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Introduction by the Organisers

The field of quantum chemistry is concerned with the analysis and simulation of
chemical phenomena on the basis of the fundamental equations of quantum me-
chanics. While mathematical thinking (by physicists and chemists) has always
played a large role in this field, in the past years a growing and very active com-
munity of mathematicians working in the area has also emerged. The workshop
was interdisciplinary, bringing together quantum chemists and mathematicians
to assess the state of the art and discuss recent conceptual ideas and emerging
mathematical results.

The Oberwolfach institute and format (of fewer talks than standard conferences)
provided an ideal venue. It stimulated not just lively discussions (by no means
limited to the explicit 10-minutes discussion slot allocated after each morning
lecture). The Oberwolfach format also proved a fertile ground for cultural cross-
fertilization. A clear proof that the latter was taking place was that by Wednesday
morning, the first quantum chemist (Alexander Auer) was ready to spontaneously
give up his planned laptop presentation for a blackboard talk.

Recurring themes of the meeting were (1) the continuing search for accurate
computational methods with feasible computational cost, (2) the need for de-
veloping more systematic ways to understand and exploit the multiscale nature
of quantum chemical systems, (3) new examples of quasi-exactly soluble many-
electron systems.

As regards theme (1), the ‘exact’ electronic Schrödinger equation for an atom
or molecule with N electrons is a partial differential equation in 3N dimensions,
so direct discretization of each coordinate direction into K gridpoints yields K3N

gridpoints; thus the unreduced equation for a single Carbon atom (N = 6) on a
coarse ten point grid in each direction (K = 10) already has a prohibitive 1018

degrees of freedom. The computational cost of the best wave function based meth-
ods, such as multiply-excited Configuration-Interaction methods or Coupled Clus-
ter theory, while no longer exponential, still scales like an unphysically steep power
of the particle number. By contrast, density functional theory, which replaces the
linear many-electron Schrödinger equation in 3N dimensions by a nonlinear sys-
tem of partial differential equations in 3 dimensions, is applicable up to thousands
of atoms (and hence the method of choice in most applications in materials sci-
ence, molecular biology, and nanotechnology), but its modelling approximations
have proven hard to systematically understand or improve despite great effort over
many years.

Recent ideas to directly attack the curse of dimensionality of electronic wave-
functions which were presented at the workshop included: the derivation and im-
plementation of symmetry-projected Hartree-Fock-Bogoliubov theory for molecu-
lar electronic structure problems (talk by Gustavo Scuseria); design of a stochastic
‘game’ of life, death and annihilation in Slater determinant space (talks by Ali
Alavi and Alex Thom); the recently developed general mathematical format of
truncation and low-rank approximation of tensors (talk by Wolfgang Hackbusch);
quantum-chemical versions of the density matrix renormalization group algorithm
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and its analysis in the context of the matrix product state alias TT tensor for-
mat (talk by Reinhold Schneider); the recent proof of high mixed regularity of
Schrödinger electronic wavefunctions and its implications for efficient approxima-
bility in sparse bases (talk by Harry Yserentant); a sophisticated combination of
coupled-cluster theory and low-rank approximation of tensors (talk by Alexander
Auer); use of a Jastrow ansatz with prefactor optimization via a quantum Monte
Carlo approach (talk by Heinz-Jürgen Flad), efficient iterative symmetry decom-
position for large atoms (talk by Christian Mendl); hierarchical decomposition
of total molecular energies into contributions from different bond orders (Fred-
erik Heber); and use of a Smolyak grid and an efficient quadrature scheme built
from nested 1D quadratures to solve the vibrational Schrödinger equation (talk by
Tucker Carrington).

Another important aspect in computational cost reduction is the structure of the
underlying single-particle basis sets. Werner Kutzelnigg presented sophisticated
results on completeness and convergence rates for Gaussian and exponential bases,
Lin Lin presented novel adaptive local basis sets for efficient density functional
theory calculations in solids, and Peter Pulay gave a quantum chemist’s view on
basis sets based on his own more than 40 years of work in the area.

Volker Bach gave an overview over old and new mathematical results in Hartree-
Fock theory, Thomas Oestergaard Soerensen explained his recent work on local
analyticity of Schrödinger wavefunctions in the interparticle positions and dis-
tances, and Thorsten Rohwedder and Saber Trabelsi presented rigorous analyses of
the coupled cluster equations respectively the multi-configuration time-dependent
Hartree-Fock equations. Heinz Siedentop derived and analyzed a mathematical
model for interacting Dirac Fermions in graphene quantum dots.

Progress related to multiscale aspects of many-electron systems included the
derivation, analysis and implementation of a governing equation for the distor-
tion in electronic structure caused by a defects in a solid (opening talk by Eric
Cances). Note that in an approximating N -particle system the total energy is
order N , but the desired energy contribution is order 1, and one needs to pass
to the limit N → ∞. Similar scale issues (with small parameter being the re-
ciprocal of the number of particles) appear when one is interested in the energy
required to perturb the density of a Fermi gas (talk by Mathieu Lewin) and the
distortion of electronic structure in a solid by elastic deformation (talk by Jian-
feng Lu). Another important small parameter appears in quantum molecular
dynamics, namely the ratio between electronic and nuclear mass; this parameter
is traditionally exploited both by adiabatic decoupling of electronic and nuclear
motion (Born-Oppenheimer approximation) and semiclassical approximation of
the nuclear motion. Subtle ways of exploiting this smallness even when the tra-
ditional assumptions of the Born-Oppenheimer approximation (namely uniform
gaps between electronic energy levels) are violated were presented by Caroline
Lasser (numerical approximations of quantum molecular dynamics) and Volker
Betz (asymptotic analysis of quantum dynamics at avoided crossings of electronic
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levels). George Hagedorn explained his recent derivation and analysis (and ensu-
ing predictions) of non-classical Born-Oppenheimer-type approximations for the
vibrational Schrödinger equation for hydrogen-bonded systems; here one exploits
the smallness of the mass of the hydrogen nucleus compared to the other nuclear
masses.

New examples of quasi-exactly soluble many-electron models were presented by
Jerzy Cioslowski (electrons in spherical confining potentials), Pierre-Francois Loos
(electrons restricted to hyperspheres), and Ben Goddard (highly charged atomic
ions).

Another highlight of the workshop was a very well attended Thursday evening
session with short presentations by the graduate students Virginie Ehrlacher,
Robert Lang, Stefan Kühn, André Uschmajew, Fabian Hantsch, and Stefan Hand-
schuh, which – just like the daytime lectures – were followed by lively discussion.
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André Uschmajew
The regularity of tensor product approximations in L2 in dependence of
the target function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1802

Frederik Heber (joint with Michael Griebel, Jan Hamaekers)
BOSSANOVA - A bond order dissection approach for efficient electronic
structure calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1804

Alexander A. Auer (joint with Udo Benedikt, Mike Espig, Wolfgang
Hackbusch)
Tensor Decomposition in Electronic Structure Theory: Canonical Product
Format and Coupled Cluster Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1808

Thorsten Rohwedder
A numerical analysis for the Coupled Cluster equations . . . . . . . . . . . . . . . 1812

Heinz-Jürgen Flad (joint with Sambasiva Rao Chinnamsetty, Hongjun
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Abstracts

Rate of convergence of basis expansions in Quantum Chemistry

Werner Kutzelnigg

1. Basis expansions. General

The simplest kind of a basis expansion is that of a generalized Fourier expan-

sion. One expands a function f(x) in an orthonormal basis {χ(n)
p } that becomes

complete (with an appropriate meaning) for n→∞

(1) f(x) = lim
n→∞

fn(x); fn(x) =
n∑

p=1

c(n)p χ(n)
p

This converges exponentially, in a Hilbert space norm, if f(x) is differentiable an
infinite number of times. Otherwise the convergence obeys an inverse-power law
with a power depending on the differentiability of f(x). Such a rate of convergence
is unsatisfactory. There are two possibilities for an improvement:

(a) One augments the basis by one or more comparison functions [1] that de-
scribe the singularities of f(x) correctly. Then the convergence still follows an
inverse-power law, but with a higher exponent. This idea is used in the R12

method. In the traditional configuration interaction (CI) or coupled-cluster (CC)
methods one expands the n-electron wave function in a basis of Slater determinants
constructed from spin orbitals. In the R12 method [2] one includes contributions
linear in the interelectronic distance r12 that cannot be expanded in this basis, but
which are necessary to describe the correlation cusp [3] correctly. This improves
the convergence in a spectacular way, with only a moderate increase of the com-
putational effort. The results in a given basis are improved by basis incomplete
corrections. Typical is a reduction of the error from (L+1)−3 to (L+1)−7 if L is
the highest angular momentum quantum number of the basis functions. This idea
is well established and is powerful. It will not be further pursued in the present
lecture.

(b) One formulates the basis expansion as a discretized integral transformation,
i.e. one starts from

f(x) =

∫ −∞

−∞
g(x, y)dy(2)

with g(x, y) a bell-shaped function of y that decays as exp(−a|y|) with a > 0. For an
appropriately chosen g(x, y) one can truncate the integration domain on both sides
which leads to a an upper and a lower cut-off error εcu and εcl respectively, and
treat the remaining finite integration domain by the trapezoid approximation in
terms of n intervals of the length h. One is on the safe side, if the sum εc = εcu+εcl
and the discretization error εd decay asymptotically as [4]

(3) εc ∼ exp(−ahn); εd ∼ exp(−b/h)
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Then the best compromise is

(4) h ∼ d√
n
; ε ∼ exp(−k

√
m)

This is almost exponential convergence. The error is [unlike that for an expansion
of type (1)] insensitive to singularities of f(x).

The different error contributions do not necessarily have the same sign (espe-
cially εd has an oscillatory dependence on h), and error cancellations are common,
but do not raise serious problems.

Often one is not interested in a best local approximation of f(x), but rather in
the best approximation of a global property, e.g. a functional of f(x). If f(x) is
a wave function, the expectation value of the Hamiltonian is a convenient global
property. One can then achieve that all leading error contributions have the same
sign.

2. Expansion of the H-atom ground state in a Gaussian basis

The error ε of the energy expectation value for the ground state of hydrogen-like
ions

(5) ε =

∫
f(r){H − E0}f(r)r2dr; H = −1

2
∆− Z

r
; E0 = −1

2
Z2

vanishes if f(r) is the exact radial eigenfunction.

(6) f(r) = 2Z3/2e−Zr =

∫ ∞

0

φ(s, r)ds; φ(s, r) =
Z5/2

√
π
s−

3
2 exp(−Z

2

4s
− sr2)

This is a Gaussian integral transformation [5]. Integration over r leads to:

F (s, t) =

∫ ∞

0

dr r2φ(s, r)(Ĥ − E0)φ(t, r) =

exp(−Z2(s+t)
4st )

s
3
2 t

3
2

{
Z7

8
√
π

1

(s+ t)3/2
− Z6

2π(s+ t)
+

3Z5st

4
√
π(s+ t)5/2

}

(7)

We introduce the mapping s = ep; t = eq, in the spirit of the even-tempered
approximation, which transforms the integration domains from [0,∞] to [−∞,∞]

such that F̃ (p, q) is bell-shaped both as function of p and q. We get the cut-off
errors [6]:

εcl =

∫ sl

0

ds

∫ sl

0

dtF (s, t) =
Z3

√
2π
s
− 1

2

l e−Z2/2sl [1 +O(sl)](8)

εcu = −
∫ ∞

su

ds

∫ ∞

su

dtF (s, t) =
Z5

6
√
π
(8− 5

√
2)s

− 3
2

u +O(t−4
2 )(9)

For an even-tempered basis sl and su are related as su = sl exp(nh).



Mathematical Methods in Quantum Chemistry 1777

Minimization of εc = εc1+ εc2 with respect to sl, for fixed n and h, leads to the
asymptotically leading terms:

(10) sl =
Z2

6hn
; εc = A(hn)

3
2 e−

3hn
2

with A a numerical constant.
The leading term of the discretization error is [6]

(11) εd ∼
∫ ∞

0

ds

∫ ∞

0

dtF (s, t) cos(
2πln s

h
) cos(

2πln t

h
) ∼ 8π4Z2

h3
e−2π2/h

Minimize the total error ε = εc + εd with respect to h (for n fixed)

(12) h =
2π√
3n

; ε = Cn9/8 exp{−π
√
3n}; sl =

Z2

2π
√
3
n−1/2

The asymptotically (i.e. for large n) optimized parameters α and β of the
even-tempered basis are [6]:

(13) β = m−1/(4m) exp(2π/
√
3m); α =

Z2

2π
√
3m

exp
π√
3m

; ζm,k = αβ(k−1)

Error estimates are well represented by leading asymptotic terms.
Good agreement with purely numerical minimization.
Generalization to arbitrary states possible.
Different optimal parameters for different properties (e.g. distance in Hilbert

space, variance of the energy, etc.)
Slight improvement if one relaxes the even-tempered mapping.

3. Expansion of a relativistic wave function in a kinetically

balanced even-tempered basis

The normalized relativistic ground state wave function ψ of H-like ions has the
large component ϕ and the small component χ

(14) ϕ = Rg(r)η
m
−1; Rg(r) = Ngr

νe−Zr;Ng = 2ν+1Zν+ 3
2

√
2 + ν/

√
Γ(3 + 2ν);

ν =
√
1− Z2/c2 − 1 ≈ −Z2/(2c2)

(15) χ = iRf (r)η
m
1 ; Rf (r) = Nfr

νe−Zr;Nf = −2ν+1Zν+ 3
2

√
−ν/

√
Γ(3 + 2ν)

where ηmκ is a normalized function of angular and spin variables for the quan-
tum numbers κ and m = mj . The radial factors have the the Gaussian integral
transformation: [7]

(16) Rg(r) =

∫ ∞

0

fg(s, Z) exp(−sr2)ds; Rf (r) =

∫ ∞

0

ff(s, Z)rs exp(−sr2)dr
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(17) fg(s, Z) = Zν+ 5
2 2ν+1s−

ν
2 −1 [Γ(2ν + 3 )]−

1
2
√
2 + ν

×
{
Z−1

[
Γ
(
−ν
2

)]−1

M

(
1 +

ν

2
,
1

2
,−Z

2

4s

)

− s− 1
2

[
Γ

(
−ν + 1

2

)]−1

M

(
3 + ν

2
,
3

2
,−Z

2

4s

)}

(18) ff(Z, s) = Zν+ 3
2 2ν+1[Γ (2ν + 3)]−

1
2 s−

ν+4
2

√
−ν×

{
Z
[
Γ
(
−ν
2

)]−1

M

(
1 +

ν

2
,
3

2
,−Z

2

4s

)

−
√
s

[
Γ

(
−ν
2
+

1

2

)]−1

M

(
1 + ν

2
,
1

2
,−Z

2

4s

)}

with M(a, b, x), also known as 1F1(a, b, x), Kummer’s confluent hypergeometric
function.

This implies kinetical balance. If {φk} is a basis for the expansion of ϕ, the
basis for χ is {~σ · ~pφk}

More complicated than the non-relativistic counterpart, but manageable.
We should now consider the error of the energy expectation value

(19) 〈ψ|D−E|ψ〉 = 〈ϕ|V −E|ϕ〉+c〈ϕ|~σ ·~p|χ〉+c〈χ|~σ ·~p|ϕ〉+ 〈χ|V −E−2mc2|χ〉
which vanishes for ϕ and χ exact, but does not vanish for ϕ and χ approximate.
Further details are similar to the non-relativistic case, just lengthier. The results
are preliminary, since so far a simpler functional than (19) was considered.

The results for the upper and lower cut-off errors, as well as the discretization
error are similar to the non-relativistic counterparts. The main difference is: nr:

εu ∼ s−3/2
2 ; rel: εu ∼ s−1−ν/2

2

As a consequence to the leading order: nr: β ∼ exp(2π/
√
3n); rel: β ∼

exp(2π/
√
[2 + ν]n)

The exponents are steeper.
Final error estimate nr: ε ∼ exp(−π

√
3n); rel: ε ∼ exp(−π

√
[2 + ν]n)

The convergence is in the mean, but not pointwise. Divergence at the position
of a point nucleus.

An even-tempered kinetically balanced basis is complete for the H-atom ground
state [7]

4. Expansion of the function 1
r in a basis of exponential functions

While the expansion of wave functions in Gaussian basis if of central importance
in Quantum Chemistry, the related problem of the expansion of 1

r in a Gaussian
or an exponential basis, is of less direct interest in atomic or molecular theory, this
expansion is important for many physical problems. It is interesting to compare the
application of the technique advocated here, with a recent study of the expansion
in an exponential basis, where a completely different formalism was used [8]. This
expansion is formally simpler than that of a wave function in a Gaussian basis.
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This allows to study some aspects in more details. In particular we look now at
the expansion in terms of local criteria.

We start from the inverse Laplace transform of 1
r

(20)
1

r
=

∫ ∞

0

f(r, s)ds; f(r, s) = e−rs

We arrive at an approximation of 1
r as a linear combination of exponentials via

essentially the same steps as before:
1. We map the integration domain from 0 ≤ s ≤ ∞ to −∞ ≤ t ≤ ∞ by means

of the even-tempered mapping

(21) s(t) = et

such that the integrand f(r, s) is replaced by

(22) g(r, t) = f(r, s[t])
ds

dt
= e−retet;

∫ ∞

−∞
g(r, t)dt =

1

r

For r > 0, g(r, t) is a bell-shaped, though rather asymmetric, function of t, that
decays exponentially both for t→∞ and t→ −∞.

2. We restrict the integration domain of (21) or (22) to [sl, su] or [tl, tu] respec-
tively. We obtain the lower (l) and upper (u) cut-off errors

εcl =

∫ sl

0

f(r, s)ds =
1− e−rsl

r
= sl −

s2l r

2
+O(r2s3l )(23)

εcu =

∫ ∞

su

f(r, s)ds =
e−rsu

r
(24)

εcl is well represented by the leading term sl if
r≪ 2/sl
3. We introduce an equidistant grid with step length h in terms of the variable

t, such that the grid points are even tempered

(25) tk = tl + kh; k = 0, ..., n; sk = sl exp(kh)

This allows us to relate the cut-off parameters as

(26) tu = tl + hn; su = sle
hn

to the integration domain hn. We have n+1 grid points and n intervals of length
h. We want to minimize the sum of two cut-off errors

(27) εc = εcl + εcu = sue
−nh +

e−rsu

r

with respect to variation of su, which leads to

0 =
dεc
dsu

= e−nh − ersu(28)

su =
nh

r
; sl =

nh

r
e−nh; εc =

1 + nh

r
e−nh(29)
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4. The leading term of the discretization error is obtained as

(30) ed = 2

∫ tu

tl

g(r, t) cos(
2πt

h
)dt = 2

∫ su

sl

f(r, s) cos(
2π ln s

h
)ds

where 2 cos(2πth ) is the first term of the Fourier expansion of a periodic δ function
with periodicity h.

We construct an optimum h as function of the number n of integration intervals
by requiring that εc and εd have the same order of magnitude.

(31) εd∞ = 2

∫ ∞

−∞
g(r, t) cos(

2πt

h
)dt = 2

∫ ∞

0

f(r, t) cos(
2π ln s

h
)ds

εc ≥ 0, i.e. the integral with cut-off always underestimates the full integral, but
εd can be positive or negative, such that the two errors can either accumulate or
cancel partially.

Further, while εc only depends on the length hn of the integration domain, εd
depends strongly on the position of the grid with respect to the integrand, say
relative to its maximum, or to the coordinate origin. Such a shift can be described
by a phase θ in the integral, i.e. by considering

εdθ = 2

∫ ∞

−∞
g(r, t) cos(

2πt

h
+ θ)dt = 2

∫ ∞

0

f(r, t) cos(
2π ln s

h
+ θ)ds

= 2

∫ ∞

0

Re{e−rs−iθs−
2πi
h }ds = 2Re{e−iθr

2πi
h −1Γ(1− 2πi

h
)}(32)

instead of εd∞. A change of θ by 2π corresponds to a shift of the grid by one unit.
As long as we have no unique prescription as to the placement of the grid, we can
evaluate edθ for an unknown θ and construct an average discretization error edav
as the mean square over θ.

(33) εdav =

√∫ 2π

0

e2dθdθ/(2π) =
2π

r

√
csch(2π

2

h )

h

If we realize that εd = Re{D(h)}, where D(h) is a complex function, we can
use that

(34) |Re{D(h)}| ≤ |D(h)|
D(h) (as well as its real and imaginary parts separately), is a rapidly oscillating
function of h, but |D(h)| depends smoothly on h.

While D(h) depends strongly on a shift of the grid, as described by a phase
θ, |D(h)| is independent of θ. For r 6= 1 there is also an oscillating r-dependent

factor r
2πi
h in (32).

The asymptotic expansion of the upper bound for εdas (which is not oscillating)
for small h is

(35) εdas =
√
2edav =

4π

r
√
h
e−

π2

h {1 +O(
√
h)}

6. The last step is now to determine h such that εc = εdas
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The exponential factors dominate both εc and εdas. These factors are equal if

(36) h =
π√
n

We make the ansatz

(37) h =
π√
n
+ b

ln(n)

n
+
c

n

and determine b and c such that εc and εdav do not only agree in the exponential
factors, but also in the leading prefactors.

Let us use the procedure to construct the pararameters that are optimal for,
say, r = 1 and look at the error for r 6= 1. We have the parameters h as given by
(37) as well as

(38) sl(1) =
√
2π

3
4n

3
8 e−π

√
n; su(1) = sl(1)e

−hn = π
√
n− ln(

√
2π

3
4n

3
8 )

and the asymptotic r-dependent error contributions

εcl(r) = sl(1); εcu(r) =
e−rsu1

r
=
e−πr

√
n

r
(2

1
2n

3
8 π

3
4 )r

εdas(r) = 2

√
2

r
π

3
4 e−π

√
nn

3
8(39)

While εcl(1) = εcu(1) =
1
2εdas(1), εcu(r) dominates for r ≪ 1 and is negligible

for r ≫ 1. In this regime, εcl(r) approaches a constant value for large r, and is
practically r-independent, while εcu(r) decreases as ∼ 1

r .
The numerical error is, as it should, bounded by the asymptotic estimate. How-

ever, while our estimate depends smoothly on r, the numerical error oscillates
strongly as function of r. This oscillation comes entirely from the discretization
error. As we see from eqn. (32), εdθ contains an r-dependent oscillating factor

(40) Re{r 2πi
h } = Re{exp 2πi ln(r)

h
} = 2 cos

2π ln(r)

h

Although we have only cared for r = 1, we have obtained an approximation
with a bounded estimate for the absolute error valid for 1 ≤ r <∞.

We actually predict the estimate for the absolute error

(41) |1
r
− p(r)| ≤ εas(r) ≤ εas(1) = 4

√
2π

3
4 e−π

√
nn

3
8

This estimate has its maximum for r = 1, and holds for all r > 1.

5. Minimization of the relative error

In the previous section we have, starting from a local approximation for r = 1,
achieved a bound for the absolute error

(42) ε(r) = |1
r
− p(r)|
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valid for r ≥ 1, of the approximation p(r) as an exponential sum to 1
r . We now

care for the relative error

(43) ε̃(r) = r|1
r
− p(r)| = |1 − rp(r)|

for 0 ≤ r1 ≤ r ≤ r2.
Again we decompose the error into three parts, of which we consider the asymp-

totically leading terms

(44) ε̃cl(r) = rsl; ε̃cu(r) = e−rsu ; ε̃das(r) =
4π√
h
e−

π2

h

If we choose sl, su, h independent of r, we get

0 ≤ ε̃cl(r) ≤ ε̃cl(r2) = r2sl(45)

0 ≤ ε̃cu(r) ≤ ε̃cu(r1) = e−r1su(46)

We determine sl and su = sle
hn such that asymptotically ε̃cl(r2) = ε̃cu(r1) and get

so a bound for the sum of the two relative cut-off errors, valid for 0 ≤ r1 ≤ r ≤ r2.
The result is

sl =
e−hnhn

r1
(47)

su = {hn− lnhn+ ln(
r1

r2
)}/r1(48)

ε̃c = ε̃cl + ε̃cu = 2e−hnhn
r2
r1

(49)

The relative cut-off error is proportional to r2
r1
. We next determine h such the

cut-off and the discretization errors agree to the leading order. We make the
ansatz

(50) h =
π√
n
+
a

n
+
b lnn

n
+

c

2n
ln(

r2
r1

)

and get finally

h =
π√
n
+

ln(π/4)

4n
+

lnn

8n
+

1

2n
ln(

r2
r1

)(51)

ε = εc + εd = 4
√
2π

3
4n

3
8 e−π

√
n

√
r2
r1

(52)

The error bound now increases only as
√

r2
r1
. This is a good approximation if

(53) ln(
r2
r1

)≪ 2π
√
n

We get an asymptotic bound for the relative error as function of r in terms of

(54) εas(r) = slr + e−sur + εdas(r)
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6. Alternative mappings

We start again from

(55)
1

r
=

∫ ∞

0

e−rsds

A different mapping [8]

(56) s(τ) = ln(eτ + 1); τ = ln(es − 1)

did not improve the rate of convergence. However, the following mapping looks
promising.

(57) s = exp(t− e−t)

such that our integrand becomes

g(r, t) = exp(−e−t − ee−t−tr + t)(1 + e−t)(58)

1

r
=

∫ ∞

−∞
g(r, t)dt(59)

Hopefully it improves the critical factor exp−π√n to exp−2π√n, as found
numerically [8] without any constraint on the mapping function. It needs to be
studied in more detail.

7. Use of global criteria

Rather than to care for an optimal approximation for some fixed r, one can use
a global criterion for accuracy, somewhat as we have used it for the expansion of
wave functions.

Let us regard V (~r) = 1
r as a prototype of a potential, namely that created by a

point charge. We are mainly interested in expectation values or matrix elements
of a potential in terms of wave functions, such as

(60) 〈ψ|V (~r)|ψ〉 =
∫
|ψ(~r)|2V (~r)d3r

with the normalized ground state wave function of a hydrogen-like ion with the
nuclear charge α

(61) ψ(r) = 2α
3
2 exp(−αr);

∫
|ψ(r)|2r2dr = 1

and the potential created by the charge Z (which may differ from α). Both V and
ψ are independent of the angular variables (θ, ϕ). In this case the expectation
value involves the radial coordinate r only

(62) 〈ψ|Z
r
|ψ〉 = Z

∫
|ψ(r)|2rdr = Zα

There are two complementary aspects. Here we take the exact ψ and expand
V (r) in a basis. Alternatively, as we have done in the first part of the lecture, we
can take the exact V (r) and expand ψ in a basis.
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Let us insert the inverse Laplace transformation into the expectation value .

(63) 〈ψ|Z
r
|ψ〉 =

∫ ∞

0

F (s)ds; F (s) = Z

∫ ∞

0

|ψ(r)|2f(r, s)r2dr = Z(1 +
s

2α
)−3

We treat now F (s) for constant Z and α in the same way as we have treated f(r, s)
for constant r previously. We apply the even-tempered mapping and get

(64) G(t) = F (s[t])
ds[t]

dt
=

8Zα3et

(2α+ et)3
;

∫ ∞

−∞
G(t) = Zα

G(t) is a slightly asymmetric bell-shaped curve decaying exponentially for both
t→∞ and t→ −∞. For the lower and upper cut-off error we get

ecl =

∫ sl

0

F (s)ds = Z
αsl(4α+ sl)

(2α+ sl)2
= Zsl +O(s2l )(65)

ecu =

∫
su

∞F (s)ds = Z
4α3su(2α+ su)

(2α+ su)2

= 4Zα3s−2
u +O(s−3

u )(66)

In view of the even-tempered mapping we have

(67) su = sle
hn

We can achieve that the leading terms of ecl and ecu agree, if we choose

sl = 2
2
3α exp(−2hn

3
)(68)

su = 2
2
3α exp(

hn

3
)(69)

ecl = ecu = Zα2
2
3 exp(−2hn

3
)(70)

Next we evaluate the leading term of the discretization error.

ed∞ = 2

∫ ∞

0

F (s) cos(
2π ln s

h
)ds =

∫ ∞

0

8Zα3

(2α+ s)3
2Re{s2πi/h}

= 4απ2Z

{
Re([2α]2πi/h)

h
+ 2π

Im([2α]2πi/h)

h2

}
csch(

2π2

h
)(71)

While csch(2π
2

h ) is a smooth function of h, with the asymptotically leading term

(72) 2 exp(−2π2

h
)

Re([2α]2πi/h) and Im([2α]2πi/h) are, for small h, rapidly varying functions of h.
However, they are bounded

(73) |Re([2α]2πi/h)| ≤ 1; |Im([2α]2πi/h)| ≤ 1
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If we consider further that the asymptotic behaviour of ed∞ is determined by the
terms with 1

h2 , we get the following asymptotic estimate

(74) |ed∞| ≤ edas = 8αZπ3h−2 exp(−2π2

h
)

The overall error is determined by the factor exp(−2π
√

n
3 ).

The expansion of 1
r in a Gaussian basis follows similar patterns, but the algebra

is more complicated.
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Electrons in Spherical Confining Potentials

Jerzy Cioslowski

The talk concerns two recent developments in the field of Coulombic systems
subject to spherical confinements, namely:

1. Shell Model Of Assemblies Of Equicharged Particles Subject To

Radial Confining Potentials

A shell model of an assembly of N equicharged particles subject to an arbitrary
radial confining potential N W (r), where W (r) is parameterized in terms of an
auxiliary function Λ(t), is presented. The validity of the model requires that
Λ(t) is strictly increasing and concave for any t ∈ (0, 1), Λ′(0) is infinite, and

Λ̃(t) = −t−1Λ′(t)/Λ′′(t) is finite at t = 0. At the bulk limit of N →∞, the model
is found to correctly reproduce the energy per particle pair and the mean crystal
radius R(N), which are given by simple functionals of Λ(t) and Λ′(t), respectively.
Explicit expressions for an upper bound to the cohesive energy and the large-
N asymptotics of R(N) are obtained for the first time. In addition, variational
formulation of the cohesive energy functional leads to a closed-form asymptotic
expression for the shell occupancies. All these formulae involve the constant ξ that
enters the expression −(ξ/2)n3/2 for the leading angular-correlation correction to
the minimum energy of n electrons on the surface of a sphere with a unit radius (the
solution of the Thomson problem). The approximate energies, which constitute
rigorous upper bounds to their exact counterparts for any value of N , include
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the cohesive term that is not accounted for by the mean-field (fluid-like) theory
and its simple extensions but completely neglect the surface-energy correction
proportional to N .
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2. The Weak-correlation Limit Of Three-dimensional Quantum Dots

With Three Electrons

Asymptotic energy expressions for the weak-correlation limits of the two lowest-
energy states of three-dimensional quantum dots with three electrons are obtained
in closed forms. When combined with the known results for the strong-correlation
limit, those expressions, which are correct throughout the second order of pertur-
bation theory, yield robust Padé approximants that allow accurate estimation of
energies in question for all magnitudes of the confinement strength.
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Local defects in quantum crystals

Eric Cancès

(joint work with A. Deleurence, V. Ehrlacher, M. Lewin)

The modelling and simulation of the electronic structure of crystals is a promi-
nent topic in solid-state physics, materials science and nano-electronics. Besides
its importance for the applications, it is an interesting context for mathemati-
cians for it gives rise to many interesting mathematical and numerical questions.
The mathematical difficulties originate from the fact that crystals consist of in-
finitely many charged particles (positively charged nuclei and negatively charged
electrons) interacting with Coulomb potential. Of course, a real crystal contains
a finite number of particles, but in order to understand and compute the macro-
scopic properties of a crystal from first principles, it is in fact easier, or at least
not more complicated, to consider that we are dealing with an infinite system.

The first mathematical studies of the electronic structure of crystals were con-
cerned with the so-called thermodynamic limit problem for perfect crystals. As
opposed to real crystals, which contain local defects (vacancies, interstitial atoms,
impurities) and extended defects (dislocations, grain boundaries), perfect crystals
are periodic arrangements of nuclei and electrons, in the sense that both the nu-
clear density and the electronic density are R-periodic distributions, R denoting
some discrete periodic lattice of R3. The thermodynamic limit problem for perfect
crystals can be stated as follows. Starting from a given electronic structure model
for finite molecular systems, find an electronic structure model for perfect crys-
tals, such that when a cluster grows and “converges” (in some sense, see [5]) to
some R-periodic perfect crystal, the ground state electronic density of the cluster
converges to the R-periodic ground state electronic density of the perfect crystal.

For Thomas-Fermi like models, it is not difficult to guess what should be the
corresponding models for perfect crystals. On the other hand, solving the thermo-
dynamic limit problem, that is proving the convergence property discussed above,
is much more difficult. This program was carried out for the Thomas-Fermi (TF)
model in [12] and for the Thomas-Fermi-vonWeizsäcker (TFW) model in [5]. Note
that these two models are strictly convex in the density, and that the uniqueness
of the ground state density is an essential ingredient of the proof.

The case of Hartree-Fock and Kohn-Sham like models is more involved. In these
models, the electronic state is described in terms of electronic density matrices.
For a finite system, the ground state density matrix is a non-negative trace-class
self-adjoint operator, with trace N , the number of electrons in the system. For
infinite systems, the ground state density matrix is no longer trace-class, which
significantly complicates the mathematical arguments. Yet, perfect crystals being
periodic, it is possible to make use of Bloch-Floquet theory and guess the structure
of the periodic Hartree-Fock and Kohn-Sham models. These models are widely
used in solid-state physics and materials science. The thermodynamic limit prob-
lem seems out of reach with state-of-the-art mathematical tools, except in the
special case of the restricted Hartree-Fock (rHF) model, also called the Hartree
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model in the physics literature. Thoroughly using the strict convexity of the rHF
energy functional with respect to the electronic density, Catto, Le Bris and Lions
were able to solve the thermodynamic limit problem for the rHF model [6].

Very little is known about the modelling of perfect crystals within the frame-
work of the N -body Schrödinger model. To the best of our knowledge, the only
available results [7, 10] state that the energy per unit volume is well defined in the
thermodynamic limit. So far, the Schrödinger model for periodic crystals is still
an unknown mathematical object.

The mathematical analysis of the electronic structure of crystals with defects
has been initiated in [2] for the rHF model. This work is based on a simple
idea whose rigorous implementation however requires some effort. This idea is
very similar to that used in [8, 9] to properly define a no-photon QED model for
atoms and molecules. Loosely speaking, it consists in considering the defect (the
atom or the molecule in QED) as a quasiparticle embedded in a well-characterized
background (a perfect crystal in our case, the polarized vacuum in QED), and to
build a variational model allowing to compute the ground state of the quasiparticle.

In [2], such a variational model is obtained by passing to the thermodynamic
limit in the difference between the ground state density matrices obtained respec-
tively with and without the defect (and with periodic boundary conditions). The
rHF ground state density matrix of an insulating or semiconducting crystal in the
presence of a local defect can be written as γ = γ0per+Q, where γ0per is the density

matrix of the host perfect crystal (an orthogonal projector on L2(R3) with infinite
rank which commutes with the translations of the lattice) and Q a self-adjoint
Hilbert-Schmidt operator on L2(R3). Although Q is not trace-class in general [4],
it is possible to give a sense to its generalized trace Tr0(Q) := Tr(Q++)+Tr(Q−−),
where

Q++ := (1− γ0per)Q(1− γ0per) and Q−− := γ0perQγ
0
per

(as γ0per is an orthogonal projector, Tr = Tr0 on the space of the trace-class

operators on L2(R3)), as well as to its density ρQ. The latter is defined by

∀W ∈ C∞
c (R3), Tr0(QW ) =

∫

R3

ρQW.

The function ρQ is not in L1(R3) in general, but only in L2(R3) ∩ C, where C is
the Coulomb space, that is the space of charge distributions with finite Coulomb
energy. An important consequence of these results is that

• in general, the electronic charge of the defect can be defined neither as
Tr(Q) nor as

∫
R3 ρ;

• it may happen that ρQ ∈ L1(R3) but Tr0(Q) 6=
∫
R3 ρQ (while we would

have ρQ ∈ L1(R3) and Tr0(Q) = Tr(Q) =
∫
R3 ρQ if Q were a trace-class

operator). In this case, Tr0(Q) and
∫
R3 ρQ can be interpreted respectively

as the bare and renormalized electronic charges of the defect [4].

For a given nuclear charge of the defect, the bare (resp. the renormalized) elec-
tronic charge of the defect can a priori take several values [3], depending on the
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choice of the Fermi level (i.e. of the chemical potential of the electrons). Yet,
if the Coulomb energy of the nuclear charge ν of the defect is small enough and
if m is integrable, the bare and renormalized electronic charges of the defect are
independent of the choice of the Fermi level, and are respectively equal to 0 and
L0

1+L0

∫
R3 ν, where 0 < L0 <∞ is a constant depending only on the host crystal [4].

Consequenly the renormalized total charge is given by
∫

R3

ν − L0

1 + L0

∫

R3

ν =

∫
R3 ν

(1 + L0)
.

The charge ν is thus partially screened by a factor 1 < (1+L0) <∞. Full screening
would correspond to L0 = +∞ and to a renormalized total charge equal to zero.

Let us emphasize that the results in [2, 4] are limited to insulators and semicon-
ductors, characterized in the rHF setting by the fact that there is a positive gap
between the Zth and (Z+1)st bands of the spectrum of the mean-field Hamiltonian
of the perfect crystal, where Z is the number of electrons per unit cell. The math-
ematical arguments in [2, 4] cannot be straightforwardly adapted to the “metallic”
case (absence of gap). In [12], Lieb and Simon have proved full screening for the
TF model, under the assumption that the host crystal is a homogeneous medium.
In [1], we focus on the TFW model [11] and prove that, in this framework, defects
are always neutral (the charge ν is fully screened). As a consequence, the TFW
model cannot be used to model insulating or semiconducting crystals, for which
the screening effect is only partial, and in which charged defects can be observed.
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How Much Energy Does it Cost to Make a Hole in the Fermi Sea?

Mathieu Lewin

(joint work with Rupert L. Frank, Elliott H. Lieb and Robert Seiringer)

Before addressing the question in the title, let us go back in time and discuss a
simpler problem, which has been solved by Lieb and Thirring [8, 9] in 1975. Given
a density ρ(r) (a positive integrable function on R3), what is the kinetic energy
cost to create a pile of N =

∫
R3 ρ(r) dr electrons having the given density ρ(r)?

Because an electron can be given large momentum without changing its density,
this energy can be arbitrarily large and a better question is to ask for the minimal
kinetic energy cost.

Let us formalize this mathematically. The kinetic energy of any (mixed) quan-
tum state can be expressed as tr(−∆γ), where γ is the corresponding one-particle
density matrix [7], ∆ = ∇2 being the Laplacian (in units such that m = 1/2 and
~ = 1). The self-adjoint operator γ acts on L2(R3,Cq) where q is the number of
internal degrees of freedom (q = 2 for electrons) and it must satisfy the following
constraint 0 ≤ γ ≤ 1 in the sense of self-adjoint operators. The kernel γ(r, r′)σ,σ′

of γ is a q×q matrix for every (r, r′) ∈ R6 and the corresponding density is defined
as ργ(r) =

∑q
σ=1 γ(r, r)σ,σ.

Coleman has shown in [1] that there is no further necessary condition on γ, that
is, any operator 0 ≤ γ ≤ 1 with trγ =

∫
R3 ργ = N arises from at least one (mixed)

N -body quantum state. This allows us to define the minimal energy cost as

(1) T (ρ) = inf
0≤γ≤1
ργ=ρ

tr(−∆γ).

In a semi-classical approximation, we think of putting the electrons in small
boxes in phase space, of volume (2π)3. The semi-classical approximation to T (ρ)
is then [12, 3]

Tsc(ρ) = (2π)−3q

∫

R3

dr

∫

p≤
(

6π2ρ(r)
q

)1/3 p2 dp = Ksc(3)

∫

R3

ρ(r)
5
3 dr,

where Ksc(3) = (3/5)(6π2/q)2/3. Lieb and Thirring have shown in [8, 9] that,
up to a universal constant, semi-classics provides a universal lower bound to the
true minimal quantum energy cost, even far from the semi-classical regime. The
statement in any dimension is

(2) T (ρ) ≥ K̃(d)

∫

Rd

ρ(r)1+
d
2 dr

where K̃(d) is a universal constant depending only on the space dimension d, and
such that

K̃(d) ≤ Ksc(d) :=
d

d+ 2

(
d(2π)d

q |Sd−1|

)2
d

.
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It is widely believed that K̃(d) = Ksc(d) for d ≥ 3. The best estimate known so

far in dimension 3 is K̃(3) ≥ 0.6724 Ksc(3), see [2]. Since its invention, the Lieb-
Thirring inequality has played an important role for the study of large quantum
systems and of their stability [6, 7].

The dual version of the Lieb-Thirring inequality (2) is sometimes useful. Let
V (r) be a real-valued potential (the variable dual to ρ(r)). The sum of the negative
eigenvalues of −∆+ V (r) can be expressed by a variational principle, leading to
the estimate∑

λi≤0

λi(−∆+ V ) = inf
0≤γ≤1

tr
(
(−∆+ V )γ

)

≥ inf
ρ≥0

∫

Rd

(
K̃(d)ρ(r)1+2/d + V (r)ρ(r)

)
dr

= −L̃(d)
∫

Rd

V (r)
1+d/2
− dr,(3)

where x− = −min(0, x) is the negative part of a number x and

L̃(d) =
2

d+ 2

(
d

(d+ 2) K̃(d)

)d/2

.

It can actually be shown that the inequality (3) is equivalent to (2).

A question that is not only natural but of significance for condensed matter
physics is the analogue of (2) when we start, not with the vacuum, but with a
background of fermions with some prescribed density ρ0 > 0. In [4], we have
estimated the minimal energy cost to go from an infinitely extended free Fermi
gas of constant density ρ0 > 0 to a density ρ(r) = ρ0 + δρ(r). Note that δρ(r) has
no sign a priori. It can be negative (hence the word ‘hole’ in our title) as soon as
δρ(r) ≥ −ρ0. The main difficulty is that we are perturbing an infinite quantum
system, spread over the whole space. Nevertheless, we have been able to prove
that semi-classics again gives a lower bound to the energy cost.

To formulate our result properly, let us recall that the Fermi level µ is linked
to the density ρ0 by the formula

ρ0 =
q

(2π)d

∫

k2≤µ

dk =
q |Sd−1|
d (2π)d

µ
d
2

in any dimension d ≥ 1. The one-particle density matrix of the free Fermi sea is
the spectral projector Π− := χ(−∞,µ)(−∆) corresponding to filling all the energies
≤ µ. Our inequality can now be stated as follows, in space dimensions d ≥ 2:

(4) tr (−∆− µ) (γ −Π−)

≥ K(d)

∫

Rd

(
ργ(r)

1+
2
d − (ρ0)

1+
2
d − 2 + d

d
(ρ0)

2
d
(
ργ(r) − ρ0

))
dr

for any one-particle density matrix 0 ≤ γ ≤ 1. The term on the left side is
non-negative, which follows from the fact that Π− minimizes the free energy with
chemical potential µ. The integrand on the right side is also non-negative, which
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follows this time from the convexity of ρ 7→ ρ1+2/d. It behaves like (ρ(r) − ρ0)2
for ρ(r) ≃ ρ0 and like ρ(r)1+2/d for large ρ(r), as in the usual Lieb-Thirring
inequality (2). Taking ρ0 → 0 we actually recover (2) in the limit. The optimal
constant K(d) is independent of ρ0 > 0 (by scaling) but it does not necessarily

coincide with the optimal constant K̃(d) of (2) for ρ0 = 0. The inequality (4) is
not valid in dimension d = 1, as we will explain later.

As for the usual Lieb-Thirring case, there is a dual inequality. Let us consider
a real-valued potential V (r) ∈ L2(Rd) ∩ L1+d/2(Rd), for d ≥ 2. Then we have

(5) tr(−∆− µ+ V )(Π−
V −Π−)

≥ −L(d)
∫

Rd

(
(V (r) − µ)1+

d
2

− − µ1+
d
2 +

2 + d

2
µ

d
2 V (r)

)
dr,

where Π−
V := χ(−∞,µ)(−∆+V ) is the one-particle density matrix of the perturbed

Fermi sea in presence of the potential V . The integrand on the right side behaves

like V (r)2 for small V (r) and V (r)
1+d/2
− for large V (r). The left side is formally

equal to

tr(−∆−µ+V )(Π−
V −Π−)“ = ”− tr(−∆+V −µ)−+tr(−∆−µ)−−ρ0

∫

R3

V (r) dr

but the first two terms on the right are infinite and the third is only finite under
the additional assumption that V ∈ L1(Rd). Note that the term ρ0

∫
R3 V (r) dr is

obtained by first order perturbation theory.
Second order perturbation theory predicts that

(6) lim
ǫ→0

tr(−∆− µ+ ǫV )(Π−
ǫV −Π−)

ǫ2
= −µ

d
2−1

∫

Rd

Ψd

(
k√
µ

)
|V̂ (k)|2 dk

where Ψd is the linear response function of the Fermi sea, which can be computed
explicitly. In dimension d = 1,

Ψ1(|k|) =
1

4π|k| log
(

2 + |k|∣∣2− |k|
∣∣

)

is divergent at k = ±2, which is related to the so-called Peierls instability [10]. On
the contrary, the semi-classical function satisfies

lim
ǫ→0

∫

Rd

dr
(ǫV (r)− µ)1+

d
2

− − µ1+
d
2 + 2+d

2 µ
d
2 ǫV (r)

ǫ2
= −d(d+ 2)

8
µ

d
2−1

∫

Rd

V (r)2dr

in any dimension d ≥ 1. This proves that there cannot be a Lieb-Thirring inequal-
ity of the form of (5) in dimension d = 1. In higher dimensions d ≥ 2, Ψd is a
bounded function and there is no problem.

In the original works [8, 9], the potential Lieb-Thirring estimate (3) was derived
first by spectral methods and the density estimate (2) was then obtained by using
the equivalence. Until recently, there was no known direct proof of the density
estimate (2). The situation changed last year when Rumin [11] found a simple
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method to directly prove (2). Our method to tackle the positive density estimate
show (4) is partly based on Rumin’s ideas.

Our estimates (4) and (5) can be generalized in several directions. They are
valid at positive temperature, and also when the ideal Fermi gas is replaced by a
periodic background, under generic assumptions on the Fermi surface [5].
The research leading to these results has received funding from the European Re-
search Council under the European Community’s Seventh Framework Programme
(FP7/2007-2013 Grant Agreement MNIQS No. 258023).
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Towards the optimal basis set in Kohn-Sham density functional theory

Lin Lin

(joint work with Weinan E, Jianfeng Lu and Lexing Ying)

Kohn-Sham density functional theory (KSDFT) is by far the most widely used
electronic structure theory for condensed matter systems. However, the compu-
tational cost of the standard method for solving KSDFT increases cubically with
respect to the number of electrons in the system (N). The cubic scaling hinders
the application of KSDFT to systems of large size.

Our aim is to design accurate and efficient algorithms to solve KSDFT for both
insulating and metallic systems [1, 2, 3, 4, 5, 6, 7]. The electron density ρ depends
only on the diagonal of the Fermi-Dirac operator (β: inverse temperature; µ:
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chemical potential)

(1) ρ = diag f(H) ≡ diag
2

1 + eβ(H−µ)
.

Our method directly targets at the calculation of the diagonal elements of the
Fermi-Dirac operator, and thus reduces the computational cost for solving KSDFT.
Specifically, the computational cost of our method is O(N) for one dimensional
systems, O(N1.5) for two-dimensional systems, and O(N2) for three-dimensional
systems.

In this talk I focus on the reduction of the discretization cost for solving KS-
DFT. The discretization cost is characterized by the number of basis functions per
atom to discretize the Kohn-Sham Hamiltonian operator, and is a crucial factor
in the total computational cost. Take the planewave discretization for instance,
the number of basis functions is generally 500 ∼ 5000 even in the pseudopotential
framework. The discretization cost can be significantly reduced to 20 ∼ 80 ba-
sis functions per atom by means of e.g. atomic orbital type basis functions, but
these basis functions are based on explicit knowledge of the underlying system,
and are often difficult to be systematically improved in practice. To overcome the
problem of both the planewave basis functions and the atomic orbital type basis
functions, we propose a novel discretization scheme called the adaptive local basis
functions [4]. The adaptive local basis functions do not require explicit knowl-
edge of the system, and are systematically obtained by solving a series of KSDFT
problems of small size. The adaptive local basis functions achieve high accuracy
(below 10−3 Hartree/atom) in the total energy calculation with the number of
basis functions per atom close to the minimum possible number, namely the num-
ber of basis functions used by the tight binding method. The adaptive local basis
functions are localized in the real space, and are discontinuous in the global do-
main. The continuous Kohn-Sham orbitals and the electron density are evaluated
from these discontinuous basis functions using the discontinuous Galerkin (DG)
framework. We demonstrate that primitive implementation of the adaptive local
basis functions is already able to calculate the total energy for systems consisting
of thousands of atoms.

The adaptive local basis functions are accurate, efficient, simple and systemat-
ically improvable in the total energy calculation. One potential drawback of the
adaptive local basis functions is that the accuracy of the force calculation may not
be systematically controlled. It is well known that if the basis functions change
with respect to the atomic positions, the Hellmann-Feynman force is not accurate
enough, and the Pulay force should be added [8]. The calculation of the Pulay
force can be expensive since the derivatives of the basis functions with respect
to all the atomic positions are to be computed. To overcome this drawback, we
develop the optimized local basis functions [5] that inherit all the advantages of
the adaptive local basis functions, and can systematically improve the accuracy of
the force calculation. The optimized local basis functions are obtained by solving
a variational problem in a prescribed primitive basis set that is independent of
the atomic positions. When the optimality condition is satisfied, the contribution
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of the Pulay force vanishes and the total force is equal to the Hellmann-Feynman
force. This makes the optimized local basis functions an ideal tool for ab initio
molecular dynamics as well as geometry optimization. We develop a precondi-
tioned GMRES algorithm to obtain the optimized local basis functions in prac-
tice. Numerical results using a one dimensional model problem indicate that the
optimized local basis functions can accurately compute the energy and the force
along the trajectory of the molecular dynamics without systematic drift, using a
very small number of basis functions per atom.
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A Modified Born–Oppenheimer Approximation for Hydrogen Bonding

George A. Hagedorn

(joint work with Alain Joye)

The standard time–independent Born–Oppenheimer approximation often yields
substantially inaccurate vibrational energy levels for molecules that contain hy-
drogen bonds. In particular, the vibrational energy levels associated with oscilla-
tions of the hydrogen nucleus involved in the hydrogen bonding are often far from
accurate. In this talk, we summarize the results of a joint project with Alain Joye
to produce a better approximation that is still amenable to practical computation.

The detailed results of the project are presented in two papers, [5, 7]. Two
other summaries (and a generalization) are presented in conference proceedings
articles, [6, 8].

The reason the results were published in two separate papers is that we con-
sidered two different situtations. In the first paper, [5], we studied the symmetric
hydrogen bonds. In this case, we considered a molecule that consisted of two iden-
tical components that were bound together by a hydrogen bond. The molecule
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thus had a reflection symmetry. As an example, we presented detailed results for
the FHF− ion. In the second paper, [7], we studied the situation where there was
no such symmetry. The concrete example we presented was the FHCl− ion.

As we were completing this work, we learned of a related paper, [10], that empir-
ically related vibrational energies of protons involved in hydrogen bonds with how
symmetrical the hydrogen bond was. That paper considered some non-symmetric
molecules that were very close to being symmetrical. In practice, our results
are not likely to yield much useful information in these “almost symmetrical”
situations since they are near the borderline between our two different modified
approximations.

Standard Born–Oppenheimer approximations rely on the smallness of the pa-
rameter ǫ, where the nuclear masses are taken proportional to ǫ−4 and the electron
masses are held fixed. The original work in this subject is [1], and there is now a
substantial mathematical literature on this subject. See, e.g., [2, 3, 4, 9]. Molecu-
lar energy levels have asymptotic expansions to all orders in even powers of ǫ. The
ǫ0 term arises from the energy of the electrons with the nuclei at optimal config-
urations. The ǫ2 term consists of the harmonic approximations to the vibrations
of the nuclei about the optimal configurations. The ǫ4 term contains an electron
energy correction, the lowest order anharmonic corrections to the vibrational en-
ergies, an uninteresting term related to removal of the center of mass motion, and
the leading order rotational energy of the molecule.

For symmetric hydrogen bonds, we make two modifications. First, we take the
mass of the hydrogen nucleus to be proportional to ǫ−3. This is motivated by the
observation that if the nucleus of (the most common isotope of) carbon is ǫ−4,
then the mass of a hydrogen nucleus is 1.015 ǫ−3. Second, the electron energy
level is the effective potential felt by the nuclei, and we modify one coefficient
in its Taylor series approximation around the optimal nuclear configuration. If Z
denotes the coordinate for the hydrogen nucleus between the other two components
of the molecule, we replace the quadratic term in the Taylor approximation, aZ2,
by (a/ǫ) ǫ Z2. We numerically divide in the factor (a/ǫ) with the true value of
ǫ = 0.0821, but algebraically multiply by the small parameter ǫ. This is motivated
by looking at examples and observing that the typical value of a is small in real
molecules, and that (a/0.0821) is typically roughly of order 1.

Thus, in our model, the small parameter ǫ plays two roles. It is involved in the
scaling of the masses, and it also appears in the expression we use for the electronic
potentially energy surface.

In the symmetric situation, we prove that with this modified model, the molec-
ular energy has a full asymptotic expansion in powers of ǫ1/2. Our main interest
is in the vibrational energies, which appear to leading order at order ǫ2, as in
the standard approximation. However, they are not described by a harmonic os-
cillator. To leading order, they are described by the energy levels of a quantum
Hamiltonian that contains certain cubic and quartic terms as well as quadratic
terms.
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For the FHF− ion, the standard harmonic approximation predicts the energy
of the “asymmetric stretch,” in which the hydrogen nucleus oscillates between its
heavier neighbors, to be 1118 cm−1, whereas an experimental value is 1331 cm−1.
Our model produces a much more accurate 1399 cm−1.

For non-symmetric hydrogen bonds, we again modeled the hydrogen mass by
1.015 ǫ−3, but this time we made a different modification to the electronic poten-
tial energy surface. In the Taylor expansion, we made no changes to the terms
that involved the hydrogen nucleus and its closest neighboring nucleus. For all
terms that involve the heavy nucleus of the hydrogen bond that is farther from
the hydrogen nucleus, we numerically divide the coefficient by ǫ = 0.0821 and
multiply algebraically by the small parameter ǫ. This is motivated from examin-
ing the electronic potential energy surface for the FHCl− ion. From numerical
calculations, this ion behaves like FH with an internuclear distance of roughly
1 Angstrom, and a Cl− ion roughly 2 Angstroms for the H nucleus. Since the
H–Cl− distance is large, all interactions involving the Cl− are small.

In the non-symmetric situation, our model yields an asymptotic expansion in
powers of ǫ1/4, but the vibrations associated with the hydrogen bond appear at
different orders. The oscillations of the bond between the hydrogen nucleus and
its nearest neighbor are of order ǫ3/2; the bending vibrations occur at order ǫ2; and
the vibrations of the bond between the hydrogen nucleus and its farther neighbor
are of order ǫ5/2. In the standard Born-Oppenheimer approximation they all occur
at order ǫ2, and one must do a matrix diagonalization to find the normal modes
of oscillation. Here they are automatically separated at the different orders.

For the specific example of FHCl−, one easily sees that the vibrational en-
ergies are of the various different orders, although our model yields vibarional
energies that are similar to those obtained by the standard Born–Oppenheimer
harmonic approximation. We predict FH–Cl− stretch, bending, and F–H stretch
energies of 246 cm−1, 875 cm−1, and 2960 cm−1, respectively. The correspond-
ing experimental data are 275 cm−1, 843 cm−1, and 2710 cm−1. We note that
246/875 ≈ 0.281 and 875/2960 ≈ 0.296 are both close to the physical ǫ1/2 ≈ 0.287.
Thus, these energies are consistent with their appearing in our approach at orders
ǫ5/2, ǫ2, and ǫ3/2, respectively.
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Numerical Tensor Calculus

Wolfgang Hackbusch

1. Tensor Spaces

Given vector spaces Vj (1 ≤ j ≤ d), there is a unique (algebraic) tensor space

V =
⊗d

j=1 Vj . For instance, for Vj = Rnj the elementary tensors v =
⊗d

j=1 v
(j)

with v(j) ∈ Rnj are defined by v[i1 . . . id] =
∏d

j=1 v
(j)[ij]. The tensor space is

defined by all (finite) linear combinations of elementary tensors. The dimension

of V is N :=
∏d

j=1 nj .
Here we consider cases, where it is impossible to store all N entries. Examples

may be nj = 1000 and d = 1000 yielding N = 10001000 as well as the natural
dimension d = 3 with nj = 106. The latter example describes a grid function on a
fine 3D-grid.

If the generating vector spaces Vj = Rnj×nj are matrix spaces, the tensor
product is also called Kronecker product and produces matrices of size N ×N.

For infinite dimensional functions spaces Vj , say for uni-variate functions in xj ,

the tensor product yields d-variate functions v(x1 . . . xd) =
∏d

j=1 v
(j)(xj). Fixing

a suitable norm on V, the completion of the algebraic tensor space produces the
topological tensor space.

2. Representation of Tensors

Since for huge N the tensors cannot be described by all their entries, one needs
a data-sparse representation. Examples are the r-term format (canonical format)

(1) v =
∑r

ν=1
v(j)ν for some v(j)ν ∈ Vj

and the tensor subspace format (Tucker format)

(2) v =
∑r1

i1=1
· · ·
∑rd

id=1
a[i1 . . . id]b

(1)
i1
⊗ . . .⊗ b(d)id

for some b
(j)
i1
∈ Vj .
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Fixing the representation rank r ∈ N in (1) and the vector-valued rank r =
(r1 . . . rd) in (2), we obtain the sets Rr and Tr. If nj ≤ n, any v ∈ Rr require a
storage of drn. For moderate r, this is feasable also for d = n = 1000. The hope is
that tensors of large or even infinite rank can be approximated in Rr for moderate
r. This is confirmed by the following example.

The function 1/
√
t can be approximated in any interval [η,∞) by exponential

sums Er(t) :=
∑r

ν=1 ων exp(−ανt) (see [1]) such that the accuracy improves ex-

ponentially with r. For instance,
∥∥1/√· − Er

∥∥
∞,[1,∞)

=: εr ≤ 83.5 exp(−π
√
r/2).

Substituting the Euclidean norm t = ‖x‖2 of x ∈ Rd, we obtain an approxima-

tion of 1/ ‖x‖ by Er(‖x‖2) =
∑r

ν=1 ων

∏d
j=1 exp(−αν |xj |2) which belongs to Rr.

This fact can be expoited for the convolution with the Colomb potential:
∥∥∥∥
∫

R3

f(y)dy

‖· − y‖ −
∫

R3

Er(‖· − y‖2)f(y)dy
∥∥∥∥
∞,R3

≤ 3.5
3

√
‖f‖2L1 ‖f‖L∞ε

2/3
r .

However, both formats mentioned above have certain disadvantages. A better
approach is the hierarchical tensor format Hr (cf. [6], [5]). The hierarchy is given
by a certain dimension partition tree. If this tree is chosen as linear tree (maximal
depth), one obtains the so-called tensor-train format (cf. [9]). Even earlier, the
latter format has been used in quantum physics (cf., e.g., [10]) and is named
‘matrix product states’ (MPS).

An important question concerns the closedness of the sets Rr, Tr, and Hr, since
for optimisation problems we build sequences vν ∈ F (F ∈ {Rr, Tr,Hr}) and want
to know whether limvν ∈ F . In fact, Tr and Hr are closed (even weakly closed),
but Rr is not (cf. [5]). As mentioned before, the hierarchical tensor format Hr

is structured by a tree. In quantum physics one likes to replace trees by general
graphs. In this case, however, the set is not closed.

3. Tensor Operations and Truncation

There are various operations between tensors, one may like to compute. We
start with a simple example. Let Vj = Rnj . The Hadamard product ⊙ : Vj ×Vj →
Vj is the entrywise multiplication: (v ⊙ w)i = viwi, which easily generalises to
tensors. The property




d⊗

j=1

v(j)


⊙




d⊗

j=1

w(j)


 =

d⊗

j=1

(
v(j) ⊙ w(j)

)

allows to reduce this operation to the vector spaces Vj . However, if v,w ∈ Rr

involve r terms, the product consists of r2 terms:
(

r∑

ν=1

v(j)ν

)
⊙
(

r∑

µ=1

w(j)
µ

)
=

r∑

ν=1

r∑

µ=1

d⊗

j=1

(
v(j)ν ⊙ w(j)

µ

)
.

This is a typical feature which requires a truncation step, by which one tries to
approximate the result by an expression involving fewer terms. Further operations
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are the addition, convolution, matrix-vector and matrix-matrix multiplication and
the scalar product.

The truncation within Rr (possibly with regularisation) is not so easy (cf. [2]),
whereas for the hierarchical format Hr the truncation can be based on several
singular value decompositions (cf. [6]).

4. Tensorisation

The translation of a vector into a tensor is called ‘tensorisation’ (cf. [5]). The
simplest case is a vector v ∈ Rn with n = 2d. Then Rn is isomorphic to the tensor

space V :=
⊗d

j=1 R
2. The concrete isomorphism is

Φn : V → Rn

v 7→ v with vk = v[i1 · · · id] for k =
∑d

j=1 ij2
j−1, 0 ≤ ij ≤ 1.

The tensor v may be represented by the tensor train representation [8] (see also
[7]). The exact tensor representation is usually not interesting, since it requires the
same storage n. Instead, one looks for an approximate tensor using the truncation
procedure mentioned above.

If v ∈ Rn represents a smooth function on a grid with n point, one observes that
the corresponding (approximate) tensor requires much less data. Typically, piece-
wise smooth functions allow to reduce n to O(log(n)). The analytic background is
given in [3]. In fact, the tensorisation corresponds to a multi-scale approach.

Operations can be applied directly to the tensorised vectors (instead to the
vectors). For instance, convolution of two n-vectors which correspond to tensors
of size O(log(n)), can be performed with O(log(n)) arithmetical operations (cf.
[4]).
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On the mixed regularity of electronic wavefunctions

Harry Yserentant

Atoms and molecules are physically described by the Schrödinger equation for
a system of charged particles that interact by Coulomb attraction and repulsion
forces. As the nuclei are much heavier than the electrons, the electrons almost
instantaneously follow their motion. Therefore it is usual in quantum chemistry
to separate the motion of the nuclei from from that of the electrons, that is, to
look for the eigenvalues and eigenfunctions of the electronic Schrödinger operator

H = − 1

2

N∑

i=1

∆i −
N∑

i=1

K∑

ν=1

Zν

|xi − aν |
+

1

2

N∑

i,j=1
i6=j

1

|xi − xj |

written down here in dimensionless form or atomic units. It acts on functions with
arguments x1, . . . , xN ∈ R3, the coordinates of given N electrons. The positions
a1, . . . , aK ∈ R3 of the nuclei are kept fixed. The positive values Zν are the charges
of the nuclei in multiples of the electron charge. This talk was concerned with the
mixed regularity of these eigenfunctions and its implications for the complexity of
the quantum-mechanical N -electron problem.

To state our regularity results, we need to introduce a scale of norms that is
defined in terms of Fourier transforms. These norms are given by the expression

|||u||| 2ϑ,m =

∫ {
1 +

N∑

i=1

|ωi|2
}m{ N∏

i=1

(
1 + |ωi|2

)}ϑ

|û(ω)|2 dω.

They are defined on the Hilbert spaces Hϑ,m
mix that consist of the square integrable

functions from (R3)N to R or C with Fourier transforms

û : (R3)N → C : (ω1, . . . , ωN )→ û(ω1, . . . , ωN )

for which these expressions remain finite; |ωi| is the euclidian norm of ωi. The
index m determines the isotropic smoothness, and the index ϑ the degree of mixed
regularity. For nonnegative integer values m and ϑ, the norms measure the L2-
norm of weak partial derivatives. The spaces L2 and H1 belong to the class of
these spaces. Our main result [KY] is that the eigenfunctions u of the electronic
Schrödinger operator for eigenvalues below the essential spectrum are contained in

H1,0
mix ∩

⋂

ϑ<3/4

Hϑ,1
mix.

In the general case, the bound 3/4 can neither be completely reached nor improved
further. An exception are systems of electrons of the same spin, for which the
wavefunctions are completely antisymmetric under the exchange of the positions of
the electrons and vanish at the singular points of the electron-electron interaction
potential. The proof is based on a multiplicative splitting [Y2] of the wavefunctions
into an explicitly known factor depending on the interelectronic distances and a
more regular part in H1,1

mix and utilizes techniques from interpolation theory.
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The eigenfunctions u for eigenvalues below the essential spectrum decay expo-
nentially in the L2-sense. There exists a constant γ > 0 such that the function

x → exp

(
γ

N∑

i=1

|xi|
)
u(x),

is square integrable. This constant depends on the distance of the eigenvalue
under consideration to the bottom of the essential spectrum. More details and
references to the literature can be found in [Y1]. It has been shown in [Y2] that
these exponentially weighted eigenfunctions admit the same kind of representa-
tion as the eigenfunctions themselves. Thus they share with them the described
regularity properties [KY]. This can be used to study the expansion of the solu-
tions into correspondingly antisymmetrized tensor products of three-dimensional
eigenfunctions [Y1] or orthogonal wavelets [Z], for example. It turns out that the
convergence rates of such expansions measured in terms of the number of basis
functions involved surprisingly do not deteriorate with the number of electrons
and remain comparable to those for a system of two electrons or even only one
electron [Y1]. Therewith the curse of dimensionality is in some sense broken.
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The regularity of tensor product approximations in L2 in dependence

of the target function

André Uschmajew

The approximation of a square integrable function of many variables by a sum of
products of functions of much fewer variables has been a prominent approach in
many fields of theory and application for a long time, the simplest example being
an expansion into a classical Fourier series. The need of such approximations can
be motivated by the curse of dimensionality, which makes high-dimensional PDEs
or eigenvalue problems intractable by standard discretization techniques.

There have been recent attempts [2] to establish a tensor calculus for such high-
dimensional problems, which enters as a nonlinear ansatz into their formulation,
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in order to break the curse of dimensionality. By nonlinear we mean that the the
component functions uk, vk, wk in an approximation of the form

f(x, y, z) ≈
r∑

k=1

uk(x)vk(y)wk(z)

are not supposed to lie in a prescribed linear subspace or prescribed subset of basis
functions of, say, L2, but are entirely arbitrary. This is in contrast to the situation
of, for instance, full CI calculations in quantum chemistry.

From a theoretical point of view, it would be desirable if such tensor product
approximations meet certain regularity requirements of the underlying problem.
In the case of quantum chemistry they should, for instance, lie in H1 in order to
represent orbital wave functions. The question is now, whether such regularity
requirements have to be enforced, or may be automatically guaranteed. For the
case of approximation in L2 the pleasant, and somehow surprising answer is the
following

Theorem 1. Let f ∈ Hs(Rn+m+l), rank f ≥ r. Assume that uk ∈ L2(Rn), vk ∈
L2(Rm), wk ∈ L2(Rl), k = 1, 2, . . . , r, are a local minimzers of

∥∥∥f −
r∑

k=1

uk ⊗ vk ⊗ wk

∥∥∥
2

0
= min,

that is, ∫ ∣∣∣f(x, y, z)−
r∑

k=1

uk(x)vk(y)wk(z)
∣∣∣
2

dxdydz = min.

Then uk ∈ Hs(Rn), vk ∈ Hs(Rm) and wk ∈ Hs(Rl) for k = 1, 2, . . . , r.

Here rank f denotes the minimal number of terms needed to write f as a sum
of products (could be infinite). It is only for simplicity that products of three
functions are considered.

The claim of the above theorem is quite interesting, since the minimization
itself is performed in L2 so that, in principle, the components uk, vk, wk are
allowed to be nonsmooth. The proof of the theorem can be found in [3]. The main
observation is that, say uk, satisfies a first-order optimality condition of the form

(1) uk(x) =

∫
f(x, y, z)φk(y, z) dydz a.e.

for some function φk ∈ L2(Rm+l) (which depends on all vk and wk). Looking at
such an integral equation, it is clear that the regularity of uk depends only on the
regularity of f with respect to the variable x. Consequently, the theorem could be
made more precise by considering functions of anisotropic regularity [3].

One corollary that we found very intersting is the following:

Corollary 2. If f ∈ Hs(Rn+m+l) has rank r <∞, then in every representation

f =

r∑

k=1

uk ⊗ vk ⊗ wk
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the components uk, vk and wk are in Hs.

Hence f possesses mixed derivatives up to order 3s. This is an interesting
interaction between the algebraic concept of rank and the analytic concept of
smoothness.

One unsatisfactory aspect of the results is that no estimates on the Sobolev
norms of the components, which are independent from the solution, can be given.
In [3] a-posteriori estimates are discussed, where, say, ‖uk‖s is estimated in terms
of f and all vk and wk.

Starting from relation (1), it is possible to obtain similar regularity results for (i)
different types of tensor approximation, such as optimal subspace approximation,
and (ii) different notions of regularity, such as classical differentiability, see [3].

Besides giving theoretical justification for a tensor calculus in PDEs, the reg-
ularity results might have some practical consequences as well. Maybe they can
be used to construct efficient schemes to actually calculate such tensor approxi-
mations based on the information that the functions one is looking for are regular
in a certain sense. At least, if such approximations are found they can be effi-
ciently stored and compressed, making a tensor calculus more feasible, as it was
for instance elaborated in [1].
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BOSSANOVA - A bond order dissection approach for efficient

electronic structure calculations

Frederik Heber

(joint work with Michael Griebel, Jan Hamaekers)

Fast computation of the electronic Schrödinger equation is still an open problem.
In the context of ab-initio solving schemes with linear scaling in the number of
nuclei, one considers the overlap matrix in a discrete basis set and sets components
to zero for a given cut-off radius. The resulting sparsity extends to the other oper-
ator matrices as well and can be used to perform necessary matrix multiplications
in linear time.

Finer control is obtained if the components are set to zero based on heuristics
instead of by using a cut-off parameter. This information is plentifully available
from chemistry, e. g. a bond information based distance criterion can be used as
a heuristic.

Here, we look at linear scaling schemes for molecular systems. In the context of
fragmentation methods, the set of nuclei is partitioned into subsets, either disjoint
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or not. For the partitioning the bond information is usually taken into account.
Energies and related expectation values are approximated via summation. Note
that these fragmentation approaches are only successful in a localized setting, i. e.
where an exponential decay of the electronic orbitals is present.

We attempt to understand these schemes in terms of complexity and derive
a linear scaling property from the underlying operator eigenvalue equation, in
Hilbert space with inner product < Ψ,Ψ >=

∫
Ψ∗(x)Ψ(x)dx,

(1) < Ψ,HΨ >= E < Ψ,Ψ > .

The electronic Hamilton operator H is

(2) H = − 1
2

N∑

i

∇2
i −

M∑

α

N∑

i

Zα

|Rα − ri|
+

N∑

i<j

1

|ri − rj |
.

We may split up this operator into a one-electron part

H1(i) = − 1
2∇

2
i −

M∑

α

Zα

|Rα − ri|
,

and a two-electron part that consists of electron-electron interaction only,

H2(i, j) =
1

|ri − rj |
,

such that

H =

N∑

i

H1(i) +

N∑

i<j

H2(i, j).

Let us consider the following ansatz function due to Hartree [1], where {φi}Ni
is a set of spin-orbital1 functions for the N electrons,

(3) Ψ = φ1(r1) · . . . · φN (rN ) =
N∏

i=1

φi(ri).

Then we obtain for the total electronic energy E = E1 + E2 = <Ψ,H1+H2Ψ>
<Ψ,Ψ>

E1 =

N∑

i

∫
φ∗i (ri)H1φi(ri)dri

E2 =

N∑

i<j

∫
φ∗i (ri)φ

∗
j (rj)H2φi(ri)φj(rj)dridrj ,

where we have used that for all i:
∫
φ∗i (ri)φi(ri)dri = 1.

As a second ansatz let us consider the usual Slater [2] determinant construct

(4) Ψ = (N !)−
1
2 det (φ1(r1) · . . . · φN (rN )),

1Note that we neglect spin here for the sake of clarity.
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which results in the same one-particle energy term but a different two-particle
energy term

E2 =

N∑

i<k

∫
φ∗i (ri)φ

∗
k(rk)H2(i, k)φi(ri)φk(rk)dridrk + . . .

. . .

N∑

i<k

∫
φ∗i (ri)φ

∗
k(rk)H2(i, k)φk(ri)φi(rk)dridrk,

where we have used the orthonormality of the set {φi}Ni that gives rise to the
Slater-Condon rules.

Comparing the two-particle terms we note that the correct antisymmetry of
the Slater determinant construct (4) has given rise to the so-called exchange term,
which the simpler Hartree ansatz (3) can not capture.

Let us for a moment consider the more general case of a non-orthogonal set of
spin-orbitals {φi}i and let us look at the simple case of an expectation value of
an operator that is not acting on any electron coordinate, e. g. an overlap integral
< Ψ,Ψ >. Then, we realize that in the case of the Hartree ansatz (3) we obtain a
single term,

∫
φ∗1(r1) · . . . · φ∗N (rN )φ1(r1) · . . . · φN (rN )dr1 . . . drN .

In the case of the Slater determinant construct (4) we obtain a sum of N ! terms,
∫
φ∗1(r1) · . . . · φ∗N (rN )A {φ1(r1) · . . . · φN (rN )} dr1 . . . drN ,

where A is the antisymmetrizer given as

A =
∑

σ∈SN

ǫ(σ)σ

and ǫ(σ) is the sign of the permutation σ, which is an element in the symmetric
group SN .

Neglecting the specifics of one-particle and two-particle operators present in (2),
the question is then: Are all these N ! terms necessary to compute the exchange
term accurately? Or can we neglect terms based on some heuristic criterion such
that in steps of O(N) this truncated sum converges to the true Hartree-Fock (HF)
energy?

Initially, we have to consider N ! or approximately NN terms. Let us take this
determinant as a finite series over the possible permutations, ordered into levels
consisting of all terms having equal number k of deranged elements. If we take
just level k = 0, i. e. only the identity, we obtain the Hartree ansatz (3). If we
take all k = N levels, we obtain the Slater determinant construct (4). If all series
terms are of the same order of magnitude, i.e. if the matrix is full, we are left with
O(N3) scaling due to matrix diagonalization. The magnitude however depends on
the choice of the basis set, e. g. we have O(1) for an orthonormal set.
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Assume we have something in between, namely the case of a hierarchy in the
magnitude of the terms of the series. Let us take a closer look: We haveO(N) levels
and (N − 1)! ≈ N (N−1) terms per level. Let there be an upper bound 1 < ǫ < 0
for each overlap matrix element

∫
φ∗kφldx with k 6= l. Each of the N ! terms of

the determinant is associated to a specific permutation σ and thereby it has fixed
points and deranged points. Fixed points relate to normalization integrals equal
to one –

∫
φ∗kφkdx = 1 – and deranged points to overlap integrals bound from

above by ǫ. Each of the N ! terms can be placed into a hierarchy level based on
powers of the bound ǫ which is related to the number k of deranged elements due
to its associated permutation σ: each term on a level k has magnitude less than
ǫk. Then we can estimate the sum over all terms per level k by

Nk · ǫk.

Thus, ǫ < 1
N must hold in order to obtain a decay over the levels. That is the upper

bound ǫ on the overlap depends on the total number of electron orbitalsN , i. e. the
system size. Here is where we need the locality of the wave function. It allows for a
local environment around each orbital, containing N orbitals with an upper bound
ǫ. Clearly, for a metallic system with delocalized orbitals, that are overlapping
with many others, this scheme is not successful: If the environment contains more
orbitals, the bound must be smaller. In our case of atomic orbitals this is clearly
fulfilled by the exponential decay of the orbitals and the finite electron density. In
our talk we investigated in detail various cases of such locality constraints on the
overlap between orbitals and thus on the decay per level.

So far, we have considered only overlap and not the action of an operator, but
the consequences in these more involved cases are very similar. Note that a clearer
and more concise notation is given by density matrices and the extended Slater-
Condon rules by Löwdin [3]. The essence is that we can re-distribute each term
associated to a specific permutation to a specific set in a partition of the molecular
system. Eventually, all terms belonging to such a set form the expectation value (1)
with a full Slater determinant ansatz function (4) of the total ground state energy
of another, smaller molecular system that consists only of atoms in this smaller set.
If the partitioning scheme is linear in the number of sets, this eventually allows
for a linear scaling, approximative, converging evaluation of the original molecular
system’s total ground state energy in terms of HF accuracy.

This truncated hierarchy and partitioning of the molecular system is basically
the so-called Bond Order diSSection in an ANOVA-like fashion (BOSSANOVA)
scheme, see [4]. Here, the fragmentation schemes are derived from the point of the
ANalysis Of VAriance (ANOVA) decomposition of the Born-Oppenheimer-energy
function working on nuclei coordinates. To this end, the system can easily be
successfully built from one-particle energies, two-particle, namely bond energies,
three-particle energies and so on, i. e. from the ANOVA terms of the energy. Our
new approach is trivial to parallelize and gradients are obtained straightforwardly.
Figures 1(a) and 1(b) underline experimentally the decay of the terms.
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(a) Absolute error of summed fragmentary
energies up to level k against full HF calcu-
lation for alkanes

(b) Sum over all terms associated to one-
particle, two-particle, ... contributions to
the total energy per level k for various or-
ganic molecules
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Tensor Decomposition in Electronic Structure Theory: Canonical

Product Format and Coupled Cluster Theory

Alexander A. Auer

(joint work with Udo Benedikt, Mike Espig, Wolfgang Hackbusch)

A series of new approximations for expressing tensorial quantities has been devel-
oped and refined in applied mathematics in recent years [1, 2]. These approaches
are related to techniques like Cholesky decomposition, singular value decomposi-
tion or Laplace denominator decomposition [3, 4, 5, 6, 7] and yield low dimensional
representations of high dimensional quantities. Especially appealing for applica-
tions in electronic structure theory is the canonical product format, where any
tensor A(w, x, y, z) ∈ Rn×n×n×n can be expressed as a sum over representing
vectors connected by the Kronecker product:

A =

R∑

r=1

(aw)r ⊗ (ax)r ⊗ (ay)r ⊗ (az)r
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where R is the rank or expansion length of the approximation. To obtain a low
rank approximation for a given tensor, an iterative scheme based on an accelerated
gradient algorithm is utilised to find an approximate representation Ã with small
rank and an upper bound for the error ǫ:

||A− Ã|| ≤ ǫ
In Coupled Cluster theory an exponential ansatz is used to express the Coupled
Cluster wave function ΨCC based on the Hartree-Fock determinant Ψ0:

|ΨCC〉 = eT̂ |Ψ0〉
with the cluster operator

T̂ =
∑

i
a

tai â
+
a âi +

∑

ij
ab

tabij â
+
a âiâ

+
b âj + . . .+

∑

ij...
ab...

tab...ij... â
+
a âiâ

+
b âj . . .

The cluster operator can be truncated to give the hierarchy of CCSD (single tai
and double amplitudes tabij ), CCSDT (also triples tabcijk are included) and so on. [8]
The energy can be obtained from the expectation value and the amplitudes are
determined by projection:

〈Ψ0|e−T̂ ĤeT̂ |Ψ0〉 = E 〈Ψab...
ij... |e−T̂ ĤeT̂ |Ψ0〉 = 0

The bottleneck of these calculations are contractions of the cluster amplitudes t
with the two electron integrals v. The most time consuming step in CCSD, for
example, is the contraction :

rabij ← tefij v
ab
ef =

n∑

e,f

tefij v
ab
ef

with n being a measure of the number of orbitals (In the following we will also
use N as a measure of the size of the system). If the two electron integrals and
amplitudes are cast into canonical product format :

vabef ≈
R∑

r=1

(va)r ⊗ (vb)r ⊗ (ve)r ⊗ (vf )r tabij ≈
K∑

k=1

(ta)k ⊗ (tb)k ⊗ (ti)k ⊗ (tj)k

the contraction can be rephrased as

K∑

k=1

R∑

r=1

(
n∑

e=1

(te)k(v
e)r

) 


n∑

f=1

(tf )k(v
f )r


 (va)r ⊗ (vb)r ⊗ (ti)k ⊗ (tj)k

=

K∑

k=1

R∑

r=1

〈(te)k, (ve)r〉
〈
(tf )k, (v

f )r
〉
(va)r ⊗ (vb)r ⊗ (ti)k ⊗ (tj)k

Accordingly, this format has the advantage that a tensor contraction can be car-
ried out as a combination of scalar products and vector copies that scale at most
as n ·K · R, were K and R denote the rank of the two tensors and n denotes the
length of the vectors (usually the orbital index).
This way, any contraction can be reduced to scalar product/copy operations that
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scale as n ·K ·R in contrast to the exponential scaling with N that for example a
FCI calculation would exhibit.

Investigations for the decomposition of integrals and Coupled Cluster ampli-
tudes have been carried out in which the scaling of the expansion length with
system and basis set size has been investigated [9]. It is found that with a thresh-
old in the l2 norm of 10−2 for the two-electron integrals the ranks scale as N2.5 for
the AO integrals, between N1.5 (vabij ) and N

1.7 (vabcd) for the MO integrals and as

N1.4 or better for the t2 amplitudes as estimated from MP2. Thus, that the rank
for the two-electron integrals scales approximately as N2 while the rank of the
wavefunction parameters scales a little higher or equal to N . As a consequence,
for any post-HF electronic structure calculation an overall scaling in the order of
N4 or N5 seems possible. Furthermore, the error of a low-rank approximation is
bound such that the advantages of highly accurate post-HF methods are preserved.
Typical errors resulting for the energy are in the order of less than a millihartree [9].

Besides the canonical product format other tensor formats might also have a
high potential for the application in CI-bases approaches from electronic structure
theory. Among these, the Matrix Product State representation that is frequently
used in DMRG [10, 11, 12, 13, 14] might be of advantage:

A =

K∑

k=1

L∑

l=1

R∑

r=1

(aw)k ⊗ (ax)kl ⊗ (ay)lr ⊗ (az)r

Another format arises naturally from a closer look at the RI approximation or
Cholesky decomposition for the two electron integrals [15, 16, 17]

〈pq| |rs〉 =
X∑

x=1

V x
pqV

x
rs

by application of the decomposition to the RI matrices, so that these matrices can
be cast into canonical product format

V x
pq =

K∑

k=1

(vp)k ⊗ (vq)k ⊗ (vx)k V x
rs =

L∑

l=1

(vr)l ⊗ (vs)l ⊗ (vx)l

which then yields the following form when the two electron integrals are recon-
structed

〈pq| |rs〉 =
X∑

x=1

K∑

k=1

L∑

l=1

(vp)k ⊗ (vq)k ⊗ (vx)k ⊗ (vr)l ⊗ (vs)l ⊗ (vx)l

=

K∑

k=1

L∑

l=1

Xkl (v
q)k ⊗ (vx)k ⊗ (vr)l ⊗ (vs)l

This format might be used to circumvent the increase of rank in subsequent tensor
contractions. All of these are subject to current research and further possibilities
will be explored for finding appropriate approximations for post-HF electronic
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structure methods.

From these results we conjecture that using low rank approximations for the
wavefunction parameters solving the Schrödinger equation numerically is possible
in sub-exponential complexity. This perspective is almost like reaching a promised
land, as indications for the possibility of such a scheme exist in several forms
(Hohenberg-Kohn Theorems of DFT, modern versions of Quantum Monte Carlo
or DMRG etc.).
Certainly, with new techniques from numerical mathematics at hand we seem to
have reached at least some kind of shore. But while this might be the El Dorado
quantum chemists have been looking for it might just as well be some strange small
island that will soon be forgotten after we have left it for the next big finding. And
just as for any discovery, the problems start immediately after reaching the shore
- a long list of questions needs to be addressed, and several criteria have to be
fulfilled for a practicable scheme:

• Is the decomposition of the tensorial quantities feasible
as far as computational effort is concerned ?
• How to minimise the effort for the decomposition procedure ?
• Is the procedure numerically stable ?
• Is the canonical format really optimal and what other
options do we have ?

And thinking even further (in the direction of matrix product states in DMRG) -
if one would not introduce the canonical format as an a-posteriori approximation
scheme for multidimensional quantities but rather as an ansatz in the Hamilton-
ian, what new view on electronic structure methods would evolve from this ?
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A numerical analysis for the Coupled Cluster equations

Thorsten Rohwedder

Nowadays, the Coupled Cluster (CC) method is the probably most widely used
high precision method for the solution of the main equation of electronic struc-
ture calculation, the stationary electronic Schrödinger equation. Traditionally, the
equations of CC are formulated as a nonlinear approximation of a Galerkin so-
lution of the electronic Schrödinger equation, i.e. within a given finite basis set.
Unfortunately, this concept prohibits the direct application of concepts of non-
linear numerical analysis to obtain e.g. existence and uniqueness results, quasi-
optimality estimates, or results on the convergence of discrete solutions to the full
solution. The solution presented in this talk is the equivalent reformulation of
the original, continuous electronic Schrödinger equation as a root equation for an
infinite-dimensional nonlinear Coupled Cluster function, discretizations of which
then lead to the canonical projected CC equations. The main obstacle is that the
cluster operator T and its adjoint have to be continuous mappings on the energy
space H1. Once this is proven, one can formulate the continuous CC equations
and define the continuous CC function f , to which then modifications of well-
known concepts from nonlinear operator analysis can be applied: We prove that
f possesses the property of being locally Lipschitz continuous and locally strongly
monotone in a neighborhood of the solution t∗; then, techniques from operator
theory partly already used in [4] apply to obtain existence/uniqueness and conver-
gence results, and we will prove a goal oriented error estimator [1] for convergence
of the energy E∗.
The (continuous as well as the classical, discrete) Coupled Cluster method is based
on a fixed one-particle basis

B := {χP | P ∈ I} ⊆ H1(R3 × {±1

2
})

(I infinite for continuous CC, finite otherwise), which is used to construct an
antisymmetric basis

B := {Ψµ | µ ∈ M}, Ψµ :=

N∧

i=1

χPi := Q(⊗N
i=1χPi),(1)

in which Q : L2((R3 × {± 1
2})N) → L2((R3 × {± 1

2})N ) is the antisymmetrization
mapping. B is indexed by a setM of multiindices, each consisting of N ordered
indices from I, and spans the solution space H1 of antisymmetric, one time weakly
differentiable functions, on which the electronic Schrödinger equation

〈Φ, HΨ〉 = E〈Φ, Ψ〉 for all Φ ∈ H1,(2)



is to be solved. To formulate a set of CC equations equivalent to (2), i.e. where I
is infinite, we assume the following: A subset

Bocc := {χI1 , . . . , χIN} ⊆ B(3)

of N basis functions from B is a basis of an N -dimensional invariant subspace of a
linear symmetric operator F : H1 → H−1; this operator F is spectrally equivalent
to the canonical H1-inner product 〈·, ··〉1, i.e. there are γ,Γ > 0 such that

γ 〈ϕ, ϕ〉1 ≤ 〈Fϕ, ϕ〉 ≤ Γ 〈ϕ, ϕ〉1 for all ϕ ∈ H1(R3 × {±1

2
}).

With this assumption, the formalism of excitation operators Xµ, central to the
Coupled Cluster ansatz, can now be extended to the infinite dimensional setting,
in particular to the space H1. We define the reference determinant Ψ0 as the
determinant formed via (1) from the orbitals contained in Bocc. Further, we define
for each multiindex µ = (Ir+1, . . . , IN , A1, . . . , Ar) ∈ M an excitation operatorXµ

by its action on Ψν ∈ B: If the index ν contains the indices I1, . . . , Ir, the operator
replaces them by the orbitals A1, . . . , Ar; otherwise, we let XµΨν = 0. There then
holds the following important theorem.

Theorem 1. (Continuity of the cluster operator.) Let T =
∑

α∈M∗ t∗Xα be the
cluster operator mapping the reference determinant Ψ0 to Ψ∗ =

∑
α∈M∗ tαΨα ∈

H1. T and its L2-adjoint T † map H1 → H1 boundedly; there holds

‖T ‖H1→H1 ∼ ‖Ψ∗‖H1 ∼ ‖t∗‖V ‖T †‖H1→H1 ≤ ‖Ψ∗‖H1 .,(4)

in which ‖ · ‖V denotes a norm on weighted coefficient space V ⊆ ℓ2, isomorphic
to H1.

From this result, we can deduce the following:

Theorem 2. (The continuous Coupled Cluster equations.) A function Ψ = Ψ0 +
Ψ∗ ∈ H1 with Ψ0⊥Ψ∗, together with a corresponding eigenvalue E∗ ∈ R solves the
(weak, CI) eigenproblem

〈Ψµ, (H − E∗)Ψ〉 = 0, for all µ ∈ M(5)

if and only if Ψ = eTΨ0 for some cluster operator T =
∑

α∈M∗ tαXα for which
‖tα‖V <∞, and which fulfils the (continuous) linked Coupled Cluster equations,

E∗ = 〈Ψ0, He
TΨ0〉, 〈Ψµ, e

−THeTΨ0〉 = 0, for all µ ∈M∗,(6)

that is, if t∗ := (tα)α∈M∗ ∈ V fulfils the root equation for the Coupled Cluster
function

f : V → V′, f(t) :=
(
〈Ψα, e

−THeTΨ0 〉
)
α∈M∗

= 0 ∈ V′.(7)

Now, Galerkin-discretization of the nonlinear equation (7), being basically equiv-
alent to the electronic Schrödinger equation, yields the classical, projected CC
equations, and their connection to the continuous solution t∗ can directly be an-
alyzed by investigating the analytical properties of the CC function given in the
following.



Theorem 3. (Strong monotonicity.) The CC function f and all derivatives f (n)

of f are Lipschitz-continuous on bounded domains of V.
Let E∗ be a simple eigenvalue of H. If the reference determinant Ψ0 lies in a suit-
able neighbourhood of the (intermediately normed) solution Ψ of the Schrödinger
equation, the Coupled Cluster function f is strongly monotone in a neighbourhood
of its solution t∗ = (t∗α)α∈M∗ , i.e. there are constants γ, δ > 0 such that

〈f(s)− f(t), s− t〉 ≥ γ · ‖s− t‖2
V

(8)

holds for all s, t ∈ V with ‖s− t∗‖V, ‖t− t∗‖V < δ.

The main quatities that influence the constant γ are the quality of the reference
determinant Ψ0 and the spectral gap of the Hamiltonian. From the above theorem,
one obtains the existence and uniqueness statements and error estimates for the
CC method compiled in the following.

Theorem 4. (Existence and uniqueness.) The solution t∗ of the Coupled Cluster
function that belongs to the lowest eigenvalue of (2) is unique in the neighbourhood
Bδ(t

∗).
Let Vd be a subspace of V for which d(t∗,Vd) := minv∈Vd

‖v − t∗‖V is sufficiently
small. Then the discretised (projected) problem

〈f(td), vd〉 = 0 for all vd ∈ Vd(9)

admits a solution td in Bδ,d := Vd ∩Bδ(t
∗) which is unique on Bδ,d and fulfils the

quasi-optimality estimate

‖td − t∗‖V ≤
L

γ
d(t∗,Vd)(10)

with L the Lipschitz constant and γ the monotonicity constant of f on Bδ(t
∗). In

particular, if V(n) is a sequence of subspaces of V for which limn→∞ d(t∗,V(n))→
0, the corresponding solutions t(n) ∈ Bδ,(n) of (9) converge to the continuous so-
lution t∗ ∈ V.

From strong monotonicity, one can also obtain estimators for the CC energy.
To this end, we follow [1] in considering the stationary points of the Lagrangian
L(t, z) = E(t) + 〈f(t), z〉 , i.e. (t∗, z∗) that solves

L′(t∗, z∗) =
{
〈E′(t∗), s〉 − 〈Df(t∗)s, z∗〉

〈f(t∗), s〉

}
= 0 for all s ∈ V.(11)

We obtain the following results.

Theorem 5. (Energy estimators.) Denote by (t∗, z∗) and (td, zd) the solutions the
Coupled Cluster equations (11) and of the discretised (projected) Coupled Cluster
equations on Vd, a sufficiently large subspace of V in the sense that for d(Vd, t

∗),
d(Vd, z

∗) < c for a suitable c > 0, and Under the assumptions of Theorem 3, there
holds

|E(t∗)− E(td)| ≤ ‖td − t∗‖V
(
c1 ‖td − t∗‖V + c2 ‖zd − z∗‖V

)
,

|E(t∗)− E(td)| .
(
d(Vd, t

∗) + d(Vd, z
∗)
)2
.



where the above constants are specified in the proof.

We thus obtain for the CC method a variety of existence and uniqueness state-
ments, quasi-optimality results and error estimates results that resemble much
those for the simpler CI (Galerkin) method (2), while the Lagrangian approach,
via which the dual solution z∗ enters, pays respect to the fact that CC is non-
variational. The main constants influencing the performance of the CC method
are (i) the quality of the reference determinant Ψ0 and (ii) the gap between the
lowest eigenvalue and the rest of the spectrum of the Hamiltonian.
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Bridging the gap between quantum Monte Carlo and explicitly

correlated methods

Heinz-Jürgen Flad

(joint work with Sambasiva Rao Chinnamsetty, Hongjun Luo, André Uschmajew)

It is a major goal in quantum chemistry to achieve highly accurate approximate
solutions of the electronic Schrödinger equation in the Born-Oppenheimer approxi-
mation. The conventional approach based on Slater determinants suffers from slow
convergence with respect to the underlying single particle basis. To overcome this
problem, additional basis functions explicitly depending on inter-particle distances
were introduced by Kutzelnigg and Klopper [1, 2] together with sophisticated ap-
proximation schemes to keep the additional computational effort under control. A
large variety of these pair-correlation functions have been discussed in the litera-
ture, cf. [3] and references therein. We want to study a generalized approach based
on fully optimized pair-correlation functions using stochastic techniques commonly
employed in quantum Monte Carlo (QMC) calculations and tensor product approx-
imation to compute the required two- and three-electron integrals in an accurate
and efficient manner. For a thorough discussion of our approach including numer-
ical examples, we refer to a forthcoming publication [4].

The starting point of our approach is the Jastrow ansatz for the wavefunction,
i.e., Ψ = FΦ, with Jastrow factor

F(x1, . . . ,xN ) = exp

(∑

i

τ (1)(xi) +
∑

i<j

τ (2)(xi,xj) + · · ·
)
,
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and Φ corresponds to the Hartree-Fock (HF) Slater determinant. This ansatz
represents the most popular wavefunction for QMC calculations [5], where the
pair-correlation function is typically represented by a symmetric polynomial

(1) τ (2)(xi,xj) =
∑

I,J

∑

l,m,n

cI,Jlmn(r̄
m
iI r̄

n
jJ + r̄mjI r̄

n
iJ )r̄

l
ij ,

in rational distance variables

r̄iI =
|xi −AI |

1 + |xi −AI |
and r̄ij =

|xi − xj |
1 + |xi − xj |

.

For electron-nucleus distance variables r̄iI only even powers are usually taken into
account. Efficient stochastic techniques for Jastrow factor optimization have been
developed and applied to atoms, molecules and solids [6]. In the present work,
we have used our iterative perturbative approach [7] which provides a stable and
efficient optimization scheme.

After optimization, the pair-correlation function τ (2) can serve as additional
basis function

wij(x1,x2) := (1−Q1)(1−Q2)τ
(2)(x1,x2)φi(x1)φj(x2),

in explicitly correlated methods. Here the indices i, j run over all occupied HF
orbitals, and projection operators Q1 and Q2 map into the single-particle space
spanned by occupied orbitals. In order to enable an efficient computation of the
required two- and three-electron integrals, we try to find the best separable ap-
proximation of τ (2) in L2(R

6) for a given separation rank κ in the general form

τ (2)(x,y) ≈
κ∑

k=1

u
(1)
k (x1, y1)u

(2)
k (x2, y2)u

(3)
k (x3, y3),

which is known in the literature as the canonical tensor format [8].
To illustrate our tensor product approach let us consider a typical three-electron

integral
∑

m

∫

R3

Ajm(x1)φi(x1)φk(x1)Bml(x1)d
3x1,

with

(2) Ajm(x1) :=

∫

R3

|x1 − x2|−1φj(x2)φm(x2)d
3x2,

(3) Bml(x1) :=

∫

R3

τ (2)(x1,x3)φm(x3)φl(x3)d
3x3,

where indices i, j, k, l,m refer to occupied HF orbitals. For each pair of occupied
orbitals, we first compute a low-rank approximation of their product

(4) φi(x)φj(x) ≈
κ′∑

k=1

ϕ
(1)
ij,k(x1)ϕ

(2)
ij,k(x2)ϕ

(3)
ij,k(x3).
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With canonical tensor product approximations for the Coulomb potential and
pair-correlation function at our disposal it is straightforward to compute their
convolutions with orbital products, e.g.,

Bml(x) =

κ,κ′∑

k,k′=1

3∏

i=1

∫

R

u
(i)
k (xi, yi)ϕ

(i)
ml,k′ (yi)dyi.

In order to reduce storage requirements and simplify further computations, we
perform additional compression steps for the intermediate quantities Ajm and
Bml. With it we can compute

(5) Djl(x) :=
∑

m

Ajm(x)Bml(x) ≈
κ∑

k=1

d
(1)
jl,k(x1) d

(2)
jl,k(x2) d

(3)
jl,k(x3),

including a further compression step. Finally, three-electron integrals are easily
computed in the tensor format. A similar approach has been outlined in [9, 10]
for the computation of standard two-electron integrals.

1. Best N-term approximation theory for tensor components

In order to perform computations in the tensor format in an efficient manner, it
is beneficial to have data sparse representations for univariate and bivariate tensor
components available.

The concept of best N -term approximation belongs to the realm of nonlin-
ear approximation theory [11]. One considers for a given basis the best possible
approximation of a function f in the nonlinear subset ΣN which consists of all
possible linear combinations of at most N basis functions. Here, the approxima-
tion error σN (f) := inffN∈ΣN ‖f − fN‖H is given with respect to the norm of
an appropriate Hilbert space H . Best N -term approximation spaces Aα

q (H) for a

Hilbert space H can be defined such that a convergence rate σN (f) ∼ N−α with
respect to the number of basis functions N can be achieved.

In our applications we consider best N -term approximation for wavelet bases.
Since we are mainly interested in the energy of a molecule it is appropriate to
restrict to the Sobolev space H1(I) on a bounded interval I ⊂ R. The corre-
sponding approximation spaces Aα

q (H
1(I)) have been identified as Besov spaces

[11] which have an equivalent norm for 1
q = α+ 1

2 in terms of weighted ℓq spaces

of wavelet coefficients.
Best N -term approximation can be also applied to bivariate tensor components

of pair-correlation functions, where the basis consists of anisotropic tensor product
wavelets ψj1,a1(x)ψj2,a2(y), cf. [12]. Similar to the univariate case, we consider
approximation spaces Aα

q (H
1(Ω)) for a square Ω := I × I ⊂ R2.

1.1. Univariate components of tensor products. In the course of our tensor
algorithm for the computation of three-electron integrals, we encounter several in-
termediate quantities (2), (3), (4) and (5) which are represented by tensor product
approximations.
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Theorem 1. Let the function η correspond to a solution φi of the Hartree-Fock
equation, a pointwise product φiφj , its convolution with the Coulomb potential

Alm or pair-correlation function Blm. The directional univariate components η
(i)
k ,

for i = 1, 2, 3 and k = 1, . . . , κ, of their canonical best separable tensor product
approximations, i.e., local minimizers1

κ∑

k=1

η
(1)
k ⊗ η

(2)
k ⊗ η

(3)
k = arg min

{h(i)
k }

∥∥∥∥η −
κ∑

k=1

h
(1)
k ⊗ h

(2)
k ⊗ h

(3)
k

∥∥∥∥
L2(R3)

,

belong to best N -term approximation spaces Aα
q (H

1(I)) for all α > 0 and 1
q =

α+ 1
2 .

1.2. Bivariate tensor components of pair-correlation functions. In order
to study the best N -term approximation of bivariate tensor components of a pair-
correlation function, it is necessary to estimate its singular behaviour along the
diagonal. No rigorous general results are presently available, however, guided by
the ansatz (1) used in QMC calculations, we make the following assumption

(6) |∂pxi
τ (2)(x,y)| . |x− y|1−pf(x,y), for p ≥ 1 and x 6= y,

concerning the singular behaviour of the pair-correlation function near the diago-
nal, where f belongs to the Schwartz space S(R3×R3) of smooth rapidly decreasing
functions.

Theorem 2. Suppose a two-particle correlation function τ (2) satisfies the estimate

(6). The bivariate components u
(i)
k (xi, yi), i = 1, 2, 3, k = 1, . . . , κ, of a canonical

tensor product approximation, i.e., a local minimizer
κ∑

k=1

u
(1)
k ⊗ u

(2)
k ⊗ u

(3)
k = arg min

{w(i)
k }

∥∥∥∥τ
(2) −

κ∑

k=1

w
(1)
k ⊗ w

(2)
k ⊗ w

(3)
k

∥∥∥∥
L2(R6)

,

belong to best N -term approximation spaces Aα
q (H

1(Ω)) with 0 < α < 3
2 and

1
q = α+ 1

2 for anisotropic tensor product wavelets.
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Multiparticle equations for interacting Dirac Fermions in graphene

nanostructures

Heinz Siedentop

(joint work with Reinhold Egger, Alessandro De Martino, and Edgardo
Stockmeyer)

We study the energy of quasi-particles in graphene within the Hartree-Fock ap-
proximation. The quasi-particles are confined via an inhomogeneous magnetic field
and interact via the Coulomb potential. We show that the associated functional
has a minimizer and determine the stability conditions for the N-particle problem
in such a graphene quantum dot. See [1].

This work has been continued by Paananen, Egger, and Siedentop [2]. There,
the ground state energy is computed as a function of the effective interaction pa-
rameter α from the Hartree-Fock approximation and, alternatively, by employing
the Müller exchange functional. For N = 2, we compare those approximations to
exact diagonalization results. The Hartree-Fock energies are highly accurate for
the most relevant interaction range of α up to about 2, but the Müller functional
leads to an unphysical instability when α exceeds 0.756. Up to 20 particles were
studied using Hartree-Fock calculations. Wigner molecule formation was observed
for strong but realistic interactions, accompanied by a rich peak structure in the
addition energy spectrum.
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Atomic Structure via Highly Charged Ions

Benjamin D. Goddard

(joint work with Gero Friesecke)

The principal aim of quantum chemistry is to solve the (non-relativistic, Born-
Oppenheimer) electronic Schrödinger equation (SE). In principle, this allows the
prediction of all chemical and physical properties of the system. However, due to
the dimension scaling exponentially with the number of particles, standard nu-
merical techniques are unsuitable, and an approximate model must be treated. In
addition, this is a tough multi-scale problem; interest lies not in absolute energies,
but in energy differences, which are generally several orders of magnitude smaller.

Although very successful, most numerical methods in current use are based on
chemical intuition and computational experience. In addition, the best calculated
wavefunctions are linear combinations of millions or even billions of Slater determi-
nants. This presents major problems when trying to analyse such wavefunctions,
or to interpret them in terms of standard chemistry models, such as orbital shell
filling (the Aufbau principle).

We consider iso-electronic sequences in which the number of electrons N is
kept fixed and the nuclear charge Z is increased, leading to highly-charged ions.
The mathematical motivation is that the ratio between spectral gaps (differences
in eigenvalues of the Hamiltonian) and the total energies (eigenvalues) becomes
small in the large-Z limit: (spectral gaps)/(total energies)= O(1/Z). The true
physical ratio is small, even for neutral atoms, e.g. 1:1000 for Carbon, leading to
a truly multi-scale system.

We show that many of the interesting chemical properties of small atoms and
ions can be demonstrated through the ‘PT model’, based on first order pertur-
bation theory[1]. This model is symmetry preserving and produces numerically
accurate results for highly charged ions. The central result is:

Theorem[1] Consider the SE for the atom/ion with N=1 to 10 electrons and
nuclear charge Z.
(i) For sufficiently high Z, the PT model ground state (lowest eigenspace) angular
momentum, spin and parity quantum numbers, and its dimension agree with that
of the SE. In practice, this holds for all Z ≥ N .
(ii) The lowest n(N) energy levels of the SE have the asymptotic expansion

Ej(N,Z)

Z2
= Ẽ(0) +

1

Z
Ẽ

(1)
j +O

( 1

Z2

)
as Z →∞,

where Ẽ(0) and Ẽ
(1)
j are explicitly calculated rational numbers.

(iii) In the limit of highly charged ions (Z → ∞), the SE and PT model ground
state (a simple, explicit vector space) agree, in the sense that, in the operator

norm, the projections P0, P̃0 onto these spaces satisfy limZ→∞ ‖P0 − P̃0‖ = 0.

The derivation requires a rescaling of the SE, standard techniques from de-
generate perturbation theory, and a careful analysis of the symmetry group of
the Hamiltonian and its representation theory. This analysis vastly simplifies
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the problem, e.g. by decomposing the 70×70 dimensional matrix for Carbon into
fifteen 2×2 and forty 1×1 matrices. Calculation of the high-dimensional (over
(R3 × Z2)

N ) energy integrals is achieved through Slater’s rules, Fourier analysis
and residue calculus, leading to purely rational numbers. The whole process can
be performed by hand; given the sizes of the matrices involved this is somewhat
surprising. The resulting simple wavefunctions can be written out explicitly[1].

By suggesting a novel scaling in which to plot energies of iso-electronic se-
quences, this result allows identification of incorrectly assigned experimental re-
sults e.g. for five-electron ions[3]. It also allows, through curve fitting, to predict
the values of missing experimental energy levels. In addition, some empirical
chemical observations may be studied rigorously.

For example, for seven out of ten sequences (H, He, Li, N, O, F, Ne), the stan-
dard Born-Hund-Slater configuration (interpreted as a Slater determinant) is an
element of the asymptotic ground state. For the three remaining sequences (Be,
B, C), the PT model produces corrections to the semi-empirical configurations[1].
These corrections, dramatically alter correlation properties such as relative elec-
tron positions[3], providing insight into chemical bond angles. They also have a
theoretical impact, e.g. they show that for fixed N , and large Z, the order of the
Hartree-Fock error is not universal:

EQM − EHF

{
= O(1) for H, He, Li, N, O, F, Ne

∼ Z for Be, B C

In this sense, the high-Z limit detects static correlations.
Unfortunately, for atoms with Z = N , the energies produced by this model are

not chemically accurate. This is a result of its failure to satisfy the virial theorem,
which enforces a ratio of the kinetic and potential energies. We therefore extend
the model by introducing three variational parameters (analogous to widely-used
‘screening parameters’), producing the first mathematical definition of a Configu-
ration Interaction model[2]. This model is ‘minimal’ in the sense that it contains
the smallest basis, with the fewest parameters, such that it is symmetry preserving,
asymptotically exact, and satisfies the virial theorem. Up to minimization over
the three parameters, it remains exactly soluble by hand. The energies obtained
for atoms are comparable to (and in some cases better than) those of much larger
numerical models[2].

Some interesting open problems include extension to more electrons[5, 6], in-
clusion of relativistic effects[7] and use of the simple wave functions to predict
molecular geometries[4]. It is possible that these techniques can be extended to
molecules, and also that other heuristic explanations of chemical effects may be
more rigorously explained by similar methods.
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Electronic Structure of 3d Transition Metal Atoms

Christian B. Mendl

(joint work with Gero Friesecke)

The search for accurate computational methods for the N -electron Schrödinger
equation at moderate computational cost has been a focus of activity for several
decades. The present talk is a contribution to one part of the picture, wave-
function methods for atoms. We present an algorithmic framework for transition
metal atoms which renders asymptotics-based configuration-interaction (CI) com-
putations for atoms with basis sets of up to 50 one-electron spin orbitals, up to 30
electrons, and full resolution of all valence electron correlations feasible.

These asymptotics-based CI methods [1, 2] reproduce, at fixed finite subspace
dimension, the exact Schrödinger eigenstates in the limit of fixed electron number
N and large nuclear charge Z.

Starting from first principles, the N -electron Schrödinger equation reads

(1) Hψ = Eψ, ψ ∈ L2
a

((
R3 × Z2

)N)

whereH is the Hamiltonian of the system, ψ the wavefunction andE the energy. In
our framework, the (non-relativistic, Born-Oppenheimer) Hamiltonian governing
atoms/ions with N electrons and nuclear charge Z equals (in atomic units)

H =

N∑

i=1

(
−1

2
∆xi
− Z

|xi|

)
+

∑

1≤i<j≤N

1

|xi − xj |
.

It has the well-known symmetry group

(2) SU(2)× SO(3)× Z2,

consisting of simultaneous rotation of electron spins, and simultaneous rotation
and sign reversal of electron positions. This leads to the conservation law that the
Hamiltonian leaves the simultaneous eigenspaces of the (N -particle) spin, angular
momentum and parity operators

(3) L2, Lz, S
2, Sz , R̂
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invariant.
Our principal contribution is the development of an efficient algorithm that

minimizes the curse of dimension. The main savings come from exact (i.e. sym-
bolic) and efficiently automated exploitation of symmetry (2) to perform dimension
reduction.

CI methods approximate the electronic Schrödinger equation (1) by projecting
it onto a well chosen subspace V :

PHPψ = Eψ, ψ ∈ V ⊂ L2
a

((
R3 × Z2

)N)

P = orthogonal projector onto V,

where V is a span of a finite number of Slater determinants |χi1 · · ·χiN 〉 built from
a finite number of spin orbitals {χ1, . . . , χK} ⊂ L2(R3 × Z2).

We obtain the Ansatz space V via perturbation theory in 1/Z [1, 2]. Thus, V
contains exact large-Z limits of low eigenstates and resolves gaps and wavefunc-
tions correctly in the large-Z limit, at fixed finite model dimension. E.g., for the
carbon atom,

V = configurations
{
[He]2sj 2pk such that j + k = 4

}
.

This corresponds to FCI in an active space for the valence electrons. Importantly,
we retain the LS symmetries (2) of the atomic Schrödinger equation.

To obtain the symmetry subspaces, we have developed a fast algorithm for
diagonalizing the LS operators (3). In detail, we make use of the subshell tensor
product structure (such that no explicit antisymmetrization between subshells is
needed). Thus, we can iteratively employ Clebsch-Gordan formulae. A key point

sym conf. dim Ecalc [a.u.] Eexp [a.u.]

Ca 3D 4s1 2 -674.1634
1S 4s2 1 -674.2442 -680.1920

Sc 4F 4s1 3 -756.9381
2D 4s2 2 -756.9968 -763.8673

Ti 5F 4s1 8 -845.3714
3F 4s2 3 -845.4210 -853.3503

V 6D 4s1 17 -939.5952
4F 4s2 8 -939.6375 -948.8394

Cr 7S 4s1 14 -1039.7864 -1050.4914
5D 4s2 17 -1039.7852

Table 1. Asymptotics-based CI results with active space
[Ar] 3dj4s14pk4dℓ and [Ar] 3dj4s24pk4dℓ, respectively. Boldface
denotes the experimental ground state symmetry, and italic font
the lower of each pair of calculated energies, in exact agreement
with the experimental data. Fourth column: Dimension of the
symmetry subspace containing the ground state.
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of this approach is the fact that the computing time is linear in the number of
subshells at fixed angular momentum cutoff, e.g., 1s, 2s, . . . , n s ∼ O(n). Our
implementation [4] encodes Slater determinants as binary bitfields. Thus, we can
use (typically very fast) bit operations for the necessary calculations.

Finally, we optimize the orbital exponents (so-called “dilation parameters”) to
minimize the energy after symmetry subspace decomposition, which is different
from using Hartree-Fock orbitals in CI methods. As added benefit, our solutions
satisfy the Virial theorem.

Applications to 3d transition metal atoms [3] are in good agreement with exper-
imental data (the results of our computations are shown in table 1). In particular,
we reproduce the anomalous magnetic moment and orbital filling of Chromium in
the otherwise regular series Ca, Sc, Ti, V, Cr.

References

[1] Gero Friesecke and Benjamin D. Goddard. Explicit large nuclear charge limit of electronic
ground states for Li, Be, B, C, N, O, F, Ne and basic aspects of the periodic table. Multiscale
Model. Simul. 7, 1876 (2009)

[2] Gero Friesecke and Benjamin D. Goddard. Asymptotics-based CI models for atoms: prop-
erties, exact solution of a minimal model for Li to Ne, and application to atomic spectra.
Multiscale Modeling and Simulation 7, 1876-1897 (2009)

[3] Christian B. Mendl and Gero Friesecke. Efficient algorithm for asymptotics-based
configuration-interaction methods and electronic structure of transition metal atoms. Jour-
nal of Chemical Physics 133, 184101 (2010)

[4] Christian B. Mendl. The FermiFab toolbox for fermionic many-particle quantum systems.
Computer Physics Communications 182, 1327-1337 (2011)

[5] Gero Friesecke and Benjamin D. Goddard. Atomic structure via highly charged ions and
their exact quantum states. Physical Review A 81, 032516 (2010)

Stochastic Coupled Cluster Theory

Alexander James William Thom

Key to the success of Monte Carlo techniques is the ability to reduce computational
effort by converting sums and integrals over extremely large spaces into a series
of discrete samples which approximate the full calculation to arbitrary accuracy
with increasing numbers of samples. In this talk we cast the Coupled Cluster
equations in such a form as can be sampled with Monte Carlo techniques, and
show how by parametrization as discrete objects in excitation space the Coupled
Cluster equations may be easily approximated and solved[1].

The space in which we shall represent single reference Coupled Cluster theory
is that of excitors which act with respect to a reference Slater determinant. Given
an orthonormal set of 2M spin-orbitals, we partition them into a set of N which
are occupied in the reference determinant, denoted φi, φj , . . . φn, and 2M − N
unoccupied, or virtual orbitals, denoted φa, φb, . . . φf . The complete space of N -

electron Slater determinants in this basis has size
(
2M
N

)
and will be denoted by Dm

where m is anN -vector listing the orbitals occupied in a given determinant. Given
the occupied/virtual partitioning, we may also represent all possible determinants
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with respect the the reference (which we will denote D0) by listing the occupied
orbitals removed and virtual orbitals added to the determinant, such that Dab

ij

represents the determinant where i and j in the reference have been replaced
by a and b. Further we shall denote by âabij the excitation operator or excitor

which performs this process, Dab
ij = âabijD0. The excitors behave such that it

is not possible to excite from or to an orbital multiple times, e.g. âai â
b
i = 0

and âai â
a
j = 0. By applying each of the

(
2M
N

)
possible excitors to the reference

determinant, the whole of of determinant space may be generated, and there is
a one-to-one correspondence between excitors and determinants, and so we may
denote the excitors by the determinant they would create, Di = âiD0.

Using these excitors, we may parametrize all possible N -particle wavefunctions
in this basis in a number of ways. Coupled Cluster theory uses an exponential

Ansatz for the wavefunction, ΨCC = eT̂D0, where we define T̂ =
∑

i tiâi. This
seemingly complicated parametrization is used owing to its desirable property of
remaining size-consistent even if the sum of excitors is restricted to a limited level
of excitation. In essence this is due to the fact that despite a truncation, the expo-
nential ensures that the wavefunction can contain contributions from determinants
at all excitation levels.

To determine the parameters {ti}, the projected Schrödinger equation is solved;
i.e. for all m, we solve

(1) 〈Dm|Ĥ − E|ΨCC〉 = 0.

In general this may be expressed in an iterative form, beginning with a guess for
all {ti} and E, and iterating until convergence. The complexity in this arises from
the expansion of the exponential

(2) eT̂D0 =


1 +

∑

i

tiâi +
1

2

∑

ij

titjâiâj +
1

3!

∑

ijk

titjtkâiâjâk + . . .


D0.

Instead of explicitly rearranging the equations (1) in an iterative form, which
is the means by which many conventional implementations work, we note that
solutions to the Coupled Cluster equations must also satisfy

(3) 〈Dm|1− δτ(Ĥ − E)|ΨCC〉 = 〈Dm|ΨCC〉,
where δτ is some small positive number We may write this as an iteration from

time τ to τ + δτ ,

(4) tm(τ) − δτ〈Dm|Ĥ − E|ΨCC(τ)〉 = tm(τ + δτ).

Iterating in this form will result in a solution to the Coupled Cluster equations,
though the evaluation of the second term in (4) is not trivial. Indeed, it turns out
to be easier to sample this term and additionally to discretize the amplitudes, as
has been done in the FCIQMC method[2, 3]. In analogy to Anderson[5], we shall
represent amplitudes of excitors by sets of excitor particles or excips. Each excip
sits on a given excitor, ân and is given a positive or negative sign. The mean signed
number of excips at a given excitor will be taken to represent its (unnormalized)
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amplitude. We may approximate the action of (4), with some simple stochastic
steps.

The first is sampling ΨCC, by selecting randomly from all possible clusters in
(2), e.g. titjâiâjD0. Once selected the cluster is collapsed to form determinant,
titjâiâjD0 = titjânD0 = titjDn. This process may involve some sign changes or
even result in zero (if i and j excite from the same occupied or to the same virtual
orbitals).

The second stochastic process is the sampling the action of the Hamiltonian.
For each Dn generated from sampling ΨCC, we could enumerate all possible Dm,
evaluating 〈Dm|Ĥ − E|Dn〉 and updating tm accordingly. As the Hamiltonian
only connects up to single and double excitations from a determinant, we may in-
stead sample this process by randomly picking Dm as a single or double excitation
of Dn, and updating tm appropriately. We may instead sample this by selecting
a single connected determinant and creating an appropriately signed excip there
with a probability proportional to |δτHmn|. Additionally, as the diagonal elements
of the Hamiltonian are large, we explicitly perform the case when m = n, this time
with probability proportional to |δτ(Hnn − E)|.

Finally, after these two processes have been done for as many clusters as required
to be sampled, the new list of excips is sorted and any opposite signed pairs of
excips on the same excitor removed.

We additionally show how, with the application of the initiator approximation of
Cleland and Alavi[4], this method can vastly reduce the storage and requirements
for Coupled Cluster calculations. We present results of CCSDTQ calculations on
the neon atom with basis sets up to cc-pV6Z and demonstrate calculations beyond
the capability of other present methods.
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Relativistic effects in highly charged ions

Robert Lang

(joint work with Gero Friesecke)

We study relativistic effects in highly charged ions via perturbation theory. Our
starting point is the non-relativistic Schrödinger operator,

(1) H(N) := H0(N) + Vee(N) :=

N∑

i=1

(
−1

2
∆i −

Z

|xi|

)
+

1

2

∑

i6=j

1

|xi − xj |
,

decomposed into a non-interacting part, H0(N), which contains only kinetic terms
and the electron-nucleus interactions, and a part describing the electron-electron
interaction, Vee(N). Such N -electron systems can be treated perturbatively in the
iso-electronic limit (fixed N , but Z → ∞) due to a rescaling of the eigenfunction
ψ(x, s) of H(N):

(2) ψ̃(xi, si) := Z−3N/2 ψ(xi/Z, si), i = 1, . . . , N ,

where xi and si denote, respectively, the spatial and spin coordinate of the i-th
electron. This leads to the eigenvalue equation

(3)

(
H0(N) +

1

Z
Vee(N)

)
ψ̃ =

E

Z2
ψ̃ ,

where the interacting part becomes negligible for Z →∞.
Let P denote the orthogonal projection onto the non-interacting ground state

V0(N). In [1, 2] the eigenvalue equation PH(N)Pψ = Eψ is solved analytically
for ψ ∈ V0(N) with 3 ≤ N ≤ 10. More precisely, the eigenstates of this so-called
perturbation-theory (PT) model are the exact eigenstates of H(N) for Z → ∞.
Inspecting the spectral gaps predicted by the PT model and comparing them to
experimental data from the NIST database [6] shows that for too large values of
Z the non-relativistic PT model cannot describe nature accurately and relativistic
effects become important.

The relativistic corrections to the spectra are implemented by switching from
Schrödinger theory to Dirac theory, which models relativistic one-fermion systems.
We assume that the relativistic corrections can be written as one-particle operators

(4) HX(N) :=

N∑

i=1

δX(i), X ∈ {D, P, LS} ,

with the well-known corrections [3]: Darwin term, δD = πZ δ(3)/2, the next-to-
leading-order term of the energy-momentum relation, δP = −p4/8, and the LS-
coupling, δLS = Z/2 (L ·S)/|x|3. From this we define the relativistic Hamiltonian,

(5) Hrel(N) := H(N) +
1

c20

[
HD(N) +HP(N) +HLS(N)

]
.

The speed of light reads in atomic units c0 = 1/α ≈ 137, with α being the fine-
structure constant.
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At first order perturbation theory only the eigenvalues are corrected the eigen-
states remain the same:

(6) E = −|A|Z2 +BZ +
C

c20
Z4 ,

where A = A(N) ∈ Q− describes the electron-nucleus interactions, B = B(N) ∈
R takes into account the electron-electron interactions, and C = CJ (N) ∈ Q

incorporates the relativistic corrections. For very large values of Z the last term
becomes dominant, but for Z . 40 the applicability of our perturbative ansatz
holds because of the prefactor 1/c20. For instance, for Lithium [1, 4] one has
for the ground state (L = 0, S = 1/2 ⇒ J = 1/2), and its first excited state
(L = 1, S = 1/2⇒ J = 1/2, 3/2):

(7) AGS = −9

8
, BGS =

5965

5832
, C

1/2
GS = − 37

128
,

(8) AE1 = −9

8
, BE1 =

57397

52488
, C

1/2
E1 = − 37

128
, C

3/2
E1 = − 33

128
.

Note, that the relativistic corrections for the ground state and the first-excited

state with total angular momentum J = 1/2 coincide, C
1/2
GS = C

1/2
E1 = −37/128,

although all contributions to them differ. Therefore, the spectral gap between
these two states should not experience a relativistic correction; indeed, the NIST
data confirm this prediction as it is shown in the left figure below.

So far we have reached a qualitative description of relativistic corrections. The
quantitative agreement in the left figure between theory (red line) and experiment
(circles) can be improved by using the Rayleigh-Ritz variational principle as de-
scribed in [5]: the effective nuclear charge, Zeff := Z − ∆(Z) < Z, incorporates
shielding effects for the outermost electron induced by the closed first shell.

(9) 〈ψE1|H(N = 3)|ψE1〉 !
=min ⇒ ∆(Z) ,

for instance ∆(3) = 1.9542 , ∆(10) = 1.7082 , ∆(30) = 1.6457. Note, that the
shielding is quenched for increasing Z which agrees with the fact that effects
based on electron-electron interactions become negligible for Z → ∞. We test
the prediction of the relativistic PT model by inspecting the fine structure (of
Lithium), which is a purely relativistic effect and is not described by H(N) at all.
Before, the spectral gaps have been rescaled by Z2 leading to a straight line in
1/Z. Now, for the splitting we rescale by Z5 which leads in the case of vanishing
shielding effects to a straight line in 1/Z:

(10)
C

3/2
E1 − C

1/2
E1

Z5
=

1

32

1

Z

(
1− ∆(Z)

Z

)3

.

The comparision to the NIST database is shown in the right figure below: the rel-
ativistic PT model with effective nuclear charge agrees very well with the available
experimental data points for Z being large enough.

In summary, highly charged ions provide an elegant setting to study relativistic
effects and explore them qualitatively by first-order parturbation theory. The
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applicability of the relativistic PT model is limited to cases where the relativistic
term in (6) is sub-dominant. In the ultra-relativistic case one has to incorporate
field-theoretic concepts.
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Using sparse grids to solve the vibrational Schrödinger equation

Tucker Carrington Jr.

(joint work with Gustavo Avila)

A new method is presented for solving the vibrational Schrödinger equation

Hψn = Enψn

where

H = T + V

with T a kinetic energy operator (KEO) and V a (Born-Oppenheimer) potential.
The vibrational KEO may be very complicated but the potential is smooth (at
least where wavefunctions have non-negligible amplitude). To compute vibrational
energy levels and wavefunctions one must deal with 3N − 6 coordinates, where N
is the number of atoms.
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The most straightforward approach for solving the Schrödinger equation (Galerkin)
requires representing wavefunctions with basis functions

ψk(q) =
∑

n

ckn

evaluating Hamiltonian matrix elements (integrals), and computing eigenvalues
and eigenvectors of the Hamiltonian matrix. Typically one requires at least hun-
dreds of eigenvalues (and eigenvectors). [1, 2]

For the J = 0 problem, the most obvious basis functions are product functions:

fn1,n2,··· = φn1(r1)φn2(r2) · · ·φnD (rD) · · ·

Between 10 and 100 1-d functions are required for each coordinate and therefore
the total basis (matrix) size is ∼ 103N−6. To compute eigenvalues of a matrix
this large we use an iterative eigensolver – the Lanczos algorithm and this requires
evaluating matrix-vector products.

When the Hamiltonian matrix is a sum of terms each of which is of the form

An1′n1 Bn2′n2 Cn3′n3 · · ·

then matrix-vector products can be evaluated at a cost that scales as nD+1, where
n is a representative number of univariate functions, and D is the number of
coordinates. Hamiltonian matrix-vector products can then be evaluated term by
term. Note that the nD+1 scaling is independent of the sparsity of the matrix.[3]
For each term, matrix-vector products are evaluated by moving sums to the right:

=
∑

n1n2n3

An1′n1 Bn2′n2 Cn3′n3 vn1n2n3

=
∑

n1

An1′n1

∑

n2

Bn2′n2

∑

n3

Cn3′n3vn1n2n3

Although the KEO is usually in this sum of products form, the potential is in
general a complex function. One option is to approximate the potential as a sum
of products using tensor or neural network methods. [6, 5] Another is to use the
original potential and quadrature. Surprisingly, multidimensional quadrature does
not significantly increase the cost of the matrix-vector products. With a product
basis and a product quadrature grid the cost of matrix-vector products still scales
as nD+1. To illustrate the idea consider a two dimensional example. The desired
matrix-vector product is,

wl′m′ =
∑

lm

Vl′m′,lm xlm .

The potential matrix elements

Vl′m′,lm =

∫
dθ

∫
dφFl′ (θ)Gm′ (φ)V (θ, φ)Gm(φ)Fl(θ)
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are replaced by a quadrature approximation

Vl′m′,lm ≈
∑

βγ

Tl′β Qm′γ V (θβ , φγ) Qmγ Tlβ

with

Tlβ ∼ Fl(θβ) , Qmγ ∼ Gm(φγ) .

and the required matrix-vector product becomes,

wl′m′ =
∑

lm

∑

βγ

Tl′β Qm′γ V (θβ , φγ) Qmγ Tlβ xlm .

It can be evaluated by doing sums sequentially,

wl′m′ =
∑

β

Tl′β
∑

γ

Qm′γ V (θβ , φγ)
∑

m

Qmγ

∑

l

Tlβ xlm

at a cost that scales as nD+1.
Although the CPU cost is moderate the memory cost is a problem. We must

store vectors labeled by basis indices, vectors labeled by grid indices, and vectors
labeled by some basis indices and some grid indices. Owing to the fact that, for a
given coordinate, one typically needs more quadrature points than basis functions,
the largest vectors are those labeled by grid indices.

The size of the basis-labeled vectors can be reduced by pruning the basis. The
product basis functions are usually eigenfunctions of a zeroth-order Hamiltonian,
H0 that is a sum of 1d Hamiltonians (separable) pieces,

H = H0 +∆

If all the pieces are identical, removing basis functions with large zeroth-order
energies means discarding basis functions for which

∑

c

nc > b .

The basis size reduction obtained in this fashion is significant. For example, if
3N − 6 = 15 and 15 basis functions are used for each coordinate then the size of
the direct product basis is 4× 1017, but the size of the basis pruned by discarding
all functions for which

∑
c nc > b = 15 is reduced to 7.7 × 107. Pruning the

basis not only reduces the size of vectors, it also decreases the number of required
Lanczos iterations. An useful pruning scheme allows one to evaluate matrix-vector
products efficiently by doing sums sequentially. [4]

When a basis is pruned by retaining functions (in three dimensions) with n1 +
n2 + n3 ≤ b then nmax

1 = b − n2 − n3 and nmax
2 = b − n3. Therefore, with this

pruning scheme it is possible to evaluate sums sequentially because

b∑

n3

nmax
2 (n3)∑

n2

nmax
1 (n3,n2)∑

n1

An1n1Bn2n2Cn3n3 vn1n2n3
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can be replaced by

b∑

n3

Cn3n3

nmax
2 (n3)∑

n2

Bn2n2

nmax
1 (n3,n2)∑

n1

An1n1 vn1n2n3

Although it is possible to prune the basis without jeopardizing the efficiency of
matrix-vector products the size of the quadrature grid remains a problem. When
a product (e.g. Gauss) grid is used the matrix-vector product is:

v2(n′
3, n

′
2, n

′
1) =

∑kmax
1

k1=1 Tn′

1k1

∑kmax
2

k2=1 Tn′

2k2

∑kmax
3

k3=1 Tn′

3k3

V (qk1
1 , qk2

2 , qk3
3 )

∑nmax
3

n3=0 Tn3k3

∑nmax
2

n2=0 Tn2k2

∑nmax
1

n1=0 Tn1k1 v1(n3, n2, n1)

The largest vectors have as many elements as there are quadrature points ∼ nD.
It is the size of the quadrature grid that prevents one from solving more difficult
problems. To overcome this limitation one must find a smaller quadrature grid
with which all matrix elements are nevertheless accurately computed and also
ensure that the smaller grid has enough structure that it is possible to efficiently
evaluate matrix-vector products.

Instead of a product grid we use a Smolyak grid. [7, 8, 9] The Smolyak quad-
rature equation [10] for integrating a function can be written as a sum of D-
dimensional product quadrature grids,

S(D,K) =
∑

f(i)≤H

Ci1,...,iD [Q
i1(x1)⊗ · · · ⊗QiD (xD)],

A Smolyak quadrature built from nested 1D quadratures is advantageous be-
cause the total number of points is smaller and because it has the structure required
to make efficient matrix-vector products possible. We use nested 1D quadratures
constructed for our basis which is composed of products of 1D factors

Φn1··· ,n12(q1, · · · , q12) = χn1(q1) · · ·χn12(q12),

nc = 0, · · · , nc
max, for c = 1, · · · , 12

with

χn(q) = AnHn(q)exp(
−q2
2

).

To build the nested quadratures we use ideas related to those of Patterson. For
C2H4 we use

Ni = 1, 3, 3, 7, 9, 9, 9, 9, 17, 19, 19, 19, 31, 33, 41, 41, · · ·
di = 1, 5, 5, 7, 15, 15, 15, 15, 17, 29, 29, 29, 31, 33, 61, 61, · · · ,

where Ni is the number of points in quadrature Qi and di is the maximum de-
gree exactly integrated by quadrature Qi. Note that we have not chosen the
quadratures to minimise the number of points required to evaluate all monomials
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of degree 2K − 1. Instead, we have chosen to increase the number of important
monomials, with a subset of the coordinates, for which integrals are exact.

In our calculations we use a KEO in normal coordinates,

T̂ = −1

2

D∑

k

ωk
∂2

∂qk2
+K .

K is a complicated term whose treatment is presented in reference [9]. The Lanc-
zos algorithm is used, without re-orthogonalisation, to compute eigenvalues and
eigenvectors.

The hardest part of the calculation is the potential matrix-vector product. A
Smolyak grid has fewer points, but the Smolyak quadrature equation (Eq. (1))
has a sum over contributing grids (the sum over f(i) ≤ H in Eq. (1)). To reduce
the cost of the potential matrix-vector product it is crucial to avoid repeating
this sum at each Lanczos iteration. This can be done by incorporating the sum
over contributions into weights. The Smolyak quadrature of a function f can be
written,

S(6,K)f(q1, q2, q3, q4, q5, q6)

=
∑N1

k1

∑N2

k2

∑N3

k3

∑N4

k4

∑N5

k5

∑N6

k6
w(k6, k5, k4, k3, k2, k1)

×f(qk1
1 , q

k2
2 , qk3

3 , q
k4
4 , qk5

5 , qk6
6 ) ,

where kc labels a quadrature point for coordinate c andNc is the maximum number
of points for coordinate qc. N1 is independent of kc 6=1

N1 = N ((H − (D − 1)))

Using the notation Nj = N(j) the other maxima are

Nc = N

(
H −

c−1∑

i=1

g(ki)− (D − c)
)

where c = 2, 3, · · · , and g(k) is the smallest quadrature rule in the sequence of
quadratures that contains point k.

The new weights are,

w(k6, · · · , k1) =
∑

f(i)≤H

Ci1,··· ,i6
i1wk1 · · · iDwk6 ,

where icwkc is the (1D) weight for the point qkc
c ∈ Qic , and iwk = 0 if qk /∈ Qi. In

terms of these weights the potential matrix-vector product is computed by doing
sums sequentially,

v2(n′
3, n

′
2, n

′
1) =

∑N1

k1=1 Tn′

1k1

∑N2

k2=1 Tn′

2k2

∑N3

k3=1 Tn′

3k3

w(k3, k2, k1)V (qk1
1 , qk2

2 , q
k3
3 )

∑nmax
3

n3=0 Tn3k3

∑nmax
2

n2=0 Tn2k2

∑nmax
1

n1=0 Tn1k1

v1(n3, n2, n1) ,



1834 Oberwolfach Report 32/2011

where Tnk = AnHn(qk). Note that by defining new weights that combine the
Smolyak coefficients Ci1,··· ,i6 and the icwkc we avoid the need to sum over con-
tributing grids at each Lanczos iteration. [7, 8, 9]

In Ref. [9] we present vibrational energy levels of C2H4 computed with a basis
whose size is determined by n1+· · ·+n12 ≤ 11. There are 1.4×106 basis functions.
A Smolyak grid with H = 25 with 1.5×108 quadrature points was used. A product
Gauss grid with comparable accuracy has ∼ 6× 1013 points

This work has been supported by the Natural Sciences and Engineering Re-
search Council of Canada.
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Unique Hartree-Fock Minimizers for Closed Shell Atoms

Fabian Hantsch

(joint work with Marcel Griesemer)

In this talk we discussed the problem of uniqueness of minimizers for the Hartree-
Fock functional of atoms. It was shown that the Hartree-Fock ground state is
unique provided the number of electrons is of the form N = 2

∑s
n=1 n

2, s ∈ N, and
the atomic number Z is sufficiently large compared to N . More specifically, a two-
electron atom with atomic number Z ≥ 35 has a unique Hartree-Fock ground state
given by two orbitals with opposite spins and identical spatial wave functions. Our
result implies that the General, Unrestricted and Restricted Hartree-Fock (GHF,
UHF, RHF) ground states coincide. The fact that this is wrong for N = 2 and
some Z > 1 [2] shows the necessity of some lower bound on Z for the uniqueness
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of the ground state. Our method also applies to Restricted Hartree-Fock theory
where we can allow for any atom whose electrons are in an arbitrary closed shell
configuration. We refer to [1] for further details and more results on existence and
uniqueness of critical points for both the Hartree-Fock and the Hartree functionals.
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QC-DMRG and recent advances in tensor product approximation

Reinhold Schneider

The DMRG algorithm is a well established tool for computing strongly cor-
related quantum systems, widely used for lattice spin systems [S]. Presently we
consider its application to the numerical solution of the electronic Schrödinger
equation the QC-DMRG (quantum chemistry DMRG) e.g. [LH]. The numeri-
cal solution of partial differential equations in d dimensions, d >> 1, is hardly
hempered by the unfavourable scaling O(nd) of traditional approximation meth-
ods, often refered to as the curse of dimensionality. Approximation by a sum of
tensor products of single variate functions offer an efficient and very flexible tool
for data sparse approximation for high dimensional tensors or high dimensional
functions. For convenience of exposition, we will consider a tensor U ∈ Rn1×...×nd

of order (or dimension), as a multivariate function or multi-indexed array, of the
form

x 7→ U(x) = U(x1, . . . , xd) : I1 × · · · × Id −→ K , K = R or C

with variables or indices xi from finite index sets Ii := {1, . . . , ni}, i ∈ {1, . . . , d},
where d ∈ N and n1, . . . , nd. Unfortunately, except the elementary (matrix) case
d = 2, the canonical format

U(x1, . . . , xd) =

rc∑

i=1

Ui =

rc∑

i=1

d⊗

ν=1

ui,ν(xν) =

rc∑

i=1

d⊗

ν=1

uν(xν , i) ,

suffers from various shortcomings, making the actual computation of a low-rank
approximation a numerically hazardous task. Nevertheless, it reduces the amount
of required data to O(nrcd). This is in contrast the so-called Tucker decompo-
sition, In essence, the Tucker format is a subspace approximation. It provides a
kind of parametrization which is appropriate for optimization and the treatment
dynamical equations. This concept is well estbalished in phyiscs, e.g the MCSCF
and MCTHF methods. It has been shown, that the Tucker format provides an
embedded manifold. Since the representation of a tensor in the Tucker format
requires O(rd + dn), n := max{nν : 1 ≤ ν ≤ d}, degrees of of freedom (DOF), it
does not circumvent from the curse of dimensionality. To overcome this dilemma,
new formats built on a hierarchical structure for tensor decomposition has been
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introduced in [HT]. and [TT]. Where the latter TT format is a special and sim-
plest case of the more general hierachical Tucker format in [HT]. Although these
formats have been apparent in various concepts in quantum mechanics, e.g. like
tree tensor networks (≃ HT) and matrix product states (≃ TT ), its perspective
from mathematics is independent of its application, focusing on issues like approx-
imation, existence and stability. A representation of a tensor U ∈ Rn1×···×nd in
the TT tensor format rewrites an order-d tensor in the form

U(x) =

r1∑

k1=1

. . .

rd−1∑

kd−1=1

U1(x1, k1)U2(k1, x2, k2) . . . Ud−1(kd−2, xd−1, kd−1)Ud(kd−1, xd),

where for 2 ≤ i ≤ d− 1, (ki−1, xi, ki) 7→ Ui(ki−1, xi, ki) ∈ Rri−1×ni×ri . Recently
Hackbusch and Falco proved the existence of best approximation, and we have
shown that the TT-format provides an embedded manifold, see e.g [HRS-1] for
further details. Therefore, the TT format requires only a data complexity of order
O(nr2d), but it is inheriting all stability issues of the Tucker format. The electronic
Schrödinger equation, is the basic equation in quantum chemistry It describes the
stationary and non-relativistic behavior of an ensemble of N electron exposed to
an electric Coulomb field given by fixed nuclei. The electron wave function Ψ obeys
the Pauli antisymmetry principle Since the novel tensor formats are sensitive w.r.t.
permutation of variables, we pursue an alternativ way [HRS-1], using the discrete
Fock space F built by all Slater determinants

ΨSL[k1, . . . , kN ](x1, s1; . . . ;xN , sN ) :=
1√
N !

det(ϕki(xj , sj))
N
i,j=1.

out of a given orthonormal orbital basis set, Xh := span {ϕi : i = 1, . . . , d}.

F :=

d⊕

N=1

VN
FCI =

d⊕

N=1

N∧

i=1

Xh = {Ψ : Ψ =
∑

µ

cµΨµ} .

As standard in FCI computation, a labeling of indices µ ∈ I by an binary string
of length d

e.g.: µ = (0, 0, 1, 1, 0, . . .) =: (µ1, . . . , µi, . . . , µd} , µi = 0, 1 ,

• µi = 1 means ϕi is (occupied) in Ψ[. . .].
• µi = 0 means ϕi is absend (not occupied) in Ψ[. . .].

yields that the discrete Fock space could be completely parametrized by tensors

F ≃ {c : µ 7→ c(µ0, . . . , µd−1) = cµ , µi = 0, 1 } =
d⊗

i=1

K2 .

Instead of bit manipulations we can reformulate the calculus of second quantization

with creation and annihilation operators a
(†)
p , ap by simple Kronecker products of

the 2× 2 matrices

A :=

(
0 1
0 0

)
, AT =

(
0 0
1 0

)
, S :=

(
−1 0
0 1

)
, I :=

(
1 0
0 1

)
.
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One obtains that the discrete creation (annihilation) operators corresponds to

a(†)p ≃ A(T )
p := S ⊗ . . .⊗ S ⊗A(T )

(p) ⊗ I ⊗ . . .⊗ I

where A(p) means that A appears on the p-th position in the product. We adhere
completely on the present one-to-one correspondence between the (discrete) Fock
space and the tensor space of corresonding amplitudes, to describe the (discrete)

Hamiltonian H =
∑d

p,q=1 h
q
pA

T
p Aq +

∑d
p,q,r,s=1 g

p,q
r,sA

T
r A

T
s ApAq and the particle

number operator P =
∑d

p,q=1 A
T
p Aq, where h

q
p and gp,qr,s denote the well known

one and two electron integrals,

hpq := 〈ϕq, (
−1
2

∆− Vcore)ϕp〉 , gp,qr,s :=
1

2
〈ϕr(x, s1)ϕs(y, s2),

ϕp(x, s1)ϕq(y, s2)

|x− y| 〉 .

To obtain the ground state of an N -electron system, we have to take care about re-
quired symmetries. We can casted full CI Schrödinger equation into the variational
form [HRS-1] So far, except the full CI approximation, no further approximation
has been applied. Moreover the above representation depends crucuially on the
choice of the underlying basis functions. Due to the combinatorial complexity
of FCI computation, further approximations are required. We will focus on ten-
sor product approximation by solving the following variational problem along the
manifold of TT tensors (or matrix product states) of prescribed rank

{U = (U(µ)) = argmin{〈HU,U〉 : 〈U,U〉 = 1 , PU = N ,U ∈ Tr } .
We remark that the crucial parameter, the rank ri, i = 1, . . . , d− 1, is defined by
the rank ri = rank

[
U

µi+1,...,µd
µ1,...,µi

]
of the matricisation or unfolding of the tensor

U(µ1, . . . , µi, µi+1, . . . , µd) ≃ Uµi+1,...,µd
µ1,...,µi

.

Separating the complete system into two subsystems systems A, B, built by the
orbital basis sets {ϕ1 . . . , ϕi} and {ϕi+1, . . . , ϕd}, the above observation implies
that the TT format or MPS describes the interaction between these two systems
explicitely. In particular, if both systems are independent, the rank ri = 1, thus
providing size consistency. The above variational problem can be tackled algorith-
mitically by an alternating direction approach an alternating linear squares scheme
(ALS) . Let us fix all tensors Ui(µi), i ∈ {1, . . . , d}\{j}, except the one for index j.
We are going to optimize Uj(kj−1, xj , kj) in an micro-iteration step. We perform
this procedure sequentially with j = 1, . . . , d−1, then we repeat the relaxation pro-
cedure in the opposite direction. This scheme has the disadvantage that the ranks
rj are given a priorily. To adapt the individual ranks rj , we modify the scheme,
by concatenating two variables µj , µj+1 into one (µj , µj+1), and searching for an
optimized component W (kj−1, µj , µj+1, kj+1). In a subsequent decimation step,
we approximate W(µj , µj+1) = Uj(µj)Vj(µj+1) by low rank, e.g. by means of
SVD, up to a tolerance ǫj. We keep Uj and proceed by computing W(µj+1, µj+2)
next. This modified alternating linear scheme (MALS) applied to this problem
resembles exactly the DMRG (density matrix renormalization group) method [S]
for spin chains.
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Summary: The TT format, resp. matrix product states approximates the Full
CI solution in a data sparse way. Although it permeates the full CI space, all
computations can be performed within polynomial complexity. The electron den-
sity as well as reduced one- and two- body density matrices can be computed
in polynomial cost. It provides inside in particular separations into subsystems
and its entanglement. This make this approach atractive for the computation
of stronlgy correlated systems, where Coupled Cluster methods are failing. The
approximation depends crucially on the choice of orbital basis functions and its
ordering.
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Projected quasiparticle theory for molecular electronic structure

Gustavo E. Scuseria

(joint work with Carlos A. Jimenez-Hoyos, Thomas M. Henderson, Kousik
Samanta, Jason K. Ellis)

We derive and implement symmetry-projected Hartree-Fock-Bogoliubov (HFB)
equations and apply them to the molecular electronic structure problem. All
symmetries (particle number, spin, spatial, and complex conjugation) are deliber-
ately broken and restored in a self-consistent variation-after-projection approach.
We show that the resulting method yields a comprehensive black-box treatment
of strong correlations with effective one-electron (mean-field) computational cost.
The ensuing wave function is of multireference character and permeates the entire
Hilbert space of the problem. The energy expression is different from regular HFB
theory but remains a functional of an independent quasiparticle density matrix.
All reduced density matrices are expressible as an integration of transition den-
sity matrices over a gauge grid. We present several proof-of-principle examples
demonstrating the compelling power of projected quasiparticle theory for elec-
tronic structure theory.

There are many mathematical aspects of this work that I discussed. These
include but are not limited to the role of antiunitary symmetries that do not carry



Mathematical Methods in Quantum Chemistry 1839

“good” quantum numbers and the importance of coherent states in symmetry
breaking and restoration.
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