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Introduction by the Organisers

The workshop Dynamics of Stochastic Systems and their Approximation, or-
ganised by Evelyn Buckwar (Edinburgh), Barbara Gentz (Bielefeld) and Erika
Hausenblas (Leoben) was held August 21st – August 27th, 2011. This meeting
was well attended with 17 participants from 6 countries, with one participant hav-
ing been awarded a US Junior Oberwolfach Fellowship to attend the workshop.

Stochastic modelling has become a standard tool in many areas of science and
engineering, in fields as diverse as finance, molecular dynamics, neuroscience, laser
physics, hydrogeology or climate research. Often, the mathematical description of
real world phenomena is in terms of stochastic ordinary differential equations,
stochastic delay differential equations or stochastic partial differential equations.
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Although the aims of stochastic modelling are as manifold as the classes of equa-
tions and application areas, in several application areas the interest in stochastic
modelling is in particular focussed on understanding the dynamical behaviour of
the stochastic systems. Much of the research in, e.g., neuroscience or climate
modelling is devoted to noise-induced or noise-related phenomena in the dynami-
cal behaviour of the system.

Several approaches and techniques to describe and analyse the dynamics of
stochastic systems exist. The mini-workshop aimed at bringing together people
from different areas of expertise and the given talks have been grouped into the
following themes:

• Stochastic dynamics in the Sciences,
• Numerics for stochastic dynamical systems,
• Reduced dynamics,
• Stochastic partial differential equations.

Participants had been asked to prepare a review talk on a specific subtopic fitting
one of these themes, thus providing a basis for the subsequent productive dis-
cussions. In the first theme the following participants gave talks: Nils Berglund,
Evelyn Buckwar, Barbara Gentz, Peter Imkeller, Rachel Kuske, Tony Lelièvre and
Kevin Lin. The second theme was covered by Erika Hausenblas, Peter Kloeden,
Andreas Neuenkirch and Tony Shardlow. Martin Riedler and Richard Sowers
spoke about the third theme, and the final theme was addressed by Dirk Blömker,
Anne de Bouard, Zdzislaw Brzezniak and Sandra Cerrai.

In the course of the mini-workshop, a number of challenging open questions
were identified, examples are given by:

• Different concepts of numerical treatment of long-time dynamics of sto-
chastic systems,

• Asymptotic dynamics of delay equations and reaction-diffusion equations
with noise,

• Rigorous limit procedures between descriptions of a multi-scale system by
continuous or discrete state spaces, depending on the relevant scale. This
kind of problem arises, eg., in molecular dynamics and neuroscience.

The organisers thank the Mathematisches Forschungsinstitut Oberwolfach for
providing an inspiring setting for this mini-workshop.
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Abstracts

Dynamical models of climate time series and the rate of convergence

of power variations

Jan Gairing and Peter Imkeller

(joint work with Claudia Hein, Ilya Pavlyukevich)

Simple models of the earth’s energy balance interpret some qualitative aspects of
the dynamics of paleo-climatic data. They may be modeled by dynamical systems
perturbed by noise, typically

(1) Xǫ(t) = x−
∫ t

0

U ′(Xǫ(s−)) ds+ ǫL(t), t ≥ 0, ǫ > 0,

where L is a Lévy process. Its originally assumed Gaussian nature was questioned
in the climate physics literature by Ditlevsen [2, 1] who analyzed global temper-
ature proxies in a Greenland ice-core time series from the last glacial period and
suggested jump diffusion models with α-stable noise instead.

In statistical terms, Ditlevsen’s conjecture leads to a typical model selection
problem. In the parametric version involved, one needs an efficient testing method
for instance for the parameter α corresponding to the best fitting α-stable noise
component. Continuing earlier work (see [3]) we develop a statistical testing
method based on the p-variation of the solution trajectories of SDE with Lévy
noise. If for some stochastic process Z we let

V p,n
t (Z) =

[nt]
∑

i=1

|Z(
i

n
) − Z(

i− 1

n
)|p, V p

t (Z) = lim
n→∞

V p,n
t (Z), t ≥ 0,

we take V p(Xǫ) as a test statistic for α. Let Xǫ = Y ǫ +Lǫ denote the solution of
(1), where Y ǫ is the absolutely continuous part related to the potential gradient,
and Lǫ = ǫL. In earlier work (see [3]) we proved the following key result on the
asymptotic behavior of V p,n(L) which in the most interesting cases is identical to
the asymptotic behavior of V p,n(X).

Theorem 1 ([7]). Let (Lt)t≥0 be an α-stable Lévy process. If p > α/2 then

(

V n
p (L)t − ntBn(α, p)

)

t≥0

D→ (L′
t)t≥0 as n→ ∞,

where L′ is an independent α
p -stable Lévy process, and

D→ denotes convergence in

the Skorokhod topology. The normalizing sequence (Bn(α, p))n≥1 is deterministic
and given by

Bn(α, p) =











n−p/α
E|L1|p, p ∈ (α/2, α),

E sin
(

n−1|L1|α
)

, p = α,

0, p > α.
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Our first tests for α were based on the observation that if the underlying process
L is α-stable, then the variations of power 2α, according to Theorem 1 will converge
to a 1

2 -stable limit. Hence the distance of V p,n(L)1 and the distribution function

of the 1
2 -stable law as a function of p will exhibit a minimum at p = 2α, providing

a method to test for α. However, a genuine statistical test needs quality criteria
such as confidence intervals or bands. For the purpose of designing them, the speed
of convergence of power variations in Theorem 1 to the α

p -stable limits has to be

described. In our approach of this problem, distances between random variables
are measured by the Kolmogorov-Smirnov metric for their distribution functions
or by the Wasserstein metric.

Definition 1. Let F resp. G be the distribution functions of the real valued random
variables X resp. Y , µ resp. ν their laws. The Kolmogorov-Smirnov distance
between F and G (resp. X and Y ) is given by

D(F,G) = D(X,Y ) = sup
x∈R

|F (x) −G(x)|.

For q > 0, the Wasserstein distance of order q between µ and ν (resp. X and Y )
is given by

Wq(µ, ν) = Wq(X,Y ) = inf
π∈M(µ,ν)

[

∫

R2

|x− y|qdπ(x, y)]1∧
1
q ,

where M(µ, ν) is the set of all probability measures on R
2 having marginals µ and

ν.

For Kolmogorov-Smirnov distances, we obtain the following results for an α-
stable Lévy process L (see [4]).

Theorem 2. For t > 0, α < p we have

D(V p,n(L)t, V
p
t ) =







O( 1
n ), if 2α < p,

O(log(n) 1
n ), if 2α = p,

O(n1− p
α ), if α < p < 2α.

For t > 0, α2 < p ≤ α we have

D(V p,n(L)t − ntBn(α, p)), V p
t ) =

{ O(log(n)2 1
n ), if α = p,

O(n1−2 p
α ), if α

2 < p < 2α.

For the rates of convergence of the Wasserstein distances, we obtain the follow-
ing statements (see [4]).

Theorem 3. For t > 0, p > α, αp < q < 1
p
α
−1 , we have

Wq(V
p,n(L)t, V

p
t ) = O(n1− p

α
(1∧q).

For t > 0, p > α, αp < q0 ≤ 1
p
α
−1 , then we have for any 0 < q ≤ q0

Wq(V
p,n(L)t, V

p
t ) = O(n−(1∧q)( p

α
− 1

1∧q0
)).
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The second statement of Theorem 3 allows to control the convergence of the
laws as elements of Wasserstein spaces of order q < α

p since they both posses finite

qth moments.
To prove these main results, we make use of the fact that unlike their laws

which – except in the cases α = 1
2 , 1, 2 – are not explicitly known, the characteristic

functions of Lévy processes are easily available through the Lévy-Khinchin formula.
So in order to obtain estimates of Berry-Esséen type as in Theorem 2 we make
use of the following smoothness inequality relating distribution functions to their
characteristic functions.

Lemma 1. Let F and G be probability distribution functions with supx∈R
|G′(x)| ≤

m <∞ and ϕ and γ their characteristic functions.Then we have for any T > 0:

sup
x∈R

|F (x) −G(x)| ≤ 1

π

∫ T

−T

∣

∣

∣

∣

ϕ(λ) − γ(λ)

λ

∣

∣

∣

∣

dλ +
24m

πT
.

The differences of characteristic functions are further estimated via asymptotic
expansions. For the estimation of Wasserstein distances, we adapt results of [9]
that make use of a generalized central limit theorem and polynomial tails.
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Stochastic dynamical systems in neuroscience

Nils Berglund

(joint work with Barbara Gentz, Christian Kuehn, Damien Landon)

The success of Statistical Physics is largely due to the huge separation between
microscopic and macroscopic scales, which enables us to apply limit theorems from
probability theory, such as the law of large numbers and the central limit theorem.
The difficulty of biological systems, such as those arising in neuroscience, is that
instead of only two scales, they involve a whole hierarchy of them:

• The dynamics of the brain as a whole can be modeled in the continuum
limit by neural field equations, which are partial differential or integro-
differential equations for the synaptic electric potential [1].

• Localised populations of excitatory and inhibitory neurons are described
by coupled integro-differential or delay equations, as in the Wilson–Cowan
model for decision making [2].

• The dynamics of the action potential along the axons of individual neu-
rons is described by partial or ordinary differential equations such as the
Hodgkin–Huxley equations [3].

• The number of open and closed ion channels, which regulate action po-
tentials across the neuron’s membrane, can be described by a Markovian
jump process [4]. Similarly, the interactions between genes, proteins and
enzymes within cells involve complicated networks that can be modeled
by large systems of coupled maps or differential equations [5].

Even though the scale separation is not as radical as in Statistical Physics, the
different levels of the hierarchy are often still separated by one or two orders of
magnitude.

Randomness arises in these models from simplifying the dynamics of higher or
lower levels in the hierarchy, using reduction procedures such as stochastic av-
eraging or continuum approximations (see Richard Sowers’ and Martin Riedler’s
contributions to these Reports). For instance, models for action potential gener-
ation involve two variables: the voltage x across the membrane, and the vector y
of proportions of open ion channels of different types. External noise, arising from
fluctuations in synaptic currents coming from other neurons, originates in the next
higher level of the hierarchy. Internal noise, stemming from the random dynamics
of ion channels, comes from the level below. In the simplest case, one is thus led
to a system of stochastic differential equations (SDEs) of the form

dxt =
1

ε
f(xt, yt) dt+

σ1√
ε

dW
(1)
t ,

dyt = g(xt, yt) dt+ σ2 dW
(2)
t ,

(1)

where ε describes the time scale separation, and W
(1)
t and W

(2)
t are independent

Wiener processes, respectively modelling external and internal noise.
Choosing the appropriate model for noise is a difficult problem, influenced by

parameters such as the existence of space and time correlations, and the discrete or
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continuous nature of the dynamics. The simplest model for noise is Gaussian white
noise as used in (1), but depending on the situation it may be more appropriate
to use correlated noise such as Ornstein–Uhlenbeck processes, more general Lévy
processes including jumps, or discrete-time noise such as Poisson or more general
renewal processes.

Another important difference between Statistical Physics and biological prob-
lems is that while in the former, the emphasis lies on asymptotic behaviour, such as
existence of stationary states and convergence to them, in biology transients play a
fundamental rôle. There are several reasons for this: time-dependent forcing may
prevent the existence of equilibrium states; the system may spend very long time
spans in metastable states; non-equilibrium phenomena such as excitability and
stochastic resonance often are of central importance to the system’s behaviour.

As a paradigm illustrating transient behaviour, consider the SDE

(2) dxt = f(xt) dt+ σ dWt , xt ∈ R
n

for a dissipative vector field f . For small noise intensity σ, solutions of (2) tend to
spend long time spans in localised regions of space, separated by quick transitions
between these regions. The stochastic exit problem consists in quantifying this
behaviour: Given a domain D ⊂ R

n, determine the distribution of the first-exit
time τ = inf{t > 0: xt 6∈ D}, and the law of the first-exit location xτ ∈ ∂D, known
as the harmonic measure. If τ is likely to be large, the dynamics in D is called
metastable, and can be described by a quasistationary distribution (QSD). The
transitions between metastable domains can typically be reduced to a Markovian
jump process, thereby providing an effective scale separation of the dynamics. A
number of different techniques are available in order to achieve this program:

• The theory of large deviations for sample paths of the SDE (2) has been
developed by Freidlin and Wentzell [6]. The probability of sample paths

tracking a given deterministic path {ϕt} behaves like e−I(ϕ)/2σ2

, for an ex-
plicitly known rate function I. This allows in particular to determine, by
solving a variational problem, a constant V (the quasipotential) such that

the expected first-exit time behaves like eV/σ2

in the limit σ → 0. Fur-
thermore, this approach provides a way to characterise metastable regions
and the transitions between them in this limit.

• A number of analytic techniques provide more detailed information on the
exit problem. In particular, the expected first-exit time and location are
linked, via Dynkin’s formula, to the solutions of Dirichlet–Poisson bound-
ary value problems involving the diffusion’s infinitesimal generator [7].
These equations can be explicitly solved only in dimension 1 and in cer-
tain linear cases, but are accessible to WKB perturbation theory in more
general cases.

• For fast–slow SDEs of the form (1), methods from stochastic analysis and
singular perturbation theory provide a sharp control of the behaviour of
sample paths in metastable regions and near bifurcation points [8] (see
Barbara Gentz’s contribution to these Reports).
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• The theory of random dynamical systems [9] provides information on the
asymptotic behaviour of the system, when it is meaningful to describe the
system’s reaction to the same random forcing, for different initial condi-
tions. This is the case, e.g., for the phenomenon of reliability (see Kevin
Lin’s contribution to these Reports).

As an illustration, consider the FitzHugh–Nagumo equations, given by (1) with

(3) f(x, y) = x− x3 + y , and g(x, y) = a− x .

The deterministic equations admit a stationary point at P = (a, a3 − a), which
is stable if δ = (3a2 − 1)/2 is positive. However, if δ is small, the system is
excitable, meaning that small random perturbations may cause large excursions in
phase space, corresponding to the neuron emitting a spike. For applications it is
important to determine the interspike interval statistics. The invariant measure of
the system is of little use here, as it only gives the probability of the neuron being
in the spiking or quiescent state at any given time.

Let D be a neighbourhood of P , and let F be a curve joining P to the bound-
ary ∂D, parametrised by a variable r ∈ [0, 1]. The successive intersections of
(xt, yt) with F up to its first exit from D define a substochastic Markov chain
(R0, R1, . . . , RN−1) with kernel K(r, A) = P{R1 ∈ A|R0 = r}.

Theorem 1 ([10]). Assume σ1, σ2 > 0. Then K admits a QSD π0, solution to
π0K = λ0π0, where the principal eigenvalue λ0 is strictly less than 1. The survival
time N of the Markov chain is almost surely finite and asymptotically geometric
in the sense that

(4) lim
n→∞

P{N = n+ 1|N > n} = 1 − λ0 .

The random variable N determines the length of the quiescent phase between
spikes, and (4) shows that this length follows an approximately exponential law.
More quantitative information is provided by the following result:

Theorem 2 ([10]). For δ and ε small enough, and σ2
1 +σ2

2 6 (ε1/4δ)2/ log(ε/
√
δ),

there exists κ > 0 such that

(5) 1 − λ0 6 exp

{

−κ (ε1/4δ)2

σ2
1 + σ2

2

}

.

Furthermore, the expectation of N satisfies

(6) E(N) > C(µ0) exp

{

κ
(ε1/4δ)2

σ2
1 + σ2

2

}

,

where C(µ0) depends on the initial distribution µ0 on F .

This result describes the weak-noise regime, and confirms the result of an ap-
proximate computation in [11]. An open problem which is currently under investi-
gation is to obtain similar results in other parameter regimes, as well as for other
models such as the Morris–Lecar equations.
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Reliable and Unreliable Behavior in Oscillator Networks

Kevin K. Lin

(joint work with Eric Shea-Brown and Lai-Sang Young)

This talk concerns the work in [5]. A related numerical study, summarized in [6],
may also be of interest.

A dynamical system driven by an external stimulus is said to be reliable if,
upon repeated presentations of the same stimulus, its response is essentially the
same each time. Reliability is of interest in a number of biological and physical
fields, in particular computational neuroscience, where the degree of reliability of
a neuronal network constrains its ability to encode information via temporal pat-
terns of spikes. Single neurons are well known to be typically reliable; much less
is understood about networks. The present work is an attempt to uncover general
network conditions conducive to reliability, and at the same time to study mech-
anisms for unreliability in some specific systems. We use a mixture of qualitative
theory and numerical simulations; our findings range from fully rigorous results to
conclusions based on a combination of numerical and theoretical evidence.

The class of models we consider are networks of coupled phase oscillators known
as “Theta neurons” in mathematical neuroscience. In these models, oscillators are
pulse-coupled to each other, and some – but not all – oscillators in the network
receive fluctuating external stimuli. In our work, these stimuli are idealized as
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white noise, so the network equations take on the form of SDEs. The question
of reliability can then be stated as: Given a realization of the driving process,
is the network’s trajectory essentially the same regardless of its initial condition
(modulo transients)? We show that this question can be given a precise formulation
within the framework of stochastic flows and random dynamical systems theory.
In particular, using known results on sample measures (also known as “statistical
equilibrium” or “random invariant measures”) [1, 3, 2], we argue that reliability is
characterized by the condition λmax < 0 (and unreliability by λmax > 0), where
λmax denotes largest Lyapunov exponent. In other words, the reliability of a
system receiving a stochastic stimulus is linked to its asymptotic linear stability.

Our main result on reliable network architectures is this: We proved that if a
network is acyclic (i.e., its connectivity is described by a directed acyclic graph),
then it must have λmax ≤ 0 .1 Hence, acyclic networks can never be unreliable;
recurrent connections within the network are necessary for unreliable behavior.
Our result can be further extended to systems composed of modules connected to
each other via an acyclic graph (a module is a sub-network with clearly identified
input and output nodes). This extension provides the basis for a “divide-and-
conquer” approach to reliability: Given a network, we can first decompose it into
an acyclic network of modules, then study the reliability of modules.

We also studied in detail the mechanism for unreliability in a system with
two coupled oscillators. Our main finding here is a parameter regime in which the
system is especially susceptible to unreliability; this parameter regime corresponds
to the onset of phase-locking between the two oscillators in the absence of an
external signal. Based on a combination of theoretical and numerical evidence, an
explanation for this phenomenon is proposed in terms of “shear-induced chaos.”
This is a mechanism for the production of chaotic behavior (i.e., λmax > 0) that
has been rigorously studied in a different context, namely oscillators driven by
periodic pulsatile forcing (see [8, 9], and also the review [4]).
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Stochastic dynamics and numerical methods in molecular dynamics

Tony Lelièvre

Molecular dynamics consists in generating trajectories of a molecular system,
namely particles interacting through a given force field. As a typical example,
one may consider the so-called overdamped Langevin dynamics:

(1) dXt = −∇V (Xt) dt+
√

2β−1dWt,

where Xt ∈ R
3N is the position of the N particles, V : R3N → R is the potential,

β−1 is proportional to the temperature and Wt is a standard 3N -dimensional
Brownian motion. A common feature of many molecular systems is that the
generated trajectories are metastable: the positions Xt remain for a very long
time in some region, before hopping to another region. Thus, it is in general very
difficult to generate trajectories which are sufficiently long to observe such rare
events. Depending on the output of interest, many techniques have been proposed
in the literature to deal with this problem. There are roughly two situations.

In some cases, one is only interested in trajectorial averages of the form:

1

T

∫ T

0

ϕ(Xt) dt

which converge, in the limit T → ∞, to averages with respect to the statistical
ensemble associated to the dynamics. For (1) for example, we have

lim
T→∞

1

T

∫ T

0

ϕ(Xt) dt = Z−1

∫

R3N

ϕ exp(−βV )

where Z =
∫

R3N exp(−βV ) <∞. In this case, many methods have been proposed
to accelerate the convergence to equilibrium and bypass the metastability of the
original dynamics. They are typically based on two principles: (i) biasing (impor-
tance sampling techniques) and (ii) conditioning (constrained simulations). We
refer for example to [3] for a general introduction to such techniques.

In other cases, one really wants to generate trajectories (Xt)t≥0, for example
to compute transport coefficients, or to identify the typical paths to go from one
metastable state to another. For such computations in metastable situations, there
are much less numerical methods available. Let us briefly describe two recent
contributions in that direction.

In [1], we propose an adaptive multilevel splitting algorithm to efficiently gen-
erate reactive trajectories, namely a trajectory which leaves a metastable state
(say A ⊂ R

3N ), and reach another one (say B ⊂ R
3N ) without going back to
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A. An adaptation of the algorithm to compute reaction rates is also discussed.
The principle of the algorithm is to consider a one-dimensional order parameter
ξ : R3N → R which indexes the transition from A to B in the sense that

A ⊂ {x, ξ(x) < zmin} and B ⊂ {x, ξ(x) > zmax}.
We also assume that Σ(zmin) = {x, ξ(x) = zmin} is close to A, in the sense
that starting from Σ(zmin), trajectories will go quickly to A (and very rarely to
B). A similar assumption holds for Σ(zmax) relatively to B. Then the algorithm
goes as follows: starting from an ensemble of trajectories which start from A,
reach Σ(zmin) and go back to A, one deletes the trajectory which goes the less
far in the ξ direction, and duplicates another one (chosen uniformly among the
remaining trajectories) up to the level set of ξ which has been reached by the
deleted trajectory. This new trajectory is then completed using a new driving
random forcing (a new Brownian motion if one thinks of (1)) up to the time it
reaches A or B. As the iterations proceed, an ensemble of trajectories which leave
A, end in A or B, and conditioned to the fact that they reach a certain level set of
ξ, is obtained. This algorithm is very simple to implement in existing molecular
dynamics codes. It enables to generate trajectories starting from Σ(zmin) and
reaching B without going back to A, even if they are very rare (of probability
as small as 10−18 in some examples in [1]). The mathematical analysis of this
algorithm is quite limited so far, and it is an interesting subject to try to analyse
the bias and variance of this algorithm, as the number of trajectories I grows. We
expect, as always in such interacting walker algorithms, a bias which scales like
1/I, and a statistical error which scales like 1/

√
I.

In the manuscript [2], we consider the Parallel Replica Dynamics introduced by
A. Voter in [4]. The aim of the method is to very efficiently generate a coarse-
grained dynamics which contains the essential information from a macroscopic
viewpoint. In mathematical terms, a mapping

S : R3N → N

is introduced, which to a configuration x ∈ R
3N associates the number S(x) of the

state in which the configuration x is. One could typically think of a numbering
of the basins of attraction of the local minima of V , but any discrete partition of
the space could be in principal considered. The question is then how to efficiently
generate a discrete state-to-state dynamics (St)t≥0 which has (almost) the same
law as the reference one (S(Xt))t≥0. The algorithm goes in three step:

(1) During the decorrelation step, a reference walker is followed as it enters
a new state. If it remains for a given time τcorr in this new state, then
the decorrelation step is considered as successful and one proceeds to the
dephasing step, otherwise a new decorrelation step starts.

(2) In the dephasing step, the aim is to generate in parallel many initial con-
ditions in the state visited by the reference walker. This is done by con-
sidering on (say) I processors in parallel, independent trajectories which
start from the reference walker position and to let them go up to a time
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τdephase. If a trajectory happens to leave the state during this time inter-
val, a new dephasing step is restarted for this walker, otherwise the final
point is retained as one of the initial conditions for the parallel step.

(3) Once an initial condition in the state has been obtained on each proces-
sor, the parallel step starts. It simply consists in running in parallel and
independently, the trajectories starting from the various initial conditions
generated so far, and to track the first escaping event from the state,
among all the walkers. When such an escaping event is detected, the ref-
erence walker is set to this walker which left the first the state, and the
simulation clock is advanced by I times the escaping time for the first
escaping event.

The idea behind the parallel step is the following: if, for one walker, the first exit
time was exponentially distributed and independent of the first exit point, the
parallel step would be exact, both in terms of time (this is related to the fact that
I min(T1, . . . , TI) where Ti are i.i.d. exponentially distributed random variables
has the same law as T1) and in terms of the next visited state (in other words,
the law of the next visited state does not depend on the number of walkers I
considered). Then, to understand the algorithm, a crucial tool is the so-called
Quasi-Stationary Distribution (QSD) attached to the considered state. The QSD
may be seen as the stationary probability measure for the dynamics starting in
the state, conditioned to the fact that it does not leave the state. It has two very
interesting properties: starting from the QSD in a given state, the first exit time
is exponentially distributed and independent of the first exit point. Using, this
tool, it is then natural to see the dephasing step as a way to generate I i.i.d. ini-
tial conditions distributed according to the QSD (this is very much related to the
so-called Fleming-Viot process). And the decorrelation step may be seen as a way
to probe if it is sensible to assume that the reference walker, after a time inter-
val of length τcorr, is indeed distributed according to the QSD. A value for τcorr
can then be given as a function of the first two eigenvalues of the Fokker-Planck
operator (associated with the dynamics) with absorbing boundary conditions on
the boundary of the state. With this point of view, one can give some estimates
of what is the error associated to each iteration of the algorithm. More generally,
this analysis shows the interest of the QSD as an intermediate between continu-
ous state space dynamics (standard molecular dynamics) and discrete state space
dynamics (typically kinetic Monte Carlo dynamics). This does not seem to have
been explored so far in the literature.

We would like to mention that this last work benefited a lot from discussions
with Pablo Ferrari during a previous meeting in Oberwolfach, in November 2010.
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Noise induced phenomena in dynamical systems

Rachel Kuske

Transient or unstable behavior is often ignored in considering long time dy-
namics in the deterministic world. However, stochastic effects can change the
picture dramatically, so that the transients can dominate the long range behavior.
This talk will compare a few seemingly unrelated canonical models with noise-
driven regular behaviors, such as coherent oscillations, synchronization, mixed
mode oscillations and even quiescence, that are transient in the absence of noise.
Perspectives combining ideas from coherence resonance, meta-stability, and mul-
tiples scales show that the order in these models can be attributed to transients
”stabilized” by stochastic effects. These perspectives suggest analysis on reduced
models to better understand and predict these phenomena. Different mechanisms
for the noise-driven order are considered, both where it is more complex than the
deterministic order and where it is less complex.

One direction of study is in the area of coherence resonance, where an opti-
mal noise input drives nearly regular oscillations in a system that is quiescent
without this input. This idea has been developed in simple models such as the
FitzHugh-Nagumo model, with parameter values near a critical value which marks
the change in behavior from attraction to a stable fixed point to attraction to re-
laxation oscillations. We illustrate how this phenomenon transfers to networks of
oscillators, where a range of optimal noise levels drives synchronized bursting in
a network with excitatory coupling. A key element is the behavior on multiple
scales, which separates the underlying dynamics into slow subthreshold oscillations
that are sensitive to noise and fast bursting behavior and a refractory period that
are insensitive to noise.

Another area where there are many open problems is in systems with delayed
feedback. Dynamical systems with delay often exhibit an array of complex be-
haviours. These phenomena have been studied in the context of applications such
as mechanical systems and neural dynamics. Stochastic effects can often change
the picture dramatically, particularly if multiple time scales are present. In the
context of machine tool dynamics, and more generally oscillators with delay, addi-
tive noise can sustain large oscillations that decay without noise, while randomness
in the delay time can disrupt oscillations, causing attraction to fixed points that
are unstable without noise.

More recently the mathematical techniques for models with delay have been
transferred to the study of balance in the context of human postural sway and
robotics. Similarities related underlying bifurcation structures can facilitate this
transfer. However, additional complexity, such as discontinuous control of balance
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require new ideas that allow an analysis of the interplay of nonlinearities, delays,
randomness, and piecewise smooth dynamics. Many open problems that include
this full range of complexity remain in both mathematical theory and applications
in biology, mechanics, and neuroscience.

The fact that noise can sustain transient dynamics dominated by unstable deter-
ministic behavior leads to questions of model calibration, comparing to observed
dynamics or data. With noisy input driving nearly regular behavior, one can
usually reproduce the same behavior with different models and different parame-
ter combinations. This suggests that methods for model calibration must expose
the interaction of stochastic effects with the underlying bifurcation structure or
multiple scale dynamics. Characterizing the stochastic sensitivity of the observed
dynamics can narrow down model type and parameter ranges, in order to facilitate
model calibration with complex dynamics.
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Modified equations and long time approximation for SDEs

Tony Shardlow

We reviewed backward error analysis and its applications to ordinary differential
equations, where it is of great value in understanding the approximation of Hamil-
tonian systems. The corresponding idea for SDEs was introduced and modified
equations for the Euler-Maruyama and Milstein methods in the weak sense de-
veloped. For the Ornstein-Uhlenbeck process, a weak modified equation can be
developed to arbitrarily high weak order. However, if the diffusion is nonlinear,
no second order modified equation [1] currently exists for the Euler-Maruyama
method. [2] has shown that a second order modified equation does exist for the
Milstein method. Langevin systems are the natural way of adding noise to a
Hamiltonian systems and we showed that in general modified equations do not
have the general form of a Langevin equation. Special methods can be developed
where the modified equation is a Langevin system and the invariant measure is
understood [2].
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Mean-square random attractors

Peter E. Kloeden

(joint work with Thomas Lorenz)

Random dynamical systems as in Arnold [1] involve pathwise defined skew-product,
but are not applicable to SDE that depend nonlocally on the different sample paths
such as on the expectation, see e.g., [3, 6]. Here we discuss mean-square random
dynamical system (MS-RDS) which were introduced by Kloeden & Lorenz [4].

Let R
2
≥ := {(t, t0) ∈ R

2 : t ≥ t0} and define X := L2 ((Ω,F ,P), X) and Xt :=

L2 ((Ω,Ft,P), X) for each t ∈ R, where X is a Banach space.

Definition 1. A mean-square random dynamical system (MS-RDS) ϕ on an un-
derlying space X with a probability set-up (Ω,F , {Ft}t∈R,P) is a family of map-
pings ϕ(t, t0, ·) : Xt0 → Xt, (t, t0) ∈ R

2
≥, which satisfies

1) initial value property: ϕ(t0, t0, φ0) = φ0 for every φ0 ∈ Xt0 and any t0 ∈ R;
2) two-parameter semigroup property: for each φ0 ∈ Xt0 and all (t2, t1), (t1, t0)
∈ R

2
≥

ϕ(t2, t0, φ0) = ϕ (t2, t1, ϕ(t1, t0, φ0)) ;

3) continuity property:

(t, t0, φ0) 7→ ϕ(t, t0, φ0) is continuous in the space R
2
≥ × X.

These are in fact deterministic with the stochasticity built into or hidden in
the time-dependent state spaces. They provide a mean-square analysis of the
dynamics.

Definition 2. A family B = {Bt}t∈R
of nonempty subsets of X with Bt ⊂ Xt is

said to be ϕ-invariant if ϕ (t, t0, Bt0) = Bt for all (t, t0) ∈ R
2
≥ and ϕ-positively

invariant if ϕ (t, t0, Bt0) ⊂ Bt for all (t, t0) ∈ R
2
≥.

For simplicity, we will say that B is a family of subsets of {Xt}t∈R and that B
is uniformly bounded if there is an R < ∞ such that E‖Xt‖2 ≤ R for all points
Xt ∈ Bt for every t ∈ R.

The following definition are taken from [5] for deterministic nonautonomous
dynamical systems.

Definition 3. A ϕ-invariant family A = {At}t∈R
of nonempty compact subsets

of {Xt}t∈R is called a mean-square forward attractor if it forward attracts all
families B = {Bt}t∈R

of uniformly bounded subsets of {Xt}t∈R, i.e.,

(1) dist (ϕ(t, t0, Bt0), At) → 0 as t→ ∞ (t0 fixed)

and a mean-square pullback attractor if it pullback attracts all families B =
{Bt}t∈R

of uniformly bounded subsets of {Xt}t∈R, i.e., the limit (1) with t0 →
−∞ and t fixed.

Various results involving pullback absorbing sets and pullback asymptotic com-
pactness ensuring the existence of pullback attractors for processes are given in
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[5]. These involve compact subsets of L2 ((Ω,F ,P), X) or asymptotic compact-
ness conditions on the mappings ϕ in this space. Other methods depending on the
contractive nature of the coefficients were used in [2].
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Pathwise Approximation of Stochastic Differential Equations

Andreas Neuenkirch

(joint work with Arnulf Jentzen and Peter E. Kloeden)

Approximation schemes for Itô stochastic differential equations of the form

dX(t) = a(X(t)) dt+

m
∑

j=1

bj(X(t)) dW j(t), t ∈ [0, T ],(1)

X(0) = X0 ∈ R
d,

where a, bj : Rd → R
d, j = 1, . . . ,m, and W j(t), t ∈ [0, T ], j = 1, . . . ,m, are m

independent Brownian motions on a given probability space (Ω,F ,P), have been
intensively studied in the recent years. For an overview, see, e.g. [4] or [5]. The
vast majority of results, however, are concerned with error criteria that measure
the error of the approximation on average. For instance, in the case of the so
called ”weak approximation” the error of an approximation X to X is measured
by the quantity

|Eφ(X(T )) − Eφ(X(T ))|
for (smooth) functions φ : Rd → R, while for the ”strong approximation” problem
the p-th mean of the difference between X and X is considered, i.e.

(

E sup
i=0,...,n

∣

∣X(ti) −X(ti)
∣

∣

p
)1/p

for p ≥ 1, where |·| denotes the Euclidean norm and 0 = t0 ≤ t1 ≤ . . . ≤ tn = T are
the time nodes of the discretization. In the latter case, usually the mean-square
error, i.e. p = 2 is analyzed.
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In general, the numerical calculation of the approximation X is actually carried
out path by path, i.e. the real numbers X(t1, ω), . . . , X(tn, ω) are calculated for a
fixed ω ∈ Ω. In spite of this fact, only a few articles deal with the pathwise error

sup
i=0,...,n

|X(ti) −X(ti)|,

which is a random quantity, but gives more information about the error of the
calculated approximations X(t1, ω), . . . , X(tn, ω) of X(t1, ω), . . . , X(tn, ω) for a
fixed ω ∈ Ω.

In [6] an upper bound for the pathwise error of the Milstein method is deter-
mined using the Doss-Sussmann approach to transform the stochastic differential
equation and the Milstein scheme to a random ordinary differential equation and
a corresponding approximation scheme, respectively. Gyöngy [1] shows that the
explicit Euler-Maruyama scheme with equidistant step size 1/n converges path-
wise with order 1/2− ε for arbitrary ε > 0 without a global Lipschitz assumption
on the coefficients. Hence the pathwise and the mean-square rate of convergence
of the Euler method almost coincide. Using an idea in the proof of [1], one can
show that this is not an exceptional case, but is, in fact, the rule for Itô-Taylor
schemes:

Theorem 1 (see [2]). Let γ = 0.5, 1.0, 1.5, . . .. Assume that

a ∈ C2γ+1(Rd;Rd), b ∈ C2γ+1(Rd;Rd,m)

and that SDE (1) has a unique strong solution on finite time intervals. Moreover

let X
γ

n be the Itô-Taylor method of strong order γ. Then for all ε > 0 there exists
a finite and non-negative random variable ηa,bγ,ε such that

sup
i=0,...,n

∣

∣

∣
X(iT/n, ω)−X

γ

n(iT/n, ω)
∣

∣

∣
≤ ηa,bγ,ε(ω) · n−γ+ε

for almost all ω ∈ Ω and all n ∈ N.

Thus, we recover the pathwise convergence rate γ−ε of the standard Itô-Taylor
method of order γ, which has been derived under classical assumptions in [3]. This
illustrates that the pathwise convergence rates of the standard Itô-Taylor schemes
are very “robust” in the sense that they can be retained under almost minimal
assumptions: No global Lipschitz assumption for the coefficients is required and
a differentiability of order 2γ − 1 is in fact needed for the Itô-Taylor γ-scheme to
be well defined. Moreover the above result holds also true for SDEs, which take
values in a domain D ⊂ R

d, if appropriately modified Itô-Taylor schemes are used,
see [2].
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Approximation of SPDEs driven by Lévy noise

Erika Hausenblas

(joint work with Dunst, Thomas and Prohl, Andreas)

In recent years, stochastic partial differential equations driven by a space-time
Lévy noise have received increasing interest; see e.g., Applebaum and Wu [1],
Hausenblas [4], Knoche [8], Mueller [10], Saint Loubert Bié [12].

One motivation for this work is the model of river pollution proposed by Kwak-
ernaak [7] and studied by Curtain [3]. Let O := (0, 1) × (0, 3) ⊂ R

2, and
A = D∆ − γ ∂

∂ξ2
− a; D > 0 is the dispersion rate, γ > 0 scales convection in

the ξ2-direction, and a ≥ 0 is the leakage rate. Then u : (0, T )×O → R describes
the concentration of a chemical substance which solves the following problem

∂u

∂t
= Au in OT := (0, T ) ×O ,

∂u

∂n
= 0 on (0, T ) × ΓN , and u = 0 on (0, T ) × ΓD .

A chemical substance is now deposited in the region G ⊂ O. The deposits leak,
and substance is dripping out with a certain mean rate λ > 0. This dripping out
is modeled by a space-time Lévy noise.
Taking the dripping into account, processes

{

u(t, ξ); t ∈ [0, T ], ξ ∈ O
}

can be
described by the following stochastic partial differential equation (SPDE)

∂u(t, ξ)

∂t
= Au(t, ξ) + L̇(t, ξ) ∀ (t, ξ) ∈ OT ,

u(0, ξ) = 0 ∀ ξ ∈ O ,(1)

∂

∂ξ2
u(t, ξ) = 0 ∀ (t, ξ) ∈ (0, T ) × ΓN , u(t, ξ) = 0 ∀ (t, ξ) ∈ (0, T ) × ΓD ,

where L̇ represents space-time Lévy noise. Problem (1) is an example of the more
general setting of SPDE’s driven by a space-time Lévy process L, which we consider
in this work. A first numerical analysis of the problem is [9]. It is, however, that
increments of the driving Lévy process were exactly simulated in these works. It
is only for a small number of Lévy processes that the exact distribution function
of the increments is available, while in general it is only the Lévy measure of the
driving noise that is given. Therefore, the goal of this paper is to propose different



2304 Oberwolfach Report 40/2011

strategies to approximate a given Lévy process, and an analysis of errors inherent
to a corresponding time-discretization of (1) .

Several approaches exist to simulate SDEs driven by Lévy processes. Ruben-
thaler [11] studied the approximate Euler scheme, which combines (explicit) time-
discretization, and simulatable approximations of a given Lévy process (with un-
known distribution) by truncating jumps below a certain threshold ǫ > 0: the nu-
merical strategy then uses ‘interlacing’, i.e., simulates subsequent stopping times
where jumps occur, corresponding jump heights, and an intermediate Brownian
motion. We remark that this strategy is less efficient in high dimensions, e.g. for
SPDE’s (after discretization in space). Convergence in law with rates for the
scheme is shown in [11]. For related numerical works to solve SDE’s without
approximating the driving Lévy noise, we refer to cited works in [11].

Such a truncation strategy ignores small jumps, which may cause a rough ap-
proximation of Lévy measures of infinite variation, and a reduced precision of
iterates of the related approximate Euler scheme; Asmussen and Rosiński [2] have
shown that small jumps may be represented by a Wiener process, leading to an im-
proved approximation of the given Lévy process. In [6], weak rates of convergence
for iterates of the approximate Euler scheme for SDEs that employs this strategy
are shown; strong rates of convergence are obtained in [5], where the proof relies
on a central limit theorem when using the quadratic Wasserstein distance. In our
work, we give a different proof that is based on Fourier transforms and uses tail
estimates to show a corresponding Lp estimate (1 ≤ p ≤ 2), which is the proper
setting of (1) where mild solutions are Lp-valued.

In the talk a strategy how to simulate the jumps of a Lévy process was presented.
The main steps can be summerized as follows:

• Truncation of small jumps: First all jumps which are smaller than a
given threshold ǫ are omitted.

• Approximating the Lévy measure by a discrete measure: The
Lévy measure is approximated by a discrete measure. Here different strate-
gies can be applied.

• Generating a random variable due to the discrete measure In
fact, since the intensity measure is discrete, this step is now quite easy
and straightforward.

• Approximating the small jumps by a Wiener process: If the un-
derlying Lévy process is a Lévy process with unbounded variation close to
two, the rate of convregence will be improved simulating the small jumps
by a Wiener process.
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Approximation of Stochastic Hybrid Systems

Martin Riedler

Stochastic Hybrid Systems are càdlàg strong Markov processes that exhibit
continuous evolution interlaced with jumps at random times. The continuous evo-
lution may be either piecewise deterministic (Piecewise Deterministic Process, see
[4, 5]) or given by an SDE (General Stochastic Hybrid Systems, see [3]). In the talk
we discussed limit theorems for spatially extended stochastic hybrid systems, more
precisely, for Hilbert space valued Piecewise Deterministic Processes developed in
[5, 6]. These form the theoretical basis for an approximation of stochastic hybrid
systems by less complex continuous processes, either deterministic, e.g., PDEs or
integro-differential equations, or stochastic, i.e., SPDEs or SDEs in Banach spaces.
Spatio-temporal dynamics are of interest in many applications in, e.g., mathemat-
ical neuroscience and related fields (waves in models of axons, cardiac tissue and in
calcium dynamics, as well as various phenomena in neural field models). A com-
mon feature in these models is that the observed macroscopic dynamics are subject
to internal noise. Internal noise arises as the observed macroscopic phenomena
are an emergent effect of the coupled behaviour of a large number of individual
stochastic objects on a smaller scale (see also Nils Berglund’s contribution in this
Report).

The limit theorems presented are, on the one hand, of the law of large num-
bers type connecting the stochastic microscopic models to a deterministic evolu-
tion equation, and, on the other hand, a martingale central limit theorem for the
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martingale part of the stochastic process1. The latter theorem characterises the
internal stochasticity of the models to be in the limit of a diffusive nature. Finally,
and most importantly, these limit theorems provide an argument for the approx-
imation by a diffusion process, usually a nonlinear stochastic infinite-dimensional
evolution equation, the so called Langevin approximation. In the talk we exempli-
fied the general limit theorems on a simple continuous time Markov chain model
for brain activity. This model has been introduced to derive the Wilson-Cowan
equation, see Eq. (1), via the van Kampen systems size expansion [1].

Macroscopic model. We consider the Wilson-Cowan equation

(1) τ ν̇(t, x) = −ν(t, x) + f
(

∫

D

w(x, y)ν(t, y) dy + I(t, x)
)

, x ∈ D, t ≥ 0,

on a bounded spatial domain D ⊂ R
d, d ≥ 1. Here τ > 0 denotes the (synaptic)

time constant, f ∈ C1(R) such that 0 ≤ f ≤ 1 is a Lipschitz continuous gain
function that relates the input into firing activity, w : D2 → R+ are sufficiently
smooth weights such that w(x, y) gives the strength of the connection of neurons
at y to neurons at x and I is a sufficiently smooth external input. For T > 0 and
s > d/2 a unique solution ν ∈ C([0, T ], Hs(D)) exists for every initial condition
ν0 ∈ Hs(D).

Microscopic model. For n ∈ N we define microscopic models such that the
nth model consists of P = P (n) neuron populations and each of these containing
N = N(n) identical neurons. Any neuron can be in one of two possible states

quiescent ⇋ active .

Changes between states of individual neurons are instantaneous and at random
times governed by instantaneous rates. Thus we define a piecewise constant sto-
chastic process (Θ(t))t≥0 taking values in N

P counting the active neurons in each
population, i.e., Θk(t) is the number of active neuron in population k at time t.
The dynamics of this process are governed by the rates

(2) θk
αN fk(θ,t) I[θk<N ]

−−−−−−−−−−−−→ θk + 1, θk
α θk

−−−→ θk − 1

depending on the current state θ ∈ N
P of the process.

Connection. We connect the microscopic and macroscopic model in the fol-
lowing way. There exists a sequence of convex partitions Pn of the domain D with
|Pn| = P and each subdomain Dk,n, 0 ≤ k ≤ P , contains one neuron population.
We then define the rates in (2) by

α := τ−1, fn
k (θ, t) := f

(

1

N

P
∑

j=1

Wn
kjθj + Ink (t)

)

,

1The martingale part is the martingale arising in the Doob-Meyer Decomposition of the
process.
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where Wn
kj := 1

|Dk,n|

∫

Dk,n

∫

Dj,n
w(x, y) dy dx and Ink (t) := 1

|Dk,n|

∫

Dk,n
I(t, x) dx .

Furthermore, we define the stochastic microscopic neural activity νn by

νn(t) := νn(Θn(t)) :=
1

N

P
∑

k=1

Θn
k (t) IDk,n

∈ L2(D) .

It allows for a comparison of the microscopic model to the solution of (1) as both
map [0, T ] into L2(D). We now state the limit theorems for this model which are
applications of the general theorems in [5, 6]. The derivation of the conditions
and a thorough discussion of more general models of this type can be found in
forthcoming work by the present author and E. Buckwar [2].

Theorem 1 (Law of large numbers). Assume that limn→∞N(n) = ∞, the sto-
chastic and deterministic initial conditions Θn

0 and ν0 satisfy for all ǫ > 0

lim
n→∞

P
[

‖νn(Θn(0)) − ν0‖L2(D) > ǫ
]

= 0

and the sequence of partitions satisfies

lim
n→∞

max
k

diam(Dk,n) = 0 .

Then the jump-processes (νn(t))t≥0 converge in probability to the solution ν of the
Wilson-Cowan equation (1) on finite intervals, i.e., for all T, ǫ > 0

lim
n→∞

P
[

supt∈[0,T ] ‖νn(t) − ν(t)‖L2(D) > ǫ
]

= 0 .

Moreover, the convergence also holds in the mean.

Theorem 2 (Martingale central limit theorem). We define

v−(n) := min
k=1,...,P (n)

|Dk,n|, v+(n) := max
k=1,...,P (n)

|Dk,n| .

Assume that the conditions of the law of large numbers are satisfied and

lim
n→∞

v−(n)

v+(n)
= 1 .

Then it follows that
(
√

N(n)
v+(n) M

n(t)
)

t≥0

d−→ (M(t))t≥0 .

Here
d−→ denotes convergence in distribution in the space of H−2s(D)–valued

càdlàg processes2 and (Mt)t≥0 is the H−2s(D)–valued diffusion process defined

by the covariance operator C(t) =
∫ t

0 G(t)ds with

(3)

〈G(s)φ, ψ〉H2s := 〈G(ν(s), s)φ, ψ〉H2s :=
∫

D

φ(x)
(

αν(s, x) + αf
(

∫

D

w(x, y)ν(s, y) dy + I(s, x)
))

ψ(x) dx.

2Here H−2s(D) denotes the dual to the Sobolev space H2s(D).
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Langevin approximation. Heuristically inserting the limit established in the
martingale central limit theorem for the martingale part of the process and the
deterministic limit for the initial condition and the finite variation part, we obtain
the Langevin approximation. Exploiting the fact that the diffusion process defined
by the covariance C can be represented as a stochastic integral yields the Langevin
approximation

V n
t = ν0+

∫ t

0

−αV n
s +αf

(

∫

D

w(·, y)V n
s (y) dy+I(s, ·)

)

ds+ǫn

∫ t

0

√

G(V n
s , s) dW (s)

with ǫn =
√

v+(n)/N(n). Here
√

G(·, ·) is a Hilbert-Schmidt operator which
denotes the unique square root of the trace class operator G(·, ·) defined in (3)
and W is a cylindrical Wiener process.
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Stochastic Averaging

Richard B. Sowers

The field of stochastic averaging has been around since the 1960’s. The classical
theory of deterministic averaging had been well-developed, but the work of Khas-
minskii [9, 11, 10] extended the theory to stochastic differential equations; see also
[12, 13].

The basic idea can be seen by considering a system on the cylinder. Consider
a system with fast angular drift and slow axial diffusion. It is instructive to
view this simplest system through the lens of modern stochastic processes. The
essential tools are: using test functions (as suggested by the martingale problem)
to weakly characterize the limit points and using corrector functions to carry
out the averaging. In fact, the appropriate corrector function exists only if one
correctly guesses the averaged coefficients; there is a geometric condition, and a
careful understanding of the PDE corrector function is crucial. These tools can be
used to tackle more general averaging problems. Geometrically, we collapsed the
cylinder in our basic problem to a line via orbit equivalence of the fast motions.
What happens if the fast orbits have more complicated topologies? Consider a
ball rolling around in a single-well potential; without noise or friction, the ball
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oscillates as kinetic and potential energy switch. Action-angle coordinates allow
us to more or less map the fast motion into angular rotation around a cylinder, and
we can map the total energy into an axial action coordinate. Adding noise gives
us stochastic averaging as the motion in the action variable is slow and stochastic.

In fact, even here there is something non-trivial. The fast motion collapses at
the bottom of the well. However, by carefully using test functions and corrector
functions, one can indeed get an averaged equation in the action variable, and
show that this singularity doesn’t have any effect [15]. Topologically, the bottom
of the well is a point; it is furthermore inaccessible.

More complicated cases can appear. Freidlin and Wentzell [5, 8] and Freidlin
and Weber [6, 7] considered the motion of a ball in a double-well potential; here
there is a homoclinic orbit and two fixed points. The fixed points behave like the
bottom of a potential well as discussed above. One can’t collapse the space by
orbits; the homoclinic orbit gives the wrong answer. One wants to understand
how to collapse the state space by a combination of deterministic motion and
small (stochastic) shocks. The theory of chain equivalence [14] does exactly this.
One gets a graph. Stochastically, one gets glueing conditions, which are similar
to coin flips, which identifies the likelihood that the reduced process will make
an excursion into the different regions of orbit space. A careful analysis of test
functions and PDE’s can again be used; see [17, 18].

Even stranger topologies exist. Suppose that there is a region where the fast
motion disappears. Chain equivalence again correctly describes the reduced state
space; it is a combination of parts of different dimensions. Stochastic averaging still
holds, but one needs slightly more complicated glueing procedures (and a more
careful PDE analysis for the corrector functions); see [16]. Another interesting
topology comes from pseudoperiodic flows; here there can be ergodic components
to which the reduced motion will “stick”; see [1, 4, 19].
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Amplitude Equations – natural slow-fast systems

Dirk Blömker

Focusing on the stochastic Swift-Hohenberg equation (SH) only, we review re-
sults on the rigorous error estimates for amplitude equations. We discuss the
impact of various models of the noise, together with open problems.

Introduction. Complicated models near a change of stability generate slow-fast
systems in a natural way. The dominant pattern (or modes) evolve on a slow time-
scale, while stable pattern decay and disappear on a fast time-scale. The evolution
is then given by simplified models for the amplitudes of dominant pattern, the so
called amplitude equations. There are many examples of formal derivation for such
equations. For a review see [7].

For PDEs on bounded domains the theory of invariant or center manifolds is
available, where solutions are well approximated by an ODE on the manifold.
Unfortunately, invariant manifolds for stochastic PDEs move in time. Moreover,
there is a lack of center manifold theory. This is similar to PDE on unbounded
domains, where a whole band of eigenvalues changes stability, and amplitude or
modulation equations are successfully applied. See [8, 10, 11].

Using amplitude equations, our aim is to understand the impact of noise on the
dominant pattern and how noise is transported by the nonlinearity. For simplicity
we consider only (SH) on the real line. In pattern formation (SH) is a celebrated
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toy model for the convective instability in the Rayleigh-Bénard model.

(SH) ∂tu = Lu+ νε2u− u3 + ξε ,

where L = −(1 + ∂2x)2. The dominant modes are N = span{sin, cos}. Moreover
ξε is some small noise process, which may change for different applications.

Slow-Fast System. (SH) naturally generates a system, given by a slow SDE
and a fast SPDE. To illustrate this, consider ξε = ε2∂tW in (SH). Split u(t) =
εvc(ε

2t) + εvs(ε
2t) with vc ∈ N and vs ⊥ N . Then

(SLOW) ∂T vc = νvc − Pc(vc + vs)
3 + ∂T W̃c ,

(FAST) ∂T vs = ε−2Lvs + νvs − Ps(vc + vs)
3 + ∂T W̃s ,

where Pc projects onto N , Ps = I − Pc, and W̃ (T ) = εW (Tε−2) is a rescaled
version of the driving Wiener process W .

Full Noise. Consider (SH) subject to periodic boundary conditions on [0, 2π]
with noise ξε = ε2∂tW , where W is some suitable Q-Wiener process W .

Theorem 1 (Approximation, [1]). Consider u(0) = εa(0) + ε2ψ(0) with a(0) and
ψ(0) both O(1). Let a(T ) ∈ N solve

∂T a = νa− Pca
3 + ∂T W̃c ,

and let ψ(t) ⊥ N be an OU-process solving ∂tψ = Lψ + ∂tWs. Then u(t) =
εa(ε2t) + ε2ψ(t) + O(ε3−) for t ∈ [0, T0ε

−2] .

The Approximation remains true for invariant measures. Moreover, Attractivity
verifies that any solution scales as needed for the Theorem after some time.

Degenerate noise. Additive noise may lead to stabilization (or a shift of bi-
furcation) of dominant modes (pattern disappears). See [9]. Consider the noise
ξε = σε∂tβ for some real-valued Brownian motion β.

Ansatz: u(t, x) = εA(ε2t)eix + c.c.+ εZ(t) + O(ε2)

with some fast OU-process Z(t) =
∫ t

0
e−(t−τ)dβ(τ) and a complex-valued ampli-

tude A. Using explicit averaging results with error bounds, we obtain the Ampli-
tude equation [5]

(A) ∂TA = (ν − 3
2σ

2)A− 3A|A|2 .

Open Problems. For higher order corrections [5] or quadratic nonlinearities and
degenerate noise [3], averaging results with explicit error estimates for integrals

of the type
∫ T

0
X(τ)Z(τε−2)qdβ(τ) are necessary. These results [3] are based on

Levy’s representation theorem, which restricts the result to dim(N ) = 1. It remains
open, how to obtain error estimates for the limit, if X(t) ∈ R

n, n > 1.
Interesting results arise for (SH) on large [2] (full noise) or unbounded domains

[6] (degenerate noise). In both cases the complex amplitude A is slowly modulated
in space and given by a stochastic Ginzburg-Landau PDE. Here many questions
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are still open, due to the lack of regularity and unboundedness of solutions of the
stochastic Ginzburg-Landau equation on R with space-time white noise.

Another interesting question [4] is for non-Gaussian noise without scale invari-
ance. For the driving process L we need limits of εαL(ǫ−2t) with error estimates.

References

[1] D. Blömker and M. Hairer, Multiscale expansion of invariant measures for SPDEs, Com-
mun. Math. Phys. 251(3) (2004) 515–555.

[2] D. Blömker, M. Hairer, and G. A. Pavliotis, Modulation equations: Stochastic bifurcation
in large domains, Commun. Math. Physics. 258(2) (2005), 479–512.

[3] D. Blömker, M. Hairer and G. A. Pavliotis, Multiscale analysis for stochastic partial differ-
ential equations with quadratic nonlinearities, Nonlinearity 20 (2007), 1–25.

[4] D. Blömker and E. Hausenblas, Swift Hohenberg with Levy-noise, in Preparation, (2011).
[5] D. Blömker and W. W. Mohammed, Amplitude equations for SPDEs with cubic nonlinear-

ities, Preprint (2010).
[6] D. Blömker and W. W. Mohammed, Amplitude equations for SPDEs with quadratic non-

linearities, Electron. J. Probab. 14 (2009), 2527–2550.
[7] M. C. Cross and P. C. Hohenberg, Pattern formation outside of equilibrium, Rev.

Mod. Phys. 65 (1993), 581–1112.
[8] P. Collet and J.-P. Eckmann, The time dependent amplitude equation for the Swift-

Hohenberg problem, Comm. Math. Physics. 132 (1990), 139–153.
[9] A. Hutt, Additive noise may change the stability of nonlinear systems, Europhys. Lett. 84

(2008), 34003.
[10] P. Kirrmann, G. Schneider, and A. Mielke, The validity of modulation equations for extended

systems with cubic nonlinearities, Proc. R. Soc. Edinb., Sect. A. 122A (1992), 459–490.
[11] G. Schneider, The validity of generalized Ginzburg-Landau equations. Math. Methods

Appl. Sci. 19(9) (1996), 717–736.

Nonlinear Dispersive Equations, Solitary Waves and Noise

Anne de Bouard

(joint work with A. Debussche, R. Fukuizumi, E. Gautier)

Nonlinear dispersive waves in general, and solitons in particular are universal ob-
jects in physics. They may as well describe the propagation of certain hydrody-
namic waves, as localized waves in plasma physics, signal transmission in fiber
optics, or phenomena such as energy transfer in excitable molecular systems. In
all those cases, the formation of stable, coherent spatial structures have been ex-
perimentally observed, and may be mathematically explained by the theory of
nonlinear integrable (or soliton) equations. However, none of those systems is
exactly described by soliton equations, and those equations may only be seen as
asymptotic models for the description of the physical phenomena. Moreover, as
soon as microscopic systems are under consideration, thermal fluctuations may
not be negligible. They give rise in general to stochastic fluctuations in the corre-
sponding model, and their interaction with the waves has to be studied. In some
other situations, the underlying asymptotic model is not even an integrable equa-
tion, even though it is a nonlinear dispersive equation. Solitary waves may still
exist in this latter situation, and even if the mathematical theory is then much less
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developed than in the integrable case, the hamiltonian structure of the equation
may still be used to obtain dynamical properties of the waves. The object of the
talk is to describe some results obtained in this latter situation, concerning the
dynamical behaviour of stochastic perturbations of nonlinear dispersive equations,
which do not make use of the integrability of the underlying deterministic model.

A first example is given by the Korteweg-de Vries equation, which may be
written as

(1) ∂tu+ ∂xu+ ∂3xu+ ∂x(u2) = 0, x ∈ R, t > 0

and is known to be an asymptotic model for the propagation of unidirectional,
weakly nonlinear long waves on the surface of shallow water. In that context, the
solution u stands for the (rescaled) elevation of the water surface. The equation
also occurs in the context of plasma physics (see [7]). It is well known that soliton
solutions exist, which form a two parameter family of localized traveling waves,
given by ϕc(x− (c− 1)t+ x0), with c > 1, and x0 ∈ R, where the profile ϕc may
be explicitly computed :

ϕc(x) =
3c

2
sech2(

√
c
x

2
).

Any soliton solution is a local minimum of a Hamiltonian constrained to constant
“mass” (or charge), both functionals being conserved by the evolution equation
(1). This leads to the stability of the family {ϕc(x + x0), x0 ∈ R}, or in other
words to orbital stability of the soliton. The use of the parameter x0, together
with the fact that the mass is conserved, allows to get rid of two “secular modes”
in the equation, which are generated by ϕc and ∂xϕc.

The question of the influence of a noise on the solutions of (1) is a natural
question, as such random perturbations may have different origins, like a random
pressure fields on the surface of the water, a random bottom topography, or simply
thermal effects in the context of plasma physics. The first attempt in this direction
was probably the works by Wadati [6], in which equation (1) is simply perturbed by
a time dependent Gaussian white noise. In this case, the solution of the stochastic
equation is easily found in terms of the solution of (1), by a change of frame, and it
was deduced in [6] that the solution u, starting at time 0 from a soliton, satisfies,
asymptotically for large time :

max
x

E(u(t, x)) ∼ ct−3/2.

This “superdiffusion” phenomenon, as it was called by Wadati, is due to the ran-
dom behavior of the center of mass x(t) of the solution of the perturbed equation,
which is a Gaussian process with variance t3/3.

A natural question that arises is : does this behavior of the perturbed soliton
persists with a more complicated noise, depending also on the space variable ? A
partial answer to this question was given in [1, 2] and [4], where the solution is
proved to decompose into a main modulated soliton and a remaining term, in the
small noise limit.
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Consider indeed the Itô equations

(2) du+ (∂xu+ ∂3xu+ ∂x(u2))dt =

{

εdW
εudW,

where W (t) is an infinite dimensional Wiener process, regular in space, which is
assumed stationary in space in the multiplicative case, and ε is a small parameter.
A first natural question is the persistence time of the soliton which will necessarily
be destroyed by the noise. In order to answer this question, one should naturally
take into account random modulations in the center of mass and velocity of the
soliton. For that purpose, let us write the solution u of Eq. (2) which has for initial
state ϕc0(x) the form

(3) uε(t, x) = ϕcε(t)(x − xε(t)) + εηε(t, x− xε(t)),

where cε(t) and xε(t) are random modulation parameters, which are chosen in
order that ϕcε(x − xε) stays orthogonal to the two secular modes ϕc0 and ∂xϕc0 ,
so that the remaining part εηε of the solution will be small for a longer time. Note
that Hamiltonian and mass are no more conserved by the perturbed evolution
equation (2), but one may compute their evolution, and this allows in particular
to get a bound on the exit time τεα of an α-neighborhood of the orbit of the soliton.
It is found that for any time T > 0,

(4) P(τεα ≤ T ) ≤ e
−Cα

ε2T

for some constant Cα > 0 (see [1] and [4] for details). This means that the solution
will stay close to the randomly modulated soliton with high probability, for any
time smaller than ε−2.

In the case the noise is multiplicative and homogeneous (stationary) in space,
the convergence of ηε (see (3)) as ε goes to zero to a centered Gaussian process
of Ornstein-Uhlenbeck type was also obtained in [2]. Moreover, keeping only the
order one in ε, the equations for the modulation parameters cε and xε are found
to be of the form

{

dxε = c0dt+ εB1dt+ εdB2

dcε = εdB1,

where B1 and B2 correspond to the projection of the noise ϕc0W on the two-
dimensional space generated by the secular modes ϕc0 and ∂xϕc0 .

Coming back to our problem of soliton diffusion, it is now possible, still keeping
only the order one in ε, to compute explicitly the mean value of the modulated
soliton, since the vector (xε, cε)(t) is a Gaussian vector, and the asymptotic rate
of diffusion in time is found :

max
x

E(ϕcε(t)(x− xε(t))) ∼ Cε−1/2t−5/4, as t→ +∞.

Of course these asymptotics are valid only if ε tends to zero while t tends
to infinity, with t much less than ε−2. The behaviour of the solution of such
equations perturbed by space time noise, at time exactly ε−2 is up to now still an
open problem, even if some results where obtainded in [5] on the behaviour of the
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scattering data for some time dependent perturbations, using the integrability of
the deterministic equation.

The same results as above have been obtained in [3] for a nonlinear Schrödinger
equation with harmonic potential and stochastic perturbation, arising in Bose-
Einstein condensation. The solitary waves are then standing waves of the form
eiωtφω(x) and asymptotics in frequencies near the bottom of the spectrum are also
established for the first order of the remainder.
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Fast transport asymptotics for stochastic RDE’s with boundary noise

Sandra Cerrai

(joint work with Mark Freidlin)

In the classical chemical kinetics, the evolution of concentrations of various com-
ponents in a reaction is described by ordinary differential equations. Such a de-
scription turns out to be unsatisfactory in a number of applications, especially in
biology.

There are several ways to construct a more adequate mathematical model. If
the reaction is fast enough, one should take into account that the concentration
is not constant in space in the volume where the reaction takes place. Then
the change of concentration due to the spatial transport, as a role the diffusion,
should be taken into consideration and the system of ODE’s should be replaced
by a system of PDE’s of reaction-diffusion type. In some cases, one should also
take into account random change in time of the rates of reaction. Then the ODE
is replaced by a stochastic differential equation. If the rates change randomly not
just in time but also in space, the evolution of concentrations can be described by
a system of SPDE’s.

On the other hand, the rates of chemical reactions in the system and the dif-
fusion coefficients may have, and as a rule have, different orders. Some of them
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are much smaller than others and this allows to apply various versions of the av-
eraging principle and some other asymptotic methods and, eventually, to obtain a
relatively simple description of the system.

We have studied the case when the diffusion rate is much larger than the rate
of reaction and we have shown that in this case it is possible to replace SPDEs of
reaction-diffusion type by suitable SDEs. Such an approximation in particular is
valid if the reaction occurs just on the boundary of the domain (this means that
the nonlinearity is included in the boundary conditions). This replacement is a
result of averaging in the fast spatial transport. We would like to stress that our
approach allowed us also to calculate the main terms of deviations of the solution
of the original problem from the simplified model. Moreover, the case when the
diffusion coefficients and some of the reaction rates are large compared with other
rates can be considered in a similar way.

We dealt with the following class of equations
(1)


















∂uǫ
∂t

(t, x) =
1

ǫ
Auǫ(t, x) + f(t, x, uǫ(t, x)) + g(t, x, uǫ(t, x))

∂wQ

∂t
(t, x),

t ≥ 0, x ∈ D,

1

ǫ

∂uǫ
∂ν

(t, x) = σ(t, x)
∂wB

∂t
(t, x), t ≥ 0, x ∈ ∂D, uǫ(0, x) = u0(x), x ∈ D,

for some 0 < ǫ≪ 1. These are reaction-diffusion equations perturbed by a noise of
multiplicative type, where the diffusion term A is multiplied by a large parameter
ǫ−1 and a noisy perturbation is also acting on the boundary of the domain D.

Here D is a bounded open subset of Rd, with d ≥ 1, having a regular boundary
and in the case d = 1 we take D = [a, b]. A is a uniformly elliptic second order
operator and ∂/∂ν is the corresponding co-normal derivative. This is why the same
constant ǫ−1, which is in front of the operator A, is also present in front of the
co-normal derivative ∂/∂ν. In what follows, we shall denote by A the realization
in L2(D) of the differential operator A, endowed with the conormal boundary
condition.

The coefficients f, g : [0,∞) ×D × R → R are assumed to be measurable and
satisfy a Lipschitz condition with respect to the third variable, uniformly with
respect to the first two ones, and the mapping σ : [0,∞) × ∂D → R is bounded
with respect to the space variable.

The noisy perturbations are given by two independent cylindrical Wiener pro-
cesses wQ and wB , defined on the same stochastic basis (Ω,F ,Ft,P) which take
values on L2(D) and L2(∂D) and have covariance operators Q ∈ L+(L2(D)) and
B ∈ L+(L2(∂D)), respectively. In space dimension d = 1 we could take Q equal to
the identity operator, so that we could deal with space-time white noise. Moreover,
as L2({a, b}) = R

2, in space dimension d = 1 we did not assume any condition on
B.

Stochastic partial differential equations with a noisy term acting also on the
boundary have been studied by several authors. To this purpose we refer for
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example to the paper by da Prato and Zabczyk [2] and to the papers by Freidlin
and Wentzell [3] and by Sowers [4]. The last two mentioned papers, are also
dealing with some limiting results with respect to small parameters appearing in
front of the noise. However, the limiting results which we have studied seem to be
completely new and we are not aware of any existing previous result dealing with
the same sort of multi-scaling problem, even in the simpler case of homogeneous
boundary conditions (that is σ = 0).

As mentioned above, our interest was to study the limiting behavior of the
solution uǫ of problem (1), as the parameter ǫ goes to zero, under the assumption
that the diffusion Xt associated with the operator A, endowed with the co-normal
boundary condition (this corresponds to a diffusion Xt on some probability space

(Ω̂, F̂ , F̂t, P̂) which reflects on the boundary of D), admits a unique invariant
measure µ and a spectral gap occurs. That is for any h ∈ L2(D,µ)

∫

D

∣

∣

∣

∣

Ê
xh(Xt) −

∫

D

h(y)µ(dy)

∣

∣

∣

∣

2

µ(dx) ≤ c e−2γt

∫

D

|h(y)|2 µ(dy),

for some constant γ > 0. This can be expressed in terms of the semigroup etA

associated with the diffusion Xt, by saying that

(2)

∣

∣

∣

∣

etAh−
∫

D

h(x)µ(dx)

∣

∣

∣

∣

L2(D,µ)

≤ c e−γt|h|L2(D,µ).

Our aim was proving that equation (1) can be substituted by a suitable one-
dimensional stochastic differential equation, whose coefficients are obtained by av-
eraging the coefficients and the noises in (1) with respect to the invariant measure
µ. More precisely, for any h ∈ L2(D,µ) we defined

F̂ (t, h) =

∫

D

f(t, x, h(x))µ(dx), t ≥ 0,

and for any h ∈ L2(D,µ), z ∈ L2(D) and k ∈ L2(∂D) we defined

Ĝ(t, h)z =

∫

D

g(t, x, h(x))z(x)µ(dx), t ≥ 0,

and

Σ̂(t)k = δ0

∫

D

Nδ0 [σ(t, ·)k] (x)µ(dx), t ≥ 0,

where Nδ0 is the Neumann map associated with A and δ0 is a suitable constant.

We proved that for any t ≥ 0 the mappings F̂ (t, ·) : L2(D,µ) → R and Ĝ(t, ·) :

L2(D,µ) → L2(D) are both well defined and Lipschitz-continuous and Σ̂(t) ∈
L2(∂D), so that the stochastic ordinary differential equation

(3)







dv(t) = F̂ (t, v(t)) dt + Ĝ(t, v(t))dwQ(t) + Σ̂(t)dwB(t)

v(0) =

∫

D

u0(x)µ(dx),

admits for any T > 0 and p ≥ 1 a unique strong solution u ∈ Lp(Ω;C([0, T ]))
which is adapted to the filtration of the noises wQ and wB . Notice that (3) is a one-
dimensional stochastic equation, in the sense that the space variables desappeared.
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When we say that equation (1) can be replaced by equation (3) we mean that
the solution uǫ of (1) can be approximated by the solution v of (3) in the following
sense

(4) lim
ǫ→0

E sup
t∈ [δ,T ]

∣

∣

∣

∣

∫

D

|uǫ(t, x) − v(t)|2 µ(dx)

∣

∣

∣

∣

p

= 0,

for any fixed 0 < δ < T and p ≥ 1/2.
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Random attractors for stochastic Navier-Stokes equations in some

unbounded domains

Zdzis law Brzeźniak

In this talk I will present new developments in the theory of infinite dimensional
random dynamical systems. The starting point is my recent paper with Y. Li [2].
In that paper we constructed a RDS for the stochastic Navier-Stokes equations in
some unbounded domains O ⊂ R

2. We proved that that RDS is asymptotically
compact, what roughly means that if a sequence (xn) of initial data is bounded
in the energy Hilbert space H and the sequence of initial times (−tn) converges
to −∞, then the sequence

(

u(0,−tn, xn)
)

, where u(t, s, x), t ≥ s is a solution of
the SNSEs such that u(s, s, x) = x, is relatively compact in H. A RDS satisfying
this condition is called an asymptotically compact one. We also proved that for
any asymptotically compact RDS on a separable Banach space, the Ω-limit set
of any bounded deterministic set B is non-empty, compact and forward invariant
with respect to the RDS (and attracting the set B). However, we were not able to
show the existence of a random attractor. Indeed, such a proof would require that
there exists a family of closed and bounded random sets such that each element
of it is absorbed but another element form the same family. In our case we only
showed that each deterministic bounded set is absorbed by some random bounded
set. The family of deterministic bounded sets is too small. Nevertheless, our proof
of the existence of a non-empty compact invariant set implied, as a byproduct,
the existence of an invariant measure for the SNSEs, a non-trivial question as the
domain O is unbounded.

In a recent paper [1] we overcame she shortcomings of [2] and, motivated by a
recent paper by [3], we found a family of random sets having the properties men-
tioned above. The fundamental observation is that in the proof of the absorption
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property, see the proof of Theorem 8.8 in [2], it is not necessary to assume that the
sequence (xn) of initial data is bounded but instead it is enough to assume that
it satisfies a certain random growth condition. This random growth condition can
be expresses in terms of large time behaviour of an auxiliary Ornstein-Uhlenbeck
process. This observation suggest a choice of a certain family D of closed random
sets such that it has a compact random absorbing set C. Then the existence (as
well uniqueness) of an attractor is a consequence of a random version of Theorem
3.4 from [4]. The proof of this auxiliary fact is given in [1] and it is based on the
proof of Theorem 8.8 in [2]. Moreover, one can naturally modify a notion of an
asymptotically compact random dynamical system with respect to such a family.

Definition 1. Suppose that X is a Polish space, i.e. a metrizable complete sepa-
rable topological space, B is its Borel σ−field and T = (Ω,F ,P, ϑ) is a metric DS.
A map ψ : R2

≥ × Ω × X ∋ (t, s, ω, x) 7→ ψ(t, s, ω)x ∈ X, where R
2
≥ = {(t, s) ∈ R

2 :

t ≥ s}, is called a two parameter continuous random dynamical system (RDS)
(on X over T), iff

(i) ψ is
(

B(R2
≥)

⊗F ⊗B,B
)

-measurable;

(ii) (Cocycle property) for all ω ∈ Ω and all (t, s), (s, r) ∈ R
2
≥, ψ(s, s, ω) =

id and

ψ(t, r, ω) = ψ(t, s, ω) ◦ ψ(s, r, ω)

and

ψ(t, s, ϑsω) = ψ(t+ s, r + s, ω),

(ii) for all (t, s, ω) ∈ R
2
≥ × Ω, ψ(t, s, ω) : X → X is continuous.

Definition 2. A compact random set A on X is said to be a random D-attractor
of a RDS ψ iff (i) A is ψ-invariant and (ii) A is D-attracting.

Theorem 1. Assume that T = (Ω,F ,P, ϑ) is a metric DS, X is a separable
Banach space, D is a nonempty class of closed random sets on X and ψ is a
continuous, D-asymptotically compact RDS on X (over T). Assume that there
exists a D-absorbing closed random set B on X. Then there exists a minimal
random D-attractor. Moreover, this minimal random D-attractor is equal to the
Ω-limit set ΩB of B defined by

(1) Ω(B,ω) = ΩB(ω) =
⋂

T≥0

⋃

t≥T

ψ(0,−t, ϑ−tω)B(ϑ−tω).

The above result can then be applied to the 2-D stochastic NSEs which are
asymptotically compact in this generalized sense.

Acknowledgment The authour wishes to thank Hans Crauel for very useful
discussion about his paper [4].
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Stochastic Functional Differential Equations

Evelyn Buckwar

We consider Stochastic Functional Differential Equations (SFDEs) of the form

X(t) = X(0) +

∫ t

0

F (s,Xs) ds+

∫ t

0

G(s,Xs) dW (s) .

Here Xt denotes a memory functional or segment process Xt(u) = {X(t + u) :
u ∈ [−τ, 0]} for Xt ∈ C([−τ, 0];Rn), and the initial data is given as X(t) = ψ(t)
for t ∈ [−τ, 0]. The Wiener process W = {W (t, ω), t ∈ [0, T ], ω ∈ Ω} is an
m-dimensional Wiener process on filtered probability space (Ω,F , {Ft}t∈[0,T ],P).
The memory functional often takes special forms, e.g., by setting F and/or G to

H2(s,X(s), X(s− τ)), (constant/discrete delay)

H3(s,X(s), X(s− τ(s))), (variable delay)

H4(s,X(s),

0
∫

−τ

K(s, u,X(s+ u)) du), (distributed delay).

Early deterministic systems of Functional Differential Equations (FDEs) were in-
troduced to model mechanical, controlled systems, where the time delay accounted
for the time the control needed to measure the state of the system and to apply
the control countermeasure, if required. Biological systems represent another large
area of applications of FDEs. In population dynamics, the delays may represent
maturation or gestation times, in epidemiology delays account for incubation pe-
riods, where in neuroscience the delay may denote the finite transmission time of
electrical impulses between neurons or neuron clusters. In the biosciences SFDE
models appear since the early ’90s, e.g., as models of human pupil light reflex [15],
human postural sway [4], population dynamics [7], genetic regulatory networks
[3, 5, 20, 21], and in neuroscience [8, 10, 12, 22]. Further applications can be
found in many more areas, such as economics & finance, climate models describ-
ing the El Niño phenomenon, or laser dynamics.
Analysis of existence and uniqueness of solutions began with Itô and Nisio [13],
more comprehensive treatments are in [16, 17]. Distinguishing features of SFDEs,
compared to stochastic ordinary differential systems, are that they are infinite
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dimensional systems, they are, in general, non-Markovian, and their analytical
treatment may require Malliavin calculus [6, 11, 18].
SFDEs exhibit a rich dynamical behaviour, some key properties being oscillations,
stabilising features, and stochastic resonance, cf., e.g., [1, 9], as well as most of
the literature in applications. However, there are only few articles developing
mathematical techniques to study the dynamics of SFDEs, e.g., [2, 14, 19]. In
particular the interplay between dynamics induced by the delays and by the driv-
ing stochastic process is of high interest and provides challenging mathematical
problems.
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Hunting French ducks in a noisy environment

Barbara Gentz

(joint work with Nils Berglund, Christian Kuehn)

During the last decades substantial progress has been made in the analysis of de-
terministic slow–fast systems, starting with Fenichel’s seminal geometric approach
to singularly perturbed systems [7] which provides a description of the dynamics
in terms of invariant manifolds. Since then, different techniques have been de-
veloped for the study of slow–fast systems near bifurcations, see for instance [8]
for the geometric approach, [9] for an analysis of canard solutions, and [6] for so-
called mixed-mode oscillations (MMOs), consisting of small-amplitude oscillations
alternating with large-amplitude oscillations.

For stochastic multiscale systems, the development of a comparable theory is
still in its infancy. An analogue of Fenichel’s geometric theory has been established
in [2, 3] based on the observation that for small random perturbations the dynam-
ics can be compared to its deterministic counterpart up to a suitable timescale.
When the dynamics approaches a bifurcation point, noise-induced phenomena can
be observed. Examples include early transitions between asymptotically stable
equilibrium branches, stochastic resonance, a change from microscopic to macro-
scopic hysteresis cycles, noise-induced canards, changed mixed-mode patterns.

MMOs are observed in many neuronal systems and models. While different
mechanisms have been identified which may cause this type of behaviour, we will
focus on MMOs in a slow–fast dynamical system with one fast and two slow
variables, containing a folded-node singularity. The main question we address is
whether and how noise may change the dynamics.

Consider the normal form of a folded-node singularity [1, 9]

εẋt = yt − x2t

ẏt = −(µ+ 1)xt − zt

żt =
µ

2

with timescale separation ε≪ 1. The critical manifold, given by {y = x2}, has an
attracting as well as a repelling part. Solutions which follow the repelling part for
a substantial time and distance are called canards.

Let us assume that µ ∈ (0, 1) satisfies µ−1 6∈ N, then [1, 9, 10, 5]

• there exist a strong and a weak (maximal) canard γs,wε ;
• γsε makes half an oscillation (or one twist) around γwε ;



Mini-Workshop: Dynamics of Stochastic Systems and their Approximation 2323

• for 2k + 1 < µ−1 < 2k + 3, there exist k secondary canards γjε ;
• γjε makes (2j + 1)/2 oscillations around γwε .

Considering z as the time variable, adding noise to the other variables, rescaling
by the so-called blow-up transformation, we see that the system takes the form

dxt = (yt − x2t ) dt+ σ dW
(1)
t

dyt = [−(µ+ 1)xt − zt] dt+ σ′ dW
(2)
t

dzt =
µ

2
dt

and can be rewritten as a two-dimensional system which again is a slow–fast
system, provided µ is small. Thus we can apply the general approach developed
in [2] to quantify the effect of noise by

• constructing small sets B(h) around canard solutions in which the sample
paths are typically concentrated, and

• giving precise bounds on the exponentially small probability to observe
atypical behaviour.

The small sets B(h) are determined by the covariance of the Gaussian process
obtained by linearizing the equations around a canard solution and their width
scales with h. We obtain the following result on the first-exit time τB(h) from
B(h), see [4]

P{τB(h) < z} ≤ C(z0, z) exp{−κh2/2σ2} ∀z ∈ [z0,
√
µ]

Thus, for h of larger order than σ, the probability of not being close to the canard
is small.

Note that near z = 0, the distance between subsequent canards γkε and γk+1
ε is of

order exp{−c0(2k + 1)2µ}, while the section of B(h) is close to circular with radius
µ−1/4h, see [4]. This implies that noisy canards become indistinguishable when the
typical radius µ−1/4σ becomes comparable to the distance between canards. We
can rephrase this statement by saying that canards with 2k+1

2 oscillations become
indistinguishable from noisy fluctuations for

σ > σk(µ) = µ1/4 exp{−(2k + 1)2µ} .

Finally, let us point out that noise can cause sample paths to jump away from
the canard solutions with high probability before deterministic orbits do. Indeed,
we can define a suitable neighbourhood S0 of the weak canard such that

P{τS0 > z} ≤ C|log σ|κ2 exp{−κ(z2 − µ)/(µ|log σ|)}

holds for σ|log σ|κ1 ≤ µ3/4 and all z >
√
µ. The right-hand side becomes small as

soon as z is of larger order than (µ| log σ|/κ)1/2.
This early-jump mechanism can drastically influence the local and global dy-

namics of the system by changing the mixed-mode patterns, depending on the
global return mechanism.
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