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Introduction by the Organisers

This workshop, which continued the triennial series at Oberwolfach on Real and
Harmonic Analysis that started in 1986, has brought together experts and young
scientists working in harmonic analysis and its applications (such as arithmetic
combinatorics, quasiconformal mappings, nonlinear dispersive and elliptic PDE,
and ergodic theory) with the objective of furthering the important interactions
between these fields.

Major areas and results represented at the workshop are:

• The use of the polynomial method in harmonic analysis has recently led to
advancement on several classical problems such as the multilinear Kakeya
problem, the Kakeya problem in finite fields, and the related joints prob-
lem. One highlight presented at the workshop was the solution of the
Erdös distance problem: Given a set of N points in the plane, the number
of distinct distances between these points is at least C

√
N/ logN .

• Harmonic analysis questions motivated by several complex variables, such
as the Cauchy integral and related operators on higher dimensional do-
mains with minimally smooth boundary, and multiplier estimates for the
Kohn Laplacian on forms on the sphere of Cn.
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• The interplay between martingale methods and harmonic analysis, for ex-
ample to obtain sharp weighted estimates on singular integrals, including
the recent solution of the long standing A2 conjecture, that A2-weighted
bounds for Calderón Zygmund singular integrals depend in first order on
the A2 constant of the weight. Progress has been achieved by advances
on martingale based operators and sharpened transfer principles between
martingale estimates and classical Calderón Zygmund theory. The meth-
ods are also applicable in the study of questions in geometric measure
theory, which require understanding of singular integral theory in very
hostile environments such as spaces not of homogeneous type.

• Improved understanding of invariants of higher degree analytic and smooth
surfaces and their singularities as they play a role in estimating analytic
expressions such as oscillatory integrals, Fourier restriction maps, or mea-
sure of sublevel sets. Typically invariants are derived from the Newton
polyhedron, the convex hull of points in the integer lattice representing
non-vanishing Taylor coefficients of smooth functions in question, relative
to appropriate coordinates.

• Progress on multilinear estimates in recent years has been due to the
application of a range of novel techniques such as time frequency analysis,
additive combinatorics in the form of Gowers uniformity norms and related
topics and the polynomial method. These methods also bear fruit on more
classical problems such as the Hilbert transform along vector fields.

• Sharp invariance properties on quasiconformal mappings have led to new
understanding of function spaces in harmonic analysis.

• New applications of real and harmonic analysis to elliptic PDE’s had im-
plications ranging from understanding of divergence form operators to
nonlinear elliptic operators such as the k-Hessian.

• New localization techniques in frequency and space have led to progress
on linear and non-linear dispersive PDE’s.

• Harmonic analysis questions in the continuous setting have turned out to
be an important guide line for the understanding of discrete analogues of
these questions, and have led to interesting insights about questions from
analytic number theory, such as decay estimates for exponential sums, and
the interplay between number theory and real and harmonic analysis.

The meeting took place in a lively and active atmosphere, and greatly benefited
from the ideal environment at Oberwolfach. It was attended by 48 participants.
The program consisted of 28 lectures of 40 minutes. Long afternoon breaks have
been intensively used by the participants for mathematical discussions and col-
laborations. The organisers made an effort to include young mathematicians, and
greatly appreciate the support through the Oberwolfach Leibniz Graduate Stu-
dents Program, which allowed to invite several outstanding young scientists.
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Abstracts

Cauchy integrals for minimally smooth domains in Cn

Elias M. Stein

This is a report on joint work with Loredana Lanzani. Our goal is the study of
the Cauchy integral, and the Szegö and Bergman projections for domains D in Cn

whose boundaries have minimal smoothness.

In the case n = 1 this has been carried out in the work of Calderón, Coifman-
McIntosh-Meyer, and David for the Cauchy integral and a number of authors for
the Szegö and Bergman projections. When n = 1 and the boundary curve is of
class C1+ε, the results are amenable to classical methods. The limiting situation,
when the boundary is of class C1, or Lipschitz, (or another geometric variant that
essentially requires one derivative of smoothness) needed further ideas and tech-
niques, such as those related to the T(1) theorem.

As soon as n > 1, the situation changes radically. Among the reasons are the
necessary role of pseudo-convexity, (which essentially requires two derivatives of
the defining function) and the very nature of the Cauchy-Fantappiè integrals that
also require two such derivatives.

We state our results for domains whose defining functions are either of class
C1,1 (that is, its first derivatives are Lipschitz) or of class C2. For a domain of

the first type we say it is strongly C-linearly convex if d(z, TC
ω ) ≥ c |z − ω|2, where

z ∈ D, ω ∈ bD, and TC
ω is the complex sub-space of the tangent space at ω.

Theorem 1. If D is of class C1,1 and is strongly C-linearly convex, then the
Cauchy-Leray-Fantappiè integral is bounded on Lp(bD), for 1 < p <∞.

Theorem 2. If D is of class C2 and is strongly pseudo-convex, then the Bergman
projection is bounded on Lp(D), 1 < p <∞.

Corollary 1. The same Lp boundedness holds for the operator whose kernel is
the absolute value of the Bergman kernel.

There is also an analogue to Theorem 2 for the Szegö projection, if D is of class
C2 and strongly pseudo-convex.

The proof of Theorem 2 requires that we first construct a family {B1
ε} of (non-

orthogonal) projections of L2(D) to O(D)∧L2(D). Here we use ideas of Kerzman-
Stein, Ligocka, and Range. A crucial difference however is that in these works one
needed that the domain was smooth and it sufficed to consider a single such B1.
Here the B1

ε may be viewed as “regularizations” of a single B1. However, the B1
ε

do not approximate the true Bergman projection, (their norms may be unbounded
as ε→ 0). Their key role is captured in the following.
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Lemma 1. For each ε > 0 we can write B1
ε = Aε+Cε, where the norm of Aε−A∗

ε

(as an operator on Lp, 1 < p <∞) is less than εcp. Also Cε maps L1 to L∞, (but
its norm may be unbounded as ε→ 0).

Variation for Riesz transforms and uniform rectifiability

Xavier Tolsa

(joint work with Albert Mas)

For 1 ≤ n < d integers and ρ > 2, we have proved in [13] that an n-dimensional
Ahlfors-David regular measure µ in Rd is uniformly n-rectifiable if and only if the
ρ-variation for the Riesz transform with respect to µ is a bounded operator in
L2(µ). This result can be considered as a partial solution to a well known open
problem posed by G. David and S. Semmes which relates the L2(µ) boundedness
of the Riesz transforms to the uniform rectifiability of µ.

Recall that the n-dimensional Riesz transform of a function f ∈ L1(µ) by
Rµf(x) = limǫց0R

µ
ǫ f(x) (whenever the limit exists), where

Rµ
ǫ f(x) =

ˆ

|x−y|>ǫ

x− y

|x− y|n+1
f(y) dµ(y), x ∈ Rd.

We will use the notation Rµf(x) := {Rµ
ǫ f(x)}ǫ>0. When d = 2 (i.e., µ is a Borel

measure in C), one defines the Cauchy transform of f ∈ L1(µ) by Cµf(x) =

limǫց0 C
µ
ǫ f(x) (whenever the limit exists), where Cµ

ǫ f(x) =
´

|x−y|>ǫ
f(y)
x−y dµ(y),

for x ∈ C. To avoid the problem of existence of the preceding limits, it is use-
ful to consider the maximal operators Rµ

∗f(x) = supǫ>0 |Rµ
ǫ f(x)| and Cµ

∗ f(x) =
supǫ>0 |Cµ

ǫ f(x)|.
The Cauchy and Riesz transforms are two very important examples of singular

integral operators with a Calderón-Zygmund kernel. Given d ≥ 2, the kernels
K : Rd \ {0} → R that we consider in this paper satisfy

(1) |K(x)| ≤ C

|x|n , |∂xiK(x)| ≤ C

|x|n+1
and |∂xi∂xjK(x)| ≤ C

|x|n+2
,

for all 1 ≤ i, j ≤ d and x = (x1, . . . , xd) ∈ Rd \ {0}, where 1 ≤ n < d is some
integer and C > 0 is some constant; and moreover K(−x) = −K(x) for all x 6= 0
(i.e. K is odd). For f ∈ L1(µ) and x ∈ Rd, we set

T µ
ǫ f(x) ≡ Tǫ(fµ)(x) :=

ˆ

|x−y|>ǫ

K(x− y)f(y) dµ(y),

and we denote T µf(x) = {T µ
ǫ f(x)}ǫ>0.

Let F := {Fǫ}ǫ>0 be a family of functions defined on Rd. Given ρ > 0, the
ρ-variation of F at x ∈ Rd is defined by

Vρ(F)(x) := sup
{ǫm}

( ∑

m∈Z

|Fǫm+1(x)− Fǫm(x)|ρ
)1/ρ

,
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where the pointwise supremum is taken over all decreasing sequences {ǫm}m∈Z ⊂
(0,∞). Fix a decreasing sequence {rm}m∈Z ⊂ (0,∞). On the other hand, the os-

cillation of F at x ∈ Rd is defined by O(F)(x) := sup{ǫm},{δm}

(∑
m∈Z

|Fǫm(x)−

Fδm(x)|2
)1/2

, where the pointwise supremum is taken over all sequences {ǫm}m∈Z

and {δm}m∈Z such that rm+1 ≤ ǫm ≤ δm ≤ rm for all m ∈ Z.
The ρ-variation and oscillation for martingales and some families of operators

have been studied in many recent papers on probability, ergodic theory, and har-
monic analysis (see [10], [1], [7], [2], [8], [9], and [17], for example). We are inter-
ested in the ρ-variation and oscillation of the family T µf . That is, given a Borel
measure µ in Rd and f ∈ L1(µ) we will deal with (Vρ◦T µ)f(x) := Vρ(T µf)(x) and
(O◦T µ)f(x) := O(T µf)(x). Notice that T µ

∗ f(x) ≤ Vρ(T µf)(x) for any compactly
supported function f ∈ L1(µ).

When µ coincides with the Lebesgue measure in the real line and K(x) = 1/x
is the kernel of the Hilbert transform, in [2] it was shown that Vρ ◦ T µ and O◦T µ

are bounded in Lp(µ), for 1 < p < ∞, and of weak type (1, 1). This result was
extended to other singular integrals in higher dimensions in [3]. The case of the
Cauchy transform and other odd Calderón-Zygmund operators on Lipschitz graphs
was studied recently in [12].

Let us turn our attention to uniform rectifiability now. Recall that a Borel
measure µ in Rd is called n-rectifiable if there exists a countable family of n-
dimensional C1 submanifolds {Mi}i∈N in Rd such that µ(E \⋃i∈N

Mi) = 0. More-
over, µ is said to be n-dimensional Ahlfors-David (AD) regular if there exists
some constant C > 0 such that C−1rn ≤ µ(B(x, r)) ≤ Crn for all x ∈ suppµ and
0 < r ≤ diam(suppµ). One also says that µ is uniformly n-rectifiable if there exist
θ,M > 0 so that, for each x ∈ suppµ and r > 0, there is a Lipschitz mapping
g from the n-dimensional ball Bn(0, r) ⊂ Rn into Rd such that Lip(g) ≤ M and
µ
(
B(x, r) ∩ g(Bn(0, r))

)
≥ θrn, where Lip(g) stands for the Lipschitz constant of

g. In particular, uniform rectifiability implies rectifiability.
David and Semmes asked more than twenty years ago the following question,

still open:

Question 1. Is it true that an n-dimensional AD regular measure µ is uniformly
n-rectifiable if and only if Rµ

∗ is bounded in L2(µ)?

By the results in [5], the “only if” implication of the question above is already
known to hold. Also in [5], G. David and S. Semmes gave a positive answer to
Question 1 if one replaces the L2 boundedness of Rµ

∗ by the L2 boundedness of T µ
∗

for a wide class of odd kernels K. In the case n = 1 (in particular, for the Cauchy
transform), the “if” implication was proved by P. Mattila, M. Melnikov and J.
Verdera in [15] using the notion of curvature of measures. Later on, G. David and
J. C. Léger [11] proved that the L2 boundedness Cµ

∗ implies that µ is rectifiable,
even without the AD regularity assumption.
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When µ is the n-dimensional Hausdorff measure on a set E ⊂ Rd such that
µ(E) < ∞, the rectifiability of µ is also related with the existence µ-a.e. of the
principal value of the Riesz transform of µ, that is, the existence of Rµ1(x) =
limǫց0R

µ
ǫ 1(x) for µ-a.e. x ∈ E. For some results in this direction, see [14], [16],

and [18].
Our main new result is the following:

Theorem 2. Let 1 ≤ n < d and ρ > 2. An n-dimensional AD regular Borel
measure µ in Rd is uniformly n-rectifiable if and only if Vρ ◦ Rµ is a bounded
operator in L2(µ). Moreover, if µ is n-uniformly rectifiable, then for any kernel
K satisfying (1), the operator Vρ ◦ T µ is bounded in L2(µ).

Notice that the preceding theorem asserts that if we replace the L2(µ) bound-
edness of Rµ

∗ by the stronger assumption that Vρ ◦ Rµ is bounded in L2(µ), then
µ must be uniformly rectifiable. On the other hand, the theorem claims that the
variation for the n-dimensional Riesz transforms is bounded in L2(µ).

A natural question then arises. Given an arbitrary measure µ on Rd, without
atoms say, does the L2(µ) boundedness of Rµ

∗ implies the L2(µ) boundedness of
Vρ ◦ Rµ, for ρ > 2? By the results of [15] and Theorem 2, this is true in the case
n = 1 if µ is AD regular 1-dimensional.

Concerning the proof of Theorem 2, in our previous paper [12] we showed that,
if µ stands for the n-dimensional Hausdorff-measure on an n-dimensional Lips-
chitz graph, then the ρ-variation for Riesz transforms and odd Calderón-Zygmund
operators with smooth truncations are bounded in L2(µ). This is a fundamental
step to prove that Vρ ◦ Rµ and, more generally, Vρ ◦ T µ, are bounded in L2(µ) if
µ is uniformly n-rectifiable. Another basic tool in our arguments is the geometric
corona decomposition of uniformly rectifiable measures introduced by David and
Semmes in [5].

The proof of the fact that the L2(µ) boundedness of Vρ◦Rµ implies the uniform
rectifiability of µ is not so laborious as the one of the converse implication. The
arguments are partially inspired by some of the techniques in [19].
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Hardy spaces associated with certain Schrödinger operators

Jacek Dziubański

(joint work with Marcin Preisner, Jacek Zienkiewicz)

Let L = −∆ + V be a Schrödinger operator on Rd with a nonnegative locally
integrable potential V and let Kt(x, y) be the integral kernels of the semigroup
{Tt}t>0 generated by −L. We say that an L1(Rd)-function f belongs to H1

L if
MLf ∈ L1(Rd), where

MLf(x) = sup
t>0

|Ttf(x)|.

Then we set ‖f‖H1
L
= ‖f‖H1

L,max
= ‖MLf‖L1(Rd).

Hardy spaces associated with certain operators attracted attention of many
authors. We refer the reader to [1], [2], [4], [5], [9], [10], [11], [15], [16], [17] and
references therein.

In [15] the authors provide a general approach to the theory of H1-spaces asso-
ciated with semigroups satisfying the Davies-Gaffney estimates, and in particular
Schrödinger semigroups, proving the following atomic decomposition of the ele-
ments ofH1

L. A function a ∈ L2(Rd) is a (1,2,1)-atom associated with the operator
L if there exist a function b ∈ D(L) and a ball B such that

(i) a = Lb,
(ii) supp b ⊂ B,

(iii) ‖Lkb‖L2(Rd) ≤ r2−2k
B |B|−1/2, k = 0, 1.
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Let us recall that H1
atom =

{
f : f =

∑
j λjaj ,

∑
j |λj | <∞

}
, where λj ∈ C, aj

are H1-atoms. We set ‖f‖H1
atom

= inf
{∑

j |λj |
}
, where the infimum is taken over

all representations of f as above.
One of the results of [15] asserts that ‖f‖H1

L,atom
∼ ‖f‖H1

L,max
.

The purpose of this talk is to present that certain classes of Schrödinger op-
erators admit other atomic decompositions. Atoms that occur in these atomic
decompositions are similar to those of the classical theory of real Hardy spaces,
local or global, and they can be defined by means of behavior of the potential V .

Hardy spaces for Schrödinger operators with local atoms. Let Q =
{Qj}∞j=1 be a family of closed cubes in Rd with disjoint interiors such that Rd \⋃∞

j=1Qj is of Lebesgue measure zero. We shall assume that there exist constants

C, β > 0 such that if Q∗∗∗∗
i ∩Q∗∗∗∗

j 6= ∅ then d(Qi) ≤ Cd(Qj), where d(Q) denotes

the diameter of Q, and Q∗ = (1 + β)Q.
We say that a function a is an H1

Q-atom if there exists Q ∈ Q such that either

a = |Q|−11Q or a is the classical atom with support contained in Q∗ (that is, there
is a cube Q′ ⊂ Q∗ such that supp a ⊂ Q′,

´

a = 0, |a| ≤ |Q′|−1).
Following [10] we impose two additional assumptions on V and Q, mainly:

(D) (∃C, ε > 0) sup
y∈Q∗

ˆ

T2nd(Q)2(x, y)dx ≤ Cn−1−ε for Q ∈ Q, n ∈ N;

(∃C, δ > 0)

ˆ 2t

0

(1Q∗∗∗V ) ∗ Ps(x)ds ≤ C

(
t

d(Q)2

)δ

for x ∈ Rd, Q ∈ Q,

t ≤ d(Q)2.

(K)

Results of [10] state that if we assume (D) and (K) then we have the following
atomic characterization of the Hardy space H1

L:

(1) f ∈ H1
L ⇐⇒ f ∈ H1

Q and C−1‖f‖H1
Q,atom

≤ ‖f‖H1
L,max

≤ C‖f‖H1
Q,atom

.

Moreover, it was proved in [7] that in the case of V satisfying (D) and (K) the
space H1

L is characterized by the Riesz transforms Rj = ∂xjL
−1/2, j = 1, ..., d.

Summarizing: if (D) and (K) hold, then the atoms of H1
L are local atoms in the

sense of [14], where the scale and localization are adapted to the behavior of V .
Examples.

• The Hardy space H1
L associated with one-dimensional Schrödinger operator L

was studied in [4]. It was proved there that for any nonnegative V ∈ L1
loc(R) the

collection Q of maximal dyadic intervals Q of R that are defined by the stopping
time condition

(2) |Q|
ˆ

16Q

V (y) dy ≤ 1,

fulfils (D) (see [4, Lemma 2.2]). One can proved that also (K) is satisfied.
• V (x) = γ|x|−2, d ≥ 3, γ > 0. Then for Q being the Whitney decomposition of
Rd \ {0} that consists of dyadic cubes the conditions (D) and (K) hold (see [10]).
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• d ≥ 3, V satisfies the reverse Hölder inequality with exponent q > d/2, that is,

(
1

|B|

ˆ

B

V (y)q dy

)1/q

≤ C
1

|B|

ˆ

B

V (y) dy for every ball B.

Define Q by: Q ∈ Q if and only if Q is the maximal dyadic cube for which
d(Q)2|Q|−1

´

Q
V (y) dy ≤ 1. Then the conditions (D) and (K) are true (see [10]).

Hardy spaces H1
L with weighted cancellation condition. Different type

of cancellation conditions may occur when, in dimensions d ≥ 3, one considers
potentials which are in some sense small. This happens if e.g. V is compactly
supported and belongs to Lp(Rd) for certain p > d/2 (see [11]). Then, in this
case, the limit limt→∞

´

Rd Kt(x, y) dy exists and defines an L-harmonic function
w(x). The function w satisfies: 0 < δ ≤ w(x) ≤ 1, |w(x)−w(y)| ≤ C|x− y|α, and
lim|x|→∞ w(x) = 1. A function a is an atom for H1

L if there exists a ball B such
that

(3) supp a ⊂ B, ‖a‖∞ ≤ |B|−1,

ˆ

a(x)w(x) dx = 0.

It was proved in [11] that the space H1
L admits the atomic decomposition with

these atoms. Moreover, H1
L is also characterized by the Riesz transforms (see [6]).

It turns out that the condition about the support of V could be relaxed. If we
assume that V (x) =

∑n
i=1 Vi(x), where each Vi(x) is a nonnegative potential that

depends only on certain number of variables (possibly different for every i) and
belongs to Lp classes of these variables for certain range of p. The space H1

L has an
atomic decomposition, which is similar to that of compactly supported potentials
(see [8]). Also the characterization by the Riesz transforms ∂xjL

−1/2 is true.
The case of compactly supported potentials in dimension 2. Assume

that V is a nonnegative nonzero compactly supported C2-function. It was proved
in [12] that there exists a regular L-harmonic weight w such that

C−1 ln(2 + |x|) ≤ w(x) ≤ C ln(2 + |x|), |∇w(x)| ≤ C(1 + |x|)−1,

and the space H1
L admits atomic decomposition with atoms satisfying (3) with the

new weight w.
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Spectral multipliers for commuting differential operators on Lie groups

Alessio Martini

This is a summary of results contained in the author’s PhD thesis [11], written
under the supervision of Fulvio Ricci.

The classical Mihlin-Hörmander and Marcinkiewicz theorems for Fourier mul-
tipliers on Rn give sufficient conditions for the Lp-boundedness (1 < p < ∞) of
operators belonging to the joint functional calculus of the partial derivatives on
Rn, i.e., operators of the form

(1) m(L1, . . . , Ln) =

ˆ

Rn

m(λ) dE(λ)

where Lj = −i ∂
∂xj

and E is the joint spectral resolution of L1, . . . , Ln, in terms of

smoothness properties of the multiplierm : Rn → C. Namely, a Mihlin-Hörmander
condition

(2) sup
t>0

‖(m ◦ ǫt) ηn‖W q
s
<∞

(where ηn is a smooth cutoff function which is nonzero on an annulus centered at
the origin on Rn, (ǫt)t>0 is a family of dilations on Rn, and W q

s is an Lq Sobolev
norm of fractional order s) for q = 2 and s > n/2, or a Marcinkiewicz condition

(3) sup
t1,...,tn>0

‖m(t1·, . . . , tn·) η1 ⊗ · · · ⊗ η1‖Sq
~s
W <∞
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(where η1 is a cutoff as before but on R1, and Sq
~sW is an Lq Sobolev norm

with dominating mixed smoothness [17] of order ~s = (s1, . . . , sn)) for q = 2 and
s1, . . . , sn > 1/2 are sufficient conditions on m for the Lp-boundedness of (1).

In contexts other than Rn, this kind of problem has been extensively stud-
ied for the functional calculus of a single operator L = L1. In particular, for a
positive Rockland operator L on a homogeneous Lie group [9], condition (2) for
n = 1 with q = 2 and s > Q∞/2 (where Q∞ is the dimension at infinity of the
group) is sufficient for the Lp-boundedness of m(L) [14, 2, 8]. This result, on one
hand, has been extended to operators with Gaussian-type heat kernel bounds (or
finite propagation speed) on doubling metric-measure spaces, although requiring
a stronger condition on m — i.e., (2) with q = ∞ and s > Q/2, where Q is the
“homogeneous dimension” associated with the doubling condition [1, 8, 5]; on the
other hand, it has been sharpened in particular cases (positive Rockland opera-
tors on Heisenberg-type groups, and distinguished sublaplacians on SU2 and on
the complex spheres), where condition (2) with q = 2 and s greater than half the
topological dimension of the manifold is proved to be sufficient [7, 16, 10, 4, 3].

The problem for multiple operators (n > 1), instead, has been considered only
in quite special cases: particularly for sublaplacians and central derivatives on
Heisenberg-type groups (for which sharp results have been obtained [15, 6, 19]),
and for systems of operators acting on different factors of a direct product [18].

In the context of a homogeneous Lie group G, we introduce the notion of Rock-
land system: a system L1, . . . , Ln of pairwise commuting, formally self-adjoint,
homogeneous left-invariant differential operators which are jointly injective in ev-
ery nontrivial irreducible unitary representation of G. This notion is sufficiently
wide to include all the previously considered systems of operators (in the context
of homogeneous Lie groups) together with several other examples, and sufficiently
strong to ensure the existence of a joint functional calculus on L2(G) [13]. Under
this condition, we prove analogues of the Mihlin-Hörmander and Marcinkiewicz
multiplier theorems [12].

Namely, for a Rockland system L1, . . . , Ln on a homogeneous Lie group G of
dimension at infinity Q∞, a system of dilations (ǫt)t>0 on Rn is naturally defined
by means of the homogeneity degrees of the operators. We then obtain

Theorem 1. If m : Rn → C satisfies condition (2) with q = ∞ and s > Q∞/2,
then m(L1, . . . , Ln) is bounded on Lp(G) for 1 < p <∞.

This general result can be sharpened in particular cases, by extending the tech-
niques of [10] to our setting; in fact, if G is a direct product of Euclidean and
Heisenberg-type (or Métivier) groups, then condition (2) with q = ∞ and s greater
than half the topological dimension of G is sufficient.

A sort of product theory can then be developed, by considering several homoge-
neous Lie groups Gj , each endowed with a Rockland system; for simplicity, here we
restrict to the case of a single self-adjoint Rockland operator Lj on each Gj . These
operators can be considered as a system on the direct productG1×· · ·×Gn, or more
generally on a connected Lie group G endowed with homomorphisms κj : Gj → G
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such that the pushforwards L♮
j = κj(Lj) commute and admit a joint functional

calculus on L2(G). If Qj denotes the dimension at infinity of Gj , then we have

Theorem 2. If m : Rn → C satisfies condition (3) with q = 2 and sj > Qj/2 for

j = 1, . . . , n, then m(L♮
1, . . . , L

♮
n) is bounded on Lp(G) for 1 < p <∞.

As before, this general result can be sharpened; for instance, if some of the Gj

are Heisenberg-type, then the corresponding sj can be taken greater than half the
topological dimension of these Gj . An interesting feature of this result is that
the environment group G needs not be homogeneous, nor nilpotent. In fact, as a
corollary, for a distinguished sublaplacian ∆ on a diamond group G = Hk ⋊ Td

(semidirect product of a Heisenberg group Hk and a torus Td), we obtain that
condition (2) with q = 2 and s greater than half the topological dimension of G is
sufficient for the Lp-boundedness of m(∆).
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Davis and Garsia inequalties for Hardy Martingales

Paul F. X. Müller

Let TN = {(xi)∞i=1} denote the countable product of the torus T = {eiθ : θ ∈
[0, 2π[},equipped with its normalized Haar measure P. A natural filtration of σ−
algebras on TN is given by the coordinate projections

Pk : TN → Tk, (xi)
∞
i=1 → (xi)

k
i=1.

Define Fk to be the σ− algebra on TN generated by Pk.
Let F = (Fk) be an L1(TN)−bounded martingale on the filtered probability

space (TN, (Fk),P). Conditioned on Fk−1 the martingale differnce ∆Fk = Fk −
Fk−1 defines an element in the Lebesque space of integrable, function of vanishing
mean L1

0(T). By definition the martingale F = (Fk) belongs to the class of Hardy
martingles, if, conditioned on Fk−1,

∆Fk = Fk − Fk−1 defines an element in the Hardy space H1
0 (T).

Hardy martingales arose in Complex and Functional Analysis. Originally with
embedding problems [1], isomorphic classification [2, 9], factorization problems
[11], similarity problems [12], boundary convergence of analytic functions [7, 6],
Jensen measures [3], renorming for Banach spaces [4], vector valued Littlewood
Paley Theory [14] .

Two robustness properties of Hardy martingales are particularily important for
their use in Analysis.

(1) The class of Hardy martingales is closed under martingale transforms.
(2) For Hardy martingales, their L1 norm is determined by square functions.

There exist c, C > 0 so that for any Hardy martingale F = (Fk) ,

(1) cE|Fn| ≤ E(

n∑

k=1

|∆Fk|2)1/2 ≤ CE|Fn|.

In the talk we gave a strengthening of the square function characterization (1)
for Hardy martingales from [10]. We prove that every Hardy martingale F =
(Fk)

n
k=1 can be written as

F = G+B

where G = (Gk)
n
k=1 and B = (Bk)

n
k=1 are again Hardy martingales so that

(2) E(

n∑

k=1

Ek−1|∆Gk|2)1/2 + E(

n∑

k=1

|∆Bk|) ≤ CE|Fn|.
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and

(3) |∆Gk| ≤ A0|Fk−1|, k ≤ n.

The estimate (2) implies of course the right hand side of the square function
estimate (1) since the triangle inequality and the Burkholder-Gundy martingale
inequality [5] give

E(
n∑

k=1

|∆Fk|2)1/2 ≤ E(
n∑

k=1

|∆Gk|2)1/2 + E(
n∑

k=1

|∆Bk|)

≤ 2E(

n∑

k=1

Ek−1|∆Gk|2)1/2 + E(

n∑

k=1

|∆Bk|).

The uniform previsible estimate (3) should be compared with uniform previsi-
ble estimates appearing in the classical Davis and Garsia inequality [5, Chapters
III and IV]. For general martingales the Davis decomposition [5, Chapter III]
guarantees only uniform estimates by previsible and increasing functionals such
as maxm≤k−1 |Fm|. Hence a routine application of the Davis decomposition could
yield only

|∆Gk| ≤ A0 max
m≤k−1

|Fm|.

The presented paper [10] exploits stochastic holomorphy [13, 8] to prove that if
h ∈ H1

0 (T) and z ∈ C, then

ρ = inf{t < τ : |h(Bt)| > 2α−1
0 |z|}, and g(eiθ) = E(h(Bρ)|Bτ = eiθ).

satisfy: g ∈ H∞
0 (T) with |g| ≤ A0|z| and

(|z|2 +A−2
0

ˆ

T

|g|2dm)1/2 +A−1
0

ˆ

T

|h− g|dm ≤
ˆ

T

|z + h|dm.

These estimates are used together with a general iteration principle extracted from
the work of J. Bourgain [1]. In its simplest form the iteration principle yields a
comparison theorem between square functions as follows: Assume that u1, . . . , un
and v1, . . . , vn are non- negative, integrable functions so that the following set of
estimates hold true,

E(
k−1∑

m=1

u2m + v2k)
1/2 ≤ E(

k∑

m=1

u2m)1/2, k ≤ n.

Then we have

E(

n∑

m=1

v2m)1/2 ≤ 2E(

n∑

m=1

u2m)1/2.
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Progress on the HRT conjecture

Ciprian Demeter

The following conjecture, known as the HRT conjecture was proposed in [4].
See also [5] for a nice discussion on the subject.

Conjecture 1. Let (tj , ξj)
n
j=1 be n ≥ 2 distinct points in the plane (call them time-

frequency shifts). Then there is no nontrivial L2 function f : R → C satisfying a
nontrivial linear dependence

(1)

n∑

j=1

dif(x+ tj)e
2πiξjx = 0,

for a.e. x ∈ R.

The Conjecture was proved when (ti, ξi)
n
i=1 sit on a lattice by Linnell [6], using

von Neumann algebra techniques. In [2], together with Gautam we produced a
simpler argument which is inspired by the theory of random Schrödinger operators.

The following weaker conjecture has also been circulated (see for example [5]).
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Conjecture 2. Let (tj , ξj)
n
j=1 be n ≥ 2 distinct points in the plane. Then there

is no nontrivial Schwartz function f : R → C satisfying a nontrivial linear depen-
dence

n∑

j=1

dif(x+ tj)e
2πiξjx = 0,

for a.e. x ∈ R.

In light of the discussion above, both conjectures are true if one considers only
three time-frequency shifts (ti, ξi). The case involving four shifts is open. We
proposed to investigate special configurations of four shifts, and were less to inter-
esting number theoretical considerations.

Call an (n,m) configuration any collection of n+m distinct points in the plane
such that there exist two distinct parallel lines such that one of them contains
exactly n of the points, and the other one contains exactly m of the points. Our
main results are:

Theorem 3 ([1]). Conjecture 2 holds for all (1, 3) and (2, 2) configurations.

Let ‖x‖ denote the distance of x to the nearest integer.

Theorem 4 ([1]). Conjecture 1 holds for special (1, 3) configurations

(0, 0), (1, 0), (1, α), (1, β)

(a) if

lim inf
n→∞

n logn‖nβ
α
‖ <∞

(b) if at least one of α, β is rational
In either case, no nontrivial solution f can exist satisfying minimal decay

lim
|n|→∞

n∈Z

|f(x+ n)| = 0, a.e. x

As a consequence, the Conjecture 1 holds for almost all (1, 3) configurations.

In the (2, 2) case, we obtained the strongest possible result with Zaharescu

Theorem 5 ([3]). Consider any special (2, 2) configuration (0, 0), (1, 0), (0, α), (1, β).
Then the equation (1) has no nontrivial solution f satisfying minimal decay

lim
|n|→∞

n∈Z

|f(x+ n)| = 0, a.e. x

As a consequence, the Conjecture 1 holds true for all (2, 2) configurations.

One of the key ingredients in our arguments is the existence of simultaneous
approximants P ∈ R, P → ∞ such that

P max{‖Pα‖, ‖Pβ‖} . 1.

The key feature of any special (n,m) configuration of points is the fact that any
linear dependence between the corresponding time-frequency translates of a hy-
pothetical solution forces a (scalar) recurrence along Z orbits x + Z. We use



Real Analysis, Harmonic Analysis and Applications 2063

Diophantine approximation to identify appropriate scales. For each fixed scale,
we investigate the recurrence along finite portions of two carefully chosen distinct
orbits, with length comparable to the scale.

1. Questions

1. Our approach fails for (1, 4) configurations such as (0, 0), (1, 0), (1, α), (1, β), (1, γ).
This is because the best one can guarantee in general is the existence of arbitrarily
large P such that max{‖Pα‖, ‖Pβ‖, ‖Pγ‖} . 1√

P
. It is not clear whether working

with 3 or more orbits would have more to say about this case.
2. How to deal with four point configurations sitting on three, rather than two
lines? Here, matrix (rather than scalar) recurrences occur.

For example, does

f(x+ 1) = C1f(x− 1) + C2f(x)e(αx) + C3f(x)e(βx)

have a Schwartz solution? This amounts to the recurrence[
un+1

un

]
=

[
C2e(αx) + C3e(βx) C1

1 0

] [
un
un−1

]

admitting a rapidly decaying (at ±∞) solution un = un(x) for a set of x in [0, 1)
of positive measure.
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On Erdös’ distinct distances problem

Nets Katz

(joint work with Larry Guth)

In joint work with Larry Guth, we obtain nearly sharp bounds in the Erdös
distance problem. That is, we show that if P is a set of N points in the Euclidean
plane and d(P ) is the set of distances between pairs of points in P , we have the
inequality:

d(P ) ≥ N

C logN
.
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To show this, we apply the reduction of Elekes and Sharir which serves as the
application of the Erlangen program to the study of the distance problem. We
pass to the group of rigid motions of the plane. For any pair (p, p′) of points
from P , we define the line lpp′ of rigid motions taking p to p′. It turns out that
obtaining our bound amounts to studying intersections between these lines. We
let Pk denote the set of rigid motions contained in at least k of the lines. We must
prove for 2 < k < N , the bound

|Pk| ≤ C
N3

k2
.

For k = 2, the proof is an exercise in algebra. We tie the problem to the classical
theory of ruled surfaces through the use of the polynomial method of Dvir and the
flecnode polynomial of Salmon.

For k large, the proof is necessarily topological. We apply the polynomial
ham sandwich theorem to obtain a cell decomposition and then prove our bound
mimicking Clarkson et. al.’s proof of the Szemeredi Trotter theorem. Our cell
decomposition admits an error set, living in the zeroes of a polynomial of low
degree. For this error set, we simply apply the polynomial method following our
proof of the Joints conjecture and Bourgain’s conjecture for the discrete Kakeya
set.

The nonlinear Schrödinger equation below L
2

Herbert Koch

(joint work with Daniel Tataru)

We consider the cubic Nonlinear Schrödinger equation (NLS)

(1) iut − uxx ± u|u|2 = 0, u(0) = u0,

in one space dimension, either focusing or defocusing. This problem is invariant
with respect to the scaling

u(x, t) → λu(λx, λ2t)

as is the Sobolev space Ḣ− 1
2 , which one may view as the critical Sobolev space.

The NLS equation (1) is also invariant under the Galilean transformation

u(x, t) → eicx−ic2tu(x+ 2ct, t)

which corresponds to a shift in the frequency space. However the space Ḣ− 1
2 is

not Galilean invariant.
This problem is globally well-posed for initial data u0 ∈ L2, and the L2 norm of

the solution is conserved along the flow. Furthermore, the solution has a Lipschitz
dependence on the initial data, uniformly for time in a compact set and data in
bounded sets in L2. Precisely, if u and v are two solutions for (1) with initial data
u0, respectively v0 then we have

‖u(t)− v(t)‖L2 . ‖u0 − v0‖L2 , |t| < 1, ‖u0‖L2 , ‖v0‖L2 ≤ 1
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By scaling and reiteration this implies a global in time bound

(2) ‖u(t)− v(t)‖L2 . eC|t|(‖u0‖L2+‖v0‖L2)
4‖u0 − v0‖L2

As a consequence of the Galilean invariance, the map from initial data to the
solution at time 1 cannot be uniformly continuous in the unit ball in Hs with
s < 0. However, one may hope for continuous dependence on the initial data, a
question which is outside the scope of our work.

The problem of obtaining apriori estimates in negative Sobolev spaces was pre-
viously considered by Christ-Colliander-Tao [1] (s ≥ −1/12) and by the authors
[2](s ≥ −1/6). One key idea was that one can bootstrap suitable Strichartz type
norms of the solution but only on frequency dependent time-scales. Another idea
was to use the I-method to construct better almost conserved Hs type norms for
the problem.

Local energy bounds, a new ingredient here, gives apriori estimates in Hs for
s ≥ 1

4 . It is likely that −1/4 is not optimal. Our main result is as follows:

Theorem 1. There exists ε > 0 such that the following is true. Let

−1

4
≤ s < 0, Λ ≥ 1

and assume that the initial data u0 ∈ L2 satisfies

‖u0‖2Hs
Λ
:=

ˆ

(Λ2 + ξ2)s|û0|2dξ < ε2.

Then the solution u to (1) satisfies

(3) sup
0≤t≤1

‖u(t)‖Hs
Λ
≤ 2‖u0‖Hs

Λ
.

Applying the above theorem to a rescaled solution for s = 1
4 with increasing

values of Λ yields global in time bounds.

Corollary 2. Let − 1
4 < s < 0 and M ≥ 1. Let u be a solution to (1) with initial

data u0 ∈ L2 so that
‖u0‖Hs ≤M

Then for all T > 0 the function u satisfies

(4) sup
|t|≤T

‖u(t)‖Hs
Λ(T )

.M, Λ(T ) = max{T 1
8s+2M

4
4s+1 ,M

2
2s+1 }

The apriori estimates suffice to construct global weak solutions. Using the
uniform bounds one may prove the following statement.

Theorem 3. Suppose that u0 ∈ Hs, s ≥ − 1
4 . Then there exists a weak solution u

in a function space which imbeds into C(R, Hs).

Some heuristic considerations. The nonlinear Schrödinger equation is com-
pletely integrable. Depending on whether we look at the focusing or the defocusing
problem, we expect two possible types of behavior for frequency localized data.

In the defocusing case, we expect the solutions to disperse spatially. However,
in frequency there should only be a limited spreading, to a range below the dyadic
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scale, which depends only on the L2 size of the data. Energy estimates show that
for frequency localized data with L2 norm λ, frequency spreading occurs at most
up to scale λ.

Examples of solutions studied either by inverse scattering or by a nonlinear
semiclassical analysis indicate that energy may spread over a large frequency in-
terval even if the energy is concentrated at frequencies . 1 initially, and there
are solutions with energy distributed over a large frequency interval with velocity
zero.

For the proof of our main result we use localization in frequency and space.
Thereby we limit the spreading in frequency, and we connect velocity and fre-
quency.

An overview of the proof. We begin with a dyadic Littlewood-Paley fre-
quency decomposition of the solution u,

u =
∑

λ≥Λ

uλ, uλ = Pλu

where λ takes dyadic values not smaller than Λ, and uΛ contains all frequencies
up to size Λ. Here the multipliers Pλ are standard Littlewood-Paley projectors.
For each such λ we also use a spatial partition of unity on the λ1+4s scale,

(5) 1 =
∑

j∈Z

χλ
j (x), χλ

j (x) = χ(λ−1−4sx− j)

with χ ∈ C∞
0 (−1, 1). To prove the theorem we will use

(i) Two energy spaces, namely a standard energy norm

(6) ‖u‖2l2L∞Hs
Λ
=

∑

λ≥Λ

λ2s‖uλ‖2L∞L2

and a local energy norm adapted to the λ1+4s spatial scale,

(7) ‖u‖2
l2l∞L2H−s

Λ

=
∑

λ≥Λ

λ−2s−2 sup
j∈Z

‖χλ
j ∂xuλ‖2L2

(ii) Two Banach spaces Xs
Λ and Xs

Λ,le measuring the space-time regularity of
the solution u.

(iii) Two corresponding Banach spaces Y s
Λ and Y s

Λ,le measuring the regularity

of the nonlinear term |u|2u.
The proof relies on

‖u‖Xs
Λ
. ‖u‖l2L∞Hs

Λ
+‖(i∂t−∆)u‖Y s

Λ
, ‖u‖Xs

Λ,le
. ‖u‖l2l∞L2H−s

Λ
+‖(i∂t−∆)u‖Y s

Λ,le

a cubic bound,

‖|u|2u‖Y s
Λ∩Y s

Λ,le
. ‖u‖3Xs

Λ∩Xs
Λ,le

and an energy estimate and a local energy estimate for a solution u to (1) with
‖u‖l2L∞Hs

Λ
≪ 1:
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‖u‖l2L∞Hs
Λ
. ‖u0‖Hs

Λ
+ ‖u‖3Xs

Λ∩Xs
Λ,le

, ‖u‖l2l∞L2H−s
Λ

. ‖u0‖Hs
Λ
+ ‖u‖3Xs

Λ∩Xs
Λ,le

.

The bootstrap argument leads to Theorem 1.
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The sharp L
p-L2 Fourier restriction estimates for hypersurfaces in R3

.

Isroil A. Ikromov

(joint work with Detlef Müller)

Let S be a smooth, finite type hypersurface in R3 with Riemannian surface
measure dσ, and consider the compactly supported measure dµ := ρdσ on S,
where 0 ≤ ρ ∈ C∞

0 (S). The goal of this talk is to determine, the sharp range of
exponents p for which the Fourier restriction estimate

(1)
(ˆ

S

|f̂ |2 dµ
)1/2

≤ Cp‖f‖Lp(R3), f ∈ §(R3),

holds true. To this end, we may localize to a sufficiently small neighborhoods of a
given point x0 on S. By applying a suitable Euclidean motion of R3 we may then
assume that x0 = (0, 0, 0), and that S is the graph

S = {(x1, x2, φ(x1, x2)) : (x1, x2) ∈ Ω},
of a smooth function φ defined on a sufficiently small neighborhood Ω of the origin,
such that φ(0, 0) = 0, ∇φ(0, 0) = 0.

In our article [3], this problem had been solved, in terms of Newton diagrams
associated to φ, under the assumption that there exists a linear coordinate system
which is adapted to the function φ, in the sense of Varchenko.

We had proved the following result:

Theorem 1. Assume that, after applying a suitable linear change of coordinates,
the coordinates (x1, x2) are adapted to φ e.g hlin(φ) = h(φ). We then define the
critical exponent pc by

(2) p′c := 2h(φ) + 2 = 2hlin(φ) + 2,

where p′ denotes the exponent conjugate to p, i.e., 1/p+ 1/p′ = 1.
Then there exists a neighborhood U ⊂ S of the point x0 such that for every

non-negative density ρ ∈ C∞
0 (U) the Fourier restriction estimate(1) holds true for

every p such that

(3) 1 ≤ p ≤ pc.
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Moreover, if ρ(x0) 6= 0, then the condition (3) on p is also necessary for the
validity of (1).

From now on, we shall therefore always make the following

Assumption 2. There is no linear coordinate system which is adapted to φ e.g.
hlin(φ) < h(φ).

In order to formulate our main result, we need more notation. Also we use
notations from our papers [2] and [3].

A given coordinate system x is said to be adapted to φ if h(φ) = dx.
In the case where the coordinates (x1, x2) are not adapted to φ, we see that the

principal face π(φ) is a compact edge lying on a unique line

L = {(t1, t2) ∈ R2 : κ1t1 + κ2t2 = 1},
and that m1 := κ2/κ1 ∈ N. Moreover, one can prove that under the assumption 2
if the coordinates are linearly adapted to φ then

(4) m := m1 = κ2/κ1 ∈ N and m ≥ 2.

In addition if we have two linearly adapted coordinates systems with κ2 ≥ κ1 and
κ′2 ≥ κ′2 then κ2/κ1 = κ′2/κ

′
1 := m. Thus the number m is wel-defined.

Then, by Theorem 5.1 in [2], there exists a smooth real-valued function ψ (which
we may choose as the so-called principal root jet of φ) of the form

(5) ψ(x1) = cxm1 +O(xm+1
1 )

with c 6= 0 defined on a neighborhood of the origin such that an adapted coordinate
system (y1, y2) for φ is given locally near the origin by means of the (in general
non-linear) shear

(6) y1 := x1, y2 := x2 − ψ(x1).

In these coordinates, φ is given by

(7) φa(y) := φ(y1, y2 + ψ(y1)).

Let us then denote the vertices of the Newton polyhedronN (φa) by (Aℓ, Bℓ), ℓ =
0, . . . , n, where we assume that they are ordered so that Aℓ−1 < Aℓ, ℓ = 1, . . . , n,
with associated compact edges given by the intervals γℓ := [(Aℓ−1, Bℓ−1), (Aℓ, Bℓ)],
ℓ = 1, . . . .n The unbounded horizontal edge with left endpoint (An, Bn) will be
denoted by γ∞. To each of these edges γℓ,, we associate the weight κℓ = (κℓ1, κ

ℓ
2),

so that γℓ is contained in the line

Lℓ := {(t1, t2) ∈ R2 : κℓ1t1 + κℓ2t2 = 1}.
For ℓ = ∞, we have κ∞1 := 0. We denote by

aℓ :=
κℓ2
κℓ1

the reciprocal of the slope of the line Lℓ.
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Then the κℓ-principal part φκℓ of φ corresponding to the supporting line Lℓ is
of the form

φκℓ(x) = cℓ x
Aℓ−1

1 xBℓ
2

∏

α

(
x2 − cαℓ x

aℓ
1

)Nα

(cf. [3]). In view of this identity, we shall say that the edge

γℓ := [(Aℓ−1, Bℓ−1), (Aℓ, Bℓ)]

is associated to the cluster of roots [ℓ].
Consider the line parallel to the bi-sectrix

∆(m) := {(t, t+m+ 1) : t ∈ R}.
For any edge γℓ ⊂ Lℓ := {(t1, t2) ∈ R2 : κℓ1t1 + κℓ2t2 = 1} define hℓ by

∆(m) ∩ Lℓ = {(hℓ −m,hℓ + 1)},
i.e.,

(8) hℓ =
1 +mκℓ1 − κℓ2
κℓ1 + κℓ2

,

and define the m-height of φ by

h(m)(φ) := max(d, max
ℓ:aℓ>m

hℓ).

Remarks 3. (a) For L in place of Lℓ and κ in place of κl, one has m = κ2/κ1
and d = 1/(κ1 + κ2), so that one gets d in place of hℓ in (8)

(b) Since m < aℓ, we have hℓ < 1/(κℓ1 + κℓ2), hence h
(m)(φ) < h(φ).

Theorem 4. Assume that there is no linear coordinate system adapted to the
non-zero real analytic function φ, and that m ≥ 2 in (5). Then there exists a
neighborhood U ⊂ S of x0 = 0 such that for every non-negative density ρ ∈
C∞

0 (U), the Fourier restriction estimate (1) holds true for every p ≥ 1 such that
p′ ≥ p′c := 2h(m)(φ) + 2.

Remarks 5. (a) The condition p′ ≥ 2p′c+2 is weaker than the condition p′ ≥
2h(φ) + 2, which would follow from Greenleaf’s result [1] unless ν(φ) = 1.

(b) Again, Knapp type examples show that our result is sharp.

We acknowledge the support for this work by the Deutsche Forschungsgemein-
schaft.
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A Multidimensional Resolution of Singularities with Applications

Allan Greenleaf

(joint work with Tristan Collins, Malabika Pramanik)

Let F ∈ Cω(Rn), F (0) = 0. Some basic numerical invariants associated to F
are

(i) the critical integrability index (or log canonical threshold), µ(F );
(ii) the sublevel set growth rate, ν(F ); and
(iii) the oscillatory index, ρ(F ).

It is known that µ(F ) = ν(F ), and Greenblatt showed that these equal ρ(F ) (if
/∈ 2Z+1). In R2, Phong, Stein and Sturm showed that ν(F ) equals the reciprocal of
the height of F , d(F ), defined by Varchenko as follows. Let N(F ) ⊂ Rn

+ denote the
Newton polygon of F , and d0(F ) = inf{d > 0|(d, d, . . . , d) ∈ N(F )} the Newton
distance, which is coordinate-dependent. Then,

d(F ) := sup{d0(F ◦ Φ)|Φ : Rn Cω

−→ Rn, Φ(0) = 0},

and a coordinate system Φ is said to be adapted if d0(F ◦ Φ) = d(F ). Varchenko
showed that adapted coordinates always exist in two dimensions, and can be taken
to be of the form

Φ(x1, x2) = (x1, x2 − r(x1)) or (x1 − r(x2), x2) for some r ∈ Cω.

Building on work of Parusiński [1994,200], we describe an algorithm, inductive
on the dimension, for constructing a class C of local coordinate systems Φ(φ, V, r),
given by fractional power series on domains (called towers of horns) V such that
0 ∈ V . The Newton distance d0(F ◦Φ(φ, V, r)) is defined for each such Φ, and we
can then define a new height function,

d(F ) := sup{d0(F ◦ Φ(φ, V, r))|Φ ∈ C}.

Among other things, we prove that this is computable:

Theorem 1. There is an algorithmically constructible finite set, C∗ ⊂ C, such
that d(F ) = sup{d(F ◦ Φ)|Φ ∈ C∗}.

Define the resulting Newton exponent or decay rate, δ(F ) := d(F )−1; we prove

Theorem 2. For F ∈ Cω(Rn), the Newton exponent δ(F ) equals the critical
integrability index µ(F ), sublevel growth index ν(F ), and oscillatory index ρ(F )
(if /∈ 2Z+ 1).
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A dyadic model for Toeplitz products on Bergman space

Sandra Pott

(joint work with Alexandru Aleman)

In the early 90’s, D. Sarason posed conjectures on the characterization of the
boundedness of Toeplitz products on Hardy and Bergman spaces. The Hardy
space case attracted much attention because of its close relation to the joint A2

conjecture for the famous two-weight problem for the Hilbert transform in Real
Analysis, pointed out by Cruz-Uribe in [1], but both conjectures, the Sarason
conjecture for Toeplitz products on Hardy space and the joint A2 conjecture, were
shown to be false by F. Nazarov around 2000 [2].

The Bergman space case of Sarason’s conjecture is still open, and is likewise
connected to two-weighted inequalities on Bergman space.

In the talk, I will present a dyadic model for Toeplitz products on Bergman
space. We will prove a test function criterion for boundedness of such dyadic
model operators, in the style of the test function criteria of Nazarov, Treil and
Volberg for boundedness of two-weighted dyadic shifts in [4].

This is joint work with A. Aleman.
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Dyadic shifts—new building blocks of singular integral operators

Tuomas Hytönen

In my talk, I discussed the following dyadic model of singular integral operators:

Definition (Dyadic shifts, [6]). An operator S is called a dyadic shift of type
(i, j) ∈ N× N, associated to a system of dyadic cubes D on Rd, if it has the form

S =
∑

K∈D

AK , AKf =
∑

I,J∈D,I,J⊆K
ℓ(I)=2−iℓ(K)

ℓ(J)=2−jℓ(K)

aIJKhI〈hJ , f〉,

where hI is a Haar function on the cube I (constant on the dyadic subcubes of I
and normalized in L2), similarly hJ on J , and the aIJK are constants normalized

by |aIJK | ≤
√
|I||J |/|K|. It is also required that all subshifts SQ :=

∑
K∈Q

AK

are bounded on L2 with operator norm at most 1, for all Q ⊆ D .
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A shift is called cancellative if all appearing Haar functions satisfy
´

hI =
´

hJ = 0. In this case the boundedness of the subshifts is automatic from the
uniform boundedness of all the AK (which is easy to check) and orthogonality.
Examples include the Haar multipliers (of type (0, 0), also known as dyadic mar-
tingale transforms) with AKf = λKhK〈hK , f〉, and Petermichl’s dyadic shift (of
type (1, 0), in dimension d = 1) with AKf = 2−1/2(hKleft

− hKright
)〈hK , f〉, which

was used in her celebrated representation of the Hilbert transform [10], and gave
the name to the whole family of shifts as defined above. The general definition is
due to Lacey, Petermichl and Reguera [6].

The main example of non-cancellative shifts is the dyadic paraproduct (of type
(0, 0)) with AKf = λKhK〈h0K , f〉, where h0K := |K|−1/21K , and the coefficients
are required to satisfy the Carleson condition.

The importance of this dyadic model comes from the fact that it is rich enough
to represent all classical Calderón–Zygmund operators:

Theorem (The dyadic representation theorem, [1]). Let T ∈ CZOα—a singular
integral operator with a Calderón–Zygmund kernel of Hölder exponent α ∈ (0, 1]—,
and satisfy the T 1 conditions

|〈1Q, T 1Q〉| ≤ cT , T 1 ∈ BMO, T ∗1 ∈ BMO .

Then it has the following representation valid for all f, g ∈ C1
c (R

d):

〈g, T f〉 = cT,αED

∞∑

i,j=0

2−max{i,j}α/2〈g, Sij
D
f〉,

where cT,α is a constant, Sij
D

is a dyadic shift of type (i, j) associated to the dyadic
system D , and ED is the expectation over a certain random choice of D . The shift
S00

D
is the sum of a Haar multiplier, a paraproduct, and an adjoint paraproduct,

while all other shifts are cancellative.

Since all the shifts Sij
D

are uniformly bounded operators on L2, this repre-
sentation contains, in particular, the T 1 theorem of David and Journé—the L2

boundedness of T under the T 1 conditions. This is not a coincidence, since my
proof of the dyadic representation was in fact inspired by an extension of the T 1
theorem to non-doubling measures by Nazarov, Treil and Volberg [8], which im-
plicitly involves a predecessor of such a decomposition. Their important notions of
random dyadic systems, good and bad cubes, and estimates for their probabilities,
again appear in the proof of the dyadic representation, although with some new
twist.

Besides reproving the T 1 theorem, the dyadic representation has the following
main consequence for sharp weighted norm inequalities, which have attracted some
attention in the last few years:

Corollary (The A2 theorem, [1]). Let T ∈ CZOα, α ∈ (0, 1], and w ∈ A2—
Muckenhoupt’s weight class with

[w]A2 := sup
Q

 

Q

w ·
 

Q

1

w
<∞,
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where the supremum is over all axes-parallel cubes in Rd. Then T : L2(w) →
L2(w)—this qualitative mapping property is classical!—satisfies the quantitative
bound

‖Tf‖L2(w) ≤ cT,α[w]A2‖f‖L2(w),

and the linear bound in terms of [w]A2 is best possible.

The dyadic representation effectively reduces the proof of the A2 theorem to
obtaining a similar bound for the shifts Sij in place of T , with subexponential
growth of the constant cSij in terms of the shift parameters (i, j) to be able to
sum up the series. In the past one year after my first proof of this result, a number
of different proofs by several authors have appeared [2, 3, 4, 5, 7, 9, 11]. However,
they are all based on the dyadic representation theorem, which seems like a strong
illustration of the usefulness of such an expansion: As soon as one gets one’s
hands on the dyadic shifts, there are many possible ways to carry out the further
analysis, while no method for getting the sharp weighted estimate is yet known
without going through this dyadic model.
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New methods for boundary value problems of elliptic equations

Pascal Auscher

(joint work with Andreas Rosén)

We report on new representations and new solvability methods for boundary
value problems (BVPs) for divergence form second order, real and complex, elliptic
systems. We look here at BVPs in domains Lipschitz diffeomorphic to the upper
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half space R1+n
+ := {(t, x) ∈ R×Rn ; t > 0}, n ≥ 1. Details are to be found in [1]

joint with Andreas Rosén (formerly Axelsson). For bounded domains, see [2].
The strategy applies to systems of equations Lu = −divA∇u = 0 where

(1) Luα(t, x) =

n∑

i,j=0

m∑

β=1

∂i

(
Aα,β

i,j (t, x)∂ju
β(t, x)

)
= 0, α = 1, . . . ,m

in R1+n
+ , where ∂0 = ∂

∂t and ∂i =
∂

∂xi
, 1 ≤ i ≤ n. We assume

(2) A = (Aα,β
i,j (t, x))α,β=1,...,m

i,j=0,...,n ∈ L∞(R1+n;L(C(1+n)m)),

and that A is strictly accretive on H, meaning that there exists κ > 0 such that

(3)

n∑

i,j=0

m∑

α,β=1

ˆ

Rn

Re(Aα,β
i,j (t, x)fβ

j (x)f
α
i (x))dx ≥ κ

n∑

i=0

m∑

α=1

ˆ

Rn

|fα
i (x)|2dx,

for all f ∈ H = L2(R
n;Cm)⊕R(∇x) = N(curlx) seen as a subspace of L2(R

n;C(1+n)m)
and a.e. t > 0. For equations (m = 1) it is equivalent to the usual pointwise ac-
cretivity. For our results to hold, a natural Carleson type assumption is made on
the coefficients. This includes all systems with t-independent coefficients.

We seek to prove well-posedness for (1), i.e. unique solvability in appropriate
spaces given Dirichlet data u|t=0, Neumann data ∂νAu|t=0 or Dirichlet regular-
ity data ∇xu|t=0, assumed to satisfy an L2 condition. Note that the continuity
estimate required for well-posedness in the sense of Hadamard is not included in
our notion of well-posedness, but is shown to hold. For the Neumann and Dirich-
let regularity problems, we work in the class of weak solutions whose gradient

∇t,xu has L2 modified non-tangential maximal function Ñ∗(∇t,xu) in L2. Un-
der our assumptions, we obtain a representation, describe the limiting behaviour
of ∇t,xu at t = 0 and ∞ and obtain a perturbation result for well-posedness.
For the Dirichlet problem, it is more natural given our method to work in the
class of weak solutions with square function estimate

˜

R
1+n
+

|∇t,xu|2tdtdx < ∞.

Under our assumptions, we prove a rigidity theorem (up to a constant, such so-
lutions are continuous in t ≥ 0 with values in L2(R

n,Cm) and vanish at ∞ with
supt>0 ‖ut‖2 . ‖∇t,xu‖L2(tdt;L2)), show new a priori non-tangential maximal es-

timates (fixing the constant to be 0, ‖Ñ∗(u)‖2 . ‖∇t,xu‖L2(tdt;L2)) and obtain a
perturbation result for well-posedness.

We refer to [1] for a comprehensive historical background. We only mention
several things for the purpose of this report. Not so much was known for sys-
tems. Next, for t-independent equations, the theory is relatively complete for
the real symmetric ones from the works of Dahlberg, Jerison-Kenig, Kenig-Pipher
[9, 12, 13] using the technology of harmonic measure based on the maximum prin-
ciple, regularity theory and Rellich identities. For the real non symmetric ones,
only some specific situations are known so far. Eventually, for t-dependent equa-
tions, Caffarelli, Fabes and Kenig [7] show the necessity of a square Dini condition
in the transverse direction and Fabes, Jerison, Kenig [11] showed solvability of the
Dirichlet problem assuming continuity on A(t, x) (We notice that as an outcome,
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we solve the regularity problem under this condition in [2]). Dahlberg formulated
a variant which is scale-invariant: a condition of Carleson type for the coefficients
A(t, x) − A(0, x), the smallness of which guarantees perturbation results for the
Dirichlet problem [10]. Kenig-Pipher [13] developed the corresponding perturba-
tion theory from real symmetric t-independent equations for the Neumann and
regularity problems using variational solutions.

At our level of generality, we must give up regularity theory and maximum
principle, hence harmonic measure. Instead we develop a Hardy space method,
going back to the origins of the development of the Hardy spaces on Euclidean
space by Stein and Weiss [14].

We limit ourselves here to a rough description of the method for Neumann and
regularity problems. Our basic idea for constructing solutions u to the divergence
form equation (1) in R1+n

+ is to consider it as a first order div− curl system with
the gradient ∇t,xu as the unknown function. In fact, as first done in [3], solving
for the t-derivatives in the equation, the divergence form equation for u becomes
a vector-valued ODE

∂t(∇t,xu) + TA(∇t,xu) = 0,

where TA is an operator only involving the first order derivatives along Rn and
operators of pointwise multiplication. It turns out that if one instead of ∇t,xu
takes as the unknown the conormal gradient

(4) ∇Au :=

[
∂νAu
∇xu

]
,

with inward (for convenience) conormal derivative ∂νAu = (A∇t,xu, e0), then the
corresponding operator TA has a simpler structure; the ODE reads

(5) ∂tf +DBf = 0, with f := ∇Au,

where D :=

[
0 divx

−∇x 0

]
and B :=

[
0 1
c d

] [
a b
0 1

]−1

writing A =

[
a b
c d

]
in the

splitting L2(R
n;C(1+n)m) = L2(R

n;Cm)⊕L2(R
n;Cnm) is also a strictly accretive

matrix on H.
The first order approach is most natural for solving the Neumann and regularity

BVPs, since these boundary conditions are conditions on the conormal gradient f ,
not on the potential u. Indeed, the Neumann BVP means that the normal part of
f0 (i.e. first component) (f0)⊥ = ∂νAu|Rn is given at the boundary t = 0, whereas
the regularity condition is that the tangential part of f0 (i.e. second component)
(f0)‖ = ∇xu|Rn is given. Note that for both BVPs, only “one half” of the function
f0 is prescribed.

This algebraic reduction was the key discovery in [4] when coefficients A do not
depend on t and the ODE is autonomous as DB does not depend on t. It carries
in extenso to all coefficients. However, the ODE becomes non-autonomous. The
main results in [1] are to integrate this ODE (a Duhamel type formula) in the
appropriate and most general classes of weak solutions to obtain representation
and the boundary maps between initial values f0 and boundary datas that allow to
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formulate solvability. We develop for that new maximal regularity estimates using
the tent space theory of Coifman-Meyer-Stein [8]. For the Dirichlet problem, one
must integrate once more as one seeks estimates on the potential u rather than its
gradient.

Let us finish by explaining the case of t-independent coefficientsB(t, x) = B0(x).
In this case, we view DB0 as an unbounded operator in L2(R

n;C(1+n)m), and at
a first glance the solution to (5) with initial datum f0 seems to be ft = e−tDB0f0.
However, the problem is that DB0 is not a sectorial operator, but instead bisec-
torial, i.e. its spectrum is contained in a double sector around the real axis.
This indefiniteness means that the operators e−tDB0 are not well defined on
L2(R

n;C(1+n)m) for any t 6= 0. Another technical problem is that DB0 has an
infinite dimensional null space. The fact is that there are topological splittings

L2 = H⊕ N(DB0) =
(
E+

0 H⊕ E−
0 H

)
⊕ N(DB0),

noticing that R(DB0) = R(D) = H. The splitting of H into the spectral subspace
E+

0 H for the sector in the right half plane and the spectral subspace E−
0 H for

the sector in the left half plane is a deep result, and builds as was done in [6]
on the Kato square root problem solved in [5]. This proof also shows that DB0

has square function estimates, which in particular shows that −DB0 generates
a bounded holomorphic semigroup in E+

0 H, and that DB0 generates a bounded
holomorphic semigroup in E−

0 H. The spectral subspace E+
0 H (resp. E−

0 H) looks
like the holomorphic Hardy space on the upper (resp. lower) half-space, but asso-
ciated to (1) instead of the Laplace equation (if B0 = I, then the elements exactly
are the Riesz systems of Stein and Weiss [14]: in boundary dimension n = 1,
this comparison is exact). We note that B−1

0 E±
0 H are the spectral spaces in the

splitting associated to B0D. Let us isolate one of the results in [1] to conclude.

Theorem 1. (i) All weak solutions u of (1) with L2 modified non-tangential

maximal function Ñ∗(∇t,xu) ∈ L2 are of the form ∇Au(t, x) = (e−tDB0f0)(x) for

some f0 ∈ E+
0 H and, moreover, ‖Ñ∗(∇t,xu)‖2 ∼ ‖f0‖2.

(ii) All weak solutions u of (1) with square function ‖∇t,xu‖L2(tdt;L2) <∞ are

of the form u(t, x) = (e−tB0D f̃0)⊥(x) for some f̃0 ∈ B−1
0 E+

0 H and, moreover,

‖Ñ∗(u)‖2 . ‖∇t,xu‖L2(tdt;L2) ∼ ‖f̃0‖2.

The non-tangential maximal and square function estimates for solutions of this
form were already proved in [4]. The novelty is that they all are of that form. As
corollaries, (i) allows right away to formulate the Neumann problem in the optimal
class and to see that well-posedness is equivalent to the invertibility of the map
f0 ∈ E+

0 H 7→ (f0)⊥ ∈ L2(R
n,Cm), while (ii) tells that the Dirichlet problem can

always be formulated in the square function class (while it is not the case in the

class ‖Ñ∗(u)‖2 < ∞) and that well-posedness is equivalent to the invertibility of

the map f̃0 ∈ B−1
0 E+

0 H 7→ (f̃0)⊥ ∈ L2(R
n,Cm).
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Hessian Sobolev and Poincaré inequalities

Igor Verbitsky

(joint work with Fausto Ferrari, Bruno Franchi)

The fully nonlinear k-Hessian operator Fk[u] (k = 1, . . . , n) is defined as the sum
of all the k×k principal minors of the Hessian matrix D2u, where u ∈ C2(Ω) on a
domain Ω ⊂ Rn. For k = 1, Fk[u] coincides with the Laplacian △u, and for k = n,
with the Monge–Ampère operator.

The k-Hessian is elliptic when restricted to the cone of k-convex functions such
that Fj [u] ≥ 0 for j = 1, 2, . . . , k. This definition has been extended to upper
semicontinuous functions u : Ω → [−∞,+∞) by Trudinger and Wang [8]. In this
case Fk[u] is a nonnegative measure defined in terms of viscosity solutions: u is
k-convex if Fk[q] ≥ 0 for any quadratic polynomial q such that u − q has a local
finite maximum in Ω.

Denote by Φk(Ω) the class of all k-convex functions in Ω. Then

Φn(Ω) ⊂ Φn−1(Ω) · · · ⊂ Φ1(Ω).
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Here Φ1(Ω) is the class of all subharmonic functions, and Φn(Ω) is the class of
all convex functions in Ω. The domain Ω is assumed to be a bounded uniformly
(k − 1)-convex domain in Rn, Hj(∂Ω) > 0, j = 1, ..., k − 1; Hj(∂Ω) denotes the
j-mean curvature of the boundary ∂Ω.

The following Hessian Sobolev inequality is due to X.-J. Wang (1994):
(
ˆ

Ω

|u|q dx
) 1

q

≤ C

(
ˆ

Ω

−uFk[u] dx

) 1
k+1

.

q = (k+1)n
n−2k , 1 ≤ k ≤ n

2 . Here u is k-convex, u = 0 on ∂Ω, and Ω is (k− 1)-convex.
The Hessian–Poincaré inequality:

(
ˆ

Ω

|Du|2 dx
) 1

2

≤ C

(
ˆ

Ω

−uFk[u] dx

) 1
k+1

,

as well as the higher–order Poincaré inequalities:
(
ˆ

Ω

−uFl[u] dx

) 1
l+1

≤ C

(
ˆ

Ω

−uFk[u] dx

) 1
k+1

,

for 0 ≤ l < k ≤ n, were established by Trudinger and Wang in [7]. New simpler
proofs were given in [9] together with some extensions.

The following two theorems [3] establish the relation between the k-Hessian
energy Ek[u] =

´

Ω −uFk[u] dx, and the more conventional fractional Laplacian

energy Ek[u] =
´

Rn

∣∣∣(−∆)
k

k+1u
∣∣∣
k+1

dx, for k-convex functions in the case Ω = Rn.

Denote by Φk
0(R

n) the class of k-convex functions vanishing at infinity.
Theorem 1 [3]. Let u ∈ Φk

0(R
n), 1 ≤ k < n

2 . Then there exists a positive
constant ck,n such that

ˆ

Rn

−uFk[u] dx ≤ ck,n

ˆ

Rn

∣∣∣(−∆)
k

k+1u
∣∣∣
k+1

dx.

If k ≥ n
2 then the Hessian energy on Rn is infinite unless u = 0.

Theorem 2 [3]. Let u ∈ Φk
0(R

n), 1 ≤ k < n
2 . If (−∆)

k
k+1 [−(−∆)

k
k+1u]k ≥ 0,

then there exists a positive constant Ck,n such that
ˆ

Rn

|(−∆)
k

k+1u|k+1dx ≤ Ck,n

ˆ

Rn

−uFk[u] dx.

Conjecture. The extra assumption(−∆)
k

k+1 [−(−∆)
k

k+1u]k ≥ 0 in Theorem 2
can be dropped. In other words, Ek[u] is equivalent to Ek[u].

The following corollary implies that the k-Hessian capacity introduced in [8]
is equivalent to the classical Bessel capacity associated with the Sobolev space

W
2k

k+1 ,k+1 (see [5]).
Corollary [3]. Let u ∈ Φk

0(R
n), where 1 ≤ k < n

2 . Then there exists ũ such
that c1 ≤ |u|/|ũ| ≤ c2, and

C1

ˆ

Rn

∣∣(−∆)
α
2 ũ

∣∣k+1
dx ≤

ˆ

Rn

−uFk[u] dx ≤ C2

ˆ

Rn

∣∣(−∆)
α
2 ũ

∣∣k+1
dx,
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where ci, Ci (i = 1, 2) are positive constants depending only on k, n.
Applications to fully nonlinear equations involving k-Hessian operators can be

found in [4], [5], [6].
The following inequality for fractional Laplacians, together with some applica-

tions, is deduced as a corollary in [3], Sec. 4: for a convex function φ : R → R+,

(−∆)α/2 (φ(u)) ≤ φ′(u) · (−∆)α/2u, if 0 < α ≤ 2.

I would like to thank Elias Stein for pointing out that such inequalities appeared
earlier in the literature. (See [2] for φ(x) = x2, and [1] in the general case.)
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Exponential sums in two variables: the quasi-homogeneous case

James Wright

Let f ∈ Z[X,Y ] be a quasi-homogeneous polynomial in two variables by which
we mean there exists two positive numbers κ1, κ2 > 0 so that f(rκ1x, rκ2y) =
rf(x, y) for every r ≥ 0. Our goal is to give sharp bounds on the exponential sums

S(f ; ps) =
1

p2s

∑

xmod ps

∑

ymod ps

e2πif(x,y)/p
s

where the parameter ps is a power of a prime number p.
We will be particularly interested when the estimates are uniform in p and s

with the underlying constants in the estimates depending only on the degree of f ,
say. Uniform estimates of the form

(1) |S(f ; ps)| ≤ Csi(f)p−s/h(f)

will be proved for almost every prime p and where C is an absolute constant
depending only on the degree of f ; that is, there is an exceptional finite set of
primes P(f) and a constant C = Cdeg(f) such that (1) holds for every p /∈ P(f).
In fact in almost every case the exponents h(f) and i(f) will be the same as those
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arising in the best uniform estimates for the corresponding euclidean oscillatory
integrals

(2)
∣∣∣
ˆˆ

R2

e2πiλf(x,y)φ(x, y)dxdy
∣∣∣ ≤ C

[
log(|λ|)

]i(f)|λ|−1/h(f)

where the height of f is defined as h(f) := supz{dz(f)}, the supremum being taken
over all smooth local coordinate systems z = (x, y) of the origin and dz denotes
the Newton distance of f in the coordinates z. In [6] an intrinsic description of the
height h(f) is given when f is a quasi-homogeneous polynomial; in fact in this case
h(f) can be described explicitly in terms of the homogeneity dilation parameters
κ1, κ2 and the maximum multiplicity of the real roots of f . The exponent i(f) is
sometimes referred to as Varchenko’s exponent or the multiplicity of oscillation of
f and takes only the values 0 or 1; it is always equal to 0 except when h(f) ≥ 2 and
the principal face of f in adapted coordinates1 is a vertex of the Newton diagram in
which case we set i(f) = 1. Again an explicit, intrinsic description of the exponent
i(f) is given in [6]. The estimate (2) is sharp in the sense that

(3) lim
λ→+∞

λ1/h(f)

logi(f)(λ)

ˆˆ

R2

e2πiλf(x,y)φ(x, y)dxdy = c φ(0, 0)

for some nonzero constant c if the support of φ is sufficiently small and if the
principal face of f in adapted coordinates is a compact set. For proofs of (2)
and (3), see for example [7] where these results are established for any smooth
real-valued phase f of finite-type.

It turns out that the uniform estimates in (1), discrete analogues of (2), hold
for every quasi-homogeneous polynomial f ∈ Z[X,Y ] except for a single family of
degenerate f of the form

(4) f(x, y) = a(by2 + cxy + dx2)m

where the quadratic polynomial by2 + cxy + dx2 is irreducible over the rationals
Q. In this case (1) holds with the same decay parameter h(f) but now the 0-
1 valued exponent i(f) = ip(f) depends on the prime p. For example when
f(x, y) = a(y2 − 2x2)m, it turns out that ip(f) = 1 when p ≡ 1 or 7 mod 8 and
ip(f) = 0 when p ≡ 3 or 5 mod 8.

We also mention a trivial exception to (1); the linear factor s in (1) appears
for f(x, y) = axy (one can simply evaluate the sum S(f ; ps) in this case) but the
exponent i(f) in (2) is 0. The difference is easily accounted for by the smooth
cut-off function φ. To avoid mentioning this trivial exception in the statement of
our main result, we reset the value i(f) to be equal to 1 for f(x, y) = axy. In this
way the only truly exceptional case to the euclidean estimate (2) will be those f of
the form (4). We also obtain a version of (3) for S(f ; ps) in the following theorem.

Theorem 0.1. For any quasi-homogeneous polynomial f ∈ Z[X,Y ] not of the
form (4), there is a finite collection P(f) of prime numbers and constant C > 0,

1a local coordinate system z where the supremum defining the height is achieved; that is,
h(f) = dz
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depending only on the degree of f , so that

|S(f ; ps)| ≤ Csi(f)p−s/h(f)

holds for every prime p /∈ P(f).
When f is of the form (4), the above estimate still holds but now i(f) = ip(f)

depends on p; more precisely ip(f) = 1 or 0 depending on whether the roots of f
(a conjugate pair of algebraic numbers of degree 2 over Q) lie in the p-adic field
Qp or not, respectively.

Furthermore when f is homogeneous but not in the exceptional class (4) and
h(f) > 2, there is a constant c > 0, depending only on the degree of f , so that for
p /∈ P(f),

(5) csi(f)p−s/h(f) ≤ |S(f ; ps)|
holds for infinitely many s ≥ 1. When f is as in (4), the estimate (5) still holds
but with i(f) = ip(f) defined above.

For quasi-homogeneous polynomials f ∈ Z[X1, . . . , Xn] in arbitrary number of
variables, Denef and Sperber [4] and Cluckers [1], [2] have established the estimate
(1) when f is nondegenerate with respect to its Newton diagram which is related
to certain conjectures of Igusa found in [5]. The estimates in Theorem 0.1 extend
their work in the two variable setting to arbitrary quasi-homogeneous polynomials.
In fact in [4], Denef and Sperber make a conjecture for general homogeneous poly-
nomials (extended to quasi-homogeneous polynomials by Cluckers) and Theorem
0.1 verifies this conjecture in the two variable setting. The lower bound (5) shows
the general sharpness of the estimate with respect to p and s. Sharp estimates
for arbitrary quasi-homogeneous polynomials have been obtained previously by
Cluckers [3] in the case when s = 1 or s = 2, again for polynomials in any number
of variables.
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Hilbert transforms along one-variable vector fields

Michael Bateman

(joint work with Christoph Thiele)

We consider the Hilbert transform

(1) Hvf(x) = p.v.

ˆ

f(x− tv(x))

t
dt.

defined for x ∈ R2, where v : R2 → R2 \ {0} is a nonvanishing vector field. We
can also define the analogous maximal operator

(2) Mvf(x) = sup
ǫ>0

1

2ǫ

ˆ ǫ

−ǫ

f(x+ v(x)t)dt,

again defined for x ∈ R2. Well-known conjectures of Stein and Zygmund concern
the Lp boundedness properties of Hv and Mv, respectively, when the vector field
v is Lipschitz.

Negative results are known to hold when v is only C1−ǫ for any ǫ. This follows
from rather standard examples involving Besicovitch sets in R2. Best known
positive results are due to Stein/Stree (for Hv) and Bourgain (for Mv)– in both
situations some Lp estimates are obtained for real-analytic vector fields. General
results for vector fields v in smoothness classes between Hölder and real-analytic
are unknown.

Recent results have been obtained by the speaker with Christoph Thiele on the
Lp boundedness of Hv when the vector field v is assumed to depend only on one
variable; i.e., v(x, y) = v(x). The dependence on the x-coordinate can be arbitrary.
In this case, we obtain

• If p ∈ (32 ,∞), then

(3) ||Hvf ||p ≤ C||f ||p.
The most obvious open questions have to do with extending this theorem to the
maximal operatorMv, and extending it to a broader class of vector fields. The re-
sult above relies heavily on estimates obtained en route to stronger results obtained
by the speaker when the function in question has restricted frequency support.
Specifically,

• Assume the support of f̂ lies in an annulus. If p ∈ (1,∞), then

(4) ||Hvf ||p ≤ C||f ||p.
(Here the implicit constant depends only on p and the ratio of the outside
and inside radii of the annulus.)

This second theorem relies heavily on earlier work of Lacey and Li, who established
the single-annulus theorem for p > 2 for arbitrary v. Lacey and Li also established
an approach for proving Lp results when p < 2 provided certain maximal estimates
are known. Again, extensions to Mv and more general vector fields are of interst.
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Observations on Multilinear Oscillatory Integral Operator and
Multilinear Sublevel Set Inequalities

Michael Christ

Consider a scalar-valued multilinear form

Iλ(f1, · · · , fn) =
ˆ

Rd

eiλP (y)
n∏

j=1

(
fj ◦ ℓj

)
(y) η(y) dy

with ℓj : R
d → Rdj surjective, linear; P : Rd → R a real-valued polynomial phase;

η a compactly supported smooth cutoff function, and λ ∈ R a large parameter. Is
there an operator decay bound of the form

|Iλ(f1, · · · , fn)| ≤ C|λ|−δ
∏

j

‖fj‖∞L as |λ| → ∞?

One can alternatively ask for a weaker bound of the form |Iλ(f1, · · · , fn)| ≤
Cε(λ)

∏
j ‖fj‖L∞ where ε(λ) → 0 as |λ| → ∞.

A necessary condition is that P cannot be expressed as
∑

j

(
φj ◦ ℓj

)
for any

functions {φj}. We say that P is nondegenerate relative to {ℓj} if it cannot be so
expressed. A natural conjecture is that for any nondegenerate polynomial phase
P , there is a decay bound of the above type.

The bilinear case has been extensively studied, with detailed and often optimal
results by many authors. Much less is known in the singular multilinear case.
The subject is still at a preliminary stage, and it is not yet appropriate to ask for
optimal decay exponents or Lp classes. Therefore we put the strongest relevant
norm, L∞, on fj , and ask whether there is any positive decay exponent δ.

Christ-Li-Tao-Thiele established some relevant results in 2005. (i) P =
∑

j φj ◦
ℓj for distributions φj if and only if this holds with polynomials φj with degree(φj) ≤
degree(P ). (ii) P is nondegenerate if and only if there exists a linear partial dif-
ferential operator with constant coefficients such that L(P ) 6= 0, but L(f ◦ ℓj) = 0
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for all functions f and all j. (iii) Nondegeneracy implies power law decay in codi-
mension 1 case (dj = d− 1 for all j). (iv) Nondegeneracy implies power law decay
if all dj = 1 and the number of factors fj is < 2d.
Theorem. Nondegeneracy implies power law decay if 2maxi di +

∑
j dj ≤ 2d,

provided that {ℓj} lies in general position. �

If all dj = 1, this just barely misses the result of Christ-Li-Tao-Thiele.
By a multilinear sublevel set associated to P we mean a set of the form

Eε(P, g1, · · · , gn) =
{
y ∈ B : |P (y)−

n∑

j=1

gj(ℓj(y))| < ε}.

It is natural to conjecture that if P is nondegenerate then
∣∣Eε(P, g1, · · · , gn)

∣∣ ≤
Cεδ uniformly for all functions gj ; this conjecture would be a direct consequence
of the corresponding conjecture for multilinear oscillatory integrals, formulated
above.

We say that {ℓj} is rationally commensurate if it is possible to make R–linear
changes of coordinates so that all ℓj are simultaneously represented by matrices
with rational entries.
Theorem. Let a polynomial P be nondegenerate with respect to a finite rationally
commensurate family {ℓj}. Then for any measurable {fj}, |Eε(P, f1, · · · , fn)| ≤
Θ(ε) where Θ(ε) −→

ε→0
0. Θ depends on P and on {ℓj}, but not on {fj}. If one

modifies the definition of the sublevel set Eε by requiring only that the distance
from |P (y)−∑n

j=1 gj(ℓj(y))| to Z be less than ε, then the same bound holds. �

Let P, {ℓj} as above. We say that P is nondegenerate with a finite witness
relative to {ℓj} if there exists a finite set S ⊂ Rd such that the restriction P

∣∣
S
of

P to S does not belong to the span of the set of all functions (fj ◦ ℓj)
∣∣
S
. It is a

tautology that nondegeneracy with a finite witness implies nondegeneracy.
The second theorem stated above follows by combining the following two sub-

theorems.
Theorem. Nondegeneracy implies nondegeneracy with a finite witness provided
that {ℓj} is rationally commensurate. �
Theorem. If P is nondegenerate with a finite witness, then sublevel set bounds
hold with some rate function Θ(ε). �

The following property of sublevel sets is used to prove the second subtheorem.
Let P be a polynomial, with finite witness set S. Then there exist coefficients cs
such that

∑
s∈S csP (s) = 1 but

∑
s∈S cs(fj ◦ ℓj)(s) = 0 for all j and fj . Define

q(r, a) =
∑

s∈a+rS cs

(
P (s) − ∑

j(fj ◦ ℓj)(s)
)
. Then whenever a + rS ⊂ Eε,

necessarily |q(r, a)| ≤ Cε. Now q is a polynomial independent of {fj}, which does
not vanish identically. So |q(r, a)| ≪ 1 occurs rarely. The thrust of Szemerédi’s
theorem (as extended by Furstenberg and Katznelson) is that a set which contains
no images rS + a must be small. A simple discretization and lifting argument
allows one to conclude that if E ⊂ Rd contains rS+a for few (a, r), then |E| must
be small.
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The first subtheorem asserts the existence of finite witness sets. Its purely
algebraic proof is based on finite difference equations for functions whose domains
are sufficiently large finite lattices.

The first theorem formulated above, which concerns oscillatory integrals, is
proved by an induction on dimensions. The analysis consists primarily of linear
algebra, resting ultimately on the 2005 result of Christ-Li-Tao-Thiele for the special
case in which each of the linear mappings ℓj has one-dimensional codomain. The
proof is best illustrated via an example.

Consider
¨

R4

eiP (x1,x2,y1,y2)f0(x1, y1)f1(x2, y2)f2(x1 + x2, y1 + y2) dx1 dx2 dy1 dy2.

Rewrite this as
¨ (¨

eiP (s,u,t,−t+v)f0(s, t)f1(u,−t+ v)f2(s+ u, v) ds dt
)
du dv,

which has the advantage that in the inner integral, f1, f2 each depend on only one
of the two variables of integration.

Fix u, v. The inner integral equals
〈
f0, e

iQu,v (F1,u,v ◦ L1)(F2,u,v ◦ L2)
〉
where

F1,u,v(t) = f1(u,−t+ v), F2,u,v has a similar expression in terms of f2, Qu,v is a
certain polynomial in (s, t), L1(s, t) = t, and L2(s, t) = s+ t.

If the original integral is not suitably small, then there exists (u, v) for which the
inner integral is not small. Therefore f0 has a nonsmall inner product with some
G = eiQ(F1 ◦L1)(F2 ◦L2). Decompose f0 = αG+ f̃0 where α ∈ C, |α| is not small,

and ‖f̃0‖2 ≤ (1 − c|α|2)‖f0‖2. The contribution of f̃0 is controlled by “induction
on norm”. Substitute αG for f0 in original integral, and absorb eiQ into eiP . This
represents progress, for one factor f0 which depended on two variables, has been
replaced by two factors which each depend on only one variable. Apply the same
reasoning to f1, f2. In the end, we have reduced matters to the case where all of
the projections ℓj have one-dimensional codomains.

Christ and Oliveira e Silva have found a different proof for trilinear oscillatory
integral forms. Rather than reducing to product functions, one first reduces to
functions of the form eiΦ(x1,x2) where Φ is a real polynomial of controlled degree
with respect to x2, whose coefficients are unknown measurable functions of x1.
A second step then reduces further to case where these coefficients are likewise
polynomials. Facts about sublevel sets are used.
Final remark. I should have tried to bypass Szemerédi’s theorem by using instead
theorems of Balog-Szemerédi-Gowers and Freiman (which are central ingredients
in Gowers’ proof of Szemerédi’s theorem). This might lead to power law bounds for
sublevel sets. For oscillatory integrals, repeated applications of Cauchy-Schwarz
lead to a bound

∣∣Iλ(f1, · · · fn)
∣∣ ≤ C‖fi‖UN

∏
j 6=i ‖fj‖L∞ where ‖ · ‖UN is the

Gowers norm of sufficiently high order N . If ‖fi‖UN ≤ C|λ|−δ‖fi‖∞ for some
index i, then the proof is complete. If not, then the recent inverse theorem of
Green-Tao-Ziegler for the Gowers norms gives certain information about each fi.
Does this information suffice? I hope to answer this in a future talk.
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Global Smoothing for the Periodic KdV Evolution

M. Burak Erdoğan

(joint work with Nikos Tzirakis)

In this talk we consider the Korteweg de Vries (KdV) equation on the torus

(1)

{
ut + uxxx + 2uux = 0, x ∈ T, t ∈ R,
u(x, 0) = g(x) ∈ Hs(T),

The main result is the following smoothing theorem from [3]

Theorem 1. Fix s > −1/2 and a < min(2s + 1, 1). Consider the real valued
solution of KdV (1) on T×R with initial data u(x, 0) = g(x) ∈ Hs. Assume that
we have a growth bound ‖u(t)‖Hs ≤ C(‖g‖Hs)(1 + |t|)α(s). Then u(t) − etLg ∈
C0

tH
s+a
x and

‖u(t)− etLg‖Hs+a ≤ C(s, a, ‖g‖Hs)(1 + |t|)1+6α(s),

where L = −∂3x + 〈g〉∂x.
The proof of this theorem utilizes normal form transforms as it was used in [1],

Bourgain’s restricted norm method and L6 Strichartz estimate [2].

Remarks
1) A similar result is valid for the KdV equatioin with a smooth space time po-
tential in the case s ≥ 0.
2) A similar result follows for the modified KdV equation using Miura transform
and the observation that the commutator of the linear evolution and the Miura
transform is smoother.
3) For L2 initial data g, Theorem 1 implies that

u− etLg ∈ C0
tH

1−
x ,

and hence is a continuous function of x and t.

We have the following corollaries

Corollary 1. Let u be the real valued solution of (1) with initial data g ∈ BV ⊂
L2. Then, u is a continuous function of x if t/2π is an irrational number. For
rational values of t/2π, it is a bounded function with at most countably many
discontinuities. Moreover, if g is also continuous then u ∈ C0

t C
0
x.
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This corollary follows by Remark 3 and a similar theorem by Oskolkov [5] which
is valid for the linear evolution.

Corollary 2. Let u be the real valued solution of (1) with initial data g ∈ Hs,
s > 3/7. Then, for almost every x ∈ T,

lim
t→0

u(x, t) = g(x).

Once again this corollary follows from a corresponding theorem for the linear
evolution which in turn follows from the following Strichartz estimate by Hu and
Li [4]:

‖eLtg‖L14
x,t

. ‖g‖
H

3
14

+ .
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Quasiconformal mappings and function spaces

Pekka Koskela

The invariance of the homogeneous Sobolev space Ẇ 1,n under quasiconformal
mappings of Rn, n ≥ 2, is essentially simply the definition of quasiconformality
and the chain rule. Using the fact that Jf ∈ A∞, one further observes that BMO
is invariant. Further invariant function spaces can be obtained via interpolation.
It turns out that the homogeneous Triebel-Lizorkin spaces Ḟ s

n/s,q are invariant for

0 < s < 1, n
n+s < q ≤ ∞. This is proven via a new pointwise characterization for

these spaces.
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A T (1)-Theorem for non-integral operators

Dorothee Frey

(joint work with Peer Christian Kunstmann)

We consider new types of paraproducts constructed via H∞-functional calculus
and develop a T (1)-Theorem for non-integral operators by combining methods
used in the study of Lp theory for non-integral operators and the Kato square
root problem with the recently developed theory of Hardy and BMO spaces asso-
ciated to sectorial operators.

The underlying space (X, d, µ) is a space of homogeneous type as introduced by
Coifman and Weiss. We consider a sectorial operator L of order 2m on L2(X)
with the following properties:

• L has a bounded holomorphic functional calculus on L2(X);
• The semigroup e−tL generated by L satisfies Davies-Gaffney estimates,
also called L2 off-diagonal estimates;

• The semigroup e−tL satisfies an Lp − L2 off-diagonal estimate for some
1 < p < 2 and an L2 − Lq off-diagonal estimate for some 2 < q <∞.

Under the first two assumptions on L, there was recently developed a theory
of Hardy spaces Hp

L(X) and of a corresponding space BMOL(X) associated to
the operator L (cf. [4] and the literature cited there). These newly defined spaces
generalize the usual Lebesgue spaces and the BMO space of John and Niren-
berg. Various properties of those still remain true. In particular, there exists a
generalization of a criterion of Fefferman and Stein, describing the connection of
Carleson measures and elements of BMOL(X). This connection sets the stage for
a definition of paraproducts constructed via holomorphic functional calculus.

We show in [2] that, under the above three assumptions on L, for every b ∈
BMOL(X) the paraproduct operator

(1) Πb : f 7→
ˆ ∞

0

ψ̃(t2mL)[ψ(t2mL)b ·At(e
−t2mLf)]

dt

t

is bounded on L2(X), where ψ, ψ̃ are taken from the set Ψ consisting of bounded
holomorphic functions on a sector with decay at zero and infinity, and At denotes
some averaging operator. The appearance of the operator At might seem surpris-
ing, but this is due to the fact that we do not impose any kernel estimates on the
semigroup e−tL.
Besides, we show that Πb extends to a bounded operator from Lp(X) to Hp

L(X)
for p ∈ (2,∞) and from L∞(X) to BMOL(X).

The paraproduct Πb defined in (1) is one of the main tools in the examination of
the L2-boundedness of so-called non-integral operators. This type of operators
generalizes Calderón-Zygmund operators in the sense that kernel estimates are
substituted by certain off-diagonal estimates. In detail, we consider operators
T : D(L) ∩ R(L) → L2

loc(X) with T ∗ : D(L∗) ∩ R(L∗) → L2
loc(X) such that
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for functions ψ1, ψ2 ∈ Ψ with sufficient decay at zero the following off-diagonal
estimates are valid:

‖Tψ1(tL)f‖L2(B2)
≤ C

(
1 +

dist(B1, B2)
2m

t

)−γ

‖f‖L2(B1)
(2)

‖T ∗ψ2(tL
∗)f‖L2(B2)

≤ C

(
1 +

dist(B1, B2)
2m

t

)−γ

‖f‖L2(B1)
(3)

for some γ > 0, for all t > 0, all balls B1, B2 with radius r = t1/2m and all
f ∈ L2(X) supported in B1.

On the Euclidean space Rn let us denote by GL the vertical Littlewood-Paley-
Stein square function associated to L, i.e. let

GL(f)(x) :=

(
ˆ ∞

0

∣∣∣t∇e−t2mLf(x)
∣∣∣
2 dt

t

)1/2

for all x ∈ Rn and all f ∈ L2(Rn). Then the main result, a T (1)-Theorem for
non-integral operators, reads as follows:

Theorem 1 ([3]). Let L be the sectorial operator of order 2m as specified above
such that GL and GL∗ are bounded on L2(Rn). Let T be a non-integral operator
satisfying (2) and (3) for sufficiently large γ > 0. Then T is bounded on L2(Rn)
if and only if

T (1) ∈ BMOL(R
n) and T ∗(1) ∈ BMOL∗(Rn).

Here, T (1) and T ∗(1) are appropriately defined linear functionals on a subspace
of H1

L(R
n) and H1

L∗(Rn), respectively.
If the space Rn is replaced by an arbitrary spaceX of homogeneous type, we require
in addition the validity of some Poincaré inequality and have to reformulate the
boundedness of the Littlewood-Paley-Stein square functions.
The assumptions on the non-integral operator T are chosen in such a way that
the boundedness on Hardy spaces Hp

L(X) is an immediate consequence of the
boundedness on L2(X).
With the same methods used in the proof of this T (1)-Theorem, we moreover show
a second version of a T (1)-Theorem with weaker assumptions in the case that the

conservation properties e−tL(1) = 1 and e−tL∗

(1) = 1 hold. This generalizes a
T (1)-Theorem due to Bernicot [1] who assumed Poisson kernel bounds for the
semigroup.
Under the additional assumption that e−tL is bounded on L∞(X) uniformly in t >
0, we then apply this second version to prove the boundedness of the paraproduct
operator Π̃f on L2(X), where Π̃f is defined by

Π̃f (g) :=

ˆ ∞

0

ψ̃(t2mL)[e−t2mLg · e−t2mLf ]
dt

t

for f ∈ L∞(X), g ∈ L2(X) and ψ̃ ∈ Ψ with sufficient decay at zero and infinity.
We moreover study conditions for a T (b)-Theorem to be valid.
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A sharp multiplier theorem for the Kohn Laplacian on forms of the
sphere in Cn

Michael Cowling

(joint work with Alessio Martini)

Suppose that M is a compact manifold with a smooth measure, and E and F
are vector bundles over M , both of which are equipped with inner products. For
notational consistency, we write T for the trivial bundle M ×C over M . Suppose
also that d : C∞(E) → C∞(F) is a first order differential operator from the space
of smooth sections of E to the space of smooth sections of F . Using the inner
products, we may construct the adjoint d∗ : C∞(F) → C∞(E) and hence consider
the self-adjoint operator d+ d∗, on the sum of the bundles:

d+ d∗ : C∞(E ⊕ F) → C∞(E ⊕ F).

Define D = d + d∗ and ∆ := D2. Then ∆ is a positive self-adjoint operator on
L2(E ⊕ F∗). This construction may be applied to the de Rham operator d and
the Kohn boundary operator ∂̄b to produce the Hodge and Kohn Laplacians; in
particular, since d2 = 0, then ∆ = dd∗ + d∗d. For convenience, we will henceforth
consider a first-order self-adjoint operator D acting on sections of a bundle G.

It is a question of some interest to consider a bounded Borel-measurable function
G : [0,+∞) → C and to ask whether the operator G(∆), which is defined and
bounded on L2(G) by spectral theory, is also bounded on some Lp-spaces. Actually,
to do this, it is easier to work with the even function F : R → C, given by
F (x) = G(x2) for all x ∈ R, and to consider F (

√
D2), or better, F (D), since the

homogeneity of F allows Fourier transform techniques to be applied more easily.
Note that the operator F (D) is well-defined and equal to G(∆) on L2(G). We look
for results that show that a condition of the form

sup
t>0

‖F (t·) η‖Hs < +∞

implies that F (D) is bounded on Lp(G) for all p ∈ (1,+∞); here η is a smooth
(nonzero) function with compact support in R+ and Hs(R) is the Sobolev space
of functions in L2(R) with s derivatives in L2(R). For example, when D is elliptic,
it suffices to take s equal to half the dimension n of M ; when D is subelliptic, it
suffices to take s equal to half the so-called homogeneous dimension Q of M .
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Sometimes, M is subelliptic, it is possible to improve the critical index from
Q/2 to n/2. For example, this is known for some step 2 nilpotent Lie groups ([4]
or [6]) and for some scalar operators on the sphere in Cn (see [2] or [3]). We
announce the following result.

Theorem 1. Suppose that D is the operator arising from the Kohn operator ∂̄b,
acting on spaces of forms on the sphere S in Cn. If

sup
t>0

‖F (t·) η‖Hn−1/2 < +∞,

then F (D) is bounded on Lp(G). Here the sections of G are a D-invariant space
of forms.

1. The distance associated to a first-order differential operator

The first step in dealing with the operator D is to associate to it a distance ̺.
For u ∈ C∞(T ) and U ∈ C∞(G), Leibniz’ rule shows that

D(uU) = (Dσu)U + u(DU).

Note that Dσu ∈ End(G). The operator Dσ is essentially the so-called symbol
σ(D) of D; more precisely, Dσu = σ(D)(du), where d now denotes the usual
differential. We define

̺(x, y) = sup{|u(x)− u(y)| : u ∈ C∞(T ), ‖Dσu‖ ≤ 1}.
The norm ‖Dσu‖ is a supremum of pointwise operator norms. This gives rise to
a sub-Finsler geometry. A certain amount of work is required to show that this is
the appropriate distance for D, but here is one result that indicates that this is
so. For convenience, given a compact subset K of M and t ∈ R, we write N(K, t)
for the set of all x ∈ M such that ̺(x,K) ≤ |t|; we also write I for the interval
(−δ, δ), where δ > 0.

Theorem 2. Suppose that u(·, t) ∈ C∞(G) for each t ∈ I, that u is also smooth
as a function of t, that

∂

∂t
u(x, t) + iDu(x, t) = 0,

for all (x, t) ∈ M × I, and that ‖u(·, t)‖2 is independent of t in I. Then, for all
t ∈ I, suppu(·, t) ⊆ N(suppu(·, 0), t).

The proof of this theorem is not new, but we have not found this precise version
in the literature. We combine ideas from analysis on “metric measure spaces” with
old ideas on wave propagation.

2. The technique of the sharp theorem

Since D is self-adjoint and M is compact, there exist an orthonormal basis for
L2(G) of sections {ej : j ∈ N} and real scalars λj such that

Dej = λjej .
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Then the operator F (D) is, at least formally, a kernel operator, and its kernel KF

is given by

KF (x, y) =
∑

j∈N

F (λj) ej(x) ej(y)
∗ ∀x, y ∈M.

We show that F (D) maps L1(G) to the weak L1-space L1,∞(G). Loosely speaking,
we do this by using Hölder’s inequality to estimate L1 norms of “components” of
KF (·, y) with support in a neighbourhood N(y, δ) of y from their L2 norms, which
can be found using the Plancherel theorem; finite propagation speed enables us
to find these components. This technique goes back at least as far as Coifman
and Weiss’s work on “spaces of homogeneous type” [1], and without a little extra
information, can only be used to prove the multiplier theorem with a critical index
of Q/2. To improve it, we need a little extra information, namely an estimate of
the form

ˆ

M

̺α(x, y) |KF (x, y)|2 dx ≤ C l(Q−α)
l∑

k=1

max{|F (λ)| : k − 1 < λ ≤ l}2

for all functions F with support in [−l, l], and all positive integers l. This is proved
with a careful study of the tensor product of representations of SU(n), and is an
extension of the ideas in [2] and [3]. An additional complication is that in some
cases, the kernel of ∂̄b (or its adjoint) is infinite-dimensional; fortunately, we can
subtract off a multiple of the Szegő projection, which was shown to be bounded
on all the Lp spaces by Korányi and Vagi [5], to deal with this.
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homogènes, Lecture Notes in Mathematics, Vol. 242, Springer-Verlag, Berlin–Heidelberg–
New York, 1971.

[2] M. G. Cowling, O. Klima and A. Sikora, Spectral multipliers for the Kohn sublaplacian on
the sphere in Cn, Trans. Amer. Math. Soc. 363 (2011), 611–631.

[3] M. G. Cowling and A. Sikora, A spectral multiplier theorem for a sublaplacian on SU(2),
Math. Z. 238 (2001), 1–36.

[4] W. Hebisch, Multiplier theorem on generalized Heisenberg groups, Colloq. Math. 65 (1993),
231–239.
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Higher order Riesz transforms on Heisenberg groups

Sundaram Thangavelu

We characterize higher order Riesz transforms on Heisenberg groups Hn and
also show that they satisfy dimension free bounds under some assumptions on
their multipliers.

Given a bigraded solid harmonic P on Cn we define the operator RP as a
Fourier multiplier on the Heisenberg group Hn corresponding to the multiplier
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Gλ(P )H(λ)−1/2(p+q). Here H(λ) = −∆+ λ2|x|2 is the rescaled Hermite operator
and Gλ(P ) is the operator associated to P via Weyl correspondence. Thus

πλ(RP f) = πλ(f)Gλ(P )H(λ)−1/2(p+q)

where πλ, λ ∈ R\ 0 are the Schrodinger representations. When P (z) = zj or z̄j we
get back the first order Riesz transforms studied by Coulhon-Muller-Zienkiewicz
[1] and others.

Let R(σ) stand for the representation of the unitary group U(n) on the space
Hp,q of bigraded solid harmonics of bidegree (p, q). Let ρ(σ) stand for the action
of U(n) on functions f(z, t) defined on the Heisenberg group. The following result
justifies why RP are the most natural candidates for higher order Riesz transforms.

Theorem 3. Let T be a translation invariant operator taking L2(Hn) into
L2(Hn,Hp,q) and let M(λ) be the corresponding Fourier multiplier. Assume that

(1) (i) R(σ)Tf(z, t) = ρ(σ)Tρ(σ∗)f(z, t) for every σ ∈ U(n),
(2) Tδrf(z, t) = δrTf(z, t) for every r > 0 where δr are the non-isotropic

dilations of the Heisenberg group and

(3) M(λ)Pk(λ) = ((2k+n)|λ|)− 1
2 (p+q)S(λ) for some unbounded operator S(λ)

where Pk(λ) are the spectral projections associated to H(λ).

Then for any linear functional β of Hp,q the operator β(T )f = β(Tf) is a linear
combination of RP as P runs through an orthonormal basis of Hp,q.

Let Rj , R̄j , j = 1, 2, · · ·n stand for the first order Riesz transforms on Hn. Then
a result of Coulton et al [1] says that

‖ (

n∑

j=1

|Rjf |2 + |R̄jf |2)1/2 ‖p≤ C ‖ f ‖p

where C is independent of the dimension n. We are interested in proving such
dimension-free estimates for higher order Riesz transforms RP . In this direction
we have the following partial result. Let P0(z) = zp1 z̄2

q and let O(P0) stand for
the orbit of P0 under the action of U(n).

Theorem 4. For every P ∈ O(P0) the Riesz transform RP satisfies dimension-
free bounds on Lp(Hn), 1 < p <∞.

We can view the Riesz transforms RP as operator valued Fourier multipliers
for the Euclidean Fourier transform on R. Then using an analogue of de Leeuw’s
theorem for operator valued Fourier multipliers we can deduce an analogue of The-
orem 0.2 for Riesz transforms on the reduced Heisenberg group. By considering
functions of the form f(z)eit we obtain boundedness of higher order Riesz trans-
forms for special Hermite expansions. An application of Mauceri’s transference
gives us boundedness of higher order Riesz tansforms for the Hermite operator.

By considering functions on Cn which are homogeneous of degree m ∈ Nn we
can obtain weighted norm estimates for multiple Laguerre expansions. Indeed, let
Rj,m stand for the Riesz transforms associated to Laguerre expansions of type m
on Rn

+. Then we have
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Theorem 5. For every m ∈ Nn we have the weighted norm inequality
ˆ

Rn
+

|Rj,mf(r)|pΠn
j=1r

mj(p−2)
j dµm

≤ Cp

ˆ

Rn
+

|f(r)|pΠn
j=1r

mj(p−2)
j dµm

for all f ∈ Lp(Rn
+, dµm), 1 < p <∞ where Cp is independent of n and m.

In the above dµm(r) = Πn
j=1r

2mj+1
j drj . We conjecture that the above result is

true for Laguerre expansions of arbitrary type studied by Nowak and Stempak [2].
The results mentioned here are from my joint work with my student P.K.Sanjay

[3].
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Multilinear Kakeya, Factorisation and Algebraic Topology

Anthony Carbery

(joint work with Stefán Ingi Valdimarsson)

In this talk we examine the recent proof by Guth [1] of the endpoint multilinear
Kakeya inequality. In a certain simplified version of this result, let Tj be the set of
doubly-infinite tubes in Rn of cross-sectional diameter 1 whose direction is within
10◦ of the unit vector ej .

Theorem[Multilinear Kakeya] If p ≥ 1/(n− 1) then

ˆ n∏

j=1




∑

Tj∈Tj

cTjχTj (x)




p

dx ≤ Cp,n

n∏

j=1




∑

Tj∈Tj

cTj




p

.

This is obvious when n = 2 and p = 1 and is due to Jon Bennett, Terry Tao and
AC in the case p > 1/(n − 1), and to Guth in the endpoint case p = 1/(n − 1).
The two methods of proof are very different.

We provide an abstract interpretation of Guth’s method of proof and this results
in an easy boundedness criterion as follows:
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Proposition Let X , Yj , 1 ≤ j ≤ n be measure spaces, let Uj : M(Yj) → M(X) be

linear. Let rj > 0, r =
∑

j rj ≥ 1 and pj ≥ 1. Suppose that for everyM ∈ Lr′(X),

M ≥ 0, there exist S1(x), . . . , Sn(x) such that

M(x) ≤
n∏

j=1

Sj(x)
rj/ra.e.,

and, for all S̃j with |S̃j(x)| = |Sj(x)| a.e.,
‖U∗

j S̃j‖p′
j
≤ A‖M‖r′.

Then
ˆ

X

n∏

j=1

|Ujfj(x)|rjdµ(x) ≤ Ar
n∏

j=1

‖fj‖rjLpj (Yj)
.

Interestingly, this result admits a dual formulation:

Theorem[AC and S. Valdimarsson] Suppose that X and Yj are measure spaces
satisfying reasonable conditions, Uj is linear taking positive functions on Yj to
positive functions on X , and that rj > 0, r =

∑
j rj ≥ 1 and pj ≥ 1. If

ˆ

X

n∏

j=1

Ujfj(x)
rjdµ(x) ≤ Ar

n∏

j=1

‖fj‖rjLpj (Yj)

then, for all nonnegative M ∈ Lr′(X), there exist S1(x), . . . , Sn(x) such that

M(x) ≤
n∏

j=1

Sj(x)
rj/r a.e.

and

‖U∗
j Sj‖p′

j
≤ A‖M‖r′.

This does not seem to be a standard result of functional analysis, but instead
comes about as a result of duality methods in the theory of convex optimisation.
These ultimately rely upon some form of the Ky Fan minimax Theorem, which
itself is closely related to the Brouwer fixed point theorem. The proof is highly
non-constructive.

Example. Let (T1f)(x1, x2) = f(x1) and(T2g)(x1, x2) = g(x2); then
ˆ

R2

T1f(x)T2g(x)dx =

ˆ

R2

f(x1)g(x2)dx =

ˆ

R

f

ˆ

R

g.

So with n = 2, r1 = r2 = p1 = p2 = 1 the duality principle gives that for every
M ≥ 0 in L2(R2) we can factorise it as M = (GH)1/2 such that

sup
x

ˆ

G(x, y)dy ≤ ‖M‖2
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and

sup
y

ˆ

H(x, y)dx ≤ ‖M‖2.

Of course this latter example may be also established by elementary means as
pointed out to the authors by M. Christ.

Guth’s proof of the endpoint multilinear Kakeya inequality proceeds by construct-
ing a factorisation suitable for use in the Proposition above, and in addition to the
polynomial method, employs a variety of techniques from algebraic topology, in
particular Z2-cohomology. We give an argument which avoids this use of heavy-
duty algebraic topology and instead uses only the Borsuk–Ulam theorem.
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Restriction of Fourier transforms to curves: An endpoint estimate
with affine arclength measure

Andreas Seeger

(joint work with Jong-Guk Bak, Daniel Oberlin)

For a smooth curve t 7→ γ(t) in Rd, d ≥ 3, consider the Fourier restriction
operator,

Rf(t) = f̂(γ(t)),

defined on an interval I. We are interested in the mapping properties of R in
Lebesgue spaces Lq(I; dλ) where dλ = w(t)dt and the weight is given by affine
arclength measure,

w(t) = |τ(t)|
2

d2+d , with τ(t) = det(γ′(t), . . . , γ(d)(t)) .

For nondegenerate curves (with τ(t) 6= 0) affine arclength measure is comparable
to Lebesgue measure on any compact interval. For this case the sharp Lp → Lq

estimates in dimensions d ≥ 3 are due to Drury [8], R : Lp(Rd) → Lq(I) for

1 < p < pd := d2+d+2
d2+d , p′ = q d(d+1)

2 . More recently, a sharp endpoint result

has been proven in [1], namely Rf ∈ Lpd when f belongs to the Lorentz space
Lpd,1(Rd). The analogue of this result is false in two dimensions, by an argument [4]
based on the Kakeya set. We are now concerned with the extension of this result
to more general classes of curves where Lebesgue measure is replaced by affine
arclength measure. We note that affine arclength measure is essentially optimal in

this respect, namely if R : Lp,1(Rd) → Lq(I; dµ) for the critical p′ = q d(d+1)
2 then

dµ = v(t)dt where v(t) ≤ Cd‖R‖qp→qw(t) a.e., with w as above. The following
theorem ([3]) is about the model class of ‘monomial’ curves.
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Theorem. Let d ≥ 3 and let wadt denote the affine arclength measure for the
curve t 7→ γa(t) = (ta1 , ta2 , . . . , tad), 0 < t < ∞. Then there is C(d) < ∞ so
that for all f ∈ Lpd,1(Rd)

( ˆ ∞

0

|f̂(γa(t))|pdwa(t)dt
)1/pd

≤ C(d)‖f‖Lpd,1(Rd).

The constant is universal in the sense that it does not depend on a1, . . . , ad.
We prove a similar result for ‘simple’ polynomial curves which are of the form

(t, t2, . . . , td, P (t)) where P is a polynomial of degree n and the constant depends
only on n. One might conjecture that a corresponding result holds for general
polynomial curves as considered recently in [7] (with general polynomial entries in
all coordinates) but even the optimal range of the Lp → Lq estimates is currently
open for this class.

Two geometric inequalities are crucial in our proof. The first one was introduced
in the works by Drury and Marshall [9], [10] (and also appears in [1], [2], [7], [6]).

Consider the Jacobian JΦγ of the map Φγ(t1, . . . , td) =
∑d

j=1 γ(tj). The relevant
inequality is

|JΦγ (t1, . . . , td)| ≥ c
( d∏

i=1

τγ(ti)
)1/d ∏

1≤j<k≤d

(tk − tj).

We rely on a result by Drury and Marshall [10] who verified this inequality for the
exponential reparametrizations Γ(t) = (ea1t, . . . , eadt) of the monomial curves (see
also [6] for some extensions).

Another inequality concerns the so called offspring curves. If κ = (κ1, . . . , κd)
so that κ1 ≤ κ2 ≤ · · · ≤ κd , and one of the coordinates κi is 0, then a κ-offspring

curve γκ is defined (on a suitable interval) by γκ(t) =
∑d

j=1 γ(t + κj). If Γ is an
exponential parametrization of a monomial curve then the offspring curves of Γ
are affine images of Γ. Moreover they satisfy the following inequality relating the
torsion of the offspring curves Γκ to the torsion of the original curves,

|τΓκ(t)| ≥ c max
j=1,...,d

|τΓ(t+ κj)| .

This is an easy to check strengthening of a weaker inequality which appeared in [9],
[10], [1], [2], where the max on the right hand side is replaced by a geometric mean.
The stronger inequality allows for increased flexibility so that various powers of
the weights can be used.

As a technical tool we use an interpolation procedure introduced in [5], for
multilinear operators which exhibit many symmetries. The relevant examples
here are expressions

∏n
i=1 R∗gi where R∗ is the adjoint of the Fourier restriction

operator. Unfortunately this procedure does not readily apply in our setting since
real interpolation spaces of weighted Lorentz spaces (with change of weight) may
not be weighted Lorentz spaces. Given a weight w on an interval I and a Lorentz
space X of measurable functions on I one is then led to consider block spaces:
Set Ωk = {t ∈ I : 2k ≤ w(x) < 2k+1} for k ∈ Z. Define the block Lorentz space
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bqs(w;X) as the class of measurable functions for which

‖f‖bqs(w;X) :=
(∑

k∈Z

[
2ks‖χΩk

f‖X
]q)1/q

is finite. Note that bq1/q(w;L
q) is just the weighted Lq(w) space. In our setting

we have to deal with inequalities that involve a weak type space on the left hand
side and the space b1s(w;L

q,1) (or even brs(w;L
q,r) for r < 1) on the right hand

side. Such bounds are weaker then the usual restricted weak type estimates with
weights. The following interpolation theorem turns out to be helpful in order to
deal with this difficulty.

We use the notation DS◦(n) for the interior of the Birkhoff polytop of doubly
stochastic matrices, i.e. A = (aij belongs to DS◦(n) if

∑n
j=1 aij = 1, i = 1, . . . , n

and
∑n

i=1 aij = 1, j = 1, . . . , n, and all entries lie in (0, 1).

Theorem. Suppose we are given m ∈ {1, . . . , n} and δ1, . . . , δn ∈ R so that the
numbers δi with i 6= m are not all equal. Let 0 < r ≤ 1, and let q1, . . . , qn ∈ [r,∞]
such that

∑n
i=1 q

−1
i = r−1. Let V be an r-convex Lorentz space (e.g. a normed

Lorentz space when r = 1 or the space Lr,∞ when r < 1). Let X = (X0, X1) be a
couple of compatible complete quasi-normed spaces of measurable functions on an
interval I, and let w be a weight on I.

Let T be a multilinear operator defined on n-tuples of X0+X1 valued sequences
and suppose that for every permutation π on n letters we have the inequality

‖T (fπ(1), . . . , fπ(n))‖V ≤ ‖fm‖brδm (w;X1)

∏

i6=m

‖fi‖brδi (w;X0) .

Then for every A ∈ DS◦(n) and every B ∈ DS(n) such that bim = r/qi, i =

1, . . . , d, there is a constant C(A,B, r) so that for ~s = BA~δ and ~θ = BA~em

‖T (f1, . . . , fn)‖V ≤ C(A,B,~δ, r)
n∏

i=1

‖fi‖bqisi (w;Xθi,qi
)

for all (f1, . . . , fn) ∈
∏n

i=1 b
qi
si(w;Xθi,qi).

In particular one may choose the spaces on the right hand side to be bnrν (w;X 1
n ,nr)

with ν = 1
n

∑n
i=1 δi, which in the relevant application (the proof of the weak type

(p′d, p
′
d) inequality for the adjoint restriction operator) will become a weighted Lp′

d

space.
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On some new divergence-curl inequalities

Po-Lam Yung

(joint work with Sagun Chanillo and Yi Wang)

Our subject of interest involves some kind of compensation phenomena that has
to do with divergence, curl and the space L1 of Lebesgue integrable functions or
differential forms. In the forms stated below they were discovered by Bourgain-
Brezis, Lanzani-Stein and van Schaftingen around 2004. Also lying beneath these
results is the failure of the critical Sobolev embedding of Ẇ 1,n into L∞. We
mention here that these results seem to be quite different from the more classical
theory of compensated compactness; no connection between them is known so far.
Towards the end we mention some extensions of these known results to subelliptic
and hyperbolic settings.

For simplicity, for the moment we work on Rn, n ≥ 2. We denote by d the
Hodge-de Rham exterior derivative, and d∗ its (formal) adjoint. The theory we
are going to describe consists of three major pillars, each best illustrated by a
separate theorem. The first involves the solution of d∗:

Theorem 1 (Bourgain-Brezis [1]). Suppose l 6= n−1. Then for any l-form f ∈ Ln

that is in the image1 of d∗, there exists a (l + 1)-form Y with coefficients in L∞

such that

d∗Y = f

in the sense of distributions, and ‖Y ‖L∞ ≤ C‖f‖Ln.

In particular, we have

Corollary 1 (Bourgain-Brezis [2]). For any function f ∈ Ln, there exists a vector
field Y ∈ L∞ such that

div Y = f

and ‖Y ‖L∞ ≤ C‖f‖Ln.

The second pillar is a Gagliardo-Nirenberg inequality for differential forms:

1By this we mean f is the d∗ of some forms with coefficients in Ẇ 1,n.
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Theorem 2 (Lanzani-Stein [5]). Suppose u ∈ C∞
c is an l-form. We have

‖u‖Ln/(n−1) ≤ C(‖du‖L1 + ‖d∗u‖L1)

unless d∗u is a function or du is a top form. If d∗u is a function, the result remains
true if d∗u = 0. If du is a top form, the result remains true if du = 0.

Since d of a 1-form is its curl and d∗ of a 1-form is its divergence, this is
sometimes called a divergence-curl inequality.

The third theorem is the following compensation phenomenon:

Theorem 3 (van Schaftingen [6]). If u is a 1-form with d∗u = 0, then for any
1-form φ ∈ C∞

c , we have
ˆ

Rn

u · φdx ≤ C‖u‖L1‖φ‖Ẇ 1,n .

If Ẇ 1,n were embedded into L∞, the first theorem would be trivial by Hodge
decomposition, and so will be the third by Holder’s inequality. It is remarkable
that these theorems remain true even though the desired Sobolev embedding fails.

It turns out all three theorems are equivalent by duality. van Schaftingen gave
a beautiful elementary proof of the third theorem, thereby proving all of them.

What is more remarkable is the following observation of Bourgain-Brezis [1].
They proved that in all the above results, the space L∞ can be replaced by the
smaller Banach space L∞ ∩ Ẇ 1,n, and the space L1 can be replaced by the bigger
Banach space L1 + (Ẇ 1,n)∗. (Here X∗ denotes the dual of a Banach space X .)
They proved this by giving a direct constructive proof of the analog of Theorem 1,
where the space L∞ is replaced by L∞ ∩ Ẇ 1,n, and then deducing the rest by
duality. In the former they used the following approximation lemma, which is
another remedy of the failure of the critical Sobolev embedding, and which is of
independent interest:

Lemma 1 (Bourgain-Brezis [1]). Given any δ > 0, there exists Cδ > 0 such

that the following holds: For any function f ∈ Ẇ 1,n, there exists a function F ∈
L∞ ∩ Ẇ 1,n such that

n∑

i=2

‖∂if − ∂iF‖Ln ≤ δ‖∇f‖Ln

and

‖F‖L∞ + ‖∇F‖Ln ≤ Cδ‖∇f‖Ln.

Here one should think of F as an L∞ ∩ Ẇ 1,n function whose derivatives ap-
proximates those of the given f in all but one direction.

In joint work with Yi Wang, we proved an analog of this approximation lemma
on the Heisenberg group Hn:

Lemma 2. Given any δ > 0, there exists Cδ > 0 such that the following holds:
For any function f on Hn with ‖∇bf‖LQ < ∞, there exists a function F ∈ L∞
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with ∇bF ∈ LQ such that

2n∑

i=2

‖Xif −XiF‖LQ ≤ δ‖∇bf‖LQ

and
‖F‖L∞ + ‖∇bF‖LQ ≤ Cδ‖∇bf‖LQ.

Here Q = 2n+ 2 is the homogeneous dimension of Hn, X1, . . . , X2n is a basis of
left-invariant vector fields of degree 1, and ∇bf = (X1f, . . . , X2nf).

With this we deduce, for instance, a Gagliardo-Nirenberg inequality for ∂b on
Hn:

Theorem 4. If u is a (0, q) form on Hn with 2 ≤ q ≤ n− 2, then

‖u‖LQ/(Q−1) ≤ C(‖∂bu‖L1+(ṄL
1,Q

)∗
+ ‖∂∗bu‖L1+(ṄL

1,Q
)∗
)

where ṄL
1,Q

is the space of functions whose ∇b is in LQ. Also, if n ≥ 2 and u is
a function on Hn that is orthogonal to the kernel of ∂b, then

‖u‖LQ/(Q−1) ≤ C‖∂bu‖L1+(ṄL
1,Q

)∗
.

A weaker version of this result, namely what one has by replacing L1+(ṄL
1,Q

)∗

above by L1, can also be deduced easily from the work of Chanillo-van Schaftingen
[3] (c.f. also [7]).

Finally we adapt the result of van Schaftingen to the study of wave equa-
tions. In joint work with Sagun Chanillo [4], we proved the following improved
Strichartz inequality for systems of wave equations where the inhomogeneous term
is a divergence-free vector field. For simplicity we state it in 2 + 1 dimensions.

Theorem 5 ([4]). Suppose u : R1+2 → R2 is a (weak) solution of the following
system of wave equations �u = f with u|t=0 = 0 and ∂tu|t=0 = 0, where f =
(f1, f2) : R

1+2 → R2 is a divergence free vector field at each given time t, i.e.

∂x1f1 + ∂x2f2 = 0

for each t. Then
‖u‖C0

tL
2
x
+ ‖∂tu‖C0

t Ḣ
−1
x

≤ C‖f‖L1
tL

1
x
.

The remarkable phenomenon here is that we have L1
x norm of f on the right

hand side, and this was made possible only because f is a vector field and is
divergence free at each time.
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Multiparameter singular integrals

Brian Street

We present a theory of singular integrals based on multiparameter Carnot-Carathéo-
dory balls; i.e., balls defined by vector fields. Let ν ∈ N and suppose we are given
ν lists of C∞ vector fields Xµ

j (1 ≤ µ ≤ ν, 1 ≤ j ≤ qµ) defined on some open set

Ω ⊂ Rn, and suppose we pair each vector field with a positive real number dµj > 0.
We define ν parameter Carnot-Carathéodory balls by

B(x, (δ1, . . . , δν)) =

{
y ∈ Ω

∣∣∣∣∃γ : [0, 1] → Ω, γ(0) = x, γ(1) = y,

γ′(t) =
ν∑

µ=1

qµ∑

j=1

aµj (t)δ
dµ
j

µ Xµ
j (γ(t)), |aµj (t)| < 1

}
.

We assume [
δ
d
µ1
j

µ1 Xµ1

j , δ
d
µ2
k

µ2 Xµ2

k

]
=

∑

µ

∑

l

cµ,δj,k,lδ
dµ
l

µ Xµ
l ,

where cµ,δj,k,l ∈ C∞ is “bounded uniformly in δ.” These balls were studied when

ν = 1 by Nagel, Stein, and Wainger [4]. For higher ν, they were studied under
more restrictions by Tao and Wright [6], and this was later extended to the above
conditions in [5]. Under the above assumption we define a class of singular integrals
based on these balls. These singular integrals form an algebra and are bounded
on natural non-isotropic Sobolev spaces (NLp

(s1,...,sν)
, 1 < p < ∞, sµ ∈ R). In

particular, they are bounded on Lp (1 < p <∞).
When ν = 1, these balls form a space of homogeneous type ([4]) and the cor-

responding singular integrals are standard Calderón-Zygmund singular integrals.
More precisely, they are the NIS operators developed by [2, 1]). When the ambient
space is a product space, Ω = Ω1 × · · · × Ων , each X

µ
j is a vector field on dµj , the

singular integrals are standard product type Calerón-Zygmud singular integrals.
More precisely, they are the product NIS operators developed in [3]. When the
balls are not of product type, this theory introduces a new type of singular integral.
These new singular integrals contain parametricies for certain partial differential
operators defined by vector fields.
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Singular integrals survival in bad neighborhoods and related topics

Alexander Volberg

Singular integrals in very bad behaving measure spaces are coming into the
focus of attention because of problems of Geometric Measure Theory (GMT),
where a priori measures have no smoothness. Another source is the sharp weighted
estimates of singular operators often appearing from PDE. The sharpness makes
necessary the decoupling of measure and kernel, sometimes a quite radical one.
The typical setting would be a metric space of homogeneous type (so it has a
doubling measure), but the singular operator on it is considered with respect to
another non-doubling and very badly behaving measure. Examples, where this
happens (or may happen), are Painlevé, Denjoy, Vitushkin’s problems; David–
Semmes problem; analysis on the boundaries of pseudoconvex domains that goes
beyond the scope of Carnot–Carathéodory spaces; two weight Hilbert transform;
one weight sharp estimates of Calderón–Zygmund operators, et cetera...

1. Introduction. David–Semmes’ problem, its variants

The starting point is the book [5] relating Calderón–Zygmund theory and
GMT. The interesting thing is that the book itself has nothing to do with “non-
homogeneous” harmonic analysis. It is completely within the realm of homoge-
neous Calderón–Zygmund theory as extended by Michael Christ in [1]. In other
words, the underlying measure µ, with respect to which the singular integrals are
considered is always doubling in [5]. In fact, µ = Hs|E, where E is assumed to be
regular in the sense of Ahlfors:

c rs ≤ Hs(B(x, r) ∩ E) ≤ C rs , x ∈ E, r ≤ diamE

uniformly. However, the feeling is that this regularity is not really needed. It feels
like it can be assumed “without the loss of generality”. And this is indeed the
fact. It is not a simple fact, but it is true that non-homogeneous T 1 theorems as
in [17], [29] (see also some discussion in [6] and below) allow us to reduce (often)
the general case to the case of Ahlfors regularity.
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A disclaimer: all purely mathematical content of this part of this note is joint
with Vladimir Eiderman and Fedja Nazarov. However, all mistakes are mine.

Let E be a compact set in Rd such that 0 < Hs(E) < ∞, 0 < s ≤ d. Let
Rs = (R1,s, . . . , Rd,s) be vector Riesz kernel of singularity s: namely, Ri,s = xi

|x|1+s ,

i = 1, . . . , d. The question of David–Semmes posed in the book [5] the following
question:
let E be Ahlfors regular, namely,

(1) c rs ≤ Hs(B(x, r) ∩ E) ≤ C rs , ∀x ∈ E, 0 < r < diamE ,

let Rs : L2(E,Hs|E) → L2(E,Hs|E) be bounded, and also require that s = d− 1.
Is is true that E is uniformly rectifiable?

Uniformly rectifiable means here that

for all x ∈ E, 0 < r < diamE, there exists a Lipschitz image Γx,r of Rd−1 into Rd

with Lipschitz constant independent of x, r such that Hd−1(B(x, r) ∩E ∩ Γx,r) ≥
c rd−1.

David–Semmes proved this “analysis-to-geometry” result under a stricter as-
sumption, namely, the boundedness is required for all Calderón–Zygmund opera-
tors, not only for Riesz transforms.

Mattila–Melnikov–Verdera proved this result for d = 2, [12]. But it is known
that in the plane case there is a miracle of Melnikov’s formula, which introduces
Menger’s curvature tool into analysis, see [13], [14], [24].

The higher dimensional version seems to be one of the leading question now.
Let us now elaborate on David–Semmes question and consider several variants of
it and their reformulations.

2. Variants of David–Semmes question

2.1. Integer s = n. The first natural thing to do is to consider s = n 6= d − 1,
where n ∈ Z+ is an integer, 0 < n < d. Then the question is exactly the same
as before, only the uniform rectifiability becomes n-uniform rectifiability, namely,
now Γx,r is a Lipschitz image of Rn into Rd with Lipschitz constant independent
of x, r such that Hn(B(x, r) ∩ E ∩ Γx,r) ≥ c rn. It is widely believed that the
answer is correct: if the set E, 0 < Hn(E) <∞ is n-Ahlfors regular (see (1) with
s = n) and all Riesz transforms of singularity n are bounded in L2(E,Hn|E), then
E is n-uniformly rectifiable. Again, if one assumes that all Calderón–Zygmund
operators of singularity n are bounded, then the conclusion follows: [5].

2.2. Integer s = n, but Ahlfors regularity (1) is dropped. Let s = n ≤ d−1
be integer, but the assumption of Ahlfors regularity be dropped. The conclusion
must be obviously altered. Instead of the existence of big piece of Lipschitz image
in all scales one should hope for just one such Lipschitz image. So the assumption
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of the boundedness of all Riesz transforms in L2(E,Hn|E) stays the same, but
the conclusion must be changed to

(2) There exists a Lipschitz image Γ of Rn into Rd such that Hn(E ∩ Γ) > 0 .

This is done by Tolsa [24] for d = 2, n = 1. The proofs use the ubiquitous
Melnikov’s formula and Menger’s curvature, the tool, which by the words of Guy
David “is cruelly missing” in d > 2, s ≥ 1; d = 2, s > 1.

2.3. What if s is not integer? For non-integer s, 0 < s < d, there is no
“Lipschitz images of Rs into Rd”, because there is no Rs, and there is no good
way to express the structural condition on E saying that E has good “lipshitz
smooth” pieces. Therefore, it is natural to think that the boundedness of Riesz
transforms of singularity s /∈ Z+ in L2(Hs|E) does not happen at all on E such
that 0 < Hs(E) < ∞. This is actually proved in the case of s-Ahlfors regularity
(1) of E by Vihtila [28]. In fact, more is proved in [28]. Instead of imposing a
strong estimate from below as in (1), Vihtila in [28] could have required only that
for Hs-a.e. point x ∈ E the lower density be strictly positive

(3) lim inf
r→0

Hs(B(x, r) ∩E)

rs
> 0 .

The technique of tangent measures then allows her to prove the non-existence
of such sets having bounded Riesz transforms on them.

However, dropping (1) and (3) completely seems to represent huge difficulty.
Even the case d = 2, 1 < s < 2 is difficult and was open till recently, see Eiderman–
Nazarov–Volberg’s [6], where it has been settled.

On the other hand, dropping (1) and (3) for d = 2, s = 1 was achieved by Tolsa
[24] (with combination with Léger’s [9]), and we want to mention that these are
very difficult papers.

For d = 2, s < 1 one can use Prat’s paper [21], and again the problem gets
solved: no such E exists. Here one uses the same Melnikov’s approach but for
Riesz kernels of singularity s < 1. A small miracle happens–a miracle known to
the experts–that the symmetrization trick works and gives a positive kernel. As
we already mentioned this is “cruelly” false for s > 1, d = 2 and s ≥ 1, d > 2.

However, looking at our approach in [6], one can see that it leads to the following
claim:

Theorem 1. Let s ∈ (d− 1, d).

(4) E is a compact in Rd, 0 < Hs(E) <∞, such that

Rs : L2(E,Hs|E) → L2(E,Hs|E) is bounded ,

and lim inf
r→0

Hs(B(x, r) ∩ E)

rs
= 0 Hs − a.e. on E ⇒ contradiction .



2106 Oberwolfach Report 36/2011

The proof in [6] replaces the “the cruelly missing” Melnikov’s formula and
Menger’s curvature by Maximum principle for fractional Laplacian and variational
method of estimating singular integrals from below. Combining with Vihtila’s
result (or rather its extension to the case (3), the extension being valid because of
NTV’s [18], [17]) we get that for s ∈ (d− 1, d) there are no sufficiently symmetric
sets E, 0 < Hs(E) < ∞, to have Rs : L2(E,Hs|E) → L2(E,Hs|E) is bounded,
and there are no s-dimensional measure µ 6= 0 such that Rs(µ) is bounded in Rd

almost everywhere with respect to Lebesgue measure in Rd.
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