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Introduction by the Organisers

The workshop Computational Group Theory was the sixth of this title held at
Oberwolfach. It was attended by 57 participants of international provenance.
Among the participants were four Oberwolfach Leibniz Graduate Students, visiting
Oberwolfach for the first time.

The lecture program was divided into two sections, the first of which consisted
of a series of five invited one-hour lectures. The speakers were selected to cover a
broad variety of topics, suggested by the organisers. Three of the five invited lec-
tures were intended as surveys. The first of these was given by László Babai (Poly-
nomial time theory of matrix groups), who covered the theoretical background of
the matrix groups computation project from its very beginnings to the state of
the art. Meinolf Geck (Problems in Representation Theory) gave an overview of
computational methods in the representation theory of finite groups and presented
a very nice example of a rather theoretical result on Lusztig’s character sheaves,
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which was nonetheless only proved with the help of computers. Colva Roney-
Dougal (Computing maximal subgroups of finite groups) summarised her work
with John Bray and Derek Holt on the classification of the maximal subgroups
of the finite classical groups of small dimension. Exciting new developments were
presented by Gabriele Nebe (Extremal lattices and codes) who sketched the con-
struction of her recently found extremal lattice in 72 dimensions, and by Michael
Vaughan-Lee, who presented joint work with Marcus du Sautoy on an old conjec-
ture by Graham Higman on the number of p-groups of order pn. This work uses
results on the number of rational points of elliptic curves.

The other section of our scientific program was made up of 18 shorter talks of
variable length between 30 and 45 minutes. Two of these short talks were each
given by two speakers on joint work and very closely related work, respectively. In
addition we had a session of seven five-minute presentations and a problem session.
This program structure was well accepted by the participants of the workshop.

With the short talks we tried to cover the whole range of topics in computational
group theory, including some applications in neighbouring areas of mathematics.
The latter were presented in talks by Bartholdi (topology, dynamical systems),
Kemper (invariant theory) and Klüners (Galois theory). Two of the talks went
right back to the very first ideas of computational group theory: Neunhöffer’s
report on joint work with Stephen Linton, Richard Parker and Colva Roney-Dougal
presenting new ideas in small cancellation theory, and Sims’ new approach to the
Reidemeister-Schreier construction of a generating set of a subgroup. A highlight
was the talk by John Cannon who presented a list of problems in computational
group theory. A number of talks were centered around algorithms for matrix
algebras, not necessarily over finite fields. In a similar direction, two of the talks
discussed methods to deal with matrix groups over infinite fields, provided that
the groups are finitely generated. As to software development, the talk by Steve
Linton discussed perspectives of parallelising GAP. The final talk was given by
Charles Leedham-Green and was devoted to matrix group recognition, a project
which provided motivation for much of the work presented at the workshop.

The program of 23 talks and two extra sessions left plenty of time for discussions.
This time was well spent: the participants took the opportunities provided by the
workshop and the institute to continue their collaborations and start new ones.
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Abstracts

Polynomial-time theory of matrix groups

László Babai

Over the past decades, two matrix group recognition projects have run in par-
allel: the black-box project, started in a 1984 paper [4] by Szemerédi and the
speaker, and the geometric project, started in a 1992 paper [6] by Neumann and
Praeger and driven by Charles Leedham-Green. Remarkable interaction between
the two approaches has developed over the past decade.

In this talk we surveyed the history and recent major results of the polynomial-
time black-box theory, culminating in the result that we can decide membership
in and compute the order and the composition factors of matrix groups over finite
fields of odd order in randomized polynomial time, assuming access to number
theory oracles (factoring integers, discrete log.). The presentation was based on
the paper [2].

Bill Kantor has been a driving force behind the project. Major credit goes to the
recent papers by C. W. Parker and R. A. Wilson [7] for their remarkable analysis of
Bray’s algorithm to find the centralizer of an involution in odd characteristic, and
a paper by Holmes-Linton-O’Brien-Ryba-Wilson [5]. A key ingredient concerning
the frequency of p′-elements in simple groups appears in a paper by Pálfy, Saxl,
and the speaker [3].

The general framework of these developments was outlined in a 1999 paper by
R. Beals and the speaker [1] where among other things the now popular normal
series

G ≥ PKer(G) ≥ Soc∗(G) ≥ Rad(G)

was introduced.
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Computing with matrix groups over infinite fields

Alla S. Detinko and Dane L. Flannery

Our research deals with algorithms for finitely generated linear groups over infinite
fields. We have developed effective methods for computing in this class of groups;
used those methods to solve a number of computational problems; and designed
practical software for computing with linear groups defined over a broad range of
infinite domains. Part of this research was undertaken with E. A. O’Brien.

1. Methods for computing with finitely generated linear groups

1.1. Congruence homomorphism techniques. Our approach draws on fun-
damental properties of finitely generated linear groups. Such a group is residually
finite; moreover, it is approximated by linear groups of the same degree over finite
fields. Consequently one of the main methods used to investigate finitely gener-
ated linear groups is the method of finite approximation [12, Chapters 4 and 10].
We have developed a computational analogue of this method, based on congru-
ence homomorphism techniques. An immediate computational advantage of our
approach is that it changes the original domain of definition, thereby transferring
computations to the case of, e.g., a finite field.

Suppose henceforth that G = 〈g1, . . . , gr〉, gi ∈ GL(n,F), where F is an infinite
field of characteristic p ≥ 0. Then G ≤ GL(n,R) where R is the subring of F
generated by the entries of the gi and g−1

i , 1 ≤ i ≤ r. For an ideal ρ of R, let
φρ : GL(n,R) → GL(n,R/ρ) be the corresponding congruence homomorphism.
Denote ker φρ by Γρ and G ∩ Γρ by Gρ. If ρ is a maximal ideal of R then R/ρ is
a finite field.

By the Selberg-Wehrfritz theorem [12, 4.8, p. 56], G has an SW-subgroup, i.e.,
a normal subgroup of finite index in which every torsion element is unipotent; in
particular, if charF = 0 then G has a torsion-free subgroup of finite index. Our
strategy is based on the construction of a special congruence homomorphism Φρ

such that Γρ is an SW-subgroup. For more details see [10, Section 2] and [3,
Section 4].

1.2. The main fields. Since the group G ≤ GL(n,F) is finitely generated, F is a
finitely generated field extension. As a consequence, the main fields to be consid-
ered are number fields (including the rational field Q); function fields P(x1, . . . , xm)
where P is a finite field or number field, and x1, . . . , xm are algebraically indepen-
dent indeterminates; and finite extensions of P(x1, . . . , xm). For each case we have
developed algorithms to construct Φρ and compute Φρ(G) ≤ GL(n,R/ρ); see [10,
Section 3]. An implementation of the algorithms is publicly available in Magma

[2].

2. The finiteness problem; recognition algorithms

2.1. Deciding finiteness. One of the first issues to be settled in a class of poten-
tially infinite groups is deciding whether a given group in the class is finite. For
linear groups over various domains this problem has been considered by Babai,
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Beals, Ivanyos, and Rockmore. Using our congruence homomorphism techniques,
we have developed efficient finiteness testing algorithms which are uniformly ap-
plicable to finitely generated linear groups over any infinite field [10, Section 4.2].
At the first stage, the algorithm constructs a congruence image H = Φρ(G). If
charF = 0 then the algorithm tests whether the congruence subgroup Gρ is trivial;
if charF = p > 0 then the algorithm tests whether Gρ is a p-group. Clearly, G is
finite if and only if Gρ satisfies these conditions in either case.

A key task is the construction of a presentation of H . Knowing such a presen-
tation, we can then apply the ‘normal generators’ method to answer the questions
about Gρ. Since H is a matrix group over a finite field, we construct a presen-
tation using algorithms as described in [1] and [11]. For F = P(x1, . . . , xm), we
have developed alternative algorithms which test finiteness of G by comparing the
dimensions of enveloping algebras over P of G and of φρ(G) ≤ GL(n,P); see [7]
and [8]. Note that the latter algorithms do not involve computing presentations.

2.2. Computing with finite matrix groups over infinite fields. Let G be
a finite subgroup of GL(n,F). We have developed algorithms to construct an

isomorphic copy G̃ = Φρ(G) of G over a finite field, via application of a suitable

congruence homomorphism Φρ [10, Section 4.3]. With G̃ in hand, we can use
available algorithms for matrix groups over finite fields ([1] and [11]) to investigate
the structure and properties of the original groupG. In particular, we can compute
a composition series and a presentation of G; find the derived subgroup, and Sylow
subgroups of G; and test membership of h ∈ GL(n,F) in G. For details see [10,
Section 4.3].

3. A computational analogue of Tits alternative, and related

algorithms

The Tits alternative famously states that a finitely generated linear group over
a field is either solvable-by-finite, or it contains a free non-abelian subgroup. This
theorem partitions finitely generated linear groups into two very different classes,
which require separate treatment. Therefore, in computing with finitely generated
linear groups, deciding virtual solvability is a fundamental problem.

For groups over Q this problem has been considered by Beals, Ostheimer, and
Assmann and Eick. In related work, Assmann and Eick obtained algorithms test-
ing polycyclicity and solvability of linear groups over Q.

3.1. Testing virtual solvability. Let Ψρ be a congruence homomorphism Φρ

such that Gρ is unipotent-by-abelian if G is solvable-by-finite. A description of
such Ψρ is provided by Wehrfritz in [13], for all cases of F except possibly when
n ≥ p > 0. Relying on Wehrfritz’s description, we have developed the following
algorithm for testing whether G is solvable-by-finite (see [9, Section 3]): (1) con-
struct Ψρ(G); (2) find a presentation of Ψρ(G); (3) compute normal generators of
Gρ, and use them to test whether Gρ is unipotent-by-abelian. Similarly to our
finiteness algorithm (Section 2.1), step (2) relies on the algorithms from [1] and
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[11]. By additionally testing whether the matrix group Ψρ(G) defined over a fi-
nite field is solvable, we obtain an algorithm to test solvability of G. Notice that
if G ≤ GL(n,Z) then these algorithms test whether G is polycyclic-by-finite or
polycyclic, respectively.

3.2. Related algorithms. Modifications of the algorithm for testing virtual solv-
ability yield algorithms to test whether G is nilpotent-by-finite or abelian-by-finite
[9, Section 5]. These algorithms are based on testing whether Gρ is nilpotent (re-
spectively, abelian). Notice that for this purpose R must be a Dedekind domain
of characteristic zero, because for such R the congruence subgroup Gρ is (Zariski-
)connected. However, we can test whether G is nilpotent over any perfect field F
[6, Section 4.6]. An algorithm to test whether G ≤ GL(n,F) is central-by-finite
when charF = 0 is given in [9, Section 5.3].

Furthermore, given a solvable-by-finite subgroup G of GL(n,F), charF ≥ 0, we
can test whether G is completely reducible [9, Section 4]. We also point out that
[4], [5], and [6] provide a number of algorithms for computing with nilpotent linear
groups. T. Rossmann has developed algorithms for irreducibility and primitivity
testing of nilpotent linear groups over infinite fields.

Note that all of the algorithms discussed in Sections 2 and 3 have been imple-
mented and are publicly available in Magma.
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Computing with nilpotent linear groups

Tobias Rossmann

In this talk, we considered irreducibility testing of nilpotent linear groups over
number fields. Let K be a number field and V 6= 0 be a finite-dimensional vector
space over K. Let G ≤ GL(V ) be finitely generated and nilpotent. We can assume
that G is non-abelian and completely reducible. Our strategy for irreducibility
testing of G is built around the following tasks.

(1) Find a proper K[G]-submodule of V .
(2) Find a subspace U < V such that G acts irreducibly on V if and only

if StabG(U) acts irreducibly on U , and {Ug : g ∈ G} is a G-system of
imprimitivity.

(3) Find a homogeneous maximal abelian normal subgroup of G.

Using congruence homomorphism techniques and Clifford theory, we can always
perform one of these tasks. In case (2), we replace G by the induced linear group
acting on U and start again. In case (3), we find that the enveloping algebra
of G is in an explicit way a crossed product. We can then decide irreducibility
of G directly using computational Galois cohomology [3]; this step, however, is
usually non-constructive. Hence, we obtain a “partially constructive” algorithm
for irreducibility testing of nilpotent linear groups over K [6, §5.5].

In the case of a nilpotent group G ≤ GL(V ) which is finite instead of merely
finitely generated, we can do much better. In this case, we employ the following
variation (based on ideas from [2]) of the above strategy. If G has a non-cyclic
abelian normal subgroup, then we can perform task (1) or (2). If, on the other
hand, all the abelian normal subgroups of G are cyclic, then the structure of
G is sufficiently restricted to allow us to constructively test irreducibility and
primitivity of G directly. Consequently, we obtain fully constructive algorithms
for both irreducibility and primitivity testing of finite nilpotent linear groups over
K [4, 5]. Implementations are included in Magma.
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Towards automorphism groups of p-groups: principle and practices

Peter A. Brooksbank and James B. Wilson

The structure of the automorphism group a p-group is in general quite difficult to
predict, so new ideas are needed as well as new algorithms. Our general strategy
uses those structural properties that are forced upon the automorphism group
solely by the commutation in the p-group. While this does not consider every
aspect of a p-group it is known that these conditions are one of the hardest to
resolve.

Let p be an odd prime, and let G be a p-group of class 2 and exponent p. Baer
showed that commutation in G gives rise to a bilinear map b : V ×V →W , where
V = G/Z(G) and W = G′. The group

ΨIsom(b) = {(g, h) ∈ GL(V )×GL(W ) : b(ug, vg) = b(u, v)h ∀u, v ∈ V }

of pseudo-isometries of b is then a quotient of Aut(G) with a well known ker-
nel. Hence understanding the pseudo-isometry group and its important normal
subgroup Isom(b) = {(g, 1) ∈ ΨIsom(b)} of isometries is a main component of
understanding the full automorphism group.

In this talk we report on recent progress towards understanding the structure
of ΨIsom(b) by discussing the structure of the group and using that to produce
polynomial time algorithms to construct:

(i) Isom(b) for general Hermitian bilinear maps b : V × V →W ; and
(ii) ΨIsom(b) for alternating bilinear maps b : V × V →W , where dimW = 2.
The basic technique uses ∗-algebras and exploits a Galois correspondence be-

tween such algebras and tensor products. We describe the full structure of the
pseudo-isometry groups of all tensor products in this correspondence.

Finally, we briefly report on ongoing projects involving the authors and E.
A. O’Brien that uses such algorithms to explore the structure of ΨIsom(b) for a
broader range of alternating bilinear maps.

Element proportions in finite groups

Cheryl E. Praeger

Many Monte Carlo algorithms for group computation rely on estimates for the
proportions of various kinds of elements in nearly simple groups. Increased pre-
cision in these estimates pays off both in terms of better theoretical complexity
estimates for the algorithms, and also for better practical performance: for exam-
ple, in group recognition algorithms where the input group is not the one being
tested for, less time is wasted in fruitless searches for elements which may not exist
in the input group.

The kinds of mathematics involved in estimating element proportions is quite
varied and new approaches have been explored recently. I report on several ap-
proaches that have been used successfully, in several projects involving various
coauthors: Jason Fulman, Simon Guest, Frank Lübeck, Peter Neumann, Alice
Niemeyer, Tomasz Popiel, Ákos Seress, and Şükrü Yalçınkaya.
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1. Estimation via nice generating functions

Tim Wall [W] proved that the limiting proportion of cyclic matrices in finite

general linear groups GL(n, q), as n → ∞ is 1−q−5

1+q−3 . This involved determining

the generating function, and finding its radius of convergence and analytic prop-
erties. Similar (but more complicated) methods enabled Fulman, Neumann and
Praeger [FNP] to determine the limiting proportions in all classical groups for
cyclic, separable, semisimple, and regular matrices.

These methods worked unexpectedly in a new situation: Chris Parker and Rob
Wilson [PW] had shown that involution-centraliser methods could be used for
solving several problems which appeared to be computationally hard, and gave
complexity analyses for methods to construct involutions and their centralisers
in quasisimple Lie type groups in odd characteristic. Crucial to their analyses
are conjugate involution pairs whose products are regular semisimple, possibly in
an induced action on a subspace. Using generating functions Ákos Seress and I
studied conjugate involution pairs, in finite general linear groups GL(n, q) with q
odd, for which the product is regular semisimple on the underlying vector space.
Such involutions form essentially a single conjugacy class C(n, q).

Theorem 1. [PS2, Theorem 2] For a fixed parity of n, the proportion of pairs from
C(n, q) × C(n, q) with regular semisimple product converges exponentially quickly
to a limit, as n approaches ∞, the limit being (1 − q−1)2Ω(q)3 for even n, and
(1− q−1)Ω(q)3 for odd n, where Ω(q) =

∏∞
i=1(1 − q−i).

Although not directly comparable, the general arguments in [PW, Theorem 19]
lead to a lower bound of order O(n−1).

2. And not so nice generating functions

Sometimes the generating function can be determined but not analysed. We
then resort to a rather messy analysis, using geometrical methods and messing
with the recursion, etc.

2.1. Generating balanced involutions. An involution in a finite n-dimensional
classical group G over a field of odd order q is called (α, β)-balanced if the dimen-
sion of its fixed point subspace is between αn and βn (where 0 < α ≤ 1

2 ≤ β < 1).
Constructing balanced involutions x and their centralisers is a central component
of the recognition algorithm of Leedham-Green and O’Brien [LO] for n-dimensional
classical groups G over fields of odd order. A balanced involution x can be con-
structed by powering a pre-involution and only O(log n) random elements are
needed before finding a suitable preinvolution with high probability (see work
with Frank Lübeck and Alice Niemeyer in [LNP]). The centraliser CG(x) involves
a direct product of two classical groups, acting on the ±1 eigenspaces E±(x) of x,
and this direct product can be constructed, with high probability, by a constant
number of involutions in CG(x) which project to balanced involutions in each fac-
tor (proved in [PS1, Theorem 1.1]). Finding such involutions should be easy, and
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in the linear case we have shown that it requires testing only O(1/ logn) random
conjugates of x.

Theorem 2. [PS3] Let x be an (α, β)-balanced involution in G = GL(n, q) with
q odd. Then there is a constant c such that, with probability at least c/ logn,
for a uniformly distributed random element g ∈ G, xxg has even order and is

(γ, 23 )-balanced on each E±(x), where γ = α′

3(1−α′) with α′ = min{α, 1− β}.

Ákos Seress and I determined the appropriate generating function for this prob-
ability, and employed a ‘dirty hands-on analysis’ to get the answer.

2.2. Pre-semiregular permutations. A permutation of a finite set Ω is called
semiregular if all of its cycles have the same length, ℓ say, and ℓ > 1. In particular
semiregular elements have no fixed points in Ω, that is to say, they are fixed
point free. Semiregular automorphisms of graphs give useful structural information
about the graph, as well as assisting with graph construction and enumeration and
graph drawing. Marus̆ic̆ and Jordan independently conjectured that every finite
vertex-transitive graph should have a semiregular automorphism (see discussion
in [NPPY]). It is not difficult to see that the proportion of semiregular elements
in Sn lies between 1

n and 2
n . Often semiregular permutations in Sn may be more

readily constructed by powering a pre-semiregular permutation found by random
selection. These are permutations for which some power is semiregular.

Theorem 3. [NPPY] Suppose that an integer n has a divisor at most d (and
d ≥ 4). Then there is a constant c depending only on d such that the proportion
of pre-semiregular elements in Sn is at least cn−1+1/2d.

In this situation Alice Niemeyer, Tomasz Popiel, Şükrü Yalçınkaya and I found
a generating function, but the proportions we sought seemed to have periodic
“sudden downspikes” and were very difficult to estimate. Obtaining the theorem
required a delicate analysis of the recursion.

3. Lie type methods for estimation

Recognition algorithms for Lie type simple groups have involved estimation
problems for various classes of elements: irreducible and nearly-irreducible ele-
ments; ppd elements, pre-involutions. The classes of each of these kinds of elements
share properties that enables us to estimate their proportions using tools from the
theory of groups of Lie type: each class is conjugacy closed, and membership of
an element is determined by membership of its semisimple-part. The methods
were developed independently by Gus Lehrer to study the character theory of
Weyl groups, and by Isaacs, Kantor and Spaltenstein to estimate the proportion
of p-singular elements in permutation groups (see the discussion in [NP]).

Alice Niemeyer and I developed this approach in [NP] as a general estimation
theory for subsets with these properties. The first new application had already
been made with Frank Lübeck in [LNP]. The method has also been used success-
fully with Tomasz Popiel to study preinvolutions powering to a given involution
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conjugacy class in [NPP1], and to estimate the proportion of p-abundant elements
in classical groups [NPP2], and with Simon Guest [GP] to estimate the proportions
of elements g with a given 2-part order (that is, a given power of 2 divides |g|) in
classical groups in odd characteristic.
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mutations of a finite set, Math. Comp. (to appear).
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Extremal lattices and codes

Gabriele Nebe

Using invariant theory of finite complex matrix groups, Andrew Gleason has shown
in his ICM talk in Nice 1970, that the minimum distance of a doubly-even self-
dual binary code of length n cannot exceed 4 + 4⌊ n

24⌋. A similar bound has been
proven by Siegel for even unimodular lattices of dimension n, where the minimum
is always ≤ 2+2⌊ n

24⌋. Lattices and codes achieving equality are called extremal.
Of particular interest are extremal lattices and codes in the “jump dimensions” -
the multiples of 24.

Number of extremal lattices L and codes C.

n 8 16 24 32 48 72 80 ≥ 3952 ≥ 163, 264
C 1 2 1 5 1 ? ≥ 4 0 0
L 1 2 1 ≥ 107 ≥ 3 ≥ 1 ≥ 5 ? 0
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A very intensively studied question is the existence on an extremal code of
length 72. This survey talk reports on recent progress in the study of possible
automorphism groups of such a code. I will also give a construction of the extremal
even unimodular lattice Γ of dimension 72 I discovered in summer 2010. The
existence of such a lattice was a longstanding open problem. The construction
that allows to obtain the minimum by computer is similar to the one of the Leech
lattice from E8 and of the Golay code from the Hamming code (Turyn 1967). Γ
can also be obtained as a tensor product of the Leech lattice (realised over the
ring of integers R in the imaginary quadratic number field of discriminant −7) and
the 3-dimensional Hermitian unimodular R-lattice of minimum 2, usually known
as the Barnes lattice. This Hermitian tensor product construction shows that the
automorphism group of Γ contains the absolutely irreducible rational matrix group
(SL2(25)×PSL2(7)) : 2.

Constructive recognition of classical matrix groups in even

characteristic

Heiko Dietrich

(joint work with C. R. Leedham-Green, F. Lübeck, E. A. O’Brien)

Let G = 〈X〉 be isomorphic to a classical matrix group H = 〈S〉 ≤ GL(d, q)
in natural representation, where S is a nice generating set. For example, one
can efficiently write an arbitrary element of H as a word in S. Informally, a
constructive recognition algorithm constructs an effective isomorphism from G to
H , and vice versa. An approach for doing this is to consider a generating set
S ′ ⊆ G corresponding to S, and to write the elements of S ′ as words in X . If
every element of G can efficiently be written as a word in S ′, then the isomorphisms
G↔ H defined by S ′ ↔ S are effective since images can be computed readily. For
example, if g ∈ G is written as a word w(S ′) in S ′, then the image of g in H is
easily determined as w(S). Thus, instead of working in G, this allows us to work
in the nice group H .

An interesting special case is G = H , where the constructive recognition prob-
lem is reduced to writing S as words in the given generatorsX . In 2009, Leedham-
Green & O’Brien [4] presented a solution to this problem for odd q. Their chosen
generating set S contains at most seven elements, and Costi [2] developed an algo-
rithm to write g ∈ G as a word in S. Practical implementations of both algorithms
are publicly available in the computer algebra system Magma [1]. The approach
of Leedham-Green & O’Brien is to use a reduction to classical groups of smaller
degree. These groups are constructed as subgroups of a centraliser of a strong
involution, which can be found efficiently in G by a random search.

Now let q be even. Guralnick & Lübeck [3] showed that the proportion of ele-
ments of even order in a classical group over the field with q elements is at most
5/q; thus a random search is not efficient to construct an involution. Moreover,
the structure of involution centralisers is significantly different from those in odd
characteristic. Consequently, the approach of Leedham-Green & O’Brien does not
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immediately carry over to even characteristic. (We mention that Costi’s algorithm
also works for even characteristic.) It is the aim of this talk to describe a construc-
tive recognition algorithm for classical matrix groups in natural representation and
even characteristic. Our main result is a Las Vegas algorithm which, subject to
the existence of a discrete logarithm oracle, needs O(d4 log q) field operations. At
present, we try to improve our analysis to obtain O(d3 log d log q). In addition, we
also discuss modifications of this algorithm which allow an efficient construction
of involutions in G. Implementations of our algorithms are publicly available in
Magma. Our results rely on recent work of Bray, Wilson & Parker, and Praeger,
Seress & Yalzinkaya.

This work contributes to the Matrix Group Recognition Project; its goal is to
provide efficient algorithms to investigate matrix groups defined over finite fields.
For an overview of this project and references to related significant results of other
authors we refer to the survey articles [5, 6].
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Problems I Would Like to Solve in CGT

John Cannon

A substantial body of sophisticated algorithms have been developed in CGT over
the past 40 years. With the wide availability of software packages, the techniques
of CGT find wide application both within mathematics and in other areas. The
growing use of CGT techniques has highlighted areas where there is a current lack
of effective algorithms.

Finitely presented groups are commonplace in topology and other areas. A
basic question concerns whether a given presentation defines the trivial group, a
finite group or an infinite group. A second question asks for an isomorphic group
with a soluble word problem. Both problems are known to be insoluble in general.
However, I argue that with the current tools we can frequently solve one or both
problems in the case of a particular group. I reported on two experiments. In one I
constructed a program which is highly successful in proving that a group is infinite.
In a second case study I applied Derek Holt’s Knuth-Bendix to a large number
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of fundamental groups of hyperbolic 3-manifolds and was able to determine the
automatic structure for a high proportion (1150 out of 1300).

In the case of finite groups, the current approach to structure investigations
proceeds by reducing the problem to the non-abelian composition factors. I re-
ported on some recent successes with large matrix groups and also noted limita-
tions which are often due to incomplete machinery for constructive recognition of
simple groups.

Finally, I briefly considered representation theory and observed that very recent
algorithmic advances mean that ordinary characters and representations of nearly
simple groups can now be produced on an industrial scale. I identified a number
of problems which have yet to be solved.

Computing with Basic Algebras

Jon F. Carlson

For several years, I have been developing a package in Magma for computations
with basic algebras. This report emphasizes the new developments. The basic
definition is that a (split) basic algebra is an algebra for which all of the simple
modules have dimension one. For the purposes of this project, we assume that
basic algebras are split and that all algebras have a unit element.

A primary motivation for the project is the theorem that every algebra is Morita
equivalent to a basic algebra. This means that any finite dimensional algebra A
has an equivalent module category as its basic algebra. Hence, when doing any
sort of homological calculations, it is often convenient to do the calculation at the
level of the basic algebra, which is often much smaller The computer data of a basic
algebra A is a collection of pairs {(Pi, pti)|i = 1, . . . , n} where Pi is a projective
A-module, and pti is a path tree that tells us how to construct homomorphisms.

The path tree is an algorithm for solving the lifting problem: Given σ, which
is surjective, and γ, find µ such that the diagram

Pi

γ

��

µ

~~~~
~
~
~
~
~

B
σ

// C // 0

commutes.
So the philosophy is that we build the data structure to solve the problem that

we want to solve, - then figure out how to get structures we want into the
data structure. In practice, we can define basic algebras in many ways, as we see
in the examples below. We can also construct a basic algebra using generators
and relation, regarding it as a quiver with relations.

I give two examples of things that we can do with the package and comment
on the new developments. Include in the examples are some running times of an
actual calculation on my Apple laptop.
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Example 1: Here we look at the question of whether the basic algebra of a Schur
algebra is Koszul.

> time A := BasicAlgebraOfSchurAlgebra(3,8,GF(3)); Time: 24.480

(This was obtained by condensing a matrix algebra of dimension 461559 that
is a subalgebra of all 1647× 1647 matrices.)

> print A;
Basic algebra of dimension 41 over GF(3)
Number of projective modules: 10
Number of generators: 24

One of the issues that must be decide is whether the algebra is graded. We
accomplish this by showing the algebra is isomorphic to its associated graded
algebra.

> time B := AssociatedGradedAlgebra(A); Time: 0.060
> time a,b :=IsIsomorphic(B,A); Time: 4.120
> print a; true

This is sufficient to prove that A is Koszul.
Another marker of a Koszul algebra is that it is isomorphic to its double ext-

algebra. The ext-algebra is Ext∗A(S, S) where S is the direct sum of the simple
A-modules.

> time C := BasicAlgebraOfExtAlgebra(A,10); Time: 2.110
> time D := BasicAlgebraOfExtAlgebra(C,10); Time: 2.040
> time a, b := IsIsomorphic(A,D); Time: 4.080
> print a; true

The program for automorphisms and isomorphisms for basic algebras has only
recently been implemented in Magma. It should be available in the next release
near the end of this year (2011). It follows an algorithm of Eick and O’Brien.
Basically, we find the automorphism group of A/Rad2(A). Then inductively as-
suming that we have the automorphism group of A/Radm(A), we compute the

automorphism group of A/Radm+1(A), continuing until done. In the induction
step we must compute a cover for A/Radm(A) that is universal with respect to

the properties of having the same factor modulo Radm as A and having Radm+1

zero. Then previously constructed automorphisms lift to this cover, and the auto-
morphism group of the next factor of A is is the stabilizer of the homomorphism
of the cover onto A.

In the next example we compute the cohomology of a group algebra by com-
puting in the basic algebra.

Example 2: We begin by calling the group out of the library.

> load m12;
Loading ”/usr/local/magma/libs/pergps/m12”
M12 - Mathieu group on 12 letters - degree 12
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Order 95 040 = 26 · 33 · 5 · 11; Base 1,2,3,4,5
Group: G

Next we create the projective indecomposables and sort them by blocks. The
principal block should be the first one.

> time PR := ProjectiveIndecomposables(G,GF(3)); Time: 13.910
> XX := SortByBlocks(PR);
> [[Dimension(y): y in x]:x in XX];
[[594, 297,297, 378, 378, 297, 351, 351],[189,243],[54]]

Next we created the basic algebra of the block algebra of the principal block.

> time B := BasicAlgebraOfBlockAlgebra(XX[1]); Time: 64.130
> DimensionsOfProjectiveModules(B);
[ 15, 15, 18, 20, 20, 17, 17, 41 ]

Next we take the projective resolution of the trivial module which is the top of
the eighth projective module.

> time cpr := CompactProjectiveResolution(SimpleModule(B,8),6); Time: 0.080
> cpr‘BettiNumbers;
[ [ 0, 0, 3, 1, 1, 2, 2, 0 ],
[ 0, 0, 1, 1, 1, 1, 1, 1 ],
[ 0, 0, 1, 0, 0, 0, 0, 2 ],
[ 0, 0, 1, 0, 0, 1, 1, 1 ],
[ 1, 1, 2, 0, 0, 1, 1, 0 ],
[ 0, 0, 1, 1, 1, 1, 1, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 1 ] ]

The projective resolution has the form

. . . // P2
// P1

// P0
// k // 0

and in the rows in the above display indicate the number of copies of each indecom-
posable projective module that is a direct summand of the modules P0, P1, . . . . So
the bottom row says that P0 is one copy of indecomposable projective number 8.
The next to bottom row says that P1 is a direct sum of indecomposable projectives
number 3, 4, 5, 6 and 7. In a recent discussion with a colleague in the generation
of endotrivial modules it was important to know that structure of H6(G, k). The
zero in the 8th column of the 7th row (from bottom) says that the projective cover
of the trivial module is not involved in P6. Hence, Ext

6
kG(k, k)

∼= H6(G, k) = 0.
Other recent work has focused on algebra homomorphisms. We now have things

like center and centralizers of elements and subset, ideals and quotient algebras,
subalgebra, random subalgebras, kernels and images of homomorphisms, homo-
morphism testing.
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Computation of Galois groups over p-adic fields

Jürgen Klüners

(joint work with Christian Greve)

Let K/Qp be a p-adic field and g ∈ K[x] be an irreducible monic polynomial. The
goal is to compute its Galois group. The ”trivial” approach would be to compute
the splitting field which we would like to avoid. One crucial part in the algorithms
over number fields [2] is that we have easy access to (approximations of) the
roots of the given polynomial, e.g. we can use complex approximations or p-adic
approximations for some unramified prime p. In the p-adic case we have no access
to the roots (except in the splitting field). Therefore we cannot express the final
result as a permutation group acting on its roots. We present the Galois group
by generators with relations. On the other hand there is much more structure
for p-adic fields, e.g. the Galois groups are solvable and the Galois group of the
maximal pro-p-extension is known.

In case the given extension is at most tame, the Galois group can be easily
computed as a group with two generators in probabilistic polynomial time (we
need to factor polynomials over finite fields).

For Eisenstein polynomials of p–power degree we introduce the ramification
polynomial and its corresponding ramification polygon. If this polygon is one-
sided, we can easily write down the splitting field and its Galois group. The latter
one is a semidirect product, where a group H ≤ GLm(p) is acting on Cm

p . The
group H is the Galois group of a tame subextension of the splitting field of g which
can be explicitly computed.

In case the ramification polygon has more than one segment, we can compute
in probabilistic polynomial time a tame subextension T of the splitting field of
g such that the Galois group of g over T is a p-group. Furthermore we know a
tower of subfields of the stem field of g such that each relative step is elementary
abelian. In case of two segments the complete Galois group can be computed by
the use of the canonical class. These computations are difficult to carry out and
will not be practical for more than two segments. More details can be found in
the PhD-thesis [1] of Christian Greve.
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Graham Higman’s PORC conjecture — Dead or Alive?

Michael Vaughan-Lee

For p > 3 the number of groups of order p6 is

3p2 + 39p+ 344 + 24 gcd(p− 1, 3) + 11 gcd(p− 1, 4) + 2 gcd(p− 1, 5).

So for p > 3 the number of groups of order p6 is one of 8 polynomials in p, with
the choice of polynomial depending on the residue class of p modulo 60. In other
words, the number of groups of order p6 is PORC — polynomial on residue classes.
In precise terms, we say that a function f(p) defined on prime numbers is PORC if
there is a finite set g1(p), g2(p), . . . , gk(p) of polynomials in p, and a fixed positive
integer N , such that for any prime p the value of f(p) equals gi(p) for some i
(1 ≤ i ≤ k), with the choice of i depending on the residue class of p modulo N .
In 1959 Graham Higman conjectured that for any given n the number of groups
of order pn is PORC. This has been confirmed for n ≤ 7, though the case n = 8
is still open and is likely to be extremely difficult to settle. Higman proved that
the number of p-class 2 groups of order pn is PORC (for all n). Anton Evseev has
extended this result to show that the number of class 2 groups of order pn with
derived group of exponent p is PORC (for all n).

Nowadays the classification of p-groups of small order makes use of the lower
exponent-p-central series of a group. If G is any group then the lower exponent-
p-central series of G,

G = G1 ≥ G2 ≥ . . . ≥ Gi ≥ . . . ,

is defined by setting G1 = G, G2 = G′Gp, and in general setting Gi+1 = [Gi, G]G
p
i .

If G is a finite p-group then Gc+1 = {1} for some c, and we say that G has p-class
c if Gc 6= {1}, Gc+1 = {1}. If G is a finite p-group of p-class c > 1 then we say
that G is an immediate descendant of G/Gc. Apart from the elementary abelian
group of order pn, every group of order pn is an immediate descendant of a group
of order pk for some k < n. To list the groups of order pn, first list the groups of
order pk for all k < n. Then for each group G of order pk for k < n, find all the
immediate descendants of G which have order pn.

So (for example) the formula given above for the number of p-groups of order
p6 (p > 3) can be obtained as follows. It turns out that for p > 3 there are 42
groups of order at most p5 which have immediate descendants of order p6. Each
of these 42 groups is given by a presentation involving the prime p symbolically
— for example one of the 42 groups has presentation

(1) 〈a, b | ap[b, a, a]−1, bp, class 3〉.

For each of these 42 groups we compute the number of immediate descendants of
order p6, and the formula given above is obtained by adding together each of these
individual contributions. For example, group (1) above has p + gcd(p − 1, 3) + 1
descendants of order p6. Finally, we have to add one to this total to account for
the elementary abelian group of order p6. Each of the individual contributions is
PORC, and as a consequence the formula above is PORC.
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Marcus du Sautoy has found a way of encoding elliptic curves into finite p-
groups. Let M be the group that Marcus associates with the elliptic curve y2 =
x3 − x over the finite field GF(p). (M for Marcus.) Then M is a class 2 group of
order p9 and exponent p. Several important group theoretic properties ofM , such
as the number of conjugacy classes and the size of the automorphism group, are
related to the number of points on the curve y2 = x3 − x over GF(p). And this
number is not PORC. In particular, the number of immediate descendants of M
of order p10 is not PORC.

Marcus’s group is a class 2 group of exponent p with generators

x1, x2, . . . , x6, X, Y, Z

and with all commutators trivial except for

[x1, x5] = [x2, x4] = [x3, x6] = X,

[x1, x6] = [x3, x4] = Y,

[x1, x4] = [x2, x5] = Z.

Thus M has Frattini quotient of order p6, and elementary abelian derived group
generated by X,Y, Z.

It turns out that if p = 1 mod 12 then the order of the automorphism group of
M depends on whether or not the two equations

x4 + 6x2 − 3 = 0,

y2 = x3 − x.

have solutions in GF(p). If p = 1 mod 12 and if these two equations have no
solutions in GF(p) then the automorphism group ofM has order |GL(2, p)| ·4 ·p18,
but if p = 1 mod 12 and the two equations have solutions in GF(p) then the
automorphism group of M has order |GL(2, p)| · 36 · p18. This has an impact
on the number of descendants of M of order p10. If p = 1 mod 12 and there

are no solutions to the equations then there are (p+1)2

4 + 3 descendants of order

p10 and exponent p, but if there are solutions to the equations then there are
(p−1)2

36 + p−1
3 +4 descendants of order p10 and exponent p. However this behaviour

is not PORC. There are infinitely primes p = 1 mod 12 for which the two equations
have solutions in GF(p) — in fact these primes have Dirichlet density 1

16 . But you
cannot capture these primes in a subcongruence class of {p | p = 1 mod 12}. Any
such subcongruence class contains infinitely many primes p such that x4+6x2−3 =
0 has no solutions in GF(p).

So the number of immediate descendants of M of order p10 is not PORC, but
this does not settle the PORC conjecture. As we saw above, the total number
of groups of order p10 can be obtained by counting the number of immediate
descendants of order p10 of each of the groups of order less than p10 and then
adding all these numbers together. It is feasible that the grand total is PORC
even though we know that at least one of the individual summands is not PORC.
My own personal opinion is that this is extremely unlikely, and that although
Higman’s PORC conjecture is not clinically dead, it is on life support.
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Properties of invariant rings and pointwise stabilizers

Gregor Kemper

A recurrent theme in invariant theory is the question which ring-theoretic prop-
erties an invariant ring K[V ]G has. This talk is in part a survey talk about the
properties that are usually studied. We also present some more recent results re-
lating properties of an invariant ring, properties of the invariant ring of a pointwise
stabilizer, and the local behavior of the invariant ring.

Throughout we consider a finite subgroup G ⊆ GL(V ) acting linearly on a
finite-dimensional vector space V over a field K. We write K[V ] = K[x1, . . . , xn]
for the polynomial ring on V and

K[V ]G :=
{
f ∈ K[V ] | σ(f) = f ∀σ ∈ G

}

for the invariant ring. This is always a graded subalgebra of K[V ]. But what
are its structural properties? It is known that K[V ]G is always a normal ring and
finitely generated as a K-algebra. But what further properties does it have? How
do they relate to properties of the group action? At which points of the affine
variety associated to K[V ]G does the localization look nice?

One usually considers the following hierarchy of properties, in which each prop-
erty implies the following one:

• K[V ]G polynomial ring,
• K[V ]G complete intersection,
• K[V ]G Gorenstein,
• K[V ]G Cohen–Macaulay.

Associated to each of these properties is a locus where the property holds locally.
There are also numbers that measure the deviation from each of the properties:
the regular defect rdef

(
K[V ]G

)
, the complete intersection defect cidef

(
K[V ]G

)
, the

type (also known as Cohen–Macaulay type) of K[V ]G, and the Cohen–Macaulay
defect cmdef

(
K[V ]G

)
.

In the talk we discuss the polynomial ring property and the Cohen–Macaulay
property in some detail and present some results.

For a point x ∈ V , let

Gx := {σ ∈ G | σ(x) = x} ⊆ G

be the pointwise stabilizer. We consider the localization K[V ]Gx at x and the

completion K̂[V ]Gx .

Lemma 1. K̂[V ]Gx
∼= K̂[V ]Gx

x .

An elementary proof can be found in [6]. Moreover, the The Gx-automorphism
V → V , v 7→ v + x induces an isomorphism

K[V ]Gx

x
∼
→ K[V ]Gx

m
.

Using this and Lemma 1, one can prove the main result of this talk:
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Theorem 2. Let f ∈ {rdef, cidef, cmdef, type} and x ∈ V . Then

f
(
K[V ]Gx

)
= f

(
K[V ]Gx

)
≤ f

(
K[V ]G

)
.

This tells us that the behavior of the invariant ring can only get better when
passing to a pointwise stabilizer, and that the local behavior of the invariant ring
is entirely controlled by the pointwise stabilizer. The inequality in the theorem
provides a common generalization of results of Serre [1], Steinberg [8], Nakajima [7],
Kac and Watanabe [3], and the author [5]. The inequality also holds if f denotes
the maximal degree of an invariant in a minimal homogeneous generating set.

Using Theorem 2, one can find examples of reflection groups (in the modular
case) whose invariant ring has arbitrarily large Cohen–Macaulay defect, simply
because the invariant ring of a suitable pointwise stabilizer has a large Cohen–
Macaulay defect by previously known results. G. Malle and the author [4] also
used the theorem for classifying all finite irreducible linear groups whose invariant
ring is a polynomial ring.

A further application can be obtained by considering the non Cohen–Macaulay
locus. In fact, if K[V ]G is not Cohen–Macaulay, then

(1) dim
{
x ∈ V | K[V ]Gx is not Cohen–Macaulay

}
> 0.

This follows from the fact that a Sylow p-subgroup of G (with p = char(K)) fixes
a line, and for a point x of this line, the index of Gx in G is not divisible by p,
henceK[V ]Gx is not Cohen-Macaulay. A further property that K[V ]G may or may
not have is the Buchsbaum property, which we might have added at the bottom
of the above list of properties. The Cohen–Macaulay property always implies the
Buchsbaum property, and it is well-known that the non Cohen–Macaulay locus of
a Buchsbaum ring consists of only one point. With this, it is clear that (1) implies
that K[V ]G is not Buchsbaum if it is not Cohen–Macaulay. So the Buchsbaum
property and the Cohen–Macaulay property for K[V ]G are equivalent. This was
conjectured by Campbell et al. [2].
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Uniform triples and fixed point spaces

Gunter Malle

(joint work with Robert Guralnick)

We discussed the proof of our following recent result:

Theorem 1. Let 1 6= G ≤ GL(V ) be an irreducible subgroup of the general linear
group of a finite dimensional vector space V . Then there is g ∈ G with fixed space
of dimension dimCV (g) ≤

1
3 dim V .

This confirms a conjecture of Peter Neumann’s 1966 thesis.
After various reductions, using in particular Scott’s lemma on fixed spaces, the

claim essentially follows from:

Theorem 2. Let G be a non-abelian finite simple group, G 6= SL2(2
f ),PSL2(7).

Then there is a conjugacy class C ⊂ G and (x, y, z) ∈ C × C × C−2 such that
xyz = 1 and G = 〈x, y〉.

This implies in particular:

Corollary 3. Let G be non-abelian finite simple, G 6= SL2(2
f ). Then there ex-

ists an element g ∈ G such that all its eigenspaces on any non-trivial absolutely
irreducible G-module V have dimension at most 1

3 dimV .

Theorem 2 is proved using the Deligne–Lusztig character theory and informa-
tion on the maximal subgroups of finite groups of Lie type, and ad hoc methods
for the alternating and the sporadic groups.

We also mentioned several results pertaining to larger dimensions and of an
asymptotic nature. For example, over the field of complex numbers we can show
that eigenspaces for simple groups become arbitrarily small when the dimension
increases:

Theorem 4. For all ǫ > 0 there exists N = Nǫ such that for all non-abelian
finite simple groups G and all non-trivial absolutely irreducible CG-modules V of
dimension dimV ≥ N there is g ∈ G with dimCV (g) ≤ ǫ dimV .

Our methods can also be adapted to show the following extension of a 1994
result of Malle–Saxl–Weigel:

Theorem 5. Let G be non-abelian finite simple. Then there are classes C1, C2 ⊂
G such that C1C2 ∪ {1} = G.

Together with a result of Chernousov–Ellers–Gordeev this implies:

Corollary 6. Let G be finite non-abelian simple, and m a prime power or m = 6.
Then all elements of G are products of two mth powers.
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Rethinking Reidemeister-Schreier

Charles C. Sims

Let a and b be free generators of B(2, 5), the two-generator Burnside group of
exponent 5. In B(2, 5), let H be the subgroup generated by x = b, y = ba, and

z = ba
−1

. It is very easy to show that the index of H in B(2, 5) is 125. Only a
small number of fifth powers are needed and the coset enumeration defines very
few extra cosets. Recently I tried to find a finite set T of (group) words over
{x, y, z} such that the elements of T are relators for H and the order of the largest
nilpotent, exponent-5 quotient of

〈x, y, z |T 〉

has order 531, the order of the largest finite quotient of H . (Note: Nilpotent,
exponent-5 quotients of a finitely presented group can be computed using the
anupq package.)

My first attempts to solve this problems involved using various implementations
of the Reidemeister-Schreier procedure, including my own. These efforts were quite
unsatisfactory and led me to consider alternatives. The alternative presented in
this talk is based heavily on the Knuth-Bendix procedure for strings. Informa-
tion about the Knuth-Bendix procedure and the standard Reidemeister-Schreier
procedure can be found in [1].

Let G be a group generated by a finite set X and let R be a finite set of relators
over X that define G. Let H be a subgroup of finite index in G. By adding
additional generators if necessary, we may assume that H is generated by a subset
X2 of X . Define X1 to be X −X2.

An ordinary coset enumeration of the cosets of H in G produces an ordinary
coset table, from which it is possible to write down a finite set S of words over X
that define a set of Schreier generators for H .

To find the Reidemeister-Schreier presentation for H , we need the extended
coset table. The secondary labels in that table express the Schreier generators
as words over X2. Traditionally these secondary labels have been found by an
extended coset enumeration process, but in the approach proposed here, they will
be found with the Knuth-Bendix procedure for strings using an order on words I
call the right-to-left wreath product ordering. Any word over X can be written in
the form

U0x1U1x2...Un−1xnUn,

where x1...xn is a word over X1 and the Ui are words over X2. To compare two
words, construct this decomposition of each word and then compare the associated
words over X1 using the len-lex order. If these words are equal, then compare the
two words Un, again using the len-lex order. If these are equal, compare the words
Un−1, and so on.

Start the Knuth-Bendix procedure for strings going with the generators X and
the relators R using the right-to-left wreath product ordering. If H really has
finite index in G and the Knuth-Bendix systematically computes all overlaps of
rules, then eventually the elements of S will rewrite to words over X2. Periodically
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interrupt the computation and check whether each element of S rewrites to a word
over X2. If this is the case, stop the Knuth-Bendix computation.

Using the rewritten Schreier generators and the ordinary coset table, it is now
possible to write down an extended coset table for H . The Reidemeister-Schreier
relators forH can now be computed. One may add the new relators to the previous
Knuth-Bendix computation and run it for a while longer. This may reduce the
lengths of the Schreier generators as words over X2 and thus reduce the length
of the Reidemeister-Schreier relators. These relators are consequences of those
determined earlier, but it might take the Knuth-Bendix procedure a long time to
discover them.

Using the methods outlined here, the original problem in B(2, 5) was solved. A
set T was found such that

〈x, y, z |T 〉

has largest nilpotent, exponent-5 quotient of order 531. The cardinality of T is 15,
the minimum possible, and the longest words in T have length 38. I believe this
cannot be shortened, but I do not have a proof.
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Computing maximal subgroups of finite groups

Colva M. Roney-Dougal

(joint work with John N. Bray and Derek F. Holt)

The maximal subgroups of a finite group G yield much information about the
internal structure and representations of G. Additionally, they have many com-
putational applications.

An almost simple group is a group G such that there exists a nonabelian simple
group T with T EG ≤ AutT .

Work of Cannon and Holt [2], or (independently) Eick and Hulpke [3] reduces
the problem of computing the maximal subgroups of an arbitrary permutation or
matrix group G to that of computing the maximal subgroups of all almost simple
groups with socle a composition factor of G. Constructive recognition further
reduces the problem of computing maximal subgroups to that of constructing the
maximal subgroups of the almost simple groups in their natural representations.

After briefly surveying the current state of knowledge of the maximal subgroups
of the alternating and sporadic groups, this talk will concentrate on the maximal
subgroups of the finite classical groups. For these groups, Aschbacher’s theorem [1]
provides a detailed description of nine classes of subgroups, such that any maximal
subgroup is a maximal member of one of these classes. Kleidman and Liebeck
[5] describe the structure of the candidate maximal subgroups in the first eight of
these classes; the ninth class consists (projectively) of almost simple groups G such
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that SocG is absolutely irreducible, written over a minimal field, and preserves an
appropriate classical form.

For n ≥ 13, Kleidman and Liebeck in [5] describe exactly when a candidate
maximal subgroup in the first eight of the Aschbacher classes is in fact maximal.
Work of Hiß and Malle [4] and Lübeck [6] yields a list of socles of candidate
maximal subgroups in the ninth class. This talk will end with presenting recent
work which classifies the maximal subgroups of all almost simple groups of Lie
type that have projective representations in dimension at most 12.
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Computations in exceptional groups and Lie algebras

Robert A. Wilson

(joint work with Kay Magaard)

Before the main talk, I announced two recent results. The first was completed last
week:

Theorem 1. There is exactly one conjugacy class of subgroups isomorphic to
PSL2(41) in the Monster sporadic simple group. Such subgroups are maximal.

The second was completed this morning:

Theorem 2. (with Laszlo Babai) The Guest–Praeger lower bound of c/n3/4 for the
proportion of odd-order elements in a symplectic or orthogonal group in dimension
n over a field of odd order is best possible.

The main talk was on algorithmic construction of a Chevalley basis in a Lie
algebra. Given a Lie algebra in a computational setting, perhaps in the adjoint
representation, as a vector space of dimension n with the n3 structure constants
defined on the basis, one wants to change basis so that it appears in canonical
form. This generally means that we want a Chevalley basis. For applications to
constructive recognition of matrix groups, we assume the input is written over a
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finite field, and the Lie algebra is (say) simple. We are most interested in the Lie
algebras of exceptional type, but the algorithms should work more generally.

The essential problem, in dealing with a field which is not algebraically closed,
is that we want a split toral subalgebra (a Cartan subalgebra), whereas most toral
subalgebras are non-split.

Several such algorithms are already in the literature, due to Ryba [3], Cohen
and Murray [1], and others. They generally work by a process of successive ap-
proximation, making a series of toral subalgebras, each more split than the last
(in the sense that it splits into more pieces, not in the sense that it has more 1-
dimensional pieces). They also divide the calculation into two phases: first find a
split toral subalgebra, and second, diagonalise it, label the root spaces, and choose
suitable basis vectors.

In our algorithm, we split off one dimension of the Cartan subalgebra at a time,
and compute the subalgebra and the root spaces simultaneously, constructing the
Dynkin diagram and labelling the roots as we go. The main idea is to pick random
elements x of the Lie algebra, until we find one such that ad (x) has a pair of
1-dimensional eigenspaces. Then we build the a1-subalgebra 〈eα, e−α, hα〉 they
generate. Next we compute suitable eigenspaces V +, V − of ad (hα), so that they
contain the next root vectors eβ, e−β, for the next root β along the Dynkin diagram.
To find these explicitly, we take random x ∈ [V +, V −] until we get 1-dimensional
eigenspaces of ad (x). Iterate this process until all nodes of the Dynkin diagram
are found. (It is not necessary to know the Dynkin diagram in advance, as there
is only a small number of possibilities for where to draw the next node at each
stage, and one can try them all.) Finally we adjust the scalars to get the standard
Chevalley basis.

There are extra complications in characteristics 2 and 3, which we do not yet
address: these have been largely solved already by Cohen and Roozemond [2],
although they do assume that a split Cartan subalgebra has already been found,
which may not be the case in practice.

In the case when the characteristic is at least 5, the complexity of our algorithm
is essentially r7, where r is the Lie rank, which improves on Cohen and Murray’s
quoted complexity of r9 (and Ryba’s r11).
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Algorithmic Generalisations of Small Cancellation Theory

Max Neunhöffer

(joint work with Stephen Linton, Richard Parker, Colva Roney-Dougal)

This talk gives an overview over our project to generalise Small Cancellation
Theory in an algorithmic direction. As of now, there are no publications of results
or software that have come out of this project although we are already working on
it for about 4 years. I will describe the envisioned generalisations briefly.

The first idea is to change the ambient group. We want to replace the free
group in classical Small Cancellation Theory (SCT) by the following construction:

Let Γ be a groupoid, i.e. a small category in which every morphism is invertible.
Let

A :=
⋃

X,Y ∈obΓ

MorΓ(X,Y )

be our alphabet. Then the set A∗ of finite words in A with concatenation is a
monoid.

The multiplication in Γ defines a terminating and confluent RW-system on A∗.
Let F := A∗/ ∼ where ∼ is rewrite-equivalence. Then F is a group.

In our generalised SCT we are going to do the following: Let R ⊆ A∗ be a finite
set of relators. We want to devise an algorithm SC that:

• delivers and proves correct an algorithm WP that decides whether or not
a w ∈ F is a product of conjugates of relators, and

• delivers a function f : N → N and proves for it that every rewrite-reduced
w ∈ F of length n that is equal to a product of conjugates of elements of
R at all, is actually equal to such a product with at most f(n) factors,

• or fails.

As in the classical SCT it is possible that a given presentation is not susceptible to
this method, after all, the word problem for this presentation could be unsolvable,
i.e. no algorithm WP as above exists.

In this talk I explain how we have generalised the notion of van Kampen dia-
grams to the above generalised setup, how we use a notion of combinatorial cur-
vature and local redistribution of such together with an algorithmic local analysis
of van Kampen diagrams to produce the above mentioned algorithm SC. Finally
I give an outlook at further generalisation ideas in this area.

We expect that in a few years time we will have developed, proved correct
and analysed algorithms fulfilling the above task. They should run successfully on
rather large presentations of hyperbolic groups, which actually arise in applications
in other fields like topology. This ought to give us a completely new way to work
with such finitely presented groups on a computer.
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Splitting full matrix algebras over algebraic number fields

Lajos Rónyai

(joint work with Gábor Ivanyos, Josef Schicho)

We consider the following algorithmic problem, which we call explicit isomorphism
problem: let K be an algebraic number field, A an associative algebra over K.
Suppose that A is isomorphic to the full matrix algebraMn(K). Construct explicitly
an isomorphism A→Mn(K). Or, equivalently, give an irreducible A module.

Recall that for an algebra A over a field K and a K-basis a1, . . . , am of A over
K the products aiaj can be expressed as linear combinations of the ai

aiaj = γij1a1 + γij2a2 + · · ·+ γijmam.

The elements γijk ∈ K are called structure constants. Here an algebra is considered
to be given as a collection of structure constants. The usual representation of a
number field K over Q with the minimal polynomial f ∈ Z[x] of an algebraic
integer α ∈ K with K = Q(α) can also be considered this way.

For basic definitions and facts from the theory of finite dimensional associative
algebras the reader is referred to [14] and [16].

To obtain a decomposition of A into minimal left ideals, one has to be able to
solve the explicit isomorphism problem for simple algebras over K. In [18] this was
shown to be possible in randomized polynomial time when K is finite. This method
was derandomized recently in [9] in the case when the dimension of A over K is
bounded. In [17] and [20] evidence (randomized reduction) is presented, that over
algebraic number fields the explicit isomorphism problem problem is at least as
difficult as the task of factoring integers, a problem not known to be amenable to
polynomial time algorithms. For simple algebras over a number field K polynomial
time Las Vegas algorithms were given in [4] and [1] to find a number field L ⊇ K
such that A⊗K L ∼=Mn(L) for a suitable n, together an explicit representation of
the isomorphism. In [5] a real version was established: if K ⊂ R, and A splits over
R, then it can be achieved that L ⊂ R. These results have been derandomized.

We recall the notion of an ff-algorithm. It is an algorithm which is allowed to
call an oracle for two types of subproblems. These are the problem of factoring
integers, and the problem of factoring polynomials over finite fields. We have no
deterministic polynomial time algorithms for these problems (but the latter one
admits polynomial time randomized algorithms). In both cases the cost of the
oracle call is the length of the input to the call.

In [19] the problem of deciding if A ∼= Mn(K) holds for an algebra A over a
number field K was shown to be in NP ∩ coNP . The proof relies on properties of
maximal orders Λ ≤ A for central simple algebras A over K. Maximal orders are
in many ways analogous to the full ring of algebraic integers in K. The principal
result of [10] is a polynomial time ff-algorithm to construct maximal orders in
simple algebras over Q. A very similar algorithm is presented in [13]. In [20] a
more direct method is given for quaternion algebras.
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Several of the algorithms mentioned here have implementations in the computer
algebra system Magma, see for example [12].

We mention also a somewhat surprising application of the algorithms for orders:
they have been applied in the construction and analysis of high performance space
time block codes for wireless communication, see [8]. In fact, in addition to an
application of the algorithm of [10], in [8] an improvement is suggested for the
orders relevant there.

A very recent result, joint work with Gábor Ivanyos and Josef Schicho, is a
polynomial time ff-algorithm for the case when A is a central simple algebra of
bounded dimension over a small extension field K of Q. This was known before
only in the smallest nontrivial case dimQ A = 4, see [11] and the more recent
papers [3], [20]. We have proved the following.

Theorem 1. Let K be an algebraic number field of degree d and discriminant ∆
over Q. Let A be an associative algebra over K given by structure constants such
that A ∼= Mn(K) holds for some positive integer n. Then an isomorphism A →
Mn(K) can be constructed by an ff-algorithm. The time bound of our algorithm
depends polynomially on |∆| and the size of the structure constants of A, and
exponentially on n and d.

In particular, we have a polynomial time ff-algorithm when n, d and ∆ are
bounded.

In addition to computational representation theory where the problem naturally
originates from, the explicit isomorphism problem arises also in connection with
computing parametrizations in algebraic geometry: [3] considers parametrizations
of conics, and [7] gives algorithms for rational parametrization of Severi-Brauer
surfaces. In fact, in [7] an algorithm is given which solves the explicit isomorphism
problem when A ∼= M3(Q). This, however, uses a procedure for solving norm
equations whose complexity was not clear so far. For example it was not known if
they can be solved in ff-polynomial time. The case A ∼=M4(Q) is treated similarly
in [15]. An algorithm based on ideas similar to those of Theorem 1 is outlined in
[2] for the case K = Q and is detailed for the cases n = 3, 5.

Applications of our result include a polynomial time ff-algorithm to compute
isomorphisms of central simple algebras of bounded degree over K.

By the well known connection between split cyclic algebras and relative norm
equations our results imply that for a number field K and a cyclic extension L

of K if a norm equation NL/K(x) = a is solvable, then there is a solution whose
standard representation has polynomial size (in terms of the size of the standard
representation of a and the input size of L). Moreover, for fixed K and fixed degree
|L : K|, a solution can be found by a polynomial time ff-algorithm.

Potential directions to improve our results would be to obtain polynomial time
ff-algorithms when the dimension of the algebra over K may be allowed to grow,
or when K is allowed to vary (even if its degree over Q remains fixed), or both.
Existence of ff-algorithms with similar time bounds for finding an explicit isomor-
phism of a non-split central simple algebra with a suitable algebra of matrices over
a skewfield is also left open (even in the case of fixed base field, or fixed dimension).
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Problems in Representation Theory

Meinolf Geck

This is a survey talk, upon invitation by the organisers. It is divided into two
parts: (1) ATLAS projects and (2) group-theoretical applications.

The ATLAS projects that we are referring to are concerned with properties of
finite simple groups and related algebraic structures:

Cambridge Atlas Oxford University Press, 1985
Modular Atlas http://www.math.rwth-aachen.de/∼MOC

Atlas of Finite Group
Representations

}
http://brauer.maths.qmul.ac.uk/Atlas/v3/

CHEVIE http://www.math.rwth-aachen.de/∼CHEVIE
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The systematic collection of information about the various types of finite simple
groups is in itself a formidable project and, at the present state of knowledge, far
from completion (especially as far as modular representations are concerned). At
the same time, the available information contained in these ATLASES is tremen-
dously helpful in connection with the classification of finite simple groups. We
are now seeing a growing number of problems or conjectures about general finite
groups for which a reduction to the simple case has been achieved. Since finite
simple groups have a rich structure and so much is known about them, there is at
least a reasonable hope that it might be possible to verify the required properties
for this class of groups. For example, this approach appears to be close to a suc-
cessful completion as far as the McKay Conjecture is concerned; see [4] where the
relevant reduction theorem is established.

In the second part of the talk we discuss two situations in which purely group-
theoretical problems have been solved using character-theoretic methods. In both
cases, it was well-known that reformulations in terms of character theory did exist
but it was not immediately clear that these reformulations would indeed lead to a
reasonable strategy for attacking the problem. The two situations are:

Problem 1: Let C1, C2, C3 be conjugacy classes in a finite group G. Is it possible
to find elements x ∈ C1 and y ∈ C2 such that xy ∈ C3?

Problem 2: Let H be a subgroup of a finite group G and C be a conjugacy class
in G. Then determine the cardinality |C ∩HxH | for x ∈ G.

Problem 1 has a positive solution if and only if

∑

χ∈Irr(G)

χ(g1)χ(g2)χ(g
−1
3 )

χ(1)
6= 0 (where gi ∈ Ci are fixed).

This criterion has been successfully applied, for example, in connection with the
“rigidity criteria” for realising finite groups as Galois groups (see [9]), or in ques-
tions concerning the generation of finite simple groups by suitable elements (see
[3], [10]). It is remarkable that this even works uniformly for infinite families of
groups of Lie type, in the general framework of Lusztig’s theory [6]; a useful feature
in the above-mentioned applications is the fact that the classes Ci are such that
many terms in the above sum are actually zero. In a different direction, Lusztig
[7] has used this to classify embeddings of the alternating group A5 (which is gen-
erated by an element of order 2 and an element of order 3 such that the product
has order 5) into groups of exceptional Lie type. In this context, there are many
non-zero terms in the above sum and it is quite remarkable that it is possible at
all to compute the above sum with sufficient precision.

In order to deal with the second problem, consider the corresponding Hecke
algebraH, that is, the endomorphism algebra of the permutation module C[G/H ].
This algebra has a standard basis {Tx | x ∈ D} where D is a complete set of
representatives of the double cosets of H in G. Furthermore, we have a canonical
bijection from the set of irreducible characters ofH onto the set of those irreducible
characters of G which occur in C[G/H ]; given ϕ ∈ Irr(H), we denote by χϕ the
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corresponding irreducible character of G. With this notation, we have

|C ∩HxH | =
|H |

|CG(g)|

∑

ϕ∈Irr(H)

ϕ(Tx)χϕ(g) (with g ∈ C fixed).

Lusztig [8] has recently constructed a natural surjective map from the set of con-
jugacy classes in a finite Weyl group W to the unipotent classes of the underlying
algebraic group G. For G of exceptional type, the proof relies on the above for-
mula, applied to the case where G = G(Fq) is the finite group of Fq-rational points
of G and H consists of the Fq-rational points in a Borel subgroup of G. Then
the formula can be evaluated explicitly using the general theory developed in [6],
tables of Green functions (see [5]) and character tables of Hecke algebras (see [2]).
The actual computations were performed in GAP; for further details and worked
examples, see the survey [1]. In this way, explicit computations with GAP and
CHEVIE are used to establish a geometric result about algebraic groups.
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Computing generators of the unit group of an integral abelian group

ring

Willem A. de Graaf

(joint work with Paolo Faccin)

Let G be a finite abelian group. Consider the group of units of the integral
group ring of G:

(ZG)∗ = {u ∈ ZG | u−1 ∈ ZG}.
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By a theorem of Higman, (ZG)∗ = ±G × F , where F is a free abelian group.
Moreover, a straightforward formula is known for the rank of F . We refer to [4]
for an introduction into these matters.

The question remains what the generators of (ZG)∗ are. In 1966 Bass gave a
construction of a set of generators of a finite-index subgroup of (ZG)∗. This was
refined by Hoechsmann in 1992 ([3]), who gave a generating set of a subgroup of
generally much smaller index. He called the elements of this group constructible
units. Units lying outside this group are called exotic. Now the question is for what
groups G the group ring ZG has exotic units. Regarding the group of constructible
units, Hoechsmann wrote ([3]): “Does this method ever yield all units if n = |G| is
not a prime power? The answer seems to be affirmative for all n < 74.” Moreover,
for n = 74 he showed that there are exotic units. However, he did not answer the
question for n < 74.

This talk outlines an algorithm for computing generators of (ZG)∗. With its
implementation in Magma we have computed generators of (ZG)∗ for G of size
≤ 50 (except three cases), and for some G with |G| > 50. We found that for the
groups of the orders 40, 48, 60, 63 the constructible units do not generate the
full unit group. Here one possible exception is the group C2 × C2 × C2 × C6 for
which our computation did not terminate. (Here Cm denotes the cyclic group of
order m.) However, for all other orders, that we tested, we found that either no
group of that order yields exotic units, or that all groups of that order yield them.
Therefore, we conjecture that also the above mentioned group has exotic units
in its integral group ring. The index of the group of constructible units, for the
groups that we considered, is small, i.e., 1, 2, 3, or 4.

The algorithm is based on the construction of two groups: the subgroup H of
constructible units and a group U that comes from the isomorphism of QG with a
sum of cyclotomic fields. We have H ⊂ (ZG)∗ ⊂ U , with both indices finite. We
use these inclusions to compute generators of (ZG)∗.

Roughly, this works as follows. Initially we set H := H. We compute the
primes dividing the index of H in U . If (ZG)∗ is strictly bigger than H , there
is an element of order p in the quotient (ZG)∗/H , where p is one of the primes
computed previously. This leads to a nontrivial coset in Mp = (Up ∩H)/Hp. We
enumerate this last set, and see whether we find nontrivial cosets upH such that
u ∈ (ZG)∗. If we find such a u then we add it to H , and start from the beginning.
In order to make this work we have to change it slightly: we have to run through
the set of all v ∈ U with vp = 1, and see whether there is such a v with uv ∈ (ZG)∗.

In the algorithm we need unit groups of cyclotomic fields. To compute those
we use a construction due to Greither ([2]) of a finite-index subgroup, as well as a
Magma program by Claus Fieker for “saturating” a subgroup at a given prime p.

A very important role in all our constructions is played by an algorithm to
obtain multiplicative relations of elements of an algebraic number field (which in
our case is always a cyclotomic field). For this we used a Magma program by
Fieker, based on an algorithm by Ge ([1]).
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Building a Platform for Parallel Computational Algebra

Stephen A. Linton

Recent developments in computer technology force us to consider parallel program-
ming if we wish to continue exploiting more powerful hardware. Some previous
software has supported particular models of parallel computations in group the-
ory (ParGAP/MPI, Cooperman ’99 and SCSCP, Freundt et al. ’09). This talk
describes an ongoing project to provide wide-ranging and flexible support in GAP
for the development and and exploitation of parallel algorithms.

Our programming model for users focuses on “skeletons”, parallel programs into
which sequential content can be slotted to solve a particular problem. A challenge
for the computational group theory community is to identify an appropriate set
of skeletons small enough that they can be implemented efficiently but powerful
enough to cover the most important group-theoretic computations.

The present state of the project is that a version of GAP is now available for
interested parties with extensions to support threaded programming and synchro-
nization primitives. Feedback and ideas are invited.

S2

Laurent Bartholdi

1. Branched coverings

We consider branched self-coverings of spheres, namely continuous maps f :
S2 → S2 that locally, in complex charts, look like z 7→ zd for some d ≥ 1. The
post-critical set of f is P =

⋃
n≥1 f

n(critical points of f), and is assumed to be
finite. We are interested in such f up to isotopy rel P ; namely, f ∼ g if there
exists a path of branched self-coverings from f to g whose post-critical set moves
smoothly.

On the one hand, many examples of branched self-coverings can be constructed
combinatorially, via triangulations; for these, it is natural to consider the maps up
to isotopy. On the other hand, a fundamental theorem by Thurston claims
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Theorem (Thurston). Let f be branched self-covering with #P ≥ 3. Then f
is isotopic to a rational map if and only if f admits no “Thurston obstruction”,
namely, if and only if, for every collection C of non-peripheral curves on S2 \ P ,
the QC-endomorphism c ∈ C →

∑
d∈f−1(c)∩C d/ deg(f |d) has spectral radius < 1.

Furthermore, in that case, the rational map is unique up to conjugation by a
Möbius transformation.

2. Bisets

Questions on branched coverings can in fact readily be translated to group-
theoretical questions as follows. The maps f, i : S2 \ f−1(P ) → S2 \ P , with i
the inclusion, induce group homomorphisms f∗, i∗ : H = π1(S

2 \ f−1(P )) → G =
π1(S

2 \ P ) on fundamental groups. Furthermore, f is a covering whence f∗ is
injective, and i is in general position whence i∗ is split. These maps f∗, i∗ are
only well-defined up to inner automorphisms, because of the problem of choosing
basepoints. The appropriate object to consider is the G-G-biset

Bf := (G×G)/{(g1i∗(h), g2) = (g1, f∗(h)g2)},

with its natural actions g0 · [(g1, g2)] · g3 = [(g0g1, g2g3)]. Say two G-G-bisets B,C
are isomorphic if there exists a bijection φ : B → C and an automorphism ψ of G
such that ψ(g)φ(b)ψ(g′) = φ(gbg′) holds.

Theorem (Kameyama [2], Nekrashevych [4]). The biset Bf is, up to isomorphism,
a complete invariant for f up to isotopy.

The biset Bf is free qua left G-set, because f∗ is injective; so Bf may be written
in the form G × X for a set X , of cardinality the degree of f . The structure of
the biset is then given by a multiplication table of the form x · g = g′ · x′ for every
x ∈ X and (generator) g ∈ G. This makes these bisets amenable to computation.

I explained, in my talk, how I developed algorithms (implemented in [1]) to
solve the following tasks. They are implemented in the GAP package fr.

A1: Given a complex approximation of a rational map, construct its associ-
ated biset;

A2: Given bisets representing branched coverings, construct bisets for com-
binatorially related maps (e.g.: given two maps f, g with fixed critical
point pf , pg of same degree, remove a neighbourhood of pf , respectively
pg from S2 and glue the spheres together along the cut);

A3: Given a biset, compute either its associated rational map, up to some
desired precision, or its associated Thurston obstruction.

I then illustrated it on two particular examples, described in the following §§.

3. Cui’s map

Cui Guizhen suggested in 2010 that a “Sierpinski map”, namely a rational map
whose Julia set is a Sierpinski carpet, should have an invariant non-peripheral
curve with unbounded number of preimages. He then found a counterexample,
given combinatorially as follows:



2150 Oberwolfach Report 37/2011

∞

0 1

∞

0 1

f = fold

i = imbed

I have computed the associated rational map, as follows. First, the above picture
translates to a biset B ∼= G×X , with

G = 〈g0, g1, g∞ | g0g1g∞〉, X = {1, 2, . . . , 13},

and multiplication table

ւ 1· 2· 3· 4· 5· 6· 7·
·g0 2 g0 · 1 5 3 4 7 6
·g1 g−1

0 · 8 3 2 10 1 9 4
·g∞ 3 4 1 6 g−1

0 · 11 8 9

ւ 8· 9· 10· 11· 12· 13·

·g0 g−1
1 · 9 10 g−1

0 · 13 12 11 g−1
∞ · 8

·g1 12 g1 · 6 7 13 g0 · 5 11
·g∞ 2 7 5 g0 · 10 g∞ · 13 12.

Note in particular the cycles

π = (1, 3, 12, 4)(5, 9)(6, 7)(10, 13, 11)(2, 8),

ρ = (1, 5, 13, 6)(7, 10)(2, 3)(8, 11, 12)(4, 9)

under which the basis X is permuted by g0, g1 respectively. These are the mon-
odromy actions of a small loop around 0, 1 respectively.

Write the sought rational map as a quotient of polynomials of degree 13, and
write the equations that its coëfficients must satisfy if the map is to have branch
points with the desired degrees (i.e. respect the cycle structure of π, ρ). These
equations may be solved modulo 11, and then (by Hensel’s lemma) lifted to so-

lutions modulo 112
14

, namely approximate solutions in Z11. These solutions can
then be rounded to algebraic numbers using the LLL algorithm [3]. Six solutions
arise. This part of the search was done by H.-C. von Bothmer and J. Kröker.

My algorithm A1 then checked that one of these is correct. Its Julia set is
displayed in Figure 1.
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Figure 1. Julia set of Cui’s map

4. Pilgrim’s map

In [5, §1.3.4], Kevin Pilgrim described a self-covering of the sphere, obtained
from the z 7→ 2z map on the torus by rotating and blowing up an edge. It is a
degree-5 map f , and Pilgrim asked whether it can be realized as a complex map.
Combinatorially, the map subdivides the standard torus as described in Figure 2.

The biset may be written as G×X , with

G = 〈a, b, c, d | dcba〉, X = {1, 2, 3, 4, 5},

and multiplication table

1 · a = c−1 · 5 1 · b = 2 1 · c = a · 4 1 · d = b · 1

2 · a = 4 2 · b = 1 2 · c = 3 2 · d = 2

3 · a = 2 3 · b = 3 3 · c = 5 3 · d = d · 3

4 · a = 3 4 · b = d · 5 4 · c = a−1 · 1 4 · d = a · 4

5 · a = c · 1 5 · b = d−1 · 4 5 · c = 3 5 · d = c · 5.

My algorithmA3 found after a few seconds that {ac} is a Thurston obstruction,
with Thurston endomorphism (12 + 1

2 ).
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Figure 2. Target and source sphere of Pilgrim’s map
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rational coefficients, Math. Ann. 261 (1982) 4, 515–534.

[4] Volodymyr Nekrashevych, Self-similar groups, volume 117 of Mathematical Surveys and
Monographs, Amer. Math. Soc., Providence, RI, 2005.

[5] Kevin M. Pilgrim, Combinations of complex dynamical systems, Lecture Notes in Mathe-
matics 1827, Springer-Verlag (Berlin), 2003, x+118 pages.

The matrix group recognition project, past and future

Charles R. Leedham-Green

(joint work with H. Bäärnhielm, D. F. Holt, E. A. O’Brien)

Our project to construct a package to compute with matrix groups has at last,
after very many years of effort by many people, reached a state in which it is
functional, and has useful functionality. It is written in MAGMA, and makes use
of a wide variety of sophisticated properties of that system, including some that
have not otherwise been used in computational group theory.
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A paper by Henrik Bäärnhielm, Derek Holt, Eamonn O’Brien, and myself de-
scribing the current state of our project, and acknowledging the contributions of
many others, is in preparation.

The algorithm processes a matrix group over a finite field, given by generators,
in two passes. The first pass, using Aschbacher’s classification of matrix groups,
and specialist code for the various families of finite simple groups, constructs a
composition series (or composition tree) that passes through Op(G), where p is
the characteristic of the field, but ignores other characteristic subgroups. The
second pass constructs, from the composition tree, a more intrinsic composition
series that refines a chief series that passes through each term of the series 1 ≤
G1 ≤ G2 ≤ G3 ≤ G4 ≤ G, where G1 = Op(G), and G2 is the soluble radical of G,
and G3/G2 is the socle of G/G2, and G4 is the kernel of the permutation action
of G on the set of simple factors of G3/G2. This series (without G1, which is not
relevant to their work) was used by Babai and Beals in [1] to initiate a very serious
attack on the problem of deciding what can be determined about a finite matrix
group, or a black box group, in polynomial time, with or without various oracles.

Our use of this series is to enable the use of algorithms developed by John
Cannon and Derek Holt for calculating in finite groups for which the soluble radical
is known.

The status of our package is roughly as follows.
The final steps in dealing with classical groups are now being put into place.
Rather more work remains to be done on some exceptional and twisted groups.
There remain problems with making Aschbacher’s theorem constructive. We

are not aware of any problems that we cannot deal with in a satisfactory way; but
this is not the same as having a proof of a polynomial time algorithm.

A major breakthrough has very recently been made by Alex Ryba, who has
finally found a polynomial time algorithm for deciding whether or not a matrix
group is imprimitive or tensor decomposable. His algorithms, though not partic-
ularly fast, are practical, and are of fundamental importance. I am particularly
grateful to Richard Parker for pointing out to me (and, apparently, to Ryba) that
the algorithm deals with imprimitivity as well as tensor decomposition.

A further obstacle to producing a package that runs in provably polynomial
time lies in dealing with groups of Lie type of small rank in characteristic 2.

For example, Henrik Bäärnhielm has some extremely interesting and original
algorithms for computing in 2F4(q), the large Ree group over GF(q). Here q is
an odd power of 2, and the problem arises when q is large. A randomly chosen
element of G will then almost certainly be of odd order, and two randomly chosen
elements will almost certainly generate the whole group, so it is not easy to obtain
generators for a proper subgroup of even order. The problem then is to search
symbolically, looking for a polynomial equation of GF(q) whose solution will give
rise to an element of even order. To achieve this aim, a suitable element g of order
q−1 is found by random search, and an element of even order is sought in random
cosets of 〈g〉. The reduction of this search to the solution of a polynomial equation
is subtle, but can be carried out, and the procedure is reliable and fast. However,
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the polynomial time performance of the algorithm requires the even order elements
to be very roughly uniformly distributed amongst the (right) cosets of 〈g〉, and to
prove that this is the case seems an impossibly hard task.

As to the future, it is to be hoped that some of the work on the representation
theory of finite groups that is concerned with actual representations will find its
way into our project. For example, we recognise simple groups, and we should
recognise their irreducible representations in so far as these are known.

A package with similar objectives is being written in GAP by A. Seress and
M. Neunhöffer. We have taken from them the important idea of using ‘nice gen-
erators’ for the groups that appear in the nodes of the composition tree.
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Problem session

A problem session was held on August 4, 2011. The following problems and ques-
tions were presented.

Cheryl E. Praeger (joint with Frank Lübeck and Alice C. Niemeyer):
Let G = Class(n, q) be a finite n-dimensional classical group over a field of odd

order q, and let V be the natural module. Let Q consist of those g ∈ G such that
|g| is even and such that the dimension of the fixed point subspace of g|g|/2 in V
lies in [n3 ,

2n
3 ). It was shown in [LNP] that |Q|/|G| ≥ c/ log(n) for some constant

c > 0 depending on the Lie type of G. Also statistical tests reported in [LNP], and
based on random samples from several classical groups, suggest that the |Q|/|G|
may not be statistically much different from O(log(n)).

Question. What is the asymptotic value of |Q|/|G|? In particular, is it true
that |Q|/|G| = O(log(n))?
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[LNP] F. Lübeck, A. C. Niemeyer, and C. E. Praeger. Finding involutions in finite Lie type
groups of odd characteristic, J. Algebra 321 (2009), 3397-3417.

James B. Wilson:

Definition. If G is a group then we define the natural central product of G with
itself as:

G ◦G = (G×G)/〈(z, z−1) : z ∈ Z(G)〉.

It is well-known that

D8 ◦D8
∼= Q8 ◦Q8
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yet D8 and Q8 are not isomorphic.
Question. If G and H are p-groups of class 2 and exponent p which are not

themselves central products of proper subgroups, can

G ◦G ∼= H ◦H

yet G and H be non-isomorphic?
It appears that an example of this sort may exist, however, a minimal counter-

example appears to need order 530 or greater. The interest as well as details
surrounding this problem are given in [W] Section 8.2.
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Laurent Bartholdi:

Let F be a free group of finite rank. Let S = {1, . . . , k} be a finite set, and let
φ : F → F ≀S Sym(S) be a homomorphism. Iterating φ, we get homomorphisms
denoted φn : F → F ≀Sn Sym(Sn), and therefore an action of F on Sn for any
n ≥ 1. Let N be the kernel of the induced action of F on

⊔
n≥ S

n, the disjoint
union of the previous actions.

For example, F = 〈x, y〉, S = {1, 2}, and φ(x) = 〈x2, x−1y, (1, 2)〉, φ(y) =
〈xy, x, ()〉. The permutation action of x on {1, . . . , 2} is (1, 2), while that on
{11, 12, 21, 22} is (11, 21, 12, 22).

Question. Can F/N have undecidable word problem?
For example, although it is not obvious, yxy−1xy−1xyx−3 = 1 in the above

example.

Charles R. Leedham-Green:

Traditional computational group theory consists of manipulating specific ele-
ments of specific groups. In some cases, however, one needs to compute symbol-
ically. For example, if G is a group of Lie type in characteristic 2, with defining
field of size q, and if G is given by a generating set consisting of a small number
of random elements, one generally needs, as a first step in computing with G, to
find an involution; and since q can be exponentially large a random search may be
too slow. The alternative, which we use in practice, is to reduce to a group H of
small rank, such as SL(2, q), and then search symbolically in H for an element of
even order. For example a set of q− 1 elements of G, a coset of some cyclic group,
is defined by a parameter in GF(q), and a value of this parameter that will define
an element of even order is obtained by solving a polynomial equation. Discrete
logs are then used to express this value as a power of the chosen primitive element
of GF(q), and hence to obtain the element as a word in the given generators.

There are increasingly many instances of symbolic computation in group theory.
For example, D. Feichtenschlager, as student of B. Eick, carried out significant
calculations in p-groups that were defined symbolically, and deep thought is an
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algorithm that gives a symbolic formula for the product of two elements of a given
p-group.

The question arises as to whether symbolic computation will play a major role
in the future of computational group theory, or whether it will remain as a set of
occasional tools.

Leonard H. Soicher:

Problem. For a given action of a group G on a (finite) set Ω, devise an algorithm
which, given α ∈ Ω, determines a “canonical” element in the orbit αG.

This has been done for certain specific actions, but I would like to see a general
approach, if possible. Typically αG will be extremely large and it will be impossible
to enumerate the elements of αG explicitly.

Eamonn A. O’Brien:

Problem. Construct all irreducible representations of An over Fq of degree d,
where n ≤ 25 and d ≤ n3.

This is motivated by the following much-studied problem: which irreducible
representations of simple groups over finite fields have a base of size 2? For larger
values of n, theoretical “gap results” can be used to describe such representations.

Reporter: Tobias Rossmann
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Lehrstuhl D für Mathematik
RWTH Aachen
Templergraben 64
52062 Aachen

Dr. William R. Unger

School of Mathematics & Statistics
The University of Sydney
Sydney NSW 2006
AUSTRALIA

Prof. Dr. Michael R. Vaughan-Lee

Mathematical Institute
Oxford University
24-29 St. Giles
GB-Oxford OX1 3LB



Computational Group Theory 2161

Christian Weber

Lehrstuhl D für Mathematik
RWTH Aachen
Templergraben 64
52062 Aachen

Prof. Dr. James B. Wilson

Department of Mathematics
Colorado State University
Weber Building
Fort Collins , CO 80523-1874
USA

Prof. Dr. Robert A. Wilson

School of Mathematical Sciences
Queen Mary, University of London
Mile End Road
GB-London E1 4NS




