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Abstract. This one week workshop was organized around several central
subjects in applied dynamics and geometric mechanics. The specific organi-
zation with afternoons free for discussion led to intense exchanges of ideas.
Bridges were forged between researchers representing different fields. Links
were established between pure mathematical ideas and applications. The
meeting was not restricted to any particular application area. One of the
main goals of the meeting, like most others in this series for the past twenty
years, has been to facilitate cross fertilization between various areas of math-
ematics, physics, and engineering. New collaborative projects emerged due
to this meeting.

The workshop was well attended with participants from Europe, North

America, and Asia. Young researchers (doctoral students, postdocs, junior
faculty) formed about 30% of the participants.
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Introduction by the Organisers

This workshop on applied dynamics and geometric mechanics was introduced over
20 years ago by the late Klaus Kirchgässner and the late Jerrold E. Marsden.
After Kirchgässner’s retirement, this workshop continued to take place at regular
intervals of three years under the leadership of Jerrold E. Marsden and Jürgen
Scheurle. Every such meeting was inspired by new developments in the core fields
of dynamical systems and geometric mechanics as well as recent exciting applica-
tions. The present meeting continued this tradition. The whole subject is scien-
tifically extremely active and progressing in various new and promising directions.
Each speaker and invitee presented a new mathematical or computational tool in



2218 Oberwolfach Report 39/2011

dynamical systems or geometric mechanics and linked it either to applications,
or forged a bridge between various areas of pure dynamical systems and geomet-
ric mechanics and certain applications to physics, engineering, and other basic
sciences.

A broad overview of these topics as covered in the meeting is as follows:

Dynamical Systems. The basic theory of dynamical systems is developing with
numerous new ideas that have importance in applications. The meeting presented
recent advances in this theory with an emphasis on applications in one of the
following specific areas.

• Astrodynamics. There is a rich history of applications of the theory of dynamical
systems to problems in astrophysics. The morning of the first day of the workshop
was devoted entirely to problems in astrophysics and celestial mechanics. The
speakers and posters emphasized the link between their own research problems to
branches of dynamical systems and geometric mechanics.

• Control Theory. An important area of research that is closely connected with
both dynamical systems and geometric mechanics is nonlinear control theory. Non-
linear control is naturally formulated on manifolds and has particular applications
to mechanical systems where the control is studied on a Riemannian manifold. Ba-
sic problems include controllability, stabilization, and optimal control. A recent
area of great interest is the simultaneous control of multiple systems (swarms).
Such systems include groups of wheeled or legged robots or groups of submarine
robotic vehicles. There are very interesting connections of this work with the study
of biological swarming in birds or fish, for example. Another important topic is
the control of interconnected systems which can be studied using the theory of
Dirac structures. This is important for both electrical and mechanical networks.
Several talks and posters on these topics were given during the workshop.

• Multi-Agent Systems. Many modern technical systems, such as multiple mo-
bile robots in the same workspace, are composed out of many, relatively simple,
subsystems (agents) that interact in a complicated way. Since the computational
limitations of dealing with such complex interconnected systems have already been
reached, new methods are being developed that treat such systems as strongly and
weakly interconnected units. In other words, instead of thinking of these systems
as huge systems of differential equations (ordinary or partial), one is organizing
them in smaller units with massive message passing and information exchange be-
tween them. The speakers and posters presented new tools that could lead to the
automatic determination of the strong or weak coupling between such subsystems;
this then naturally leads to a hierarchy of corresponding dynamical computations.
Another topic presented was about the development of cooperative distributed
control strategies, both at the theoretical and computational/numerical level.

Geometric Mechanics. By now, geometric mechanics has matured to a main
subject at the interface between several areas such as symplectic, Poisson, and
Dirac geometry, dynamical systems, variational calculus, theoretical physics, nu-
merical analysis, control theory, and various areas of engineering science. The
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subject continues to thrive and develop, both by widening its core to include other
theoretical fields such as integrable systems and conservative evolutionary PDEs
and by reaching out to new applied areas such as imaging science, discrete dif-
ferential geometry, stochastic analysis, or materials science. The following core
subjects were specifically addressed at this workshop.

• Nonholonomic Mechanics. Nonholonomic mechanics is an important extension
of Hamiltonian mechanics whose goal is the study of the dynamics of mechanical
systems subject to nonintegrable constraints on the velocity (such as the rolling
wheel, the ice skate, or the rolling ball). Such systems are endowed with a bracket
that does not satisfy the Jacobi identity and have a dynamics that non-trivially
generalizes that seen in Hamiltonian systems. For example, volume is not neces-
sarily conserved in the phase space and it is possible to get asymptotic stability
even in the absence of external friction. Also, there is an interesting generalization
of Noether’s theorem: Symmetry does not usually lead to momentum conservation
but to a dynamic momentum equation. Some systems admit a ”Hamiltonization”,
that is, one can produce a Poisson bracket such that relative to it and after a time
reparametrization, the system becomes Hamiltonian. This then allows the study
of the integrability of nonholonomic systems. There is also an interesting connec-
tion with control theory because nonintegrable constraints are related to the fact
that a system remains controllable in the presence of constraints. There are many
applications to robotic problems and problems in submarine and flight dynamics
using these ideas. Several talks and posters addressed these fundamental questions
and linked them to many applications.

• Discrete Mechanics. Discrete mechanics and the numerical analysis related to
this area was another core subject represented at this workshop. Since the late
1980’s, the field of geometric integration and structure preserving algorithms has
seen spectacular development. It has produced and analyzed numerical meth-
ods for ordinary differential equations and, more recently, for partial differential
equations, that preserve exactly (i.e., up to round-off error) as much of the un-
derlying geometric structure as possible. Geometric mechanics has been one of
the main beneficiaries of these geometric integration techniques which has led to
new developments in the simulation of mechanical systems in particle and contin-
uum mechanics as well as their stochastic counterparts. Several talks and posters
addressed the above mentioned problems.

• Stochastic Mechanics. Randomness is ubiquitous in the description of dynamical
phenomena for several reasons. It may express our lack of knowledge about the
systems’ parameters or components. It may arise intrinsically as non-determinism
in a large spectrum of areas ranging from statistical mechanics to interacting
systems of agents on financial markets. It also appears as an analytical tool in area
of mathematics such as control theory and differential geometry. It may also be
encountered as noise in mesoscopic limits of dynamical systems on different scales,
arising in many different ways, from turbulence in ocean-atmosphere dynamics,
to order book fluctuations governing price dynamics, in which the small scale
component has good mixing properties. The talks and posters representing this
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area underlined the achievements recently obtained in financial mathematics as
well as stochastically perturbed conservative systems. In addition, the geometry
induced by the addition of noise to a deterministic dynamical system was also
presented.

• Liquid Crystals. The mathematical study of complex materials has seen an ex-
plosive growth in the past few years. These materials, both fluids and solids, are
characterized by an additional internal structure of the particles which is encoded
in an order parameter group. Liquid crystals are important representatives of
complex materials. The dynamics of liquid crystals is dominated by two theories:
Ericksen-Leslie order parameter theory and Eringen micropolar theory. No link
between these theories has been established, in spite of the fact that the latter
should naturally include the former. Worse, all attempts at proving this implica-
tion have failed due to errors of all papers addressing this problem in the literature.
At this workshop, using sophisticated tools of geometric mechanics, a theorem was
presented that proves such an inclusion.

Structure of the Meeting. Consistent with the general policy of Oberwolfach
there were only twenty main lectures at the meeting. Twenty invitees were asked
to speak and present their latest results. All participants were invited to present
a poster. There were slots in the schedule specifically for advertising and viewing
the posters, respectively, (teaser and presentation sessions). Wednesday evening
an open discussion was held addressing the recent developments in the field of
Geometric Mechanics and the new directions where it is supposed to develop.

Poster titles and poster presenters. The following posters have been presented
at the workshop.

• Twisted structures in nonholonomic systems (Paula Balseiro)
• Stability of stationary fronts in inhomogeneous wave equations (Gianne Derks)
• Continuous and discrete Neumann systems on Stiefel varieties (Yuri Fedorov)
• Applications of Hamiltonization of nonholonomic systems (Oscar Fernandez)
• Solitary waves in a chain of coupled Fitzhugh-Nagumo neurons (Andreas Johann)
• Optimizing the stable behaviour of controlled dynamical systems (Peter Koltai)
• Global symplectic uncertainty propagation on Lie groups (Melvin Leok)
• Discrete Dirac mechanics and discrete Dirac geometry (Melvin Leok, Tomoki
Ohsawa)
• Routh reduction for singular Lagrangians (Bavo Langerock)
• Moving framework and fiber bundle methods in nonholonomic mechanics (Jared
Michael Maruskin)
• Involutive distributions and dynamical systems of second order type (TomMestag)
• Variational integration of constrained dynamics on different time scales (Sina
Ober-Blöbaum, Sigrid Leyendecker)
• Nonholonomic Hamilton-Jacobi theory (Tomoki Ohsawa)
• On the topology of the double spherical pendulum (Manuele Santoprete)
• Discrete integrable dynamical systems (Yuri B. Suris)
• Invariant sets forced by symmetry (Sebastian Walcher)
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Geometric Mechanics quo vadis? The discussion on Wednesday evening was
one of the most interesting aspects of the meeting. Many topics that have be-
come central to geometric mechanics or that use its tools in an essential way
were identified. Here are some that were mentioned in this open discussion: Inter-
planetary missions, variational integrators, swimming theory, Lagrangian coherent
structures, Euler-Poincaré theory, Lie-Poisson reduction, multisymplectic integra-
tors, nonlinear stability, underwater vehicles, geometrical optimal control, compu-
tational anatomy, reduction by stages in both the Hamiltonian and Lagrangian
setting, molecular oscillations, dynamics of asteroids pairs, dynamics of satellite
with tethers, molecular strand theory, geometrically exact elasticity, robotics, soli-
tons and peakons, various aspects of fluid dynamics, turbulence models, geometric
formulation of complex fluid theory, liquid crystals, superfluids, plasmas, magne-
tohydrodynamics, geophysical fluid dynamics, general relativity, field theory, Lie
groupoids and algebroids, swarming theory, telecommunications.

Several main directions for geometric mechanics were identified in this discus-
sion:
• How does one deal with low regularity in geometric mechanics? The obvious
example is compressible barotropic fluid flow that can be formally written as a
Hamiltonian system, yet, after the first shock, it can be rigorously proven that the
energy decays.
• Symmetric Hamiltonian Bifurcation Theory. Very little is known about this sub-
ject which remains, to these days, almost totally underdeveloped. The challenge
here is to bring it to the level of the by now standard theory of symmetric bifurca-
tion for generic vector fields developed by Golubitsky and his collaborators. One
of the main technical tools in this development is the geometry of the momentum
map.
• The Nature of Integrability. In spite of spectacular developments in the theory
of integrable systems, the field itself is poorly developed. This entire area rests
essentially on large classes of known integrable ODEs and PDEs. While Fomenko
and his collaborators have developed a topological classification method, almost
nothing is known about a symplectic classification. This in turn is essential in the
study of semiclassical quantization and spectral analysis.
• Hybrid discrete and continuous systems. Hybrid systems can be described math-
ematically by a mixture of logic based switching and difference/ differential equa-
tions. Also, stochastic components can be included. Besides of continuously vary-
ing variables and parameters such systems additionally contain variables with a
discrete range of values. Variations of these lead to sudden structural changes of
the systems and thus to a rapid change in the systems’ behaviour. Many systems
in engineering and some physical systems can be modeled using such a mathe-
matical framework. Examples are contact problems in mechanics, event driven
systems and adaptive control. A general theory for this remains to be developed.
• Networks with varying connectivity/ topology. Complex networks play a central
role in today’s society. For example, communication, mobility and transportation
are based and rely on networks. The question of how the network topology affects
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the performance has not been addressed systematically. The topology of a network
is determined by the nature of the coupling between its nodes (connectivity). The
character of the coupling can change when structural parameters are varied. An
interesting research topic is the extension of classical concepts from bifurcation
and stability theory to such systems.
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Abstracts

Astrophysical Orbits and Random Hill’s Equations

Fred C. Adams

(joint work with Anthony M. Bloch)

Overview. This work presents new mathematical results that are motivated by
orbit problems in astrophysics. Most of the matter in our universe is thought to
reside in the form of weakly interacting particles known as dark matter. These
dark matter particles constitute enormous extended mass distributions, called dark
matter halos, which generally exhibit triaxial forms. Note that the visible portions
of galaxies are found at the centers of these halos. The orbits of dark matter par-
ticles through their halos represents the vast majority of orbital motion that takes
place in the universe. Such orbits are found to be subject to a powerful orbit
instability: When an orbit starts in any of the principle planes of the triaxial sys-
tem, the motion is unstable to perturbations in the perpendicular direction. The
development of this instability is described by a type of random Hill’s equation,
where the parameters of the differential equation vary from cycle to cycle. The
time evolution of this stochastically forced Hill’s equation can be studied by ana-
lyzing infinite products of random matrices. We find growth rates for these matrix
products and hence for the original differential equations.

Hill’s Equation with Random Forcing Parameters. As outlined above,
orbit problems in extended mass distributions, such as dark matter halos and
young embedded star clusters, give rise to stochastic Hill’s equations [1]. In this
context, Hill’s equation takes the form

(1)
d2y

dt2
+ [λk + qkQ̂(t)]y = 0 ,

where the function y(t) describes the perpendicular displacement of the orbit from
its original principle plane. The Hill’s equation is random in the sense that the
parameters vary from cycle to cycle. The barrier shape function Q̂(t) is periodic,

so that Q̂(t + ∆τ ) = Q̂(t), where ∆τ is the period. The forcing strength qk and
the natural oscillation frequency λk change from cycle to cycle, and are drawn
from a well-defined distribution. We note that the period (∆τ )k could also vary
from cycle to cycle, although such variations can be scaled out of the problem; in
that case, the period variations change the distributions of the other parameters
(λk, qk).

Periodic differential equations in this class can be described by a discrete map-
ping of the coefficients of the principal solutions from one cycle to the next. The
transformation matrix takes the form

(2) Mk =

[
hk (h2k − 1)/gk
gk hk

]
,



2226 Oberwolfach Report 39/2011

where the subscript denotes the cycle. The matrix elements for the kth cycle are
given by

(3) hk = y1(∆τ ) and gk = ẏ1(∆τ ) ,

where y1 and y2 are the principal solutions for that cycle (and are evaluated at the
end of the cycle). The index k indicates that the quantities (λk, qk), and hence
the solutions (hk, gk), vary from cycle to cycle. Throughout this work, the random
variables are taken to be independent and identically distributed (iid).

The development of the solutions to the periodic differential equation (1) can
thus be described by infinite products of matrices with the form given by equation
(2), where the matrix elements are given by equation (3) and vary from cycle to
cycle. The growth rates γ can be written in the form

(4) γ = lim
N→∞

1

N
log ||M(N)|| where M(N) =

N∏

k=1

Mk .

This result is independent of the choice of the norm || · ||, as shown in previous
work [5, 6].

In the limit of strong forcing (e.g., when qk ≫ 1) the growth rates of the
differential equation (1) and the corresponding matrices (2) have analytic forms
[2]. These growth rates thus add to the collection of known, closed-form results
for infinite products of random 2 × 2 matrices. We have developed a generalized
analysis of these growth rates, including cases where all of the cycles are highly
unstable, where some cycles are near the stability border, and where some cycles
would be stable in the absence of fluctuations [3, 4]. More specifically, we have
found expressions for the growth rates of the 2 × 2 matrices that describe the
solutions. We found exact expressions — in terms of expectation values — for the
growth rates for the full problem, first order corrections to the stable limit and
the highly unstable limit, and for the case where the solutions are stable in the
absence of random variations.

One result of including random forcing parameters is an increase in instability:
For the standard case with constant parameters, Hill’s equations generally display
alternating bands of stability and instability in the (λ, q) plane of parameters
[7]. In the presence of cycle-to-cycle parameter variations, however, the bands of
stability essentially disappear [2, 3, 4].
Future work. These studies of random Hill’s equations provide us with new
examples where the infinite products of random matrices can be determined. It
would be interesting to carry this work further. We can use our results obtained to
date to find additional classes of matrices where the growth rates can be explicitly
calculated. Turning the problem around, we can also explore how existing matrix
examples imply properties of stochastic differential equations.

In many cases, an ensemble of stochastic systems of the type considered here
can be described with a Fokker-Planck (FP) equation. However, the derivation of
the FP equation is only valid in the limit of small stochastic perturbations (the
validity of the FP approach for the limit qk ≪ 1 is described in [3]). On the other
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hand, for the case of orbit instabilities, governed by the random Hill’s equation
(1), we are primarily interested in the opposite limit of large forcing terms where
qk ≫ 1. This poses a number of related questions, including defining the regime
of applicability of the FP treatment for this class of problems, and how solutions
behave in the transition regime between small and large forcing terms.
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Brockett-Heisenberg Systems and Geometric Aspects of Control
Communication Complexity

John Baillieul

(joint work with Wing-Shing Wong)

The interaction of information and control has been a topic of interest to system
theorists that can be traced back to the 1950s when the fields of communica-
tions, control, and information theory were new but developing rapidly. Recent
advances in our understanding of this interplay have emerged from work on the
dynamical effect of state quantization and a corresponding understanding of how
communication channel data rates affect system stability. While a large body of
research has now emerged dealing with communication constrained feedback chan-
nels and optimal design of information flows in networks, less attention has been
paid to ways in which control systems should be designed in order to optimally
mediate computation and communication. Recently W.S. Wong has proposed the
concept of control communication complexity (CCC) as a formal approach for
understanding how a group of distributed agents can take independent actions
that cooperatively realize common goals and objectives. A prototypical goal is the
computation of a function, and CCC provides a promising new approach to under-
standing complexity in terms of the cost of information processing. This lecture
introduces control communication complexity in terms of what are called standard
parts optimal control problems. Such optimization problems are of interest in the
context of quantum computing, and similar problems have recently been discussed
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in connection with protocols for assembly of molecular components in synthetic
biology.
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Torus Dynamics

James Binney

Massive observational resources, both ground- and space-based, are currently being
devoted to surveying the contents of our Galaxy. The latter is of interest not merely
because it is our home, but because it is typical of the galaxies that currently
dominate the cosmic star-formation rate, and its luminosity lies precisely at the
characteristic luminosity of galaxies, L∗.

We can measure all three components of the velocity of a star, the component
vlos along the line of sight through Döppler shifts of spectral lines, and the trans-
verse components by watching its “proper motion” µ across the sky. If the star is
near enough, its distance s can be inferred by measuring the parallax ̟ = AU/s
that arises from the Earth’s motion about the Sun. The Gaia satellite, which will
be launched by ESA in early 2013, will measure parallaxes with sufficient precision
(δ̟ < 5 × 10−11) to determine the distances to stars as far away as the Galactic
centre. By 2020 we will have useful measurements of the sky-positions, proper
motions and parallaxes of ∼ 109 stars and spectra for > 108 stars. From the
spectra it is possible to determine not only vlos but also information about the
chemical composition of the star, and, in favourable cases, information about the
age and luminosity of the star. Given that even for the faintest stars we can mea-
sure the apparent brightness in a few wavebands, the space of observables never
has dimension less than 7, and for brighter stars has dimension 12 or greater.

Variables of physical interest, such as the distance and transverse velocity
v⊥ = µ/̟, are non-linearly related to the observed quantities, so we cannot prof-
itably infer physical quantities directly from the data – for example, the measured
parallax of a distant star will often be negative, and correspond to no distance.
Yet a negative parallax does convey information, namely that the star is probably
more distant than the inverse of the standard error on the parallax. In view of this
situation we must proceed by comparing the data to probability density functions
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(pdf) in the space of observables predicted by models. Traditional galaxy mod-
els, N-body and Schwarzschild orbit-superposition models, do not provide pdfs
but discrete realisations of an unknown pdf. Moreover, it is hard to steer an N-
body model towards a model that is consistent with the data, because the relation
between the final model and the initial conditions is complex and ill-understood.

The most promising approach is best understood as a development of Schwarz-
schild modelling [1]. The key is to replace orbits as time series with orbital tori
as three-dimensional submanifolds of phase space. Position on a torus is de-
termined by three angle variables θi and the tori are labelled by their actions
Ji = (2π)−1

∮
γi
dq · p, where γi are three closed paths on the torus that cannot be

deformed into one another. We obtain our tori by choosing a canonical transfor-
mation that maps an analytic orbital torus of either the harmonic oscillator or the
isochrone potential into the Galaxy’s phase space. The general structure of the
canonical transformation is specified a priori, and the coefficients in the generating
function(s) of the transformation are adjusted to minimise (for given J) the rms
variation of the Galaxy’s Hamiltonian H over the image torus [2].

After we have established the canonical transformation for all J in some region
of action space, we can define an integrable Hamiltonian H0 in that region by
H0(J) ≡ 〈H〉θ [3]. If our adjustment of the canonical transformation has been a
complete success, H will be constant on the image tori so H = H0. Generally
H will fluctuate slightly on the the image tori, so there will be a small difference
Hamiltonian ∆ ≡ H−H0. Thus torus dynamics furnishes an integrable Hamilton-
ian, which can be used for preliminary modelling, and a perturbing Hamiltonian,
which can be used to refine a model. ∆ is typically very small, so first-order secular
perturbation theory works much better than in traditional applications. In fact
the smallness of ∆ is such that we have to derive a refinement of the traditional
pendulum equation for discussions of resonant trapping and the onset of chaos [4].

Our current galaxy models consist of analytic functions f(J) for each cohort
of physically distinguishable stars, for example old, metal-poor stars, and stars of
approximately solar composition that were born ∼ 5Gyr ago [5]. The functions f
contain parameters and we choose these parameters by deriving from the fs and
the known measurement errors the pdf of stars in the space of observables. Then
we determine the likelihood of the data given the model by integrating the model
pdf along the line of sight to each star through a plausible range of distances. The
product of the individual stellar probabilities gives the likelihood of the data given
the model, and a Markov-chain Monte-Carlo process is then used to determine the
pdf of the parameters given the data [6].
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New Developments in Discrete Variational Calculus and Discrete
Optimal Control Theory

David Mart́ın de Diego

One of the main goals of numerical analysis and computational mathematics has
been rendering physical phenomena into algorithms that produce sufficiently ac-
curate, affordable, and robust numerical approximations. Therefore, numerical
simulations are now an invaluable tool for exploring the dynamics of nonlinear
differential equations. In the late 1980s, and throughout the 1990s, the field of
Geometric Integration (GI) arose to design and to analyze numerical methods for
ordinary differential equations and, more recently, for partial differential equations
(PDEs), that preserve exactly (i.e. up to round-off error) as much of the underlying
geometrical structures as possible [5]. In this sense, GI is concerned with produc-
ing numerical approximations preserving the qualitative attributes of the solution
to the extent that it is possible (phase space, energy conservation, preservation of
integrability under discretization, reversibility, symplecticity, volume preservation,
etc) while not disregarding accuracy, affordability, and robustness. In particular,
in many problems arising from science and engineering (such as solar system or
molecular dynamics) the underlying geometric structure affects the qualitative be-
havior of solutions, and as such, numerical methods that preserve the geometry of
a problem typically yield simulations that are qualitatively more accurate.

As a particular case of geometric integrators for lagrangian systems appears
discrete variational integrators based on an appropriate discretization of the vari-
ational principle (see [9] and references therein). During the last decade, the effort
has been concentrated to the case of discrete Lagrangian functions L on the carte-
sian product Q × Q of a differentiable manifold. This cartesian product plays
the role of a “discretized version” of the standard velocity phase space TQ when
we approach to vector by two nearby points. Applying a natural discrete vari-
ational principle, we obtain a recurrence law which is a second order recursion
operator ξd : Q×Q −→ Q×Q assigning to each input pair (xk−1, xk) the output
pair (xk, xk+1). One interesting feature of this particular type of integrators is
that automatically the derived numerical scheme inherits some of the geometric
properties of the continuous Euler-Lagrange equations (symplecticity, momentum
preservation, good energy behaviour, etc).

Although this type of geometric integrators have been mainly considered for con-
servative systems, the extension to geometric integrators for more involved situa-
tions is relatively easy knowing the geometry of the continuous counterpart. In this
sense, it has been recently shown how discrete variational mechanics can include
forced or dissipative systems, holonomic constraints, explicitly time-dependent
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systems, frictional contact, nonholonomic constraints, multisymplectic fields theo-
ries... In the case of nonholonomic systems the induced numerical methods show a
very good energy behavior and properties such as the preservation of the discrete
nonholonomic momentum map [1].

Many of the previous examples are based on the discretization of the tangent
bundle TQ as two copies of Q, Q ×Q. But, Moser and Veselov [10] consider also
a discrete Lagrangian systems evolving on a Lie group, showing the possibility to
extend discrete variational calculus to a more general class of examples, as the
the case of Lie groups, as a dicrete version of lagrangians defined on Lie algebras
(discrete Euler-Poincaré equations). All this plethora of examples induces to A.
Weinstein [11] to study discrete mechanics on Lie groupoids, which is a structure
that includes as particular examples the case of cartesian products Q × Q as
well as Lie groups, but also many other examples which application to reduced
Lagrangian and Hamiltonian mechanics. We recall that a Lie groupoid G is a
natural generalization of the concept of a Lie group, where now not all elements
are composable. The product g1g2 of two elements is only defined on the set of
composable pairs G2 = {(g, h) ∈ G × G | β(g) = α(h)} where α : G −→ M and
β : G −→M are the source and target maps over a base manifold M .

In [6], we have described geometrically discrete Lagrangian and Hamiltonian
Mechanics on Lie groupoids, in particular, the type of equations analyzed include
the classical discrete Euler-Lagrange equations, the discrete Euler-Poincaré and
discrete Lagrange-Poincaré equations. These results have applications for the con-
struction of geometric integrators for continuous Lagrangian systems (reduced or
not) Moreover, our methods have been extended to the case of discrete nonholo-
nomic mechanics [2, 3] and discrete variational constrained problems including
optimal control theory for reduced systems [7, 8]. The underlying structure of
these discrete methods is analyzed following similar but adapted techniques than
in the continuous setting, producing a new and promising derivation of numerical
integrators. Additionally, these designs are applied to the treatment of dynamical
and control systems with innovative applications to modern engineering systems
(robotic arms, spacecrafts, underwater vehicles, quantum control systems, etc) [4].
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Geometry of Adding Noise to Dynamical Systems, and Decomposition
of the Result

David Elworthy

(joint work with Yves LeJan and Xue-Mei Li)

1. addition of noise

There are a variety of reasons for adding noise to a given smooth dynamical
system dxt

dt = A(xt). The most obvious is that the noise may be necessary to
improve the model, another could be to try to stabilise an unstable system; doing
so can also be used as an aid to computation as done in Oliver Junge’s talk. Here
I shall consider only the addition of finite dimensional Gaussian white noise, the
formal derivative of Brownian motion. We take A to be a vector field on a smooth
n-dimensional manifold M .

There are two possible aproaches. A “diffusive” term could be added to yield a
diffusion operatorA of the form LA+Λ where LA refers to Lie differentiation in the
direction A and Λ is a diffusion operator, by which we will mean a smooth second
order semi-elliptic operator acting on real valued functions on M and with no zero
order term. For example if M has a Riemannian metric, a constant multiple of
the Laplace-Beltrami operator, ∆, might be a natural choice.

The other approach is to take a stochastic differential equation which has the
vector field A as a “drift” in some sense. We can write this as

(1) dxt = A(xt)dt+X(xt) ◦ dBt

where X : Rm → TM is a vector bundle map from the trivial Rm-bundle over
M to the tangent bundle of M , and {Bt}t≥0 is a Brownian motion on Rm. We
may have m 6= n. There is an underlying probability space, say {Ω,F ,P} on
which the Brownian motion is defined. Thus Bt and the solution xt, which has
values in M , are parametrised by elements of Ω. We will only consider the case of
smooth X and will assume M to be compact, to ensure that solutions exist for all
time and there is a solution flow of diffeomorphisms {ξt}t≥0, a Diff(M)-valued
process.
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The solutions of our SDE form a Markov process with generator A with

(2) A = LA +
1

2
ΣjLXjLXj

forX1, ..., Xm the vector fields given byX(−)(ej) for an orthonormal basis {ej}mj=1

of Rm. We say they form an A-diffusion. In general there are many different ways
to choose an SDE whose solutions form an A-diffusion for a given A.

Corresponding to these approaches there are two levels of geometric structure
induced on the underlying manifold M :

• Having a diffusion operator A is equivalent to having a sample continuous
Markov process, and being given the law of the one point motions of that
process i.e. a measure on the space of continuous paths on M starting
from a fixed point. It also determines and is determined by a semi-group
of operators {Pt}t>0 which we could write as {etA}t>0. The operator also
has a (principal) symbol,

σA : T ∗M → TM.

This is positive semi-definite and so determines an inner product 〈−,−〉x
on each subspace Ex := σA

x [T ∗
xM ]. In particular if A is elliptic, so Ex =

TxM , it determines a Riemannian structure on M .
• An SDE, dxt = X0(xt) dt+X(xt) ◦ dBt determines a diffusion operator
A = L

0
X + 1

2ΣjLXjLXj for which its solutions are A-diffusions. Thus the
choice of an SDE for given A corresponds to the choice of a Hormander
form representation of A. Since Lie differentiation acts on sections of
tensor bundles this determines operators on such sections.

In our compact situation the SDE will have a smooth flow of solutions,
a Diff(M)-valued process. This determines semi-groups on tensor fields
defined by

Ptφ = Eξ∗t φ.

If we assume the image subspace space E of the symbol of A has con-
stant rank and so is a sub-vector bundle of TM , we not only have a
Riemannian metric on E but obtain an induced metric connection ∇̆ on
E using the projection by X of the trivial connection on Rm.

A diffusion operator A is said to be cohesive if (i) the image E of its symbol has
constant rank, p say, and (ii) it has a Hormander form representation involving only
vector fields which are section of E. The “irrelevance of drift” , [7], asserts that in
this situation, if p > 1, an SDE for A can be found of the form dxt = X(xt) ◦ dBt.

A useful notion is that of the adjoint (semi)-connection ∇̂. See [8], [7] following
[4]. This gives a covariant derivative of vector fields and other tensor fields but
only in the directions given by E. It is defined using the Lie bracket:

∇̂UV = ∇̆V U + [U, V ].
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2. decomposition and filtering

Now suppose we have a smooth surjective map p : N → M , and a diffusion
operator B on N which lies over a cohesive diffusion operator A on M . There is a
commutative diagram of symbols and using this there is a natural horizontal lift
map h : Ep(u) → TuN for each u ∈ N , a non-linear “semi-connection ” over E. It
would be a connection if A were elliptic, and a principal connection when also p
is the projection of a principal bundle with B equivariant.

Using this one can show [8], [9] that there is a canonical decomposition of B into
horizontal and vertical parts and corresponding skew-product type representations
of the B -diffusion. In the Riemannian submersion case this goes back to [2] and [5].
See also [12], [1], [3]. Non-canonical decompositions are discussed in the context
of Hamiltonian systems in [11].

Suppose now we have an SDE on M with a cohesive generator A. Let p :
Diff(M) → M be the evaluation map at some fixed x0 ∈ M . It has a natural
principal bundle structure. The flow of the SDE gives an operator B on Diff(M)
over A which is equivariant. It therefore determines a principal semi-connection
over E on this diffeomorphism bundle, and hence on all natural bundles on M .
The one induced on TM turns out to be the connection ∇̂ described above, [8],[9].

In particular we see from this that, when the symbol of A has constant rank,
an SDE for an A-diffusion not only induces a connection on E but also a semi-
connection over E on any natural bundle over M .

For a more detailed study of the space of SDE see [10].
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Gauge Transformations, Twisted Poisson Brackets and
Hamiltonization of Nonholonomic Systems

Luis Garćıa Naranjo

(joint work with Paula Balseiro)

It is well known that the equations of motion for a mechanical system with non-
holonomic constraints do not arise from a variational principle in the usual sense.
As a consequence, they cannot be formulated as a classical Hamiltonian system.
Instead, they are written with respect to an almost Poisson bracket that fails to
satisfy the Jacobi identity [3, 4].

On the other hand, after a symmetry reduction, the resulting equations of
motion of a number of examples allow a Hamiltonian formulation (sometimes after
a time reparametrization), in which case one talks about Hamiltonization.

In our research we employ recent ideas from Poisson geometry to study the
Hamiltonization phenomenon from a geometric perspective. The main tool in our
approach is the concept of gauge transformation of bivector fields (in the sense of
Ševera and Weinstein [5]), an operation that uses differential 2-forms to modify
bivector fields keeping their characteristic distribution unchanged.

Consider a nonholonomic system on a constraint phase space M, equipped with
the almost Poisson bracket {·, ·}nh [3, 4], known as the nonholonomic bracket, and
Hamiltonian function HM. The (almost) Hamiltonian vector field Xnh, defined by
{·, ·}nh and HM, governs the dynamics of the system. In our research we consider
new brackets {·, ·}Bnh obtained by gauge transformations of {·, ·}nh with respect
to suitably chosen 2-forms B on M. Since gauge transformations do not modify
the characteristic distribution, the (almost) Hamiltonian vector fields associated to
{·, ·}Bnh satisfy the nonholonomic constraints. If, in addition, B verifies iXnh

B = 0,

we say that it defines a dynamical gauge transformation; the terminology reflects
the fact that such gauge transformations do not affect the dynamics, in the sense
that the (almost) Hamiltonian vector field defined by {·, ·}Bnh and HM is still Xnh.
In this way, we distinguish a family F of almost Poisson structures that describe
the dynamics of our nonholonomic system.

Now suppose that our nonholonomic system possesses some symmetries de-
scribed by the action of a Lie group G on M. The main motivation to consider
the family F of almost Poisson brackets is to have a larger choice of structures to
describe the reduced dynamics and hope to find one amongst them that Hamil-
tonizes the problem. More specifically, we consider the dynamics on the reduced
space R := M/G. The reduction of the invariant brackets in F yields a collection



2236 Oberwolfach Report 39/2011

Non-holonomic system

[2], [3], [4]
��

almost Poisson
description in terms of the

nonholonomic bracket {·, ·}nh
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//

symmetry
reduction

��
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(with the same characteristic distribution)
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reduction

��

The reduction of {·, ·}nh
gives the known almost
Poisson bracket {·, ·}red

(e.g. [6])

�

�

{·, ·}red is an element
of the reduced family

//

almost Poisson description of the
reduced dynamics in terms of the
reduction of invariant members

in F denoted by {·, ·}redB

Hamiltonization
��

find an element {·, ·}redB

in the reduced family

that is (conformally) Poisson

Figure 1. Summary of our approach to Hamiltonization.

of reduced brackets {·, ·}redB on R, and any member of this collection describes
the reduced dynamics in (almost) Hamiltonian form with respect to the reduced
Hamiltonian HR. In particular, the reconstruction of the original dynamics on M
is exactly the same regardless of the choice of bracket {·, ·}redB on the reduced
space.

In our approach, the issue of Hamiltonization is formulated by the requirement
that one of the reduced brackets on R, obtained as the reduction of an element in
F, is conformally Poisson; in other words, there should exist a bracket {·, ·}redB

and a positive function ϕ such that ϕ{·, ·}redB is a Poisson bracket on R (i.e., it
satisfies the Jacobi identity).

The scaling of {·, ·}redB by ϕ is dynamically interpreted as the time reparametriza-
tion dτ = 1

ϕ
dt (an idea that goes back to Chaplygin). In particular, the Hamil-

tonization of the celebrated Chaplygin sphere problem arises as the reduction of a
dynamically gauged bracket {·, ·}Bnh that differs from the standard nonholonomic
bracket {·, ·}nh. Our approach to Hamiltonization is summarized in figure 1.

A key observation is that, although the brackets in F are all gauge related,
they may have fundamentally different features after reduction. For example,
depending on the choice of the 2-form B, the characteristic distribution of the
reduced almost Poisson bracket {·, ·}redB may or may not be integrable. The
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integrability of the characteristic distribution is of central importance, as it is a
necessary condition for {·, ·}redB to be conformally Poisson (and, hence, for the
system to be Hamiltonizable).

An important class of almost Poisson brackets possessing an integrable char-
acteristic distribution is given by the so-called twisted Poisson structures [5]. For
these structures the failure of the Jacobi identity is controlled by a global closed
3-form φ as follows:

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}}+ φ(Xf , Xg, Xh) = 0,

where Xf denotes the (almost) Hamiltonian vector field with Hamiltonian func-
tion f . In our research we have shown that any almost Poisson structure whose
characteristic distribution is both integrable and regular is a twisted Poisson struc-
ture. As a consequence, we show that the reduced equations of some classical
nonholonomic systems ( the Veselova problem and the Chaplygin sphere) can be
formulated in terms of twisted Poisson brackets in the original physical time (prior
to any time reparametrization). To our knowledge, this establishes the first con-
nection between twisted Poisson structures and nonholonomic mechanics. This
should serve as a motivation to investigate the interplay between the rich geo-
metrical properties of twisted Poisson brackets and the dynamical features of the
corresponding (almost) Hamiltonian vector fields.

To illustrate the importance of our methods, we have introduced the problem of
the motion of rigid bodies that are subject to generalized rolling constraints. These
are nonholonomic constraints that relate the angular velocity ω of the body and the
linear velocity ẋ of its center of mass in a linear way, i.e., ẋ = Aω for a 3×3 matrix
A satisfying certain properties. This type of constraints generalize the Chaplygin
sphere problem. In fact, the constraints vary from completely nonholonomic if the
rank of A equals 3, to (holonomic) classical free rigid body motion if A = 0. For
the Chaplygin sphere, the rank of A equals 2. By allowing gauge transformations,
we prove that the problem is Hamiltonizable independently of the value of the
rank of A. Using the Hamiltonian structure of the reduced system, we also show
its complete integrability in the sense of Liouville.

For this explicit class of examples, the behavior of the reduced brackets, accord-
ing to the rank of A, is illustrated in the table below. In our notation, {·, ·}red cor-
responds to the reduction of the classical nonholonomic bracket, while the bracket
{·, ·}redB corresponds to the reduction of a bracket obtained by a dynamical gauge
transformation by a specific 2-form B.

Rank of A
0

(free rigid body)
1 2

(Chaplygin sphere)

3
(completely

nonholonomic)

{·, ·}red Poisson
Conformally Poisson
and Twisted Poisson

Non-integrable
characteristic
distribution

Non-integrable
characteristic
distribution

{·, ·}
redB

Non-integrable
characteristic
distribution

Non-integrable
characteristic
distribution

Conformally Poisson
and Twisted Poisson

Poisson
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Equivalent Theories of Liquid Crystal Dynamics

François Gay-Balmaz

(joint work with T. S. Ratiu and C. Tronci)

The Ericksen-Leslie equations for the dynamics of nematic liquid crystals are
widely accepted and experimentally well-characterized through various measure-
ments [2, 1, 13]. However, when orientational defects (disclinations) are present in
the system, this model fails to provide a reliable description. For example, in the
presence of defects, the liquid crystal molecules may undergo phase transitions,
e.g., from uniaxial to biaxial, and the director field n is no longer an appropriate
order parameter variable.

Among the various descriptions that incorporate defect dynamics, the microp-
olar theory developed by Eringen [4] appears promising to describe the motion
of microfluids, including liquid crystals. Indeed, besides incorporating molecular
shape changes into a microinertia tensor j, disclination dynamics is encoded in the
so called wryness tensor γ, which is expressed in terms of (∇n)× n when defects
are absent [4].

However, while nematic liquid crystals are well known to be a typical example
of microfluids, in spite of several attempts, it is not known how the Ericksen Leslie
(EL) description arises from Eringen’s micropolar theory. For example, the relation
γ = (∇n)×n proposed by Eringen [4] fails to return the correct EL equations [11]
as shown in [5] by two different methods (symmetry considerations and a direct
computation). Thus it is not completely clear how γ may be expressed in terms
of the director n.

More recent developments in the understanding of defect dynamics are provided
by the use of reduction theory [7, 5], which is behind the gauge-theory approach [3].
It applies to very general systems since it incorporates defect dynamics in different
contexts, such as frustrated spin glasses [8, 3], for example. In this setting, one
is naturally led to consider the wryness tensor γ as the magnetic potential of
a Yang-Mills field (or, equivalently, a connection one-form) taking values in the
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Lie algebra so(3) of antisymmetric 3× 3 matrices (usually identified with vectors
in R

3) of the rotation group SO(3). The quantity γ is also known as ‘spatial
rotational strain’ [7] and it expresses the amount by which a specified director
field rotates under an infinitesimal displacement. Due to its tensorial nature, the
gauge potential γ may be conveniently expressed in terms of an appropriate basis
as

γ = γi dx
i = γai ea dx

i

where {ea} is a fixed basis of R3 ≃ so(3). Then, its corresponding magnetic vector
field is given componentwise by

Bi = ǫijk(∂jγk + γj × γk) .

In the gauge-theory approach developed in [3], the absence of disclinations is given
by a vanishing magnetic field B, rather than by a vanishing potential γ. Thus, the
presence of γ in a mathematical model must be compatible with EL dynamics, as
long as B = 0. In the context of reduction theory, one recognizes that a vanishing
magnetic field B = 0 simply amounts to the homogeneous initial condition γ0 = 0
[3]. If the latter condition is not satisfied, then the gauge-theory model would
extend the EL formulation to incorporate non-trivial disclination dynamics.

On the other hand, Eringen’s micropolar theory does not seem to possess a
gauge-theory formulation, since the wryness tensor (∇n)× n, as defined by Erin-
gen, does not transform as a magnetic potential under gauge transformations; see
[5]. Nevertheless, Eringen’s theory still shares many analogies with gauge-theory
models and the coexistence of the wryness and microinertia tensors in the dynam-
ics provides an interesting opportunity to account for the shape evolution of the
molecules interacting with disclination lines.

The considerations above represent the main motivation for the present work,
which uses Euler-Poincaré variational methods to provide a unifying framework
for incorporating defect dynamics in continuum systems with broken internal sym-
metry (e.g., liquid crystals) and shows that Eringen’s micropolar theory comprises
Ericksen-Leslie dynamics. This is done upon noticing that taking the gradient of
the relation

n(x, t) = χ(x, t) ẑ,

relating director dynamics to the dynamics of the rotation matrix χ(x, t) ∈ SO(3)
in EL theory, immediately leads to

∇n = (∇χ)ẑ = (∇χ)χ−1 n .

Here ẑ := (0, 0, 1). Then, one observes that the new variable

γ̂ = −(∇χ)χ−1

is precisely a connection one form taking values in so(3) [7, 5]. It is straightforward
to see that analogous relations hold independently of the order parameter space.
Then, upon using the isomorphism so(3) ≃ R

3 given by ak = −ǫkjlâjl, one can
simply replace the relation ∇n = n × γ into the EL equations to account for
the potential γ as an extra dynamical variable. Notice that, although the latter
relation is satisfied by the choice γ = (∇n)×n, this expression is only defined up
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to a component parallel to n. Thus, γ cannot be entirely expressed in terms of the
director n and it needs to be specified by all three columns of the matrix χ(x, t).

The second key observation is that a different symmetry reduction of the same
material Lagrangian yields a new set of equations for nematodynamics. We show
that these are completely equivalent to the original Ericksen-Leslie equations.
However, this new system allows for the description of disclinations, something
that the Ericksen-Leslie equations could not handle, as discussed above.

Since all the above considerations hold regardless of the background fluid mo-
tion, we shall mainly confine our treatment to motion-less liquid crystal continua
in order to emphasize the high points of the discussion.

More precisely, we start by showing how reduction theory can be applied to
Ericksen-Leslie nematodynamics in two different fashions, thereby producing two
different sets of equations of motion. The resulting dynamical systems are, how-
ever, completely equivalent. These two equivalent reduction methods are then
formulated in a general context, for an arbitrary order parameter space. Then,
Eringen’s theory of micropolar media is shown to comprise Ericksen-Leslie nema-
todynamics. This requires a specified choice of the micropolar free energy, which
in turn reduces to the Frank energy under the assumption of uniaxial molecules.
We finally extend all the results to liquid crystal flows, thereby showing how the
hydrodynamic Ericksen-Leslie equations possess a micropolar formulation.
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Waltzing Peakons and G-Strands

Darryl D. Holm

(joint work with Colin J. Cotter, Rossen I. Ivanov and James R. Percival)

We first considered singular solutions of a system of two cross-coupled Camassa-
Holm (CCCH) equations. This CCCH system admits peakon solutions, but it is
not in the two-component CH integrable hierarchy. The system is a pair of coupled
Hamiltonian partial differential equations for two types of solutions on the real line,
each of which separately possesses exp(−|x|) peakon solutions with a discontinuity
in the first derivative at the peak. However, there are no self-interactions, so each
of the two types of peakon solutions moves only under the induced velocity of
the other type. We analyzed the ‘waltzing’ solution behaviour of the cases with a
single bound peakon pair (a peakon couple), as well as the over-taking collisions
of peakon couples and the antisymmetric case of the head-on collision of a peakon
couple and a peakon anti-couple. We then presented numerical solutions of these
collisions, which are inelastic because the waltzing peakon couples each possess an
internal degree of freedom corresponding to their ‘tempo’ – that is, the period at
which the two peakons of opposite type in the couple cycle around each other in
phase space. Finally, we discussed compacton couple solutions of the cross-coupled
Euler-Poincaré (CCEP) equations and illustrate the same types of collisions as for
peakon couples, with triangular and parabolic compacton couples. We finished
with a number of outstanding questions and challenges remaining for understand-
ing couple dynamics of the CCCH and CCEP equations.

Next, we discussed G-strands. A G-strand is a map g(t, x) : R×R → G for a Lie
group G. For a certain Hamiltonian, the SO(3)K-strand for ellipsoidal rotations
is mapped here into a completely integrable generalization of the classical chiral
model for the SO(3)-strand. The SO(3)-strand is the G-strand version of the rigid
body equation and it may be regarded physically as a continuous spin chain. We
derived the SO(3)K-strand dynamics as an Euler-Poincaré system and recast it
as a Lie-Poisson Hamiltonian system for coadjoint flow. Analogous results were
discussed for an Sp(2)-strand. The Sp(2)-strand is the G-strand version of the
Sp(2) Bloch-Iserles ordinary differential equation, whose solutions exhibit dynam-
ical sorting. Numerical solutions were shown that illustrated nonlinear interactions
of coherent wave-like solutions in both cases. In addition, both the SO(3)K -strand
and the Bloch-Iserles partial differential equation represented by the Sp(2)-strand
were shown to be completely integrable Hamiltonian systems that each admit soli-
ton solutions. The latter was accomplished by finding transformations that take
each of these systems into an extension of the chiral field model due to Yanovski
(1998).
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Rapid Expansions in Orthogonal Polynomials

Arieh Iserles

(joint work with Maŕıa José Cantero)

The Fast Fourier Transform allows to approximate the first n terms of a Fourier
expansion in O(n log n) operations, and this can be easily extended to the compu-
tation of the first terms of a Chebyshev expansion. This arguably is one of the most
fundamental facts about modern scientific computing, which has revolutionised a
raft of applications, from signal processing to numerical solution of differential
equations. But what about fast computation of other orthogonal expansions?

The subject of this talk being rapid (i.e., O(n log n)) computation of the first
n terms of an expansion in an orthogonal polynomial system {pn}n≥, say, with
respect to an inner product induced by some complex-valued Borel measure dµ, we
commence from the case dµ(x) = (1−x2)α, x ∈ (−1, 1), α > −1: the ultraspherical

polynomials pn = P
(α,α)
n [1]. Special cases are α = 0 (Legendre polynomials,

already treated in [3]), α = − 1
2 (Chebyshev polynomials of the first kind) and

α = 1
2 (Chebyshev polynomials of the second kind).

Let a function f be analytic in a Bernstein ellipse Br = {reiθ + r−1e−iθ : θ ∈
[−π, π]}, r ∈ (0, 1). Instead of representing the nth expansion coefficient f̂n in the
usual way, we write it as an infinite linear combination of derivatives of f . Thus,
we represent explicitly xm in the basis {p1, p1, . . . , pm}, xm =

∑m
n=0 am,npn(z),

say, whence we can write

f(z) =

∞∑

m=0

f (m)(0)

m!

m∑

n=0

am,npn(z) =

m∑

n=0

[
∞∑

m=n

am,nf
(m)(0)

m!

]
pn(z).

Next, using explicit expressions for the am,ns and the Cauchy Integral Theorem
for derivatives, we prove that

f̂n =
cn
2πi

∫

γ

f(z)

zn+1
ϕn(z)dz, n ≥ 0,

where γ is a simple, closed, positively-oriented Jordan curve in Br which does not
intersect [−1, 1], while

cn =
(1 + 2α)nn!

2n(1 + α)n(α+ 1
2 )n

, ϕn(z) = 2F1

[
n+1
2 , n+2

2 ;
α+ n+ 3

2 ;

1

z2

]
.

The above hypergeometric function converges very slowly, rendering it of little use
in direct computation. Instead, we use the transformation

2F1

[
a, a+ 1

2 ;
c;

2ζ − ζ2
]
=

1

1− 1
2ζ)

2a 2F1

[
2a, 2a− c+ 1;
c;

ζ

2− ζ

]

with a = n+1
2 , c = α + n + 3

2 and ζ/(2 − ζ) on the Bernstein ellipse Bρ for some
ρ ∈ (r, 1). After much algebra, this results in

f̂n =
cn(2ρ)

n

2π

∫ π

−π

(1 − ρ2e2iθ)f(12 (ρe
iθ + ρ−1e−iθ))einθχn(ρ

2e2iθ)dθ, n ≥ 0,
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where

χn(z) = 2F1

[
n+ 1, 12 − α;
n+ α+ 3

2 ;
z

]
=

∞∑

m=0

χn,mz
m

has a rapidly-convergent Taylor expansion. Truncating, we thus have

f̂n ≈ f̂ [M ]
n = cn(2ρ)

n
M∑

m=0

χn,mρ
2mv̂n+2m,

where M ≥ 0 is a suitable integer and

v̂n =
1

2π

∫ π

−π

(1− ρ2e2iθ)f(12 (ρe
iθ + ρ−1e−iθ))einθdθ

can be computed rapidly with FFT for relevant values of n.

Given ε > 0, we prove that we can chooseM so that |f̂n−f̂ [M ]
n | < ε for all n ≥ 0.

The outcome is an algorithm where the O(n log n) cost of FFT is complemented
by further O(n) operations: a fast algorithm for ultraspherical expansions [1].

Further, assuming α > − 1
2 , it is possible to prove that the algorithm ‘survives’

when ρ→ 1 and the Bernstein ellipse collapses to the interval [−1, 1]. In that case

we can express f̂n as a linear combination of Chebyshev coefficients of f .
In the second part of the talk we extend the first two stages in the development

of the above algorithm—expressing xm in an orthogonal polynomial basis and f̂n
as an integral transform—to general orthogonal polynomial expansions. Thus,
suppose first that {pn}n≥0 are a monic OPRL (orthogonal polynomials on the real
line) system,

∫ ∞

−∞

pm(x)pn(x)dx =

{
λn > 0, m = n,

0, m 6= n.

Since

xm =

m∑

n=0

dm,npn(x), where dm,n =
1

λn

∫ ∞

−∞

xmpn(x)dµ(x),

using the three-term recurrence relation

pn+1(x) = (x− an)pn(x)− bnpn−1(x)

we obtain the mixed recurrence

d̃m+1,n = bnd̃m,n−1 + and̃m,n + d̃m,n+1

or, in a matrix form, padding d̃m with zeros, d̃m = Hd̃n, where H is an infinite
tridiagonal matrix with ak along the main diagonal, bk in the subdiagonal and
ones in the superdiagonal. We deduce that d̃m = Hme0, where ek is the kth unit
vector. An important observation is that H is similar to the Jacobi matrix J of
the OPRL. Since the spectrum of the latter is known to reside in the least closed
interval supporting dµ, we deduce that the resolvent of H is analytic outside that
interval.

Similar argument can be extended to orthogonal polynomials on the unit circle
and to Laurent orthogonal polynomials on the unit circle: we omit the details.
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Assume next that the support is in a compact interval [a, b] and that w.l.o.g.
0 ∈ [a, b]. Expand f(z) =

∑∞
m=0 fmz

m. As for ultraspherical polynomials,

f(z) =

∞∑

n=0

(
∞∑

m=n

fmdm,n

)
pn(z) ⇒ f̂n =

λ0
λn

∞∑

m=n

f (m)(0)

m!
d̃m,n, n ≥ 0.

Let γ be a simple, positively-oriented, closed Jordan curve in Ω \ [a, b] and assume
that f is analytic in Ω. Using again the Cauchy theorem,

f̂n =
λ0
λn

1

2πi

∫

γ

f(z)

∞∑

m=n

d̃m,n

zm+1
dz =

λ0
λn

1

2πi

∫

γ

f(z)

z
e⊤n

(
∞∑

m=n

Hmz−m

)
e0dz

=
λ0
λn

1

2πi

∫

γ

f(z)

zn+1
e⊤n (I − z−1H)−1e0dz, n ≥ 0.

Bearing in mind the analyticity of the resolvent in Ω \ [a, b], the integral is well
defined. Thus, we have completed two—out of three—conceptual steps leading to
a fast algorithm in a general setting of OPRL, with similar results available for
polynomials and Laurent polynomials orthogonal on the unit circle.

There is a remaining step in designing an algorithm for rapid evaluation of
expansion coefficients: accelerating the convergence of the integral kernel and
choosing an appropriate path γ to reduce the calculations to FFT. This is a matter
for active current research.
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Estimating Long Term Behavior of Flows Without Trajectory
Integration: The Infinitesimal Generator Approach

Oliver Junge

(joint work with Gary Froyland and Péter Koltai)

The long-term distributions of trajectories of a flow are described by invariant
densities, i.e. fixed points of an associated transfer operator. In addition, global
slowly mixing structures, such as almost-invariant sets, which partition phase space
into regions that are almost dynamically disconnected, can also be identified by
certain eigenfunctions of this operator. Indeed, these structures are often hard to
obtain by brute-force trajectory-based analyses. In a wide variety of applications,
transfer operators have proven to be very efficient tools for an analysis of the global
behavior of a dynamical system.
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The computationally most expensive step in the construction of an approximate
transfer operator is the numerical integration of many short term trajectories. In
this paper, we propose to directly work with the infinitesimal generator instead
of the operator, completely avoiding trajectory integration. We propose two dif-
ferent discretization schemes; a cell based discretization and a spectral collocation
approach. Convergence can be shown in certain circumstances. We demonstrate
numerically that our approach is much more efficient than the operator approach,
sometimes by several orders of magnitude.

Transfer operators. Let the domainM ⊂ R
d of our flow be a smooth compact

manifold andm the (normalized) Lebesgue measure onM . Denote by F :M → R
d

the vector field generating the flow and by Φt :M →M , t ∈ R, the flow.
One asks how the flow changes probability measures. Sample x according to a

probability measure µ; the distribution of Φtx is then given by µ ◦ Φ−t. Special
attention is to be drawn to invariant measures, which do not change under the
dynamics (µ = µ ◦ Φ−t). Invariant measures µ are called ergodic if invariant
sets have either zero or full measure, i.e. if A ⊂ M satisfies Φ−tA = A then
µ(A) ∈ {0, 1}. One has that absolutely continuous ergodic measures are natural
invariant measures. The density of an invariant measure is called the invariant
density. When looking for invariant densities, one can rephrase the action of the
flow on measures as an action on densities. If f denotes the density of µ, then f
is evolved by the flow as

Ptf (x) = f
(
Φ−tx

)
|DΦ−tx|,

where |B| denotes | detB| for a matrix B. The linear operator Pt : L1(M) 	 is
known as a transfer operator or the Perron-Frobenius operator associated with the
flow Φ. Note that invariant densities are fixed points of Pt.

The infintesimal generator. The transfer operator also inherits some (semi)
group properties of the flow Φt: The transfer operator Pt is a C0 semigroup of
contractions on L1, see [5] for a proof (in particular Remark 7.6.2 for the continu-
ity).

Definition 1. For a semigroup T t we define the operator A : D(A) → X by

Af = lim
t→0

T tf − f

t
, f ∈ D(A),

with D(A) ⊂ X being the linear subspace of X where the above limit exists. The
operator A is called the infinitesimal generator of the semigroup.

For Pt, the infinitesimal generator turns out to be (provided the Fi are con-
tinuously differentiable) APF f = − div(fF ), see [5]. The following result (see eg.
Theorem 2.2.4 [7]) shows the connection between the eigenvalues of the semigroup
operators and their infinitesimal generator:

Theorem 1 (Spectral mapping theorem). Let T t be a C0 semigroup and let A
be its infinitesimal generator. Then etσ(A) ⊂ σ (T t) ⊂ etσ(A) ∪ {0}, where σ(·)
denotes the point spectrum of the operator. The corresponding eigenvectors are
identical.



2246 Oberwolfach Report 39/2011

Ulam’s method. We describe here the “standard” Ulam approach. We parti-
tionM into d-dimensional connected, positive volume subsets {B1, . . . , Bn}. Typ-
ically, each Bi will be a hyperrectangle or simplex to simplify computations. As an
approximation space we consider the space ∆n = sp{χB1 , . . . , χBn

} of functions
which are piecewise constant on the cells of the partition. Let πn : L1 → ∆n,
πnf =

∑n
i=1

1
m(Bi)

∫
Bi
f dm χBi

, be the L2-orthogonal projection onto ∆n. We

let Pt
n : ∆n → ∆n, Pt

n := πnPt, be the approximate Frobenius-Perron operator.
Note that Pt

nχBi
= πnPtχBi

=
∑n

j=1
1

m(Bj)

∫
Bj

PtχBi
dm χBj

, i.e. the matrix

representation P t
n ∈ R

n×n of Pt
n with respect to the basis χB1 , . . . , χBn

and mul-
tiplication on the left is

(P t
n)ij =

1

m(Bj)

∫

Bj

PtχBi
dm =

m(Bi ∩ Φ−tBj)

m(Bj)
.

This matrix is easily constructed numerically using eg. GAIO [3].
Ulam’s method for the generator. We partition M as in the standard

Ulam’s method. Our candidate approximate operator is

(1) Anf := lim
t→0

(
πnPtπnf − πnf

t

)
.

The following lemma allows us to construct An without the computation of the
flow Φt.

Lemma 2. For i 6= j, define nij to be the the unit normal vector pointing out of
Bi into Bj if Bi ∩ Bj is a d− 1-dimensional face, and the zero vector otherwise.
The matrix representation of An : ∆n 	 with respect to the basis χ1, . . . , χn under
multiplication on the left is

(2) (An)ij =





1

m(Bj)

∫

Bi∩Bj

max{F (x) · nij , 0} dmd−1(x), i 6= j;

−
∑

j 6=i

m(Bj)

m(Bi)
(An)ij , otherwise.

Spectral collocation for the generator. In many real world situations, a
deterministic model of some physical system is not appropriate. Instead of an
ordinary differential equation, we now deal with a stochastic differential equation.
If the vector field F is smooth enough, the evolution of densities is governed by
the Fokker-Planck or Kolmogorov forward equation:

(3)
∂f

∂t
=
ε2

2
∆f − div(fF ) =: Aεf.

One knows that the operator Aε (with Neumann boundary conditions) is the
infinitesimal generator of a C0 semigroup Pt

ε,1 on L1, cf. [1, 6].
The eigenfunctions of Aε are smooth. We choose a family of smooth approxi-

mation spaces {Vn}n∈N, such that Vn ⊂ C∞(M) for all n. Depending on the type
of the phase space, we use two different approximation spaces:
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• Periodic domain/uniform grid. We haveM = T
1 and restrict ourselves to

odd values of n. Then the basis we choose for Vn is
{
eikx

}
−n/2−1≤k≤n/2

.

The associated collocation nodes are {0, 1/n, . . . , (n− 1)/n}.
• Standard domain/Chebyshev grid. Here, M = [−1, 1]. The space Vn is
spanned by the monomials of order 0 to n. We use Chebyshev polynomials
as basis functions: {cos (k arccos (x))}0≤k≤n, together with the Chebyshev

grid {− cos(2πj/n), j = 0, . . . , n}, as collocation nodes.

Let f ∈ Vn and In : C∞ → Vn be the interpolation operator for the given collo-
cation nodes. We define the approximate generator by Aε,nf := InAεf . For both
cases we have following:

Theorem 3 (Spectral accuracy, [2]). For f ∈ C∞(M) let fn be the best approxi-
mation of f in Vn w.r.t. the supremum norm ‖ · ‖∞. Then for each k ∈ N there
is a ck > 0 such that ‖f − fn‖∞ ≤ ck n

−k for all n ∈ N.

Convergence then follows from standard results on the analysis of Galerkin
methods for elliptic differential operators and spectral approximation (cf. also [4]).
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Control of Collectives

P. S. Krishnaprasad

1. Talk Summary: In this talk we discussed ways to generate collective behav-
ior from building blocks of pursuit behavior found in nature (e.g. prey capture,
seeking mates, and aggressive territorial battles). With the study of collectives of
starlings Sturnus vulgaris as a motivating problem, the talk centered on models
of planar pursuit, a set of pursuit strategies, and collective strategies synthesized
from these with directed graphs (specifically cycles). A particular collective strat-
egy, known as constant bearing (CB) cyclic pursuit, and feedback laws to execute
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it, was discussed. The resulting closed loop system admits a rich variety of solu-
tions with symmetry, that can be spliced together to produce complex collective
behavior.

While general results on relative equilibria (of rectilinear and circling type) and
spiraling solutions were stated for n-particle cyclic CB pursuit, detailed phase por-
traits were obtained when n = 3, through reduction by symmetry.

2. Models: Consider a planar system of n particles each of unit mass, subject to
gyroscopic interactions in a cycle, governed by the equations:

ṙi = νixi,

ẋi = νiyiui,

ẏi = −νixiui, i = 1, 2, ..., n,

where the speed νi is assumed to be unity for all particles. The curvature ui of
each paricle is governed by a cyclic feedback law of the form

ui = ui,CB(α) = −µ
(
Rot(α)yi ·

ri,i+1

|ri,i+1|

)
− 1

|ri,i+1|

(
ri,i+1

|ri,i+1|
· ṙ⊥i,i+1

)

where µ is a positive gain, the line-of-sight vector ri,i+1 = ri − ri+1, Rot(α)
denotes counter-clockwise rotations by α, the superscript ⊥ denotes the operation
of counter-clockwise rotation by π/2, and the particle indices are defined mod n,
in the formula for the feedback law. The bearing α is allowed to depend on the
particle index i and the cyclic feedback law asymptotically realizes the collective
CB strategy (with an n-tuple of bearings αi ), specified by the constraint:

(
Rot(αi)xi ·

ri,i+1

|ri,i+1|

)
= −1, i = 1, 2, 3, ..., n.

The state space for n-particle cyclic CB pursuit is given in terms of the Euclidean
group SE(2) as:

Mstate = (SE(2)× SE(2)× · · · × SE(2))︸ ︷︷ ︸
n times

−∆

where the excluded subset ∆ contains one or more sequential colocations, i.e.,
|ri,i+1| = 0 for some i . The Euclidean invariance of the CB feedback law implies
passage of the dynamics to a shape space Mstate/SE(2) denoted as Mshape, with
redundant coordinates κi, θi, ρi given by

Rot(κi)xi ·
ri,i+1

|ri,i+1|
= −1

Rot(θi)xi ·
ri−1,i

|ri−1,i|
= 1

ρi = |ri,i+1| i = 1, 2, ..., n,
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subject to the closure constraints that particle indexed n pursues particle indexed
1.

The dynamics in these coordinates are

κ̇i = −µi sin (κi − αi)

θ̇i = −µi sin (κi − αi)

+
1

ρi−1
(sin (κi−1) + sin (θi))

− 1

ρi
(sin (κi) + sin (θi+1))

ρ̇i = −cos (κi)− cos (θi+1) i = 1, 2, ..., n.

This system admits an attracting invariant manifold κi ≡ αi i = 1, 2, ..., n,
and in the invariant manifold, the dynamics is subject to the closure constraints

Rot

(
n∑

i=1

(π + αi − θi)

)
= I the identity

and
n∑

i=1

ρi Rot




i∑

j=1

(π + αj − θj)


 = 0

3. Symmetric SolutionsUnder suitable conditions on the parameters αi, SE(2)
relative equilibria (and hence equilibria on the invariant manifold κi ≡ αi i =
1, 2, ..., n of shape space dynamics) arise. In addition spiraling solutions are pos-
sible.

4. Phase portraits for n=3. In the 3-particle case there arises a rather com-
plete characterization of the phase portrait for a family of parameters, α1 = α2 =
α = π + α3 for α ∈ [0, 2π]. In particular α = π/2 allows an additional discrete
symmetry leading to periodic solutions in a reduced phase space.

5. Notes on References: The cyclic CB pursuit work sketched here is the joint
work of Kevin Galloway, Eric Justh and P. S. Krishnaprasad (2009, 2010, 2011)
culminating in the Ph.D. thesis Kevin Galloway (2011). The CB pursuit feedback
law was first discussed in Wei - Justh - Krishnaprasad (2009).
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General Techniques for Constructing Variational Integrators

Melvin Leok

(joint work with Tatiana Shingel)

The numerical analysis of variational integrators relies on variational error analysis,
which relates the order of accuracy of a variational integrator with the order of ap-
proximation of the exact discrete Lagrangian by a computable discrete Lagrangian.
The exact discrete Lagrangian can either be characterized variationally, or in terms
of Jacobi’s solution of the Hamilton–Jacobi equation. These two characterizations
lead to the Galerkin and shooting-based constructions for discrete Lagrangians,
which depend on a choice of a numerical quadrature formula, together with ei-
ther a finite-dimensional function space or a one-step method. The properties of
the quadrature formula, finite-dimensional function space, and underlying one-step
method determine the order of accuracy and momentum-conservation properties of
the associated variational integrators. This approach is described in detail in [1, 2].

Shooting-based Variational Integrators. The discrete Lagrangian, Ld : Q ×
Q → R, is a generating function of the symplectic flow, and is an approximation
to the exact discrete Lagrangian,

LE
d (q0, q1;h) =

∫ h

0

L(q01(t), q̇01(t))dt,

where q01(0) = q0, q01(h) = q1, and q01 satisfies the Euler–Lagrange equation in
the time interval (0, h). The exact discrete Lagrangian is related to the Jacobi
solution of the Hamilton–Jacobi equation, and can be interpreted as the action
integral evaluated on a solution of a two-point boundary-value problem. As such,
a computable approximation to the exact discrete Lagrangian can be obtained
in two stages: (i) apply a numerical quadrature formula to the action integral,
evaluated along the exact solution of the Euler–Lagrange boundary-value problem;
(ii) replace the exact solution of the Euler–Lagrange boundary-value problem with
a numerical solution of the boundary-value problem, in particular, by a converged
shooting solution associated with a given one-step method. More generally, the
shooting-based solution of the Euler–Lagrange boundary-value problem can also be
replaced with approximate solutions based on other numerical schemes, including
Taylor integrators, and collocation methods applied to either the Euler–Lagrange
vector field or its prolongation.

Given a one-step method Ψh : TQ→ TQ, and a numerical quadrature formula∫ h

0 f(x)dx ≈ h
∑n

i=0 bif(x(cih)), with quadrature weights bi and quadrature nodes
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0 = c0 < c1 < . . . < cn−1 < cn = 1, we construct the shooting-based discrete
Lagrangian,

Ld(q0, q1;h) = h
∑n

i=0
biL(q

i, vi),

where

(qi+1, vi+1) = Ψ(ci+1−ci)h(q
i, vi), q0 = q0, qn = q1.

These equations, together with the implicit discrete Euler–Lagrange equations,

pk = −D1Ld(qk, qk+1), pk+1 = D2Ld(qk, qk+1),

can be solved iteratively using a shooting method. If one uses a p-th order accurate
one-step method, and a q-th order accurate quadrature formula to construct the
variational integrator, then the resulting variational integrator will have order of
accuracy min(p, q).

Galerkin Variational Integrators. The variational characterization of the ex-
act discrete Lagrangian,

LE
d (q0, q1;h) = ext

q∈C2([0,h],Q)
q(0)=q0,q(h)=q1

∫ h

0

L(q(t), q̇(t))dt,

leads to a class of Galerkin variational integrators, where one replaces the integral
with a quadrature formula, and replaces the space of C2 curves with a finite-
dimensional function space.

Let {ψi(τ)}si=1, τ ∈ [0, 1], be a set of basis functions for a s-dimensional function
space Cs

d , and choose a numerical quadrature formula with quadrature weights bi,
and quadrature nodes ci.

q1 = q0 + h

s∑

i=1

BiV
i,

p1 = p0 + h
s∑

i=1

bi
∂L

∂q
(Qi, Q̇i),

Qi = q0 + h

s∑

j=1

AijV
j ,

0 =

s∑

i=1

bi
∂L

∂q̇
(Qi, Q̇i)ψj(ci)− p0Bj − h

s∑

i=1

(biBj − biAij)
∂L

∂q
(Qi, Q̇i),

0 =
s∑

i=1

ψi(cj)V
i − Q̇j ,

where (bi, ci) are the quadrature weights and quadrature points, Bi =
∫ 1

0 ψi(τ)dτ ,

Aij =
∫ ci
0 ψj(τ)dτ . When the chosen basis functions satisfy a Kronecker delta

property, the last equation states that V i = Q̇i, and the method reduces to a
symplectic-partitioned Runge–Kutta method.
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An analogous theory of variational integrators formulated in terms of the Hamil-
tonian was developed in [3]. When the Lagrangian and Hamiltonian are hyperreg-
ular, these two approaches yield equivalent variational integrators, but the Hamil-
tonian approach remains valid even in the case of degenerate Hamiltonian systems,
when there is no Lagrangian analogue.

Conclusions. We presented two general techniques for constructing discrete La-
grangians: (i) the Galerkin approach, which depends on a choice of a quadrature
formula, and a finite-dimensional function space; (ii) the shooting-based approach,
which depends on a choice of a quadrature formula, and a one-step method.

The order of approximation and momentum-conservation properties of a varia-
tional integrator are related to the order of approximation and the group-invariance
of the discrete Lagrangian, respectively. This results in a substantial simplification
in the analysis of variational integrators, since it is easier to verify the approxi-
mation and group-invariance properties of the discrete Lagrangian than it is to
directly verify the order of accuracy and momentum-conservation properties of
the associated variational integrator.

For Galerkin variational integrators, the group-invariance of the discrete La-
grangian can further be reduced to the group-equivariance of the finite-dimensional
function space. For shooting-based variational integrators, the order of the dis-
crete Lagrangian is related to the order of the quadrature formula and one-step
method, and the group-invariance of the discrete Lagrangian is related to the
group-equivariance of the one-step method. Furthermore, the shooting-based im-
plementation allows the variational integrator to partially inherit the computa-
tional efficiencies of the underlying one-step method. In particular, a shooting-
based variational integrator constructed from an explicit one-step method will be
more computationally efficient than one based on an implicit one-step method.

These two approaches provide an explicit link between the construction of vari-
ational integrators, approximation theory, and one-step methods for ordinary dif-
ferential equations. In particular, this allows one to leverage existing theoretical
results and techniques in approximation theory and the numerical analysis of time-
integration methods in the construction and analysis of variational integrators.
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A Variational Approach to Multirate Integration for Constrained
Systems

Sigrid Leyendecker and Sina Ober-Blöbaum

The simulation of systems with dynamics on strongly varying time scales is quite
challenging and demanding with regard to possible numerical methods and com-
putational costs. Multirate methods integrate the slow part of the system with a
relatively large step size while the fast part is integrated with a small time step (see
e.g. Ref. [1, 2, 3, 5]). In this work, a multirate integrator for constrained dynamical
systems is derived in closed form via a discrete variational principle on a time grid
consisting of macro and micro time nodes. Being based on a discrete version of
Hamilton’s principle, the resulting variational multirate integrator is structure pre-
serving. Depending on the discrete approximations for the Lagrangian function,
one obtains different integrators with varying convergence properties, e.g. purely
implicit second order or purely explicit first order schemes, or methods that treat
the fast and slow parts in different ways.

1. Variational multirate integrator

Slow and fast potential and constraints Consider a mechanical system
on a manifold Q ⊆ R

n with the Lagrangian L : TQ → R given by L(q, q̇) =
T (q̇)− U(q) being the difference between the kinetic energy T and a potential U .
Let the fact that the Lagrangian contains slow and fast dynamics be characterised
by the possibility to additively split the potential energy U(q) = V (q)+W (q) into
a slow potential V and a fast potential W . Furthermore, let the configuration be
constrained to the (n−m)-dimensional constraint manifold C = {q ∈ Q|g(q) = 0}
defined by the holonomic constraint function g : Q → R

m. Then, the constrained
Euler-Lagrange equations of motion on a time interval [t0, tN ] ⊂ R can be derived

via variation of the action integral, i.e. δS = δ
∫ tN
t0

L(q, q̇)− g(q)T ·λdt = 0. Here,

λ ∈ R
m denotes the Lagrange multiplier.

Slow and fast variables We further assume that the n-dimensional con-
figuration variable q can be divided into ns slow variables qs ∈ Qs and nf fast
variables qf ∈ Qf such that Qs × Qf = Q and q = (qs, qf ) with nf + ns = n.
Let the fast potential depend of the fast degrees of freedom only, i.e. W =W (qf )
while the slow potential V = V (q) depends on the complete configuration variable

Figure 1. Macro and micro time grid.
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as does the constraint function g = g(q).

Variational multirate integrator In the framework of variational inte-
grators [4], a discrete Lagrangian is defined as an approximation of the action
functional on a short time span ∆T . Rather than choosing one time grid for the
approximation as for standard variational integrators, for the multirate integrator,
two different time grids are introduced, see Fig. 1. With time steps ∆T and ∆t
(where ∆T ≥ ∆t), a macro time grid {tk = k∆T | k = 0, . . . , N} and a micro time
grid {tmk = k∆T +m∆t | k = 0, . . . , N − 1,m = 0, . . . , p} are defined. These pro-
vide the domains for the discrete macro trajectory qsd = {qsk}Nk=0 with qsk ≈ qs(tk)

and the discrete micro trajectory qfd = {{qf,mk }pm=0}N−1
k=0 with qf,mk ≈ qf (tmk ) and

Lagrange multipliers λd = {λk}N−1
k=0 = {{λmk }pm=0}N−1

k=0 with λmk ≈ λ(tmk ). The
discrete action is defined as

Sd

(

q
s
d, q

f
d , λd

)

=

N−1
∑

k=0

[

Ld(q
s
k, q

s
k+1, q

f
k )− hd(q

s
k, q

s
k+1, q

f
k , λk)

]

On the multirate configuration space Qsf = Qs ×Qs ×
(
Qf
)p+1

, the discrete La-

grangian Ld : Qsf → R approximates
∫ tk+1

tk
L(q, q̇) dt while hd : Qsf × (Rm)

p+1 →
R is approximating

∫ tk+1

tk
g(q)T ·λdt. Stationarity of the discrete action yields the

discrete Euler-Lagrange equations. Their solution propagates the discrete vari-
ables forward in time via the multirate discrete Lagrangian flow F∆T

Ld
: Qsf → Qsf

reading F∆T
Ld

(qsk−1, q
s
k, {q

f,m
k−1}

p
m=0) = (qsk, q

s
k+1, {q

f,m
k }pm=0). Due to the variational

derivation of the multirate integrator, we can state that it has the following two
properties which classify it as being structure preserving. Let ΩLd

denote the
discrete symplectic form on Qsf , then it is preserved along the discrete solution
trajectory, i.e.

(
F∆T
Ld

)∗
ΩLd

= ΩLd
. Furthermore, if the discrete Lagrangian is

invariant under the (appropriately lifted) group action ψQsf

g , i.e. Ld ◦ ψQsf

g = Ld

holds for all elements g in a Lie group G, then JLd
◦ F∆T

Ld
= JLd

and the corre-
sponding momentum map JLd

is preserved. This follows from the discrete Noether
Theorem, see Ref. [4]. For variational integrators, the approximation order of the
schemes coincides with the order of accuracy to which the discrete Lagrangian ap-
proximates the continuous action. For the variational multirate scheme at hand,
the approximation error of the discrete Lagrangian

e∆T
Ld

=

∥

∥

∥

∥

∆T
∫

0

L(qs(t), qf (t), q̇s(t), q̇f (t)) dt− Ld(q
s(0), qs(∆t), {qf (m∆t)}pm=0)

∥

∥

∥

∥

≤ pO(∆tq+1) + pO(∆tb+1) + O(∆T a+1)
quadrature interpolation fast interpolation slow

is composed by errors due to the quadrature of the integral (of order q) and
by errors stemming from the interpolation of the fast variables on the micro grid
(of order b) and that of the slow variable on the macro grid (of order a). Note
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that the number of micro nodes per macro interval p plays a relevant role when
identifying the dominant terms, e.g. let p = const and both ∆t→ 0,∆T → 0, then
for the combination of midpoint quadrature with linear interpolation, the scheme
converges quadratically as illustrated for the Fermi-Pasta-Ulam problem in Fig. 2.
Furthermore, the quadrature rule in use for the discrete Lagrangian determines
the degree of coupling between the discrete equations. This can range from a fully
implicit scheme over variants being explicit in the macro and implicit in the micro
quantities to fully explicit schemes. The two plots in Fig. 3 show the evolution of
the configuration and conjugate momentum ofmfast

3 in a triple pendulum, whereby
the lines connect the values at the marco nodes and the intermediate micro node
values are indicated by little crosses. One can see clearly, that the macro grid is
too coarse to resolve the fast motion.

Figure 2. Fermi-Pasta-Ulam: quadratic convergence for p = 5
(left) and p = 10 (right).

Figure 3. Triple pendulum: evolution of configuration (middle)
and momentum (right) of mfast

3 (∆T = 0.08, p = 20).
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Invariant Measures in Nonholonomic Mechanics

Juan C. Marrero

(joint work with Yuri N. Fedorov and Luis Garćıa-Naranjo)

The existence of an invariant measure for a system of differential equations is a
very important property. From the point of view of dynamical systems, it is a
key ingredient for the application of ergodic theory. It is also a crucial hypothesis
in Jacobi’s theorem of the last multiplier that establishes integrability of the sys-
tem via quadratures, see e.g. [2]. Moreover, the existence of a smooth invariant
measure imposes certain restrictions on the qualitative nature of the fixed points
of the system; namely, it prohibits the existence of asymptotic equilibria. Our
methods address the general question of the existence of an invariant measure for
nonholonomic mechanical systems.

Unimodularity and measure preservation in mechanics. The well known
theorem of Liouville states that a Hamiltonian system on a symplectic manifold
preserves the symplectic volume, see e.g. [1]. The situation is not so simple for a
Hamiltonian system on a Poisson manifold. For instance, if the Poisson manifold
is the dual space g∗ of a Lie algebra g equipped with the Lie-Poisson structure,
then Kozlov [10] showed that the flow of a Hamiltonian of kinetic energy type on
g∗ preserves a smooth measure if and only if the Lie algebra g is unimodular.

More generally, a sufficient condition for the existence of a smooth measure for
a Hamiltonian system on an abstract Poisson manifold, is that the first element in
the cohomology of the Poisson manifold, which is called the modular class of the
Poisson manifold, vanishes, see e.g. [15].

A large number of Poisson manifolds that appear in classical mechanics, for
example after reduction, can be interpreted as the natural linear Poisson structure
on the dual bundle A∗ of a Lie algebroid τA : A→ Q. Recall that a Lie algebroid
τA : A → Q is a vector bundle over the manifold Q that is equipped with an
R-linear Lie bracket [[·, ·]]A on the sections of A, and an anchor map ρA : A→ TQ
that is a Lie algebra morphism between the sections of A and the vector fields onQ,
where TQ is equipped with the usual commutator of vector fields. A Lie algebroid
generalizes at the same time the notions of the tangent bundle of a manifold and
of the Lie algebra of a Lie group.

The modular class of a Lie algebroid τA : A → Q was introduced in [5] and
generalizes the modular character of a Lie algebra. In Marrero [12] the results of
Kozlov [10] are generalized to consider the preservation of volumes for Hamiltonian
systems of mechanical type on the dual space of a Lie algebroid. We say that a
Hamiltonian H : A∗ → R is mechanical if it can be expressed as the sum of the
kinetic and potential energies, where the kinetic energy defines a fibered metric
on A and the potential energy is a real valued function on Q. Just as in the case
studied by Kozlov, the unimodularity of the Lie algebroid is intimately related
with necessary and sufficient conditions for the existence of an invariant measure.

We will follow the research line of [12] but we consider the preservation of vol-
umes for mechanical systems subject to affine and linear nonholonomic constraints.
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There is a major complication in doing this since the equations of motion for non-
holonomic systems are not Hamiltonian. In the case of linear constraints, they
can however be formulated with respect to an almost Poisson bracket that fails to
satisfy the Jacobi identity. This formulation has its origins in [13, 11] and others.

In analogy to what happens with classical unconstrained mechanical systems,
the almost Poisson structure associated with a nonholonomic system with linear
constraints, before and after reduction, coincides with the linear almost Poisson
structure on the dual bundle D∗ of an appropriate skew-symmetric algebroid D
[7]. Roughly speaking, a skew-symmetric algebroid τD : D → Q is a vector bundle
over the manifold Q satisfying all the properties of a Lie algebroid except that the
bracket [[·, ·]]D of sections of D does not satisfy the Jacobi identity.

It is thus natural to consider the dynamics of a nonholonomic system with linear
constraints as a Hamiltonian flow on D∗ with respect to its linear almost Poisson
structure. If the constraints are affine, the description of the dynamics is more
intricate [7], but it still involves a Hamiltonian vector field on the dual space of a
skew-symmetric algebroid.

Since the bracket [[·, ·]]D on a skew-symmetric algebroid τD : D → Q fails
to satisfy the Jacobi identity, it is not possible to define the modular class of
D. However, one can introduce the notion of unimodularity of a skew-symmetric
algebroid. This concept has recently been studied by Grabowski in [6]. From an
abstract perspective, our main results relate the unimodularity ofD with necessary
and sufficient conditions for the existence of a preserved measure for the flow of
mechanical Hamiltonian vector fields on the dual bundle D∗. We also obtain the
corresponding results which may be applied to the dynamics in the presence of
affine constraints.

Known results on the existence of invariant measures for nonholonomic
systems. The existence of a smooth invariant measure for nonholonomic systems
had been considered in the past but always specialized to particular kinds of
systems possessing some type of symmetries.

Let Q be the configuration manifold of a nonholonomic mechanical system with
linear constraints that are defined by the non-integrable subbundle D ⊂ TQ. The
following works consider the existence of a preserved measure in the presence of
symmetries. It is assumed that the symmetry group G acts (free and properly) on
the left on Q and its lift to TQ preserves both the Lagrangian of the system and
the constraint distribution D.

1. Kozlov and Jovanovic on LL systems [10, 9]. In this case Q = G, i.e. the
configuration space is a Lie group, and both the constraints and the kinetic
energy metric are left invariant. The case where the group is compact was
treated by V.V. Kozlov in [10]. He obtained a necessary and sufficient
condition for the existence of an invariant measure in terms of the structure
constants of the corresponding Lie algebra and the metric tensor at the
identity (commonly referred to as the inertia tensor). These results were
extended to non-compact Lie groups by B. Jovanovic in [9].
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2. Cantrijn, Cortés, de León, and Mart́ın de Diego on generalized Chaplygin
systems [4]. In this kind of systems the orbits of the symmetry group
exactly complement the constraint space. That is TqOrb(q) ⊕Dq = TqQ
for all q ∈ Q. The authors give a necessary and sufficient condition for
the existence of an invariant measure. They also exhibit an example of
a generalized Chaplygin system that does not have an invariant measure,
thereby proving false a conjecture of J. Koiller [8], who suggested that
systems of this type always possess an invariant measure.

3. Zenkov and Bloch on nonholonomic flows with internal degrees of freedom
[16]. This case contains both LL and generalized Chaplygin systems as
special cases. The authors assume that the sum of the tangent space to
the orbits of the symmetry group and the constraint distribution span
the tangent space of the configuration manifold, TqOrb(q) + Dq = TqQ
for all q ∈ Q (this is sometimes called the dimension assumption). How-
ever, contrary to generalized Chaplygin systems, they permit a non-trivial
intersection of the tangent space to the group orbits and the constraint
distribution (TqOrb(q) ∩ Dq 6= {0}). Such intersection is assumed to be
of constant dimension. In contrast with LL systems, they also allow for
a non-trivial shape space Q/G containing the internal degrees of freedom.
The authors obtain necessary and sufficient conditions for the existence
of an invariant measure. These conditions are expressed in terms of the
coefficients appearing in the local expression of the Lagrange-D’Alembert-
Poincaré equations, see [3].

Another important result where there is a different type of symmetries is given by

4. Veselov and Veselova on LR systems [14]. Here the configuration space is
a Lie group and the kinetic energy metric is left invariant. However, in this
case the constraints are right invariant. The authors show that if the Lie
algebra of the configuration group is unitary, then the system preserves an
invariant measure. Moreover, the authors give an explicit formula for the
measure.

Our approach to the problem of existence of an invariant measure in terms of
unimodularity of skew-symmetric algebroids allows us to unify the study of the
above results. Indeed, our results apply to all of them provided that one formulates
the reduced problem on the appropriate skew-symmetric algebroid. Moreover, we
present some new results that are summarized below.

New results on the existence of invariant measures for nonholonomic
systems. We present our original contributions to the problem according to the
list of results given above.

1. We generalize the results of Kozlov [10] and Jovanovic [9] by deriving
necessary and sufficient conditions for the existence of an invariant measure
in the presence of affine constraints. Moreover, in the case when several
constraints are present, we present the condition for the existence of an
invariant measure in an explicit form.
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2. We refine the results of Cantrijn, Cortés, de León, and Mart́ın de Diego
on generalized Chaplygin systems [4] in two ways. First of all, we propose
a candidate for the preserved measure and give necessary and sufficient
conditions under which it is indeed conserved. This measure on the re-
duced space is expressed intrinsically in terms of the geometric data of
the problem and is shown to be invariant for the nonholonomic particle
and the Chaplygin sphere. The other contribution is to give a mechanical
example of a generalized Chaplygin system that does not possess a smooth
preserved measure. Such example is provided by the two-wheel cart. The
example given in [4] concerns a generalization of the nonholonomic particle
whose physical realization is not immediate.

3. We express the necessary and sufficient conditions for the existence of an
invariant measure in the presence of internal degrees of freedom given by
Zenkov and Bloch [16] in an intrinsic way, without relying on the local
expression of the evolution equations for the variables in the shape space
Q/G. Moreover, our approach allows us to drop the dimension assumption.

4. We generalize the result of Veselov and Veselova on LR systems [14] by
showing that an arbitrary LR system possesses an invariant measure, i.e.
without requiring the Lie algebra g of the configuration group G to be
unimodular. We also give a formula for the invariant measure in this case.
Moreover, our construction takes place on the constraint space D∗. This
contrasts with the results of [14] where it is first shown that the system
preserves a measure on the extended space g∗×(g∗)k where k is the number
of constraints, and later it is proved that there is a conserved measure on
the cotangent bundle T ∗G. Our results concern a smaller phase space
since there is a natural inclusion D∗ →֒ T ∗G.

Finally we mention that our approach considers for the first time the conserva-
tion of measures for nonholonomic systems subject to affine constraints.
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Geometry and Thermodynamics for the Coupling of Quantum
Mechanics and Dissipative Systems

Alexander Mielke

We report on the ongoing work [MiN11] that is based on the papers [Ött10b,

Ött10a] giving a thermodynamical consistent coupling between classical dissipative
systems and reversible quantum systems. The basis is the theory of GENERIC,
which is an acronym for General Equations for Non-Equilibrium Reversible Irre-
versible Coupling. It provides systems that are thermodynamically correct in the
sense that the total energy is preserved while the total entropy is nondecreasing.
However, the theory has more structure in the sense that the reversible dynam-
ics is driven by a Poisson structure acting on the differential of the energy while
the dissipative structure is given as a gradient flow with the total entropy as the
driving functional.

The aim of the work [MiN11] is to identify conditions under which the systems

introduced in [Ött10b, Ött10a] are well-posed. By this, we mean existence of solu-
tions as well as the proper positivity conditions, energy conservation and entropy
production and possible convergence to the thermodynamic equilibrium state.

1. The GENERIC framework

The framework of GENERIC was introduced by Öttinger and Grmela in [GrÖ97,

ÖtG97], see also [Mie11] for a more mathematical presentation with application
to viscoplasticity. It is based on a quintuple (X , E ,S, L,K), where the smooth
functionals E and S on a smooth manifold X , where E denotes the total energy
and the S the total entropy. Moreover, on X we have given a Poisson structure L
and a dissipative structure K, i.e.

(1)
L(X) = −L(X)∗ and L satisfies Jacobi’s identity,

K(X) = K(X)∗ ≥ 0, i.e., 〈ξ,K(X)ξ〉 ≥ 0.



Applied Dynamics and Geometric Mechanics 2261

The evolution of the system is given by the differential equation

(2) Ẋ = L(X)DE(X) +K(X)DS(X),

where LDE is the reversible (Hamiltonian) part and KDS the irreversible (dis-
sipative) part. The central condition states that the energy functional does not
contribute to dissipative mechanisms and that the entropy functional does not con-
tribute to reversible dynamics, which is the following non-interaction condition:

(NIC) ∀X ∈ X : L(X)DS(X) = 0 and K(X)DE(X) = 0.

Trivial consequences of the GENERIC structure are d
dtE(X(t)) = 0 and d

dtS(X(t))
= 〈DS,KDS〉 ≥ 0 along solutions. Moreover, the maximum entropy principle
holds: If Xeq maximizes S under the constraint E(X) = E0, then Xeq is a steady
state for (2).

2. GENERIC of a quantum mechanical and a dissipative system

The quantum mechanical system is described by states ψ in a Hilbert space H
and a selfadjoint and semi-bounded Hamiltonian (operator) H : D(H) → H . The

single-state equation is ψ̇ = Hψ, where  = 1/(i~). For the coupling to dissipative
systems we use density matrices

ρ ∈ R :=
{
ρ ∈ S1(H)

∣∣ ρ = ρ∗ ≥ 0, traceρ = 1
}
.

The Hamiltonian evolution of ρ is given in terms of Liouville’s equation

(3) ρ̇ =  [H, ρ] :=  (Hρ− ρH).

Obviously, the von Neumann’s entropy Sqm(ρ) = −kBtrace(ρ log ρ) remains con-
stant in the Hamiltonian case, because ρ commutes with log ρ.

We assume that an additional variable z is present in the model that is dis-
sipative. For simplicity, we assume that z lies in a closed subset Z ⊂ Z. The
evolution is assumed to be purely dissipative in the sense that it is a gradient flow
with respect to the entropy S : Z → R, namely

(4) ż = KZ(z)DS(z), where K(z) = K(z)∗ ≥ 0.

We assume that there is a conserved energy E(z) satisfying K(z)DE(z) ≡ 0.
We now couple these two systems in the GENERIC framework with the joint

state space is X = R × Z ⊂ S1
S(H) × Z, where the state is given by the pairs

X = (ρ, z). The energy functional E and the entropy functional S take the form

E(ρ, z) = trace(ρH(z)) + E(z) and S(ρ, z) = −kBtrace
(
ρ log ρ

)
+ S(z),

where the Hamiltonian H may depend on the dissipative variable z.
For the Poisson structure we assume that the variable z is totally dissipative,

which means that L has block structure in the form

L(ρ, z) =

(
[� , ρ] 0

0 0

)
:

(
µ

ζ

)
7→
(
[µ, ρ]

0

)
.

Clearly, we have (NIC)1, namely L(X)DS(X) = 0 as log ρ commutes with ρ.
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Following [Ött10b, Ött10a] we use a special ansatz for the dissipative structure
that is based on the physical fact that the interaction of a quantum mechani-
cal system interacts with its environment only via commutators with respect to
suitable observables Qm(z) ∈ S∞

S (H). This leads to

〈
K(ρ, z)

(
µ

ζ

)∣∣∣
(
µ

ζ

)〉
= 〈ζ,KZ(z)ζ〉Z +

M∑

m=1

|||[Qm(z), µ−〈ζ, αm(ρ, z)〉ZH(z)]|||2Cρ
,

where αm(ρ, z) ∈ Z such that 〈DE(z), αm(ρ, z)〉Z ≡ 1. By construction we see
that (NIC)2 holds, namely KDE ≡ 0.

The canonical correlation operator Cρ (the inverse of which defines the Kubo-
Mori metric on density matrices) and the associated norm ||| · |||Cρ

are defined via

(5) CρA :=

∫ 1

0

ρsAρ1−s ds and |||A|||2Cρ
:= trace(A CρA),

see [Gra82, KTH91, Ött10a]. The fundamental identities
[
CρA, log ρ

]
=
[
A, ρ] = Cρ

[
A, log ρ

]
,

which go back to [Kub66], play a central role in the field of dissipative effects in
quantum mechanics, because they relate the derivative of von Neumann’s loga-
rithmic entropy via commutators to the canonical correlation operator Cρ.

3. A simple fully consistent example with one heat bath

We simplify the above problem even further, by assuming that there is only
one dissipative interaction term (i.e. m = 1) and by assuming that H , Q, α, and
KZ are independent of (ρ, z). Further, we assume that z is scalar and equals the
absolute temperature, viz. z = θ ∈ [0,∞[ ∈ R. With E(z) = cθ and S(z) = c log θ
the total energy and the total entropy are given by

E(ρ, θ) = trace(ρH) + cθ and S(ρ, θ) = −kBtrace(ρ log ρ) + c log θ

To obtain the fundamental (NIC) we use α = 1/c and KZ = 0 and find the system

(6)
ρ̇ = 

[
H, ρ

]
−
[
Q, kB

[
Q, ρ

]
+

1

θ
Cρ
[
Q,H

]]
,

θ̇ =
1

c
trace

((
kB
[
Q, ρ

]
+

1

θ
Cρ
[
Q,H

] )[
Q,H

])
.

The following result is established in [MiN11].

Theorem. If H is finite dimensional, then for each X0 = (ρ0, θ0) ∈ X system
(6) has a global solution X : [0,∞[ → X .

Moreover, under suitable commutator conditions on H and Q, it is shown that
all solutions converge for t→ ∞ to the unique steady state given by the maximum
entropy principle, namely Xeq = (exp(− 1

kBθeq
H), θeq).
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A Zoo of Bifurcations in Point Vortex Systems on the Sphere

James Montaldi

(joint work with Mark Roberts and Frédéric Laurent-Polz)

The system of point vortices on the sphere is a very rich source of bifurcations for
Hamiltonian systems with symmetry. The system is described as follows. A point
vortex is a point on the sphere S2, considered as the unit sphere in R

3, with a
non-zero real number κ ascribed to it, called the vortex strength or vorticity. A
system of N vortices evolves via the differential equation

ẋi =
∑

j 6=i

κj
xj × xi

1− xi · xj
, (i = 1, . . . , N).

This equation is Hamiltonian, with symplectic from ω = ⊕jκjωj (where ωj is the
natural symplectic form on the jth copy of S2 with area 4π), and with Hamiltonian
function

H(x1, . . . ,xN ) = −
∑

i<j

κiκj ln(‖xi − xj‖2).

The system has the symmetry SO(3) acting as rotations of the sphere, and the
associated conserved quantities are the components of the momentum map

J(x1, . . . ,xN ) =
∑

j

κjxj ∈ R
3.

In this talk, I report on some results from [3] on the stability of relative equi-
libria with dihedral symmetry, so consisting of rings of vortices lying on circles of
constant latitude with possibly a polar vortex or two at the North (and South)
poles. The dihedral symmetry implies that each ring has the same number of
vortices, denoted n, and within each ring the vortex strengths are identical. Using
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Cartesian coordinates in R
3, we choose the axis of symmetry to be the z-axis,

so the poles are at z = ±1, and a ring lies in the circle of colatitude θ (so the
intersection of the unit sphere with the plane z = cos θ).
A single ring For a single ring at colatitude θ and with no other vortices, the
stability depends on θ. The linear stability was first calculated by Polvani &
Dritschel [5]:

n condition for stability n condition for stability
2, 3 all θ 4 cos2 θ > 1/3
5 cos2 θ > 1/2 6 cos2 θ > 4/5

while for n ≥7 it is always linearly unstable. It was later shown by Boatto and
Cabral [1] that the same criteria guarantee full nonlinear stability. As θ is in-
creased, the relative equilibrium loses stability through a pitchfork bifurcation
with dihedral symmetry, where a pair of imaginary eigenvalues collide at 0 and
become real (the so-called splitting type of pitchfork). When n = 4 or 6 this is the
traditional pitchfork bifurcation with a reflectional symmetry, and the bifurcation
solutions will both be stable, while if n = 5 the pitchfork has D5-symmetry, so
giving rise to 5 stable and 5 unstable bifurcating solutions.
A single ring and a pole The stability of configurations consisting of a single
ring at colatitude θ and a single polar vortex of strength κ were studied in [2]
(with some errors which are corrected in [3]) and demonstrate a complex stability
diagram: we show the diagram for n = 3 below (the most complex one). The
dark regions represent configurations that are Lyaponov stable, the lighter gray
regions correspond to just linear stability while white regions correspond to the
configuration having eigenvalues with nonzero real part (so linearly unstable). For
these configurations, the momentum J = (0, 0, µ) with µ = κ+n cos θ (here n = 3).
The angular velocity is ξ = ((2 + κ) cos θ + κ) / sin2 θ.

Several notable bifurcations take place in this example.

• Crossing the curve µ = 0 one finds Lyapounov stable configurations on one
side and linearly stable ones on the other. When a relative equilibrium
with zero momentum is Lyapounov stable then this is the typical transition
to be found (provided the generic hypothesis of “no rovibration resonance”
is satisfied), see [4] for a full explanation, and the second example below.

• There is also a change from Lyapounov to linear stability when crossing
the κ = 0 line. This is not strictly a Hamiltonian bifurcation as the
system fails to be Hamiltnoian when κ = 0 (the symplectic form becomes
degenerate). Such bifurcations have not been studied in general.

• Each white region (of linearly unstable configurations) is bounded by a
narrow light gray region and continuing one then passes into a dark re-
gion. Reversing this path, one starts with a Lyapounov stable configura-
tion, which then becomes degenerate when a pair of imaginary eigenvalues
meet at the origin. However they pass through the origin and remain on
the imaginary axis, so the configuration becomes merely linear stable (a
pitchfork of passing type). Continuing the path into the unstable region,
the eigenvalue that passed through the origin increases in magnitude until
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n = 3
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Figure 1. Bifurcation diagram for a 3-ring plus a polar vortex

it collides with another imaginary eigenvalue. The two then split off the
imagniary axis to form a “real conjugate” pair, so a quadruplet of eigen-
values altogether. This the the well-known Hamiltonian-Hopf bifurcation.

• At the point where ξ = µ = 0 (but κ 6= 0) there is an interesting meeting
of 4 different regions. At this configuration, the 4 vortices all have the
same strength, and the system has tetrahedral symmetry; however a full
analysis of the unfolding of this situation has not been undertaken.

A single ring and two poles A second very rich collection of bifurcations is
shown in the system with a ring with 2 polar vortices. This system has 3 natural
parameters: the colatitude of the ring and the strength of each vortex. Below we
have the diagram for n = 3 vortices in the ring and for the fixed colatitude of
θ = 1.3 (radians). The horizontal and vertical axes are the strengths of the North
and South polar vortices, respectively; we just see the diagram for positive vortex
strengths (see [3] for further information). The momentum is again J = (0, 0, µ)
with now µ = κ1−κ2+n cos θ. Similar bifurcations to those described above occur
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here. The straight line κ2 = κ1 + cos(1.3) (so
µ = 0) shows the same Lyapounov to linearly
stable transition described above. The end of
that line at the top right occurs when the zero-
momentum relative equilibrium loses stability
through a pitchfork bifurcation. However there is
one further point of interest, where the white oval
meets that line. The transition from the elliptic
to unstable region is via a Hamiltonian-Hopf bi-
furcation and at the point where the oval unstable
region is tangent to the µ = 0 line there is a “rovi-
bration” resonance, where one of the eigenvalues

of the reduced equilibrium coincides with the eigenvalue for the rotational motion
(i.e. the angular velocity): this bifurcation has yet to be investigated in detail.
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Dynamical Systems Approach to Data Assimilation for Mechanical
Systems

Sebastian Reich

(joint work with Georg Gottwald, Kay Bergemann, Eugenia Kalnay, Javier
Amezcua and Kayo Ide)

The basic task of data assimilation (nonlinear filtering) for a mechanical system

(1)
dQ

dt
= M−1P,

dP

dt
= −∇QV (Q)

with coordinates Q ∈ R
N , momenta P ∈ R

N , N ≫ 1, symmetric mass matrix M
and potential energy V (Q) can be phrased as follows. Often the full mechanical
model (the “truth”) is not directly accessible and the phenomena of interest is
instead modeled by a reduced second-order stochastic Langevin dynamics model

dq = M−1pdt,(2)

dp = −∇qU(q)dt− γpdt+
√
σdw(t)(3)
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in distinguished degrees of freedom (q, p) which arise as linear combinations q =
LQ, p = LP from the full set of model variables, where L is an appropriate linear
operator and w(t) denotes standard Brownian motion. The parameters γ > 0
and σ > 0 are often unknown while the reduced potential U(q), the reduces mass
matrix M as well as the initial conditions q(0) and v(0) are assumed to be known.

Using data assimilation, we wish to find parameter values (γ, σ) and solutions
of (2)-(3) that stay close to partially observed reference trajectories of the full
mechanical model (1). We now assume for simplicity that q, p ∈ R and that
partial observations are given by “measurements” dq(t) ∈ R, which satisfy the
stochastic differential equation

(4) dq(t) = LM−1PT (t)dt+
√
rdu(t).

Here u(t) denotes again Brownian motion, r > 0 is a known parameter, and
(QT (t), PT (t)), t ≥ 0, denotes an unknown reference solution (the “truth”) from
the full mechanical model (1).

Both naive approaches of either solving (2)-(3) with the given initial condi-
tions or integrating (4) to obtain q(t) are able to track the reference solution
qT (t) = LQT (t) over long periods of time. Instead one has to resort to filtering or
smoothing techniques to combine (2)-(4) in an optimal manner.

In recent year, the ensemble Kalman filter (EnKF) [1] has emerged as a powerful
nonlinear filter for intermittent data assimilation. For simplicity we restrict to the
case of only estimating the model state while all model parameters are assumed to
be known. We have extended the EnKF technique to continuous data assimilation
problems as outlined above. In particular, the ensemble Kalman-Bucy filter [5, 7]
leads to the following augmented system of stochastic differential equations. We
first rewrite (2)-(4) in more abstract form as

dx = f(x, t)dt+Σ1/2dw(t),(5)

dy = Hxdt+R1/2du(t)(6)

Then the ensemble Kalman-Bucy filter equations for an ensemble of m members
xi(t) are

dxi = f(xi, t)dt+Σ1/2dwi(t)− PHTR−1(Hxidt− dy(t) +R1/2dui(t))

with empirical covariance matrix

P =
1

m− 1

∑

i

(xi − x̄)(xi − x̄)T , x̄ =
1

m

∑

i

xi

and mutually independent Brownian motions wi(t), ui(t), i = 1, . . . ,m.
To make progress towards more general and accuracte filters for nonlinear prob-

lems we consider intermittent data assimilation where (6) is replaced by

(7) yq = Hx(tq) +R1/2ηq

at discrete times tq, q = 1, . . . ,K with random variables ηq ∼ N(0, I) and H
denoting an appropriate forward operator. We also set Σ = 0 in (5). The ensemble
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Kalman-Bucy filter can also be applied to such filter problems and leads to efficient
implementation of ensemble Kalman filters [2, 3, 4, 7].

On a more general level, one can reformulate the data assimilation problem for
model (5) with Σ = 0 and observations (7) as a Vlasov-McKean system [5]

ẋ = f(x, t) +
∑

q

δ(t− tq)M∇xψ(x, ρ)(8)

ρt = −∇x · (ρẋ),(9)

where δ(·) denotes the Dirac delta function, M is a positive definite matrix, and
the potential ψ is determined from

(10) ∇x · (ρM∇xψ) = ρ(L− Eρ[L])

where

L(yq;x) =
1

2
(Hx− yq)

TR−1(Hx− yq)

is the negative log-likelihood associated with the measurement (7) and Eρ[L] de-
notes expectation of L with respect to the probability density ρ. Numerical ap-
proximations based on (8)-(9) including Gaussian mixture approximations and
Gaussian kernel density estimators for ρ have been discussed in [6]. The key idea
is to approximate (8)-(9) using Lagrangian particle methods. The ensemble at
time tq is converted into a statistical model yielding a density approximation ρ̃
which is then used in (10) in place of ρ to find the potential ψ in (8).

Interesting questions for further research include exploration of the geometric
structure of the Vlasov-McKean filter equations (8)-(9), the importance of geo-
metric integration methods for solving (8)-(9), and efficient numerical methods for
solving (8)-(9) in the presence of highly oscillatory solution components.

References

[1] G. Evensen, Data assimilation: The ensemble Kalman filter, Springer-Verlag, New York,
2006.

[2] K. Bergemann, G. Gottwald, and S. Reich, Ensemble propagation and continuous matrix
factorization algorithms, Q.J.R. Meteorolog. Soc., 135, ,2009, 1560–1572.

[3] K. Bergemann and S. Reich, A localization technique for ensemble Kalman filters,

Q.J.R. Meteorolog. Soc., 136, 2010, 701–707.
[4] K. Bergemann and S. Reich, A mollified ensemble Kalman filter, Q.J.R. Meteorolog. Soc.,

136, 2010, 1636–1643.
[5] S. Reich, A dynamical systems framework for intermittent data assimilation, BIT Numerical

Mathematics, 51, 2011, 235–249.
[6] S. Reich, A Gaussian-mixture ensemble transform filter, Q.J.R. Meteorolog. Soc., in press,

2011.
[7] J. Amezcua, E. Kalnay, K. Ide, and S. Reich, Using the Kalman-Bucy filter in an ensemble

framework, 2011, submitted.



Applied Dynamics and Geometric Mechanics 2269

Minimum Energy Configurations in the N-Body Problem and the
Celestial Mechanics of Granular Systems

Daniel J. Scheeres

Celestial Mechanics systems have two fundamental conservation principles that
enable their deeper analysis: conservation of momentum and conservation of (me-
chanical) energy. Of the two, conservation of momentum provides the most con-
straints on a general system, with three translational symmetries (which can be
trivially removed) and three rotational symmetries. If no external force acts on
the system, these quantities are always conserved independent of the internal in-
teractions of the system. Conservation of energy instead involves assumptions on
both the lack of exogenous forces and on the nature of internal interactions within
the system. For this reason energy is often not conserved for “real” systems that
involve internal interactions, such as tidal deformations or impacts, even though
they may conserve their total momentum. Thus mechanical energy generally de-
cays through dissipation until the system has found a local or global minimum
energy configuration that corresponds to its constant level of angular momentum.
This observation motivates a fundamental question for celestial mechanics:

What is the minimum energy configuration of a N -body system with a fixed level
of angular momentum?

For a system of point masses this question cannot be fully answered. If N = 2,
then there exists a well defined minimum energy configuration for any non-zero
angular momentum – the circular orbit. If N ≥ 3 there is no well defined minimum
energy configuration and, in fact, it can be shown that at a fixed level of angular
momentum a configuration of the system can always be found for which the energy
E → −∞.

Introduction of physically valid constraints can remove this dichotomy. Real
systems always have a finite density and, hence, any particle in a celestial mechan-
ics system has a finite radius. We call such a physically corrected system the “Full
N -Body Problem,” as inclusion of finite density also necessitates the modeling of
the rotational motion of the components, which is not needed for consideration of
point masses. Thus their mass centers cannot come arbitrarily close to each other,
as at some distance they will rest on each other. Introduction of this correction
allows the minimum energy configurations for an N -body system to be explicitly
defined and computed for a given level of angular momentum.

For N ≥ 3 it can be shown that minimum energy configurations of Full Body
problems involve condensation of the particles into either one or two collections.
A reasonable hypothesis, still to be fully proven, is that all minimum energy con-
figurations of Full Body problems result in one of two general states: i) All the
particles rest on each other in one collection and spin at a uniform rate; ii) All
the particles separate into two collections in a mutually circular orbit about each
other with doubly-synchronous rotation.
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As the angular momentum of a system is increased we find distinct transitions
in the minimum energy configurations within each of the above two classes and,
at some point, between these two classes. It is significant to note that during the
transition between Class i and ii there is a significant change in the energy available
for the dynamical evolution of the system. Thus, we find that immediately after
fission of a collection of particles in Class i they can have sufficient energy for the
bodies to mutually escape from each other – this escape will never constitute a
minimum energy configuration of the Class ii system, although for a large class
of Full Body systems it can be shown to be the most likely outcome once a finite
rate of energy dissipation in the system is included.

Given this perspective, an interesting problem is to track the absolute minimum
energy configuration of a collection ofN particles as the system angular momentum
increases from zero. This is, essentially, an investigation of the celestial mechanics
of granular systems as a function of total angular momentum. This problem has
been shown to be relevant to the understanding of solar system bodies, especially
among asteroids whose size is small enough so that when their components rest
on each other they have insufficient gravitational attraction to overcome material
strength, and thus retain the physical characteristics of rigid bodies resting on
each other. Due to the celebrated YORP effect, which has established that non-
symmetrically shaped bodies subject to solar radiation will change their spin rates
over time, this question has several practical applications and has been implicated
in how small asteroids form binary systems [1]. The question of stable minimum
energy configurations for the N = 2 particle Full Body problem has been worked
out in detail [2], and has been verified as a viable physical model via astronomical
observations of asteroids [3].

Current research has expanded the analysis beyond two particle systems and is
investigating the minimum energy configurations of N ≥ 3 particle systems as a
function of total angular momentum using both analytical and numerical methods
(as described in [4]). Our results show a surprising complexity in the evolution of
minimum energy states as a function of angular momentum, with distinctly dif-
ferent pathways arising as the number of particles in the system increases. There
also exist fundamental relationships between this problem and the central config-
urations of the classical N -body problem. This work is currently being written up
for submission to a mathematically-oriented journal.
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Geometry of Option Price Surface Models

Josef Teichmann

We show that Markovian models in the Carmona-Nadtochiy-Kallsen-Krühner
framework for the time evolution of volatility surfaces admit finite dimensional
realization only if the time evolution is driven by an underlying finite dimensional
time-inhomogenous affine process. The result also allows to transfer the method-
ology of Hull-White extensions and is another justification for the importance of
affine stochastic processes.

Let me outline in the sequel on the background of the result and on the result
itself: A (markovian) finite-dimensional factor model for option pricing is defined
by specifying a state space, the functional dependence of the local characteristics
(“model-parameters”) of the Markov process on the state variable, and the re-
lations between the underlying(s) and the factor process. In such a setting the
state variable apparently follows a dynamics and can change over time, whereas
the model parameters are assumed to be constant. Option prices are then usu-
ally described by appropriate solutions of backward Kolmogorov equations, which
depend on the current state of the factor process and on the model parameters.
Calibration is a choice of model parameters and a choice of a state variable, such
that market prices are optimally reproduced by the factor model. Recalibration
in this setting is the (delicate) procedure to fit next day’s market prices to model
prices by only changing the state variables, whereas the model parameters have to
be kept constant for consistency reasons.

The term structure approach – in contrast – considers the liquid market prices
as (part of the) state variable and faces the challenging task to write a stochastic
evolution on the set of liquid market prices. Since the set of liquid market prices
is subject to several constraints, it is of utmost importance to carefully choose
a tractable parametrization of this set (choice of a codebook). In the last years
several approaches have been suggested, taking implied volatility, local volatility
or time-dependent Lévy processes as respective parameters.

• Implied volatility appears as a natural candidate for parametrization, since
it is industry standard to quote option prices in terms of their implied
volatility. However, the static and dynamic constraints on implied volatil-
ity are so awkward that it is very hard to analyze geometrically and analyt-
ically time evolutions of implied volatility surfaces, see [7, 8, 9]. Addition-
ally it would be difficult to express stochastic interest rates or multivariate
situations within this framework of the implied volatility codebook.

• Local volatility constitutes an industry standard to construct interpola-
tions of (implied) volatility surfaces. It seems therefore natural to con-
struct time evolutions of local volatility functions, see [1]. This is even
more attractive, since it is much easier to tell whether a function is a
local volatility than an implied volatility. However, the description of
the time evolution of local volatilities contains extremely non-linear and
non-continuous operations, so that this parametrization also appears less
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useful. Additionally the extension towards stochastic interest rates is not
well understood within the local volatility codebook.

• A last approach was independently and in parallel proposed by Carmona-
Nadtochiy (see [2, 3]) and Kallsen-Krühner (see [6]), where option prices
are parametrized by a time-dependent Lévy processes with characteristics
absolutely continuous with respect to Lebesgue measure. From an analytic
point of view it seems a bit more delicate to describe this set of parameters,
however, the drift conditions are considerably less complicated in the Lévy
codebook.

Following the approaches of Carmona-Nadtochiy and Kallsen-Krühner, subse-
quently abbreviated by CNKK-approach, we are equipped with tractable parame-
terizations. In this talk we prefer the KK-approach to the CN-approach, since we
see the following two advantages:

• In contrast to CN the time-inhomogenous Lévy process is encoded by its
Lévy exponent, i.e. the logarithm of its Fourier-Laplace transform. CN
choose the Lévy-Khintchine triplet (and assume the absence of volatility),
which seems – from a purely analytic point of view – more appropriate,
since the set of Lévy-Khintchine triplets is more easy to describe analyt-
ically than the set of Lévy exponents. On the other hand, and that is a
main insight, the necessary martingale conditions, which express the lack
of dynamic arbitrage, can be formulated again easier in the Lévy exponent
parametrization.

• Dependence between increments of the underlying(s) and the increments of
option prices (“leverage effect”) are easily included into the KK-framework
since this effect is easily expressed in the language of Lévy exponents.

Having fixed the Lévy codebook the geometric and analytic approaches of [5]
can be performed and due to several structural similarities the conclusions are of
a very similar nature.

Let me describe the main result in words: if we assume that the term struc-
ture evolution of Lévy exponents, which describes the liquid option market prices,
allows for regular finite dimensional realizations (i.e. we have a regular finite di-
mensional foliation on a subset of the state Hilbert space), then each leaf of this
foliation is a ruled surface, i.e. an affine subspace moving transversally along a
one-dimensional trajectory in Hilbert space. This means in particular that factor
models in terms of affine processes play a particular role in mathematical finance
(for general information on general affine processes see [4]).
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Interconnection, Dirac Structures and Dirac Systems in Mechanics

Hiroaki Yoshimura

(joint work with Henry Jacobs)

Dirac structures unifying both presymplectic and Poisson structures provide an im-
plicit generalization of Lagrangian and Hamiltonian systems including the cases
of nonholonomic systems as well as degenerate Lagrangian systems in mechanics;
a Dirac structure on the cotangent bundle of a configuration manifold induced
from a smooth distribution denotes a power conserving structure between phys-
ical elements, which is called an “interconnection”. Namely, the Dirac structure
plays an essential role in modeling of complicated electric circuits and multibody
systems as an interconnected dynamical system. In this study, we primarily con-
sider how distinct Dirac structures D1 and D2 on the cotangent bundles can be
interconnected through a Dirac structure Dint. To do this, we introduce a tensor
product ⊲⊳ of Dirac structures D1, D2 and Dint such that the interconnection of
Dirac structures can be given by (D1 ⊕ D2) ⊲⊳ Dint. Finally, we also show an
interconnection of Dirac-Lagrange dynamical systems by using (D1 ⊕D2) ⊲⊳ Dint.

Dirac–Lagrange Dynamical Systems. Let L : TQ → R be a Lagrangian,
possibly degenerate. Let ∆Q ⊂ TQ be a smooth distribution on Q and let ∆T∗Q =

Tπ−1
Q (∆Q) be a lifted distribution on Q, where πQ : T ∗Q → Q. Define a Dirac

structure on T ∗Q by, for each point z ∈ T ∗Q,

D(z)={(v, α) ∈ TzT
∗Q× T ∗

z T
∗Q | v ∈ ∆T∗Q(z),

and α− Ω♭(z) · v ∈ ∆◦
T∗Q(z)}.

Recall that a partial vector field X : TQ ⊕ T ∗Q → TT ∗Q is defined as a map
that assigns to each point (q, v, p) ∈ TQ ⊕ T ∗Q, a vector in TT ∗Q at the point
(q, p) ∈ T ∗Q; we write X as X(q, v, p) = (q, p, q̇, ṗ). Let EL : TQ⊕ T ∗Q → R be
the generalized energy given by EL(q, v, p) := 〈p, v〉 − L(q, v).
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A Dirac–Lagrange dynamical system is a triple (EL, D,X) that satisfies,
for each (q, v, p) ∈ TQ⊕ T ∗Q,

(X(q, v, p),dEL(q, v, p)|T(q,p)P ) ∈ D(φ(q, v, p)),

where (q, p = ∂L/∂v) ∈ P =FL(∆Q)⊂T ∗Q and φ : TQ⊕T ∗Q→ T ∗Q ia a natural
projection.

Tensor Product of Dirac Structures. Let P =M ×M and let d :M →֒ P be
the diagonal embedding by M = {(m,n) ∈ P | m = n}. Given Dirac structures
Da, Db onM , define the direct product of Dirac structures Da and Db by Da⊕Db

on P . One may pull back the Dirac structure Da⊕Db ⊂ TP ⊕T ∗P on P to M as

d∗(Da ⊕Db) =
(Da ⊕Db) ∩ (TM ⊕ T ∗P |M )

(Da ⊕Db) ∩ ({0} ⊕ TM◦)
,

where we assume (Da ⊕ Db) ∩ (TM ⊕ T ∗PM ) has constant dimension, and the
subbundle d∗(Da ⊕Db) is a Dirac structure on M . Let us rewrite the above as

Da ⊲⊳ Db := d∗(Da ⊕Db).

Let D1 and D2 be Dirac structures on the cotangent bundles over distinct
manifolds Q1 and Q2, which are induced from smooth constraint distributions
∆Q1 ⊂ TQ1 and ∆Q2 ⊂ TQ2 as before. Let ∆c be a given distribution on Q =
Q1 ×Q2 due to the interconnection of D1 and D2. Recall that an interconnection
Dirac structure is given by Dint = ∆int ⊕ ∆◦

int, where ∆int = (TπQ)
−1(∆c) ⊂

TT ∗Q is the constraint distribution associated to the interconnection. Here, we
utilize the bowtie operator ⊲⊳ for interconnecting the induced Dirac structures D1

and D2 through the interconnection Dirac structure Dint on T
∗Q, which may be

constructed from ∆ = (∆Q1 ×∆Q2) ∩∆c and Ω = Ω1 ⊕Ω2, where Ω1 and Ω2 are
respectively the canonical two-forms on T ∗Q1 and T

∗Q2. Assuming ∆ has constant
rank, the interconnection of two distinct induced Dirac structures D1 and
D2 through Dint = ∆int ⊕∆◦

int is given by

D = (D1 ⊕D2) ⊲⊳ Dint.

Interconnected Dirac-Lagrange Systems. Let (EL1 , D1, X1) and (EL2 , D2, X2)
be distinct Dirac-Lagrange dynamical systems on T ∗Q1 and T ∗Q2. Let Q =
Q1 × Q2. Define the Lagrangian L : TQ → R for the interconnected system by
L = L1 + L2 and define the associated generalized energy by EL = EL1 + EL2 :
TQ⊕T ∗Q → R. Set a partial vector field by X = X1⊕X2 : TQ⊕T ∗Q → TT ∗Q.
Then, the interconnection of Dirac-Lagrange dynamical systems can be given by,
for each (q, v, p) ∈ TQ⊕ T ∗Q,

(X (q, v, p),dE(q, v, p)|T(q,p)P) ∈ D(ϕ(q, v, p)),

where (q, p = ∂L/∂v) ∈ P=FL(∆)⊂T ∗Q and ϕ : TQ⊕ T ∗Q→ T ∗Q.
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In the talk, we further develop variational structures associated with the inter-
connection of associated Dirac-Lagrange dynamical systems. Lastly, we demon-
strate the theory of interconnection of Dirac structures and associated Lagrange-
Dirac dynamical systems by some examples including electric circuits, nonholo-
nomic mechanical systems, and simple mass-spring mechanical systems.
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Stability of Relative Equilibria of Discrete Chaplygin Systems

Dmitry Zenkov

(joint work with Cameron Lynch and Kenneth Ball)

Chaplygin systems are nonholonomic mechanical systems with symmetry whose
group dynamics is completely determined by constraints. We study stability of
relative equilibria of discrete commutative Chaplygin systems. That is, we assume
that the group in the definition of a Chaplygin system is commutative. In addition,
we assume that the reduced system has its own commutative symmetry group.
Many systems, such as the rattleback, the rolling disk, and the roller racer, are
invariant with respect to the semidirect product of the said two groups. Stability
in the continuous-time setting has been studied by Karapetyan [3].

A discrete analogue of Lagrangian mechanics can be obtained by considering
a discretization of Hamilton’s principle; this approach underlies the construction
of variational integrators. The origins of discrete mechanics can be found in the
control literature of the 1960s. See Marsden and West [6], and references therein,
for a more detailed discussion of variational integrators, discrete mechanics, and
history.

Variational integrators are known to adequately represent the dynamics of
continuous-time Lagrangian systems over long time intervals. Moreover, algo-
rithms obtained this way are structure-preserving: They conserve the volume in
the momentum phase space and conserve momentum if the continuous-time sys-
tem has symmetry. They also are known to accurately track the system’s energy
over long time intervals, i.e., they are free from the so-called numerical dissipation
(an artificial dissipation introduced by some numerical methods).

Cortés and Mart́ınez [2] extend this formalism to the nonholonomic setting by
replacing Hamilton’s principle with a discrete version of the Lagrange–d’Alembert
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principle and approximating nonholonomic constraints with a suitable submani-
fold of the phase space of the discrete system. They also consider an alternative
discrete model, in which the constraints are replaced with a suitable discretiza-
tion of the reaction force of continuous-time constraints. They point out that,
contrary to the continuous-time case, these two discrete model are typically not
the same for ideal constraints. In other words, the discrete Lagrange–d’Alembert
principle introduced by Cortés and Mart́ınez is incompatible with the concept of
ideal constraints. Below these two discrete models are referred to as “nonholo-
nomic discretization” and “forced discretization”, respectively. Our study of these
discretizations reveales that the former one may not preserve the manifold of rela-
tive equilibria of the continuous-time system, and thus may fail to be structurally
stable, while the latter one always preserves relative equilibria as well as their
stability types.

It is well-known that, in the absence of external dissipation, relative equilibria
of continuous-time nonholonomic systems may be partially asymptotically stable,
i.e., Lyapunov-stable as well as asymptotically stable in some directions in the
phase space. Here by stability we understand orbital stability, i.e., a relative equi-
librium is stable if the corresponding equilibrium of the reduced system is stable.
Spectral stability in nonholonomic setting is discussed in Routh [7], the nonlinear
stability is established by Karapetyan [3]. It is also well-known (see e.g. Bloch,
Krishnaprasad, Masden, and Murray [1] and references therein) that generically
momentum is not preserved in nonholonomic systems with symmetry. It is how-
ever preserved for so-called horizontal symmetries. Cortés and Mart́ınez prove
that in their discrete models momentum is preserved for horizontal symmetries,
just like in the continuous time case. One should keep in mind that horizontal
symmetries are not observed in a number of interesting examples. One cannot
also expect that an invariant measure exists generically in the discrete setting;
this is confirmed below by the existence of partially asymptotically stable relative
equilibria in the discrete setting.

Since nonholonomic flows, in general, are not symplectic, volume, or momentum
preserving, structure-preservation in the discrete nonholonomic setting should be
understood in a different way. Relative equilibria of nonholonomic systems with
symmetry are never isolated and often are partially asymptotically stable. Moti-
vated by these observations, we ask for a discretization to preserve the manifold
of equilibria of the reduced system and their stability type. Otherwise, one ends
up with structurally-unstable discretizations. Indeed, if the manifold and stability
types of equilibria of the reduced continuous-time system are not preserved by the
discretization, the α and/or ω limit sets of the continuous-time system and its
discretization are certain to be different, and the continuous-time and discrete dy-
namics are certain to have inconsistent asymptotic behavior. We emphasize that
while the change in the structure of the limit sets may be local, the influence of
this change on the dynamics is global.

Assuming that the reduced discrete nonholonomic system has a manifold of
equilibria, we utilize the center manifold stability analysis technique and establish
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conditions for partial asymptotic stability of equilibria of this system, thus ob-
taining a discrete analogue of Karapetyan’s stability result. The key observation
is that the manifold of equilibria and center manifold of the reduced discrete dy-
namics coincide. The stability result then follows from spectral stability condition.
Indeed, if the spectrum of the linearization at the equilibrium of interest has max-
imal possible number of eigenvalues in the open unit disc, the phase space of the
reduced system in a neighborhood of the said equilibrium is foliated by the stable
manifolds. Any small perturbation then will give rise to a solution that belongs
to one of these stable manifolds, and thus the equilibrium of interest is stable and
in addition asymptotically stable along these stable manifolds.

We then prove that the manifolds of equilibria of the reduced continuous-time
system and of its forced discretization are identical. Next, we prove that the sta-
bility conditions of relative equilibria for the forced discretization are identical to
Karapetyan’s stability conditions for the associated continuous-time system. By
constructing an example, it is shown that the dimension of the manifold of equilib-
ria of the reduced discrete dynamics, obtained by the nonholonomic discretization,
may be different from the dimension of equilibria of the associated continuous-time
system. See [4] for details.

A careful analysis shows that when the manifolds of equilibria of the reduced
continuous-time system and of its nonholonomic discretization are identical, the
stable manifolds at an equilibrium of the reduced continuous time system and of
its discretization may intersect transversally at the said equilibrium.

It follows from the analysis above that the forced discretization is in a better
agreement with the continuous-time dynamics than the nonholonomic one.

We also discuss (see [5]) conditions for the nonholonomic discretization to pre-
serve equilibria of the associated reduced continuous-time system. These condi-
tions are shown to be satisfied for the practically important case of planar Eu-
clidean symmetry.

The theory is illustrated with the stability analysis of relative equilibria of the
discrete roller racer.
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