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Introduction by the Organisers

The workshop Partial differential equations, organised by Luigi Ambrosio (SNS
Pisa), Alice Chang (Princeton), Reiner Schätzle (Universität Tübingen), and Georg
S. Weiss (University of Tokyo) was held August 7-13, 2011. This meeting was well
attended by 52 participants, including 5 females, with broad geographic represen-
tation. The program consisted of 17 talks and 6 shorter contributions and left
sufficient time for discussions.

New results were presented in geometric measure theory, for example a strik-
ing lower bound for the density of singular minimal cones and the regularity of
stationary, stable, integral varifolds in codimension 1. Also there were results on
singular cones and uniqueness of tangent cones for certain free boundary problems.

Also there were several contributions to regularity of solutions of partial differ-
ential equations and to mean curvature flow. We mention a well-posedness result
for a critical nonlinear wave equation in two space dimensions.

A major part of the leading experts of partial differential equations with con-
formal invariance attended the workshop. Here new results were presented in
conformal geometry, for the Yamabe problem and the Paneitz operator. For the
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Willmore functional, it was established that the Clifford torus minimizes the Will-
more energy in an open neighbourhood of conformal classes.

The organisers and the participants are grateful to the Oberwolfach Institute for
presenting the opportunity and the resources to arrange this interesting meeting.
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Abstracts

Proof of the Fundamental Gap Conjecture

Julie Clutterbuck

(joint work with Ben Andrews)

Consider the Dirichlet eigenvalue problem for a Schrödinger operator on a
bounded domain Ω ⊂ Rn, with eigenvalues and associated eigenfunctions satis-
fying

∆φi − V (φi) + λi φi ≡ 0 in Ω,

φi ≡ 0 on ∂Ω.

The spectrum is

λ1 ≤ λ2 ≤ λ3 ≤ · · · → ∞,

and in the special case that V ≡ 0, it is a geometric invariant of Ω related to other
geometric invariants (such as diameter, volume, perimeter measure) in interesting
ways. In statistical physics, the fundamental gap between the first two eigenvalues,
λ2 − λ1, represents the excitation energy of a quantum system.

In 1983, van den Berg conjectured that for convex domains Ω and convex
potentials V the gap is bounded below by 3π2/D2, where D := diameter(Ω) [8].

Previous results: Singer, Wong, Yau and Yau [7] used a gradient estimate on
the ratio of eigenfunctions φ2/φ1 (satisfying an elliptic equation with Neumann

boundary conditions) to find a lower bound λ2 − λ1 ≥ π2

4D2 . Yu and Zhong, us-
ing essentially the same methods and some delicate analysis of the asymmetrical

situation when maxφ2 6= −minφ2, improved this to λ2 − λ1 ≥ π2

D2 [9].
In the one-dimensional case, after significant progress on the problem by Ash-

baugh-Benguria and Horváth, it was proved by Lavine in 1994 [3, 5, 6].
In recent work with Ben Andrews, we used estimates for parabolic equations to

settle the conjecture completely [2]:

Theorem 1 (Optimal gap bound). Let Ω ⊂ Rn be convex with diameter D, and
let V : Ω → R be convex. Then the fundamental gap satisfies

λ2 − λ1 ≥ 3π2

D2
.

A sketch of the proof: Note that in the one-dimensional case, the domain is an
interval and the problem becomes

φ̃′′i − Ṽ (φ̃i) + µi φ̃i ≡ 0 in (−D
2 ,

D
2 )

φ̃i ≡ 0 on {−D
2 ,

D
2 }.

When the potential is constant there is a simple solution with µi = i2π2/D2 + Ṽ ,
so that µ2 − µ1 = 3π2/D2, thus attaining the gap’s lower bound. We use this
solution as a comparison.
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When making estimates on the ratio of eigenfunctions φ2/φ1, Singer-Wong-
Yau-Yau employed a result of Brascamp–Lieb [4]: the first eigenfunction φ1 is
log-concave, D2(log φ1) ≤ 0. In fact, one can improve this – the first eigenfunction

φ1 is at least as log-concave as φ̃1, the first eigenfunction in the one-dimensional
case:

Theorem 2 (Improved log-concavity of the first eigenfunction).

(∇ logφ1(y)−∇ logφ1(x)) ·
(y − x)

|y − x| ≤ 2(log φ̃1)
′
( |y − x|

2

)
.

The term on the right is simply − 2π
D tan

(
π|y−x|
2D

)
.

Our next step is to make a parabolic version of the eigenfunction ratio, v(x, t) :=
e−λ2tφ2(x)
e−λ1tφ1(x)

. This satisfies a heat equation with drift term and Neumann boundary

data

(1) vt = ∆v + 2∇v · ∇ logφ1 in Ω× [0,∞), Dνv = 0 on ∂Ω× [0,∞).

For this equation, we use a technique originally developed to find short-term gra-
dient estimates for mean curvature flow with rough initial data [1] to find:

Theorem 3 (Oscillation bound for heat equation with drift). Let v satisfy (1).
Then

v(y, t)− v(x, t) ≤ C e−(µ2−µ1) t

for any y, x ∈ Ω and any t ∈ [0,∞).

The improved log-concavity estimate is essential here.

The final step is to note that this oscillation estimate for v = e−(λ2−λ1) t
(

φ2

φ1

)

may be rearranged as

oscΩ

(
φ2
φ1

)
≤ Ce[(λ2−λ1)−(µ2−µ1)] t.

If it were the case that (λ2 −λ1)− (µ2−µ1) < 0, then letting t→ ∞ would imply
that oscΩ(φ2/φ1) ≡ 0, an absurdity as these are distinct eigenfunctions. Hence,
we must have

λ2 − λ1 ≥ µ2 − µ1 =
3π2

D2
.

This completes the proof of the conjecture.
The method also gives sharp results in cases where the potential is either

non-convex, or satisfies a stronger convexity condition. In these cases the one-
dimensional problem includes a potential Ṽ which depends explicitly on V .

Theorem 4 (Gap bound for general Schrödinger operators). Let Ω ⊂ Rn be a
bounded convex domain of diameter D. Then the Dirichlet eigenvalues of the
Schrödinger operator satisfy

λ2 − λ1 ≥ µ2 − µ1,
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where µ1, µ2 are the Dirichlet eigenvalues of the one-dimensional Schrödinger op-
erator on (−D/2, D/2) with potential Ṽ satisfying

(∇V (y)−∇V (x)) · (y − x)

|y − x| ≥ 2Ṽ ′
( |y − x|

2

)
.
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Applications of Di Perna-Lions’ theory to semiclassical limits for the

Schrödinger equation

Alessio Figalli

In their seminal paper [5], DiPerna and Lions studied the connection between
the well-posedness of transport equations and the associated ODEs. Their main
result states that the continuity equation

∂tµt + div(btµt) = 0

is well-posed in L1
t,x ∩ L∞

t,x provided bt : Rn → Rn is Sobolev (uniformly with
respect to t) and satisfies suitable global conditions. Moreover, from this result
they deduce that, roughly speaking, the associated ODE

{
Ẋ(t, x) = bt(X(t, x)),
X(0, x) = x

}

has a unique solution for Ln-a.e. x ∈ Rn (the precise result is actually slightly
different, and we refer to [3] for more details). This result has then been extended
by Ambrosio to BV vector fields [1].
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In [2, 4] we investigated this theory in a more general setting, which allows us
to show the convergence as ǫ→ 0 of the quantum dynamics

iǫ ∂tψ
ǫ = −ǫ2∆ψǫ + U(ψǫ)

to the Liouville dynamics under very weak regularity assumptions on the potential
U . This setting includes, for instance, the treatment of the Born-Oppenheimer
potential energy surface in molecular dynamics, see [4] and also [6]. In analogy to
the classical DiPerna-Lions’ theory, the price to pay for allowing singular potentials
is that the convergence result holds true only for “a.e. initial data”, where “a.e.”
means with respect to some suitable family of reference measures within the space
of all initial data.
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Cα
−regularity for a class of non-linear elliptic systems with p−growth

Jens Frehse

(joint work with Miroslav Bulicek)

We consider Euler equations to variational integrals of the type
∫

Ω

F (x,Du)− f · u dx

with p−growth and with boundary conditions. Under certain structure conditions
we achieve Cα−a-priori-estimates and existence of Cα−extremals. These structure
conditions have a rather different form than the “Uhlenbeck-case”

∫
Ω
F (x, | Du |2

)− f u dx. We are able to treat integrals of the type
∫

Ω

m∑

i=1

| Qi(Du) |pi −f · u dx,

where Qi(Du) :=
∑m

µ,ν=1 ∇uµAi
µν∇uν with positive definite symmetric matrices

Ai
µν . Since the A

i
µν need not commute, the structures of the examined functionals

differ from the structures of Uhlenbeck-type functionals. Non-convex integrands,
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for example F (x,Du) := Πm
i=1 | Qi(Du) |pi can also be treated in the sense, that

weak solutions of the Noether-equations are of regularity class Cα.

A new conformal invariant from generalized scalar curvature

Yuxin Ge

(joint work with Guofang Wang)

In this talk we describe some new conformal invariants related to an inequality
proved recently by De Lellis and Topping. In particular, we prove that the De
Lellis-Topping inequality is true on 3-dimensional and 4-dimensional Riemann-
ian manifolds of nonnegative scalar curvature. More precisely, if (Mn, g) is a 3-
dimensional or 4-dimensional closed Riemannian manifold with non-negative scalar
curvature, then

∫

M

|Ric− R

n
g|2 dv(g) ≤ n2

(n− 2)2

∫

M

|Ric− R

n
g|2 dv(g),

where R = vol(g)−1
∫
M Rdv(g) is the average of the scalar curvature R of g.

Equality holds if and only if (M, g) is an Einstein manifold. We in fact study the
following new conformal invariant

Ỹ ([g0]) := sup
g∈C1([g0])

vol(g)
∫
M σ2(g) dv(g)

(∫
M σ1(g) dv(g)

)2 ,

where C1([g0]) := {g = e−2ug0 |R > 0}. By improving the analysis developed in

the study of the σk-Yamabe problem, we prove that Ỹ ([g0]) ≤ 1/3 when n = 3

and Ỹ ([g0]) ≤ 3/8 when n = 4, which particularly implies the above inequality.
Some related results in high dimensions n > 4 are also described.

Fractional Yamabe problems

Maria del Mar Gonzalez Nogueras

Based on the relations between scattering operators of asymptotically hyper-
bolic metrics and Dirichlet-to-Neumann operators of uniformly degenerate ellip-
tic boundary value problems observed, we formulate fractional Yamabe problems
that include the boundary Yamabe problem. We observe an interesting Hopf type
maximum principle together with interplays between analysis of weighted trace
Sobolev inequalities and conformal structure of the underlying manifolds, which
extend the phenomena displayed in the classic Yamabe problem and boundary
Yamabe problem.
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Existence of smooth solutions of degenerate partial differential

equations

Qing Han

I am interested in degenerate partial differential equations for which degeneracy
occurs in a controlled way. One particular problem is the eigenvalue problem
for the Monge-Ampère equation on strictly convex domains with zero Dirichlet
boundary values, which results in degeneracy along the boundary. Another prob-
lem is the global isometric embedding of the torus into 3-dimensional Euclidean
space, for which the degeneracy occurs in those points where the Gauss curvature
vanishes. The first problem is degenerately elliptic, while the second one is of
mixed type. The goal is to prove the existence of (global) smooth solutions. In a
recent work I proved that C1,1−solutions are always smooth if the set of degener-
acy has a simple geometry and if the Hessian matrix of the solutions have at most
one zero eigenvalue. Different from previous works, we do not assume asymptotic
behaviours of degenerate functions.

Rigidity estimates for mean curvature flow

Gerhard Huisken

(joint work with C. Sinestrari)

We consider ancient convex solutions of mean curvature flow, that is a one–
parameter family of smooth immersions F : Sn × (−∞, T ) → Rn+1 satisfying

(1)
∂F

∂t
(p, t) = −H(p, t) ν(p, t), p ∈ Sn, t > −∞,

(2) F ( · , 0) = F0,

where H(p, t) and ν(p, t) are the mean curvature and the outer normal respectively
at the point F (p, t) of the surface Mt := F ( · , t)(Sn). The signs are chosen such

that −H ν = ~H is the mean curvature vector and the mean curvature of a convex
surface is positive.

Ancient solutions of mean curvature flow appear as blow-up limits from singu-
larities of the flow [3], [4] and are of independent interest in the theory of renor-
malisation group flows [2]. It is wellknown that apart from the homothetically
shrinking sphere there are other examples of embedded ancient compact solutions
that are strictly convex and degenerate in some way as t → −∞. An example
is the ”Angenent oval”, a convex ancient solution of the curve shortening flow
discovered by Angenent that decomposes into two translating solutions of the flow
as t → −∞. Daskalopoulos, Hamilton and Sesum showed that apart from the
homothetically shrinking circle this is the only other embedded convex compact
ancient solution of the curve shortening flow, [5].
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The lecture explains new estimates that show that the homothetically shrinking
sphere is rigid in the class of ancient convex solutions that satisfy certain uniformity
estimates as t→ −∞. Let λ1 ≤ λ2 ≤ · · · ≤ λn be the principal curvatures.

Theorem 1. Suppose F : Sn × (−∞, T ) → Rn+1 is a smooth convex solution of
mean curvature flow satisfying the estimate

(3) λ1 ≥ ǫH

or

(4) diam(Mt) ≤ C (1 +
√
−t)

uniformly on Sn × (−∞, T ). Then the solution Mt is a homothetically shrinking
sphere.

The proof of the first result relies on the fact that certain integrals of powers
of the tracefree part of the second fundamental form are decaying at supercritical
rate under mean curvature flow, allowing the conclusion that the tracefree part
has to vanish on ancient solutions satisfying the first assumption. The second
part of the theorem can be reduced to the first part via a contradiction argument,
exploiting Hamilton’s Harnack inequality in [2].

This result is reminiscent of a similar result for Ricci flow obtained by Brendle,
Huisken and Sinestrari in [1]. There it is shown that ancient solutions of Ricci
flow that are positively curved and sufficiently pinched must be shrinking spherical
space-forms.

The lecture continues to explain partial results for the case of convex, uniformly
2-convex ancient solutions of the flow. It also explains work in progress on how
these estimates can be extended to asymptotically flat Riemannian 3-manifolds of
positive mass in order to construct unique ancient solutions that are asymptotic
to the center of mass in backward time.
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W 2,2-conformal immersions of closed Riemann surfaces

Ernst Kuwert

(joint work with Yuxiang Li)

We study sequences fk : Σk → Rn of conformally immersed, compact Riemann
surfaces with fixed genus p and Willmore energy

W(fk) =
1

4

∫

Σ

| ~Hfk |2 dµfk ≤ Λ.

By the Gauß equations and the Gauß-Bonnet theorem, the bound is equivalent to
an L2−bound for the second fundamental forms Ak. We rely on results of Müller
& Šverák [7] and Hélein [2] about regularity of conformal parametrizations in this
context.

Theorem 1. Under the assumptions above, suppose the Σk converge to a Riemann
surface Σ in moduli space, i.e. there exist orientation-preserving diffeomorphisms
φk : Σ → Σk such that φ∗k(Σk) → Σ as complex structures. Then for a subsequence
there exist Möbius transformations σk and a finite set S ⊂ Σ such that

σk ◦ fk ◦ φk → f weakly in W 2,2
loc (Σ\S,Rn),

where f is a W 2,2− branched conformal immersion. Moreover if Λ < 8π, then f
is unbranched.

To define the notion of branched conformal immersions in the W 2,2−context,
we use a local expansion following from [7]. Our second theorem deals with the
case when the surfaces Σk degenerate.

Theorem 2. Under the above assumptions, assume now that the Σk diverge in
moduli space. Then we have

lim inf
k→∞

W(fk) ≥
{
8π for p = 1,

min(8π, ωn
p ) for p ≥ 2.

Let βn
p be the infimum of the Willmore energy among genus p immersions into Rn.

Then the constants ωn
p are defined by

ωn
p = min

{
4π +

∑

i

(βn
pi

− 4π) : p =
∑

i

pi, 1 ≤ pi < p
}
.

We know from [1] that ωn
p > βn

p , and in fact ωn
p > 8π for sufficiently large p by

[4].

We refer to our paper [3] for further information. Previous work by Kuwert &
Schätzle relates as follows to the presented results: Theorem 1 was proved in [6],
if n = 3 and Λ < min(8π, ω3

p), and also if n = 4 and Λ < min(8π, ω4
p, β

4
p + 8π

3 ).
This was applied to construct immersions which minimize in a given conformal
class. The existence result is restricted by the above bounds, while the regularity
is general. Theorem 2 was proved in [5] for n = 3, and for n = 4 with the lower
bound min(8π, ω4

p, β
4
p + 8π

3 ).
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By Theorem 1 we get existence of conformally constrained minimizers in any
codimension below 8π. This is obtained independently in [8] by Rivière, including
regularity under a nondegeneracy assumption. The existence result follows also
from recent work by Schätzle [10]. Theorem 2 was announced by Rivière in [8];
the proof is given in a recent preprint [9]. We finally mention the preprint [11] of
M. Schmidt, which motivated some of the research.
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On the log determinant functional of the Paneitz operator

Andrea Malchiodi

(joint work with Matthew Gursky)

Let (Mn, g) be a closed Riemannian manifold. Let ∆ = ∆g denote the Laplace-
Beltrami operator, and label the eigenvalues of (−∆g) by 0 = λ0 < λ1 ≤ λ2 ≤ . . . ,
counting multiplicities. The spectral zeta function of (Mn, g) is

ζ(s) =

∞∑

j=1

λ−s
j .(1)

By Weyl’s asymptotic law, (1) defines an analytic function for Re(s) > n/2.
Note that formally–that is, if we were to take the definition in (1) literally–then

ζ′(0) = −
∞∑

j=1

logλj = − log det(−∆g),(2)
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although of course the series (1) does not define an analytic function near s = 0.
However, one can meromorphically extend so that ζ becomes regular at s = 0 (see
[5]), and in view of (2) define the regularized determinant by

det(−∆g) = e−ζ′(0).(3)

For compact surfaces Polyakov was able to write a local formula for the ratio of
the determinants for two conformal metrics (see [4]). Suppose ĝ = e2wg, then

log
det(−∆ĝ)

det(−∆g)
= − 1

12π

∫

M

(|∇w|2 + 2Kw) dA,(4)

where K = Kg is the Gauss curvature of g.
In deriving (4) Polyakov exploited a crucial property of the Laplacian in two-

dimensions, namely, its conformal covariance: if ĝ = e2wg, then ∆ĝ = e−2w∆g.
In general, we say that the metric-dependent differential operator A = Ag is
conformally covariant of bi-degree (a, b) if ĝ = e2wg implies

Aĝ(ψ) = e−bwAg(e
awψ)(5)

for each smooth function ψ. In four dimensions, the Paneitz operator

P = (−∆)2 + δ

(
2

3
Rg − 2Ric

)
◦ ∇,(6)

satisfies (5) with a = 0 and b = 4. In [2], [1] it was proved that, analogously to
(4), one has that

log
det(Pĝ)

det(Pg)
= −1

4
I − 14II +

8

3
III,(7)

where

I[w] = 4

∫
w|W |2 dv −

(∫
|W |2 dv

)
log

∫
e4w dv,(8)

II[w] =

∫
wP (w) dv −

(∫
Q dv

)
log

∫
e4(w−w) dv,(9)

III[w] = 12

∫
(∆w + |∇w|2)2 dv − 4

∫
(w∆R +R|∇w|2) dv.(10)

Here W stands for the Weyl curvature, R for the scalar curvature and Q for the
Q-curvature, see e.g. [2]. The main result in [3] is the following.

Theorem 1. Let S4 be the 4-sphere, and g0 the round metric it inherits as a
submanifold of R5. Then there is some critical point u ∈ C∞(S4) of FP such that
u is rotationally symmetric and even, and moreover the metric g = e2ug0 is not
conformally equivalent to g0.
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The role of Wolff-Potentials in the analysis of degenerate parabolic

equations

Giuseppe Mingione

The aim of this talk is to present the recent discovery, made in [7], [8], [9],
[10], of the fact that, provided a natural intrinsic formulation is considered, Wolff
potentials play a fundamental role in the regularity analysis of non-homogeneous
degenerate parabolic equations of p-Laplacean type, i.e., those modeled by

(1) ut − div(|Du|p−2Du) = µ.

Wolff potentials ([4]) play a fundamental role in the analysis of nonlinear elliptic
equations and in the fine properties of solutions to boundary value problems. In
particular, basic results in [5], [14], [2], [3] yield L∞−bounds for solutions (and
their derivatives) to equations as −div(|Du|p−2Du) = µ with p-growth. In par-
ticular, the gradient estimates in [2] and [3], whose proofs allow to recover the
pointwise estimates for u, show – for basic model problems – several of the inte-
grability results known for measure data problems. Apart from the case p = 2, the
problem of finding potential estimates for the parabolic case was still open. Even
the definition of suitable nonlinear potentials was unclear. In particular, as crys-
talized in [1], it is impossible to analyze the behaviour of solutions to equations as
(1) without using the concept of intrinsic geometry, that is, studying the behaviour
of u on “intrinsic cylinders” of the type Qλ

r (x0, t0) := Br(x0) × (t0 − λ2−pr2, t0)
whose sizes depend on the solutions itself in the following intrinsic way:

(∮

Qλ
r

|Du|p−1 dxdt

)1/(p−1)

:=

(
1

|Qλ
r |

∫

Qλ
r

|Du|p−1 dxdt

)1/(p−1)

≈ λ.

This, in turn, makes the usual definition of nonlinear Wolff potentials

W̃
µ
β,p(x0, t0, r) :=

∫ r

0

( |µ|(Qρ(x0, t0))

ρN−βp

)1/(p−1)
dρ

ρ
, β ∈ (0, N/p]

constructed by means of standard parabolic cylinders Qr(x0, t0) := Br(x0)× (t0−
r2, t0), unuseful for this setting. The approach of [7], [8], [9], [10] proposes to adopt
the intrinsic geometry approach in the context of nonlinear potential estimates.
This provides some class of intrinsic Wolff potentials that turn out to be the natural
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objects to be considered, as their structures allow to recast the behaviour of the
Barenblatt solution - the so-called nonlinear fundamental solution. For this reason
we introduce the following intrinsic Wolff potential

W
µ
λ(x0, t0, r) :=

∫ r

0

(
|µ|(Qλ

ρ(x0, t0))

λ2−pρN−1

)1/(p−1)
dρ

ρ
, N := n+ 2,

defined by means of intrinsic cylinders, where N is the usual parabolic dimen-
sion. The key result is the following which holds for properly defined solutions to
measure data problems:

Theorem 1. Let u be a solution to (1) with p ≥ 2. For almost every (x0, t0) ∈
ΩT := Ω× (0, T ) there exists some constant c ≥ 1, depending only on n, p, µ, such
that whenever Qλ

r := Br(x0)× (t0 − λ2−pr2, t0) ⊂ ΩT is an intrinsic cylinder with
vertex at (x0, t0), such that

cWµ
λ(x0, t0, r) + c

(∮

Qλ
r

(|Du|+ s)p−1 dxdt

)1/(p−1)

≤ λ

holds, then

|Du(x0, t0)| ≤ λ.

Theorem 1, which in fact extends to general quasilinear parabolic equations,
in turn, gives back the classical L∞−bound due to DiBenedetto [1] who indeed
proved that

c

(∮

Qλ
r

(|Du|+ s)p−1 dxdt

)1/(p−1)

≤ λ =⇒ |Du(x0, t0)| ≤ λ.

Moreover, Theorem 1 is in a way universal in that it allows

• To recast in a sharp way the asymptotic behaviour of the Barenblatt- (i.e.
fundamental) solution when applied to the equation ut−div(|Du|p−2Du) =
δ, where δ is the Dirac measure charging the origin; such an estimate is
then found to hold for every quasilinear parabolic equation of the type
ut − div(a(Du)) = δ;

• To formulate a non-intrinsic a priori estimate on standard parabolic cylin-
ders, which in fact exhibits the natural anisotropic structure typical for
parabolic problems:

|Du(x0, t0)| ≤ cW̃µ
1/p,p(x0, t0, r) + c

∮

Qr

(|Du|+ s+ 1)p−1 dxdt

holds whenever Q2r ≡ B2r(x0)× (t0 − 4r2, t0) ⊂ ΩT ;
• To recast the known elliptic gradient Wolff potential estimates in the sta-
tionary case;

• To have an a-priori estimate which involves standard elliptic Wolff poten-
tials in those cases when µ is time-independent or admits a favourable
space/time decomposition.
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New explicit examples of constrained Willmore minimizers

Cheikh Birahim Ndiaye

(joint work with Reiner Michael Schätzle)

In this talk, we present a convergence procedure which improves weak convergence
of conformally constrained Willmore immersions to smooth convergence and apply
this to get new explicit examples of constrained Willmore minimizers. In fact,
by estimates of Li-Yau in [4] and Montiel-Ros in [5], the Clifford torus TCliff :=
1√
2
(S1×S1) ⊂ S3 minimizes the Willmore energy within its conformal class. Using

our convergence procedure, we extend this to the constant mean curvature surfaces
Tr := r S1 ×

√
1− r2 S1 ⊂ S3 for r ≈ 1√

2
. Furthermore, as a by-product of our

arguments, we give a result which improves the region of validity of the Willmore
conjecture.
In order to describe our results more precisely, we first recall that, given an im-
mersion f : Σ −→ Rn of a closed orientable surface, the Willmore energy of f is
defined by

W(f) :=
1

4

∫

Σ

| ~H |2dµg,
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where ~H is the mean curvature vector of f , g := f∗geuc is the pull-back by f of
the standard metric geuc of Rn and µg the induced area measure on Σ. Critical
points of W under compactly supported variations are called Willmore surfaces.
They satisfy the following Euler-Lagrange equation:

(1) ∆g
~H +Q(A0) ~H = 0,

where ∆g is the Laplacian of the normal bundle of f , A0 := A − 1
2g ⊗ ~H is the

trace free part of the second fundamental form A of f , and Q(A0) acts linearly on
normal vectors along f by

Q(A0)(φ) := gikgjlA0
ij < A0

kl, φ > .

Critical points of W under fixed conformal class are called constrained Willmore
surfaces. They satisfy the following Euler-Lagrange equation:

(2) ∆g
~H +Q(A0) ~H = gikgjlA0

ijqkl,

where q is a smooth transverse traceless symmetric 2-covariant tensor with respect
to g, i.e.

qkl = qlk,

trgq = gklqkl = 0,

gij∇iqjk = 0.

(3)

For Σ ≇ S2, M0 the set of metrics on Σ, T its Teichmüller space, π : M0 −→ T
the projection, f : Σ −→ Rn, and V ∈ C∞(Σ,Rn) we set

δπf .V :=
d

dt
π ((f + tV )∗geuc) |t=0,

and for a chart ψ : U(π(g)) −→ RdimT , we put π̂ := ψ ◦ π. We call an immersion
f weakly conformally constrained Willmore, if

(4) δW(f) ∈ span{δπ̂s
f | s = 1, . . . , d}

for some d ≤ dimT . We say that such an f is of full rank for the weak constraint,
if there exist variations V1, . . . , Vd ∈ C∞(Σ,Rn) such that

(δπ̂f .V
s
r )r,s=1,...,d ∈ Rd×d is non-singular.

Now, having fixed the needed notation and definitions, we are ready to state our
convergence result which reads as follows:

Theorem 1. Let fm : Σ ≇ S2 −→ Rn with gm := f∗
mgeuc = e2umgpoin,m for some

unit constant curvature metric gpoin,m and

fm −→ f weakly in W 2,2(Σ), weakly∗ in W 1,∞(Σ),

um −→ u weakly in W 1,2(Σ), weakly∗ in L∞(Σ),

gpoin,m −→ gpoin smoothly.

(5)
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Assume further that fm are weakly conformally constrained Willmore and f is of
full rank for the weak constraint. Then for a subsequence

fm −→ f is smooth on Σ \ {p1, . . . , pN},
outside finitely many points p1, . . . , pN ∈ Σ, and if fm −→ f strongly in W 2,2(Σ),
then

fm −→ f smoothly on Σ.

The proof of Theorem 1 is based on the definition of weak conformal constraint,
of full rank for the weak conformal constraint, the interior estimate of Kuwert-
Schätzle [3], the work of Kuwert-Schätzle [2] and standard elliptic regularity theory.
In order to present the second result of this talk, we first recall that any torus is
conformally equivalent to a quotient Tω := C/(Z+ ωZ) with geuc and

ω ∈ M = {a+ ib ∈ C : b > 0, 0 ≤ a ≤ 1

2
, a2 + b2 ≥ 1}.

Obviously, we have TCliff ≃ Ti and for r 6= 1√
2
, Tr ≃ Tibr with br =

√
1−r2

r . On

the other hand, we have that Tr reach each rectangular structure exactly once for
rb =

1√
1+b2

. Now, setting

M(ω) = inf{W(f)| f : Tω −→ R3 conformal}
for ω ∈ M, the second presented result reads as follows:

Theorem 2. Tr minimizes the Willmore energy within its conformal class for
r ≃ 1√

2
and n = 3. Actually, we have

W(Trb) = M(ib) = min
a∈R

M(a+ ib), for b ≃ 1, b ≥ 1.

The proof of Theorem 2 uses the results of Kuwert-Schätzle in [1] and [2], our
convergence theorem (Theorem 1), the uniqueness result of Li-Yau [4] and the
stability result of Weiner [6]. A direct corollary of Theorem 2 is the following
result which improves the region of validity of the Willmore conjecture.

Corollary 1. The Clifford torus TCliff is the unique minimizer in R3 – up to
Möbius transformations – of the Willmore energy in an open neighbourhood in
moduli space of its conformal structure.
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Normalized Ricci flows and conformally compact Einstein metrics

Jie Qing

(joint work with Yuguang Shi and Jie Wu)

In our recent work we investigated the behaviour of the normalized Ricci flow
on asymptotically hyperbolic manifolds. We showed that the normalized Ricci
flow exists globally and converges to an Einstein metric when starting from a
non-degenerate and sufficiently Ricci pinched metric. More importantly, we used
maximum principles to establish the regularity of conformal compactness along the
normalized Ricci flow including that of the limit metric at time infinity. Therefore
we were able to recover the existence results by Robin Graham, John Lee, Oliver
Biquard on conformally compact Einstein metrics with conformal infinities which
are perturbations of that of given non-degenerate conformally compact Einstein
metrics.

On the Dirichlet problem for variational integrals in BV

Thomas Schmidt

A model problem in the multi-dimensional calculus of variations is the mini-
mization problem for the integral

E1[w] :=

∫

Ω

√
1 + |∇w(x)|2 dx among functions w : Ω → RN

with prescribed Dirichlet boundary data. Here, n,N ∈ N are arbitrary dimensions,
Ω is a bounded Lipschitz domain in Rn (n ≥ 2), the derivative∇w(x) is understood
as an element of RNn, and |∇w(x)| denotes its Euclidean norm.

In codimension N = 1 the quantity E1[w] measures the area of the graph of w
and the minimization problem is the non-parametric version of Plateau’s famous
problem; see [9] for a survey and references. In the following the focus is on
codimensions N > 1, where E1[w] is quite different from the area of the graph of
w.

Existence results for minimizers of E1 are available in the space BV(Ω,RN )
of functions of bounded variation: fixing boundary values u0 ∈ W1,1(Ω,RN ) one

extends E1 from the Dirichlet class D := u0+W1,1
0 (Ω,RN ) to BV(Ω,RN ) by letting

(1) ED
1 [w] :=

∫

Ω

√
1 + |∇w(x)|2 dx+ |Dsw|(Ω) +

∫

∂Ω

|u0(x)− w(x)| dHn−1(x),

where Dw = ∇w · dx + Dsw is the Lebesgue decomposition of the RNn-valued
gradient measure Dw into its absolutely continuous part with density ∇w and its
singular part Dsw, |Dsw|(Ω) denotes the total variation of Dsw, and Hn−1 the
(n− 1)-dimensional Hausdorff measure. It is then well-known [8, 1] that ED

1 is the
reasonable extension of E1 from D to BV(Ω,RN ) satisfying

min
BV(Ω,RN )

ED
1 = inf

D
E1 .
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In particular, the minimum on the left-hand side exists, and those functions achiev-
ing it are called generalized minimizers of E1 in D – even though they need not
coincide with u0 on ∂Ω and need not be contained in D.

In a joint work [3] with L. Beck we showed that every generalized minimizer u
of E1 in D is actually more regular than BV, namely

(∗) u ∈ W1,1(Ω,RN ) and |∇u| log(1 + |∇u|2) ∈ L1
loc(Ω) .

Our proof of (∗) is based on an L log L-estimate for “good” minimizing sequences,
which are selected by multiple regularizations (including a device of [7]) and an
application of Ekeland’s variational principle in the negative Sobolev space W−1,1.
We hereby improve some previous work [4, 5] of M. Bildhauer, who established
(∗) for only one generalized minimizer and under slightly stronger assumptions.
A consequence of having (∗) for every generalized minimizer is uniqueness of Du,
which implies uniqueness of generalized minimizers u up to additive constants
c ∈ RN . At this stage it should be noted that, even for n = 2, N = 1 and the
non-parametric area, attainment of the boundary values and full uniqueness of
generalized minimizers u only hold in particular situations [10], while in general
non-attainment may occur and generalized minimizers need only coincide up to
constants [11, 2].

Uniqueness up to constants of RN means that the set MD
1 of generalized min-

imizers of E1 in D is an N -parameter-family. Improving this assertion we show
that MD

1 is indeed a 1-parameter-family. Moreover, we provide a quite explicit
description of the boundary behaviour of generalized minimizers in case of non-
uniqueness, we formulate versions of our theorems for more general integrals with
linear growth, we give several related examples, and we discuss connections with
Bernstein’s genre, Serrin’s classification of non-uniformly elliptic equations, and
the µ-ellipticity condition of [6].
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On the singularities of a free boundary through Fourier expansion

Henrik Shahgholian

(joint work with John Andersson and Georg S. Weiss)

In this paper we are concerned with singular points of solutions to the unstable
free boundary problem

△u = −χu>0 in B1(0).

The problem arises in applications such as solid combustion, composite mem-
branes, climatology and fluid dynamics. It is known that solutions to the above
problem may exhibit singularities - that is points at which the second derivatives
of the solution are unbounded - as well as degenerate points. This causes break-
down of by-now classical techniques. Here we introduce new ideas based on Fourier
expansion of the nonlinearity χu>0. The method turns out to have enough mo-
mentum to accomplish a complete description of the structure of the singular set
in R3. A surprising fact in R3 is that although

u(rx)

supB1(0)|u(rx)|
can converge at singularities to each of the harmonic polynomials

xy,
x2 + y2

2
− z2 and z2 − x2 + y2

2
,

it may not converge to any of the non-axially-symmetric harmonic polynomials
α((1+ δ)x2 +(1− δ) y2− 2z2) with δ 6= 1/2. We also prove the existence of stable
singularities in R3.

Partial regularity for fully nonlinear elliptic PDE

Luis Silvestre

(joint work with Scott Armstrong and Charles Smart)

We prove that viscosity solutions to a fully nonlinear elliptic equation F (D2u) =
0 are smooth, i.e. of class C2,α, outside of a set of Hausdorff-dimension at most
n− ǫ, where n is the dimension and ǫ a small constant depending on the ellipticity
bounds of F and on n. We do not make any convexity assumption on the equation
F , but we assume that it is of differentiability-class C1 in addition to uniform
ellipticity. We also discuss the relationship of this partial regularity result with
the question of unique continuation of solutions.
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Intrinsic Flat Convergence and Stability of the Positive Mass Theorem

Christina Sormani

(joint work with S. Wenger)

In 1991, Gromov introduced the Gromov-Hausdorff distance between compact
Riemannian manifolds. Applying the Bishop-Gromov Volume Comparison Theo-
rem, he proved that sequences of Riemannian manifolds, Mm, with uniform upper
bounds on their diameter and lower bounds on their Ricci curvature have subse-
quences which converge in the Gromov-Hausdorff sense to compact geodesic metric
spaces. Fukaya refined this notion, defining metric measure convergence, in which
the measures converge as well. Cheeger-Colding proved that manifolds with lower
Ricci curvature bounds converge in the metric measure sense to rectifiable metric
measure spaces satisfying the Bishop-Gromov Volume Comparison Theorem. One
key consequence was the convergence of the Laplace spectrum.

In 2004, Ilmanen proposed the necessity of a new form of convergence for Rie-
mannian manifolds, one for which sequences of three dimensional spheres with
increasingly many splines and positive scalar curvature would converge. Such
sequences do not converge in the Gromov-Hausdorff sense. Recently Sormani-
Wenger introduced the Intrinsic Flat Distance between compact oriented Riemann-
ian manifolds applying Ambrosio-Kirchheim’s notion of integral currents on metric
spaces [1]:

dF (M
m
1 ,M

m
2 ) = inf

{
dZF (ϕ1#[M1], ϕ2#[M2]) : ϕi :Mi → Z

}
,

where the infimum is again taken over all metric spaces, Z, and all isometric
embeddings, ϕi : Mm

i → Z, and where dZF is the Flat Distance between the
submanifolds ϕi(Mi) viewed as integral currents ϕi#[Mi] in the metric space Z
[11]. Here, as in Gromov, an isometric embedding is a map ϕ : X → Z such that

dZ(ϕ(x1), ϕ(x2)) = dX(x1, x2) ∀x1, x2 ∈ X.

Recall that the Flat Distance between integral currents on Euclidean space was
first introduced by Federer-Flemming based on work of Whitney. Intuitively, it
measures the amount of volume between the two submanifolds.

To estimate the Intrinsic Flat distance between a pair of oriented Riemannian
manifolds one needs only find a pair of isometric embeddings, ϕi : Mm

i → Z,
into a common complete metric space, Z. When one finds a filling submanifold,
Bm+1 ⊂ Z, and an excess boundary submanifold, Am ⊂ Z, such that

∫

ϕ1(M1)

ω −
∫

ϕ2(M2)

ω =

∫

B

dω +

∫

A

ω,

then the Intrinsic Flat distance is bounded by

(1) dF(M
m
1 ,M

m
2 ) ≤ Volm+1(B

m+1) + Volm(Am).

Generally the filling manifold can have corners and the excess boundary manifold
may have many components. One can easily see that Ilmanen’s Example converges
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to a sphere using these estimates. Techniques for estimating the Intrinsic Flat
distance appear in the Appendix to [11], in [5] and in [3].

More generally, the Intrinsic Flat distance is defined between pairs of inte-
gral current spaces [11]. An integral current space (X, d, T ) is a countably Hm–
rectifiable metric space (X, d) with an integral current structure, T ∈ Im(X̄), such
that set(T) = X where set(T) denotes the set of positive density as in Ambrosio-
Kirchheim [1]. The integral current structure encodes both an orientation and
a measure ||T ||. The fact that X = set(T) guarantees that X is countably
Hm−rectifiable, has the correct dimension and does not include cusp singulari-
ties [11].

When Mm
j are a noncollapsing sequence of compact Riemannian manifolds

with nonnegative Ricci curvature, diam(Mj) ≤ D and Vol(Mj) ≥ V0 then the
Gromov-Hausdorff and Intrinsic Flat limits agree [10]. More generally the Gromov-
Hausdorff limit (if it exists) may contain the Intrinsic Flat limit as a proper subset.
The Intrinsic Flat limit may also be the 0 space. This occurs, for example, when
we have a collapsing sequence with Vol(Mj) → 0 or due to cancellation [11].

Wenger has proven a compactness theorem: sequences of compact oriented
manifolds, Mm

j , with diam(Mj) ≤ D, Volm(Mj) ≤ V and Volm−1(∂Mj) ≤ A,
have subsequences which converge in the Intrinsic Flat sense to an integral current
space [12]. We conjecture that if Mj are three dimensional, with positive scalar
curvature and no interior closed minimal surfaces, then there is no cancellation;
so the limit space is not the 0 space unless Vol(Mj) → 0 [11]. One approach to
proving this conjecture would involve estimating the filling volumes of spheres [10].

There are a number of consequences of Intrinsic Flat convergence following
immediately from the work of Ambrosio-Kirchheim: including, in particular, the
lower semicontinuity of mass (or volume). These are explored in [6]. When one
also assumes that the mass converges, one has convergence of the measures and
additional consequences [7].

Applications of the Intrinsic Flat convergence are explored in work of Lakzian-
Sormani [3] and Lee-Sormani [5] [4]. In [3] we study smooth convergence away from
singular sets using Intrinsic Flat convergence to understand the Gromov-Hausdorff
limits.

In the work of Lee-Sormani, we explore the stability of the Positive Mass The-
orem. Recall that the Schoen-Yau Positive Mass Theorem states that an asymp-
totically flat Riemannian manifold, M3, with nonnegative scalar curvature has
nonnegative ADM mass, and if mADM (M3) = 0 then M3 is Euclidean space
[SY]. We propose the following conjecture: If a sequence of asymptotically flat
manifolds, M3

j , has nonnegative scalar curvature and no interior closed minimal

surfaces and has mADM (M3
j ) → 0 then it converges in the pointed Intrinsic Flat

sense to Euclidean space if the points are chosen on CMC-surfaces of constant
area. We proved this theorem in the rotationally symmetric case in [5]. In fact, we
have volume convergence in this case. We examined a similar theorem concerning
the Penrose Inequality in [4]. One may also wish to extend the results in [8] using
the Intrinsic Flat Distance.
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Other possible notions of distances between Riemannian manifolds and con-
vergence of Riemannian manifolds are proposed in [9]. A scalable Intrinsic Flat
distance is being developed by Basilio. A notion of area convergence is being de-
veloped by Burago-Ivanov [2]. One may speculate on how to define an intrinsic
varifold convergence for manifolds [9]. For all of these notions of convergence, one
may wish to understand sequences of conformal Riemannian manifolds: examining
which forms of convergence of (M, efjg) → (M, efg) correspond with which forms
of convergence of fj → f as functions on (M, g).
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On Almgren’s center manifold and regularity of minimal surfaces

Emanuele Nunzio Spadaro

(joint work with Camillo De Lellis)

In this talk I presented an ǫ−regularity result for minimal surfaces leading to
their higher (i.e. C3,α−) regularity without the use of non-parametric techniques.
Our model statement is as follows:

Theorem 1. There exists some ǫ > 0 with the following property:
Let Σ ⊂ Bn

1 (0) ⊂ Rn be an m-dimensional area-minimizing surface without
boundary such that 0 ∈ Σ and Volm(Σ) ≤ ωm+ǫ, where ωm denotes Volm(Bm

1 (0)).
Then Σ ∩Bn

1
2

(0) is a graph of some C3,α−function, for some α ∈ (0, 1).
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This result applies to more general situations, leading e.g. to C3,α−regularity
of supports of area-minimizing integral currents (in GMT).

Although the ǫ−regularity result of De Giorgi-Allard joint with non-parametric
theory implies the above theorem, our proof is different and applies to the regu-
larity of Almgren’s center manifold which is an “approximate average” of higher
codimensional area-minimizing integral currents.

Instability of Ginzburg-Landau vortices on a 2-manifold

Peter Sternberg

In this talk we consider stable critical points of the Ginzburg-Landau energy with-
out magnetic effects, posed on a smooth, compact, simply connected 2-manifold
M without boundary, endowed with metric g:

Eε(u) :=
1

2

∫

M
||∇gu||2g +

(1− |u|2)2
2ε2

dvolg,

where u : M → C. The goal is to explore the existence/non-existence of stable
solutions with vortices. In particular we ask: Can there exist stable “geometri-
cally induced vortices” based on curvature properties of the manifold ? The main
result presented, due to Ko-Shin Chen, is that a sequence of critical points {uεi}
possessing vortices any of whose asymptotic location (as εi → 0) is at a point of
positive Gaussian curvature, must be unstable. A second result discussed is that
for the special case of a surface of revolution, there are no stable vortex solutions
provided the Gauss curvature of the north and south poles are non-zero.

The critical nonlinear wave equation in 2 space dimensions

Michael Struwe

1. Results

Consider the equation

(1) utt −∆u+ ueu
2

= 0 on R× R2

with smooth Cauchy data

(2) (u, ut)|t=0
= (u0, u1) ∈ C∞(R2) .

Upon multiplying (1) by ut we obtain the conservation law

(3) 0 =
d

dt
e(u)− div(∇u · ut)

for the energy density

(4) e(u) =
1

2

(
|ut|2 + |∇u|2 + eu

2 − 1
)
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and the density of momentum, given by ∇u · ut. In particular, for compactly
supported data the support of any solution u to (1), (2) grows at most with unit
speed and we may integrate (3) to see that

(5) E(u(t)) =

∫

R2

e(u(t))dx = E(u(0))

for all t ∈ R.
Equation (1) is closely related to the critical Sobolev embedding in two space

dimensions, given by the Moser-Trudinger inequality

(6) sup
u∈H1

0 (Ω);||∇u||2
L2(Ω)

≤1

∫

Ω

eαu
2

dx = sup
u∈H1

0 (Ω);||∇u||2
L2(Ω)

≤α

∫

Ω

eu
2

dx ≤ C(α)|Ω|

for any bounded domain Ω ⊂ R2 having 2-dimensional Lebesgue measure |Ω| and
any α ≤ 4π, with a constant C(α) <∞ independent of Ω; see [6], [12]. For α > 4π
the above supremum is infinite.

In [2], [4] Ibrahim, Majdoub, Masmoudi, and Nakanishi demonstrated that the
initial value problem for equation (1) is well-posed for initial data with E(u(0)) ≤
2π, where (5) together with (6) allow to control the nonlinear term. However,
when E(u(0)) > 2π not even a locally uniform spatial L1-bound is available for

the term ueu
2

. In analogy with nonlinear wave equations

(7) utt −∆u+ u|u|p−2 = 0 on R× Rn

with p > 2n
n−2 in n ≥ 3 space dimensions, where the nonlinear term cannot be

bounded in the dual space of H1 in terms of the Dirichlet energy, the Cauchy
problem for equation (1) was therefore termed “supercritical” for initial data with
energy E(u(0)) > 2π. The recent results [1], [3] of Ibrahim, Jrad, Majdoub, and
Masmoudi, showing that the local solution of the Cauchy problem (1), (2) does
not depend on the initial data in a locally uniformly continuous fashion when
E(u(0)) > 2π, seemed to further justify this classification.

However, in contrast with these results, in [9], [10] we were able to show that
the Cauchy problem (1), (2) is well-posed regardless of the size of the data.

Theorem 1. For any u0, u1 ∈ C∞(R2) there exists a unique, smooth solution u
to the Cauchy problem (1), (2), defined for all time.

2. Some key ingredients in the proof of Theorem 1

We argue indirectly; that is, we suppose that the local solution u to (1), (2) for
certain Cauchy data u0, u1 ∈ C∞(R2) cannot be smoothly extended to a neigh-
borhood of some point (T0, x0) where T0 ≥ 0. By finiteness of propagation speed
for (1), we may assume that u0, u1 are compactly supported, T0 > 0, and that
u ∈ C∞([0, T0[×R2). After translating the origin of our coordinate system to the
point x0, reversing the arrow of time, and shifting time by T0, in the following we
may assume that we have a compactly supported solution u ∈ C∞(]0, T0]×R2) of
(1) blowing up at (0, 0).
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The work of Ibrahim, Majdoub, and Masmoudi [2] gives rise to the following
characterization of blow-up through concentration of energy. (The short proof of
Lemma 1 given in [9] also works in the non-symmetric case.)

Lemma 1. There exists ε0 > 0 such that

(8) E(u(T ), BT (0)) :=

∫

BT (0)

e(u(T ))dx ≥ ε0 for all 0 < T ≤ T0 .

In order to complete the proof it suffices to derive a contradiction to (8). We
first show only partial energy decay. Introduce polar coordinates (r, φ), and now
let

e = e(u) =
1

2
(u2t + u2r + r−2u2φ + eu

2

), m = m(u) = utur .

For 0 < T ≤ T0 also denote as v(y) = u(|y|, y) the restriction of u to the lateral
boundary of the truncated forward light cone

KT = {z = (t, x); 0 < t ≤ T, |x| ≤ t}
with vertex at z = (0, 0), and let

v̄ = v̄(t) =
1

2π

∫ 2π

0

v(teiφ) dφ

be its spherical average. Multiplying (1) by x
t ·∇u± r

tut+
1
2t (u− v̄), and using the

structure of the resulting terms in a suitable fashion, we find the following result.

Lemma 2. For any 0 < ε < 1 there exists 0 < Tε ≤ T0 such that
∫

KTε

(
(1± r

t
)(e ±m) +

|u− v̄|2
2t2

+
1

4
|u− v̄|2eu2)dx dt

t
≤ ε .

Note that in characteristic coordinates

ξ = t+ r , η = t− r

by Lemma 2 for any 0 < ξ0 < Tε we have control of
∫

Γ(ξ)

(
(1 ± r

t
)(e ±m) +

|u− v̄|2
t2

)
do

in average over the dyadic interval ξ0/2 < ξ < ξ0, where for any 0 < ξ1 < Tε we
let

Γ(ξ1) = {(t, x) ∈ KTε ; ξ = t+ |x| = ξ1}
with area element do = rdηdφ. Observe that

2u2ξ +
1

2r2
u2φ =

1

2

(
(ut + ur)

2 + r−2u2φ
)
≤ e+m , 2u2η =

1

2
(ut − ur)

2 ≤ e−m .

Another application of the multiplier estimate leading to Lemma 2 then gives the
bound

(9) sup
0<ξ<ξε

∫

Γ(ξ)

(
(1− r

t
)u2η + r−2u2φ +

|u− v̄|2
t2

)
do < ε

for any 0 < ε < 1 and suitably small 0 < ξε < Tε.
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Estimate (9) together with the Moser-Trudinger inequality (6) allows to bound
the nonlinear term in equation (1) in any Lp-norm away from the light cone. Near
the light cone (9) only yields smallness of the angular derivative, while the energy
inequality

(10) 2

∫

Γ(ξ)

u2ηdo ≤
∫

Γ(ξ)

(e −m)do ≤ E(u(ξ/2), Bξ/2(0)) ≤ E0

provides a (possibly huge) uniform L2-bound for uη for all 0 < ξ < T0. A key role
now is played by the following improvement of the Moser-Trudinger inequality (6).

Lemma 3. For any E > 0, any p < ∞ there exists a number ε = 4π2

p2E > 0 and a

constant C > 0 such that for any ξ0 > 0, any v ∈ H1
0 ([0, 1]

2) with

∫ 1

0

∫ 1

0

(
ξ0|vy|2 + ξ−1

0 |vx|2
)
dx dy ≤ E,

∫ 1

0

∫ 1

0

ξ−1
0 |vx|2 dx dy ≤ ε

there holds ∫ 1

0

∫ 1

0

epv
2

dx dy ≤ C .

Hence for suitably small ε > 0 from (9), (10) for any 0 < ξ0 < ξε with a constant
C independent of ξ0 we find

(11)

∫

Γ(ξ)

e4u
2

do ≤ C .

To finish the proof, for 0 < T ≤ ξε let u(0) be the solution to the homogeneous

wave equation u
(0)
tt −∆u(0) = 0 in KT with initial data u(0)(T ) = u(T ), u

(0)
t (T ) =

ut(T ) at t = T . With the notation D = (∂t,∇), from (11) we obtain

sup
0<t≤T

∫

Bt(0)

|D(u− u(0))(t)|2 dx ≤ 4T

∫

KT (0)

e4u
2

dx dt ≤ CT 2 < ε0 ,

provided 0 < T ≤ ξε/2 is sufficiently small, where ε0 > 0 is the constant defined
in Lemma 1. Since

lim
t↓0

∫

Bt(0)

|Du(0)(t)|2 dx = 0 ,

and since by (11) we also have

lim inf
t↓0

∫

Bt(0)

eu(t)
2

dx = 0 ,

we then find that

lim inf
t↓0

E(u(t), Bt(0)) ≤
1

2
lim sup

t↓0

∫

Bt(0)

|D(u− u(0))(t)|2 dx ≤ ε0/2 < ε0 ,

which contradicts Lemma 1 and completes the argument.
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3. Note

Note that no weighted energy estimates are required in the proof, as would be
expected in a truely “super-critical” context. It thus appears that problem (1),
(2) still belongs to the realm of “critical” equations. More generally, it seems that
this may be true for all problems where smallness of the energy implies regularity,
as in the present case. See [3], [5], [8], [11] for further results on supercritical wave
equations, and [7] for background material on nonlinear wave equations in general.
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A new proof of Brakke’s partial regularity for MCF

Yoshihiro Tonegawa

(joint work with Kota Kasai)

A family {Mt}t≥0 of k-dimensional surfaces in Rn is called the mean curvature flow
(MCF) if the velocity v ofMt is equal to its mean curvature vector H at each point
and time. As one of the most fundamental geometric evolution problems, the MCF
has been the subject of intensive research since the 1980’s. The earliest study of
MCF goes back to the seminal work of Brakke [2] who used the notion of varifold [1]
to show the existence of weak solutions for general initial surfaces. More precisely,
given any k-dimensional integral varifold V0 with some mild finiteness assumptions,
he showed the existence of a family of varifolds {Vt}t≥0 each of which satisfies
the MCF equation in a distributional sense for all t ≥ 0. For a.e. time, Brakke
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additionally proved that Vt is integral. Assuming that the density function is equal
to 1 almost everywhere, Brakke also demonstrated that the weak MCF varifold
solutions are supported by smooth k-dimensional surfaces almost everywhere. The
hypothesis is called the “unit density hypothesis” and it is a natural assumption
since even the time-independent case of Allard’s theory has essentially the same
hypothesis. The regularity proof is remarkably ingeneous with novel propositions
such as the “clearing-out lemma” and the ‘popping soap films lemma’, and it has a
significant influence on the analysis of the related singular perturbation problems
such as the Allen-Cahn equation and the parabolic Ginzburg-Landau equation.
However, the details of Brakke’s regularity theorem are technically involved and a
clear accessible proof is desired due to its importance.

The result presented in the seminar has two aspects. The first is to present
a new and accessible proof of Brakke’s local regularity theorem. Brakke’s proof
relies on a long chain of graphical approximations which is complicated and hard
to follow (see [2, Section 6.9, “Flattening out”]). By fully utilizing the parabolic
monotonicity formula [4, 3] we replace this part by Allard-like Lipschitz approx-
imations. The second aspect is to generalize the result so that the velocity may
have an additional transport term which belongs to a certain integrability class.
The existence of such flows has been recently studied by Liu-Sato-Tonegawa [5]
and it motivated us to investigate the generalization of Brakke’s theorem. The re-
sult reduces essentially to Allard’s well-known regularity theorem [1] in the special
case of time-independence. We note that simple modifications of Brakke’s original
proof do not seem to yield our theorem if one puts the general transport term.

The major difference of our proof compared to [2] is the use of the “height
lemma”. It shows that the smallness of measurement of “height” of MCF in the
L2−sense guarantees that the whole support of MCF lies in a narrow region close
to a k-dimensional plane. In a sense, we obtain an interior L∞−estimate of the
height of the graph in terms of the L2−norm. The height lemma may be con-
sidered as a robust version of Brakke’s clearing-out lemma in the sense that the
former may accommodate general transport terms while the latter apparently has
some limitations doing so. With this new input the proof may be outlined as fol-
lows. We make a full use of the popping soap films lemma with some modifications
from [2, Section 6.6], which gives controls of the uniform-in-time tilt-excess bound
and of space-time L2−norm of the mean curvature in terms of the smallness of
L2−height. Then the rest of the proof proceeds more or less like Allard’s regular-
ity proof with parabolic modifications. Namely we approximate the supports of
moving varifolds by Lipschitz graphs (with respect to the parabolic metric) uti-
lizing parabolic monotonicity formulae. Then through a contradiction argument,
we carry out the well-known blow-up procedures. While the blow-up limit is a
harmonic function in Allard’s theorem, it is a solution of the heat equation in our
case. It turned out to be essential to have the L∞−estimate, so that we need to
use the signed test function in Brakke’s formulation. It is also interesting to note
that we need to utilize the certain monotone time-decreasing property of L2−norm
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of blow-up sequences to ensure the strong space-time L2−convergence. The blow-
up analysis gives a decay estimate of L2−height with respect to a slightly tilted
k-dimensional plane in a smaller scale. An iteration gives a Hölder-estimate of the
spatial gradient of the graph just as in Allard’s case. Though technically involved,
we expect that researchers familiar with Allard’s proof would find the outline of
our proof more tractable and natural than Brakke’s original one.
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On generated prescribed Jacobian equations

Neil S. Trudinger

(joint work with J-K Liu and X-J Wang)

This report describes one aspect of ongoing investigations in regularity in opti-
mal transportation and extensions to geometric optics by J-K Liu, X-J Wang and
myself.

Let Ω be a domain in Euclidean n-space, Rn, and Y a mapping from Ω×R×Rn

into Rn. The prescribed Jacobian equation is a partial differential equation of the
form

(1) detDY ( · , u,Du) = ψ( · , u,Du),
where ψ is a given scalar function on Ω×R×Rn and Du denotes the gradient of the
function u : Ω → R. We will always assume that the matrix Yp is invertible, that
is detYp 6= 0, whence we may write (1) as a general equation of Monge-Ampère
type,

(2) det[D2u−A( · , u,Du)] = B( · , u,Du),
where

(3) A = −Y −1
p (Yx + Yz ⊗ p), B = (det Yp)

−1ψ.

A function u ∈ C2(Ω) is degenerate elliptic, (elliptic), for equation (2), henceforth
called admissible, whenever

(4) D2u−A( · , u,Du) ≥ 0, (> 0),
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in Ω. If u is admissible, then the function B( · , u,Du) ≥ 0. The second boundary
value problem for the prescribed Jacobian equation is to prescribe the image

(5) Tu(Ω) := Y ( · , u,Du)(Ω) = Ω∗,

where Ω∗ is another given domain in Rn. When ψ is separable, in the sense that

(6) |ψ(x, z, p)| = f(x)/g ◦ Y (x, z, p),

for positive f ∈ L1(Ω), g ∈ L1(Ω∗) respectively, then a necessary condition for the
existence of an admissible solution, for which the mapping Tu is a diffeomorphism,
to the second boundary value problem (1), (5) is the mass balance condition

(7)

∫

Ω

f =

∫

Ω∗

g.

The class of prescribed Jacobian equations embraced by this report are defined
in terms of a smooth generating function G : Rn×Rn×R → R. Let U be an open
set in Rn ×Rn and I an open interval in R. For points (x, y) ∈ U , we denote their
corresponding projections by U∗

x := {y ∈ Rn | (x, y) ∈ U}, Uy := {x ∈ Rn | (x, y) ∈
U} and write U (1) :=

⋃{Uy | y ∈ Rn} and U (2) :=
⋃{U∗

x |x ∈ Rn}. Denoting
points in I by z, we assume that G is smooth in U × I, Gz 6= 0 and

• G1: For each (x, y) ∈ U , there exists an open interval I(x, y) ⊂ I such
that the mapping (Gx, G)(x, ·, ·) is one-to-one in y ∈ U∗

x , z ∈ I(x, y), for
each x ∈ U (1).

• G2: For each (x, y) ∈ U , z ∈ I(x, y), detE(x, y, z) 6= 0, where E is the
n× n matrix given by

(8) E = [Ex,y] = [Gx,y − (Gz)
−1Gx,z ⊗Gy].

From G1 and G2, the vector field Y , together with a scalar function Z, are gener-
ated by G through the equations

(9) Gx(x, Y, Z) = p, G(x, Y, Z) = u.

Note that the Jacobian determinant of the mapping (y, z) 7→ (Gx, G)(x, y, z) is
GzdetE 6= 0 by G2, so that Y and Z are accordingly smooth. Also by differenti-
ating (9) with respect to p, we obtain Yp = E−1. Next using (3) or differentiating
(9) for p = Du, with respect to x, we obtain that the resultant prescribed Jacobian
equation (1) is a Monge-Ampère equation of the form (2) with

A(x, u, p) = Gxx[x, Y (x, u, p), Z(x, u, p)],(10)

B(x, u, p) = detE(x, Y, Z)ψ(x, u, p)
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and is well defined in domains Ω ⊂ U (1) for Y ∈ U∗
x , Z ∈ I(x, Y ), x ∈ Ω. Note that

the latter restrictions may automatically place constraints on u and Du. For the
special case of optimal transportation with cost function c : U → R we take

(11) G(x, y, z) = c(x, y)− z, Gz = −1, I = I(x, y) = R,

and conditions G1 and G2 correspond to A1 and A2 in [5], [7]. To develop the
underlying convexity theory and consequent regularity, we need a dual condition,
which in the optimal transportation case is obtained by interchanging x and y.
Using the property that the generating function G is strictly monotone with respect
to z, we introduce a dual function H on U × R by

(12) G[x, y,H(x, y, u)] = u.

Clearly H is well defined whenever (x, y) ∈ U and u ∈ G(x, y, · )(I). Furthermore
we have the relations

(13) Hx = −Gx/Gz, Hy = −Gy/Gz, Hu = 1/Gz.

This motivates the following dual condition:

• G1*: The mapping Q := −Gy/Gz is one-to-one in x, for all y ∈ U (2), z ∈
I(x, y).

Note that the Jacobian matrix of the mapping x 7→ Q(x, y, z) is −E/Gz, so its
determinant is automatically non-zero when condition G2 holds. Our main con-
ditions extend the conditions A3 and A3w introduced for regularity in [5], [7] and
are expressed in terms of the matrix function A in (2):

G3 (G3w) Akl
ij ξiξjηkηl := (Dpkpl

Aij)ξiξjηkηl >, (≥) 0,

for all (x, Y ) ∈ U , Z ∈ I(x, Y ), ξ, η ∈ Rn such that ξ.η = 0. We illustrate the
above conditions with two examples from near field geometric optics. The first
models the reflection of a parallel beam to a flat target, [4]. For U = Rn ×Rn and
I = (0,∞), we define

(14) G(x, y, z) :=
1

2z
− z

2
|x− y|2.

Then G satisfies G1, G2, G1*, G3 with

I(x, y) = (0,
1

|x− y| ), J(x, y) := G(x, y, · )(I(x, y)) = (0,∞),

and the corresponding Monge-Ampère equation

(15) det
{
D2u+

(1− |Du|2)
2u

I
}
=

(1− |Du|2)n+1

(1 + |Du|2)(2u)n ψ,

is well defined for u > 0 and |Du| < 1. The second example comes from the
reflection of a point source beam to a flat target. Using polar coordinates and the
reciprocal function as in [4], we may take U = B1(0)× Rn, I = (0,∞) and

(16) G(x, y, z) :=
(|y|2 + z)1/2 − x.y

z
.
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Then G satisfies G1, G2, G1*, G3w (A = 0), with I(x, y) = J(x, y) = (0,∞), and
the corresponding Monge-Ampère equation

(17) detD2u =
[(u∗)2 − |Du|2]n+1

(u∗)2 + |Du|2 − 2 u∗(x.Du)
ψ

is well defined for |Du| < −u∗, where u∗ := x.Du − u < 0. The corresponding
mappings are given respectively by

(18) Tu = I +
2 uDu

1− |Du|2 and Tu =
Du

(u∗)2 − |Du|2 .

In the rest of this report, we briefly indicate some results in the ensuing theory.
First we point out that a convexity theory, with respect to generating functions,
replicating usual convexity, and more generally the optimal transportation case
(see for example [9]) can be built under conditions G1, G2, G1*, G3w. Here,
functions of the form u0 = G( · , y, z) for fixed y, z are called G-affine and u ∈
C0(Ω) is called G-convex in Ω if there exists a G-affine support from below at each
point of its graph. An admissible function u ∈ C2(Ω) is G-convex if additionally
the matrix function A is non-decreasing in u and the images Q( · , y, z)(Ω) are
convex for all (y, z) ∈ Y × Z( · , u,Du)(Ω). As in the usual convexity theory,
the mapping Tu (for G-convex functions u) is extended to a multi-valued G-
normal mapping which is determined by local subdifferentials. Appropriately
defined sections ofG-convex functions will also be G-convex. A generalized solution
of the second boundary value problem (2)-(7) under condition G1, with initial and
target domains satisfying Ω× Ω∗ ⊂ U , may be defined by

(19)

∫

(Tu)−1(ω)

f =

∫

ω

g,

for all Borel sets ω ⊂ Ω∗. This extends the notion of potential in optimal trans-
portation. The existence of generalized solutions follows by piecewise G-affine
approximation under appropriate conditions to control their gradients. Extending
the optimal transportation case we could assume for example that there exist con-
stants m0 ≥ −∞,K0 ≥ 0, such that (m0,∞) ⊂ J(x, y) and |Gx(x, y, z)| ≤ K0, for
all x ∈ Ω, y ∈ Ω∗, G(x, y, z) ≥ m0. In example (14), we may take m0 = 0,K0 = 1.
More generally we can also replace G by µ(G) for any µ ∈ C1(m0,∞), µ′ 6= 0, µ′ ∈
C0[m0,∞), which enables us to cover example (16), as in [2]. To develop the
necesssary properties of generalized solutions, paralleling the optimal transporta-
tion case in [5], we introduce the dual concept of the G-transform v of a G-convex
function u, given by

(20) v(y) = supΩH( · , y, u).
When u ∈ C2(Ω) and the mapping Tu is one-to-one, it follows that

(21) v = Z( · , u,Du) ◦ (Tu)−1,

which also shows the significance of the scalar function Z. It also follows that
conditions G3 and G3w are invariant under duality.
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Following [5], we can then prove local regularity of generalized solutions u under
conditions G1, G1*, G2 and G3. The target domain Ω∗ is assumed to be Y ∗-convex
with respect to u as in [6], that is the sets {p | Y (x, u(x), p) ∈ Ω∗} are convex in
Rn, for each x ∈ Ω. For f ∈ C2(Ω), g ∈ C2(Ω∗), inf{f, g} > 0, sup{f, g} < ∞,
we obtain u ∈ C3(Ω), as in [5], while if we drop the smoothness of f, g, then
u ∈ C1(Ω), as in [3], [8]. Note that example (14) satisfies these hypotheses. In the
case of example (16), the same conclusions already follow from [1],[4]. Finally we
remark that, as in the optimal transportation case [3], [5], the Y ∗-convexity of Ω∗

and condition G3w are necessary for regularity.
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Regularity results for optimal transportation problems when standard

conditions fail

Micah Warren

At this workshop in 2007, Loeper presented his regularity proof [8] for optimal
transport when the A3 condition (see Ma-Trudinger-Wang, [9]) is satisfied, and
McCann presented joint work with Kim [6] supplementing the picture of Loeper
and Ma-Trudinger-Wang. There was much rejoicing, as it seemed that the ques-
tions of regularity were for the most part understood. However, work on regularity
under the weak MTW assumption has continued even until this summer, culmi-
nating with the preprint of Figalli, Kim, and McCann [3]. What we know now
is that, given the MTW condition and convexity conditions on the domains, one
can conclude that any two smooth densities are paired smoothly, and conversely,
if these conditions fail, then one can find smooth densities which do not have a
smooth optimal pairing. On manifolds, these conditions have been studied as the
Transport Continuity Property [4] and significant work has gone to showing when
this condition holds.
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On the other hand, there is another line of questioning: What if any of the
standard conditions do not hold ? Can we give conditions on the densities which
are sufficient to conclude that the map is regular ?

These questions do not appear to have elegant geometric answers.
One situation is that the MTW condition fails, but fails on a set which one can

expect the map to avoid under certain conditions. Delanoe and Ge [2] studied
an example of this situation on perturbations of spherical metrics. A further
complication occurs when the twist (A1) condition fails. For example, on the
sphere with (external) Euclidean distance squared cost, (A1) fails, and it is shown
by Gangbo and McCann [5] that optimal maps often split. With this cost, the
MTW condition holds half-the-time: whenever two points are within π/2 away
from each other. With Kitigawa [7] we show that given enough Lipschitz control
over the logs of the densities, the map is one-to-one and smooth. The Lipschitz
control gives a strong enough gradient estimate, so that the map stays within
the MTW region. The Lipschitz condition is “life-sized” and is the same order
of magnitude of counterexamples. We can refine this result to rougher data: If
the measures are close to each other, we can use a “stay-close-by” argument to
control the gradient. The constraints in this case are small but tractable numbers.
These results also hold for uniformly convex boundaries, where the constants are
computable in terms of the largest and smallest curvatures.

Another case is when the MTW condition fails on an unavoidably large set. In
[11] we show that if the densities are C3−close to restricted Gaussians, and the cost
is C4−close to Euclidean cost, then the optimal pairing is regular, regardless of
whether or not the MTW condition holds. The main estimate in the proof follows
the paper of Trudinger and Wang [10] using an idea of Caffarelli [1], the latter of
which shows very strong regularity in the Euclidean case when the densities are
Gaussians. The required closeness can be made explicit with some effort (which
we do not put forth).
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Densities of Minimal Cones

Brian White

(joint work with Tom Ilmanen)

If C is an m-dimensional cone with vertex p, the density of the cone is

(*) Θ(C) :=
area(C ∩B(p, r))

ωmrm

where ωm is the area of the unit m-dimensional ball. (Note that (*) is independent
of r since C is a cone.) In this lecture, I describe joint work with Tom Ilmanen on
densities of minimal cones. I will call a cone “simple” provided it has exactly one
singularity (the vertex of the cone).

Theorem 1. Suppose C is a simple, area-minimizing hypercone in Rm+1. Suppose
also that C is topologically nontrivial, i.e., that at least one of the two components
of Rm+1 \ C is not contractible. Then Θ(C) >

√
2.

The constant
√
2 is sharp because the Simons Cone

Cm,m := {(x, y) ∈ Rm+1 × Rm+1 : |x| = |y|}
is area-minimizing for m ≥ 3, and Θ(Cm,m) →

√
2 as m→ ∞.

If C is topologically nontrivial, then one of the components of the complement
must have nontrivial kth homotopy for some k. We get a better bound in terms
of k:

Theorem 2. Suppose C is a simple, area-minimizing hypercone in Rm+1. Suppose
also that one of the components of Rm+1 \ C has nontrivial kth homotopy. Then

Θ(C) > dk =

(
k

2πe

)k/2

σk

where σk is the area of the unit k-dimensional sphere.

Theorem 2 is also sharp: the cone

Ck,n := {(x, y) ∈ Rk+1 × Rn+1 : n|x|2 = k|y|2}
satisfies the hypotheses for all sufficiently large n (namely n ≥ 6− k if k ≥ 2 and
n ≥ 6 if k = 1), and Θ(Ck,n) → dk as n→ ∞.

The proofs use mean curvature flow, and the constants dk in Theorem 2 have a
simple interpretation in terms of mean curvature flow: dk is the Gaussian density
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of a shrinking round k-sphere in Rk+1 or, equivalently, the Gaussian density of a
shrinking cylinder Sk × Rm−k in Rm+1.

Theorems 1 and 2 say nothing about simple minimal hypercones of dimension
< 7, since no such cones are area-minimizing. However, for low dimensional cones
we have

Theorem 3. Suppose C is a simple, m-dimensional minimal cone in Rm+1 with
m < 7. Suppose C ∩ ∂B has nontrivial kth homology. Then

Θ(C) > min{dk, dm−1−k}.
Now let C be a simple minimal hypercone C in R4. Then the link C ∩ ∂B is

a smooth, compact embedded surface in the 3-sphere. By a theorem of Almgren
(also proved by Calabi), the only minimal 2-sphere in S3 is the totally geodesic
one. Hence (since C is singular), C ∩ ∂B must not be a sphere, and so must have
genus ≥ 1. Thus H1(C ∩ ∂B) 6= 0, so by Theorem 3:

Θ(C) > max{d1, d3−1−1} = d1.

Thus we have

Corollary 1. If C is a simple, 3-dimensional minimal cone in R4, then

Θ(C) > d1 = 1.52.

Using the corollary together with standard dimension reducing, it is easy to
prove the following theorem about arbitrary (i.e., not necessarily simple) minimal
cones:

Theorem 4. Let C be a singular, m-dimensional minimal cone in Rm+1, with
m ≤ 3. Then

Θ(C) ≥ 3

2
,

with equality if and only if C is a triple junction, i.e, the union of three half-planes
meeting at equal angles along their common edge.

An optimal embeddedness criterion for stable codimension 1 integral

varifolds

Neshan Wickramasekera

The classical regularity theory for locally area minimizing hypersurfaces, devel-
oped in the 1960’s with contributions by De Giorgi, Reifenberg, Federer, Fleming,
Almgren and Simons [DG, R, F, FF, A, S] says that such a hypersurface in the
interior is smooth and embedded away from a closed singular set of codimension
at least 7 (which is absent if the dimension of the hypersurface is less than or
equal to 6 and discrete if its dimension is 7). In the early 1980’s, Schoen and
Simon [SS] showed that the same conclusions hold if instead of the area minimiz-
ing hypothesis, the hypersurface is assumed to be stationary and stable, viz. to
have vanishing first variation and non-negative second variation with respect to
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area, provided also that its singular set a priori is assumed to have locally finite
codimension 2 Hausdorff measure.

A long standing question left open by the work of Schoen and Simon was to
find an optimal condition on the singular set of a stable hypersurface guaranteeing
the above embeddedness conclusions. In the author’s recent work [W2], such a
geometrically optimal condition is given. This new theory says that the above
embeddedness conclusions can be made for a stationary hypersurface V (i.e. a
stationary codimension 1 integral varifold) provided (a) that V is stable on the
regular part regV (≡ smooth, embedded part of sptV , the support of V ) in the
sense that the stability inequality

∫

reg V

|A|2ζ2 dHn ≤
∫

reg V

|∇ ζ|2dHn

holds for every ζ ∈ C1
c (reg V ), where |A| is the length of the (classical) second

fundamental form of regV and ∇ is the gradient on regV , and (b) that V satisfies
the following Structural Hypothesis: none of the singular points of V (≡ those
points of sptV not in regV ) has a neighbourhood in which sptV is the (finite)
union of 3 or more embedded hypersurfaces-with-boundary meeting only along a
common boundary. More precisely, we have the following:

Theorem 1 (W2). A stationary stable integral n-varifold V on a smooth (n+1)-
dimensional Riemannian manifold B corresponds to an embedded smooth hyper-
surface with no singularities if n ≤ 6, to an embedded smooth hypersurface away
from a set of discrete singular points if n = 7 and to an embedded smooth hyper-
surface away from a closed singular set of Hausdorff dimension ≤ n− 7 if n ≥ 8,
provided only that V satisfies the following condition for some α ∈ (0, 1/2):
STRUCTURAL HYPOTHESIS: No point of sptV has a neighbourhood in
which sptV is the (finite) union of 3 or more C1,α−hypersurfaces-with-boundary
meeting only along their common C1,α−boundary.

Furthermore, any mass-bounded subset of the class of stable codimension 1 inte-
gral varifolds on B satisfying this Structural Hypothesis is compact in the topology
of varifold convergence.

Note that as an easy consequence of Allard’s regularity theorem, we know that
regV is non-empty (in fact is a dense open subset of sptV ) whenever the integral
varifold V is stationary, so the stability hypothesis in this theorem always contains
some information. However, since a priori no information is available concerning
the size of the singular set of V (so that regV could, a priori, have very small
positive measure), it is not a priori clear how much influence the above stability
inequality might have on the whole varifold. For this reason, it is somewhat
surprising that optimal regularity conclusions follow from the (seemingly weak)
hypotheses of this theorem.

The Structural Hypothesis in this theorem is of course necessary for the conclu-
sions, and is geometrically optimal, in view of the obvious counterexamples such
as a pair of crossed hyperplanes in an Euclidean space. It is in principle a more
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“checkable” condition than any size hypothesis on the singular set. Note also that
the Structural Hypothesis is readily implied by either of the hypotheses that the
varifold corresponds to a locally area minimizing integral current or that its singu-
lar set has vanishing codimension 1 Hausdorff measure. Thus the above theorem
generalizes and combines into a single theory both the classical regularity theory
for codimension 1 area minimizers and the Schoen–Simon theory.

New applications of this theorem include the two results described below:
(A) An optimal strong maximum principle for stationary codimension 1 integral
varifolds [W2]. This generalizes and directly follows from earlier work of Ilmanen
[I] and can be stated as follows:

Theorem 2 (W2). (a) If V1, V2 are stationary integral n-varifolds on a smooth
Riemannian manifold B with Hn−1 (sptV1 ∩ sptV2) = 0, then sptV1 and sptV2
must be disjoint.
(b) If Ω1,Ω2 are open subsets of B with Ω1 ⊂ Ω2 and for i = 1, 2, the set Vi ≡ ∂ Ωi

is connected, Hn−1 (sing Vi) = 0 and Vi is stationary in B, then either V1 = V2 or
V1 ∩ V2 = ∅.
(B) Regularity of sharp phase-interfaces arising from sequences of stable critical
points of the Allen–Cahn functional with perturbation parameter tending to zero.
This result, joint with Y. Tonegawa [TW], can precisely be described as follows:

For ǫ ∈ (0, 1), consider the family of functionals (the Allen–Cahn functionals)

Eǫ(u) =

∫

Ω

ǫ|Du|2
2

+
W (u)

ǫ
dx

for u ∈ H1(Ω), where Ω ⊂ Rn is a bounded domain and W : R → R+ ∪ {0} is a
“standard” C3 double-well potential with strict minima at ±1 with W (±1) = 0
(e.g. W (t) = (1− t2)2). Suppose

(i) ǫ1, ǫ2, ǫ3, . . . are positive numbers with limj→∞ ǫj = 0.
(ii) uǫj ∈ H1(Ω) and there exists a fixed constant c ≥ 1 such that Eǫj (uǫj ) +

supΩ |uǫj | ≤ c.

(iii) uǫj is a stable critical point of Eǫj . Thus −ǫj∆uǫj + ǫ−1
j W ′(uǫj) = 0

weakly on Ω and uǫj satisfies
∫

Ω

ǫj |∇φ|2 +
W ′′(uǫj )

ǫj
φ2 dx ≥ 0 for each φ ∈ C1

c (Ω).

(These conditions are equivalent, respectively, to d
dt

∣∣
t=0

Eǫj (uǫj + tφ) = 0

and d2

dt2

∣∣∣
t=0

Eǫj (uǫj + tφ) ≥ 0 ∀ φ ∈ C1
c (Ω).)

Then we have the following:

Theorem 3 (TW). If (i), (ii), (iii) hold, then either

(a) uǫj → 1 or uǫj → −1 locally uniformly in Ω, or
(b) after passing to a subsequence of {ǫj} without changing notation, for each

fixed s ∈ (0, 1), the interface regions {x ∈ Ω : |uǫj(x)| < s} converge
locally in Hausdorff distance to an embedded stable minimal hypersurface
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M of Ω with singM = ∅ if 2 ≤ n ≤ 7, singM (at most) a discrete set for
n = 8 and dimH(singM) ≤ n− 8 for n ≥ 9.

In the absence of the above Structural Hypothesis, a stable codimension 1 in-
tegral varifold can develop branch point singularities. In this case, and whenever
the varifold corresponds to an integral current T without boundary, a fairly de-
tailed structure theorem, including an optimal size bound on the branch point set
and optimal regularity of the varifold near the branch point set, is available for
the (relatively open) part of the support of the varifold where its volume density
Θ(T, ·) is less than 3. The precise statement of this result is as follows:

Theorem 4 (W3). Let T be a stable integral n-current on a smooth Riemannian
manifold B with ∂ T = 0 in B and let

Σ := {X ∈ sptT ∩B : Θ(T,X) < 3}.
If Σ 6= ∅, then Σ is a smooth immersed hypersurface of B away from a closed set
of Hausdorff dimension ≤ n− 2.

In fact we have the following much more detailed description of Σ:

Σ = Se ∪ St ∪ Sc ∪ Ss (disjoint union) where

(i) Se = regT ∩ Σ and Hn−1 ((Σ \ Se) ∩K) <∞ for each compact subset K
of B;

(ii) St is the set of points of Σ near each of which sptT is the union of two
transversely intersecting smooth embedded hypersurfaces; St is equal to
the set of points of Σ where T has one tangent cone equal to a pair of
transversely intersecting multiplicity 1 hyperplanes; if St = ∅, then Σ =
Se ∪ Ss, i.e. Sc = ∅. (See (iii) and (iv) below for the definitions of Sc and
Ss);

(iii) Sc is the set of points of Σ \ Se at each of which T has a tangent cone
equal to a multiplicity 2 hyperplane; this tangent hyperplane is the unique
tangent cone to T at that point, and

dimH (Sc) ≤ n− 2;

furthermore,

Sc = Sr
c ∪ Sb

c , where

(a) Sr
c is the set of points Y ∈ Sc near each of which sptT is equal to

the union of two (distinct) smooth, properly embedded, intersecting
hypersurfaces, each of which is the graph over the (unique) tangent
hyperplane to T at Y of a smooth function with small C2−norm;

(b) Sb
c ≡ Sc \ Sr

c is the set of branch point singularities of Σ; thus, for
each point Z ∈ Sb

c there is no neighbourhood of Z in which sptT
is equal to the union of two C1 embedded hypersurfaces; near each
Z ∈ Sb

c sptT is the graph over the (unique) tangent hyperplane to T
at Z of a 2-valued C1,1/2-function with small C1,1/2-norm; moreover,
we have that either Sb

c = ∅ or Hn−2(Sb
c) > 0;
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(iv) Ss ≡ Σ \ (Se ∪ St ∪ Sc) is the set of “genuine singularities” of Σ; Ss is
empty if n ≤ 6, discrete if n = 7 and is a relatively closed subset of Σ with
Hausdorff dimension at most n− 7 if n ≥ 8.

This theorem in part depends on the results and techniques of [W1] and [SW].
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Wellposedness of the two and three dimensional full water wave

problem

Sijue Wu

We consider the motion of the interface separating an inviscid, incompressible,
irrotational fluid, under the influence of gravity, from a region of zero density (i.e.
air) in n-dimensional space. It is assumed that the fluid region is below the air
region. Assume that the density of the fluid is 1, the gravitational field is −k,
where k is the unit vector pointing into the upward vertical direction, and at time
t ≥ 0, the free interface is Σ(t), and the fluid occupies the region Ω(t). When the
surface tension is zero, the motion of the fluid is described by

(1)





vt + v · ∇v = −k−∇P on Ω(t), t ≥ 0,

divv = 0, curlv = 0 on Ω(t), t ≥ 0,

P = 0 on Σ(t)

(1,v) is tangent to the free surface (t,Σ(t)),
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where v is the fluid velocity, P is the fluid pressure. It is well-known that when
the surface tension is neglected, the water wave motion can be subject to Taylor
instability [3, 16, 2]. Assume that the free interface Σ(t) is described by ξ = ξ(α, t),
where α ∈ Rn−1 is the Lagrangian coordinate, i.e. ξt(α, t) = v(ξ(α, t), t) is the
fluid velocity on the interface, ξtt(α, t) = (vt+v ·∇v)(ξ(α, t), t) is the acceleration.
Let n be the unit normal pointing out of Ω(t). The Taylor sign condition relating
to Taylor instability is

(2) −∂P
∂n

= (ξtt + k) · n ≥ c0 > 0,

point-wisely on the interface for some positive constant c0. In previous works
[17, 18], we showed that the Taylor sign condition (2) always holds for the n-
dimensional infinite depth water wave problem (1), n ≥ 2, as long as the interface
is non self-intersecting; and the initial value problem of the water wave system
(1) is uniquely solvable locally in time in Sobolev spaces for arbitrary given data.
Earlier work includes Nalimov [13], Yosihara [21] and Craig [6] on local existence
and uniqueness for small data in 2D. Notice that if the surface tension is not
zero, or if there is a bottom, or nonzero-vorticity, the Taylor sign condition need
not hold. Local wellposedness for water wave motion with the effect of surface
tension, bottom and a non-zero vorticity, under the assumption (2) can be found
in [1, 4, 5, 9, 11, 12, 14, 15, 22].

In order to understand the long time behavior of the water wave motion, we
need to understand the nature of the nonlinearity of the water wave equation. In
[19, 20], we showed that the nature of the nonlinearity of the water wave equation
(1) is of cubic and higher orders. For water waves in two space dimensions, if
initially the amplitude of the interface and the kinetic energy (and finitely many
of their derivatives) are of size O(ǫ) and small, then there exists a unique classical
solution of the water wave equation (1) for a time period [0, ec/ǫ]; during this time
period, the interface remains small and as regular as the initial interface. Here c
is a constant independent of ǫ (c.f. Theorem 1, [19]). For water waves in three
space dimensions, if initially the steepness of the interface and the fluid velocity on
the interface (and finitely many of their derivatives) are small, then there exists
a unique classical solution of the water wave equation (1) for all time, and the
interface remains to have small steepness and is as regular as the initial interface
for all time (c.f. Theorem 2, [20]).

Let’s state what we have obtained so far in precise terms. Notice that equation
(1) is a nonlinear equation defined on moving domains. It is difficult to obtain
results directly from it. One key step in our approach is to rewrite (1) into forms
from which results and information can be obtained.

For clarity, we mainly write in terms of the 2D water waves. We regard the
2D space as the complex plane and use the same notation for the complex form
ξ = x+ i y and ξ = (x, y). So ξ̄ = x− i y.

Let ξ = ξ(α, t) be the free interface Σ(t) at time t in Lagrangian parameter α,
N = iξα be the normal vector pointing out of the fluid domain, n = N

|N | be the

unit normal, a = − 1
|N |

∂P
∂n . We know from [17, 18] that equation (1) is equivalent



Partial Differential Equations 2207

to the following system defined on the interface Σ(t):

ξtt + i = iaξα(3)

ξ̄t = Hξ̄t(4)

where

(5) Hf(α, t) =
1

πi
p.v.

∫
f(β, t)ξβ(β, t)

ξ(α, t) − ξ(β, t)
dβ

is the Hilbert transform on Σ(t) : ξ = ξ(α, t), α ∈ R. Notice that (3)-(4) is fully
nonlinear. To solve (3)-(4) on a (small) time interval [0, T ], we furthermore derived
the following equation by taking derivative w.r.t. t of (3):

(6)

{
ξ̄ttt + iaξ̄tα = −iatξ̄α
ξ̄t = Hξ̄t

Using the fact ξ̄t = Hξ̄t, and a, at are real valued, we deduced that

(7)

(I + K∗)(at|ξ̄α|) =

−ℜ( iξα|ξα|
{2[ξtt,H]

ξ̄tα
ξα

+ 2[ξt,H]
ξ̄ttα
ξα

− 1

πi

∫
(
ξt(α, t)− ξt(β, t)

ξ(α, t)− ξ(β, t)
)2ξ̄tβ dβ}).

Here ℜξ indicates the real part of ξ,

K∗f(α, t) =

∫
ℜ{−1

πi

ξα
|ξα|

|ξβ(β, t)|
(ξ(α, t)− ξ(β, t))

}f(β, t) dβ

is the adjoint of the double layered potential operator K in L2(Σ(t), dS). Notice
that I + K∗ is invertible in L2(Σ(t), dS). Rewriting

−iatξ̄α = −i ξ̄α|ξ̄α|
at|ξ̄α| =

ξ̄tt − i

|ξtt + i|at|ξ̄α|,

using (7) for at|ξ̄α|, (6) is now a quasi-linear system with the right hand side of
the first equation in (6) consisting of terms of lower order derivatives of ξ̄t.

Let u = ξ̄t. Notice that i∂αu = ∇nu, and that the Dirichlet-Neumann operator
∇n is a positive operator. By furthermore proving a = − 1

|N |
∂P
∂n > 0 for non self-

intersecting interfaces, we showed that (6)-(7) is a quasi-linear equation of weakly
hyperbolic type. The local in time wellposedness of (6)-(7) in Sobolev spaces (with
(u, ut) ∈ C([0, T ], Hs+1/2×Hs), s ≥ 4) was then proved by energy estimates and a
fixed point iteration argument. By establishing the equivalence of (1) with (6)-(7),
we obtained the local in time well-posedness in Sobolev spaces of the full water
wave equation (1) (c.f. [17, 18]).

For 3D water waves we introduced the framework of Clifford algebra, or in
other words, the algebra of quaternions C(V2) [18]. Let {1, e1, e2, e3} be the basis
of C(V2), satisfying e2i = −1 for i = 1, 2, 3, eiej = −ejei, i 6= j, e3 = e1e2. Let D =
∂xe1 + ∂ye2 + ∂ze3. By definition, a Clifford-valued function F : Ω ⊂ R3 → C(V2)
is Clifford analytic with domain Ω iff DF = 0 in Ω. Therefore F =

∑3
i=1 fiei is
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Clifford analytic in Ω iff divF = 0 and curlF = 0 in Ω. Furthermore we know that
F is Clifford analytic in Ω iff F = HΣF , where

HΣg(α, β) = p.v.

∫∫
K(η(α′, β′)− η(α, β)) (η′α′ × η′β′) g(α′, β′) dα′dβ′

is the 3D version of the Hilbert transform on Σ = ∂Ω : η = η(α, β), (α, β) ∈ R2,
with normal ηα × ηβ pointing out of Ω, and K(η) = −2DΓ(η) = − 2

ω3

η
|η|3 .

All of this indicated Clifford analysis can be an effective tool for 3D water
waves. Indeed, in the framework C(V2), we derived the quasi-linear equation (cf.
(5.21)-(5.22) of [18]) for the 3D water waves, and the local in time well-posedness
of the 3D full water wave equation was therefore obtained from energy estimates
and a fixed point iteration argument applied to the quasi-linear equation.

We now turn to the question of the long time behavior of the solutions to the
water wave equation (1) for small initial data.

Let’s state what we discovered for 2D water waves (n = 2) [19]. Let Ugf =
f ◦ g = f(g(·, t), t), and for κ : R → R a diffeomorphism, let

ζ := ξ ◦ κ−1 = x+ iy, U−1
κ Dt := ∂tU

−1
κ , U−1

κ P := (∂2t − ia∂α)U
−1
κ

b := κt ◦ κ−1, U−1
κ A∂α := a∂αU

−1
κ , U−1

κ H = HU−1
κ ,

so

(8) Dt = (∂t + b∂α), P = D2
t − iA∂α.

In [19], we showed that for any solution ξ(α, t) = x(α, t) + iy(α, t) of (3)-(4), the
quantity Π := (I − H)y satisfies the equation

P(Π ◦ κ−1) =
2

πi

∫
(Dtζ(α, t) −Dtζ(β, t))(y(α, t) − y(β, t))

|ζ(α, t) − ζ(β, t)|2 ∂βDtζ(β, t) dβ

+
1

πi

∫ (
Dtζ(α, t) −Dtζ(β, t)

ζ(α, t) − ζ(β, t)

)2

∂βy(β, t) dβ.(9)

Notice that the right hand side of (9) is cubicly small if the velocity Dtζ and
steepness ∂αy (and their derivatives) are small. Furthermore we found a coordinate
change κ : R → R,

(10) κ(α, t) = ξ̄(α, t) +
1

2
(I + H)(I + K)−1(ξ − ξ̄)

so that equation (9) contains no quadratic nonlinear terms if κ is given by (10).
1 Here K = ℜH is the double layered potential operator. In other words, the
projection of the height function y of the interface into the space of holomorphic
functions in the air region, under the change of coordinates κ as given in (10):
π := Π ◦ κ−1 = U−1

κ (I − H)y = (I −H)y satisfies such an equation

(∂2t − i∂α)π = G

where G contains no quadratic nonlinear terms.

1It was shown in [19] that κ : R → R is a diffeomorphism if ξ(α, t)− α is small.
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For 3D water waves, we use the setting of the quaternions C(V2). In this setting,
we also found that the projection of the height function of the interface into the
space of holomorphic functions in the air region, in an appropriate coordinate
system, satisfies an equation containing no quadratic nonlinear terms. (c.f. (1.25)
or (1.35) and (1.28) of [20] for the 3D counterparts of the equation (9) and the
change of coordinates (10).)

The almost global well-posedness of the 2D water waves and the global well-
posedness of the 3D water waves are then obtained by applying the method of
vector fields to (9) for 2D and to the equation (1.35) in [20] for 3D. We mention
that the method of vector fields was first developed by Klainerman [10] for the
nonlinear wave equation. The basic steps involved include the development of a

generalized Sobolev inequality that gives an L∞ decay with rate 1/t
n−1
2 for n-D

water waves bounded by the generalized L2 Sobolev norms defined by the vector
fields for the water wave operator ∂2t − i∂α

2, an energy estimate and a continuity
argument. We state our results:

Theorem 1 (2D water waves, [19]). Let ξ0 = (α, y0(α)), α ∈ R, be the initial
interface, v0 = v0(x, y), (x, y) ∈ Ω(0), be the initial velocity. Assume y0(α) =
ǫf(α), v0(x, y) = ǫg(x, y), where f ∈ L2(R) and g ∈ L2(Ω(0)), and that up to 12
derivatives of f and g are in L2. Then there is some ǫ0 > 0, such that for ǫ ≤ ǫ0,
there exists a unique classical solution of the 2D water wave equation (1) for a
time period [0, ec/ǫ]. Here c depends on f and g only. During this time period,
the solution stays small and has the same regularity as the initial data; and the
L∞ norm of the steepness of the interface ∂αy and the velocity on the interface ξt
decay at the rate 1/t1/2.

Theorem 2 (3D water waves. [20]). Let ξ0 = (α, β, z0(α, β)), (α, β) ∈ R2, be the
initial interface, ξt,0 = ξ1(α, β), (α, β) ∈ R2, be the initial velocity on the interface.

Assume that |D|1/2z0 = ǫf , ξ1 = ǫg, f, g ∈ L2(R2), and that 20 derivatives of f
and g are in L2. Then there is some ǫ0 > 0, such that for ǫ ≤ ǫ0, there exists a
unique classical solution of the 3D water wave equation (1) for all time t ∈ [0,∞).
During this time, the solution stays small and is as regular as the initial data; and
the L∞ norm of the steepness of the interface, the acceleration on the interface
and the derivative of the velocity on the interface decay at the rate 1/t.
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CR-Geometry in 3-D

Paul Yang

In this talk I discussed two problems in three-dimensional “CR-Geometry” that
may be understood using some 4th-order operator. The first is the global embed-
ding problem. In dimension 3 there is no local integrability condition for the
CR-structure, while previous work of Lempert and Burns-Epstein indicates that
the subset of embeddable structures is exceptionally thin within the entire moduli
space of CR-structures on a given 3-manifold.

In a joint work with Chamillo and Chin we provided CR-invariant conditions
for embeddability:

1.) Positivity of the CR-conformal Laplacian,
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2.) Non-negativity of some 4th-order operator that has formal resemblence to
the Paneitz-operator in four-dimensional conformal geometry.

These conditions turn out to be the appropriate ones for a positive mass the-
orem, which is a rigidity result for the three-dimensional Heisenberg space. This
positive mass theorem joint with Malchiodi’s work on this subject makes it possible
to solve for some minimizer of the CR-Yamabe-functional. I also indicate exam-
ples of CR-structures that do not satisfy the above mentioned sign conditions and
for which the associated masses are actually negative.

Reporter: Ruben Jakob
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72076 Tübingen

Prof. Dr. Bernd Kirchheim

Mathematical Institute
Oxford University
24-29 St. Giles
GB-Oxford OX1 3LB

Dr. Amos N. Koeller

Mathematisches Institut
Universität Tübingen
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