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Introduction by the Organisers

The meeting continued the biannual conference series Differentialgeometrie im
Großen at the MFO which was established in the 60’s by Klingenberg and Chern.
Traditionally, the conference series covers a wide scope of different aspects of
global differential geometry and its connections with geometric analysis, topol-
ogy and geometric group theory. The Riemannian aspect is emphasized, but the
interactions with the developments in complex geometry and physics play also
an important role. Within this spectrum each particular conference gives special
attention to two or three topics of particular current relevance.

The scientific program of the last conference had consisted of only 17 talks which
left ample time for informal discussions and worked out very well. Nevertheless,
we returned this time to a program of 22 talks in order to be able to schedule more
of the many interesting talk proposals, especially by young people who attended
the conference for the first time.
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This time, a main focus of the workshop were Einstein manifolds and related
topics, represented by six talks concerned with regularity and rigidity results, the
structure of 4-manifolds with Ricci curvature bounds, gravitational instantons and
Kähler-Einstein metrics.

Another focus were geometric flows, with five talks in particular on the Ricci
flow in dimensions three and four where its singularities and the long time asymp-
totics in certain equivariant situations were studied, but also on stability questions
for the Ricci flow in higher dimension and noncompact situations, and on other
geometric flows related to metrics with special holonomy.

A prominent theme was also the geometry of singular spaces, that is, metric
spaces with upper or lower sectional curvature bounds (in the sense of Aleksan-
drov), with five talks discussing the smoothing problem for singular nonpositively
curved structures, deformations of hyperbolic cone structures in dimension three,
and Tits buildings from the perspective of comparison geometry.

Other talks presented results in complex geometry about extremal Kähler met-
rics and obstructions to Kähler-Einstein metrics, results on rigidity questions in
conformal dynamics, on isoperimetric problems in Lorentzian geometry, and dis-
cussed regularity properties of metric spaces in connection with subriemannian
(Carnot) geometry.

There were 53 participants from 12 countries, more specifically, 21 participants
from Germany, 11 from the United States of America, 8 from France, 3 from
Switzerland, 2 from China, 2 from Japan and respectively 1 from Belgium, Eng-
land, Mexico, Poland, Russia and Spain. This time only 1 participant was a
woman (whereas last time 6 women participated). 42% of the participants (22)
were young researchers (less than 10 years after diploma or B.A.), both on doctoral
and postdoctoral level.

The organizers would like to thank the institute staff for their great hospitality
and support before and during the conference. The financial support for young
participants, in particular from the Leibniz Association and from the National
Science Foundation, is gratefully acknowledged.
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Abstracts

On Hermitian, Einstein 4-Manifolds

Claude LeBrun

A Riemannian manifold (M,h) is said to be Einstein if it has constant Ricci
curvature; this happens iff the Ricci tensor r of (M,h) satisfies

r = λh

for some real number λ, called the Einstein constant [2]. On the other hand, if
M has been made into a complex manifold by equipping it with an integrable
almost-complex structure J , a Riemannian metric h on (M,J) is called Hermitian
if, at each point of M , J is an orthogonal transformation with respect to h:

h(·, ·) = h(J ·, J ·).
If (M,J, h) is Kähler-Einstein, then (M,h) is of course Einstein, and (M,J, h) is

of course Hermitian. The theory of the complex Monge-Ampère equation moreover
shows that Kähler-Einstein metrics exist on many compact complex manifolds.
However, not every compact Hermitian, Einstein manifold is Kähler-Einstein;
one of the best-known counter-examples is the Page metric [6] on CP2#CP2.
More recently, in collaboration with Chen and Weber [3], the author showed that
CP2#2CP2 carries an Einstein metric, referred to herein as the CLW metric, which
is similarly Hermitian, but not Kähler. The purpose of this talk was to explain the
following uniqueness result [5], which asserts that, in real dimension four, these
are the only two exceptions to a general pattern:

Theorem 1. Let (M4, J) be a compact complex surface, and suppose that h is an
Einstein metric on M which is Hermitian with respect to J . Then either

• (M,J, h) is Kähler-Einstein; or
• M ≈ CP2#CP2, and h is a constant times the Page metric; or
• M ≈ CP2#2CP2 and h is a constant times the CLW metric.

One key step involves showing that any such metric h must be conformal to
a Kähler metric g on (M,J); this is a specifically four-dimensional phenomenon,
and fails in higher dimensions. Other 4-dimensional phenomena guarantee that
this conformally related g is moreover an extremal Kähler metric [2] in the sense
of Calabi, and this fact then plays a central role in the proof.

While the well-developed theory of Kähler-Einstein metrics [1, 7, 8] has given
us a complete understanding of the existence and uniqueness problems for Kähler-
Einstein metrics on compact complex surfaces, the existence statement is actually
somewhat involved in the λ > 0 case. Fortunately, Theorem 1 tells us that the
answer actually becomes more transparent if we relax the Kähler condition, and
merely require that our Einstein metrics be Hermitian:
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Theorem 2. A compact complex surface (M4, J) admits a Hermitian, Einstein
metric if and only if its first Chern class “has a sign.” More precisely, (M,J)
admits a Hermitian, Einstein metric h with Einstein constant λ iff c1(M,J) can
be expressed as λ times a Kähler class. For fixed λ 6= 0, this metric h is moreover
unique modulo biholomorphisms of (M,J).

It should be emphasized that when h is non-Kähler, the Kähler class mentioned
in Theorem 2 is essentially unrelated to the Kähler class [ω] of the extremal Kähler
metric g that is conformal to h. Indeed, for both the Page and CLW metrics, the
line R[ω] ⊂ H2(M,R) spanned by the Kähler class of g has irrational slope, in the
sense that it only intersects the integer lattice H2(M,Z) at the origin.

The proof of Theorem 1 depends on the study of the functional

C(g) =
ˆ

M

s2 dµg

on the space of all Kähler metrics on (M,J); here s = sg denotes the scalar
curvature of g. Any Hermitian, Einstein metric h must be conformal to a critical
point g of this functional, and the heart of the argument involves showing that this
g must in fact be an absolute minimizer of C on the space of all Kähler metrics
(with the Kähler class allowed to vary). If this minimizer is not itself Kähler-
Einstein, one then shows that its scalar curvature must be everywhere positive,
and that, up to an overall constant, h must actually be given by s−2g.

The detailed knowledge of C required to prove Theorem 1 can also be applied
[4] to give a new proof of the existence of the CLW metric by bubbling off extremal
Kähler metrics from CP2#3CP2.

Theorem 3. There is an extremal Kähler metric g on CP2#2CP2 which mini-
mizes the functional C among all Kähler metrics, and which is conformal to an
Einstein metric. Moreover, there is a 1-parameter family {gt | t ∈ [0, 1)}, of ex-
tremal Kähler metrics on CP2#3CP2 such that g0 is Kähler-Einstein, and such
that gtj→g in the Gromov-Hausdorff sense for a sequence tj ր 1.

The Page metric on CP2#CP2 can also be reconstructed in exactly the same
manner. But since the Page metric can actually be written down in closed form,
this hardly seems worth the bother!
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Rigidity and stability of Einstein metrics for quadratic curvature
functionals

Jeff A. Viaclovsky

(joint work with Matthew J. Gursky)

This talk is concerned with the functional

Ft[g] =

ˆ

|Ric|2 dV + t

ˆ

R2 dV,(1)

in dimensions n ≥ 3, where Ric is the Ricci tensor, R is the scalar curvature, and
t ∈ R is a real parameter. In dimensions other than four, the functional Ft is not
scale-invariant. Therefore, we will consider the volume-normalized functional

F̃t[g] = V ol(g)
4
n
−1Ft[g].(2)

Any Einstein metric is critical for F̃t.
On an Einstein manifold, the Lichnerowicz Laplacian is given by

∆Lhij = ∆hij + 2Ripjqh
pq − 2

n
Rhij ,

and specTT (−∆L) will denote the set of eigenvalues of (−∆L) restricted to trans-
verse-traceless (TT) tensors. The term infinitesimal rigidity for a critical point of a
Riemannian functional will refer to the non-existence of non-trivial TT solutions of
the linearized equations. For an Einstein metric, infinitesimal rigidity with respect
to the total scalar curvature functional is the condition

2

n
R /∈ specTT (−∆L).

The term rigidity will will refer to a metric being an isolated critical point of a
functional in the moduli space of Riemannian metrics.

We first state a rigidity result for the functional F̃0 = V ol
4
n
−1

´

|Ric|2dV :

Theorem 1. Let (M, g) be an n-dimensional Einstein manifold, n ≥ 3. If
{ 2

n
R,

4

n
R
}
/∈ specTT (−∆L),(3)

then g is rigid for F̃0. The same result holds when R < 0, assuming n = 3 or
n = 4.

Next, we have a theorem regarding local minimization of F̃t, up to diffeomor-
phism and scaling:
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Theorem 2. Let (M, g) be an n-dimensional Einstein manifold, n ≥ 3, and let
t > −1/n. If R > 0 and

specTT (−∆L) ∩
[ 2
n
R,

( 4

n
+ 2t

)
R
]
= ∅,(4)

then g is a strict local minimizer for F̃t. If R < 0 and n = 3 or n = 4, then the
same result holds provided that endpoints in (4) are reversed.

By the Gauss-Bonnet theorem in dimension four, for t = −1/3, F̃t is equivalent
to the functional W ≡

´

|W |2, and is therefore conformally invariant. A critical
metric satisfies the Euler-Lagrange equations

Bij ≡ −4
(
∇k∇lWikjl +

1

2
RklWikjl

)
= 0.(5)

The tensor Bij is known as the Bach tensor. Einstein metrics are in particular
Bach-flat, and our main result regarding their rigidity and stability is the following:

Theorem 3. Let (M4, g) be an Einstein manifold. Assume that
{1

3
R,

1

2
R
}
/∈ specTT (−∆L).(6)

Then g is Bach-rigid.
If R > 0, and g moreover satisfies

specTT (−∆L) ∩
[1
3
R,

1

2
R
]
= ∅,(7)

then g is strict local minimizer for W . The same result holds if R < 0, provided
that the endpoints of the interval in (7) are reversed.

The simplest concrete example for the above theorems is given by the round
sphere (Sn, gS):

Theorem 4. On (Sn, gS), or any constant curvature quotient thereof, if n ≥ 4, gS
is a strict local minimizer for F̃t provided that

4− 3n

2n(n− 1)
< t <

2

n(n− 1)
.(8)

If n = 3, the same conclusion holds provided that

−3

8
< t <

1

3
.(9)

For any n ≥ 3, gS is a strict local minimizer for R̃.

In the case of n = 3, there is an interesting variation of the round metric given
by scaling the fibers of the Hopf fibration S1 → S3 → S2 = CP

1, known as Berger
spheres. One can employ this variation to show that the upper endpoint in (9) is
sharp: if n = 3, gS is not a local minimizer for t = 1/3, that is, there is a path gs
with g0 = gS, with F(gs) < F(g0) for s < 0.

Other examples for the above theorems are compact hyperbolic manifolds, com-
plex projective space (CPm, gFS), and products of round spheres (Sm×Sm, g1+g2)
with m ≥ 2, and Ricci-flat metrics, see [1] for details and references.
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The classical Bishop’s inequality implies that if (M, g) is a closed manifold with
Ric(g) ≥ Ric(Sn) = (n − 1)g, then the volume satisfies V ol(g) ≤ V ol(Sn), and
equality holds only if (M, g) is isometric to the sphere. An interesting consequence
of local minimization for t = 0 for Einstein metrics is that, locally, a “reverse
Bishop’s inequality” holds:

Theorem 5. Let (M, g) be an Einstein manifold with positive scalar curvature,
normalized so that Ric(g) = (n − 1)g. Assume g is a strict local minimizer for

F̃0. Then there exists a C2,α-neighborhood U of g such that if g̃ ∈ U with
Ric(g̃) ≤ (n− 1)g̃, then V ol(g̃) ≥ V ol(g) with equality if and only if g̃ = φ∗g for
some diffeomorphism φ :M →M .

It follows from some eigenvalue computations that if (M, g) is a sphere, space
form, or complex projective space, then for metrics g̃ near g

Ric(g̃) ≤ Ric(g) =⇒ V ol(M, g̃) ≥ V ol(M, g).

Theorem 5 has a counterpart for negative Einstein manifolds, which is related
to the work of Besson-Courtois-Gallot. Again, we refer the reader to [1] for more
details and references.
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Quantitative Stratification and regularity for Einstein manifolds,
harmonic maps and minimal surfaces

Aaron Naber

(joint work with Jeff Cheeger)

The focus of this talk is in constructing new regularity results for Einstein mani-
folds, harmonic maps between Riemannian manifolds, and minimal hypersurfaces.
The key point is in taking ineffective, e.g. tangent cone or tangent map, behavior
and deriving from this effective estimates on the original space. Although we will
focus on these three contexts, it is worth emphasizing that these techniques are
quite general and work on a large class of nonlinear pde’s.

For Einstein manifolds the results include apriori Lp estimates on the curvature
|Rm| and the much stronger curvature scale

r|Rm|(x) = max{r > 0 : supBr(x)|Rm| ≤ r−2} .(1)

If we assume additionally that the curvature lies in some Lq we are able to prove
that r−1

|Rm| lies in weak L2q. More precisely our main Theorem in this context is

the following.

Theorem 1. If Mn is an Einstein manifold |Rc| ≤ n−1 and V ol(B2(x)) ≥ v > 0.
Then the following hold.
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(1) If M is real then for every 0 < p < 1 we have
 

B1(x)

|Rm|p ≤
 

B1(x)

(r−1
|Rm|)

2p ≤ C(n, v, p).

(2) If M is Kähler then for every 0 < p < 2 we have
 

B1(x)

|Rm|p ≤
 

B1(x)

(r−1
|Rm|)

2p ≤ C(n, v, p).

(3) If M is real and
ffl

B2(x)
|Rm|q ≤ Λ, then

ffl

B1(x)
(r−1

|Rm|)
2s ≤ C for every

s < q.
(4) If M is Kähler and

ffl

B2(x)
|Rm|q ≤ Λ, then r−1

|Rm| lives in weak L2q.

The fourth result above was also recently proved by Chen and Donaldson when
q ≡ 2 using very different techniques.

For minimizing harmonic maps f :M → N between Riemannian manifolds we
prove similar results. In particular if we define the regularity scale

rf (x) = max{r > 0 : supBr(x)|∇f | ≤ r−1} ,(2)

then we prove the estimates
 

B1

|∇f |p ≤
 

B1

(r−1
f )p ≤ C ,

 

B1

|∇2f | p2 ≤ C ,(3)

for all 0 < p < 3. These are the first Lp estimates on the gradient for p > 2, and
the first estimates of any sort on the hessian of f . These estimates are sharp, in
that there exists minimizing harmonic maps for which |∇f | does not live in L3.

Finally we prove analagous results for minimizing hypersurfaces. Namely we
prove Lp estimates for p < 7 for the second fundamental form and its regularity
scale.

The proof of the results rely on a new quantitative dimension reduction, that
in the process strengthens hausdorff estimates on singular sets to minkowski esti-
mates.

References
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Regenerating hyperbolic cone 3-manifolds

Joan Porti

We start with an application of the main result. Fix n positive real numbers

0 < β1, . . . , βn ≤ π/2,

satisfying
∑

(π − βi) > π. By Andreev theorem, for any choice of 0 < α < π/2,
satisfying 2α + βi > π, there exists a unique hyperbolic polyhedron with the
combinatorial type of a prism with an n-edged polygonal base, with dihedral angles
at the “vertical” edges β1, · · · , βn, and angle α at all “horizontal” edges. See
Figure 1.

Figure 1. A hyperbolic prism as in Corollary 1.

Now assume that α ր π/2 and keep β1, . . . , βn fixed.

Corollary 1. When α ր π/2, the prism converges to the n-edged polygon with
angles β1, . . . , βn of minimal perimeter.

Let O3 be a closed and orientable 3-orbifold, which is Seifert fibered over a
Coxeter two orbifold P 2:

S1 → O3 → P 2.

The branching locus of O3 is a link or a trivalent graph ΣO3 . Its edges and circles
are grouped in two, horizontal (if they are transverse to the fibers) or vertical (if
they are fibers):

ΣO3 = Σhor
O3 ∪ Σvert

O3 .

Points in Σhor
O3 project to the mirror and dihedral points of P 2. Assume that the

orbifold P 2 is a hyperbolic Coxeter group, generated by reflections on a hyperbolic
polygon whose angles are π over an integer. Thus P 2 is a polygon with mirror
points at the edges, and dihedral points at the vertices. We may assume also
that P 2 has possibly a single cone point in its interior. For instance, S3 with
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branching locus a Montesinos link, other than a two-bridge link, is an example of
such fibration.

We view the Seifert fibration as a transversely hyperbolic foliation, hence with
a developing map

D0 :Õ3 → H2

that factors through the universal covering of P 2.
According to [2] there is a unique point in the Teichmüller space that minimizes

the perimeter of P 2 (this also follows from Kerckhoff’s proof of Nielsen conjecture
[1]). Let

P 2
min

denote the orbifold equipped with this hyperbolic structure.
The main result of this paper is the following:

Theorem 2. Assume that P 2 has at most one cone point in its interior. There
exists a family of hyperbolic cone manifold structures C(α) on |O3|, with singular
locus ΣO3 and cone angle α ∈ (π− ε, π) on Σhor

O3 and constant angles (the orbifold
ones) on Σvert

O3 , so that

lim
α→π−

C(α) = P 2
min

for the Gromov-Hausdorff convergence. Moreover the developing maps converge to
the developing map of the transversely hyperbolic foliation.

This result is generalized in two ways: by allowing vertical angles that are
not integer divisors of 2π (as in Corollary 1) and by changing the speed of the
horizontal angles. More details can be found in [3].
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The deformation space of hyperbolic cone-3-manifolds

Grégoire Montcouquiol

(joint work with Hartmut Weiß)

The goal of this talk is to explain the local deformation theory for (closed, ori-
entable) hyperbolic cone-3-manifolds with cone angles smaller that 2π, as pre-
sented in the preprint [4]. We recall that a hyperbolic cone-3-manifold X is a
stratified metric space, composed of a regular partM and a singular locus Σ, such
that:

• M is an incomplete hyperbolic 3-manifold and a dense open subset of X ,
whose metric completion is X ;
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• each point p on Σ has a neighborhood in X in which the metric can be
expressed as

g = dr2 + sinh(r)2gL̄, r ∈ [0, ε)

in spherical coordinates centered at p, where (L̄, gL̄) is a spherical cone-
surface called the link of p.

If the link of p is equal to S2α, the spherical suspension over a circle of length α,
then in cylindrical coordinates around p the metric can be also expressed as

g = dρ2 + sinh(ρ)2dθ2 + cosh(ρ)2dz2, ρ ∈ [0, ε), θ ∈ R/αZ, z ∈ [−c, c].
The set {ρ = 0} is called a singular edge, of cone angle α. If the link of p has more
than two cone points, then p is called a singular vertex, and lies at the endpoints
of several edges.

In two independent papers by H. Weiß and myself [3, 5], the latter based on
a collaboration with R. Mazzeo [2], it was proven that the deformations of X
preserving the diffeomorphism type of the pair (X,Σ) are locally parametrized by
the vector of the edges’ cone angles. For general deformations, it is possible to split
some vertices of valence greater than 4 into several lower valence vertices, creating
new singular edges in the process; locally, these are the only possible modifications
of (X,Σ) such that the diffeomorphism type of M = X \Σ is still preserved. Now
to classify such splitting deformations topologically, one has to describe how the
new singular edges sit within X : this is achieved by prescribing the meridians of
these new edges. In particular, we will be interested in pants decompositions of
the vertices’ links.

More precisely, let ∂M be the boundary of a tubular neighborhood of the sin-
gular locus, and let g be its genus. For each singular edge ei of X , we can choose
a meridian µi ⊂ ∂M ; we denote by ~µ = {µ1, . . . , µN} the meridian set of X . This
set cuts ∂M into a disjoint union of punctured spheres Sj , such that Sj is naturally
homeomorphic to the regular part Lj of the link of the j-th vertex vj . Let ~ν be a

pants decomposition of
∐k

j=1 Lj ; so C = ~µ∪~ν gives a pants decomposition of ∂M .

A deformation X ′ of X is then ~ν-compatible if the meridians of the new edges are
up to homotopy contained in C.

Our main result is that under some assumptions, the deformations of X are
locally parametrized by the cone angles of the original edges and the lengths of
the new ones:

Theorem 1. Let X be a closed orientable hyperbolic cone-3-manifold with cone

angles less than 2π and meridian set ~µ. Let ~ν be a pants decomposition of
∐k

j=1 Lj

such that C = ~µ∪~ν gives an admissible pants decomposition of ∂M . If all the curves
in ~ν are splittable, then the map

(α, ℓ) : C−1(X,~ν) → (0, 2π)N × R
3g−3−N
+
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sending a ~ν-compatible cone-manifold structure to the vector composed of its orig-
inal edges’ cone angles and new edges’ lengths, is a local homeomorphism at the
given structure.

Note that we recover the former parametrization result by setting ℓ = 0. The
first assumption (that C is admissible) is rather technical: it means that the in-
duced holonomy representation on each pants of the decomposition is irreducible.
The second one (that the curves are splittable), while not strictly necessary, is
more essential: it ensures that the splittings can be realized geometrically. In-
deed, the discrete set of pants decompositions is infinite, and one would expect
that most choices of ~ν do not lead to actual deformations. However, we will give
examples in this talk of cone-manifolds admitting infinitely many different splitting
deformations.

The main difficulty in the proof of Theorem 1 is to obtain an adapted lo-
cal chart on Def(M), or equivalently (using standard results of the deformation
theory of hyperbolic structures) on the character variety X(π1M, SL(2,C)) =
Hom(π1M, SL(2,C))/ SL(2,C). The strategy consists of constructing first a larger,
adequate coordinate system on the simpler space X(π1∂M, SL(2,C)), which is
provided by action-angle variables: as explained by Goldman in [1], the character
variety of π1∂M has a canonical complex-symplectic structure, and the traces of
the curves in C yield a holomorphic completely integrable system. Using the in-
finitesimal rigidity, we can then show that part of these coordinates lifts via the
natural restriction map X(π1M, SL(2,C)) → X(π1∂M, SL(2,C)) to a local chart
on Def(M) near X .

To construct actual deformations of the cone-manifold X , we follow the same
strategy of beginning with a simpler problem, namely deforming a neighborhood
of the singular locus. In particular, we explain how to construct model splitting
deformations of a vertex along a given curve, and why the splitting condition
(which states that the curve is transverse to a 1-form naturally defined along it)
is needed for this construction to work. We also give examples, showing that the
cone angles of the new edges can be arbitrarily large. Theorem 1 then follows from
combining the deformation obtained near Σ with the corresponding hyperbolic
deformation of M .

An interesting consequence of this result is that the cone-manifold deformation
space of X is stratified, because of the choice of ~ν; we actually get a geomet-
ric realization of a sub-complex of the curve complex of

∐
j Lj. Moreover, this

stratification may not be locally finite, when there exists an infinite sequence of
non-homotopic splittable curves. But since the character variety is locally com-
pact, this implies that sequences of strata must accumulate. We give an example
of this phenomenon, hinting that for the splitting curves we recover convergence
in the measured lamination sense.
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A variational approach to G2-geometry

Frederik Witt

(joint work with Hartmut Weiß)

In this talk we present a variational approach to G2-geometry developed in [11]
and [12].

G2-geometry. Consider the standard orthonormal basis of octonions e0, . . . , e7 ∈
O. The product induces a commutator on the imaginary octonions ImO ∼= R7 with
skew-symmetric structure constants cijk , i.e. [ei, ej] =

∑
k cijkek. We therefore get

a 3-form Ω =
∑

i<j<k cijke
ijk (with eijk = ei ∧ ej ∧ ek being shorthand for the

wedge product of the dual basis). We define Λ3
+, the space of positive forms, to

be the orbit of Ω under the action of the orientation-preserving automorphisms
GL(7)+. The stabiliser of Ω is conjugate to the simple compact Lie group G2 and
therefore, Λ3

+
∼= GL(7)+/G2 is an open orbit and in fact an open cone. The group

G2 is one of the few possible holonomy groups in Berger’s list of an irreducible,
nonsymmetric Riemannian manifold, and the only one to occur in odd dimensions.

Over a smooth, oriented 7-manifold we can then consider the fibre bundle
Λ3
+M := P ×GL(7)+ Λ3

+ associated with the principle bundle P → M of oriented

frames. A global section Ω ∈ C∞(Λ3
+M) gives rise to a reduction of P to a prin-

cipal G2-bundle. As G2 sits inside SO(7) we then have an induced metric gΩ, and
via the orientation, a Hodge-⋆ operator. The obstruction to the existence of Ω is
the second Stiefel-Whitney class w2 of M . Once w2 = 0, any Riemannian metric
is induced by such a positive 3-form (though not in a unique way). In particular,
any metric with special holonomy is of this form. In fact, the holonomy of gΩ is
contained in G2 (implying Ricci-flatness) if and only if dΩ = 0, d⋆gΩΩ = 0 [5]. The
latter condition can be regarded as a non-linear harmonic equation on C∞(Λ3

+M).
We refer to solutions as torsion-free forms (see for instance [2] for an explanation
of this terminology). This characterisation of holonomy G2-metrics was used for
the construction of examples ([1], [3]) and in particular compact ones [9]. Yet a
theorem à la Yau which under specific assumptions would ensure a priori existence
is still missing.
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The Dirichlet functional. Next assume that M is compact. We define the
Dirichlet functional by

D : C∞(Λ3
+M) → R, Ω 7→ 1

2

ˆ

M

(|dΩ|2gΩ + |d ⋆ΩΩ|2gΩ) volgΩ .

This functional is invariant under Diff(M)+, the orientation preserving diffeomor-
phisms, and positive homogeneous, i.e. D(λΩ) = λ5/3D(Ω) for λ > 0. Since Λ3

+M
is open, D can be differentiated. One can show that the absolute minimisers (the
torsion-free forms) are the only critical points. Furthermore, critical points subject
to the constraint

´

M volgΩ ≡ 1 are given by gradD(Ω) = λ0Ω for a non-negative
real constant λ0. Examples are provided by so-called weak holonomy [7] or nearly
parallel G2-manifolds [6]. These are characterised by the equation dΩ = c ⋆gΩ Ω
for c 6= 0 and induce an Einstein metric.

To detect critical points it is natural to consider the negative gradient flow.

Theorem 1. Given a positive 3–form Ω0, there exists ε > 0 and a smooth family
of positive 3–forms Ω(t) for t ∈ [0, ε] such that

∂

∂t
Ω = −gradD(Ω), Ω(0) = Ω0.

Furthermore, for any two solutions Ω(t) and Ω′(t) we have Ω(t) = Ω′(t) whenever
defined.

We refer to this flow as the Dirichlet flow. Note that the Diff(M)+-invariance
gives rise to a non-trivial kernel of the principal symbol of the linearised operator
DΩgradD. However, one can show that the symbol is positive-definite with kernel
tangent to the Diff(M)+-orbits. Along the lines of deTurck’s trick for Ricci flow [4],
we define a geometrically perturbed operator PΩ̄ of −gradD depending on a fixed
positive form Ω̄. This new operator is strongly elliptic so that standard parabolic
theory applies.

The moduli space. Assume that Ω̄ is a positive 3-form which is torsion-free, and
that M satisfies in addition H1(M,R) = 0. Then PΩ̄(Ω) = 0 if and only if Ω is
torsion-free and Ω is perpendicular to the tangent space of the orbit of Ω̄ under
Diff(M)0, the diffeomorphisms isotopic to the identity. Put differently, P−1

Ω̄
(0)

is a slice for the Diff(M)0-action on X = {Ω ∈ C∞(Λ3
+M) | dΩ = d ⋆gΩ Ω = 0}.

Hence, MG2 = X/Diff(M)0, a G2-analogon of Teichmüller space, is a smooth man-
ifold. A Hodge theoretic argument then shows that TΩ̄P

−1
Ω̄

(0) is isomorphic with

H3(M,R). Hence dimMG2 = b3, a fact, together with smoothness, previously
established by Joyce [9].

Stability. Define a “G2-soliton” to be a positive 3-form Ω such that there exists
a real constant λ0 and a vector field X with −gradD(Ω) = λ0Ω+ LXΩ. One can
show that such a soliton can only exist for λ0 ≤ 0 and X = 0, which is precisely
the condition for the constrained critical points above. That is, unless Ω is torsion-
free, it is a shrinker and dies in finite time. However, in vicinity of a torsion-free
form, we can show:
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Theorem 2. Let Ω̄ ∈ Ω3
+(M) be a torsion–free G2–form. For initial conditions

sufficiently C∞–close to Ω̄ the Dirichlet flow exists for all times and converges
modulo diffeomorphisms to a torsion–free G2-form.

The key properties of the flow we use are “linear stability”, i.e. D2
Ω̄
D ≥ 0 and

the smoothness of the moduli space. Unlike for similar stability theorems for Ricci
flow (cf. [10]) these properties hold automatically and need not to be imposed.
A main ingredient for longtime existence is uniform existence of the Dirichlet
flow on [0, 1] for starting points close to Ω̄. This is done by an implicit function
theorem argument in the vein of Huisken and Polden [8]. Convergence modulo
diffeomorphisms comes from the analysis of the perturbed flow ∂tΩ = PΩ̄Ωt and
parabolic regularity.
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Gap phenomena in the Ricci flow

Bing Wang

We develop some estimates under the Ricci flow and use these estimates to study
the blowup rates of curvatures at singularities. As applications, we obtain some

gap theorems: sup
X

|Ric| and
√
sup
X

|Rm| ·
√
sup
X

|R| must blowup at least at the

rate of type-I. Our estimates also imply some gap theorems for shrinking Ricci
solitons. The main estimates are listed as follows.

Theorem 1 (Riemannian curvature ratio estimate). There exists a constant ε0 =
ε0(m) with the following properties.
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Suppose K ≥ 0,
{
(X, g(t)),− 1

8 ≤ t ≤ K
}
is a Ricci flow solution on a complete

manifold Xm, Q(0) = 1, and Q(t) ≤ 2 for every t ∈ [− 1
8 , 0]. Suppose T is the first

time such that Q(T ) = 2, then there exists a point x ∈ X and a nonzero vector
V ∈ TxX such that ∣∣∣∣log

〈V, V 〉g(0)
〈V, V 〉g(T )

∣∣∣∣ > ε0.(1)

In particular, we have
ˆ T

0

P (t)dt > ε0.(2)

Consequently, we have

Q(K) < 2

´K
0 P (t)dt

ε0
+1
.(3)

Theorem 2 (Ricci curvature estimate). Suppose
{
(X, g(t)),− 1

8 ≤ t ≤ 0
}

is a
Ricci flow solution satisfying the following properties.

• X is a complete manifold of dimension m.
• |Rm|g(t)(x) ≤ 2 whenever x ∈ Bg(0)(x0, 1), t ∈

[
− 1

8 , 0
]
.

Then there exists a large constant A = A(m) such that

sup
Bg(0)(x0,

1
2 )×[−

1
16 ,0]

|Ric| ≤ A ‖R‖
1
2

L∞(Bg(0)(x0,1)×[− 1
8 ,0])

.(4)

The estimates and applications can be found in [1] and [2].
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Ricci flow on 3-manifolds with symmetry

John Lott

(joint work with Natasa Sesum)

This report concerns the long-time behavior of a three-dimensional Ricci flow,
under the assumption that the initial metric has continuous symmetries.

We first consider a global U(1) × U(1) symmetry. This would be relevant to
the case when the manifold M is the total space of a principal U(1)×U(1) bundle
over S1. More generally, we consider a manifold that fibers over S1, with T 2-
fiber, equipped with an initial metric having a local U(1) × U(1) symmetry that
is globally twisted by an element of SL(2,Z) ⊂ Aut(U(1)× U(1)).

The conclusion is that the flow approaches a particular locally homogeneous
flow.
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Theorem 1 : Let N be an orientable three-manifold that fibers over S1 with
T 2-fibers. Choosing an orientation for S1, let H ∈ SL(2,Z) = π0(Diff

+(T 2)) be
the holonomy of the torus bundle. We can consider N to be the total space of a
twisted principal U(1)× U(1) bundle, where the twisting is determined by H .

Let h(·) be a Ricci flow solution on N . Suppose that h(0) is invariant under the
local U(1)×U(1) actions. Then the Ricci flow exists for all t ∈ [0,∞). There is a
constant C <∞ so that for all p ∈ N and t ∈ [0,∞), one has

∣∣RiemN
∣∣ (p, t) ≤ C

t .

(i) If H is elliptic, i.e. has finite order, then limt→∞ h(t) exists and is a flat
metric on N . The convergence is exponentially fast.

(ii) Suppose that H is hyperbolic, i.e. has two distinct real eigenvalues. We
write h(t) in the form

h(t) : =: gyy(y, t) : dy
2 : +: (dx)TG(y, t)dx,

where {x1, x2} are local coordinates on T 2 and y ∈ [0, 1) is a local coordi-
nate on S1. Then up to an overall change of parametrizations for S1 and
T 2, we have

lim
t→∞

gyy(y, t)

t
: =:

1

2
: Tr(X2),

lim
t→∞

G(y, t) : =: eyX ,

where X is the real symmetric matrix such that eX = HTH . The conver-
gence is power-decay fast in t.

The second result is about an initial metric on N = S1 ×M with an O(2)-
symmetry, i.e. a warped product metric. The conclusion is that the flow ap-
proaches a product flow.

Theorem 2 : Let h(·) be a Ricci flow solution on a closed connected orientable
three-dimensional manifold N . Suppose that N = S1 ×M and h(t) is a warped
product metric

h(t) = g(t) + e2u(t)dθ2

over the two-dimensional orientable base M .

(i) If χ(M) > 0 then there is a finite singularity time T <∞. As t→ T−, the
lengths of the circle fibers remain uniformly bounded above and below.

For any p ∈ N , the pointed smooth limit limt→T−

(
N, p, 1

T−th(t)
)
exists

and is the isometric product of R with a sphere S2 of constant curvature
1
2 .

(ii) If χ(M) ≤ 0 then the Ricci flow exists for all t ∈ [0,∞). Also, there
is a constant C < ∞ so that for all p ∈ N and t ∈ [0,∞), one has∣∣RiemN

∣∣ (p, t) ≤ C
t .

(iii) If χ(M) = 0 then limt→∞ h(t) exists and is a flat metric on T 3. The
convergence is exponentially fast.
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(iv) If χ(M) < 0, put ĝ(t) = g(t)
t . For any i0 > 0, define the i0-thick part of

(M, ĝ(t)) by

Xi0(t) = {m ∈M : injradĝ(t)(m) ≥ i0}.
Then

lim
t→∞

max
x∈Xi0(t)

|Rĝ(t)(x) + 1| = 0

and
lim
t→∞

max
x∈Xi0(t)

|∇̂u|ĝ(t)(x) = 0.

For all sufficiently small i0, if t is sufficiently large then Xi0(t) is nonempty.
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Rigidity results for some gravitational instantons

Vincent Minerbe

A Riemannian four-manifold (M4, g) is hyperkähler if its holonomy is in Sp(1),
i.e. if it carries three covariant constant complex structures I, J and K satisfying
the quaternionic relations (IJ = JI = K). Since Sp(1) = SU(2), this is the same
as requiring that parallel transport preserves a single complex structure I as well
as a I-holomorphic volume (2, 0)-form. The Ricci curvature of a Kähler manifold
can be seen as the curvature of the canonical bundle : a hyperkähler manifold is
therefore always Ricci-flat and, ifM happens to be simply-connected, hyperkähler
is indeed the same as Kähler and Ricci flat.

A gravitational instanton is a complete non-compact hyperkähler four-manifold
whose curvature decays faster than quadratically at infinity: |Riem| = O(r−2−ε),
where r denotes the distance to some point and ε is a positive number. This
assumption is a bit stronger than square integrable curvature: in view of a theorem
of J. Cheeger and G. Tian [3], a Ricci-flat four-manifold with curvature in L2 always
satisfies |Riem| = O(r−2). Gravitational instantons are nice examples of manifolds
with special holonomy and appear naturally in theoretical physics, especially in
Euclidean quantum gauge theory and string theory. Besides, they are relevant in
the study of the moduli space of Einstein metrics on compact four-manifolds, since
they are possible blow-up limits of sequences of such metrics.

Known examples of gravitational instantons arise with special asymptotic ge-
ometries. For instance, P. B. Kronheimer [5] used a symplectic quotient method to
build examples on minimal resolutions of C2/Γ, where Γ is any finite subgroup of
SU(2). These examples are ‘ALE’ in that they ressemble the flat C2/Γ at infinity.

Another kind of asymptotics, called ‘ALF’, is modelled on a circle fibration
over a Euclidean base of dimension 3, with fibers of constant non-zero length. The
base of this fibration at infinity is either R3 or R3/±: the former case is called
‘ALF of cyclic type’ while the latter is ‘ALF of dihedral type’. For instance, the
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standard flat metric on R3 × S1 and the explicit multi-Taub-Nut metrics are ALF
of cyclic type, whereas the Atiyah-Hitchin metric on the moduli space of centered
two-monopoles is ALF of dihedral type.

More gravitational instantons arise by solving the Monge-Ampère equation,
either by the Tian-Yau continuity method [9, 10, 4] or by a PDE gluing technique
[1]. In particular, this makes it possible to desingularize flat hyperkähler orbifolds,
producing gravitational instantons with ‘ALG’ or ‘ALH’ asympotics: ‘ALG’ (resp.
‘ALH’) means the asymptotic geometry is modelled on a T2 (resp. T3)-fibration
over a Euclidean base of dimension 2 (resp. 1).

It is somehow expected that all gravitational instantons have ALE, ALF, ALG
or ALH asymptotics. From basic comparison geometry, the volume growth of balls
of radius R is at least linear in R and at most quartic. Since the late eighties,
it is known that gravitational instantons with exactly quartic volume growth are
ALE [2] and indeed belong to Kronheimer’s family of examples [6]. In [7], it is
proved that ALF gravitational instantons can also be characterized by their volume
growth: gravitational instantons with cubic volume growth are ALF. Moreover,
there is no gravitational instanton with a volume growth less than quartic and
more than cubic.

Finally, it is also natural to ask for a complete classification of ALF gravitational
instantons. In [8], it is proved that ALF gravitational instantons of cyclic type are
R3 × S1 and multi-Taub-Nut manifolds. The proof consists in proving that such
gravitational instantons are bound to possess a S1-symmetry and then exploit this
to describe the hyperkähler structure.
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Hyperbolic monopoles and Pluricomplex geometry

Lorenz Schwachhöfer

This talk is based on an ongoing research project with Roger Bielawski. Most
of the results obtained so far have been published at arXiv:1104.2270: Roger
Bielawski and Lorenz Schwachhöfer, Pluricomplex Geometry and Hyper-

bolic Monopoles.

In this research project, we are concerned with a new type of differential geom-
etry, which we call pluricomplex geometry. It is a generalization of hypercomplex
geometry: we still have a 2-sphere of complex structures, but they no longer behave
like unit imaginary quaternions. We still require, however, that the 2-sphere of
complex structures determines a decomposition of the complexified tangent space
as C2n ⊗ C2.

It turns out that the geometry of such structures is very rich and can be prof-
itably studied from various points of view. For instance, the pluricomplex geometry
of a manifold M is the same as a special type of hypercomplex geometry on the
bundle

T△M = {(v, v); v ∈ TCM}.

In fact, an integrable pluricomplex structure (i.e. a 2-sphere of integrable complex
structures satisfying the above condition) on a manifold M can be viewed as an
integrable hypercomplex structure on an complex thickeningMC ofM , commuting
with the tautological complex structure of MC (thus, the pluricomplex geometry
of M can be viewed as a biquaternionic geometry of MC). It follows, remarkably
enough, that any integrable pluricomplex structure has an associated canonical
torsion-free connection (generally without special holonomy).

Throughout this work we are motivated by a particular example: the mod-
uli space Mk,m of (framed) SU(2)-monopoles of charge k on the hyperbolic 3-
space with curvature −1/m2. It is well known that the moduli space of Euclidean
monopolesMk =Mk,∞ has a natural hyper-Kähler metric, which is of great physi-
cal significance. The moduli space of hyperbolic monopoles is a deformation ofMk.
Furthermore, it can be constructed via twistor methods (at least if 2m ∈ Z), which
leads one to expect a natural geometry. Hitchin constructed a natural self-dual
Einstein metric on the moduli space of centred hyperbolic monopoles of charge
k = 2. The general case, however, has resisted a solution.

A significant progress has been made by O. Nash, who found a new twistorial
construction of Mk,m and described the complexification of the natural geometry
of Mk,m, whatever it might be. However, it was evident from this work that the
real geometry ofMk,m is subtly different form the real geometry of a (complexified)
hyper-Kähler metric.

Our aim is to identify this real geometry. As we show it is a strongly inte-
grable pluricomplex geometry. Thus, in particular, there is a natural torsion-free
connection on Mk,m.
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Entropy rigidity and coarse geometry

Mario Bonk

According to Sullivan’s dictionary [10] there is a close correspondence between the
dynamics of Kleinian groups and the dynamics of rational maps under iteration.

To discuss one explicit example, let Γ be a Fuchsian group, i.e., a uniform lattice
in the isometry group of the (real) hyperbolic planeH2. Suppose Γ y H3 is a quasi-
Fuchsian action of Γ on hyperbolic 3-space H3, i.e., an action that is isometric,
properly discontinuous, and convex cocompact. Then we have dimH Λ(Γ) ≥ 1
for the Hausdorff dimension of the limit set Λ(Γ) ⊆ ∂∞H3 ≈ S2 with equality if
and only if the action stabilizes an isometric copy of H2 in H3. Here and in the
following we denote by ∂∞X the boundary at infinity of a space X whenever this
is meaningful.

This theorem is due to R. Bowen [6]. Note that in the above situation the
limit set Λ(Γ) is a topological circle (actually a quasi-circle). In view of this, the
following statement in complex dynamics attributed to D. Sullivan can be seen as
an analog of Bowen’s theorem: Let f be a hyperbolic rational map (i.e., a rational
map that is expanding on its Julia set in a suitable way), and suppose that its

Julia set J ⊆ Ĉ is a topological circle. Then dimH J ≥ 1 with equality if and
only if J is a geometric circle.

The purpose of my talk was to discuss generalizations of these type of rigid-
ity theorems in various contexts. The starting point was Hamenstädt’s Entropy
Rigidity Theorem [8] that can be formulated as follows: Let (M, g0) be a compact
n-manifold, n ≥ 3, with negatively curved locally symmetric Riemannian metric
g0 normalized so that Ku(g0) = −1, where Ku(g0) is the least upper curvature
bound, i.e., the minimal upper bound for the sectional curvatures of (M, g0). If g
is another Riemannian metric on M with Ku(g) ≤ −1, then we have the inequal-
ity htop(g) ≥ htop(g0) for the topological entropies of the geodesic flows on the
Riemannian manifolds (M, g) and (M, g0) with equality if and only if (M, g) and
(M, g0) are isometric.

A stronger version of this theorem more in the spirit of metric geometry was
established by M. Bourdon [5]. In our context it is convenient to state it in
the following way: Suppose Γ is the fundamental group of a locally symmetric
Riemannian manifold (M, g0) as in Hamenstädt’s theorem. Let Γ y X be an
action of Γ on a (proper and geodesic) CAT(−1)-space X so that the action is
isometric, properly discontinuous, and quasi-convex cocompact. If Λ(Γ) is the
limit set of the action and S is the Riemannian universal cover of (M, g0) (S
is a negatively curved rank-one symmetric space), then we have the inequality
dimH Λ(Γ) ≥ dimH ∂∞S with equality if and only if Γ stabilizes an isometric copy
of S in X .



1880 Oberwolfach Report 33/2011

Here Λ(Γ) and ∂∞S are equipped with natural visual metrics. The space S is a
hyperbolic space Hn

F modeled on F, where F is the algebra R (the real numbers),
C (the complex numbers), H (the quaternions), or O (the octonians, in which case
necessarily n = 2) of real dimension k = 1, 2, 4, 8, respectively. If S = Hn

F , then
we have dimH ∂∞S = nk + k − 2.

Note that if the setup is as in Hamenstädt’s theorem, then the fundamental
group Γ of the manifold M induces an action Γ y X on the Riemannian universal
cover X of (M, g). Moreover, X is a CAT(−1)-space and we have dimH Λ(Γ) =
htop(g).

It would be very interesting to remove the reference to the symmetric spaces
in Bourdon’s theorem and replace it by an assumption on Γ more in the spirit of
metric geometry. This is partially achieved in the following result by B. Kleiner
and myself [2, 3].

Theorem 1. Let X be a CAT(−1)-space, and Γ y X be a group action that is
isometric, properly discontinuous, and quasi-convex cocompact. If Λ(Γ) ⊆ ∂∞X
is the limit set of the action, then dimH Λ(Γ) ≥ dimtop Λ(Γ) =: n with equality if
and only if Γ stabilizes an isometric copy of (real) hyperbolic space Hn+1.

Here dimtop Z denotes the topological dimension of a space Z. This theorem
recovers the real hyperbolic version of Bourdon’s theorem.

Recently, my student Qian Yin [11] proved a rigidity theorem in complex dy-
namics that can be seen as an analog of Hamenstädt’s Entropy Rigidity Theorem
and provides another entry in Sullivan’s dictionary. To formulate Yin’s result we
consider branched covering maps f : S2 → S2 on a 2-sphere S2 (for more back-
ground on the following discussion see [4]). The critical points of f are those points
in S2 where the map is not locally injective. The map f is called a Thurston map
if the forward orbit of each critical point under iteration of f is finite. This is
equivalent with the requirement that the postcritical set

post(f) :=
⋃

n∈N

{fn(c) : c is a critical point of f}

of f is a finite set. Here fn denotes the n-th iterate of f .
Let f : S2 → S2 be a Thurston map, and C ⊆ S2 a Jordan curve with post(f) ⊆

C. By pulling C back under the iterate fn we get a natural cell decomposition Dn

of S2 whose 1-skeleton is the set f−n(C). The 2-dimensional cells in this cell
decompositions are the closures of the complementary components of f−n(C) and
are called tiles of level n or simply n-tiles. The cell decompositions Dn encode
much information on the dynamics of the map f and are the basis for studying
Thurston maps from a combinatorial point of view.

We say that the Thurston map f is expanding if the diameter of n-tiles (for a
fixed base metric on S2) approaches 0 uniformly as n→ ∞. If the Thurston map
is a rational map on the Riemann sphere, then it is expanding if and only if it has
no periodic critical point, or equivalently, if and only if its Julia set is the whole
Riemann sphere.
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The points in post(f) decompose C into arcs. We say that a connected set
K ⊆ S2 joins opposite sides of C if K meets two of these arcs that are non-
adjacent for #post(f) ≥ 4 or if it meets all three arcs for #post(f) = 3. We
denote by Dn(f, C) the minimal number of n-tiles needed to form a connected set
K joining opposite sides of C. If f is expanding, then Dn(f, C) → ∞ as n → ∞.
Actually, in this case one can show that Dn(f, C) grows exponentially fast and
that the exponential growth rate is independent of C.

In the other direction, we always have Dn(f, C) . deg(f)n/2, where deg(f) is
the topological degree of f . For a certain class of maps, the so-called Lattès maps
(see [9]), we have a maximal growth rate in the sense that Dn(f, C) ≍ deg(f)n/2

as n→ ∞. Q. Yin showed that this property essentially characterizes Lattès maps
among expanding Thurston maps [11].

Theorem 2. Let f : S2 → S2 be an expanding Thurston map. Then f is topolog-
ically conjugate to a Lattès map if and only if the following conditions are true:

(i) f has no periodic critical points.

(ii) There exists c > 0, and a Jordan curve C ⊆ S2 with post(f) ⊆ C such that

(1) Dn(f, C) ≥ c deg(f)n/2

for all n ∈ N0.

The connection of this theorem to the Entropy Rigidity Theorem is not im-
mediate, but will become clearer after several remarks. First, one can show that
htop(f) = log(deg(f)) for the topological entropy of f . Moreover, for a given ex-
panding Thurston f : S2 → S2 and a Jordan C ⊆ S2 with post(f) ⊆ C one can
define a tile graph G(f, C) as follows: its set of vertices V is given by the set of
tiles on all levels; here one includes X−1 := S2 as a tile of level −1 and consid-
ers tiles as different if their levels are different even if the underlying sets are the
same (which may happen in some exceptional cases). Moreover, one connects two
distinct vertices in the graph as represented by an n-tile Xn and a k-tile Y k by
an (unoriented) edge iff |n − k| ≤ 1 and Xn ∩ Y k 6= ∅. In this graph the n-tiles
form the sphere of radius n + 1 centered at the basepoint X−1. One can show
that G(f, C) is Gromov hyperbolic, and that up to rough isometry (see [4] for the
definition) this graph is independent of C.

Hence one can associate an asymptotic upper curvature Ku(G) to G = G(f, C)
(this notion was introduced in [4]). This quantity only depends on f , but not on
C. Moreover, Ku(G) is related to the growth rate of Dn(f, C). One can show that
the limit

Λ0(f) := lim
n→∞

Dn(f, C)1/n

exists and that

Ku(G) = − log2(Λ0(f)).

Then the statementDn(f, C) . deg(f)n/2 translates intoKu(G) ≥ − 1
4 log

2(deg(f))
which is true for all expanding Thurston maps. One would like to say that here
equality occurs for an expanding Thurston map without periodic critical points if
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and only if f is topologically conjugate to a Lattès map. The “only if” part of this
statement is not quite true and one has to make the slightly stronger assumption
(1) for the desired conclusion.

The Entropy Rigidity Theorem can be formulated in a similar vein: Let (M, g0)
be as in this theorem, but now g is a negatively curved metric on M such that
htop(g0) = htop(g). So we normalize the topological entropy of the geodesic flow
instead of imposing a normalizing condition on the least upper curvature bound
Ku(g) of the metric g. Then Ku(g) ≥ −1 with equality if and only if (M, g) and
(M, g0) are isometric.

It is very intriguing that the crucial condition (1) in Yin’s theorem only involves
combinatorial data of the dynamical system. It is tempting to search for analogs
of this in settings such as Theorem 1 where the assumptions on metric geometry
are relaxed to “coarser” information. To formulate a possible candidate for such
a statement, suppose X is a proper geodesic Gromov hyperbolic space that is an
ACu(−1)-space (see [1]; this is slightly stronger than requiring that Ku(X) ≤ −1).
Suppose that Γ y X is an action that is isometric, properly discontinuous, and
cocompact, and let N(R) := #{γ ∈ Γ : dist(γ(p), p) ≤ R}, be the orbit growth
function, where p is a fixed basepoint in X . Suppose that ∂∞X is a topological
n-sphere Sn and consider the critical exponent

e(Γ) := lim sup
R→∞

logN(R)

R

of the group action (see [7] for more background). Is it true that in this situation
e(Γ) ≥ n with equality if and only if X is rough isometric to Hn+1?

It seems that by using the results in [2] one can deduce that X is quasi-isometric
to Hn+1 in case of equality e(Γ) = n. The desired conclusion that X is rough
isometric to Hn+1 is much stronger (and may be overly ambitious).
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Geodesic metric spaces with unique blow-up almost everywhere:
properties and examples

Enrico Le Donne

In this report we deal with metric spaces that at almost every point admit a
tangent metric space. These spaces are in some sense generalizations of Riemann-
ian manifolds. We will see that, at least at the level of the tangents, there is some
resemblance of a differentiable structure and of (sub)Riemannian geometry. I will
present some results and give examples.

Let X = (X, dX) and Y = (Y, dY ) be metric spaces. Fix x0 ∈ X and y0 ∈ Y .
If there exists λj → ∞ such that, in the Gromov-Hausdorff convergence,

(X,λjdX , x0) → (Y, dY , y0), as j → ∞,

then (Y, y0) is called a tangent (or a weak tangent, or a blow-up) of X at x0.
Some remarks are due. Fixed x0 ∈ X , there might be more than one tan-

gent. Moreover, in general there might not exist any tangent. However, if the
distance is doubling, then, by the work of Gromov [Gro81], then tangents exists.
Namely, for any sequence λj → ∞, there exists a subsequence λjk → ∞ such
that (X,λjkdX , x0) converges as k → ∞. A tangent is well defined up to pointed
isometry. Thus we define the set of all tangents of X at x0 as

Tan(X, x0) := {tangents of X at x0}/pointed isometric equivalence.

We consider two questions: how big is Tan(X, x0)? what happens when the
tangent is unique? The rough answer that we will give are the following. Under
some ‘standard’ assumptions, if (Y, y0) ∈ Tan(X, x0), then (Y, y) ∈ Tan(X, x), for
all y ∈ Y . Moreover, in the case of unique tangents, such tangents are very special,
however, not much can be said about the initial space X .

Definition and examples. Let (Xj , xj), (Y, y) be pointed geodesic metric spaces.
We write (Xj , xj) → (Y, y) in the Gromov-Hausdorff convergence if, for all R > 0,
we have dGH(B(xj , R), B(y,R)) → 0. Here

dGH(A,B) := inf{dZH(A′, B′) : Z metric space, A′, B′ ⊆ Z,A
isom
= A′, B

isom
= B′},

and dZH(·, ·) is the Hausdorff distance in the space Z.

Example 1. When Rn is endowed with the Euclidean distance (or more generally
a norm), we have Tan(Rn, p) = {(Rn, 0)}, ∀p ∈ Rn.

Example 2. Let (M,d) be a Riemannian manifold (or more generally a Finsler
manifold), we have Tan(M,d, p) = {(Rn, ‖·‖ , 0)}, ∀p ∈ Rn.
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Definition 3 (Carnot group). Let g be a stratified Lie algebra, i.e., g = V1⊕· · ·⊕Vs,
with [Vj , V1] = Vj+1, for 1 ≤ j ≤ s, where Vs+1 = {0}. Let G be the simply-
connected Lie group whose Lie algebra is g. Fix ‖·‖ on V1. Define, for any
x, y ∈ G,

dCC(x, y) := inf

{
ˆ 1

0

‖γ̇(t)‖dt | γ ∈ C∞([0, 1];G), γ(0) = x, γ(1) = y, γ̇ ∈ V1

}
.

The pair (G, dCC) is called Carnot group.

In particular, any Carnot group G is a metric space homeomorphic to the Lie
group G. Moreover, by the work of Pansu and Gromov [Pan83], the Carnot groups
are the blow-downs of left-invariant Riemannnian/Finsler distances on G. Namely,
if ‖·‖ is a norm on Lie(G) extending the one on V1 and d‖·‖ is the corresponding
Finsler distance,

(G, λd‖·‖, 1) λ→0−→ (G, dCC , 1).

Example 4. If (G, dCC) is a Carnot group, then Tan(G, dCC , 1) = {(G, dCC , 1)}.
Indeed, for all λ > 0, there is a group homomorphism δλ : G → G such that
(δλ)∗|V1 is the multiplication by λ. Consequently, (δλ)∗dCC = λdCC . QED

Results. Our main theorem is the following.

Theorem 5 ([LD11]). Let (X, d) be a geodesic metric space. Let µ be a doubling
measure. Assume that, for µ-almost every x ∈ X , the set Tan(X, x) contains
only one element. Then, for µ-almost every x ∈ X , the element in Tan(X, x) is a
Carnot group.

Example 6 (SubRiemannian manifolds). Let M be a Riemannian manifold (or
more generally Finsler). Let ∆ ⊆ TM be a smooth sub-bundle. Let X 1(∆)
be the vector fields tangent to ∆. By induction, define X k+1(∆) := X k(∆) +
[X 1(∆),X k(∆)]. Assume that there exists s ∈ N such that X s(∆) = TM and that,
for all k, the function p 7→ dimX k(∆)(p) is constant. Define, for any x, y ∈M ,

dCC(x, y) := inf{Length(γ) | γ ∈ C∞([0, 1];M), γ(0) = x, γ(1) = y, γ̇ ∈ ∆}.
Then (M,dCC) is called an (equiregular) subFinsler manifold. In such a case, by
a theorem of Mitchell, see [Mit85, MM95],

Tan(M,dCC , p) = {(G, dCC , 1)}, ∀p ∈M,

with (G, dCC) a Carnot group, which might depend on p.

Theorem 5 is proved using the following general property.

Theorem 7 ([LD11]). Let (X,µ, d) be a doubling-measured metric space. Then,
for µ-almost every x ∈ X , if (Y, y) ∈ Tan(X, x), then (Y, y′) ∈ Tan(X, x), for all
y′ ∈ Y .

If #Tan(X, x0) = 1, then (Y, y0) = (Y, y), for all y ∈ Y . In other words, the
isometry group Isom(Y ) acts on Y transitively. Thus we use the following.
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Theorem 8 (Gleason-Montgomery-Zippin, [MZ74]). Let Y be a metric space that
is complete, proper, connected, and locally connected. Assume that the isometry
group Isom(Y ) of Y acts transitively on Y . Then Isom(Y ) is a Lie group with
finitely many connected components.

Regarding the conclusion of the proof of Theorem 5, since moreover Y is geo-
desic, being X so, then Y is a subFinsler manifold, by [Ber88]. From Mitchell’s
Theorem and the fact that {Y } = Tan(Y, y), Y is a Carnot group. QED

Comments and more examples. There are other settings in which the tangents
are (almost everywhere) unique. The snow flake metrics (R, ‖·‖α) with α ∈ (0, 1)
are such examples. Some examples on which the tangents are Euclidean spaces
are the Reifenberg vanishing flat metric spaces, which have been considered in
[CC97, DT99]. Alexandrov spaces have Euclidean tangents almost everywhere,
[BGP92].

However, even in the subRiemannian setting, the tangents are not local model
for the space. Indeed, there are subRiemannian manifolds with a different tangent
at each point, [Var81]. In fact, there exists a nilpotent Lie group equipped with
left invariant sub-Riemannian metric that is not locally biLipschitz equivalent to
its tangent, see [LDOW11]. Such last fact can be seen as the local counterpart of
a result by Shalom, which states that there exist two finitely generated nilpotent
groups Γ and Λ that have the same blow-down space, but they are not quasi-
isometric equivalent, see [Sha04].

Another pathological example from [HH00] is the following. For any n > 1,
there exists a geodesic space X supporting a doubling measure µ such that at
µ-almost all point of X the tangent is Rn, but X has no manifold points.
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inequality but has no manifold points, Proc. Amer. Math. Soc. 128 (2000), no. 11, 3379–
3390.

[LD11] Enrico Le Donne, Metric spaces with unique tangents, accepted for publication in the
Annales Academiae Scientiarum Fennicae Mathematica (2011).

[LDOW11] Enrico Le Donne, Alessandro Ottazzi, and Ben Warhurst, Ultrarigid tangents of
sub-riemannian nilpotent groups, Preprint, submitted (2011).
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Moduli space of test configurations

Toshiki Mabuchi

1. Introduction

This is a work partly joint with Yasufumi Nitta. Let (M,L) be an n-dimensional
connected projective algebraic manifold, so that L is a very ample line bundle on
M . Let T be a maximal algebraic torus in the group Aut(M) of all holomorphic
automorphisms of M . The problem we have in mind is the following extremal
Kähler version of Donaldson-Tian-Yau’s Conjecture:

Conjecture A (Donaldson-Tian-Yau-Székelyhidi): If (M,L) is K-stable relative
to T , then there exists an extremal Kähler metric in the polarization class c1(L).

Here (M,L) is called K-stable relative to T if F1(M,L) < 0 for all non-trivial
test configurations (M,L) for (M,L) in Donaldson’s sense associated to one-
parameter groups orthogonal to T . Note that, in the case Aut(M) is discrete,
Conjecture A is nothing but the original Donaldson-Tian-Yau’s Conjecture. In
this note, for simplicity, we assume that Aut(M) is discrete (and hence T is triv-
ial), though such assumtion of discreteness is not necessary.

2. test configurations with fixed components

For a test configuration (M̃, L̃) for (M,L) of exponent 1 in Donaldson’s sense,

let π̃ : M̃ → C be the associated C∗-equivariant projective morphism. Consider
the normalization ν : M → M̃ of the complex variety M̃. Let Di, i = 1, 2, . . . , r,
be the irreducible components of the scheme-theoretic fiber M0 of M over the
origin 0. For an effective R-divisor

D :=

r∑

i=1

αiDi

on M, we consider the formal line bundle

L := ν∗L̃ ⊗ OM(D)

over M. Then the pair (M,L) together with flat C∗-equivariant projective mor-
phism π = π̃ ◦ ν : M → C is called a test configuration for (M,L) with fixed

components (cf. [2]). Here ν∗L̃ and OM(D) are called the moving part and the
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fixed part of L, respectively. By abuse of terminology, (M̃, L̃) is also called the
moving part of (M,L), and D is called the fixed components for (M,L).

A test configuration (M,L) for (M,L) with fixed components is called R-nef,

if there exist a proper C∗-equivariant desingularization µ : M̂ → M, isomorphic
over M\M0, and an R-divisor D̂ on M̂ with support in M̂0 such that µ∗D̂ = D
as cycles on M and that

c1(L̂)[C] ≥ 0

for L̂ := µ∗ν∗L̃⊗OM̂(D̂) and all irreducible closed curves C on M̂0. Here c1(L̂)[C]
in the left-hand side means c1(µ

∗ν∗L̃)[C] + c1(D̂)[C]. In addition given an R-nef
test configuration (M,L) with fixed components, if D is a Q-divisor on M, then
(M,L) is called Q-nef.

For each positive integer ℓ, let Tℓ(M,L) denote the set of all test configura-
tions for (M,L) of exponent ℓ in Donaldson’s sense. We then consider the set
B(M,L) of all test configurations for (M,L) with fixed components. We now

define BQ
nef (M,L) and BR

nef (M,L) by

BQ
nef (M,L) := { (M,L) ∈ B(M,L) ; (M,L) is Q-nef },

BR
nef (M,L) := { (M,L) ∈ B(M,L) ; (M,L) is R-nef }.

Then for each (M̃, L̃) in Tℓ(M,L), its ℓ-th root (M′,L′) ∈ BQ
nef (M,L) exists in

the following sense (cf. [3]):

Theorem B: For each (M̃, L̃) ∈ Tℓ(M,L), let ν : M → M̃ be the normalization

of M̃. Then for some (M′,L′) in BQ
nef (M,L), there exists a C∗-equivariant bira-

tional map ι : M → M′, injective in codimension 1, such that (ι∗L′)ℓ = ν∗L̃ up
to codimension ≥ 2 subvarieties of M.

Here a C∗-equivariant birational map ι : M → M′ is called injective in codi-
mension 1, if there exist C∗-invariant subvarieties Z and Z ′ of M and M′, re-
spectively, such that codimM Z ≥ 2, and that ι restricts to a C∗-equivariant
isomorphism of M \ Z onto M′ \ Z ′. We observe that, not only for elements in
Tℓ(M,L), but also for (M,L) ∈ BR

nef (M,L), we can define the Donaldson-Futaki

invariant F1(M,L) ∈ R. Then in Theorem B above,

F1(M̃, L̃) = F1(M′,L′).

It is possible to show that all fixed components for (M′,L′) appearing in Theorem
B, with ℓ running through the set of all positive integers, form a bounded family.

3. Test configurations possibly with irrational weights

Use the same notation as in the previous sections. Let (M,L) ∈ BR
nef (M,L),

and consider the vector bundle E obtained as the direct image sheaf

E := π̃∗L̃ (= π∗L)
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over C. Then an affirmative solution of equivariant Serre’s Conjecture allows us
to obtain a C∗-equivariant isomorphism

E ∼= E0 × C,

where E0 denotes the fiber of E over the origin. Note that the fiber E1 of E over
1 ∈ C is naturally identified with H0(M,L). Fix a Hermitian metric h1 for L
such that ω1 := c1(L;h1) is Kähler on M . Then by (ω1, h1), we have a natural
Hermitian metric ρ1 for the vector space H0(M,L) = E1. Then by an observation
of Donaldson, the C∗-equivariant isomorphism E ∼= E0×C can be chosen in such a
way that the Hermitian metric ρ1 corresponds to a hermitian metric ρ0 on E0 fixed
by the action of S1 ⊂ C∗. Then the moving part (M̃, L̃) of (M,L) is recovered
from the associated 1-parameter group

ψ : C∗ → SL(E0)

induced by the representation of C∗ on E0. To obtain a well-defined ψ, we choose
an unramified cover of C∗ if necessary. Note that we may assume that the test
configuration (M̃, L̃) is nontrivial. Then (M̃, L̃) is recovered from

Ã :=
A

‖A‖ ,

where A := ψ∗(1) and ‖A‖ :=
√
tr(tAĀ). By fixing an orthonormal basis for the

vector space (E0, ρ0), we can write A ∈
√
−1 su(E0, ρ0) in the form

A = U ΛU−1,

where Λ = Λ(ψ) is a diagonal matrix with the i-th diagonal elements λi(ψ) ∈ Q.
In a more general situation, by allowing the real number λi(ψ) to be irrational,

we have test configurations (M̃, L̃) with irrational weights. Such generalized test
configurations are parametrized by the compact set

{ Ã ∈
√
−1 su(E0, ρ0) ; ‖Ã‖ = 1 }.

This gives a compact completion of the set of all (M̃, L̃), where (M̃, L̃) are the

moving parts of all (M,L) ∈ BQ
nef (M,L).

4. Precompactness of the moduli space

By letting ℓ run through the set of all positive integers, we conclude from re-
marks at the end of Sections 2 and 3 that the set of all possible (M′,L′) appearing
in Theorem B has compact completion. This fact is called the precompactness of
the moduli space of test configurations, and gives some affirmative application
related to Conjecture A. For instance, one can show that K-stability implies as-
ymptotic Chow stability under the assumption that Aut(M) is discrete. A relative
version of the implication also holds even when Aut(M) is not discrete.
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Integral invariants in complex differential geometry

Akito Futaki

LetM be a compact complex manifold of dimCM = m. Suppose we are given the
following (A) and (B) seperately.

(A)

• A holomorphic principal G-bundle with a complex Lie group G;
• A subgroup H of Aut(M) acting on PG from the left commuting with the
right G-acton, with Lie algebra h;

• A type (1, 0)-connection θ of PG.

(B)

• A Kähler class Ω ∈ H2
DR(M);

• A Kähler form ω ∈ Ω;
• For each X ∈ h regarded as a holomorphic vector field on M , we are given
a complex valued smooth function uX such that

(1) i(X)ω = −∂uX
with the normalization

(2)

ˆ

M

uXω
m = 0.

Let Ik(G) be the set of all Ad(G)-invariant polynomials of g into C of degree
k. For φ ∈ Ik(G) we define Fφ : g → C by

(3) Fφ(X) = (m− k + 1)

ˆ

M

φ(Θ) ∧ uXωm−k +

ˆ

M

φ(θ(X̃) + Θ) ∧ ωm−k+1,

where X̃ is a holomorphic vector field on PG induced by X ∈ g and Θ is the
curvature form of θ.

It is shown in [7] that Fφ is independent of the choice of θ in (A) and ω in (B).
But a similar formula can be found in a paper of H. Cartan, and this result may
be attributed to him.

There are three useful cases:
(a) Take PG to be the frame bundle and φ = c1, then we obtain an obstruction

for a Kähler class to admit a Kähler form of harmonic k-th Chern form for each
k = 1, · · · ,m. When k = 1, this is an obstruction for the Kähler class to admit a
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Kähler metric of constant scalar curvature. In particular if M is a Fano manifold
and we take Ω to be the first Chern class c1(M), this is an obstruction to the
existence of a Kähler-Einstein metric. See [5], [2], [1] and [6].

(b) Let (M,L) be a polarized manifold. Take PG to be the frame bundle, φ to
be the k-th Todd class Todd(k) and Ω to be c1(L). Then we obtain obstructions
for asymptotic Chow semistability ([11], [7], [10]) . Note that FTodd(1) = F 1

2 c1
so

that the first one coincides with the one in (a) up to a constant. There is known
example of 7-dimensional toric Fano manifold with FTodd(1) = 0 and FTodd(k) 6= 0
for k = 2, · · · ,m. This example was suggested by Nill and Paffenholz [12], and
the computation of FTodd(k) was done by [14]. This example is a Kähler-Einstein
manifold by [15] but is asymptotically unstable. Note that Donaldson [3] showed
that if a polarized manifold admits a constant scalar curvature metric and if the
automorphism group is discrete then (M,L) is asymptotically Chow stable. Note
also that Odaka [13] showed that Donaldson’s result does not hold for orbifolds.

(c) If we take PG to be the frame bundle and φ to be cm+1
1 . Then Fcm+1

1
has

nothing to do with the Kähler form ω, and it turns out that it is an invariant
depending only on the complex struture. In other words it can be defined for
possibly non-Kähler manifolds. This was used in [8] to show that the invariant
vanishes for all Vaisman manifolds.

Finally notice that the three families (a), (b) and (c) intersect with the obstruc-
tion to the existence of Kähler-Einstein metrics.
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A gauge theoretic approach to the anti-self-dual Einstein equations

Joel Fine

(joint work with Dmitri Panov)

In the 1977 Plebanski explained how to reformulate the anti-self-dual Einstein
equations with non-zero scalar curvature as a PDE not for a metric, but rather for
a connection on an SO(3)-bundle [1]. The aim of this talk is to lay the foundations
for further study of this equation. Our approach is motivated by an analogy we
describe with instantons and the Yang–Mills functional.

We investigate the solutions to the PDE inside the space D of “definite con-
nections”, an open set of connections satisfying a certain curvature inequality.
Solutions of the PDE are zeros of a non-linear differential operator defined on D.
We show the operator is elliptic at all points of D. We describe an energy func-
tional on D whose topological minima are precisely the solutions to the PDE. The
downward gradient of this functional defines a flow which we show is parabolic
modulo gauge and hence exists for short time.

We explain how our techniques also apply to the zero scalar-curvature (hy-
perkähler) setting and to a conjecture of Donaldson [2]. We formulate a positively-
curved version of Donaldson’s conjecture and show that the negatively-curved
analogue is false.
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On isoperimetric surfaces in initial data sets

Jan Metzger

(joint work with Michael Eichmair)

In this abstract we present the main results from [4].
We study initial data sets that are C0-asymptotic to Schwarzschild with mass

m > 0. These are complete three dimensional manifolds (M, g) that are diffeo-
morphic to (R3 \ B(0, 1), g) outside some bounded open set, such that there is a
constant C > 0 so that in the Euclidean coordinates (x1, x2, x3) on R3 \ B(0, 1)
we have

(1) r2|(g − gm)ij |+ r2|∂kgij |+ r3|∂k∂lgij | ≤ C for all i, j, k, l ∈ {1, 2, 3}.
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Here, r :=
√
x21 + x22 + x23 denotes the Euclidean distance to the origin and gm is

the conformally flat spatial Schwarzschild metric with mass m > 0:

(gm)ij =
(
1 + m

2r

)4
δij .

We are interested in the isoperimetric profile of (M, g):

Ag(V ) := inf
{
H2

g(∂Ω) | Ω ⊂M is a smooth region and L3
g(Ω) = V

}
.

Here, H2
g and L3

g denote respectively the two-dimensional Hausdorff measure and
the Lebesgue measure with respect to g.

A smooth region Ω ⊂ M is called isoperimetric if Ag(L3
g(Ω)) = H2

g(∂Ω). The
boundary Σ = ∂Ω of an isoperimetric region Ω is a compact constant mean cur-
vature surface that is also stable for the area functional with respect to volume
preserving deformations. Hence

ˆ

Σ

(|h|2 +Ric(ν, ν))f2 dH2
g ≤

ˆ

Σ

|∇f |2 dH2
g

for all f ∈ C1(Σ) with

ˆ

Σ

f dH2
g = 0,

where h denotes the second fundamental form of Σ and Ric(ν, ν) the Ricci curva-
ture of g evaluated in direction normal to Σ.

In compact manifolds it is well known that there exist isoperimetric regions for
all volumes smaller than half the volume of the manifold. The situation in the non-
compact case is much more complicated. Explicit solutions to the isoperimetric
problem are only known in very few, highly symmetric cases [11]. Bray showed in
[1] that the centered spheres in the Schwarzschild manifold with m > 0 are the
unique isoperimetric surfaces relative to the horizon at r = m

2 . In [2] it was shown
that Bray’s technique also applies to a class of rotationally symmetric manifolds.

The analysis of stable constant mean curvature surfaces in initial data sets has
been initiated by Christodoulou and Yau in [3]. Huisken and Yau [7] showed that
the asymptotic end of a manifold that is asymptotic to Schwarzschild (in a stronger
sense than our assumption (1) here) is foliated by stable constant mean curvature
spheres. Huisken and Yau used this foliation to define a geometric center of mass
for such manifolds. A crucial question in this context is whether this center of
mass is uniquely defined. Huisken and Yau answered this question affirmatively
by establishing a strong uniqueness result for the surfaces in the foliation used
to define the center of mass: they showed that for each q > 1/2 there exists
H0 > 0 such that for each H ∈ (0, H0) there is exactly one stable constant mean
curvature sphere with mean curvature H containing BH−q (0). Related existence
and uniqueness results for stable constant mean curvature surfaces have also been
obtained by Ye [12]. Qing and Tian [10] showed that uniqueness holds outside a
compact set that is independent of H . Further work has been done to generalize
both existence [6] and uniqueness [8] of foliations by surfaces with constant mean
curvature to more general asymptotics, as well as more general prescribed mean
curvature surfaces [9]. In [5] we complement these uniqueness results in initial
data sets with non-negative scalar curvature by showing that stable constant mean
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curvature surfaces with large area cannot intersect a given compact set on which
the scalar curvature is strictly positive.

The surfaces considered by Huisken and Yau are locally isoperimetric since they
pass the second derivative test for the associated variational problem. It is natural
to ask whether these surfaces are also global minimizers, i.e. whether they are
isoperimetric regions. This question was asked by Bray in [1, p. 44] in view of his
result on the isoperimetric property of the centered spheres in Schwarzschild. Our
main result in [4] confirms this conjecture and completely clarifies the isoperimetric
structure of initial data sets for large volumes.

Theorem 1 (cf. [4, Theorem 1.1]). Let (M, g) be an initial data set as described
above that is C0-asymptotic to Schwarzschild with mass m > 0. Then there exists
V0 > 0 with the following property: For every V ≥ V0 there is an isoperimetric
region ΩV with volume V . Its boundary is connected and close to a centered
coordinate sphere.

An immediate consequence is that the isoperimetric profile Ag(V ) of (M, g) is
asymptotic to that of the exact Schwarzschild metric.

Our proof is based on direct minimization of the area functional subject to
a volume constraint. In non-compact manifolds this is delicate, since part of
the volume of a minimizing sequence may drift to infinity so that the limit may
have less volume than one started with. To show that the positivity of mass
prevents this volume loss, we derive an explicit comparison theorem. This implies
that in manifolds which are C0-asymptotic to Schwarzschild, centered regions are
isoperimetrically superior to regions which have a fraction of their boundary area
off center in the following sense:

Definition 1 ([4, cf. Definition 3.2]). Given τ > 1 and η ∈ (0, 1). A region Ω in
(M, g) is called (τ, η)-off center if:

(1) L3
g(Ω) is so large that there exists a coordinate sphere Sr = ∂Br with

L3
g(Br) = L3

g(Ω), and if

(2) H2
g(∂Ω \Bτr) ≥ ηH2

g(Sr).

Our comparison theorem then tells us the following:

Theorem 2 ([4, cf. Theorem 3.4]). Let (M, g) be an initial data set that is C0-
asymptotic to Schwarzschild with mass m > 0. For each pair (τ, η) ∈ (1,∞)×(0, 1)
and constant Θ > 0 there exists a constant V0 > 0 such that the following holds:
given a bounded region Ω that is (τ, η)-off center with H2

g(∂Ω)L3
g(Ω)

−1/3 ≤ Θ and

such that H2
g(∂Ω ∩Bσ) ≤ Θσ2 holds for all σ ≥ 1 one has

H2
g(Sr) +

ηmπ

300

(
1− 1

τ

)2

r ≤ H2
g(∂Ω)

where Sr ⊂M is the coordinate sphere that encloses the same g-volume as Ω.

This comparison theorem not only allows us to argue that a minimizing sequence
does not lose volume in the limit, but it also yields position estimates for the
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resulting isoperimetric region. In fact, by the comparison theorem, any sequence
of isoperimetric regions ΩVi

with volume Vi → ∞ scaled down to volume 4π
3

converges to a centered round ball with radius 1.
We conclude that the Huisken-Yau geometric center of mass of manifolds that

are C2-asymptotic to Schwarzschild with mass m > 0 is indeed also the isoperi-
metric center of mass.
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Positively curved polar manifolds and buildings

Gudlaugur Thorbergsson

(joint work with Fuquan Fang, Karsten Grove)

This talk is based on the paper [3].
An isometric action on a complete Riemannian manifold is called polar if there is

an (immersed) submanifold, a so-called section, that meets all orbits orthogonally.
The concept, that was introduced independently by Szenthe [9] and Palais-Terng
[7], goes back to isotropy representations of symmetric spaces. Also, as a special
case, the adjoint action of a compact Lie group on itself is polar with section a
maximal torus. An exceptional but important special case is that of cohomogeneity
one actions and manifolds, i.e., actions with 1-dimensional orbit space.
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The exceptional case of positively curved cohomogeneity one manifolds was
studied in [4]. Aside from the rank one symmetric spaces, this also includes infi-
nite families of other manifolds, most of which are not homogeneous even up to
homotopy. In contrast, our work here has the following result as a corollary:

Theorem 1. A polar action on a simply connected, compact, positively curved
manifold of cohomogeneity at least three is equivariantly diffeomorphic to a polar
action on a compact rank one symmetric space.

It is our conjecture that the same conclusion holds in cohomogeneity two as
well. In fact, by Theorem 4 below, we know this for all so-called reducible actions,
and the only irreducible ones of cohomogeneity two correspond to Coxeter geome-
tries of type A3 or C3. It is also a corollary of our main result that all irreducible
polar actions of type Ak, k ≥ 3, are equivarianly diffeomorphic to linear polar rep-
resentations on spheres. As we will see, however, the C3 geometry is significantly
different from all others. However, we are able to confirm our conjecture in high
dimensions

Theorem 2. A polar action on a simply connected, compact, positively curved
manifold of dimension ≥ 72 is equivariantly diffeomorphic to a polar action on a
compact rank one symmetric space.

All polar actions on the simply connected, compact rank one symmetric spaces,
i.e., the spheres and projective spaces, Sn,CP

n,HP
n and CaP2 were classified in

[2] and [8]. In all cases but CaP2 they are either linear polar actions on a sphere
or they descend from such actions to a projective space.

By work of Dadok [2], Tits [10], and Burns-Spatzier [1], the (maximal) irre-
ducible polar linear actions are in 1-1 correspondence with topological spherical
buildings. On CaP2 any polar action has either cohomogeneity one or two, and
in the second case all but one have a fixed point. It follows from our work, that
the cohomogeneity two action without fixed points has associated to it a chamber
complex whose universal cover is a geometry of type C3 which is not a building.

Our point of departure is the following description of sections and their (effec-
tive) stabilizer groups referred to as polar groups in [5] and Weyl groups in [9] and
[7]:

Theorem 3. The polar group of a simply connected positively curved polar man-
ifold of cohomogeneity at least two is a Coxeter group or a Z2 quotient thereof.
Moreover, the section with this action is equivariantly diffeomorphic to a sphere
or a real projective space with a linear reflection group action.

This naturally divides the investigation into two parts, according to whether
the action of the polar group is reducible (including the case of fixed points) or
irreducible. By abuse of language, we will simply say that the action is reducible
or not if the same is true for its polar group action on the section. It is some-
what surprising that one can determine the reducible actions without knowing the
irreducible ones. In fact, using direct geometric arguments, we prove:
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Theorem 4. A simply connected positively curved manifold with a reducible polar
action of cohomogeneity at least two is equivariantly diffeomorphic to a rank one
symmetric space with a polar action.

Whether the action is reducible or not, the fundamental domains for the action
of the polar group on a section are isometric to the orbit space, and we refer to
these as chambers. The group acts simply transitively on the set of chambers, and
one naturally builds a chamber complex out of these chambers. The chambers are
either simplices or joins of simplices with a sphere. Even when the chambers are
simplices, this complex is frequently not simplicial when the action is reducible.

Our starting point in the irreducible case is the following:

Theorem 5. The chamber complex associated with a simply connected positively
curved irreducible polar manifold of cohomogeneity at least two is a connected
simplicial complex. Moreover, this complex naturally supports a metric which is
locally CAT(1).

Following Tits, a chamber complex associated to a Coxeter group has a universal
cover, and when the rank is at least four (corresponding to cohomogeneity at least
three), this cover is some general (spherical) building, not necessarily associated
with a simple group over a classical field. In our case, we show that the universal
cover supports a natural topology inherited from the “base” manifold, making it
into a topological building in the sense of Burns and Spatzier:

Theorem 6. The universal cover of the chamber complex associated with a simply
connected positively curved irreducible polar manifold of cohomogeneity at least two
inherits a topology from the base complex. If the universal cover is a building, it
becomes a compact topological building with this topology.

From the work of Burns-Spatzier [1] and Tits [10], a topological spherical build-
ing, is the building of the sphere at infinity of a noncompact symmetric space U/K,
and the action of K at the sphere at infinity is the linear polar action whose cham-
ber complex is the building. In our case, the deck transformation group π of the

cover becomes a compact normal subgroup of Ĝ ⊂ K acting freely on the sphere

with quotient our manifold with the action by G = Ĝ/π. Moreover, the actions by

Ĝ and K on the sphere are orbit equivalent. This already proves our Theorem 1 up
to equivariant homeomorphism, and the rest follows, e.g., from the Recognition
Theorem in [5].

We like to mention that the strategy used in the case of irreducible action
has been independently developed by Lytchak [6] to determine the polar singular
foliations of cohomogeneity at least three in symmetric spaces.
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Polygons in Euclidean buildings of rank 2

Carlos Ramos-Cuevas

Let X = G/K be a symmetric space of noncompact type, i.e. with nonpositive
sectional curvature and no Euclidean factors. As in Euclidean space the only
isometry invariant of a segment is its length, we can also define a generalized
notion of length of an oriented segment in X by considering its equivalence class
modulo the action of the identity component G = Isom0(X) of its isometry group.
We obtain in this way a vector in the Euclidean Weyl chamber ∆euc := (X ×
X)/G which we call the ∆-valued length of the segment (cf. [6]). If (S,W ) is the
spherical Coxeter complex associated toX , then the EuclideanWeyl chamber ∆euc

is isometric to the complete Euclidean cone over the Weyl chamber ∆ := S/W .
Let now X be a thick Euclidean building modeled in the Euclidean Coxeter

complex (E,Waff ) with associated spherical Coxeter complex (S,W ). The same
notion of ∆-valued length can be defined in this case, see [7].

We are interested in the following geometric question: Which are the possible
∆-valued lengths of oriented polygons in X? In the special case of the symmetric
space X = SL(m,C)/SU(m) this question is closely related with the so-called
Eigenvalue Problem which asks: How are the eigenvalues of two Hermitian matri-
ces related to the eigenvalues of their sum? We refer to [6] for more information
about the relations between these two questions and [5] to read about the history
on the Eigenvalue Problem.

Let Pn(X) ⊂ ∆n
euc denote the set of all possible ∆-valued lengths of oriented n-

gons in X . If X is a symmetric space, the structure of Pn(X) is known ([8], [1], [4],
[9], [6], [2]), namely, it is a convex finite sided polyhedral cone. It is also shown in
[6] and [7] that Pn(X) depends only on the associated spherical Coxeter complex
(S,W ) regardless of whether X is a symmetric space or a Euclidean building. It
follows that for a Euclidean building with a spherical Coxeter complex which also
occurs for symmetric spaces the set Pn(X) is also a convex finite sided polyhedral
cone.
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However there exist exotic Coxeter complexes in the sense that they are asso-
ciated to Euclidean buildings but not to symmetric spaces. According to a result
of Tits [11] they only exist in rank 2, actually, all dihedral groups occur as Weyl
groups of Euclidean buildings. In our talk we discussed the description of the set
Pn(X) in these remaining cases (compare [10, Theorem 6.14]). This result was
independently proven by Berenstein and Kapovich in [3] by different methods.

Theorem 1. Let X be a thick Euclidean building of rank 2. The set Pn(X) ⊂
∆n

euc of possible ∆-valued lengths of oriented n-gons in X is a convex finite sided
polyhedral cone. The inequalities defining the faces of Pn(X) can be given in terms
of the combinatorics of the spherical Coxeter complex associated to X.
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Stability of symmetric spaces of noncompact type under Ricci flow

Richard H. Bamler

In this talk, we present stability results for symmetric spaces of noncompact type
under Ricci flow, i.e. we show that any small perturbation of the symmetric
metric is flown back to the original metric under an appropriately rescaled Ricci
flow. These results can be found in [3]. It is important for us which smallness
assumptions we have to impose on the initial perturbation. We will find that as
long as the symmetric space does not contain any hyperbolic or complex hyperbolic
factor, we don’t have to assume any decay on the perturbation. Furthermore, in
the hyperbolic and complex hyperbolic case, we show stability under a very weak
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assumption on the initial perturbation generalizing results by Schulze, Schnürer
and Simon ([11]) in the hyperbolic case. The proofs of those results make use of an
improved L1-decay estimate for the heat kernel in vector bundles over symmetric
spaces as well as of elementary geometry of negatively curved spaces.

As a motivation for our results, we consider the following question:

Question 1. Is there an εn > 0 such that every compact Riemannian manifold
(Mn, g) with −1− εn < secg < −1 + εn is automatically hyperbolic?

The answer is yes for n = 2, 3 (by uniformization the solution of the Geometriza-
tion Conjecture) and no for n ≥ 4 (see [7] and [5]). We can generalize this question
to other locally symmetric spaces (Msym, g). Recall that these are spaces which lo-
cally admit an isometric reflection at every point. By the de Rham Decomposition

Theorem, the universal cover M̃sym can be expressed as a product M1 × . . .×Mm

of irreducible symmetric spaces which turn out to be Einstein. Msym is said to be
of noncompact type if the Einstein constants of the Mi are all negative (for more
details see e.g. [8]). A reasonable generalization of Question 1 is

Question 2. For which symmetric space of noncompact type (Msym, g) is there an
ε = ε(Msym) > 0 such that:
If (M, g) is a compact Riemannian manifold which satisfies the property that the

universal cover B̃1(p) of every 1-ball B1(p) ⊂ M is ε-close to a 1-ball B1(p0) ⊂
Msym (in some Cm-sense), them M is actually diffeomorphic to a geometric quo-
tient of Msym.

Observe that Question 2 is still false for Msym = Hn for n ≥ 4. Positive results
towards this question in the case in which ε is allowed to depend on an upper
bound on the volume of M are due to Min-Oo ([10]). We are unable to anwer
Question 2 at this point. However, the analysis of the following related question
gives hope that there might be a positive answer for certain Msym:

Question 3. Let (Msym, g) be a locally symmetric space of noncompact type which
is Einstein with Einstein constant λ, i.e. g is a fixed point of the rescaled Ricci
flow equation

(1) ∂tgt = −2Ricgt +2λgt.

Is g stable under (1), i.e. is there an ε = ε(Msym) > 0 such that if

(1− ε)g < g0 < (1 + ε)g,

then there is a solution (gt)t∈[0,∞) to (1) with initial metric g0 and as t → ∞ we
have convergence gt −→ g in the pointed smooth Cheeger-Gromov sense, i.e. there
is a family of diffeomorphisms Ψt of Msym such that Ψ∗

t gt −→ g in the smooth
sense on every compact subset of Msym?

Observe that we do not impose any spatial decay assumptions on the pertur-
bation g0 − g here. Surprisingly, Question 3 can be answered positively for many
of the “higher” symmetric spaces:



1900 Oberwolfach Report 33/2011

Theorem 1 (cf [3]). Let (Msym, g) be a locally symmetric space of noncompact

type which is Einstein. Assume that the de Rham decomposition of M̃sym con-
tains no factors which are homothetic to hyperbolic space Hn, (n ≥ 2) or complex
hyperbolic space CH2n, (n ≥ 1). Then (Msym, g) is stable in the sense of Question
3.

On the other hand, by results of Graham-Lee ([6]) and Biquard ([4]), the spaces
Hn, (n ≥ 4) and CH2n, (n ≥ 2) admit deformations g which are Einstein, are not
isometric to g and satisfy (1−ε)g ≤ g ≤ (1+ε)g. Hence for those spaces we cannot
hope for a result which is as strong as that of Theorem 1. We remark here that
by a result of the author, Question 3 can still be answered positively for certain
quotients of Hn:

Theorem 2 (cf [2]). Any complete hyperbolic manifold (Mn, g) of finite volume
and dimension n ≥ 3 is stable in the sense of Question 3.

A stability result for the case in whichM is compact, has previously been found
by Ye ([12]). In the simply-connected case however, we have to impose stronger
decay assumptions on the perturbation g0 − g to guarantee stability:

Theorem 3 (cf [3]). Let (M, g) be either Hn for n ≥ 3 or CH2n for n ≥ 2, choose
a basepoint x0 ∈M and let r = d(·, x0) denote the radial distance function.
There is an ε1 > 0 and for every q <∞ an ε2 = ε2(q) > 0 such that the following
holds: If g0 = g + h and h = h1 + h2 satisfies

|h1| <
ε1
r + 1

and sup
M

|h2|+
(
ˆ

M

|h2|qdx
)1/q

< ε2,

then there is a solution (gt)t∈[0,∞) to (1) and we have convergence gt −→ g in the
pointed smooth Cheeger-Gromov sense.

Earlier results in this direction are due to Schulze, Schnürer and Simon ([11])
who showed that in the case M = Hn, n ≥ 4 there is stability for every per-
turbation h for which ‖h‖L∞(M) is bounded by a small constant depending on
‖h‖L2(M). Moreover, Li and Yin ([9]) have established stability in the case M =
Hn, n ≥ 3 when the Riemannian curvature approaches the hyperbolic curvature
like ε1(δ)e

−δr.
The proofs of Theorems 1 and 3 rely on a geometric analysis of the heat kernel

associated to the linearized Ricci deTurck flow equation. It turns out that the
geometry of the vector bundle Sym2 T

∗M in which the perturbation lives, improves
the L1-decay rate of the heat kernel associated to this linearization. In [3] we are
able to give bounds on the L1-decay rate of any heat kernel living in a homogeneous
vector bundle over a symmetric space and those bounds are optimal in many cases.
It then remains an algebraic problem to compute those bounds and we find that
the obstruction against a good decay, originate from the existence of so called cusp
deformations which correspond to the “trivial Einstein deformations” in [1] and
can be seen as algebraic deformations of cusp cross-sections. Cusp deformations
turn out to exist only for the spaces Hn, (n ≥ 3) and CH2n, (n ≥ 2). Theorems 1
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and 3 for type h2 perturbations follow then easily from these heat kernel estimates.
In order to allow type h1 perturbations, we make use of certain visibility properties
of the geometry of negatively curved spaces.
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Normalized Ricci flow on 4-manifolds

Fuquan Fang

A Ricci flow on a manifold (M, g) is the following evolution equation with initial
metric g

(1)
∂

∂t
g(t) = −2Ric(g(t)),

If the manifold (M, g) has finite volume, the normalized Ricci flow reads as

(2)
∂

∂t
g(t) = −2Ric(g(t)) +

2

n
r(t)g(t)

where Ric(g(t)) is the Ricci tensor of the metric g(t), and r(t) =
´

M
R(g(t))dvg(t)
´

M
dvg(t)

is

the average scalar curvature of g(t).
In this talk I will briefly review my joint works with Yuguang Zhang and Zhenlei

Zhang in recent five years on Ricci flow on 4-manifolds. By exploring Perelman’s
monotonicity for F and W functionals, the following is proved in [FZZ1]:
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Theorem 1. If g(t) is a normalized Ricci flow on a 4-manifold M with uni-
formly bounded sectional curvature for all t ∈ [0,∞), then the Euler characteristic
χ(M) ≥ 0.

Moreover, ifM has non-positive Perelman’s λ-invariant, or equivalently,M does
not admit a metric with positive scalar curvature, then

Theorem 2. If g(t) is a normalized Ricci flow on a closed oriented 4-manifold M
with uniformly bounded scalar curvature for all t ∈ [0,∞) and λ̄M ≤ 0, then

2χ(M)− 3|τ(M)| ≥ 1

96π2
λ
2

M ,

where τ(M) is the signature of M .

The above can be regarded as a generalized Hitchin-Thorpe inequality for Ein-
stein 4-manifolds. By combining with Seiberg-Witten theory we have proved a
strengthened version of the above inequality for 4-manifolds with non-trivial mono-
pole class, which can be regarded as Miyaoka-Yau type inequality:

Theorem 3. LetM be a closed oriented 4-manifold with nontrivial Seiberg-Witten
invariant and λM ≤ 0. Let g(t) be a solution to the normalized Ricci flow with
uniformly bounded scalar curvature for all t ∈ [0,∞), then

χ(M) ≥ 3τ(M)

Moreover, when the equality in the above theorem holds we have the following
decomposition theorem for the manifold, which serves as an analogy of Thurston’s
geometrization picture for a large class of 4-manifolds:

Theorem 4. Let (M, g(t)) a closed oriented 4-manifold with nontrivial Seiberg-
Witten invariant. Assume that b+2 > 1 and χ(M) = 3τ(M). If g(t) is a solution
to the normalized Ricci flow with uniformly bounded sectional curvature for all
t ∈ [0,∞), then M admits a thick-thin decomposition where the thick part admits
a complex hyperbolic metric of finite volume, the thin part admits pure F -structure
of positive rank.
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More on gravitational instantons

Hans-Joachim Hein

1. Introduction

The topic of this lecture is complete, non-compact, non-flat, Ricci-flat 4-manifolds.
A classification of such spaces would be the basic input for a local structure theory
of compact 4-manifolds with bounded Ricci curvature. It is then natural in view
of Gauß-Bonnet to also assume Rm ∈ L2, which implies |Rm| < Cr−2, [2], and is
likely equivalent to finite topology. By volume comparison, cr < |B(x0, r)| < Cr4.
If we do allow infinite topology, there exist examples of volume growth rβ for any
β ∈ (3, 4), but the only known non-integer rate with finite topology is β = 4

3 .
We emphasize right away that there are only two known examples with reduced

holonomy SO(4): the Schwarzschild metric on R2 × S2, and the Taub-Bolt metric
on OCP 1(1). Both are asymptotic to S1-bundles of constant fiber length over R3,
i.e. of class ALF (“asymptotically locally flat”). As in the compact case, there are
currently no tools whatsoever to construct or to classify such manifolds.

We thus concentrate on the remaining reduced holonomy SU(2) = Sp(1), where
methods of complex geometry become available; such manifolds are usually called
“gravitational instantons.” The case of maximal volume growth is well understood:
Even without assuming Rm ∈ L2, [6], all such spaces are asymptotic to C2/Γ for
some Γ < U(2) at rate r−4, and hence coincide with one of Kronheimer’s ALE
spaces, or with certain finite quotients of these [8].

Much less is known about gravitational instantons of less than maximal volume
growth, even with Rm ∈ L2. Concerning examples and also classification, there is
a folklore picture that might be summarized as follows.

(1) Take a spaceM from the following list: flat (R4, R3×S1, R2×T 2, R×T 3),
Taub-NUT (an ALF metric on R4), or Atiyah-Hitchin (ALF on OCP 1(−4)).

(2) Find finite groups Γ acting onM by hyperkähler isometries with a finite but
non-empty set of fixed points. Construct complete hyperkähler metrics on crepant
resolutions of M/Γ that are geometrically asymptotic to M/Γ at infinity.

(3) Determine the full deformation space of the metrics obtained in (2).
(4) Find all finite isometric coverings or subcoverings of the metrics from (3).

For M = R4, this recovers the ALE story. For the other choices of M , (2) is now
understood as well [1], and there has been definite progress towards (3) in the ALF
case [5]. It is important to note that the method of [1] reconstructs all known ALF
spaces up to deformation, but also produces several new geometries:

• ALG: asymptotic at rate r−2−(1/θ) to a twisted product of a flat 2-cone with
cone angle θ ∈ { 1

2 ,
1
3 ,

1
4 ,

1
6} and a flat 2-torus, and

• ALH: exponentially asymptotic to a flat half-cylinder R+ × (T 3/Γ).

Theorem 1 (see [4]). There exists a 29-dimensional moduli space of gravitational
instantons with the following properties.

• The main stratum is smooth and consists of ALH spaces, locally comprising
all small Ricci-flat deformations of these spaces.
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• There are lower dimensional strata consisting of ALG spaces with cone angles
θ ∈ { 1

2 ,
1
3 ,

2
3 ,

1
4 ,

3
4 ,

1
6 ,

5
6} and generic decay r−2 to the flat model.

• Finally, there are strata containing two new types of geometries:

|B(x0, r)| ∼ r
4
3 , |Rm| ∼ r−2, inj ∼ r−

1
3 ,

|B(x0, r)| ∼ r2, |Rm| ∼ r−2(log r)−1, inj ∼ (log r)−
1
2 .

These have an asymptotic T 2-fibration as well, but the fibers degenerate.

Conjecture 2. This is a classification of gravitational instantons with Rm ∈ L2

that are not ALE or ALF. The new geometries should be the only ones with slow
curvature decay, and should not occur as singularity dilations.

The idea is to solve a version of the Calabi conjecture on an appropriate open
complex manifold M , endowed with a complete Kähler metric ω which is already
asymptotically Ricci-flat. This general approach originates from [7].

2. Analysis for the complex Monge-Ampère equation

We can give a fairly precise theorem that also answers a question in [7].

Theorem 3. Let (Mn, ω) be a complete Kähler manifold with bounded curvature
and Ric ≥ −Cr−2 such that |B(x0, r)| ∼ rβ for some fixed β > 0. Let f :M → R

be smooth with |f | ≤ Cr−2−ε for some ε > 0. If β ≤ 2, assume
´

(ef − 1)ωn = 0.

Then there exists a smooth solution u to (ω + i∂∂̄u)n = efωn with uniform C4,α

bounds globally on M . If β ≤ 2, then in addition
´

|∇u|2ωn <∞.

Remark 4. (i) Local collapsing is fine as long as large balls have large volume.
(ii) Since we only know how to make L∞ solutions, a cancellation condition on

f is needed if β ≤ 2 to compensate for unboundedness of the Green’s function.
(iii) When constructing Ricci-flat metrics, f will be the Ricci potential of ω. If

f decays like r−2 or slower, or does not satisfy the cancellation condition, it may
be possible to first improve ω, e.g. by solving an auxiliary linear equation.

(iv) If β ≤ 2, we are able to exploit
´

|∇u|2ωn < ∞ to get asymptotics for the
solution: u = O(r−ε) if the diameter growth is linear, and u = O(exp(−εr1−γ)) if
the diameter growth is O(rγ), γ ∈ [0, 1). These are new, and sharp in order.

3. Finding candidates for M and ω

In order to construct a complete Ricci-flat metric, we need M to admit a (possibly
multivalued) nowhere vanishing holomorphic (n, 0)-form Ω with

´

M Ω ∧ Ω̄ = ∞.
This is a highly restrictive condition. Examples come about in the formM = X\D
where X is a compact complex variety and D is an anticanonical divisor. If n = 2
and both X and D are smooth, this leaves CP 2 blown up in any number of points
along a smooth cubic, CP 1 × CP 1, CP 1 × E for an elliptic curve E, and F2.

Tian-Yau [7] had considered the general n-dimensional case where D is smooth
and either ample or a fiber of a morphism. We let X be CP 2, blown up in the 9
base points of a pencil of cubics, and D any fiber of the resulting elliptic fibration.
There is an overlap with [7] if D is smooth, but [7] did not prove any asymptotics.
The main novelty though is that we are able to treat singular fibers as well.
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Constructing an asymptotically Ricci-flat metric ω is key. To do so, we exploit
the elliptic fibration structure by making a semi-flat ansatz [3]. In principle, this
generalizes to various higher-dimensional situations, but the asymptotic geometry
of the metrics seems very hard to actually compute then.

We strongly believe that there is no hope of treating singular divisors in general,
and that the normal crossings case should not be any easier than the general case.
As a basic example (admittedly not normal crossings), the complement of 3 lines
through one point in CP 2 does not even admit complete Riemannian metrics with
Ric ≥ 0 because π1 of this space is the free group on 2 generators.

4. Classification issues

Even the more exotic geometries in Theorem 1 fit in well with a belief that, except
for Atiyah-Hitchin, the asymptotic geometry of gravitational instantons with Rm ∈
L2 should be modelled by a Gibbons-Hawking ansatz; they correspond to integer
multiples of the Green’s function on R×T 2 and (R2×S1)/Z2, respectively. Thus,
both geometries fit into an infinite sequence indexed by b ∈ N, but only the cases
b ∈ {1, ..., 9} and b ∈ {1, ..., 4} can be filled by elliptic surfaces. The singular fibers
at infinity are then of Kodaira type Ib and I∗b , respectively.

Now consider the Tian-Yau metrics on the complement of a smooth cubic in a
del Pezzo surface of degree b. These do not seem to fit into our discussion because
|B(x0, r)| ∼ r4/3 but |Rm| = O(r−2/3) from [7], so that apparently Rm 6∈ L2, but
a more careful computation shows |Rm| ∼ r−2. I am currently working on a proof
that they are in fact globally isometric to the Ib examples from Theorem 1. As a
toy model, notice that hyperkähler rotation with respect to a flat metric turns the
affine variety C∗ × C∗ into C× elliptic curve.

Conjecture 5. If X \D carries a gravitational instanton metric, then X \D is
biholomorphic to one of the known examples up to hyperkähler rotation.

Example 6. Generic hyperkähler rotations of ALH spaces can be holomorphically
compactified as CP 2 blown up in 9 general points. The divisor D is then a smooth
elliptic curve with (D ·D) = 0 which however does not move in a family.

References

[1] O. Biquard, V. Minerbe, A Kummer construction for gravitational instantons, Comm.
Math. Phys., to appear.

[2] J. Cheeger, G. Tian, Curvature and injectivity radius estimates for Einstein 4-manifolds,
J. Amer. Math. Soc. 19 (2006), 487–525.

[3] M. Gross, P. Wilson, Large complex structure limits of K3 surfaces, J. Differential Geom.
55 (2000), 475–546.

[4] H.-J. Hein, Complete Calabi-Yau metrics from P2#9P̄2, preprint, arXiv:1003.2646.
[5] V. Minerbe, Rigidity for Multi-Taub-NUT metrics, J. Reine Angew. Math. 656 (2011),

47–58.
[6] G. Tian, Aspects of metric geometry of four manifolds, Inspired by S. S. Chern, 381–397,

Nankai Tracts Math. 11, World Scientific Publishing, Hackensack, NJ, 2006.
[7] G. Tian, S.-T. Yau, Complete Kähler manifolds with zero Ricci curvature, I, J. Amer. Math.

Soc. 3 (1990), 579–609.
[8] E. Wright, Quotients of gravitational instantons, Ann. Glob. Anal. Geom., to appear.



1906 Oberwolfach Report 33/2011

Smoothing problem for locally CAT(0) metrics

Tadeusz Januszkiewicz

Negatively and nonpositively curved manifolds are in the center of Riemannian
geometry and are studied in considerable depth. Perhaps part of the reason for
this is the amazing confluence of methods coming from geometry, topology, group
theory, dynamical systems...

Despite their importance we know relatively few examples of smooth nonposi-
tively curved metrics. This contrasts sharply with the situation for nonsmooth
metrics (on large class of spaces including smoothable topological manifolds),
which are nonpositively curved in the comparison sense: satisfy CAT0 condition
locally.

There are tools for constructing CAT0 metrics including the reflection group
method and (strict) hyperbolization ([2], [5], [3], [1]) which work well for manifolds
and give a plethora of nonpositively curved manifolds, sometimes with interesting
additional properties.

It seems reasonable to expect that very few of these manifolds carry smooth
Riemannian nonpositively curved metrics. We present here some results in this
direction, all based on various forms of the Cartan Hadamard theorem.

A. The standard Riemannian version of Cartan Hadamard theorem asserts
that if M is a closed nonpositively curved manifold, then the exponential map
exp : Tp → M̃ is a diffeomorphism between the tangent space and the universal
cover ofM . For closed locally CAT0 manifolds all we can conclude is contractibility
of the universal cover. Hence a manifold with universal cover not homeomorphic
to Rn is not smoothable.

Examples of suchM with CAT0 metrics can be construct as follows. Let Σn be
a nonsimply connected homology sphere which bound Dn+1: a manifold which is a
homology disc, such that the induced map of fundamental groups π1(Σ) → π1(D)
is injective.

Let X = cone(D ∪Σ cone(Σ)), Y = X ∪coneΣ X and Z = Y ∪B Y , where B is
the ”boundary” of Y , that is D ∪Σ D.

It follows from a deep recognition theorem of R.D. Edwards that Z is a topo-
logical manifold. The natural triangulation on Z is not piecewise linear.

Hyperbolizing such a triangulation gives a CAT0 manifold we are after. The
construction can be done so that the resulting manifold carry a smooth structure.

B. A slightly less standard version of Cartan Hadamard theorem asserts that if
M is a closed nonpositively curved manifold, then the visual compactification of
M̃ is homeomorphic to a closed disc. In particular, if π1M is Gromov hyperbolic,
then its Gromov boundary is homeomorphic to a sphere Sn−1. Hence a manifold
such that the Gromov boundary of M̃ is not homeomorphic to a sphere is not
smoothable.

Examples of suchM with CAT0 metrics can be construct as follows. Let Σn be
a nonsimply connected homology sphere. Let Σn+2 be the double suspension of Σ.
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The recognition theorem asserts that Σn+2 is a topological manifold, in fact that
it is homeomorphic to a sphere. The natural triangulation on Z is not piecewise
linear.

Hyperbolizing such a triangulation gives a CAT0 manifold we are after. The
construction can be done so that the resulting manifold carry a smooth structure.

Strictly speaking to obtainM with Gromov hyperbolic fundamental group, one
needs to use the strict hyperbolization of Charney and Davis. If one uses nonstrict
hyperbolization the result is still not smoothable, but one needs a slightly more
involved argument, which is not in the literature.

The examples above were constructed in [3] long time ago. All the triangulations
we used were not PL. In fact hyperbolizations of PL triangulations always lead to
manifolds covered by Rn whose ideal boundary is a sphere. So to find obstructions
in PL context we need to do something more delicate. This was done recently in
[4] along the following lines.

C. The third version of Cartan Hadamard theorem we use asserts that if M is
a closed nonpositively curved manifold, and N is a totally geodesic submanifold,
then the exponential map provides a diffeomorphism between pairs (Rn, Rk) and

(M̃, Ñ). An extension of this statement to the ideal boundaries gives a homeo-

morphism between pairs (∂M̃, ∂Ñ) and the standard sphere pair.
We want to use this together with the Flat Torus Theorem, which asserts that

a copy of Zn in the fundamental group of M is carried by an immersed totally
geodesic torus. Hence the ideal boundary of the universal cover of the torus is
unknotted sphere. Hence if M contains a totally geodesic torus with knotted
infinity, M is not smoothable.

A problem with this ”argument” that the notion of boundary is not an invari-
ant of the fundamental group. However the knottedness or unknottedness of a
boundary of a flat is.

In [4] we have used reflection group method to provide slightly complicated con-
struction of examples as above with an additional property that M has ”isolated
flats property”. This makes the boundary into an invariant of fundamental group.

Alternative approach is: take a non locally flat torus T n ∈ V n+2, and hyper-
bolize the pair, so that the metric on T n remains unchanged and torus becomes
totally geodesic. Such a ”relative, metric” hyperbolization is not documented in
the literature, but can be obtained from one of hyperbolizations of [3].

D. I don’t know any obstruction to smoothing a PL metric of negetive curvature.
On the other hand Pedro Ontaneda has recently announced a smooth variant

of strict hyperbolization, that is a hyperbolization procedure in the sense of [3],
for which the singular metric can be smoothed out.
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ETH Zürich
Rämistr. 101
CH-8092 Zürich
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Fakultät für Mathematik
Technische Universität Dortmund
Vogelpothsweg 87
44227 Dortmund

Stephan Stadler

Mathematisches Institut
Ludwig-Maximilians-Universität
München
Theresienstr. 39
80333 München



1912 Oberwolfach Report 33/2011

Manuel Streil

NWF I - Mathematik
Universität Regensburg
93040 Regensburg

Dr. Jan Swoboda

Max-Planck-Institut für Mathematik
Vivatsgasse 7
53111 Bonn

Prof. Dr. Iskander A. Taimanov

Sobolev Institute of Mathematics
Siberian Branch of the Russian Academy
of Sciences
Koptyuga Prospect N4
630 090 Novosibirsk
RUSSIA

Prof. Dr. Gudlaugur Thorbergsson

Mathematisches Institut
Universität zu Köln
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