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Introduction by the Organisers

Learning theory encompasses the mathematical, statistical, and algorithmic as-
pects arising from problems that appear frequently when one aims at deducing
prediction and classification rules from massive and often high-dimensional data.
Such problems abound in an increasing number of diverse areas such as bioinfor-
matics, computer vision, data mining, speech processing, and finance, in which
learning methods have successfully been applied. As a result of this development,
there is now a widely interdisciplinary and highly international community inter-
ested in all aspects of learning.

During the last decade, the field of learning theory has witnessed an enormous
advance and growth. This progress was both triggered and made possible by
successfully merging quite different communities, such as the machine learning
community, which traditionally resides in computer science and engineering, on
the one hand and the mathematicians coming with diverse background as non-
parametric statistics, high-dimensional geometry, theoretical computer science,
etc. on the other hand.
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While there are many conferences aiming at either applications of learning meth-
ods or the development of new learning methods, only very few conferences have
focused on the mathematical aspects of learning, so far. The most prominent ones
in this direction were probably the conferences “Mathematical Learning Theory”
held in Barcelona (2004), Paris (2006), and Dagstuhl (2011). Furthermore, there
have been only a few workshops that focused on one or two aspects of mathemati-
cal learning theory. Among the most important ones are probably the Oberwolfach
workshops “Learning Theory and Approximation” (2008, 2012), “Sparse Recovery
Problems in High Dimensions: Statistical Inference and Learning Theory” (2009).
We believe that the proposed mini-workshop has an important role in this quickly
evolving field. Moreover, the mini-workshop aims in a direction, the above men-
tioned workshops did or will not cover, and therefore, it nicely complements the
MFO program in this field.

Nonparametric classification and regression are probably the mathematically
best understood learning problems since their rigorous statistical investigation
dates back to the 1970’s. While at the beginning, mostly relatively simple statis-
tical procedures were considered, this later changed, e.g. with the development of
neural networks and kernel methods. At their beginning, the latter were crudely
motivated by heuristics from computer science, but during the last decade they
have been intensively studied, so that nowadays their mathematical theory, in par-
ticular for classification and regression, is quite mature, and the same is true for
some other classification and regression methods. Therefore, the proposed mini-
workshop aims at discussing learning problems and successful learning methods of
machine learning that have not attracted as much attention from the mathematical
community, yet. In particular, the following topics will be covered:

Spectral methods for clustering and semi-supervised learning.:

During the last decade, a new class of algorithms for cluster analysis and
semi-supervised learning have been developed, which on the one hand,
show promising results in applications, and on the other hand, have not
been mathematically well-understood. These methods use a similarity
measure between data points to construct a similarity graph, which is
then used to compute the first eigenvectors of the associated graph Lapla-
cian. While some progress has already been made in understanding these
methods, the large-sample behavior of these methods is, so far, mostly
unknown. However, recent results indicate that at least for some of the
methods, spectral techniques that have already been developed for the
analysis of kernel methods may be crucial for a deeper understanding. We
will invite experts from both domains to discuss this question.

Merging online and kernel methods.: While kernel methods often pro-
duce state-of-the-art results, their computation is rather expensive, which
prohibits their use for data sets consisting of millions of data points, a
quite common situation in recent practice. On the other hand, online al-
gorithms, which are inherently fast, do not possess strong statistical guar-
antees such as universal consistency or minmax learning rates, as they
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are typically investigated in a conditional worst-case scenario. However,
in recent years, some progress has been made in merging the best of the
two worlds, by either designing online inspired optimization algorithms for
kernel methods, or “kernelizing” online algorithms. Our preliminary list
of participants, contains experts for online learning and kernel methods,
to achieve synergies.

Prediction based on structured classes of experts: Online learning has
been an increasingly active area of learning theory. In online learning one
is interested in prediction algorithms that act as well as the best among
a given class of reference forecasters (the so-called experts). Recently
there a lot of research has been carried out in understanding large and
structured classes of experts. Such problems give rise to interesting com-
binatorial, probabilistic, and algorithmic questions. Even though some
interesting progress has been achieved recently, many important questions
remain unanswered and one of the aims of the workshop is to discuss these
problems.

Prediction of stationary time series: The existing prediction algorithms
are mainly analyzed for special parametric stochastic processes, where the
optimality means mean square optimality. Here the problem is how to
construct prediction rules, which are optimal with probability 1, i.e., for
any stationary time series, the average of squared errors converges, almost
surely, to that of the optimum, given by the Bayes predictor. Such al-
gorithms can be introduced and studied by combining the principles of
nonparametric statistics and machine learning.
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Abstracts

Learning Mixtures of Gaussians

Mikhail Belkin

The study of Gaussian mixture distributions goes back to the late 19th century,
when Pearson introduced the method of moments to analyze the statistics of a crab
population. They have since become one of the most popular tools of modeling and
data analysis, extensively used in speech recognition, computer vision and other
fields. Yet their properties are still not well understood. Widely used algorithms,
such as Expectation Maximization (EM), often fail even on simple generated data
and their theoretical properties are often unclear.

In my talk I will discuss some theoretical aspects of the problem of learning
Gaussian mixtures. In particular, I will discuss our recent result with Kaushik
Sinha, which, in a certain sense, completes work on an active recent topic in the-
oretical computer science by establishing general conditions for polynomial learn-
ability of mixture distributions using methods of semi-algebraic geometry.

An open problem on strongly consistent learning of the best

prediction for Gaussian processes

László Györfi

Let {Yn}∞−∞ be a stationary, ergodic, Gaussian process. The predictor is a
sequence of functions g = {gi}∞i=1. It is an open problem whether it is possible
to learn the best predictor from the past data in a strongly consistent way, i.e.,
whether there exists a prediction rule g such that

(1) lim
n→∞

(
E{Yn | Y n−1

1 } − gn(Y
n−1
1 )

)
= 0 almost surely

for all stationary and ergodic Gaussian processes. (Here Y n−1
1 denotes the string

Y1, . . . , Yn−1.)
Bailey [1] and Ryabko [3] proved that just the stationarity and ergodicity is

not enough, i.e., for any predictor g, there is a binary valued stationary ergodic
process such that

P

{
lim sup
n→∞

|gn(Y n−1
1 )−E{Yn | Y n−1

1 }| ≥ 1/2

}
≥ 1/8.

Schäfer [4] proved that, under some conditions on the Gaussian process, we
have that

lim
n→∞

(
E{Yn | Y n−1

n−kn
} − gn(Y

n−1
1 )

)
= 0 almost surely.

His conditions include that the process is purely nondeterministic and the spectral
density exists. For example, he proved the strong consistency with kn = n1/4 if
the spectral density is bounded away from zero. His proof is based on the fact that
under the conditions above the covariance matrix has an inverse. The question left
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is how to avoid these conditions. Maybe using the recent techniques of machine
learning it is doable.

For Gaussian process, Bleakley et al. [2] defined an infinite array of elementary

predictors h̃(k), k = 1, 2, . . . as follows:

h̃(k)(Y n−1
1 ) =

k∑

j=1

c
(k)
n,jYn−j

such that the coefficients c
(k)
n,j minimize

n−1∑

i=k+1




k∑

j=1

cjYi−j − Yi




2

if n > k, and the all-zero vector otherwise. The minimum always exists, it is not
unique in general, it can be uniquely defined choosing the minimizer vector with
minimal Euclidean norm Set

h(k)n (Y n−1
1 ) = Tmin{nδ,k}

(
h̃(k)n (Y n−1

1 )
)
,

where the truncation function is

Ta(z) =





a if z > a;
z if |z| < a;
−a if z < −a,

and 0 < δ < 1
8 . Combine these experts as follows. Let {qk} be an arbitrarily

probability distribution over the positive integers such that for all k, qk > 0, and
define the weights

wk,n = qke
−(n−1)Ln−1(h

(k)
n )/

√
n = qke

−∑n−1
i=1 (h

(k)
i (Y i−1

1 )−Yi)
2/

√
n

and their normalized values

pk,n =
wk,n∑∞
i=1 wi,n

.

The prediction strategy g at time n is defined by

gn(Y
n−1
1 ) =

∞∑

k=1

pk,nh
(k)
n (Y n−1

1 ), n = 1, 2, . . .

Bleakley et al. [2] proved that the prediction strategy g defined above is uni-
versally consistent with respect to the class of all jointly stationary and ergodic
zero-mean Gaussian processes, i.e.,

lim
n→∞

1

n

n∑

i=1

(
E{Yi | Y i−1

−∞ } − gi(Y
i−1
1 )

)2
= 0 almost surely.

This later convergence is expressed in terms of an almost sure Cesáro consistency.
I guess that even the almost sure consistency (1) holds. In order to support this
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conjecture mention that

gn(Y
n−1
1 ) =

∞∑

k=1

pk,nh
(k)
n (Y n−1

1 ) ≈
∞∑

k=1

pk,nh̃
(k)
n (Y n−1

1 ) =

∞∑

j=1

cn,jYn−j ,

where cn,j =
∑∞

k=j pk,nc
(k)
n,j. It is well known for Gaussian time series that the

best predictor is a linear function of the past:

E{Yn | Yn−1, Yn−2, . . .} =

∞∑

j=1

c∗jYn−j ,

where the c∗j ’s minimize the criterion

E









∞∑

j=1

cjY1−j − Y1




2




.

Again, the vector c∗ = (c∗1, c
∗
2, . . . ) can be uniquely defined choosing the minimizer

vector with minimal Euclidean norm. For the notation, cn = (cn,1, cn,2, . . . ), we
need that cn → c∗ almost surely in an appropriate topology such that

E{Yn | Yn−1, Yn−2, . . .} − gn(Y
n−1
1 ) =

∞∑

j=1

(c∗j − cn,j)Yn−j → 0

almost surely.
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Information Optimal Algorithms in Machine Learning

Elad Hazan

In this talk we survey recent advancement in the design of efficient algorithms
in machine learning, whose running time is best possible. To illustrate these
advancements we start with the fundamental problem of Linear Classification.

In the problem of Linear Classification, labeled examples of a concept are repre-
sented by in Euclidean space by pairs of their feature vectors and labels, denoted
{(xi, yi) ∈ (Rd,±1)}. The goal is to find a hyperplane h ∈ R

d separating the
two classes of vectors, those with positive and negative labels. First consider the
separable case, i.e. the case in which a hyperplane exists such that all example are
correctly classified. In this case, the objective function can be re-written as
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max
‖h‖≤1

min
i∈[n]

yi · (h⊤xi)

The quantity ω = mini∈[n] yi · (h⊤xi), where h is the solution to the above
optimization problem, is called the margin of the instance, and is a quantity of
significance beyond this talk (for example in the analysis of generalization error
in statistical learning theory). When the instance is separable, this margin is
non-negative, and indeed a hyperplane can be found which correctly classifies all
examples.

The Perceptron Algorithm for linear classification is one of the oldest algorithms
studied in machine learning [Nov62, Min88]. It has been the best known algorithm
for the linear classification problem for over fifty years. The Perceptron algorithm
is extremely simple to describe: iteratively, the Perceotron searcher for an example
which is not yet correctly classified, and adds it (as a vector) modulo a sign change
to the current candidate hyperplane. It can be shown that when a hyperplane
exists that classifies all examples correctly, this process terminates quickly. This
classical Perceptron Algorithm, when applied to n vectors in d dimensions, returns
an ε-approximate solution to this problem in total time O(ε−2nd). 1.

This running time is l inear in the input representation, since to represent an
instance of linear classification one needs to represent n vectors in d dimensions,
for a total of n× d data entries in the unit RAM model. An algorithm that runs
in less time then n × d time does not view the entire data even once, and hence
called sublinear.

It might seem surprising that a sublinear algorithm is at all possible, given that
the correct classifier might be determined by very few examples, as shown in figure
1. It thus seems necessary to go over all examples at least once.

Figure 1. The optimum is determined by very few examples.

However, in recent work with colleagues at IBM ARC [CHW10], we have proved
the following result. For given δ ∈ (0, 1), our new algorithm takes O(ε−2(n +
d)(log n) log(n/δ)) time to return an ε-approximate solution with probability at

1An ε-approximate solution in this context is a hyperplane with margin at least ω − ε. Here
ω is the maximum margin attainable by any hyperplane of norm at most one
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least 1− δ. Instead of observing all examples at least once, we show it suffices to
look at noisy estimates, and plug that into a primal-dual game theoretic optimiza-
tion framework, along with a novel multiplicative updates algorithm. Further, we
show this is optimal in the unit-cost RAM model, up to poly-logarithmic factors.

Ignoring poly-logarithmic factors, this running time, Õ(ε−2(n+d)), improves by
leading order term over the state of the art. In super-scale data analysis problems
for which both the dimension and number of examples are huge, this improvement
may be of practical significance.

We survey applications of this machinery to other problems in machine learning,
such as linear classification with kernels, semi-definite programming [GarHaz11]
and soft-margin SVM [HazKorSre11].
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Structured Sparsity and Generalization

Massimiliano Pontil

(joint work with Andreas Maurer)

We present a data dependent generalization bound for a large class of regular-
ized algorithms which implement structured sparsity constraints. A novel feature
of our bound is that it can be applied in an infinite dimensional setting such as
the Lasso in a separable Hilbert space or multiple kernel learning with a countable
number of kernels.
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We study a class of regularization methods used to learn a linear function from
a finite set of examples. The regularizer is expressed as an infimum convolution
which involves a set M of linear transformations (see equation (1) below). This
regularizer generalizes, depending on the choice of the set M, the regularizers
used by several learning algorithms, such as ridge regression, the Lasso, the group
Lasso, multiple kernel learning and others, see [Maurer and Pontil(2006)] for a
discussion. Our study was originally motivated by the the methods described in
[Micchelli et al.(2010)].

We give a bound on the Rademacher average of the linear function class associ-
ated with this regularizer. The result matches existing bounds in the above men-
tioned cases but also admits a novel, dimension free interpretation. In particular,
the bound applies to the Lasso in a separable Hilbert space or to multiple kernel
learning with a countable number of kernels, see e.g. [Micchelli and Pontil(2005)]
and references therein.

Let H be a real Hilbert space with inner product 〈·, ·〉 and induced norm ‖ · ‖.
Let M be a finite or countably infinite set of symmetric bounded linear operators
on H such that for every x ∈ H , x 6= 0, there is some linear operator M ∈ M
with Mx 6= 0 and that supM∈M |||M ||| < ∞, where ||| · ||| is the operator norm.
Define the function ‖·‖M : H → R+ ∪ {∞} by

(1) ‖β‖M = inf

{
∑

M∈M
‖vM‖ : vM ∈ H,

∑

M∈M
MvM = β

}
.

The notation is justified, because ‖·‖M is indeed a norm [Maurer and Pontil(2006)]
on the subspace of H where it is finite, and the dual norm is, for every z ∈ H ,
given by

‖z‖M∗ = sup
M∈M

‖Mz‖ .

The somewhat complicated definition of ‖·‖M is contrasted by the simple form of
the dual norm. As an example, if H = R

d and M = {P1, . . . , Pd}, where Pi is the
orthogonal projection on the i-th coordinate, then the function (1) reduces to the
ℓ1 norm.

Using well known techniques, as described in [Koltchinskii and Panchenko(2002)]
and [Bartlett and Mendelson(2002)], our study of generalization reduces to the
search for a good bound on the empirical Rademacher complexity of a set of linear
functionals with ‖·‖M-bounded weight vectors

(2) RM (x) =
2

n
E sup

β: ‖β‖
M

≤1

n∑

i=1

ǫi 〈β, xi〉 ,

where x = (x1, . . . , xn) ∈ Hn is a sample vector representing observations, and
ǫ1, . . . , ǫn are Rademacher variables, mutually independent and each uniformly
distributed on {−1, 1}. Given a bound on RM (x) we obtain uniform bounds
on the estimation error, for example using the following standard result (adapted
from [Bartlett and Mendelson(2002)]), where the Lipschitz function φ is to be
interpreted as a loss function.
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Theorem 1. Let X = (X1, . . . , Xn) be a vector of iid random variables with values
in H, let X be iid to X1, let φ : R → [0, 1] have Lipschitz constant L and δ ∈ (0, 1).
Then with probability at least 1 − δ in the draw of X it holds, for every β ∈ R

d

with ‖β‖M ≤ 1, that

Eφ (〈β,X〉) ≤ 1

n

n∑

i=1

φ (〈β,Xi〉) + L RM (X) +

√
9 ln 2/δ

2n
.

A similar (slightly better) bound is obtained if RM (X) is replaced by its ex-
pectation RM = ERM (X) (see [Bartlett and Mendelson(2002)]).

The following result leads to consistency proofs and finite sample generalization
guarantees for all algorithms which use a regularizer of the form (1). Its proof can
be found in [Maurer and Pontil(2006)].

Theorem 2. Let x = (x1, . . . , xn) ∈ Hn and RM (x) be defined as in (2). Then

RM (x) ≤ 23/2

n

√√√√ sup
M∈M

n∑

i=1

‖Mxi‖2


2 +

√√√√√√ln



∑

M∈M

∑
i ‖Mxi‖2

sup
N∈M

∑
j ‖Nxj‖

2







≤ 23/2

n

√√√√
n∑

i=1

‖xi‖2M∗

(
2 +

√
ln |M|

)
.

The second inequality follows from the first one, the inequality

sup
M∈M

n∑

i=1

‖Mxi‖2 ≤
n∑

i=1

‖xi‖2M∗ ,

a fact which will be tacitly used in the sequel, and the observation that every
summand in the logarithm appearing in the first inequality is bounded by 1. Of
course the second inequality is relevant only if M is finite. In this case we can
draw the following conclusion: If we have an a priori bound on ‖X‖M∗ for some
data distribution, say ‖X‖M∗ ≤ C, and X = (X1, . . . , Xn), with Xi iid to X , then

RM (X) ≤ 23/2C√
n

(
2 +

√
ln |M|

)
,

thus passing from a data-dependent to a distribution dependent bound.
But the first bound in Theorem 2 can be considerably smaller than the second

and may be finite even if M is infinite. This gives rise to some novel features, even
in the well studied case of the Lasso, when there is a (finite but potentially large)
ℓ2-bound on the data.

Corollary 3. Under the conditions of Theorem 2 we have

RM (x) ≤ 23/2

n

√
sup

M∈M

∑

i

‖Mxi‖2


2 +

√
ln

1

n

∑

i

∑

M∈M
‖Mxi‖2



+
2√
n
.
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To obtain a distribution dependent bound we retain the condition ‖X‖M∗ ≤ C
and replace finiteness of M by the condition that

(3) R2 := E

∑

M∈M
‖MX‖2 <∞.

Taking the expectation in Corollary 3 and using Jensen’s inequality then gives a
bound on the expected Rademacher complexity

(4) RM ≤ 23/2C√
n

(
2 +

√
lnR2

)
+

2√
n
.

The key features of this result are the dimension-independence and the only log-
arithmic dependence on R2, which in many applications turns out to be simply
R2 = E ‖X‖2.
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Convex relaxation for combinatorial penalties

Guillaume Obozinski

In structured sparsity, one attempts to estimate a function which, in a appropri-
ate parameterization, is encoded by a sparse vector; the support (or set of non-zero
elements) of this sparse vector is furthermore assumed to present a type of struc-
ture which is known a priori. A common approach to the problem is to penalize
implicitly or explicitly the structure of the support of the estimated parameter
vector. In this talk, I will present a generic best convex relaxation for a family of
functions that penalize simultaneously (a) the structure of the support through a
general combinatorial set function, and (b) the Lp norm of the parameter vector
for an arbitrary fixed p.

The convex relaxation only certain characteristics of the original set- function
are kept, and we introduce the notion of lower combinatorial envelope which char-
acterizes the retained properties.

The formulation considered allows to treat in a unified framework several a
priori disconnected approaches such as norms based on overlapping groups, norms
based on latent representations such as block-coding and submodular functions.
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Learning Theory: A Minimax Analysis

Alexander Rakhlin

Statistical Learning Theory studies the problem of estimating (learning) an un-
known function given a class of hypotheses and an i.i.d. sample of data. Classical
results show that combinatorial parameters (such as Vapnik-Chervonenkis and
scale-sensitive dimensions) and complexity measures (such as covering numbers,
Rademacher averages) govern learnability and rates of convergence. Further, it is
known that learnability is closely related to the uniform Law of Large Numbers
for function classes.

In contrast to the i.i.d. case, in the online learning framework the learner
is faced with a sequence of data appearing at discrete time intervals, where the
data is chosen by the adversary. Unlike statistical learning, where the focus has
been on complexity measures, the online learning research has been predominantly
algorithm-based. That is, an algorithm with a non-trivial guarantee provides a
certificate of learnability.

We develop tools for analyzing learnability in the game-theoretic setting of on-
line learning without necessarily providing a computationally feasible algorithm.
We define complexity measures which capture the difficulty of learning in a se-
quential manner. Among these measures are analogues of Rademacher complex-
ity, covering numbers and fat shattering dimension from statistical learning theory.
These can be seen as temporal generalizations of classical results. The complex-
ities we define also ensure uniform convergence for non-i.i.d. data, extending the
Glivenko-Cantelli type results. A further generalization beyond external regret
covers a vast array of known frameworks, such as internal and Phi-regret, Black-
well’s Approachability, calibration of forecasters, global non-additive notions of
cumulative loss, and more.

Multi-class Learning: Simplex Coding and Relaxation Error

Lorenzo Rosasco

(joint work with Youssef Mroueh, Tomaso Poggio, Jean-Jacques E. Slotine)

We study multi-category classification in the framework of computational learn-
ing theory. We show how a relaxation approach, which is commonly used in binary
classification, can be generalized to the multi-class setting. We propose a vector
coding, namely the simplex coding, that allows to introduce a new notion of multi-
class margin and cast multi-category classification into a vector valued regression
problem. The analysis of the relaxation error be quantified and the binary case is
recovered as a special case of our theory. From a computational point of view we
can show that using the simplex coding we can design regularized learning algo-
rithms for multi-category classification that can be trained at a complexity which
is independent to the number of classes.
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1. Problem Setting

We consider an input space X ⊂ R
d, and output space Y = {1, . . . , T }. Given a

probability distribution ρ on X×Y we let ρX be the marginal probability on X and
ρj(x) = ρ(j|x) the conditional distribution of class j given x, for each j = 1, . . . , T
and x ∈ X . A training set is a sequence (xi, yi)

n
i=1 sampled i.i.d. with respect to

ρ. A classification rule is a map c : X → Y and its properties can be measured via
the misclassification error (or misclassification risk),

R(c) = P(c(x) 6= y),

which is minimized, by the Bayes rule bρ(x) = argmaxj={1,...,T} ρj(x). This risk

functional cannot be directly minimized for two reasons: 1) the true probabil-
ity distribution is unknown, 2) it requires optimizing a non convex functional
over a set of discrete valued functions, in fact the risk can be written as R(c) =∫
Θ(yc(x))dρ(x, y) where Θ(x) = 1 if x < 0 and 0 otherwise. While we can tackle

the first issue looking at the empirical error on the data– rather than the risk, in
this work we consider the second issue.

The typical approach in binary classification, i.e. T = 2, is based on the follow-
ing steps. First real valued functions are considered in place of binary valued ones
so that a classification rule is defined defined by the sign of a function. Second,
the margin of a function is defined to be the quantity m = yf(x) and Θ(m) is
replaced by a margin loss function V (m) where V is a non-negative and convex.
This relaxation approach introduces an error which can be quantified. In fact, if
we define E(f) =

∫
V (yf(x))dρ(x, y), and let fρ be its minimizer, it is possible to

prove [2] that if V is decreasing in a neighborhood of 0, and differentiable in 0,
then bρ(x) = sign(fρ)(x), namely the loss is classification calibrated. Moreover, for
any measurable function f : X 7−→ R and probability distribution ρ we can derive
a so called comparison theorem, that is, there exits a function ψV : [0, 1] 7→ [0,∞)

ψV (R(sign(f))−R(sign(fρ))) ≤ E(f)− E(fρ).

For example for the the square loss V (m) = (1−m)2 we have ψV (t) = t2 and for
the hinge loss V (m) = |1 −m|+ we have ψV (t) = t. In this note we discuss how
the above approach can be extended to T ≥ 2.

1.1. Simplex Coding and Relaxation Error. The following definition is at
the core of our approach.

Definition 1. The simplex coding is a map C : {1, . . . , T } → R
T−1 such that for

i = 1, . . . , T , C(i) = ai , where the code vectors A = {a1, . . . , aT } ⊂ R
T−1 satisfy

‖ai‖2 = 1, ∀i = 1, . . . , T, 〈ai, aj〉 = − 1

T − 1
, ∀i, j = 1, . . . , T, i 6= j,

and
∑T

i=1 ai = 0. The corresponding decoding is the map D : RT−1 → {1, . . . , T }
D(α) = argmaxi=1,...,T 〈α, ai〉, ∀α ∈ R

T−1.
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The simplex coding corresponds to the T most separated vectors on the hyper-
sphere S

T−2 in R
T−1, which are the vertices of the simplex. For binary classifi-

cation it reduces to the ±1 coding. The decoding map has a natural geometric
interpretation: an input point is mapped to a vector f(x) by a vector regressor and
hence assigned to the class having closer code vector. The projection 〈f(x), aj〉
is precisely the multi-class extension of the notion of margin that we discussed
in binary classification and allows to extend the relaxation approach. Using the
simplex coding the misclassification risk can be written as

R(D(f)) =

∫
Θ(〈f(x), a〉)dρ(a, x) =

T∑

j=1

∫
Θ(〈f(x), aj〉)ρj(x)dρX (x).

where 〈·, ·〉 is the scalar product in R
T−1. Then, we can simply consider any

margin loss, e.g. hinge or logistic loss, and can replace the misclassification risk
by the expected risk E(f) =

∫
V (〈f(x), y〉)dρ(x, y). Note that the square loss can

be seen as margin loss if f is on the sphere.

1.2. Relaxation error analysis. As in the binary case, it is natural to ask what
is the error we incur into by considering a convex relaxation of the classification
problem. Interestingly, the results in the binary case can be now extended to the
multiclass setting. In fact, also in this case if V is decreasing in a neighborhood of
0, and differentiable in 0, then bρ(x) = D(fρ)(x), where the sign is replaced by the
decoding map. Comparison theorems can also be proved. For example, for the the
square loss V (m) = (1 −m)2 we have ψV (t) = t2/(T − 1)2 and for the hinge loss
V (m) = |1−m|+ we have ψV (t) = t/(T − 1), where we see the price to pass from
T = 2 to T ≥ 2. While we omit further details we mention here that a notion of
(multi) classification noise related to the one used in binary classification [2] can
also be defined, which allows to improve the above results. Compared to previous
works [7, 8] we see that the simplex coding allows to avoid any further constraint
to the function class.

1.3. Computing the simplex coding. The simplex coding can be easily im-
plemented and can induce regularized learning methods for multi-category clas-
sification that can be trained at the same computational complexity of a binary
classification problem, hence independently to the number of classes.

We start discussing a simple algorithm for the generation of the simplex coding.
We use a recursive projection of simpleces, by observing that the simplex in R

T−1,
can be obtained projecting the simplex in R

T on the hyperplane orthogonal to the
element (1, . . . , 0) of the canonical basis in R

T . Let C[T − 1] be the simplex code
associated to T classes, C[T − 1] is a matrix of dimension T × (T − 1). We have
the following recursion, where at each step we add a dimension, and backproject:

(1) C[T ] =

(
1 u

v C[T − 1]×
√
1− 1

T 2

)

C[1] = [1;−1]
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Where u is row vector of dimension T , u = (− 1
T · · · − 1

T ), and v a column vector
of dimension T , v = (0, . . . , 0).
Kernels and Regularization Algorithms. Next we need to recall some basic con-
cepts in the theory of reproducing kernel Hilbert spaces (RKHS) of vector valued
functions. The definition of RKHS for vector valued functions parallels the one
in the scalar [1], with the main difference that the reproducing kernel is now ma-
trix valued – see [3] and references therein. A reproducing kernel is a symmetric
function Γ : X × X → R

D×D, such that for any x, x′ ∈ X Γ(x, x′) is a positive
semi-definite matrix. A vector valued RKHS is a Hilbert space H of functions
f : X → IRD, such that for very c ∈ R

D, and x ∈ X , Γ(x, ·)c belongs to h and
moreover Γ has the reproducing property 〈f,Γ(·, x)c〉h = 〈f(x), c〉 , where 〈·, ·〉

h

is the inner product in H. The choice of the kernel corresponds to the choice of
the representation (parameterization) for the functions of interest. In fact it can
be shown that any function in a RKHS with kernel Γ, is in the completion of the
span of Γ(xi, ·) with cj ∈ R

D. Given the reproducing property, the norm of f can

be written as ‖f‖2
h
=
∑∞

i,j=1 〈cj ,Γ(xi, xj)cj〉. Note that for D = 1 we recover the
classic theory of scalar valued RKHS. In the following we restrict our attention to
kernels of the form Γ(x, x′) = k(x, x′)A, A = I, where k is a scalar reproducing
kernel. As we discuss elsewhere [6] the choice of A corresponds to a prior belief
that different components can be related. In fact, if we let f = (f1, . . . , fD) it is
possible to see that the entry At,t′ defines the relation between ft and ft′ . For the
sake of simplicity we restrict ourselves to A = I, hence treating each component
as independent. This case is directly comparable to the one-vs-all approach.

Next, we discuss the properties of different learning algorithms using the simplex
coding. We use the following notation, Y ∈ R

n×(T−1), Y = (y1, ..., yn), yi ∈
A, i = 1, . . . , n; K ∈ R

n×n,Kij = k(xi, xj); C ∈ R
n×(T−1), C = (c1, c2, ..., cn). We

consider algorithms defined by the minimization of a Tikhonov functional

Eλ
n (f) =

1

n

n∑

i=1

V (〈yi, f(xi)〉) +
λ

2
‖f‖2H ,

where in particular V (〈yi, f(xi)〉) will be either the square loss or a margin loss (in
particular the SVM’s hinge loss). It is well known [5] that the representer theorem
[4] can be easily extended to a vector valued setting to show that minimizer of the
above functional over h can be written as f(x) =

∑n
j=1 k(x, xj)cj , cj ∈ R

T−1.
The choice of different loss functions induce different strategy to compute C.

If we choose let the loss to be ‖y − f(x)‖2 it is easy to see that, (K+ λ
2nI)C = Y.

If we want to compute a solution for N values of λ, by using SVD to perform the
matrix inversion, we can still compute a regularized inverse in essentially O(n3)
but the multiplication (K + λ

2nI)
−1Y is going to be O(n2TN), which is linear

in T . Note that this complexity is still much better than the one-vs-all approach
that would give a O(n3TN). If we choose let the loss to be |1 − 〈y, f(x)〉 |+,
following standard reasonings from the binary case [9] to see that we have to solve
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the problem

max
α∈Rn

{
n∑

i=1

αi −
1

2
α⊤Qα

}
, 0 ≤ αi ≤

1

nλ
, i = 1, . . . , n

where Qij = K(xi, xj)y
T
i yj and ck = αkyk where αk ∈ R, for k = 1, . . . , n. Note

that the optimization is now only over the n dimensional vector α and T appears
only in the computation of the matrix Q. Training for fixed C is hence indepen-
dent of the number of classes and is essentially O(n3) in the worst case. If we are
interested into N different values of λ we would get a complexity O(n3N). Note
that more sophisticated strategy to compute the whole regularization path could
be coupled with the use of simplex coding.
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Some Applications of Scaled Bregman distances to Analyses of

Random Data

Wolfgang Stummer

(joint work with Igor Vajda)

It is well known that the Csiszar divergences (including the Kullback-Leibler
information divergence) as well as the “classical” Bregman divergences are very
useful tools for machine learning purposes, see e.g. Laferty (1999), Banerjee et al.
(2005), Amari (2007), Teboulle (2007), Nock & Nielsen (2009), and the compre-
hensive exposition in Cesa-Bianchi & Lugosi (2006), as well as the corresponding
references therein.
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In this talk we present the new concept of scaled Bregman divergences, cf.
Stummer & Vajda (2011) (see also Stummer (2007)), which generalizes both the
Csiszar divergences as well as the classical Bregman divergences.
Definition 1. Let φ : (0,∞) 7→ R be a continuous convex function, P,Q be two
probability measures and M a finite measure having densities

p =
dP

dλ
, q =

dQ

dλ
and m =

dM

dλ

with respect to a σ-finite measure λ. Then the Bregman divergence of P, Q scaled
by M is defined by the formula

Bφ (P,Q |M) =

∫

X

[
φ
( p
m

)
− φ

( q
m

)
− φ′+

( q
m

)( p
m

− q

m

)]
dM

=

∫

X

[
mφ

( p
m

)
−mφ

( q
m

)
− φ′+

( q
m

)
(p− q)

]
dλ.

The convex φ under consideration can be interpreted as a generating function of
the divergence.

We illuminate the connections of scaled Bregman divergences with Csiszar di-
vergences and discuss several important special cases such as e.g. the scaled power
Bregman divergences. For an exemplary highly complex financial-diffusion-process
setup, we show how these divergences can be used for sequential learning and de-
cision making. As another field of application, we present a new concept of ro-
bust graphical 3D goodness-of-fit tests which is discussed for the very important
and widely used exponential-families class of probability laws, as well as mixtures
thereof.
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Least Squares Temporal Difference Learning and Galerkin’s Method

Csaba Szepesvári

The problem of estimating the value function underlying a Markovian reward
process is considered. As it is well known, the value function underlying a Mar-
kovian reward process satisfied a linear fixed point equation. One approach to
learning the value function from finite data is to find a good approximation to the
value function in a given (linear) subspace of the space of value functions. We
review some of the issues that arise when following this approach, as well as some
results that characterize the finite-sample performance of some of the algorithms.

1. Markovian Reward Processes

Let X be a measurable space and consider a stochastic process

(X0, R1, X1, R2, X2, . . .),

where Xt ∈ X and Rt+1 ∈ R, t = 0, 1, 2, . . .. The process is called a Markovian
Reward process if

• (X0, X1, . . .) is a Markov process, and
• for any t ≥ 0, given Xt, Xt+1 the distribution of Rt+1 is independent of
the history of the process.

Here, Xt is called the state of the system at time t, while Rt+1 is the reward
associated to transitioning from Xt to Xt+1. We shall denote by P the Markovian
kernel underlying the process: Thus, the distribution of (Xt+1, Rt+1) given Xt is
given by P(·, ·|Xt), t = 0, 1, . . ..

Fix the so-called discount factor 0 ≤ γ ≤ 1 and define the (total discounted)
return associated to the process

R =

∞∑

t=0

γtRt+1

and the value function

V ∗(x) = ER |X0 = x, x ∈ X .

For simplicity, assume that the rewards are bounded with probability one, say,
supt≥0 |Rt+1| ≤ 1 a.s. Further, assume that the support of the distribution of X0

is the entire state space X . Under these conditions and if γ < 1, V ∗ : X → R

is well-defined and depends solely on the transition probability kernel P . When
γ = 1, further conditions are necessary to ensure that V is well-defined. Hence,
for simplicity in the theoretical developments below we shall assume that γ < 1.

2. Markovian Value Prediction Problems

TheMarkovian value prediction problem is to estimate V given data that follows
the law of the underlying Markovian Reward Process. This problem arises in a
number of applications (e.g., predicting long term values in financial applications,
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predicting whether a biped robot is going to fall, or as a subproblem of approximate
dynamic programming algorithms).

By overloading some of the letters, let Dn = ((X1, R2, X
′
2), . . . , (Xn, Rn1 , X

′
n))

be the data available for the statistician, where the distribution of (X ′
t, Rt+1) given

the history ((X1, R2, X
′
2), . . . , (Xt−1, Rt, X

′
t)) and Xt is P(·|Xt). Two important

special cases are the following:

(i) The process ((Xt, Rt+1, X
′
t+1))1≤t≤n is i.i.d.

(ii) For all i, Xt+1 = X ′
t+1.

The second case arises in applications where only a single trajectory is available
for learning, while the first is mainly used as a convenient simplifying assumption
when studying the performance of learning methods (a situation, when the first
assumption is met in practice is when a simulator of the Markovian Reward Process
is available). In practice, one might also have a dataset that consists of a number
of trajectories whose start states are independently sampled from each other.

If the training data was an infinitely long trajectory, one could approach es-
timating V ∗ by casting it as a regression problem. Indeed, when n = ∞, Rt =∑∞

j=t γ
j−tRj+1 provides an unbiased estimate of V ∗(Xt): V

∗(Xt) = ERt|Xt. Of
course, in practice n is finite. Then, one is forced to truncate the estimates Rt and

use R(n)
t =

∑n
j=t γ

j−tRj+1. This way, however, a bias of size O(γn−t) is intro-
duced at sample t. Thus, for t large, the bias introduced is considerable, whereas

for t small, the variance of R(n)
t can be large. The approach can be extended to the

case when the data consists of a set of long trajectories. However, this approach
will not work when the data consists of short trajectories (i.e., case i above).

3. Least squares temporal difference learning: A Statistical

Galerkin Method

The approach proposed by [Bradtke and Barto, 1996] allows one to deal with
such sequences of short trajectories. This approach was inspired by earlier work
by [Sutton, 1988]. In fact, it can be viewed as the least-squares analogue of the
stochastic approximation algorithm proposed by [Sutton, 1988]. Here, we show
how this approach can be viewed as a “statistical Galerkin method”. Thus our
approach to introduce this method will be different than the usual approach. Al-
though the connection to Galerkin methods has been acknowledged beforehand
(e.g., [Yu and Bertsekas, 2010]), the connection is not very well known amongst
reinforcement learning researchers and hence we find it useful to explain it. For
yet another alternative derivation of the method, as well as a statistical analysis,
see [Antos et al., 2008]. For the analysis of non-parametric, regularized versions
of the method, see, e.g., [Farahmand et al., 2009].

As it is well known, the value function V ∗ is the solution to the fixed-point
equation

TV ∗ = V ∗ ,(1)
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where T : L∞(X ) → L∞(X ) is the so-called Bellman-operator:

TV (x) =

∫
(r + γV (x′))dP(x′, r|x), V ∈ L∞(X ).

As it can be seen from the definition, T is an affine linear operator, so (1) is a
linear fixed point equation. Also, T is a bounded and is in fact a γ-contraction.

The projection method for solving (1) consists of choosing two finite dimensional
linear subspaces F ,G of a Banach space B of functions over X , F ,G sharing a
common dimension d ∈ ♮, and then solving the projected equation

ΠGTV = ΠGV for V ∈ F ,(2)

where ΠG : B → F is a projection operator [Kirsch, 2011]. It can be easily seen
that this leads to a d × d linear system of equations once one fixes some bases
for F and G. When B is a pre-Hilbert space, ΠG is the corresponding orthogonal
projection and T : F → B is bounded, we arrive at a Galerkin method. In this
case, (2) is equivalent to

〈TV, g 〉 = 〈V, g 〉 for all g ∈ G.(3)

Write TV = r + γPV , where r(x) =
∫
rdP(x′, r|x) and P : L∞(X ) → L∞(X ) is

defined by PV =
∫
V (x′)dP(x′, r|x). Then, assuming that F = span(f1, . . . , fd),

G = span(g1, . . . , gd), writing V =
∑d

i=1 αifi, (3) leads to the linear system of
equations

d∑

i=1

αi〈 (I − γP)fi, gj 〉 = 〈 r, gj 〉 , 1 ≤ j ≤ d.

or

Aα = b,

where Aij = 〈 (I − γP)fi, gj 〉, bj = 〈 r, gj 〉. For the error analysis of Galerkin’s
method, see, e.g., Chapter 3 of [Kirsch, 2011]. Unsurprisingly, these results are
identical to results derived, e.g., by [Yu and Bertsekas, 2010] or [Scherrer, 2010].

Now consider the case when we are given a sample Dn as described in the
previous section. Further, for simplicity, assume that (Xt)1≤t≤n is stationary and
let µ be the common distribution underlying (Xt). Choose B to be the Hilbert
space L2(µ). Given the sample Dn, approximate Aij by

Â
(n)
ij =

1

n

n∑

t=1

(fi(Xt)− γfi(X
′
t))gj(Xt)

and approximate bj by

b̂
(n)
j =

1

n

n∑

t=1

Rtgj(Xt) .

The method of [Bradtke and Barto, 1996] corresponds to the case when F = G
(the corresponding “exact” method is the so-called Bubnov-Galerkin method).

Under various additional assumptions (e.g., independence of the snippets), Â
(n)
ij

and b̂
(n)
ij converge with probability one to Aij and bj , respectively. A stability
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analysis of the equation Aα = b can then be used to derive bounds on the quality of

solutions obtained by solving Â(n)α = b̂(n). One can further introduce appropriate
regularization to appropriately stabilize the estimation process in the case of large
dimensions (d) and small sample sizes (n). By regularizing using an ℓ1-norm, an
efficient procedure that shows only a mild dependence on d can be arrived at.
Details are available in the forthcoming paper [Pires and Szepesvári, 2011].

4. Conclusions

We have discussed the connection between a popular method in reinforcement
learning, the so-called least-squares temporal difference (LSTD) method, and
Galerkin’s method. Although this connection was recognized before, we found
it useful to explain it as it is lesser known within the reinforcement learning com-
munity and because the connection leads to new insights into the issues related
to statistical performance of this important algorithm. We hope that this short
abstract will foster further research to explore this and other connections between
reinforcement learning and statistical inverse problems.
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Optimal rates of estimation of high-dimensional matrices

Alexandre Tsybakov

Assume that we observe n entries or linear combinations of entries of an un-
known m × T matrix A corrupted by noise. We propose a new nuclear-norm
penalized estimator of A called the linearized matrix Lasso, and establish a gen-
eral sharp oracle inequality for this estimator for arbitrary values of n,m, T under
the condition of isometry in expectation. Then this method is applied to the ma-
trix completion problem. In this case, the estimator admits a simple explicit form
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and we prove that it satisfies oracle inequalities with faster rates of convergence
than in the previous works. They are valid, in particular, in the high-dimensional
setting mT ≫ n. We show that the obtained rates are optimal up to logarithmic
factors in a minimax sense and also derive, for any fixed matrix A, a non-minimax
lower bound on the rate of convergence of our estimator, which coincides with the
upper bound up to a constant factor. Finally, we show that our procedure provides
an exact recovery of the rank of A with probability close to 1. We also discuss the
statistical learning setting where there is no underlying model determined by A
and the aim is to find the best trace regression model approximating the data. As
a by-product, we show that, under the Restricted Eigenvalue condition, the usual
vector Lasso estimator satisfies a sharp oracle inequality (i.e., an oracle inequality
with leading constant 1). This is a joint work with Vladimir Koltchinskii and
Karim Lounici.
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Insuring against loss of evidence and capital

Vladimir Vovk

(joint work with A. Philip Dawid, Steven de Rooij, Peter Grünwald, Wouter M.
Koolen, Glenn Shafer, Alexander Shen, Nikolai Vereshchagin)

This talk is about worst-case results, à la prediction with expert advice. They
admit two main interpretations:

Statistical:: Suppose you have a lot of evidence against a null hypothesis.
How can you avoid losing it all?

Financial:: Suppose your current capital is large. Should you continue trad-
ing (risking losing all your money) or should you stop (preventing your
capital from growing further)? Can we compromise? What trade-offs are
open to us?

We are trading in one security X in a financial market. Normalize the initial
priceX0 to 1 and the investor’s initial capital IK0 to 1. This is our trading protocol:

X0 := 1 and IK0 := 1
FOR t = 1, 2, . . .:
Investor announces pt ∈ R

Market announces Xt ∈ [0,∞)
IKt := IKt−1 + pt(Xt −Xt−1)

END FOR

IKt: Investor’s capital. A trading strategy is a strategy for Investor in this protocol.
Set X∗

t := maxs≤tXs. We would like to have a trading strategy that guarantees

IKt ≥ F (X∗
t )
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for all t, where, as y → ∞, F (y) → ∞ almost as fast as y. If this inequality can
be guaranteed, F is a simple lookback adjuster (SLA).

More generally, we can ask when Investor can guarantee

IKt ≥ F (X∗
t , Xt), ∀t.

Such F will be called lookback adjusters (LAs). We are interested only in nonneg-
ative SLAs and FAs F .

The set of SLAs and LAs is too big. More manageable subsets consist of
admissible SLAs (ASLAs) and admissible LAs (ALAs), defined as follows. An
SLA (or LA) G dominates an SLA (or LA) F if G ≥ F . F is admissible if it is
not dominated by any G different from F .

Simple lookback adjusters

Theorem 4. Any SLA is dominated by an ASLA. A function F : [1,∞) → [0,∞)
is an ASLA if and only if it is increasing, right-continuous, and satisfies

∫ ∞

1

F (y)

y2
dy = 1.

It is impossible to have F (y) = y (it would mean guaranteeing IKt ≥ X∗
t for all

t), but we want to come as close to this as possible. Let α ∈ (0, 1). These are 2
simple examples:

• There exists a trading strategy guaranteeing

IKt ≥ α (X∗
t )

1−α

for all t.
• There exists a trading strategy guaranteeing

IKt ≥ α(1 + α)α
X∗

t

ln1+αX∗
t

whenever X∗
t ≥ e1+α.

The talk covered some simple statistical applications.

Lookback adjusters

Let fr be the right derivative of f .

Theorem 5. Every LA is dominated by an ALA. A positive function F (X∗, X)
with domain X∗ ∈ [1,∞) and X ∈ [0, X∗] is an ALA if and only if the following
two conditions are satisfied:

• the function

F=(X∗) := F (X∗, X∗), X∗ ∈ [1,∞),

is increasing, concave, and satisfies F=(1) = 1 and F=
r (1) ≤ 1;

• for each X∗ ∈ [1,∞), the function F (X∗, X) is linear in X and its slope
is equal to F=

r (X∗).
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Option pricing

We would like to price the following exotic option OG (a kind of perpetual
American lookback): at the time t of her choice, the option’s owner is entitled
to G(X∗

t ), where G is a given nonnegative increasing function. The result about
ASLAs can be restated as: the upper price of this option at time 0 (after learning
X0) is

∫∞
1
G(y)y−2dy. Formally,

∫∞
1
G(y)y−2dy is the smallest initial capital c

such that there exists a trading strategy starting with c and guaranteeing IKt ≥
G(X∗

t ) for all t (intuitively, the seller can always meet his obligation).
The formula

∫∞
1
G(y)y−2dy assumes X0 = 1. Without this assumption, the

upper price at time 0 is
∫∞
1
G(X0y)y

−2dy (by re-scaling).

Notice that the upper price of OG can be written as X0

∫∞
X0
G(y)y−2dy, which

is the expected value of G with respect to the probability measure P on [X0,∞)
with density X0/y

2. It plays the role of risk-neutral probability (but, unusually,
emerges in a heavily incomplete market).
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Weakly universally consistent static forecasting of stationary and

ergodic time series via local averaging and least squares estimates

Harro Walk

(joint work with Tina Felber, Daniel Jones, Michael Kohler)

Given a stationary and ergodic time series the problem of estimating the con-
ditional expectation of the dependent variable at time zero given the infinite past
is considered. It is shown that the mean squared error of a combination of suit-
ably defined local averaging or least squares estimates converges to zero for all
distributions whenever the dependent variable is square integrable.

Let ((Xn, Yn))n∈Z
be a stationary and ergodic sequence of Rd × R-valued ran-

dom variables with E
{
Y 2
0

}
< ∞. The abbreviations X l

k = (Xk, . . . , Xl), Y l
k =

(Yk, . . . , Yl) and Dl
k = {(Xk, Yk), . . . , (Xl, Yl)} , k ≤ l, will be used, correspond-

ingly for realizations xlk y
l
k, d

l
k. The following static forecasting problem is con-

sidered: On the basis of the data set D−1
−n and X0, construct simple estimates

mn(X0,D−1
−n) of E

{
Y0|X0

−∞, Y
−1
−∞
}
which are weakly consistent in the sense that

they satisfy

E
{∣∣mn(X0,D−1

−n)−E
{
Y0|X0

−∞, Y
−1
−∞
}∣∣2
}
→ 0 (n → ∞).
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One starts with defining a parameter set P = {(k, r,N) : k, r,N ∈ IN} and

elementary estimates (experts) m̃
(i)
n,(k,r,N)(x

0
−k, y

−1
−k; d

−1
−n) and m̂

(i)
n,(k,r,N)(x0, d

−1
−n)

(i ∈ {1, 2, 3, 4}) of E
{
Y0
∣∣ X0

−k = x0−k, Y
−1
−k = y−1

−k

}
, where k indicates how far

back the estimate will look, r determines the set of approximating functions and
N indicates the level of truncation by the truncation operator TN .

For the first estimate one uses bandwidths hr > 0 satisfying hr → 0 (r → ∞)
and a usual continuous kernel function K : IR(k+1)·d+k → IR+. With 0

0 := 0 the

kernel estimate m̃
(1)
n,(k,r,N) is defined by

m̃
(1)
n,(k,r,N)(u

0
−k, v

−1
−k; d

−1
−n)

:=






∑

−2
i=−n+k−1 TN (yi+1)K

(

(x
i+1
i−k+1

,yi
i−k+1

)−(u0
−k

,v
−1
−k

)

hr

)

∑

−2
i=−n+k−1 K

(

(x
i+1
i−k+1

,yi
i−k+1

)−(u0
−k

,v
−1
−k

)

hr

) if n ≥ k + 1,

0 else.

Correspondingly, estimates m̃
(2)
n,(k,r,N) and m̃

(3)
n,(k,r,N) of partitioning type and

of nearest neighbors type (with suitable tie-breaking), respectively, are defined.
For the fourth estimate, let B1, . . . , BKr

be bounded and continuous functions

Bj :
(
IRd
)k+1 × IRk → [−B,B] for some B > 0, and set

Fk,r =





Kr∑

j=1

aj ·Bj : aj ∈ [−Lr, Lr] (j = 1, . . . ,Kr)





with Kr → ∞, Lr → ∞ (r → ∞), where ∪rFk,r satisfies an L2-denseness assump-
tion for each k and each probability measure (fulfilled for suitable spline function
spaces).
Define the corresponding least squares estimate by

m̃
(4)
n,(k,r,N)

(
u0−k, v

−1
−k; d

−1
−n

)
:=

{
m̄

(4)
n,(k,r,N)

(
u0−k, v

−1
−k; d

−1
−n

)
if n ≥ k + 1,

0 else,

where

m̄
(4)
n,(k,r,N)(·; d

−1
−n) := arg min

f∈Fk,r

1

n− k

−1∑

i=−n+k

∣∣f(xii−k, y
i−1
i−k)− TN (yi)

∣∣2 .

For i ∈ {1, 2, 3, 4} choose 0 < s < 1
2 and set

m̂
(i)
n,(k,r,N)(x0, d

−1
−n) := Tns

(
m̃

(i)
n,(k,r,N)(x

0
−k, y

−1
−k; d

−1
−n)
)
.

The prediction strategy is defined as a convex combination of these experts using
weights, which are the higher the better the expert performed in the past. After n−
1 rounds of play the normalized cumulative squared prediction error of m̂

(i)
n,(k,r,N)
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on the string d−1
−n defined by

L(i)
n (k, r,N) := L(i)

n (k, r,N)(d−1
−n)

:=
1

n− 1

−2∑

j=−n

(Tns(yj+1)− m̂
(i)
j+n+1,(k,r,N)(xj+1, d

j
−n))

2

quantizes the performance of the expert in the past. Let (p(k,r,N))(k,r,N)∈P be a

probability distribution such that p(k,r,N) > 0 for all (k, r,N) ∈ P . Put cn = 8n2s

and define weights, which depend on this cumulative loss, by

w
(i)
n,(k,r,N) := p(k,r,N) · exp

(
−(n− 1)L

(i)
n (k, r,N)

cn

)
.

Now with normalized weights

v
(i)
n,(k,r,N) :=

w
(i)
n,(k,r,N)

∑
(k,r,N)∈P w

(i)
n,(k,r,N)

,

m̂
(i)
n is defined by

m̂(i)
n (x0, d

−1
−n) :=

∑

(k,r,N)∈P
v
(i)
n,(k,r,N) · m̂

(i)
n,(k,r,N)(x0, d

−1
−n).

In order to estimate E
{
Y0
∣∣ X0

−∞, Y
−1
−∞
}
the arithmetic mean is used:

m(i)
n (X0, R

−1
−n) :=

1

n

n∑

j=1

m̂
(i)
j

(
X0, R

−1
−j

)
.

Then

E

{∣∣∣m(i)
n (X0, R

−1
−n)−E

{
Y0|X0

−∞, Y
−1
−∞
}∣∣∣

2
}

→ 0 (n→ ∞),

i ∈ {1, . . . , 4}, for all stationary and ergodic sequences ((Xn, Yn))n∈ZZ of IRd × IR-
valued random variables with E

{
Y 2
0

}
<∞ (weak universal consistency).

For the proof one uses stationarity, an ergodic theorem for random variables in
a separable Banach space and an inequality of Kivinen and Warmuth (1999) and
Singer and Feder (1999) in the theory of estimation via experts.

In the talk erroneously m
(i)
n (X0,D−1

−n) → E{Y0|X0
−∞, Y

−1
−∞} a.s., i ∈ {1, 2, 3},

for all stationary and ergodic sequences ((Xn, Yn))n∈ZZ with E{|Y0|} < ∞ was
stated. The problem of strong universal consistency in static forecasting (under
the assumption of mere integrability of Y0) remains open.
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