of k+1
surface with punctures, (Si ∪ Pi)0≤i≤k. Consider the application

(6)
ψ̃σ : Torσ(S) =

∏k
i=0 Tor(Si ∪ Pi)→ R+

H1(S,Z)

([Xj , hj ])j∈[0,k] 7→
{
u 7→

√∑k
j=0 ‖(hj)∗(uj)‖2

}
,

where u =
∑k

j=0 uj ∈ H1(S,Z) = ⊕k
j=0H1(Sj ,Z).

Theorem 31. We have the following stratification

ψ̃(Tor(S)) =
⊔

σ∈Ksep

ψ̃σ(Torσ(S)).

One would like to understand the full boundary of this compactification, and
the relationship with the Thurston compactification of the Teichmller space.
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Arithmetic quotients at infinity

Gregory Margulis

The title above is too general and actually I talked only about a certain class of
proper functions on the space of lattices.

Let Ωn ≃ SL(n,R)/SL(n,Z) denote the space of unimodular lattices in Rn, n >
1. This space is not compact but has a finite Haar measure. If f is an integrable
function on Rn then we can define a function f̃ on Ωn by

(1) f̃(∆) = Σv∈∆,v 6=0f(v),∆ ∈ Ωn.

According to a theorem of C.L. Siegel,

(2)

∫

Ωn

f̃dµ =

∫

Rn

fdm,

where µ is the probability SL(n,R)-invariant measure on Ωn andm is the Lebesque
measure on Rn. As an application of this theorem, Siegel gave a proof of the
Minkowski–Hlawka theorem about the existence of a unimodular lattice in Rn

which does not contain a non-zero vector in a ball of volume less than 1.
If f is a positive continuous non-zero function on Rn then f̃ is unbounded even

if f is compactly supported. But it is well know that

f̃ < c(f)α,

where α is a function on Ωn defined below.
Let ∆ ∈ Ωn be a unimodular lattice in Rn. We say that a (linear) subspace

L of Rn is ∆-rational if L/L ∩∆ is compact. For any ∆-rational subspace L we
define

(3) d(L) = vol(L/L ∩∆) = ||v1 ∧ v2 ∧ . . . ∧ vi||,
where i = dimL and (v1, v2, . . . , vi) is a basis of the sublattice L ∩∆. We put

(4) αi(∆) = max{1/d(L) : L is a ∆-rational subspace of dimension i},
1 ≤ i ≤ n. We have αn(∆) = 1, and we define α0 by α0(∆) = 1. For 1 ≤ i ≤ n−1,
the functions αi are proper (i.e., αi(∆)→∞ as ∆ tends to infinity on Ωn). Finally
we define

(5) α(∆) = max
0≤i≤n

αi(∆).

Roughly speaking, α(∆) characterizes the number of points in the intersection
of ∆ with the ball B of radius 1 centered at 0. More precisely, there exists c > 0
such that

(6) c <
α(∆)

|∆ ∩B| < c−1.
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Now let σ be a compactly supported probability measure on SL(n,R). Let us
define an operator Aσ on the space of continuous functions on Ωn by

(7) (Aσh)(x) =

∫

G

h(gx)dσ(g), x ∈ Ωn.

Let 1 ≤ i ≤ n − 1 and define ī = min{i, n − i}. It easily follows from the
Hadamard inequality that

(8) d(L)d(M) ≥ d(L ∩M)d(L+M)

for any two ∆-rational subspaces L and M . From this one can easily get that for
any s > 0

(9) Aσα
s
i ≤ ci(s, σ)αs

i + ω2s max
0<j≤ī

√
αs
i+jα

s
i−j ,

where

(10) ci(s, σ) = sup
v∈F (i),||v||=1

∫

G

dσ(g)

||gv||s ,

(11) F (i) = {v1 ∧ v2 ∧ . . . ∧ vi : v1, v2, . . . , vi ∈ Rn} ⊂ Λi(Rn),

and

(12) ω = sup{||Λj(g)|| : 0 < j < n, g ∈ supp σ ∪ (supp σ)−1}.
Let us denote q(i) = i(n−i). Then by direct computations 2q(i)−q(i+j)−q(i−j) =
2j2. Therefore we get from (9) that for any positive ǫ < 1

(13) Aσ(ǫ
q(i)αs

i ) ≤ ci(s, σ)ǫq(i)αs
i + ǫω2s max

o<j≤ī

√
ǫq(i+j)αs

i+jǫ
q(i−j)αs

i−j

Consider the linear combination

(14) αǫ,s =
∑

0≤i≤n

ǫq(i)αs
i .

Since ǫq(i)αs
i < αǫ,s, α0 = 1, and α1 = 1, the inequalities in (13) imply the following

inequality

(15) Aσαǫ,s < 2 + (c+ nǫω2s)αǫ,s,

where c = max0<i<n ci(s, σ). The inequality (15) plays an important role in
various applications such as a quantatative version of the Oppenheim conjecture
(distribution of values of irrational indefinite quadratic forms at integral points),
recurrence properties of random walks on homogeneous spaces, etc. In these ap-
plications, the detailed analysis of constants ci(s, σ) is involved and sometimes the
functions αi are replaced by their modifications.
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Functorial semi-norms in homology and mapping degrees

Clara Löh

(joint work with Roman Sauer, Dieter Kotschick, Diarmuid Crowley)

Functorial semi-norms on singular homology add metric information to homology
classes that is compatible with continuous maps. Functorial semi-norms give rise
to degree theorems for certain classes of manifolds; conversely, knowledge about
mapping degrees can help to construct functorial semi-norms with interesting prop-
erties. In this context, hyperbolicity, locally symmetric spaces, and groups such as
mapping class groups of surfaces or outer automorphism groups of free groups pro-
vide interesting examples. The talk consisted of an introduction into the subject
and gave a survey of recent developments.

1. Functorial semi-norms −→ mapping degrees

Definition 12 (Functorial semi-norm [3, Section 5.34]). A functorial semi-norm
on singular homology in degree d consists of a choice of a (possibly infinite) semi-
norm | · | on Hd(X ;R) for all topological spaces X such that

∣∣Hd(f ;R)(α)
∣∣ ≤ |α|

holds for all continuous maps f : X −→ Y and all α ∈ Hd(X ;R).

Functorial semi-norms on singular homology provide a systematic approach to
degree theorems:

Remark 4 (Degree theorems out of functorial semi-norms). If | · | is a func-
torial semi-norm on Hd( · ;R) and f : M −→ N is a continuous map between
oriented closed connected d-manifolds, then | deg f | · |[N ]R| ≤ |[M ]R|; in particular,
if |[N ]R| 6= 0, then

| deg f | ≤ |[M ]R|
|[N ]R|

.

A key example of a (finite) functorial semi-norm is the ℓ1-semi-norm [4]; roughly
speaking, the ℓ1-semi-norm measures how many simplices are needed to represent
a singular homology class with real coefficients. Evaluating the ℓ1-semi-norm on
fundamental classes of manifolds leads to the simplicial volume [4, 9]. In view
of Remark 4, non-vanishing results for the simplicial volume give rise to degree
theorems.

• If M is an oriented closed connected hyperbolic n-manifold, then

‖M‖ = volM

vn
> 0,

where vn is the supremal volume of all geodesic n-simplices in hyperbolic
n-space [4, 12], and where ‖M‖ denotes the simplicial volume of M .
• The simplicial volume of all oriented closed connected locally symmetric
spaces of non-compact type is non-zero [8].
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• The Lipschitz simplicial volume of all oriented connected locally symmetric
spaces of non-compact type with finite volume is finite and non-zero [11].
The corresponding degree theorems complement the results by Connell
and Farb on degree theorems for locally symmetric spaces [1].

However, the locally finite simplicial volume of all oriented connected lo-
cally symmetric spaces of non-compact type with finite volume and Q-rank
at least 3 is zero [11].

Further vanishing results for the locally finite simplicial volume in the
non-compact case have been established by Ji [5], e.g., for most moduli
spaces of surfaces.
• Notice that the simplicial volume of all oriented closed connected sim-
ply connected manifolds is zero [4], and so the simplicial volume cannot
contribute to interesting degree theorems in the simply connected case.

2. Mapping degrees −→ functorial semi-norms

Conversely, we can use knowledge about mapping degrees to obtain interesting
functorial semi-norms:

Theorem 32 (Generating functorial semi-norms [2]). Let d ∈ N, let S be a class
of oriented closed connected d-manifolds, and let v : S −→ [0,∞] be a functorial
semi-norm on S, i.e., for all continuous maps f : M −→ N with M , N ∈ S we
have | deg f | · v(N) ≤ v(M). If X is a topological space and α ∈ Hd(X ;R), then
we define

|α|v := inf

{ k∑

j=1

|aj | · v(Mj)

∣∣∣∣ k ∈ N, a1, . . . , ak ∈ R \ {0}, M1, . . . ,Mk ∈ S,

f1 : M1 → X, . . . , fk : Mk → X continuous

with

k∑

j=1

aj ·Hd(fj ;R)[Mj]R = α

}
.

Then | · |v is a functorial semi-norm on Hd( · ;R) and for all M ∈ S we have

|[M ]R| = v(M).

For example, the functorial semi-norm generated by the simplicial volume co-
incides with the ℓ1-semi-norm [2], except possibly in dimension 3.

Question 5. Does the functorial semi-norm on H3( · ;R) associated to the sim-
plicial volume coincide with the ℓ1-semi-norm?

Another example can be obtained by looking at products of surfaces: The Euler
characteristic of products of surfaces of genus at least 1 is functorial [3, p. 303].
Gromov suggested that the corresponding functorial semi-norm should be infinite
for most “interesting” manifolds [3, 5.36 on p. 303f]. We confirmed this by showing
that oriented closed connected manifolds M
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• whose fundamental group knows enough about the topology of M (e.g.,
M is aspherical or Q-essential),
• and where all “generic” elements of π1(M) have “small” centralisers

cannot be dominated by any non-trivial product of manifolds [6]; in particular, the
products of surfaces semi-norms of such manifolds is infinite. Concrete examples
include the following [6, 7]:

• closed Riemannian manifolds of negative sectional curvature,
• irreducible closed locally symmetric spaces of non-compact type,
• Q-essential manifolds whose fundamental group is non-elementary hyper-
bolic, or a mapping class group of a surface of genus at least 1, or the
outer automorphism group of a free group of rank at least 1.

Gromov [3, Remark (b) in 5.35] raised the question whether any functorial semi-
norm on singular homology is trivial on all simply connected spaces. For this type
of question, the fundamental group, the cohomology ring, and the ℓ1-semi-norm
cannot serve as an obstruction. Using methods from rational homotopy theory, we
show that there exist simply connected “inflexible” manifolds and hence that there
indeed exist functorial semi-norms on singular homology that take finite non-zero
values on certain classes of simply-connected spaces [2].

However, in general, not much is known about functorial semi-norms: Because
the volume of hyperbolic manifolds is proportional to the simplicial volume (and
hence functorial), one can consider the corresponding functorial semi-norm:

Question 6. Is the functorial semi-norm on singular homology associated with
the volume of oriented closed connected hyperbolic manifolds finite?
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[6] D. Kotschick, C. Löh, Fundamental classes not representable by products, J. London Math.

Soc. 79.3 (2009), 545–561.
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Survey of invariant orders on arithmetic groups (and mapping class
groups)

Dave Witte Morris

Assumption 1. Γ is always assumed to be a finitely generated, infinite group.

The basic question to be discussed is:

Does there exist an invariant order relation ≺ on Γ?

Four different versions of the question are considered, because

• the order relation may be assumed to be either bi-invariant or only left-
invariant, and
• the order relation may be assumed to be either total or only partial.

We mainly discuss the case where Γ is an arithmetic group, but there are also
some comments on mapping class groups.

We start with a trivial observation:

Proposition 9. Γ has a left-invariant partial order (unless it is a torsion group).

Proof. Fix g ∈ Γ (of infinite order), and let P = { gn | n > 0 }. Define

x ≺ y ⇐⇒ x−1y ∈ P.
This is a partial order, because it is:

• transitive: if x ≺ y and y ≺ z, then x−1z = (x−1y)(y−1z) ∈ P
• irreflexive: x−1x = e /∈ P , so x 6≺ x

It is also left-invariant:

x ≺ y =⇒ (ax)−1(ay) = x−1y ∈ P. �

Remark 5. The same proof works if P is any semigroup in Γ, such that e /∈ P .
Recall that a quasimorphism on Γ is a map ρ : Γ→ R, such that

{ ρ(xy)− ρ(x) − ρ(y) | x, y ∈ Γ }
is a bounded set.

Proposition 10. If Γ has an unbounded quasimorphism, then Γ has a nontrivial,
bi-invariant partial order.

Corollary 3. The following groups have nontrivial bi-invariant partial orders,
because they have unbounded quasimorphisms:

(1) arithmetic subgroups of semisimple Lie groups of real rank one,
(2) mapping class groups,
(3) Gromov-hyperbolic groups.

I believe that irreducible arithmetic subgroups of semisimple Lie groups of
higher rank do not have bi-invariant partial orders, but this has not even been
proved for SL(3,Z). The nonexistence of such an order can be restated in other
ways:
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Proposition 11. The following are equivalent:

(1) Γ has no nontrivial, bi-invariant partial order.
(2) Every conjugation-invariant subsemigroup of Γ is a subgroup.
(3) If g is any element of Γ, then the identity element of Γ is a product of

conjugates of Γ.

Here is a classical result:

Theorem 33. If Γ has a bi-invariant total order, then the abelianization of Γ is
infinite.

From work of D.Kazhdan and others, it is known that lattices in most semisim-
ple Lie groups have finite abelianization. This has the following consequence:

Corollary 4. Suppose Γ is an irreducible arithmetic subgroup of a connected,
semisimple Lie group G with no compact factors. If Γ has a bi-invariant total
order, then G is locally isomorphic to either SO(1, n) or SU(1, n).

Remark 6. (1) Most mapping class groups also have trivial abelianization,
and therefore do not admit bi-invariant total orders.

(2) There does exist a bi-invariant total order on any group that is resid-
ually torsion-free nilpotent. Thus, for example, every free group has a
bi-invariant total order.

Conjecture 1. Suppose Γ is an irreducible arithmetic subgroup of a connected,
semisimple Lie group G, such that rankRG ≥ 2. Then Γ does not have a left-
invariant total order.

There has been some progress in the non-cocompact case:

Theorem 34 (Chernousov-Lifschitz-Morris). If the conjecture is true for all of
the non-cocompact arithmetic subgroups of SL(3,R) and SL(3,C), then it is true
for all non-cocompact arithmetic subgroups.

In contrast, there has been essentially no progress in the cocompact case:

Open problem 1. Show there is a cocompact arithmetic subgroup Γ of some
semisimple Lie group G, such that no finite-index subgroup of Γ has a left-invariant
total order.

Remark 7. If S is a surface with nonempty boundary, then it is known that the
mapping class group of S has a faithful action on the real line, and therefore also
has a left-invariant total order.

Acknowledgment 1. I am grateful to the audience of the lecture for informing
me of many relevant results on mapping class groups and related groups.
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Weil-Petersson Riemannian and symplectic geometry:
geodesic-lengths, Fenchel-Nielsen twists and Thurston shears

Scott A. Wolpert

We discuss the correspondence between Weil-Petersson (WP) geometry on Te-
ichmüller space T and the hyperbolic geometry of surfaces, the unions of thrice
punctured spheres. A theme is that the mapping class group (MCG) is the sym-
metry group of geometries of T .

Theorem 35. (W) T - a right infinite polyhedron. The augmented Teichmüller
space T is the closed convex hull of the countable set of maximally noded hyperbolic
structures. At each maximally noded structure, the Alexandrov tangent space is
isometric to a Euclidean orthant of dimension 1

2 dim T .

The description combines with results of Korkmaz, Ivanov and Luo on auto-
morphisms of the curve complex to give a proof of the Masur-Wolf Theorem that
the MCG is the WP isometry group - the symmetry group of a geometry.

The symplectic geometry of T begins with the geodesic-length functions ℓα and
Fenchel-Nielsen (FN) infinitesimal twist deformations tα. A twist deformation is
given by cutting a surface along a simple closed geodesic α, and reassembling the
boundaries with a relative rotation. The basic formulas are

2tα = i grad ℓα, and 2ωWP ( , tα) = dℓα.

The formulas provide the elements of a symplectic geometry - ωWP is invariant
under FN twist flows and geodesic-lengths are Hamiltonian potentials for FN twist
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vector fields. Hermitian products of length gradients are given by the combined
Riera-Wolpert formula for the WP Riemannian and symplectic pairing

〈grad ℓα, grad ℓβ〉 = 4〈tα, tβ〉 =
2

π
δαβℓα +

∑

D∈〈A〉\ΓSLash〈B〉

RD,

where for the geodesics α and β, the corresponding axes axis(A), axis(DBD−1)
disjoint in H, then

RD =
2

π
R(coshd(axis(A), axis(DBD−1)))

and for the axes intersecting with angle θD, then

RD =
2

π
R(cos θD) − 2i cos θD,

and

R(u) = u log
∣∣∣u+ 1

u− 1

∣∣∣ − 2,

and where δαβ is the Kronecker delta for the geodesic pair. The formula incorpo-
rates the original twist-length-cosine formula. For disjoint simple geodesics α and
β, all summands are positive and the pairing of gradients is positive - length gradi-
ents of simple geodesics never vanish and the length gradients of a pair of disjoint
simple geodesics lie in a common half space. Symplectic duality and the rescaling
Tα = 4 sinh ℓα tα lead to a further element of the geometry - the Goldman-Wolpert
Lie bracket evaluation

[Tα, Tβ] =
∑

p∈α∩β

TApB−1 − TApB,

at each intersection of the geodesics the two elementary surgeries are performed
to form new curves and geodesics. For suitable geodesics on surfaces with cusps
or boundaries, Moira Chas has shown that there is no cancellation in the bracket
evaluation.
Conjecture. The MCG is the automorphism group of the Lie algebra.

We also discuss generalizing the above considerations to Thurston’s shear de-
formations.

Theorem 36. (Thurston) The space of measured geodesic laminationsMGL is a
PL manifold with a non degenerate PL symplectic structure. (Bonahon) Tangent
vectors of MGL are given as transverse cocycles - finitely additive ‘measures’ on
underlying geodesic laminations.

Weights on branches of train tracks provide finite linear models for the affine
flats inMGL.

Theorem 37. (Bonahon, Penner after Thurston) Teichmüller space real analyti-
cally embeds into an explicit cone in the space of transverse cocycles for a maximal
geodesic lamination. (Bonahon) Elements of the cone are characterized by pos-
itive pairing with every measure on the geodesic lamination. (Bonahon-Sözen)
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The embedding tangent space mapping identifies the WP and Thurston symplectic
forms.

A transverse cocycle ρ has a total length L(ρ), given by integrating the local
product of hyperbolic length along leaves and the transverse cocycle measure. A
transverse cocycle also determines a finite and then infinitesimal shear deformation
σ(ρ) given as a combination of left and right earthquakes along the leaves of the
geodesic lamination, according to the mass of the transverse cocycle.

We consider the special case of a weighted finite sum of ideal geodesics on a
surface with cusps. The type preserving condition for the deformation is that the
sum of weights vanishes for the geodesic rays entering a cusp region.

Theorem 38. (W) A weighted finite sum of ideal geodesics shear σ(ρ) is a sym-
plectic vector field with Hamiltonian potential L(ρ)/2. There is a Poisson bracket
for the total length functions L. There is an elementary formula for the Thurston
symplectic form as a sum of weights at each cusp.

We generalize the Riera-Wolpert formula to give a formula for the pairing prod-
uct 〈grad ℓα, grad ℓβ〉. The formula gives an infinite sum relation for the distances
between ultraparallels in the SL(2;Z) tessellation.
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Higher order invariants

Anton Deitmar

For a group Γ acting linearly on a C-vector space V we define the invariants of
order q ≥ 1 as the set H0

q (Γ, V ) of all elements which are annihilated by Jq, where
J is the augmentation ideal in the group ring A = CΓ.

Example. Let Γ = π1(X, x̄0), where X is a Riemann surface and let ω be a

holomorphic 1-form on X . Let X̃ be the universal cover and x0 a lift of x̄0. Let
f(x) =

∫ x

x0

ω for x ∈ X̃ . Then f(γx) − f(x) =
∫ γx

x
ω does not depend on x but

only on γ ∈ Γ. Therefore f ∈ H0
2 (Γ,O(X̃)).

Iterated integrals. Let X be a smooth manifold, p : [0, 1] → X a path, and let
ω1, . . . , ωs be 1-forms on X . Define the iterated integral given by these data as

∫

p

ω1 . . . ωs =

∫ 1

0

∫ ts

0

. . .

∫ t2

0

p∗ω1(t1)p
∗ω2(t2) . . . p

∗ωs(ts).

Let Bhom
s (X) be the set of all homotopy stable iterated integrals, then a theorem

of Ivan Horozov and the author says that
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• the map ω 7→ f(x) =
∫ x

x0

ω is an injection

Bhom
s (X)x0

→֒ H0
s+1(Γ, C

∞(X̃)),

• after tensoring with C∞(X), this map is surjective and the kernel is ex-
plicitely computable.

So one might say that all higher order invariants are generated by iterated integrals.
Automorphic forms. Let X be a locally symmetric space, so X = Γ\G/K for a

semisimple Lie group G and its maximal compact subgroup K. In the theory of
automorphic forms one is interested in the spectral decomposition of

L2(X) = L2(Γ\G/K) = L2(Γ\G)K .

As this embeds into L2(Γ\G) it is the more general task to understand the latter
space as G-representation. In the case when X is compact, one has

L2(Γ\G) = L2
loc(G)

Γ,

where L2
loc is the space of locally square integrable functions. One introduces

L2
q(Γ\G) = H0

q (Γ, L
2
loc(G)).

Chosing a fundamental domain F , one embeds L2
q(Γ\G) into the L2-space of a

sufficiently large number of translates of F to get a unitary structure, which is not
unique, but the induced topology is unique. One then finds

L2
q(Γ\G) ∼=

⊕

π∈Ĝ

dim(A/Jq)NΓ(π)




π ∗
. . . ∗

π


 ,

where NΓ(π) is the multiplicity of π in L2(Γ\G) and the matrix is q × q.
Hecke algebra. Suppose that (G,Γ) is a Hecke pair, then for a given CG-module

V , the group G acts on the inductive limit of all H0
q (Σ, V ), where Σ runs through

all congruence subgroups of Γ. In the example case G = SL2(Q) and Γ = SL2(Z)
one gets a module V for the group SL2(A), where A is the adele ring, which injects
into

(S2 ⊕ S2)⊗ L2(SL2(Q)\SL2(A)).

It is conjectured that V is actually isomorphic to this tensor product.
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Homomorphisms to mapping class groups: Parametrizing surface
bundles

Daniel Groves

Let S be an oriented surface of finite type with genus g and p punctures, and
suppose that 3g + p > 3. Let Mod(S) be the mapping class group of S. If G is a
group, let XS(G) = Hom(G,Mod(S))/ ∼, where ∼ denotes Mod(S)-conjugacy. If
B is a connected CW-complex, then there is a one-to-one correspondence between
isomorphism classes of oriented S-bundles over B and XS(π1(B)).

This talk was about the structure of the set XS(G), where G is an arbitrary
finitely generated group.

Theorem 39. Suppose that G is finitely generated and XS(G) is infinite. Then a
finite-index subgroup G0 of G acts without global fixed point on a simplicial tree.
(So G0 admits a nontrivial graph of groups decomposition.)

(For G finitely presented, this theorem was previously proved by Berhstock, Druţu
and Sapir [1].)

In order to delve deeper into the structure of the set XS(G), one needs to
understand the edge stabilisers of the graph of groups decomposition of G0. This
leads to a more technical, but more useful, version of Theorem 39. It also allows a
proof of the following result (first proved by Bowditch [2] and by Dahmani-Fujiwara
[3] in case G is finitely presented):

Theorem 40. Let G be finitely generated and one-ended. Then there are only
finitely many elements of XS(G) which are represented by injective homomor-
phisms for which every nontrivial element of G is mapped to a pseudo-Anosov
mapping class in Mod(S).

It is worth noting that there are no known homomorphisms satisfying the require-
ments of Theorem 40.

The following theorem (which can be rephrased as a ‘Compact Core Theorem’
for S-bundles) is basic to the understanding of the structure of the set XS(G):

Theorem 41. Suppose that G is a finitely generated group. There is a finitely

presented group Ĝ, together with an epimorphism η : Ĝ։ G so that precomposition
with η induces a bijection:

η∗ : XS(G)→ XS(Ĝ).

This theorem says that Mod(S) is equationally noetherian.
The methods of proof involve considering the action of G on the curve complex

C(S) and marking complex M(S) of S. Masur and Minsky [5] proved that the
C(S) is δ-hyperbolic. However, it is not locally finite, and the action of Mod(S)
on it is not proper. If {fi : G→ Mod(S)} leads to a sequence of divergent actions
on C(S), then taking an equivariant Gromov-Hausdorff limit of rescaled copies of
C(S) leads to an action of G on an R-tree. However, in general, a sequence will
not lead to a divergent sequence of actions. In this case, we use the hierarchies
of Masur and Minsky [6], which give quasi-geodesics inM(S), and are assembled
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from geodesics not just in C(S) but also in the curve complexes of sub-surfaces of
S. Since the action of Mod(S) onM(S) is proper, there is some sub-surface Y of
S (considered up to homeomorphism of the pair (S, Y )) for which the lengths in
C(Y ) go to infinity.

This allows us to immerse a complex into a presentation 2-complex of G record-
ing the interaction with C(Y ). It is an immersion rather than an embedding be-
cause of sub-surfaces disjoint from Y . This immersed complex can be embedded
in a finite cover, due to a separability result of Leininger and McReynolds [4].

Taking a limit gives a proof of Theorem 39 in the finitely presented case, and
carefully taking a limit of finite presentation 2-complexes gives a proof in the
finitely generated case. Theorem 40 follows almost immediately from an under-
standing of the edge stabilizers in the splitting of G0 obtained from Theorem 39.

To prove Theorem 41, we consider all of the ways in which splittings arise,
and prove the existence of an appropriate JSJ decomposition. After that, the
proof is similar to the analogous fact for torsion-free hyperbolic groups, proved
by Sela [7] In fact, it is fair to say that the methods throughout this project are
strongly influenced by the work of Sela from [7] (and his earlier work on the Tarski
problem).
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Stationary measures on homogeneous spaces

Yves Benoist

(joint work with Jean-François Quint)

Let G be a real Lie group, Λ be a lattice of G, and Γ be a subgroup of G such
that the Zariski closure of the adjoint group AdΓ is semisimple connected with no
compact factors.

We prove in [1] that for any point x in the quotient space X = G/Λ the closure
F of the orbit Γx is homogeneous, i.e. that the stabilizer of F in G acts transitively
on F .

For that, when Γ is compactly generated, we introduce a probability measure µ
on Γ whose support is compact and generates Γ. We prove in [1] that any µ-ergodic
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µ-stationary probability measure on X is homogeneous, i.e. that the stabilizer of
ν in G acts transitively on the support of ν.

During this talk, I have presented a sketch of the proof for the special case
where X is the 2-dimensional torus, G is the group of affine automorphisms of
this torus, Λ is the group of linear automorphisms of this torus and Γ is a non
elementary subgroup of Λ generated by two elements.
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