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Introduction by the Organisers

Discrete Geometry deals with the structure and complexity of discrete geometric
objects ranging from finite point sets in the plane to more complex structures like
arrangements of n-dimensional convex bodies. Classical problems such as Kepler’s
conjecture and Hilbert’s third problem on decomposing polyhedra, as well as clas-
sical works by mathematicians such as Minkowski, Steinitz, Hadwiger and Erdős
are part of the heritage of this area. In the last couple of years several outstanding
open problems have been solved. Here we list a few of them: (1) Erdős distinct
distances problem by Guth and Katz, using algebraic geometry (based on ideas of
Elekes and Sharir), (2) tight lower bounds for geometric ε-nets by Pach and Tar-
dos, and a weaker but still superlinear lower bound by Alon, (3) a superlinear lower
bound on the size of weak ε-nets by Bukh, Matoušek, and Nivasch, (4) disproof by
Santos of the famous Hirsch conjecture from 1957, (5) topological extension of the
first selection lemma by Gromov (which also improves the constant) and which
has lead to further use of algebraic topology in discrete geometry.
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By its nature, this area is interdisciplinary and has relations to many other vital
mathematical fields. The breakthrough results above use methods of algebraic ge-
ometry, topology, combinatorics, computational geometry, convexity, discrepancy
theory, and probability. At the same time it is on the cutting edge of applica-
tions such as geographic information systems, mathematical programming, coding
theory, solid modelling, computational structural biology and crystallography.

The workshop was attended by 47 participants. There was a series of 10 survey
talks giving an overview of developments in Discrete Geometry and related fields:

• Micha Sharir: From Joints to Distinct Distances and Beyond: The Dawn
of an Algebraic Era in Combinatorial Geometry

• Roman Karasev: A simpler proof of the Boros–Füredi–Bárány–Pach–Gro-
mov theorem

• János Pach: Piercing convex sets
• Luis Montejano: When is a disk trapped with four lines?
• Uli Wagner: Isoperimetry, Crossing Numbers, and Multiplicities of (Equi-
variant) Maps

• József Solymosi: Point-pseudoline incidences in higher dimensions
• Boris Bukh: Space crossing numbers
• Nati Linial: What are high-dimensional permutations? How many are
there?

• Igor Pak: Finite tilings
• Günter M. Ziegler: Polytopes with low-dimensional realization spaces

In addition, there were 26 shorter talks and an open problem session chaired by
János Pach on Tuesday evening—a collection of open problems resulting from this
session can be found in this report. The program left ample time for research
and discussions in the stimulating atmosphere of the Oberwolfach Institute. In
particular, there were several special informal sessions, attanded by smaller groups
of the participants, on specific topics of common interest.

On Wednesday we had a very pleasant excursion leading to the MiMa (Museum
for Minerals and Mathematics in Oberwolfach Kirche) where many participants of
the workshop (with the help of the museum’s staff) worked on the construction of
the “Exploded stellated Dodecahedron” using Zometool building blocks.
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Abstracts

From Joints to Distinct Distances and Beyond: The Dawn of an
Algebraic Era in Combinatorial Geometry

Micha Sharir

Summary. In the past three years the landscape of combinatorial geometry has
considerably changed, due to two groundbreaking papers by Guth and Katz ([6]
in 2008 and [7] in 2010). They have introduced reasonably simple techniques from
algebraic geometry that enabled them to tackle successfully several major problems
in combinatorial geometry. Their first paper obtained a complete solution to the
joints problem, a problem involving incidences between points and lines in three
dimensions which has been open since it was first posed (by myself and others)
in 1992. The second Guth–Katz paper was even more dramatic. They obtained a
nearly complete solution to the classical problem of Erdős [4] on distinct distances
in the plane, which was open since 1946. Both problems have been extensively
studied over the years, using more traditional, and progressively more complex
methods of combinatorial geometry, but with only partial and incomplete results.

Together with my colleagues and students, we have been working intensively
during the past three years, exploiting, simplifying, and extending the new par-
adigm to tackle a variety of related problems in combinatorial geometry. As a
matter of fact, the second Guth–Katz paper was a follow-up of a recent study of
myself (with the late Gy. Elekes), where we have laid out a program for tackling
Erdős’s distinct distances problem by reducing it to an incidence problem in three
dimensions, similar to those arising in the joints problem.

A review of the recent developments. In its simplest, original form, the joints
problem, posed in [1] in 1992, is to obtain a sharp upper bound on the number of
points that can be incident to at least three non-coplanar lines, in any set of n
lines in three dimensions; these points are called joints. Simple constructions show
that the number of joints can be Ω(n3/2) and the goal was to obtain a matching
upper bound. After 15 years of frustrating research, the best upper bound that
could be obtained, with the “traditional” machinery, was O(n1.623) [5].

Then, in December 2008, Guth and Katz [6] established the upper bound
O(n3/2), thus solving the problem completely. They used in the proof several
reasonably simple tools from algebraic geometry, and we mention here two of
them: (i) Given a set P of m points in R3, one can find a trivariate polynomial f
of degree D = O(m1/3) that vanishes at all the points of P . (An appropriate gen-
eralization holds in any dimension d ≥ 1, except that the degree of the resulting
polynomial is O(m1/d).) (ii) Given two trivariate polynomials f and g with no
common factor, and with corresponding zero sets Z(f), Z(g), the number of lines
that are fully contained in Z(f) ∩ Z(g) is at most deg(f) · deg(g).

Here is a brief, rough, and informal description of the analysis of Guth and
Katz. Given a set L of n lines in R3, they “force”, in a preliminary pruning and
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sampling step, most of the joints of L to lie on the zero set Z(f) of a polynomial f
of degree D ≤ cn1/2, with a sufficiently small constant c, and then only consider
lines of L that are also fully contained in Z(f) (the other lines do not generate
too many joints). Now a joint incident to three non-coplanar lines, all contained
in Z(f), must be a singular point of f , and lines that contain more than D such
joints must consist exclusively of singular points. Lines that contain fewer than
D joints contribute at most nD = O(n3/2) joints, so they can be ignored. Now,
assuming f to be irreducible, and applying the preceding result (ii) to f and one
of its partial derivatives, say fx, we conclude that the number of such “critical”
lines is at most D2 ≤ c2n, which we can make smaller than, say, n/2. An inductive
argument on n then completes the proof.

The actual proof in [6] is more involved and technical. It has been greatly
simplified in two subsequent papers by Kaplan et al. [10] and by Quilodrán [14],
and has also been extended to any dimension d ≥ 3.

Incidences. Although the joints problem might appear, on the face of it, only
a minor curious problem, the recent developments, as being reviewed here, show
that it is in fact a significant pillar in the study of incidences between points and
lines, curves, hyperplanes or surfaces. In the simplest form of the problem, the
celebrated theorem of Szemerédi and Trotter [18] from 1983 asserts that, for a
set P of m points and a set L of n lines in the plane, the the number I(P,L) of
incidences between the points of P and the lines of L, is O(m2/3n2/3 + m + n),
and this bound is tight in the worst case. Many extensions of the problem have
been considered, and can be found in the recent comprehensive survey [13].

If one considers incidences between m points and n lines in higher dimensions,
say in d = 3 dimensions, the problem, on first sight, seems totally uninteresting.
Indeed, one can project the points and lines onto some generic plane, observe
that incidences are preserved in the projection, and apply the Szemerédi–Trotter
bound. Since the bound is worst-case tight in the plane, it continues to be so
in any higher dimension. The joints problem, in retrospect, was an attempt to
remove the triviality from this extension, by forcing the input, in a sense, to be
“truly three-dimensional”. As follows from the results of Guth and Katz (and even
from the weaker previous results), one does indeed get improved bounds in truly
three-dimensional scenes, in which the amount of coplanarity of the input points
and lines is kept in control. A subsequent paper of Elekes et al. [2] has extended
the study of [6] to consider not just the number of joints but also the number of
incidences between the joints of L and the lines of L, and to more general scenarios
involving incidences between points and lines in R3.

Distinct distances. The next development took place in an attempt to apply
the new machinery to the planar distinct distances problem of Erdős [4]. In this
problem the goal is to establish a sharp lower bound on the minimum possible
number of distinct distances between the elements of a set S of s points in the
plane. Erdős noticed that the

√
s×√

s integer grid generates O(s/
√
log s) distinct

distances, and conjectured this to be also the lower bound, namely, that any
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set of s points in the plane determines at least Ω(s/
√
log s) distinct distances.

Again, traditional techniques, becoming progressively more sophisticated during
the 65 years since the original problem statement, have been unable to settle the
conjecture, and the best lower bound that was achieved, by Katz and Tardos [11],
was Ω(n0.8641).

Nevertheless, about 10 years ago, Elekes had come up, in an unpublished manu-
script, with an ingenious program to reduce the planar distinct distances problem
to an incidence problem between points and curves in three dimensions. To tackle
the latter problem, though, he needed a couple of fairly deep conjectures, which nei-
ther he nor anybody else knew how to solve at that time. If these conjectures could
be established, they would have led to the almost tight lower bound Ω(s/ log s) on
the number of distinct distances. In a joint paper with Elekes [3], written after the
passing away of Elekes in 2008, I have presented Elekes’s program, and applied the
new algebraic machinery to it, but I was still unable to settle Elekes’s conjectures,
as the algebraic machinery, available from the Guth–Katz paper of 2008 and the
follow-up ones, was still too weak.

This was taken care of in the second dramatic breakthrough of Guth and
Katz [7], in November 2010, where they introduced new algebraic machinery, based
on the polynomial ham sandwich theorem of Stone and Tukey [17], which allowed
them to establish Elekes’s conjectures and thereby obtain the aforementioned lower
bound Ω(s/ log s) for distinct distances. Specifically, their main result, an exten-
sion of the main conjecture of Elekes, is: Given n lines in three dimensions, the
number of points that are incident to at least k ≥ 3 of these lines is O(n3/2/k2),
provided that no plane contains more than n1/2 lines. The case k = 2 is also
treated in [7]. There one needs to assume that no plane or regulus contains more
than n1/2 lines, and the analysis is based on algebaic properties of ruled surfaces,
established by Salmon and Cayley in the 19th century [15].

The application of the polynomial ham sandwich theorem in [7] results in a
so-called polynomial partitioning scheme, a new tool that appears to be very pow-
erful in combinatorial and computational geometry, nicely complementing the 20-
years-old arsenal of geometric partitions based on cuttings [12] and on simplicial
partitions [12]. Roughly, it states that, given a set P of m points in Rd, and a
parameter t < m, one can find a d-variate polynomial f , of degree D = O(t1/d),
such that each connected component (“cell”) of Rd \ Z(f) contains at most m/t
points of P ; the number of cells is O(Dd) = O(t). This partitioning of P is not
exhaustive, as some (perhaps many, or all) points of P may lie on Z(f), and they
require a special treatment, depending on the specific problem at hand.

Among the results that exploit the new polynomial partitioning technique are:
(i) an expository paper by Kaplan, Matoušek and Sharir [8] where the new tech-
nique is exposed and applied to derive new and simple proofs of several classi-
cal results in combinatorial geometry, including the Szemerédi–Trotter incidence
bound for points and lines in the plane, and the existence of spanning trees with
small stabbing number in any dimension; (ii) two independent derivations, by Ka-
plan et al. [9] and by Zahl [19], of the improved bound O(n3/2) on the number of
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repeated distances in a set of n points in R3; and (iii) a paper by Solymosi and
Tao [16] on incidences between points and low-dimensional varieties that behave
like pseudo-lines.
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[7] L. Guth, N.H. Katz, On the Erdős distinct distances problem in the plane, In

arXiv:1011.4105.
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[9] H. Kaplan, J. Matoušek, Z. Safernová, M. Sharir, Unit distances in three dimensions, In
arXiv:1107.1077 (July 2011).

[10] H. Kaplan, M. Sharir, E. Shustin, On lines and joints, Discrete Comput. Geom. 44 (2010),

838–843. Also in arXiv:0906.0558, posted June 2, 2009.
[11] N.H. Katz, G. Tardos, A new entropy inequality for the Erdős distance problem, in Towards
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A simpler proof of the Boros–Füredi–Bárány–Pach–Gromov theorem

Roman Karasev

1. The problem

The main topic of this talk is:

Problem. Let d+ 1 random points x0, . . . , xd be distributed independently in Rd.
Show that one point c ∈ Rd is covered by the simplex conv{x0, . . . , xd} with prob-
ability pd with largest possible value of pd.

2. The history

Endre Boros and Zoltán Füredi [3] established the best constant p2 = 2/9 when
the points are distributed with the same discrete distribution.

Imre Bárány [1] considered arbitrary dimension and random points distributed
by the same discrete distribution. The constant was roughly pd = (d+1)−d. This
result was obtained by partitioning the N distribution points into ∼ N

d+1 groups of
d+ 1 each by the Tverberg theorem and then applying the colorful Carathéodory
theorem to every (d+ 1)-tuple of (d+ 1)-tuples.

János Pach [9] considered arbitrary dimension and points distributed with dif-
ferent discrete distributions. The constant pd was approximately 1

(5d)d2(d+1)
.

In case of the same discrete distribution for all points Uli Wagner [11] has

improved the bound to pd = d2+1
(d+1)d+1 .

Recently Mikhail Gromov [6] has developed a topological approach to estimating
multiplicity of maps, in particular, giving a better bound pd = 1

(d+1)! for the

probability of covering by the convex hull, which improves to pd ≥ 2d
(d+1)!(d+1)

when some two points have the same distribution.
Gromov actually proved a much stronger result: Instead of several finite point

sets in Rd one can consider a continuous map of the join of d + 1 finite sets to
Rd (or the d-skeleton of large enough simplex) and study covering by the images
of faces of maximal dimension under this map. But we will not consider such
generalizations here.

The proof of Gromov is not easy to understand. It used an abstract notion of
the space of cocycles. Moreover, the space of cocycles was defined as a simplicial
set, which is even harder to imagine.

3. The short proof

Now we are going to decipher Gromov’s proof. It turns out that the proof
becomes almost elementary and the only needed topological notion is the degree
of a piecewise-smooth map.

Let us make more precise definitions. Consider a set of d+1 absolutely contin-
uous probability measures µ0, µ1, . . . , µd on Rd.
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Define a random simplex of dimension k as a simplex spanned by k + 1 points
xd−k, . . . , xd ∈ Rd, where the point xi is distributed according to the measure µi.
Note the indices that we choose for the case k < d.

Let us state the theorem:

Theorem 1. Under the above assumptions there exists a point c ∈ Rd such that
the probability for a random d-simplex to contain c is at least

pd =
1

(d+ 1)!
.

We assume that Rd is contained in its one-point compactification Sd = Rd ∪
{∞}.

Assume the contrary. Take some small ε > 0. Take fine enough finite triangu-
lation Y of Sd with one vertex at ∞ so that for any 0 < k ≤ d and any k-face σ of
Y the probability of a random (d− k)-simplex xkxk+1 . . . xd to intersect σ is < ε.
Here and below we always assume that µi is the distribution of xi.

To make such a triangulation it is sufficient to take a large enough ball B so that
at least 1− ε of every measure is inside B. Then we take the simplices of Y that
intersect B small enough, other simplices may be arbitrary. From the absolute
continuity of measures it follows that for small enough simplices the probabilities
become arbitrarily small, and for simplices in Rd \ B they are < ε by the choice
of B.

Consider a (d+ 1)-dimensional simplicial complex Y ∗ 0 (the cone over Y with
apex 0). Now we are going to build a (piece-wise smooth) map f : (Y ∗ 0)(d) → Sd

(from the d-skeleton) which is “economical” with respect to the measures µi (this
phrase will be clarified below), and coincides with the identification Y = Sd on
Y ⊂ (Y ∗ 0)(d).

Now proceed by induction:
Map 0 to ∞ ∈ Sd;
For any vertex v ∈ Y map [v0] to an open ray starting from v (and ending at

∞ ∈ Sd) so that the probability for a random (d − 1)-simplex x1 . . . xd to meet
f([v0]) is < pd. This is possible because a simplex x0x1 . . . xd contains v if and
only of the (d − 1)-simplex x1 . . . xd intersects the ray from v opposite to x0 − v.
Since the probability for a random d-simplex to contain v is < pd, for some of such
rays the corresponding probability is also < pd.

Step to the k-skeleton of Y ∗ 0 as follows. Let σ = v1 . . . vk0 be a k-simplex
of Y ∗ 0. The map f is already defined for ∂σ. We know that the probability
for a random (d− k + 1)-simplex xk−1 . . . xd to meet some f(v1 . . . v̂i . . . vk0) (i =
1, . . . , k) is < (k − 1)!pd, and the probability to meet f(v1 . . . vk) is < ε. If ε is
chosen small enough we see that a random (d−k+1)-simplex xk−1 . . . xd intersects
f(∂σ) with probability < k!pd.

There exists a point xk−1 not in f(∂σ) such that the probability for xk−1xk . . . xd

(with random last d−k+1 points) to meet f(∂σ) is < k!pd; here the independence
of the distributions of vertices is essential.
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Let us define the map f on the simplex σ treated as a join ∂σ ∗ c so that c is
mapped to ∞ ∈ Sd, and every segment [vc] (v ∈ ∂σ) is mapped to the infinite ray
from f(v) in the direction opposite to xk−1 − v.

Finally, for any d-simplex σ of Y , the boundary of the cone σ ∗ 0 is mapped
by f so that

µd(f(∂(σ ∗ 0))) < (d+ 1)! pd = 1,

if we selected small enough ε at the beginning.
Therefore f(∂(σ ∗ 0)) 6= Sd and the restriction f |∂(σ∗0) has zero degree. By

summing up the degrees (the d-faces of (∂σ) ∗ 0 go pairwise and cancel, because
Y is a triangulation) we see that the map f |Y has even degree but it is the identity
map, which is a contradiction.

4. The case of equal measures

This theorem can be sharpened (following [6]) if two of the measures coincide.

Theorem 2. If some two measures coincide then the bound in Theorem 1 can be
improved to

pd =
2d

(d+ 1)!(d+ 1)
.

The proof is essentially the same, but it uses more careful definition of f on the
last step (for d-dimensional faces).

5. Further questions

• What is the best value of p2 for different distributions of three point in
R2? Is it 1/6?

• For large d, it is not known whether the inverse factorial in pd is the right
order of magnitude.

• Existing examples (by Boris Bukh, Jǐŕı Matoušek, and Gabriel Nivasch [4])

only show that pd cannot be better than
√
2πde−d.

• In the paper [8] of Jǐŕı Matoušek and Uli Wagner further improvements of
the constant (using Gromov’s proof and some new ideas) are made.

6. Other applications

A similar technique allows to prove the following result, conjectured by Jǐŕı
Matoušek and Aleš Př́ıvětivý [7]:

Theorem 3. Suppose that a d-dimensional cube Qd is partitioned into nd small
cubes in an obvious way. Let 0 ≤ m < d. If the set of small cubes of Qd is colored
into m+ 1 colors then there exists a connected monochromatic component of size
at least

f(d,m)nd−m.

Here f(d,m) is a function depending on d and m and not depending on n.

The function f(d,m) quickly decreases both in d and m. For m = 1 and
m = d− 1 this theorem can be proved with much better constant f(d,m), see [7].
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When is the number of hyperplanes determined by n points in d-space
at least the number of (d − 2)-dimensional flats?

George Purdy

1. Erdős’s Question

Circa 1978, stimulated by work we were doing together, Erdős asked the ques-
tion: When is the number of planes determined by n points in 3-space at least the
number of lines? I conjectured what we now call

Conjecture P3. The number p of planes determined by n points in 3-space sat-
isfies

(1) p ≥ l,

where l is the number of lines, provided

• n is sufficiently large,
• the n points do not all lie on two skew lines, and
• no plane contains n− 1 of the points.

Remark: Putting n/2 points on each of two skew lines L and L′ results in Ω(n2)
lines and O(n) planes, falsifying (1).

In 1983, with the help of the Szemerédi–Trotter theorem, I was able to prove
the weaker
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Theorem P∗
3.

(2) p > cl,

for a constant c > 0, under the same hypothesis.

We have since made the conjecture

Conjecture P∗
d. If Wk is the number of flats of dimension k determined by n

points in d-space, then

(3) Wd−1 > cdWd−2,

provided the n points cannot be covered by a collection of flats whose dimensions
add up to less than d.

For example, when d = 3, the n points cannot be covered by two skew lines,
since the dimensions of the lines would add up to 2, which is less than d = 3.

Comments: In 1951, Motzkin proved that Wd−1 ≥ W0 = n for n points spanning
d-space, and this has been shown to be true, for example, for simple matroids.

But, P ∗
d is false for finite projective d-spaces for sufficiently large finite fields,

so P ∗
3 seems to capture some properties of real 3-space. But we can also prove P ∗

3

in complex 3-space using the fact, recently proved by Józef Solymosi and Terence
Tao that the Szemerédi–Trotter theorem is (within epsilon) true in C2, together
with a 1986 inequality by F. Hirzebruch:

Given n points in C2, if ti is the number of lines containing exactly i points,
and if tn = tn−1 = 0, then

t2 + t3 ≥ n+ t5 + 2t6 + 3t7 + · · ·
Remark: Our proof of P ∗

3 actually proves a stronger result,

Theorem Q∗
3. Under the hypothesis of theorem P ∗

3 , one of the n points is incident
with cl of the planes.

We thus have a result reminiscent of Erdős’s weak Dirac conjecture, now a
theorem:

Given n points in the plane, not all collinear, one of the points is incident with
cn lines determined by the points, where c > 0.

We naturally make,

Conjecture Q∗
d. Under the same hypothesis as P ∗

d , one of the original n points
is incident with cdWd−2 hyperplanes.

Recent Work: My students Ben Lund, Justin Smith and I have launched a
major assault on P ∗

d and have been developing new tools analogous to the 1983
results of Szemerédi, Trotter, and Beck for this purpose. So far, we have proved
P ∗
4 and the following:

Theorem. Given n points, of which k are colored red, there are only

Od(m
2/3k2/3n(d−2)/3 + knd−2 +m)
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incidences between the k red points and m hyperplanes spanned by the n points,
provided that m = Ω(nd2).

The monochromatic case k = n was proved by Agarwal and Aronov. We use
this incidence bound to prove that n points, no more than n − k of which lie on
any plane or two lines, span Ω(nk2) planes, which is a special case of a general
conjecture of ours that implies P ∗

d . We are hopeful that this conjecture, and
another, even stronger one, will admit proofs by induction.

A pseudoline counterexample to the Strong Dirac conjecture

Ben Lund

The Strong Dirac conjecture, open in some form since 1951 [5], is that every set
of n points in R2 includes a member incident to at least n/2 − c lines spanned
by the set, for some universal constant c. The less frequently stated dual of
this conjecture is that every arrangement of n lines includes a line incident to at
least n/2 − c vertices of the arrangement. It is known that an arrangement of n
pseudolines includes a line incident to at least cdn vertices of the arrangement,
for some universal constant cd [2, 8]. Every known infinite family of arrangements
includes a line incident to at least n/2 − 3/2 vertices of the arrangement, and
such a family was found by Felsner [4, p. 313]. I presented an infinite family of
arrangements of n pseudolines that does not include any pseudoline incident to
more than 4n/9− 10/9 vertices.

Felsner found an infinite family of arrangements with n = 12k + 7 lines, each
line incident to at most n/2 − 3/2 vertices. The first member of this family is
shown in Figure 1.

Figure 1. Felsner’s arrangement with n = 19
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Since this visualization of the arrangement has D6 symmetry, a wedge with
central angle of π/6 contains sufficient information to examine the entire arrange-
ment. Figure 2 shows wedges for the first two members of Felsner’s family. This
method of depiction was introduced by Eppstein [6].

Figure 2. Felsner’s arrangement with n = 19 and n = 31

The first member of a family of simple arrangements, each having n = 4k + 9
lines, no line incident to more than n/2− 1/2 vertices, is shown in Figure 3.

Figure 3. Simple arrangement with 13 lines

Akiyama et. al. [1] published a catalog of known infinite families of point
sets representing extreme examples for various large n that includes dual versions
of both of the arrangements shown here. Grünbaum cataloged several finite line
arrangements such that no line is incident more than n/2−c vertices, with c > 3/2
[7].

Wedges for the two smallest members of a family of pseudoline arrangements
with no line incident to more than 4n/9 − 10/9 vertices are shown in Figures 5
and 6; Figure 4 shows the complete arrangement with 25 pseudolines. Members
of this family drawn in the style used here have k-fold dihedral symmetry for
k = 6j + 2, j = [0,∞). Such an arrangement with k-fold symmetry contains
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n = 3k+1 pseudolines. This arrangement was previously investigated by Berman
[3, Fig. 11], in the context of simplicial pseudoline arrangements.

Figure 4. Pseudoline arrangement with n = 25

Figure 5. Wedge for pseudoline arrangement with n = 25

Figure 6. Wedge for pseudoline arrangement with n = 49
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Helly numbers of acyclic families

Xavier Goaoc

(joint work with Éric Colin de Verdière and Grégory Ginot)

The nerve N(F ) of a family F of sets is the family of its subsets with nonempty
intersection, that is:

N(F ) =

{
G ⊆ F |

⋂

a∈G

a 6= ∅
}
.

The nerve is an abstract simplicial complex, that is a family of sets closed under
taking subsets (and sometimes also called a monotone hypergraph). Just like a
graph can be embedded, in the plane for planar graphs or in R3 in general, we can
associate to an abstract simplicial complex a geometric realization, making these
discrete objects amenable to topological methods. A typical example is Borsuk’s
Nerve theorem, which asserts that for good covers the geometric realization of
the nerve has the same homotopy type as the union. (Recall that a good cover
is a family of subsets of a topological space such that the intersection of every
subfamily is empty or contractible.) The Nerve theorem implies, for instance, that
if F is an open good cover in Rd such that

⋂
a∈F a = ∅ and

⋂
a∈G a 6= ∅ for all

proper subfamilies G ( F then F has cardinality at most d+1. Indeed, the nerve
of such a family F is the boundary of a (|F | − 1)-simplex, which has nontrivial
homology in dimension |F | − 2, whereas any open1 subset of Rd has vanishing
homology in dimension d. In other words, the Helly number of any open good
cover is at most d + 1. (Recall that the Helly number of a family is defined as
the cardinality of its largest inclusion-minimal subfamily with empty intersection.)
The Nerve theorem can be easily seen to fail when the sets are non-connected, or
have non-connected intersections. We propose a refinement of the notion of nerve
that enjoys an analogue of the Nerve theorem not only for good cover, but for
any acyclic family; here a family F of subspaces of a topological space is acyclic if

1Interestingly, this assertion becomes false if “open” is replaced by “compact” without further
care, as for instance the union of all circles with centers (0, 1

n
) and radii 1

n
, the so-called “Hawaian

earrings”, has non-trivial homotopy groups in arbitrary high dimensions.
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the connected components of the intersection of any subfamily of F are homology
cells. This allows us to generalize some Helly numbers.

Let F denote a family of subsets of a topological space. We associate to ev-
ery subset G ⊆ F with non-empty intersection not just a simplex, but as many
simplices as G has connected components. Specifically, we put:

M(F ) =

{
(G,C) | G ⊂ F and C is a connected component of

⋂

a∈G

a

}
,

with the convention that (∅,⋃a∈F a) ∈ M(F ). The incidences between simplices,
given by the inclusion relation in the case of the nerve, are now recorded by the
partial order

(G,C) � (G′, C′) ⇔ G ⊆ G′ and C ⊇ C′

which turns M(F ) into a simplicial partially ordered set (or simplicial poset): it
has a unique minimum element and for any element σ ∈ M(F ) there exists a
bijection between the lower interval {τ | τ � σ} and the face lattice of a simplex.
Like graphs and abstract simplicial complexes, simplicial posets have geometric
realizations and can be studied via topological methods. In fact simplicial posets
are particular cases of simplicial sets, a combinatorial description of spaces used
in topology.

Given a topological space Γ, let dΓ denote the smallest integer such that the ith

homology of any open subset of Γ vanishes for all i ≥ dΓ. (In particular, dRd = d
and, more generally, dΓ = d for any non-compact or non-orientable d-manifold and
increases to dΓ = d+ 1 for compact and orientable d-manifolds.) We prove:

Theorem 1. Let F be a finite acyclic family of open subsets of a locally arc-
wise connected topological space Γ. If any sub-family of F intersects in at most r
connected components, then the Helly number of F is at most r(dΓ + 1).

The case r = 1 is essentially Helly’s topological theorem (in an arbitrary man-
ifold) and the case where F is a r-family2 over an open good cover of Rd was
previously established by Kalai and Meshulam [3] (on whose approach we mod-
elled our proof). The acyclicity condition can be weakened to accomodate some
non-trivial homology in low dimension for the intersection of few sets, allowing
applications in geometric transversal theory. See the preprint [1] for full details.

There are at least two reasons to believe the story does not end here. First,
Matoušek [4] proved a similar statement in homotopy (with sensibly larger con-
stants) and his proof allows non-trivial homotopy in high dimension; as our proof
permits some amount of non-trivial homology in low dimension, it is not clear
how much acyclicity suffices to ensure bounded Helly number. Second, there is
a combinatorial generalization of Kalai and Meshulam’s theorem, due to Eckhoff
and Nischke [2], that we cannot, at the moment, bring under the same umbrella
as Theorem 1.

2A family F is a r-family over G if the intersection of any subfamily of F is a disjoint union
of at most r members of G.



Discrete Geometry 2479

References
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Generalizations of the Kakeya problem

Otfried Cheong

(joint work with Antoine Vigneron)

Given a compact convex figure P in the plane, we call a compact convex figure C
a keyhole for P if for any orientation P ′ of P , the set P ′ can be translated to lie
in C. Intuitively, we are looking for a set in which the “key” P can be placed and
rotated by a full turn.

This problem was perhaps first considered in the famous Kakeya needle prob-
lem, which asks for the smallest-area keyhole for the unit segment. This problem
was solved by Pàl in 1921, who showed the solution to be an equilateral triangle of
height one [4]. Bezdek and Connelly show that the unique smallest-perimeter con-
vex figure in which an equilateral triangle can be fully rotated is its circumcircle [2].
For centrally symmetric figures P , it follows immediately from the Cauchy–Crofton
formula [3] that rotating P around its center produces a smallest-perimeter key-
hole for P . Finding smallest-area keyholes seems hard, for instance it is not even
known for the equilateral triangle, the square, or the Reuleaux triangle [1, 2].

We prove that for any compact convex figure P the smallest enclosing disk of P
is a smallest-perimeter keyhole for P .

We observe first that a keyhole for a segment of length a must necessarily have
width a in every direction. Since the perimeter is the integral over the width [3],
this implies that any convex figure of constant width a has diameter at least πa,
and in particular the circle with diameter a is a smallest-perimeter keyhole.

Consider next an acute triangle T . Choose a coordinate system with origin at
the center of the circumcircle of T , and such that the circumcircle has radius one.
We wish to prove that any keyhole for T must have perimeter at least 2π, implying
that the circumcircle is optimal.

We borrow an idea of Bezdek and Connelly [2]. Let u1, u2, u3 be the three
corners of T . By our assumptions, the origin lies in the interior of their convex
hull, and the three vectors have length one. The origin can be expressed as a

convex combination 0 =
∑3

i=1 αiui with αi ≥ 0 and
∑3

i=1 αi = 1. Let δi, for
i = 1, 2, 3, be the angle formed by u1 and ui (so δi = 0).

Let C be a any keyhole for T and let w(θ) be the width of C in direction θ
(that is, the length of the projection of C on a line with slope θ).
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Let p be the length of the perimeter of C. By the Cauchy–Crofton formula, we
have

p =

∫ π

0

w(θ)dθ.

Since the width is a periodic function with period π, we have

p =

∫ π

0

w(θ)dθ =

∫ π+δi

δi

w(θ)dθ =

∫ π

0

w(θ + δi)dθ.

It follows that

p =

3∑

i=1

αip =

3∑

i=1

αi

∫ π

0

w(θ + δi)dθ =

∫ π

0

( 3∑

i=1

αiw(θ + δi)
)
dθ.

Consider now a fixed orientation θ. The keyhole C must contain a copy of T
rotated such that u1 has direction θ = θ + δ1. This implies that u2 has direction
θ + δ2, and u3 has direction θ + δ3. For simplicity, we let T denote this rotated
copy, with its circumcenter still at the origin. Since C is a keyhole, it must also
contain a translated copy of −T , let’s say t− T .

Since ui and t− ui lie in C, the width of C in the direction of ui can be lower
bounded by 〈ui, ui〉 − 〈t − ui, ui〉 = 2〈ui, ui〉 − 〈t, ui〉 = 2 − 〈t, ui〉. We therefore
have

3∑

i=1

αiw(θ + δi) ≥
3∑

i=1

αi(2− 〈t, ui〉) = 2− 〈t,
3∑

i=1

αiui〉 = 2.

It now follows from the Cauchy–Crofton formula that p ≥ 2π.
Consider finally a compact convex figure P , and let D be the smallest enclosing

disk of P . Either D touches P in two points that form a diameter of D, or
D touches P in three points that form an acute triangle. In both cases, our previous
results imply that D is a shortest-perimeter keyhole for either the segment or the
triangle, and therefore for P .
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Good covers are algorithmically unrecognizable

Martin Tancer

(joint work with Dmitry Tonkonog)

Many results in discrete geometry are devoted to studying intersection patterns
of convex sets. Pioneering result in this respect is the Helly theorem [1] which
states that whenever C1, . . . , Cn are convex sets in Rd with n ≥ d + 1 such that
the intersection of any d+1 among these sets is nonempty, then the intersection of
all sets is nonempty. Many results of similar flavor are known and the interested
reader is referred to the survey paper [3] for more details.

d-representable complexes. Intersection patterns of collections of convex sets
can be studied systematically via their nerves. Given a collection of sets F =
{F1, . . . , Fn} the nerve of this collection is the simplicial complex with vertex
set F and whose faces are the subcollections of F with a nonempty intersection.
A simplicial complex is d-representable if it is isomorphic to the nerve of a finite
collection of convex sets in Rd. Using this notion, classifying intersection patterns
of convex sets in Rd is equivalent to classifying d-representable complexes.

Topological d-representability. Many results on intersection patterns of con-
vex sets were generalized to the situation where the sets are not necessarily convex,
however, their intersections are not too complicated (we will discuss the precise
definition in the following paragraph). In such case we talk about ‘topological
versions’. For instance there is a topological version of the Helly theorem obtained
again by Helly [2].

A good cover is a finite collection of open sets in Rd such that the intersection
of any nonempty subcollection is either empty or contractible (in particular, the
sets of the collection are contractible).

A simplicial complex K is topologically d-representable if it is isomorphic to the
nerve of a good cover. A topological d-representation of K is a good cover whose
nerve is isomorphic to K.

Computational complexity. In this contribution we focus on the computa-
tional complexity of recognition of topologically d-representable complexes. We
show that this problem is algorithmically undecidable. (More precisely, we fix a
positive integer d; the input of the problem is a simplicial complex given abstractly
as a collection of faces; and the question is whether this complex is topologically
d-representable.)

Theorem 1. For d ≥ 5, it is algorithmically undecidable whether a given simplicial
complex is topologically d-representable.

In convex setting, d-representable complexes are algorithmically recognizable.
This result dates back at least to Wegner [5]; and there is actually a PSPACE
algorithm. It is interesting to see this contrast, since many Helly-type theo-
rems are valid in almost the same settings for d-representable and topologically
d-representable complexes. Our result is thus in opposite spirit.
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The proof method; a brief sketch. Our main ingredient is the theorem of
Novikov [4] on algorithmic unrecognizability of d-sphere for d ≥ 5. Using this
theorem we are able to construct a sequence of simplicial complexes {Ci}∞i=1 such
that the elements of this sequence are either “nice” d-balls (piecewise linearly
embeddable into Rd), or they have a nontrivial fundamental group (and some ad-
ditional properties, that we do not discuss here in detail); and there is no algorithm
deciding which of the two cases holds.

In case of “nice” d-balls we can first construct a piecewise linear embedding of
these balls and then it is possible to deduce a topological d-representation from
this embedding. (This part is a bit technical; however, quite straightforward.)

In the second case, the nontriviality of the fundamental group together with
“additional properties” implies the nonexistence of a topological d-representation.
This case is in our opinion not so obvious, however, still manageable.
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Equalities on empty polygons

Pavel Valtr

Let P be a set of n points in general position in the plane. Consider the complex,
C, of empty convex polygons in P . C is clearly a simplicial complex. Let fk(P )
be its f -vector (k = 1, 2, . . . ), that is, fk(P ) is the number of empty convex k-gons
in P . Clearly f1(P ) = n, and f2(P ) =

(
n
2

)
. It is proved by Edelman and Rainer [2]

that C is contractible. Then it satisfies the Euler equation:

f1(P )− f2(P ) + f3(P )− f4(P ) · · · = 1.

There is another linear relation satisfied by the f -vector: it is shown by Ahrens et
al. [1] that

f1(P )− 2f2(P ) + 3f3(P )− 4f4(P ) · · · = |P ∩ intconvP |.
Also other proofs of these two equalities have been published. So far, the

simplest proof was using the so-called “continuous motion technique” and was
given in a paper by R. Pinchasi, R. Radoičić and M. Sharir [4]. In my Oberwolfach
talk, I presented a very elementary proof technique which allows to prove the
two equalities and it can be also used to prove other equalities, in particular two
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equalities of Garćıa [3] on the number of specific empty triangles and quadrilaterals
in a finite planar point set in general position.

References

[1] C. Ahrens, G. Gordon, and E. W. McMahon, Convexity and the beta invariant, Discrete
Comput. Geom. 22 (1999), 411–424.

[2] P. Edelman and V. Reiner, Counting the interior of a point configuration, Discrete Comput.

Geom. 23 (2000), 1–13.
[3] A. Garćıa, A note on the number of empty triangles, preliminary version in: Proceedings of

XIV Spanish Meeting on Computational Geometry, Alcalá de Henares, June 27-30, 2011.
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Piercing quasi-rectangles — On a problem of Danzer and Rogers

János Pach

(joint work with Gábor Tardos)

An old problem of Danzer and Rogers [8, 2, 5, 3] is the following: What is the area
of the largest convex region not containing in its interior any one of n given points
in a unit square? By drawing parallel lines through the points, the square falls into
n+ 1 rectangles. At least one of these rectangles has area at least 1

n+1 , so this is
clearly a lower bound. Can the order of magnitude of this bound be improved for
all point sets, as n tends to infinity? We do not know. In 1982, Moser [8] reported

only a fairly weak upper bound, O
(√

logn
n3/4

)
, due to Fan Chung. Since then, the

problem has been analyzed a little better. To explain the new developments, we
need some preparation.

It is more convenient to rephrase the question as follows. Given ε > 0, what is
the size of the smallest set of points with the property that every compact convex
set of area ε within the unit square contains at least one of them. Denoting
this minimum by f(ε), we clearly have f(ε) = Ω(1/ε). The question is whether
f(ε) = O(1/ε) holds.

This problem can be regarded as a continuous version of the ε-net problem in an
infinite range space (X,R), where the ground set X is the unit square, the ranges
R ∈ R are compact convex subsets of X , and we want to “hit” every range R with
|R ∩X | = |R| ≥ ε|X |, where |.| stands for the Lebesgue measure (area). A subset
N ⊂ X that intersects every such range is said to be an ε-net for the range space
(X,R).

A subset A ⊆ X of the ground set is called shattered if for every subset B ⊆ A,
one can find a range RB ∈ R with RB ∩A = B. The size of the largest shattered
subset of points, A ⊆ X , is said to be the Vapnik–Chervonenkis dimension (or
VC-dimension) of the range space (X,R) (see [13, 9, 4]). It follows from the
celebrated results of Haussler and Welzl [6] that every range space of VC-dimension
at most ∆ admits an ε-net of size O∆

(
1
ε log

1
ε

)
.
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We apply these ideas to our original problem. The area of the largest rectangle
contained in a plane convex set R is at least half of the area of R [12]. Thus, in
order to hit (pierce) all plane convex sets of area ε in the unit square, it is sufficient
to find an ε/2-net for all rectangles. The family of rectangles has bounded VC-
dimension ∆ < 10. Therefore, the theorem of Haussler and Welzl implies that
f(ε) = O

(
1
ε log

1
ε

)
.

It has been known for a long time that, in the “abstract” combinatorial setting,
the logarithmic factor in the Haussler–Welzl theorem cannot be removed [11, 7].
More recently, following the work of Alon [1], the present authors constructed a
variety of geometric range spaces with the same property [10].

Nevertheless, it is perfectly possible that f(ε) = O
(
1
ε

)
, that is, all rectangles of

area at least ε > 0 in the unit square can be pierced by O
(
1
ε

)
points.

We show that, if we slightly enlarge the family of rectangles, by including “quasi-
rectangles,” then O

(
1
ε

)
points do not suffice.

A rectangle is a region swept out by a line segment s moving orthogonally
to itself. If we continuously translate s almost orthogonally to itself, without
rotating it, so that the angle between s and the trajectory of its center always
remains between 90− δ and 90+ δ degrees for a fixed small δ > 0, then we call the
resulting region a quasi-rectangle. To be concrete, set δ = 1◦. The motion of the
segment s is supposed to be monotone in the direction orthogonal to it, so that
the segment is not allowed to turn back. Therefore, the area of a quasi-rectangle
is equal to the length of s multiplied by the distance it traveled in the direction
orthogonal to s.

A quasi-rectangle is not necessarily convex, but it is “almost” convex. Although
the VC-dimension of the family of quasi-rectangles is unbounded, it is not hard
to see that all quasi-rectangles of area ε inside the unit square can be stabbed
by O

(
1
ε log

1
ε

)
points. Our main theorem shows that this bound is tight up to a

constant factor.

Theorem. For any ε > 0, let F (ε) denote the smallest number of points with the
property that every quasi-rectangle of area ε inside the unit square contains at least
one of them. We have F (ε) = Θ

(
1
ε log

1
ε

)
.
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[12] K. Radziszewski, Sur une problème extrémal relatif aux figures inscrites et circonscrites aux
figures convexes, Ann. Univ. Mariae Curie-Sklodowska, Sect. A6, 1952, 5–18.

[13] V.N. Vapnik, A. Ya. Chervonenkis, On the uniform convergence of relative frequencies of
events to their probabilities, Theory Probab. Appl. 16 (1971), 264–280.

When is a disk trapped with four lines?

Luis Montejano

(joint work with Tudor Zamfirescu)

Let Ω be a closed subset of euclidean 3-space R3 and let D ⊂ R3 −Ω be a planar
disk. We say that D is trapped by Ω if D can continuously moved to infinity

without intersecting Ω. For example, the 1-skeleton of a tetrahedra of side
√
3
2

always traps a disk of diameter slightly smaller than one, but the union of three
lines in R3 does not trap a disk. We will characterize when a disk is trapped by
4 lines.

Theorem 1. A disk of diameter slightly smaller than h0 is trapped by four lines
if and only if there is a direction v0 such that:

(1) orthogonal to every direction sufficiently close to v0, there is a disk of
diameter h0, intersecting the four lines,

(2) there is not a disk of diameter smaller than h0, orthogonal to v0, inter-
secting the four lines,

(3) there is a disk of diameter smaller than h0, orthogonal to v0, intersecting
every three of the lines.

Example. Let a1, a2, a3 and a4 be the four vertices of a regular tetrahedron of

sides
√
3h0

2 in R3. Let Li be the line through the vertices a1 and ai, i = 2, 3, 4,

and let L1 be the line through the points a2 and a2+a3+a4

3 . Then, it is intuitively
clear that there is a disk of diameter slightly smaller than h0 trapped by our four

lines. Indeed, this is so because if v0 = 3a1−(a2+a3+a4)
‖3a1−(a2+a3+a4)‖ , then orthogonal to every

direction sufficiently close to v0, there is a disk of diameter h0, intersecting our
four lines but there is not a disk of diameter smaller than h0, orthogonal to v0,
intersecting our four lines, moreover there is a disk of diameter smaller than h0,
orthogonal to v0, intersecting every three of our lines.
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Let L ⊂ R3 be a line and let D(L) be the collection of disks of diameter h
intersecting L. Clearly D(L) can be thought as a subset of (L×D0)×RP2, where
D0 is a disk of diameter h orthogonal to L and centered at L. This is so, because
a disk of diameter h that intersects L is uniquely determined by its center in
(L × D0) and a direction in R3. Similarly the collection of disks of diameter h
in R3 is homeomorphic to R3 × RP2.

It is convenient now to consider the oriented case. Let Ω be a closed subset of
euclidean 3-space R3 and let D ⊂ R3−Ω be an oriented planar disk. We say that
D is trapped by Ω if D can continuously moved to infinity without intersecting Ω.
Of course, the oriented disk D is trapped by Ω if and only if the corresponding non
oriented disk D is trapped by Ω. So we will work by convenience in the oriented
case.

We shall consider R3 × S2 = R2 × (R × S2) as R2 × (R3 − {0}). If we denote
by ∆ the collection of oriented disks of diameter h in R3, we may think that ∆ is
a subset of R5. Let π : ∆ → S2 be the map that sends its normal vector to every
oriented disk of diameter h. Let now Ω ⊂ R3 be a closed subset of R3 and let
D(Ω) ⊂ ∆ ⊂ R5 be the collection of oriented disks of diameter h intersecting Ω.
We are interested in the bounded components of R5 − D(Ω), because It is clear
that there is an oriented disk of diameter h trapped by Ω if and only if R5−D(Ω)
has a bounded component.

At this point the strategy of the proof of our theorem is to use the fact that
for a compact set X ⊂ Rn, the complement of X in Rn has a bounded component
if and only if Hn−1(X) 6= 0, where in this paper we always use Cech homology
groups with Z2 coefficients.

Let L1, L2, L3 and L4 be four lines in R3 and from now on let Ω = L1 ∪ L2 ∪
L3∪L4. We have to deal with the problem that D(Ω) is not compact. Here we will
assume allways that the four directions of the lines are independent. The proof of
the theorem in its generality follows from the ideas exposed here.

Let B ⊂ R3 be a closed ball sufficiently big so that any oriented disk of
diameter h, not intersecting Ω, with center outside B, is not trapped by Ω. This
is so because the four directions of the lines are independent and B was chosen
in such a way that outside B the lines are very far away one of each other. Let
Di ⊂ ∆ ⊂ R5 be the collection of oriented disks of diameter h intersecting Li, with
center at B. So, the bounded components of R5− (D1 ∪D2 ∪D3∪D4) are exactly
the bounded components of R5 − D(Ω). Since every Di is compact, this implies
that there is an oriented disk of diameter h trapped by Ω = L1∪ L2 ∪ L3 ∪ L4 if
and only if

H4(D1 ∪D2 ∪D3 ∪D4) 6= 0.

We next consider the commutative diagram where the first row correspond to
the Mayer Vietories sequence of the pair (D1 ∩ [D3 ∪ D4];D2 ∩ [D3 ∪ D4]), the
second row correspond to the Mayer Vietories sequence of the pair (D1 ∩ D3 ∩
D4;D2 ∩D3 ∩ D4), the third row correspond to the Mayer Vietories sequence of
the pair (D1 ∩D3;D2 ∩D3) and the forth row correspond to the Mayer Vietories
sequence of the pair (D1 ∩D3;D2 ∩D4)
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Similarly, the first column correspond to the Mayer Vietories sequence of the
pair ([D1 ∪ D2] ∩ D3; [D1 ∪ D2] ∩ D4), the second row correspond to the Mayer
Vietories sequence of the pair (D1 ∩ D2 ∩ D3;D1 ∩ D2 ∩ D4), and the third row
correspond to the Mayer Vietories sequences of the pairs (D1 ∩D3;D1 ∩D4) and
(D2∩D3;D2∩D4). Using this commutative diagram we prove the following lemma.

Lemma 2. There is a disk of diameter h trapped by the lines L1, L2, L3 and L4

if and only if, in the above commutative diagram, H3([D1∪D2]∩ [D3∪D3]) 6= 0 if
and only if there is 0 6= α ∈ H1(D1 ∩D2 ∩D3 ∩D4), such that i∗(α) = 0 = j∗(α).

Proof of Theorem. An oriented disk is trapped by the lines L1, L2, L3 and L4

if and only if the corresponding non oriented disk is trapped by the lines L1, L2,

L3 and L4. So we will work by convenience in the oriented case. For every pair
of non intersecting, lines Li and Lj , 1 ≤ i < j ≤ 4, let ±vij ∈ S2 be such that
±vij is orthogonal to Li and Lj and let Υ be the set of all these unit vectors. Let
E : S2 − Υ → R be the map defined as follows: for every direction v ∈ S2 − Υ,
E(v) is the smallest diameter of an oriented disk orthogonal to v, intersecting the
four lines. Since for every t ∈ R, E−1((−∞, t)) is open in S2 and E−1([t,∞)) is
closed in S2 − Υ, we have that E is a continuous map. Furthermore, E is clearly
analytic in the open subset of S2 consisting of those vectors non orthogonal to any
of our four lines. Finally, the restriction of E to all vectors of S2 −Υ, orthogonal
to Li, 1 ≤ i ≤ 4, is also analytic. The above implies that the set of local maximus
of E are isolated points.

Suppose there is an oriented disk of diameter h trapped by the lines L1, L2, L3

and L4. Then H4(D1 ∪D2 ∪D3 ∪D4) 6= 0 and by e) of Lemma 1, H3([D1 ∪D2]∩
[D3∪D3]) 6= 0. This implies, by Lemma 2, that there is α ∈ H1(D1∩D2∩D3∩D4),
α 6= 0, such that i∗(α) = 0 = j∗(α) (see commutative diagram 1). Let us now
consider the map E : S2 − Υ → R. First note that (D1 ∩ D2 ∩ D3 ∩ D4) ⊂
E−1((−∞, h]). So without loss of generality, we may assume there is a component
Γ of the boundary of E−1((−∞, h]) contained in E−1(h) such that Γ ⊂ (D2∩D3∩
D4)∪ (D1∩D3∩D4)∪(D1∩D2∩D4)∪ (D1∩D2∩D4) and there is 0 6= α ∈ H1(�),
such that i∗(α) = 0 = j∗(α), where i : Γ → (D2 ∩D3 ∩D4) ∪ (D1 ∩D3 ∩D4) and
j : Γ → (D1∩D2∩D4)∪(D1∩D2∩D3) are the inclusions. Consider the component
A of E−1([h,∞)) whose boundary is Γ. The fact that i∗(α) = 0 = j∗(α) implies
that A ⊂ (D2∩D3∩D4)∪ (D1∩D3 ∩D4)∪ (D1∩D2∩D4)∪ (D1∩D2 ∩D4). This
implies that A is compact and therefore that E | A has a maximum value h0 > h
obtained on a single point v0 ∈ S2 − Υ. Since h0 is a local maximum value of E
obtained at h0, we have that orthogonal to every direction sufficiently close to v0,
there is an oriented disk of diameter h0, intersecting the four lines but there is not
an oriented disk of diameter smaller than h0, orthogonal to v0, intersecting the four
lines. Furthermore, since v0 ∈ (D2 ∩D3 ∩D4)∪ (D1 ∩D3 ∩D4)∪ (D1 ∩D2 ∩D4)∪
(D1 ∩ D2 ∩ D4), and h0 > h, then there is an oriented disk of diameter smaller
than h0, orthogonal to v0, intersecting every three of the lines.

Conversely, suppose that orthogonal to every direction sufficiently close to v0,
there is an oriented disk of diameter h0, intersecting the four lines, but there is
not an oriented disk of diameter smaller than h0, orthogonal to v0, intersecting
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the four lines. This immediately implies that h0 is a local maximum value of E
obtained at v0. Since local maximum values of E are isolated, let U be a small
neighborhood of v0 and h small but sufficiently close to h0 such that there is a
compact component Γ of E−1([h,∞]) that contains v0 and it is contained in U .
The boundary ∂Γ of Γ is contained in E−1(h) and is such that H1(∂Γ) is not zero
but k∗ : H1(∂Γ) → H1(Γ) is zero, where k : ∂Γ → Γ denotes the inclusion map.
Furthermore, since there is an oriented disk of diameter smaller than h0, orthogonal
to v0, intersecting every three of the lines, then without loss of generality, there is
an oriented disk of diameter h, orthogonal to every v ∈ U, intersecting every three
of the lines. By Lemma 2 and Lemma 1 a), there is an oriented disk of diameter h
trapped by our four lines. �

Integer partitions from a geometric viewpoint

Matthias Beck

(joint work with Benjamin Braun, Ira Gessel, Nguyen Le, Sunyoung Lee,
Carla Savage)

This talk was based on the two recent papers [5] and [6].
In a series of papers starting with [1], George Andrews and various coauthors

successfully revitalized seemingly forgotten, powerful machinery based on MacMa-
hon’s Ω operator [9] to systematically compute generating functions related to
various families of integer partitions. Andrews et al’s papers concern generating
functions of the form

fP (z1, . . . , zn) :=
∑

λ∈P

zλ1
1 · · · zλn

n and fP (q) := fP (q, . . . , q) =
∑

λ∈P

qλ1+···+λn ,

for some set P of partitions λ = (λ1, . . . , λn); i.e., we think of the integers λn ≥
· · · ≥ λ1 ≥ 0 as the parts when some integer k is written as k = λ1 + · · ·+ λn. If
we do not force an order onto the λj ’s, we call λ a composition of k. Here is one
sample theorem:

Theorem 1 (Andrews–Paule–Riese [4]). Let n ≥ 3 and

τ := {(λ1, . . . , λn) ∈ Zn : λn ≥ · · · ≥ λ1 ≥ 1 and λ1 + · · ·+ λn−1 > λn} ,
the set of all “n-gon partitions.” Then

fτ (q) =
qn

(1− q)(1− q2) · · · (1− qn)
−

q2n−2

(1− q)(1− q2)(1− q4)(1− q6) · · · (1− q2n−2)
.

More generally,

fτ (z1, . . . , zn) =
Z1

(1− Z1)(1− Z2) · · · (1− Zn)

−
Z1Z

n−2

n

(1− Zn)(1− Zn−1)(1− Zn−2Zn)(1− Zn−3Z2
n) · · · (1− Z1Z

n−2
n )

,

where Zj := zjzj+1 · · · zn for 1 ≤ j ≤ n.
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Our main goal is to prove these theorems geometrically, and more, by realizing a
given family of partitions as the set of integer lattice points in a certain polyhedron.
This approach is not new: Pak illustrated in [10, 11] how one can obtain bijective
proofs by realizing when both sides of a partition identity are generating functions
of lattice points in unimodular cones (which we will define below); this included
most of the identities appearing in [2]. Corteel, Savage, and Wilf [8] implicitly
used the extreme-ray description of a cone to derive product formulas for partition
generating functions, including those appearing in [2]. However, we feel that each
of these papers only scratched the surface of a polyhedral approach to partition
identities, and we see the current paper as a further step towards a systematic
study of this approach.

While the Ω-operator approach to partition identities is elegant and powerful
(not to mention useful in the search for such identities), we see several reasons for
pursuing a geometric interpretation of these results. As discussed in [7], partition
analysis and the Ω operator are useful tools for studying partitions and composi-
tions defined by linear constraints, which is equivalent to studying integer points
in polyhedra. An explicit geometric approach to these problems often reveals in-
teresting connections to geometric combinatorics, e.g., conjectures on volumes of
certain polytopes.

Our main new results are of two kinds: we prove multivariate versions of
partition-generating-function theorems, and we prove the following theorem (us-
ing triangulations of cones) to extend several theorems in [3] on “symmetrically
constrained compositions.”

Theorem 2. Given integers a1 ≤ a2 ≤ · · · ≤ an satisfying
∑n

i=1 ai = 1, the
generating function for those λ ∈ Zn

≥0 satisfying

n∑

j=1

ajλπ(j) ≥ 0 for all π ∈ Sn

is

F (z1, z2, . . . , zn) =
∑

π∈Sn

∏
j∈Dπ

(
z
b1,j
π(1)z

b2,j
π(2) · · · z

bn,j

π(n)

)

∏n
j=1

(
1− z

b1,j
π(1)z

b2,j
π(2) · · · z

bn,j

π(n)

)

where Dπ = { j : π(j) > π(j + 1) } and

bi,j =





1 if j = n,
−(a1 + · · ·+ aj) if n ≥ i > j ≥ 1,
1− (a1 + · · ·+ aj) if 1 ≤ i ≤ j < n.

In particular, setting z1 = · · · = zn = q yields

F (q) =

∑
π∈Sn

∏
j∈Dπ

qj−n
∑j

i=1 ai

(1 − qn)
∏n−1

j=1

(
1− qj−n

∑j
i=1 ai

) .
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On stability of polyhedra

András Bezdek

We all have seen different versions of the popular children’s toy called ‘stand up
kid’. These figures are easy to make as they are loaded figures which have only
one stable equilibrium. Such bodies are called monostatic. The problem gets
more interesting if one wants to make convex ‘stand up kids’ using homogeneous
material. Three dimensional bodies can be defined by a distance function R(ϕ, θ)
in a spherical coordinate system around their centers of gravity. It is easy to
see that local minima and maxima of R(ϕ, θ) correspond to stable and unstable
equilibria, but the bodies can have additional equilibria positions at saddle points
of R(ϕ, θ). A recent construction of G. Domokos and P. Várkonyi (2006) amazed
people and thus generated lot of media attention. Mathematically speaking they
answered a question of V. Arnold by constructing a homogeneous, convex body
(called Gömböc) which has exactly one stable equilibrium, exactly one unstable
equilibrium and does not have any saddle type equilibrium.

Arnold’s question is closely related, but is different from a question of J. Con-
way, which he asked about forty years ago. One says that a polyhedron in three
dimensions is stable on a facet if and only if the perpendicular to that face through
the center of gravity meets the facet itself. The center of gravity is that point,
which would be the physical center of gravity when the body is composed of ma-
terial with uniform density. Conway wanted to find an example of a homogeneous
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convex polyhedron which will rest in a stable position when lying on only one of
its faces.

From the very beginning the problem of finding a monostatic (stable only on
one facet) polyhedron with the smallest number of faces seemed to be of special
interest. J. Conway and R. Guy (1969) constructed a monostatic polyhedron with
19 faces. It was long believed that 19 is the smallest such face number. In the
same paper a constructive argument of M. Goldberg was given proving that no
tetrahedra can be monostatic (stable only on one facet). Although the statement
was correct, the proof seemed to be incomplete, as it was not using any information
on the position of the mass center of the tetrahedron.

1. We started the talk with describing a polyhedron which showed that Goldberg’s
[CG69] direct approach cannot be made complete. The first correct proof ruling
out the existence of a monostatic tetrahedron is attributed to J. Conway and was
mentioned in a paper of R. Dawson [D85]. In subsequent papers R. Dawson and
W. Finbow proved that monostatic simplices do not exist in dimensions smaller
than nine.

2. We proved that in contrast to the common belief there are monostatic polyhedra
which are bounded with less than 19 faces. In fact we described a monostatic
skewed pyramid which has only 18 faces. The base of our pyramid was a special
17 sided symmetrical polygon, which allowed us to verify the needed stability
properties.

3. We also considered skeletal versions of Conway’s stability problem. In such
cases the center of mass is determined by a uniform distribution on the n-skeleton
(n = 0, 1, 2) of the body. Note that in case of tetrahedra the mass center of the
0-skeleton is the same as the center of the gravity of the tetrahedron composed of
material with uniform density.

4. Among others we proved that if tetrahedron is constructed so that it has uniform
(but possible different) mass distribution on its three skeletons then it has at least
two stable faces. The proof utilizes an idea of Conway, which was mentioned in a
paper of Dawson [D85].
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A cell complex in number theory

Anders Björner

Let ∆n be the simplicial complex of squarefree positive integers less than or equal
to n ordered by divisibility. It is known that the asymptotic rate of growth of its
Euler characteristic (the Mertens function) is closely related to deep properties of
the prime number system.

We study the asymptotic behavior of the individual Betti numbers βk(∆n) and
of their sum. We show that ∆n has the homotopy type of a wedge of spheres. The
following estimates are established: As n → ∞

(1)
∑

k≥0 βk(∆n) =
2n
π2 +O(nθ), for all θ > 17

54

(2)
∑

k even βk(∆n) ∼ n
π2

(3)
∑

k odd βk(∆n) ∼ n
π2

(4) For fixed k: βk(∆n) ∼ n
2 logn

(log log n)k

k!

As a number-theoretic byproduct we obtain inequalities

∂k
(
σodd
k+1(n)

)
≤ σodd

k (n/2),

where σodd
k (n) denotes the number of odd squarefree integers ≤ n with k prime

factors, and ∂k is the Kruskal–Katona shadow function.

We also study a CW complex ∆̃n that extends the previous simplicial complex.

In ∆̃n all numbers ≤ n correspond to cells and its Euler characteristic is the

summatory Liouville function. This cell complex ∆̃n is shown to be homotopy
equivalent to a wedge of spheres, and as n → ∞

∑
βk(∆̃n) =

n

3
+O(nθ), for all θ >

22

27
.
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Uniform hypergraphs containing no grids, a problem concerning
superimposed codes

Zoltán Füredi

(joint work with Miklós Ruszinkó)

A hypergraph is called an r × r grid, Gr×r, if it is isomorphic to a pattern of
r horizontal and r vertical lines. Three sets form a triangle if they pairwise intersect
in three distinct singletons. A hypergraph is linear if every pair of edges meet in
at most one vertex.

Our aim is to construct a large linear r-hypergraphs which contain no grids.
Moreover, a similar construction gives large linear r-hypergraphs which contain
neither grids nor triangles. For r ≥ 4 our constructions are almost optimal. These
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investigations are also motivated by coding theory: we get new bounds for optimal
superimposed codes and designs.

Our main tool is a natural algebraic construction and some properties of pseu-
doline arrangements.

Union-free and sparse designs

Investigating the Rényi’s search model Dyachkov and Rykov [6] obtained sev-
eral sufficient conditions for the existence of regular binary superimposed codes.
In [13] we answered their question asymptotically which lead to union-free designs.
A Steiner system S(v, r, 2) is a collection of r-subsets (blocks) of a v-set which has
the property that every pair of distinct elements occurs in one block. Two families
of r-sets A and B form a grid, Gr×r, if |A| = |B| = r, ∪A = ∪B and | ∪ A| = r2,
i.e., both A and B consists of disjoint sets and every A ∈ A meets every B ∈ B in
exactly one element. The Turán number of the r-uniform hypergraph H, denoted
by ex(n,H), is the size of the largest H-free r-graph on n vertices.

Problem 1. Given r, construct infinitely many grid-free Steiner systems, S(v, r, 2).

Theorem 2 (Füredi and Ruszinkó [13]). There exist a linear, grid-free, r-uniform
hypergraph on n vertices almost as big as a Steiner system,

n(n− 1)

r(r − 1)
− crn

8/5 < exr(n, {I≥2,Gr×r}) ≤
n(n− 1)

r(r − 1)

holds for every n, r ≥ 4.

In the case of r = 3 with probabilistic method we only have

Ω(n1.8) ≤ ex3(n, {I≥2,G3×3}) ≤
1

6
n(n− 1).

The real question is to determine the unavoidable substructures in designs. Only
a few results are know, all in the case r = 3. A Steiner triple system is said to be
s-sparse if it contains no i blocks on i+2 elements for any i, 4 ≤ i ≤ s. The question
whether s-sparse STS(v) exists was proposed by Erdős [7]. A 4-sparse STS(v) is
known to exist for each admissible v 6= 7, 13 (Brouwer [3], Grannell, Griggs, and
Whitehead [14]). Recently there has been substantial progress towards the goal of
establishing that a 5-sparse STS(v) exists for each sufficiently large admissible v
(Wolfe [19]). An infinite class of 6-sparse STS(v) is described by Forbes, Grannell,
and Griggs [10], but no 7-sparse STS(v) is known for any v.

More on union-free and cover-free codes

A family F ⊆ 2[n] is g-cover-free if for arbitrary distinct membersA0, A1, . . . , Ag

A0 6⊆
g⋃

i=1

Ai.

Let CFg(n) (CFg(n, r)) be the maximum size of a g-cover-free n vertex code
(r-uniform hypergraph, resp.).
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A family F ⊆ 2[n] is t-union-free if for distinct t-multisets {A1, . . . , At} and
{B1, . . . , Bt} Ai, Bj ∈ F we have

A1 ∪A2 ∪ · · · ∪ At 6=B1 ∪ · · · ∪Bt.
Let UFt(n) (UFt(n, r)) be the maximum size of a t-union-free n vertex code
(r-uniform hypergraph, resp.).

If F is t-CF then it is t-UF, and if F is t-UF then it is (t− 1)-CF. Hence

CF(n, t) ≤ UF(n, t) ≤ CF(n, t− 1) ≤ UF(t− 1, n) ≤ . . .

CFr(n, t) ≤ UFr(n, t) ≤ CFr(n, t− 1) ≤ UFr(t− 1, n) ≤ · · · ≤ UF2(n, r).

Union free and cover free families were introduced by Kautz and Singleton [17].
They studied binary codes with the property that the disjunctions of distinct at
most g-tuples of codewords are all different. In information theory usually these
codes are called superimposed and they have been investigated in several pa-
pers on multiple access communication (see, e.g., Nguyen Quang A and Zeisel [1],
D’yachkov and Rykov [5], Johnson [16]). The same problem has been posed by
Erdős, Frankl and Füredi [8, 9] in combinatorics, by Sós [18] in combinatorial
number theory, and by Hwang and Sós [15] in group testing. For recent general-
izations see, e.g., Alon and Asodi [2], and De Bonis and Vaccaro [4]. D’yachkov
and Rykov [5] proved that there are positive constants α1 and α2 such that

α1
1

g2
<

logCFg(n)

n
< α2

log g

g2

holds for every g and n > n0(g).
Frankl and the present author [12] determined asymptotically the maximum size

of an r-uniform g-cover-free family showing that there exists a positive constant
γ := γ(r, g) such that CFg(n, r) = (γ + o(1))n⌈r/g⌉.

Problem 3. Given r ≥ t ≥ 1 find an asymptotic for UFt(n, r).

The order of magnitude of UFr(n, 2) was determined by Frankl et al. [11].

Theorem 4 (Füredi and Ruszinkó [13]). There exists a β = β(r) > 0 such that
for all n ≥ r ≥ 4

n2e−βr

√
logn < ex(n, {I≥2,T3,Gr×r}) ≤ UFr(n, r) ≤

n(n− 1)

r(r − 1)
.

We have only weaker estimates for r = 3

Ω(n5/3) ≤ UF3(n, 3) ≤
1

6
n(n− 1).

The determination of the size of maximal t-union-free families is one of the
important and likely solvable Turán type problems.
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Various aspects of Frobenius numbers

Martin Henk

(joint work with Iskander Aliev, Lenny Fukshansky)

Let a ∈ Zn
>0 be a positive integral n-dimensional primitive vector, i.e., a =

(a1, . . . , an)
⊺ with gcd(a) := gcd(a1, . . . , an) = 1, so that 0 < a1 < a2 < · · · < an.

For a positive integer s the s-Frobenius number Fs(a), is the largest number that
cannot be represented in at least s different ways as a non-negative integral com-
bination of the ai’s, i.e.,

Fs(a) = max{b ∈ Z : #{z ∈ Zn
≥0 : 〈a, z〉 = b} < s},

where 〈·, ·〉 denotes the standard inner product on Rn.
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This generalized Frobenius number has been introduced and studied by Beck
and Robins [7] (see also [6]), who showed, among other results, that for n = 2

(1) Fs(a) = s a1 a2 − (a1 + a2).

In particular, this identity generalizes the well-known result in the setting of the
(classical) Frobenius number which corresponds to s = 1. The origin of this clas-
sical result is unclear, it was most likely known already to Sylvester, see, e.g., [19].
The literature on the Frobenius number F1(a) is vast; for a comprehensive and
extensive survey we refer the reader to the book of Ramı́rez Alfonśın [15]. Despite
the exact formula in the case n = 2, for general n only bounds on the Frobenius
number F1(a) are available. For instance, for n ≥ 3

(2) ((n− 1)! a1 · . . . · an)
1

n−1 − (a1 + · · ·+ an) < F1(a) ≤ 2 an

[a1
n

]
− a1.

Here the lower bound follows from a sharp lower bound due to Aliev and Gruber [1],
and the upper bound is due to Erdős and Graham [9]. Hence, in the worst case
scenario we have an upper bound of the order |a|2∞ on the Frobenius number with
respect to the maximum norm of the input vector a. It is worth a mention that
an upper bound on F1(a), which is symmetric in all of the ai’s has recently been
produced by Fukshansky and Robins [10]. The quadratic order of the upper bound
is known to be optimal (see, e.g., [9]) and in view of the lower bound which is at

most of size |a|
n

n−1
∞ it is quite natural to study the average behavior of F1(a).

This research was initiated and strongly influenced by Arnold [4]–[5], and due
to recent results of Bourgain and Sinai [8], Aliev and Henk [2], Aliev, Henk and
Hinrichs [3], Marklof [14], Li [13], Shur, Sinai and Ustinov [16], Strömbergsson [18]
and Ustinov [20] we have a pretty clear picture of “the average Frobenius number”.
In order to describe some of these results, which are going to extend to the s-Fro-
benius number Fs(a), we need a bit more notation. Let

G(T ) = {a ∈ Zn
>0 : gcd(a) = 1, |a|∞ ≤ T },

be the set of all possible input vectors of the Frobenius problem of size (in maxi-
mum norm) at most T . Aliev, Henk and Hinrichs [3] showed that

(3) sup
T

∑
a∈G(T ) F1(a)/ (a1 a2 · . . . · an)

1
n−1

#G(T )
≪≫n 1,

i.e., the expected size of F1(a) is “close” to the size of its lower bound in (2);
here and below ≪n and ≫n denote the Vinogradov symbols with the constant
depending on n only. Recently, Li [13] gave the bound

(4) Prob
(
F1(a)/ (a1 a2 · . . . · an)

1
n−1 ≥ D

)
≪n D−(n−1),

where Prob(·) is meant with respect to the uniform distribution among all points
in the set G(T ). The bound (4) is best possible due to an unpublished result of
Marklof, and clearly implies (3).

Here we extend the results stated above, i.e., (2), (3) and (4), to the generalized
Frobenius number Fs(a) in the following way:
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Theorem 1. Let n ≥ 2, s ≥ 1. Then

Fs(a) ≥ s
1

n−1 ((n− 1)! a1 · . . . · an)
1

n−1 − (a1 + · · ·+ an) ,

Fs(a) ≤ F1(a) + (s− 1)
1

n−1 ((n− 1)! a1 · . . . · an)
1

n−1 .

Bounds with almost the same dependencies on s were recently obtained by Fuk-
shansky and Schürmann [11]. Their lower bound, however, is only valid for suffi-
ciently large s. Aliev and Gruber [1] applied the results of Schinzel [17] to obtain
a sharp lower bound for the Frobenius number in terms of the covering radius of
a simplex. The same approach can be used to obtain a sharp lower bound for the
s-Frobenius number as well. We postpone a detailed discussion of these matters
to a future paper.

As an almost immediate consequence of Theorem 1 we obtain:

Corollary 2. Let n ≥ 3, s ≥ 1. Then

i) Prob
(
Fs(a)/ (s · a1 a2 · . . . · an)

1
n−1 ≥ D

)
≪n D−(n−1),

ii) sup
T

∑
a∈G(T ) Fs(a)/ (s · a1 a2 · . . . · an)

1
n−1

#G(T )
≪≫n 1.

Hence in this generalized setting the average s-Frobenius number is of the size

(s · a1 a2 · . . . · an)
1

n−1 , which again is the size of its lower bound as stated in The-
orem 1.

The proof of Theorem 1 is based on a generalization of a beautiful result of
Kannan [12] which relates the classical Frobenius number to the covering radius of
a certain simplex with respect to a certain lattice. In our setting we need a kind
of generalized (so called) s-covering radius, which allows us to extend Kannan’s
result to the s-Frobenius number.
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To hold a convex body by a circle

Hiroshi Maehara

A circle Γ is said to hold a convex body K if

(1) Γ ∩ int(K) = ∅, conv(Γ ) ∩ int(K) 6= ∅, and
(2) it is impossible to move Γ ior Kj with keeping Γ ∩ int(K) = ∅ until K goes

far away from Γ .

A convex body is called circle-free if no circle can hold the convex body.

For example, every ball is circle-free. It is also not difficult to show that very
circular cylinder is circle-free, and every circular cone is circle-free.

T. Zamfirescu prove the following in 1995.

Theorem ([5]). The set of circle-free convex bodies in R3 is a nowhere dense
subset of the set of all convex bodies in R3 with Haussdorff metric.

Thus, circle free convex bodies are rather rare.

Theorem ([3]). For every planar compact convex set X and a ball B in R3, the
Minkowski sum X +B is circle-free.

Problem ([3]). Is it true that for every circle-free convex body K, the set K +B
is also circle-free?

For some regular pyramids, it is possible to determine whether a given one is
circle-free or not. Define the slope ρ of a regular pyramid by

ρ =
height

circum-radius of the base
.
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Theorem ([3]). Every regular pyramid with slope ρ ≥ 1 can be held by a circle.
Moreover, for every 0 < ε < 1, there is a circle-free regular pyramid with slope
ρ = 1− ε.

Y. Tanoue [4] proved the if part of the next theorem, but he did not consider
the only if part.

Theorem ([4, 3]). A regular pyramid with equilateral triangular base can be held
by a circle if and only if

ρ >

√
3
√
17− 5

32
≈ 0.4799.

Theorem ([3]). A regular pyramid with square base can be held by a circle if and

only if ρ >

√√
33−3
4 ≈ 0.828.

The great pyramid of Giza has base-edge 230m and height 140m. Since
140

√
2/230 ≈ 0.860 > 0.828, it can be held by a circle.

Concerning the diameter of a circle that can hold a regular tetrahedron of unit
edge, Itoh, Tanoue, and Zamfirescu proved the following.

Theorem ([1]). A circle of diameter d can hold a regular tetrahedron of unit edge

if and only if 1√
2
≤ d < φt ≈ 0.8956, where φt is the minimum value of 2(x2−x+1)√

3x2−4x+4
.

For a cube and a regular octahedron, I could prove the followings.

Theorem ([2]). A circle of diameter d can hold a unit cube if and only if
√
2 ≤

d < φc ≈ 1.53477, where φc is the minimum value of
√
2(x2+2)√
x2+2x+3

.

Theorem ([2]). A circle of diameter d can hold a regular octahedron of unit edge

if and only if 1 ≤ d < φo ≈ 1.1066, where φo is the minimum value of 2(x2+1)√
3x2+2x+3

.

Y. Tanoue also obtained the octahedral case independently.

Problem. Find similar results for the regular dodecahedron and the regular icosa-
hedron.
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Isoperimetry, Crossing Numbers, and Multiplicities of (Equivariant)
Maps

Uli Wagner

Consider a set S of n points in Rd. A result of Boros and Füredi [5] (for d = 2)
and of Bárány Bárány [3] (for general d) asserts that there exists a point p ∈ Rd

(not necessarily a member of S) that is contained in a fraction of at least cd of the
d-dimensional simplices spanned by S, where cd > 0 is a constant that depends
only on d.

The result can be restated as saying that for any affine map f from the (n−1)-
simplex ∆n−1 to Rd, there exists a point p ∈ Rd that is covered by the f -images
of a fraction of at least cd of the d-faces of ∆n−1.

For d = 2, the optimal value of the constant is known to be c2 = 2/9. For
higher dimensions, the largest possible value of cd has been the subject of ongoing

research, see [12, 7, 6, 4]. In particular, it is known that cd ≤ (d+1)!
(d+1)d+1 [6].

Recently, Gromov [8] introduced a new, topological proof method which, firstly,
yields an improved lower bound of cd ≥ 2d

(d+1)!(d+1) (for d = 2, this coincides

with the optimal 2/9) and which, secondly, applies to arbitrary continuous maps
f : ∆n−1 → R.

Via combinatorial Poincaré duality in ∂∆n−1 ∼= Sn−2, this result can be seen as
a discrete analogue of the following result, due to Almgren [1] and to Gromov [10]
(see Memarian [11] for a detailed proof).

The Waist of the Sphere Theorem (Almgren, Gromov). Let S
n be the

unit sphere in Euclidean space. For every map f : Sn → Rd, there exists a point
p ∈ Rd such that the fiber f−1(p) has (n−d)-dimensional volume1 at least as large
as Sn−d.

In [9, Appendix 1.F], Gromov described a general approach to such results
based on isoperimetric inequalities in Sn. This apporach does not yield optimal
constants, but applies more generally when Sn is replaced by a different source
manifold Mn. Gromov’s topological lower bound for the constant cd can be seen
as a discrete version of this isoperimetric approach (I am indebted to Larry Guth
for helpful explanations concerning the Waist Theorem and this connection).

The same approach can be used to prove the following equivariant version of
the Waist Theorem, with a sharp constant (we note that the topological part of
the argument is much simpler in this case):

Theorem 1. Let f : Sn → Rd be an equivariant map (i.e., f(−x) = −f(x)).
Then the preimage f−1(o) of the origin o ∈ Rd has (n− d)-dimensional volume at
least as large as Sn−d.

Again, one can consider discrete analogues of this result. A very simple one is
the following: Let ♦n be the n-dimensional cross-polytope, i.e., the convex hull

1One very general way of making this precise is to say that, for every ε > 0, the ε-neighborhood
of f−1(p) in Sd has d-dimensional volume at least as large as the ε-neighborhood of Sn−d.
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of the vectors ±ei, 1 ≤ i ≤ n (the standard basis vectors and their negatives).
Then, for any equivariant map f : ∂♦n → Rd, the origin o ∈ Rd is covered by
the f -images of at least 2

(
n

d+1

)
d-faces of ∂♦n. This particular fact is not very

exciting, since it is also a straightforward consequence of the Topological Radon
Lemma [2], which says that for every equivariant map f : ∂♦d+1 → Rd, the origin
is covered by the images of at least two d-faces.

Things become more interesting if we do not treat all d-faces of ∂♦n in the
same way. For instance, consider the case d = 3 and suppose that we only count
those 3-faces conv{+ei,+ej ,−ek,−eℓ} that are spanned by two positive and two
negative basis vectors. In this setting, we can prove the following:

Theorem 2. Let u1, . . . , un ∈ S2 be in general position, and suppose that we
connect any two points ui, uj by the shorter geodesic arc between them. Then the
number of crossings in the resulting spherical geodesic drawing of the complete
graph Kn is at least 1

4⌊n
2 ⌋⌊n−1

2 ⌋⌊n−2
2 ⌋⌊n−3

2 ⌋.

We remark that the lower bound is conjectured to hold for arbitrary drawings.
We hope that the approach sketched here will also be useful to attack the general
conjecture.
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Point-pseudoline incidences in higher dimensions

József Solymosi

(joint work with Terence Tao)

Our goal is to prove almost tight bounds on incidences between points and k-di-
mensional varieties of bounded degree in Rd. Our main tools are the Polynomial
Ham Sandwich Theorem and induction on both the dimension and the number of
points.

Given a collection P of points in some space, and a collection L of sets in that
same space, let I(P,L) := {(p, ℓ) ∈ P × L : p ∈ ℓ} be the set of incidences. One
of the objectives in combinatorial incidence geometry is to obtain good bounds
on the cardinality |I(P,L)| on the number of incidences between finite collections
P,L, subject to various hypotheses on P and L. For instance, we have the classical
result of Szemerédi and Trotter [1]:

Szemerédi–Trotter Theorem. Let P be a finite set of points in Rd for some
d ≥ 2, and let L be a finite set of lines in Rd. Then

(1) |I(P,L)| ≤ C(|P |2/3|L|2/3 + |P |+ |L|)
for some absolute constant C.

We establish near-sharp Szemerédi–Trotter type bounds on incidences between
points and k-dimensional algebraic varieties in Rd for various values of k and d,
under some “pseudoline” hypotheses on the algebraic varieties. Our argument is
based on the polynomial method as used by Guth and Katz [2], combined with an
induction on the size of the point set P . The inductive nature of our arguments
causes us to lose epsilon terms in the exponents, but the bounds are otherwise
sharp.

Let k, d ≥ 0 be integers such that d ≥ 2k, and let ǫ > 0 and C0 ≥ 1 be real
numbers. Let P be be a finite collection of distinct points in Rd, let L be a finite
collection of real algebraic varieties in Rd, and let I ⊂ I(P,L) be a set of incidences
between P and L. Assume the following “pseudoline-type” axioms:

(i) For each ℓ ∈ L, ℓ is a k-dimensional real algebraic variety of degree at
most C0 (and is thus the restriction to Rd of a complex algebraic variety
ℓC of the same dimension and degree).

(ii) If ℓ, ℓ′ ∈ L are distinct, then there are at most C0 points p in P such that
(p, ℓ), (p, ℓ′) ∈ I.

(iii) If p, p′ ∈ P are distinct, then there are at most C0 varieties ℓ in L such
that (p, ℓ), (p′, ℓ) ∈ I. (Note that for C0 = 2, this is equivalent to (ii).)

(iv) If (p, ℓ) ∈ I, then p is a smooth (real) point of ℓ. In particular, for each
(p, ℓ) ∈ I, there is a unique tangent space Tpℓ of ℓ at p.

(v) If ℓ, ℓ′ ∈ L are distinct, and p ∈ P are such that (p, ℓ), (p, ℓ′) ∈ I, then
the tangent spaces Tpℓ and Tpℓ

′ are transverse, in the sense that they only
intersect at p.
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Then one has

(2) |I| ≤ A|P | 23+ǫ|L| 23 +
3

2
|P |+ 3

2
|L|

for some constant A = Ak,ǫ,C0 that depends only on the quantities k, ǫ, C0.
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A center transversal theorem for hyperplanes

Stefan Langerman

(joint work with Vida Dujmović)

Motivated by an open problem from graph drawing, we study several partitioning
problems for line and hyperplane arrangements. We prove a ham-sandwich cut
theorem: given two sets of n lines in R2, there is a line ℓ such that in both line sets,
for both halfplanes delimited by ℓ, there are

√
n lines which pairwise intersect in

that halfplane, and this bound is tight; a centerpoint theorem: for any set of n lines
there is a point such that for any halfplane containing that point there are

√
n/3

of the lines which pairwise intersect in that halfplane. We generalize those results
in higher dimension and obtain a center transversal theorem, a same-type lemma,
and a positive portion Erdős–Szekeres theorem for hyperplane arrangements. This
is done by formulating a generalization of the center transversal theorem which
applies to set functions that are much more general than measures.

Tight bounds on the maximum size of a set of permutations of
bounded VC-dimension

Josef Cibulka

(joint work with Jan Kynčl)

Motivated by the so-called acyclic linear orders problem, Raz [14] defined the
Vapnik–Chervonenkis dimension (VC-dimension) of a set P of permutations: Let
Sn be the set of all n-permutations, that is, permutations of [n]. The restriction of
π ∈ Sn to the k-tuple (a1, a2, . . . , ak) of positions (where 1 ≤ a1 < a2 < · · · < ak ≤
n) is the k-permutation π′ satisfying ∀i, j : π′(i) < π′(j) ⇔ π(ai) < π(aj). The
k-tuple of positions (a1, . . . , ak) is shattered by P if each k-permutation appears
as a restriction of some π ∈ P to (a1, . . . , ak). The VC-dimension of P is the size
of the largest set of positions shattered by P .

Let rk(n) be the size of the largest set of n-permutations with VC-dimension k.
Raz [14] proved that r2(n) ≤ Cn for some constant C and asked whether an

exponential upper bound on rk(n) can also be found for every k ≥ 3.
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An n-permutation π avoids a k-permutation ρ if none of the restrictions of π
to a k-tuple of positions is ρ. Clearly, the set of permutations avoiding ρ ∈ Sk

has VC-dimension smaller than k. Thus, Raz’s question generalizes the Stanley–
Wilf conjecture which states that the number of n-permutations that avoid an
arbitrary fixed permutation ρ grows exponentially in n. The conjecture was settled
by Marcus and Tardos [9] using a result of Klazar [7].

Let α(n) be the inverse of the Ackermann function.
We show that the size of a set of n-permutations with VC-dimension k cannot

be much larger than exponential in n.

Theorem 1.

r3(n) ≤ α(n)(4+o(1))n,

r4(n) ≤ 2n·(2α(n)+3 log2(α(n))+O(1)),

r2t+2(n) ≤ 2n·((2/t!)α(n)
t+O(α(n)t−1)) for every t ≥ 2 and

r2t+3(n) ≤ 2n·((2/t!)α(n)
t log2(α(n))+O(α(n)t) for every t ≥ 1.

The result has an application in the enumeration of simple complete topological
graphs [8].

On the other hand, we give a negative answer to the Raz’s question:

Theorem 2.
r3(n) ≥ (α(n)/2−O(1))n.

Let k ≥ 4 be a fixed integer and let t := ⌊(k − 2)/2⌋. We have

rk(n) ≥ 2n((1/t!)α(n)
t−O(α(n)t−1)).

An n-permutation matrix is an n× n (0, 1)-matrix with exactly one 1-entry in
every row and every column. Permutations and permutation matrices are in a
one-to-one correspondence that assigns to a permutation π a permutation matrix
Aπ with Aπ(i, j) = 1 ⇔ π(j) = i.

An m × n (0, 1)-matrix B contains a k × l (0, 1)-matrix S if B has a k × l
submatrix T that can be obtained from S by changing some (possibly none) 0-en-
tries to 1-entries. Otherwise B avoids S. Thus, a permutation π avoids ρ if and
only if Aπ avoids Aρ. Füredi and Hajnal [6] initiated the study of the following
problems from the extremal theory of (0, 1)-matrices. Given a matrix S (the
forbidden matrix ), what is the maximum number exS(n) of 1-entries in an n× n
matrix that avoids S? This area is closely related to the Turán problems on graphs
and to the Davenport–Schinzel sequences. Functions exS or their asymptotics
have been determined for some matrices S [6, 13, 16] and these results have found
applications mostly in discrete geometry [1, 4, 5, 11] and also in the analysis of
algorithms [12]. The Füredi–Hajnal conjecture states that exP (n) is linear in n
whenever P is a permutation matrix. Marcus and Tardos proved this conjecture
by a surprisingly simple argument [9]. This implied the relatively long standing
Stanley–Wilf conjecture by Klazar’s reduction [7]. An improved reduction yielding
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the upper bound 2O(k log k)n on the size of a set of n-permutations with a forbidden
k-permutation was found by the first author [2].

We modify the question of Füredi and Hajnal and study the maximal number
pk(n) of 1-entries in an n×n matrix such that no (k+1)-tuple of columns contains
all (k + 1)-permutation matrices. It can be easily shown that p2(n) ≤ 4n− 4.

Theorem 3.

2nα(n)−O(n) ≤ p3(n) ≤ O(nα(n)),

p2t+2(n) = n2(1/t!)α(n)
t±O(α(n)t−1) for every t ≥ 1 and

p2t+3(n) ≥ n2(1/t!)α(n)
t−O(α(n)t−1)

p2t+3(n) ≤ n2(1/t!)α(n)
t log2(α(n))+O(α(n)t) for every t ≥ 1.

Let S and T be sequences. We say that S contains a pattern T if S contains a
subsequence T ′ isomorphic to T , that is, T can be obtained from T ′ by a one-to-
one renaming of the symbols. A sequence S over an alphabet Γ is a Davenport–
Schinzel sequence of order s (a DS(s)-sequence for short) if no symbol appears
on two consecutive positions and S does not contain the pattern abab . . . ba of
length s+2. These sequences were introduced by Davenport and Schinzel [3] and
found numerous applications in computational and combinatorial geometry. More
can be found in the book of Sharir and Agarwal [15]. The currently best known
bounds on the maximum length of a Davenport–Schinzel sequence over n symbols
are summarized in a paper of Nivasch [10].

The maximum length of a DS(s)-sequence over n symbols almost exactly corre-
sponds to the maximum number of 1-entries in an n×n matrix avoiding a specific
(s+1)× 2 matrix [6, 13]. Our proofs use these correspondences between matrices
and DS-sequences and also sequences with other forbidden patterns.

An s-partition of the rows of a matrix M is a partition of the interval of in-
tegers {1, . . . ,m} into s intervals {1 = m1, . . . ,m2 − 1}, {m2, . . . ,m3 − 1}, . . . ,
{ms, . . . ,m = ms+1 − 1}. A matrix M contains a B-fat (r, s)-formation if there
exists an s-partition of the rows and an r-tuple of columns each of which has B
1-entries in each interval of rows.

The proof of Theorem 1 uses the following lemma, analogously to the use of
Raz’s Technical Lemma [14]. In the lemma, βs(m) are extremely slowly growing
functions defined in terms of the inverse Ackermann function.

Lemma 4. For all positive integers m,n, s and B, an m × n matrix M with at
least 2(βs(m) + 2)Bn 1-entries contains a B-fat (⌊(n− 1)B/(mc′s)⌋, s)-formation,
where c′s is a constant depending only on s.

The proof of the lemma is based on a proof of the upper bound on the number
of symbols in the so-called formation-free sequences by Nivasch [10].
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Space crossing numbers

Boris Bukh

(joint work with Alfredo Hubard)

The crossing number of a graph G = (V,E) is the minimum number of crossings
between edges of G among all the ways to draw G in the plane. It is denoted cr(G).
The edges in a drawing of G need not be line segments, they are allowed to be
arbitrary continuous curves. If one restricts to the straight-line drawings, then one
obtains the rectilinear crossing number lin-cr(G). It is clear that cr(G) ≤ lin-cr(G),
and there are examples where cr(G) = 4, but lin-cr(G) is unbounded [2]. The
principal result about crossing numbers is the crossing lemma of Ajtai–Chvátal–
Newborn–Szemerédi and Leighton [1, 6] which states that

(1) cr(G) ≥ c
|E|3
|V |2 whenever |E| ≥ C|V |.

The inequality is sharp apart from the values of c and C (see [7] for the best known
estimate on c). The most famous applications of the crossing lemma are elegant
proofs by Székely [8] of Szemerédi–Trotter theorem on point-line incidences and
of Spencer–Szemerédi–Trotter theorem on the unit distances. Another remarkable
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application is the bound on the number of halving lines by Dey [4]. We extend
the crossing number to R3, in such a way that the corresponding “space crossing
lemma” (Theorem 2 below) implies (1) (up to a logarithmic factor).

A spatial drawing of a graph G is representation of vertices of G by points in R3,
and edges of G by continuous curves. A space crossing consists of a quadruple
of vertex-disjoint edges (e1, . . . , e4) and a line l that meets these four edges. The
space crossing number of G, denoted cr4(G) is the least number of crossings in
any spatial drawing of G. As in the planar case, the spatial rectilinear crossing
number lin-cr4(G) is obtained by restricting to straight-line spatial drawings.

For a graph G pick a drawing of G in the plane with the fewest crossings. By
perturbing the drawing slightly, we may assume that there are no points where
three vertex-disjoint edges meet. The drawing can be lifted to a drawing G on a
large sphere without changing any of the crossings. Since no line meets the sphere
in more than two points, every space crossings in the resulting spatial drawing
comes from a pair of crossings in the planar drawing. Thus,

(2) cr4(G) ≤
(
cr(G)

2

)
.

Let us note that the space crossing number is not the usual crossing number in
disguise, for the inequality in the reverse direction does not hold:

Proposition 1. For every natural number n there is a graph G with cr4(G) = 0
and cr(G) ≥ n.

The principal result that justifies the introduction of the space crossing number
is the following generalization of the crossing lemma.

Theorem 2. Let G = (V,E) be an arbitrary graph, then

cr4(G) ≥ |E|6
4179|V |4 log22|V |

whenever |E| ≥ 441|V |.
Since (1) is sharp, in the light of the argument that led to (2) there are graphs

on the sphere for which the bound in Theorem 2 is tight up to the logarithmic
factor. In the drawings of the these graphs, the edges are of course not straight.
It turns out that there are also straight-line spatial drawings for which Theorem 2
is tight.

Theorem 3. For all positive integers m and n satisfying m ≤
(
n
2

)
there is a graph

G with n vertices and m edges, and the rectilinear space crossing number at most
6720m6/n4.

Our original construction in the proof of Theorem 3 used the idea of stair-
convexity introduced in [3]. However, at the workshop Geza Tóth greatly simplified
the construction. His graph is a union of disjoint cliques of appropriate sized. The
vertices of each clique are placed in small clusters, which are themselves in general
position, so that no line comes close through three or more clusters.
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Our final result is the lower bound on the space crossing number of (possibly
sparse) pseudo-random graphs.

Theorem 4. There is an absolute constant ε > 0 such that the following holds. Let
G = (V,E) be a graph such that whenever V1, V2 are any two subsets of V of size
ε|V |, the number of edges between V1 and V2 is at least N . Then lin-cr4(G) ≥ N4.

The condition of the theorem holds for several models of random graphs, as
well as for (n, d, λ)-graph (see for example [5, Theorem 2.11]).

References
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[5] M. Krivelevich, B. Sudakov, Pseudo-random graphs, In More sets, graphs and numbers,
volume 15 of Bolyai Soc. Math. Stud., pages 199–262. Springer, Berlin, 2006.

[6] F.T. Leighton, New lower bound techniques for VLSI, Math. Systems Theory 17(1) (1984),
47–70.
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What are high-dimensional permutations? How many are there?

Nati Linial

(joint work with Zur Luria)

The permanent of an n× n matrix A = (aij) is defined by

Per(A) =
∑

σ∈Sn

n∏

i=1

ai,σi

Permanents have attracted a lot of attention [8]. They play an important role in
combinatorics. Thus if A is a 0− 1 matrix, then Per(A) counts perfect matchings
in the bipartite graph whose adjacency matrix is A. They are also of great interest
from the computational perspective. It is #P -hard to calculate the permanent of
a given 0-1 matrix [10], and following a long line of research, an approximation
scheme was found [5] for the permanents of nonnegative matrices. Bounds on
permanents have also been studied at great depth. Van der Waerden conjectured
that Per(A) ≥ n!

nn for every n × n doubly stochastic matrix A, and this was
established more than fifty years later by Falikman and Egorychev [3, 2]. More
recently, Gurvits [4] discovered a new conceptual proof for this conjecture (see [7]



Discrete Geometry 2509

for a very readable presentation). What is more relevant for us here are upper
bounds on permanents. These are the subject of Minc’s conjecture which was
proved by Brègman [1].

Theorem 1. If A is an n× n 0-1 matrix with ri ones in the i-th row, then

Per(A) ≤
n∏

i=1

(ri!)
1/ri .

Radhakrishnan’s proof uses the entropy method. Our approach can be seen
as an adaptation of this proof strategy to study a d-dimensional analogue of the
permanent.

Definition 2. (1) Let A be an [n]d array. A line of A is vector of the form

(A(i1, ..., ij−1, t, ij+1, ..., id))
n
t=1,

where 1 ≤ j ≤ d and i1, ..., ij−1, ij+1, ..., id ∈ [n].
(2) A d-dimensional permutation of order n is an [n]d+1 array P of zeros

and ones such that every line of P contains a single one and n− 1 zeros.
Denote the set of all d-dimensional permutations of order n by Sd,n.

For example, a two dimensional array is a matrix. It has two kinds of lines,
usually called rows and columns. Thus a 1-permutation is an n×n 0-1 matrix with
a single one in each row and a single one in each column, namely a permutation
matrix. A 2-permutation is identical to a Latin square and S2,n is the same as
the set Ln, of order-n Latin squares. We now explain the correspondence between
the two sets. If X is a 2-permutation of order n, then we associate with it a Latin
square L, where L(i, j) as the (unique) index of a 1 entry in the line A(i, j, ∗).
For more on the subject of Latin squares, see [11]. The same definition yields a
one-to-one correspondence between 3-dimensional permutations and Latin cubes.
In general, d-dimensional permutations are synonymous with d-dimensional Latin
hypercubes. For more on d-dimensional Latin hypercubes, see [12]. To summarize,
the following is an equivalent definition of a d-dimensional permutation. It is an
[n]d array with entries from [n] in which every line contains each i ∈ [n] exactly
once. We interchange freely between these two definitions according to context.

Our main concern here is to estimate |Sd,n|, the number of d-dimensional per-
mutations of order n. By Stirling’s formula

|S1,n| = n! =
(
(1 + o(1))

n

e

)n

.

As we saw, |S2,n| is the number of order n Latin squares. The best known esti-
mate [11] is

|S2,n| = |Ln| =
(
(1 + o(1))

n

e2

)n2

.

This relation is proved using bounds on permanents. Brégman’s theorem for the
upper bound, and the Falikman–Egorychev theorem for the lower bound.

This suggests
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Conjecture 3.

|Sd,n| =
(
(1 + o(1))

n

ed

)nd

.

We prove the upper bound

Theorem 4.

|Sd,n| ≤
(
(1 + o(1))

n

ed

)nd

.

As mentioned, our method of proof is an adaptation of [9]. We first need

Definition 5. (1) An [n]d+1 0-1 array M1 is said to include an array M2 if

M2(i1, ..., id+1) = 1 ⇒ M1(i1, ..., id+1) = 1.

(2) The d-permanent of a [n]d+1 0-1 array A is

Perd(A) = The number of d-dimensional permutations included in A.

Note that in the one-dimensional case, this is indeed the usual definition of
Per(A). It is not hard to see that for d = 1 following theorem coincides with
Brègman’s theorem.

Theorem 6. Define the function f : N≥0 × N −→ R recursively by:

• f(0, r) = log(r), where the logarithm is in base e.
• f(d, r) = 1

r

∑r
k=1 f(d− 1, k).

Let A be an [n]d+1 0-1 array with ri1,...id ones in the line A(i1, ..., id, ∗). Then

Perd(A) ≤
∏

i1,...,id

ef(d,ri1,...id ).

Somel analysis yields fairly tight bounds on the function f from theorem 6.
Theorem 4 follows by applying these estimates to the all-ones array.

What about proving a matching lower bound on Sd,n (and thus proving con-
jecture 3)? In order to follow the footsteps of [11], we would need a lower bound
on PerdA, namely, a higher-dimensional analog of the van der Waerden conjec-
ture. The entries of a multi-stochastic array are nonnegative reals and the sum
of entries along every line is 1. This is the higher-dimensional counterpart of a
doubly-stochastic matrix. It should be clear how to extend the notion of Perd(A)
to real-valued arrays. In this approach we would need a lower bound on Perd(A)
that holds for every multi-stochastic array A. However, this attempt (or at least
its most simplistic version) is bound to fail. An easy consequence of Hall’s the-
orem says that a 0-1 matrix in which every line or column contains the same
(positive) number of one-entries, has a positive permanent. However, the higher
dimensional analog of this is simply incorrect. There exist multi-stochastic arrays
whose d-permanent vanishes, as can easily be deduced e.g., from [6].
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On a problem of Grünbaum and Motzkin, and Erdős and Purdy

Rom Pinchasi

Let P be a set of n blue points in the plane, not all collinear. Let G be a set
of m red points such that G ∩ P = ∅ and every line determined by P contains a
point from G. Grünbaum and Motzkin (1975) and independently Erdős and Purdy
(1978) conjectured that m must be large in terms of n. The fact that m ≥ cn for
some constant c follows from the weak Dirac’s theorem by Beck and Széméredi
and trotter (1983), where c is very small. No example is known where m < n− 6.
This suggests that m ≥ cn for some reasonably large constant c.

We show that m ≥ n−1
3 .

New results on decomposability of geometric coverings

Dömötör Pálvölgyi

(joint work with János Pach, Géza Tóth)

The study of multiple coverings was initiated by Davenport and L. Fejes Tóth
50 years ago. In 1986 J. Pach published the first papers about decomposability of
multiple coverings. It was discovered recently that besides its theoretical interest,
this area has important practical applications. Now there is a great activity in this
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field with several breakthrough results, although, the most important questions are
still unsolved.

Let P = { Pi | i ∈ I } be a collection of planar sets. We say that P is an m-fold
covering if every point in the plane is contained in at least m members of P . The
biggest such k is called the thickness of the covering. A 1-fold covering is simply
called a covering.

Definition. A planar set P is said to be cover-decomposable if there exists a
(minimal) constant m = m(P ) such that every m-fold covering of the plane with
translates of P can be decomposed into two coverings.

Pach [6] proposed the problem of determining all cover-decomposable sets in
1980 and made the following conjecture.

Conjecture (Pach). All planar convex sets are cover-decomposable.

For a cover-decomposable set P , one can ask for the exact value of m(P ). In
most of the cases, the best known upper and lower bounds are very far from each
other. The only case where the gap is relatively small is for open triangles where
we know that 4 ≤ m(P ) ≤ 12 [4].

Decomposition of open polygons. This conjecture has been verified for open
polygons through a series of papers.

Theorem A. (i) [7] Every centrally symmetric open convex polygon is cover-
decomposable.

(ii) [13] Every open triangle is cover-decomposable.
(iii) [12] Every open convex polygon is cover-decomposable.

There are several recent negative results as well.

Theorem B. (i) [8] Concave quadrilaterals are not cover-decomposable.
(ii) [11] “Typical” concave polygons are not cover-decomposable.

In fact we have a complete characterization if instead of the plane, we require
that there exists a (minimal) constant m = m(P ) such that every m-fold covering
of ANY planar set with translates of P can be decomposed into two coverings,
which property is called totally-cover-decomposability.

Theorem A–B ([12] and [11]). An open polygon, P , is totally-cover-decomposable
if and only if among its “wedges” there is no two that belong to a “special” type.

Two halflines, both of endpoint O, divide the plane into two parts which we
call wedges. A polygon with n vertices has n wedges, each corresponding to the
lengthening of two adjacent sides. Two wedges belong to the special type if the
union of the wedges is in an open halfplane whose boundary contains O, but none
of them contain the other.

However, unfortunately we still do not have such a nice characterization for
plane-cover-decomposability. Some special cases, when such extensions are possi-
ble, were studied in [11].



Discrete Geometry 2513

Decomposition to multiple parts.

Definition. Let P be a planar set and k ≥ 2 integer. If it exists, let mk(P ) denote
the smallest number m with the property that every m-fold covering of the plane
with translates of P can be decomposed into k coverings.

We conjecture that mk(P ) exists for all cover-decomposable P . This was es-
tablished for polygons in the above mentioned papers with some weak bounds,
like mk(P ) ≤ O(m(P ))k. However, all these results were improved to the optimal
linear bound in a series of papers.

Theorem C. (i) [9] For any centrally symmetric open convex polygon P ,
mk(P ) = O(k2).

(ii) [1] For any centrally symmetric open convex polygon P , mk(P ) = O(k).
(iii) [3] For any open convex polygon P , mk(P ) = O(k).
(iv) [14] For any open, cover-decomposable polygon1 P , mk(P ) = O(k).

Space and homothetic copies. We can similarly say that a spatial set P is
cover-decomposable if there exists a (minimal) constant m = m(P ) such that
every m-fold covering of the space with translates of P can be decomposed into
two coverings. Here less sets seem to have this property.

Theorem D. (i) [5] The unit ball is not cover-decomposable
(ii) [11] Polytopes are not cover-decomposable in the space and in higher di-

mensions.
(iii) [2] Orthants in 4 and higher dimensions are not cover-decomposable.
(iv) [14] “Four sided spatial wedges” are not cover-decomposable in the space

and in higher dimensions.

In all four proofs some indecomposable planar configurations are simulated by
intersecting a plane by translates. Recently a positive theorem was also estab-
lished.

Theorem E. [4] Open octants are cover-decomposable.

This theorem has the following very interesting corollary, which is unique in the
sense that all the other proofs only work for translates of planar sets.

Corollary. [4] Any 12-fold covering of any subset of the plane with a finite number
of homothetic copies of any given triangle can be decomposed into two coverings.

Closed polygons and making the covering finite. Notice that all our pos-
itive Theorems (A, C and E) are about open polygons. This is because using a
compactness argument we can suppose that the considered coverings are locally
finite and reduce them to the finite case. This cannot be done for closed polygons.
In fact, for non-locally finite coverings with closed polygons, no positive results
were known until recently. (The indecomposable constructions are finite, thus,
of course, also work for closed polygons.) We only knew that if the underlying

1I.e. polygon satisfying the requirements of Theorem A-B.
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closed set is convex then we can suppose that the covering only contains countably
many copies (see [11]. Also, very recently Tóth [14] showed that closed, symmetric
polygons are cover-decomposable.

Open questions

Most importantly, are all planar convex sets cover-decomposable?
Is there a polygon that is cover-decomposable but not totally-cover-decompos-

able?
Are closed, convex polygons cover-decomposable?
Is it true that for any cover-decomposable polygon/set P , mk(P ) = O(k)? Is it

true that at all that for any set P , if m2(P ) exists then m3(P ) also exists?
Is there a nice set in three dimensions that is cover-decomposable?
For the shift-chain conjecture and other related problems, also see [10].
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On the tolerated Tverberg Theorem

Pablo Soberón

(joint work with Ricardo Strausz)

In 1921 Johann Radon proved the following: given d + 2 point in Rd they can be
partitioned in two disjoint set A and B such that their convex hulls intersect [1];
this is now known as Radon’s Theorem. This Theorem has been the basis for
a wide number of generalisations. One of these generalisations is due to Helge
Tverberg. In 1966 he showed that given (k − 1)(d + 1) + 1 points in Rd there
is a partition of them in k disjoint sets A1, . . . , Ak such that their convex hulls
intersect [2]. Both these theorems have optimal numbers.

The versions with tolerance of these numbers started to appear in 1972 when
David Larman showed that given 2d+ 3 points in Rd there is a partition of them
in two disjoint sets A and B such that for all x, the convex hulls of A\{x} and
B\{x} intersect [3]. This would be a Radon Theorem with tolerance 1. Later in
2007, this result was generalised by Natalia Garćıa-Coĺın in her PhD thesis, with
David Larman as supervisor. The result was that given (r + 1)(d+ 1) + 1 points
in Rd, they can be partitioned in two sets A and B such that for any x1, . . . , xr

the convex hulls of A\{x1, . . . , xr} and B\{x1, . . . , xr} intersect [4]. This is what
we call the Radon Theorem with tolerance.

Larman’s result has been proven to be optimal for d ≤ 4. The best lower bound
in general is ⌈ 5d

3 ⌉+3, proven by Jorge Ramı́rez-Alfonśın [5]. Other theorems with
tolerance have begun to appear recently. In the talk I present a positive answer
to a conjecture in [4], namely

Theorem 1 (Tverberg with tolerance [6]). Let r, k, d be nonnegative integers such
that d ≥ 1. Then, given (r+1)(k− 1)(d+1)+ 1 points in Rd, there is a partition
of them in k disjoint sets A1, . . . , Ak such that for any x1, x2, . . . , xr the convex
huls of the sets Ai\{x1, x2, . . . , xr} are intersecting.

We have not proven that this result is optimal, however we conjecture that
for any r, k, d there must be a set of (r + 1)(k − 1)(d + 1) points in Rd with no
k-Tverberg partition with tolerance r.

It is interesting to not that some theorems do not admit nontrivial versions with
tolerance. This would be true for the Bárány–Lovász generalisation of Carathé-
odory’s Theorem. Their version says that given d+1 color clases that capture the
origin in Rd there is a colorful choice that captures the origin. The version with
tolerance says that given (r+ 1)(d+ 1) color classes that capture the origin in Rd

there is a colorful choice that captures the origin with tolerance r. The interesting
thing about this result is that it is trivial with (r+1)(d+1) classes but false with
less.
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On line transversals

Edgardo Roldán-Pensado

(joint work with Jesús Jerónimo-Castro)

Let F be a finite family of convex bodies in Rd. It is said that F has property T
if there exists a line that intersects all of its members. Furthermore, if k ∈ N

then F has property T (k) if every subfamily of F with at most k members has
property T .

In 1935, P. Vincensini [8] posed the problem of finding conditions on F so that
property T (k) would imply property T . The first result of this type was due to
Santaló [7] who showed the following: If F is a family of parallelotopes in Rd with
edges parallel to the coordinate axes and F has property T (2d−1(2d − 1)), then
F has property T .

After this, several variations of this problem emerged. We are interested in one
posed by B. Grünbaum [2] in 1964:

Let K be a convex body in Rd and F = {x1 +K, . . . , xn +K} be a family of
translates of K with property T (k). Determine the smallest λ = λ(K, k) > 0 such
that the family λF = {x1 + λK, . . . , xn + λK} has property T .

There have been several results on this such as the following (see [1, 3, 4]):

Theorem 1 (Eckhoff). Let D be a disk in R2, then λ(D, 3) ≤ 2.

Theorem 2 (Heppes). Let F be a family of disjoint translates of a disc in R2

with the property T (3), then 1.65F has property T .

Theorem 3 (Jerónimo). Let D be a disk in R2, then λ(D, 4) = 1+
√
5

2 .

It was known that λ(D, 3) ≥ 1+
√
5

2 , as can be seen by placing five disks in R2

with centres on the vertices of a regular pentagon of appropriate size. Eckhoff
conjectured that this was actually the correct value for λ(D, 3). However, the best
upper bound known was λ(D, 3) < 2.

Definition. Let K be a convex body in R2, the number µ(K) is defined as the
smallest µ > 0 such that the following holds: If x1, x2, x3 and x4 form the vertices
of a parallelogram and the family F = {x1 +K, . . . , x4 +K} has property T (3),
then the family µF has property T .
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For simple convex bodies µ(K) is easy to compute, for example, µ(D) =
√
2 if

D is a disk and µ(S) = 2 if S is a square. In terms of this number, we managed
to improve the bounds on λ(K, 3) and in particular we improved the bounds on
Eckhoff’s conjecture (see [5]).

Theorem 4. There exists ε > 0 such that for every convex body K ⊂ R2,

4

3
+ ε ≤ λ(K, 3) ≤ max

{
2 +

√
1 + 4µ(K)

2
, ρ

}
,

where ρ ≈ 1.76 is the real root of x3 − 2x2 − x+ 1.

Corollary 5. If D is a disk, then

1 +
√
5

2
≤ λ(D, 3) ≤ 1 +

√
1 + 4

√
2

2
≈ 1.79.

Using some of the same techniques, we generalised Jerónimo’s theorem above
to all convex bodies.

Theorem 6. Let K ⊂ R2 be any convex body, then

λ(K, 4) ≤ 1 +
√
5

2
.

Another variant of Grünbaum’s problem closely related to this is the following:
Let K be a convex body and F = {x1 + t1K, . . . , xn + tnK} be a family of
homothets of K with property T (k). Determine the smallest λh = λh(K, k) > 0
such that λhF has property T .

As far as we know, there is nothing in the literature about this problem. We
obtained some results for the case when K is a disk (see [6]).

Theorem 7. Let B be a ball in Rd, then

λh(B, d+ 1) ≤ 4.

This theorem is far from being optimal. The main idea used here is to fix the
smallest ball in F and shrink it to a point P while expanding the other so that
the T (d+1) property is not lost. Then we represent a subset of the lines through
P as Rd−1. Finally we project each ball to this space and use Helly’s theorem to
find a line transversal. This theorem can be improved considerably in R2.

Theorem 8. If D ⊂ R2 is a disk, then
√
3 ≤ λh(D, 3) ≤ ρ ≈ 2.875,

where ρ is the real root of x3 − x2 − 4x− 4.

This theorem uses some of the same ideas but is done more carefully, we con-
jecture that λh(D, 3) =

√
3. If instead of T (3) we use the stronger T (4) property

we obtain the following.
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Theorem 9. If D ⊂ R2 is a disk, then
√

2 +
√
2

2
≤ λh(D, 4) ≤ 2

√
2.
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Counting the number of ranking patterns

Norihide Tokushige

(joint work with Hidehiko Kamiya, Akimichi Takemura)

Let m objects x1, . . . , xm ∈ R be given. A judge y ∈ R sorts these objects
according to the Euclidean distance from y. Namely, for x = (x1, . . . , xm) ∈ Rm

and y ∈ R, we say that a judge y gives a ranking f(x, y) := (i1, . . . , im) iff
|y−xi1 | < |y−xi2 | < · · · < |y−xim |. Let F (x) = {f(x, y) : y ∈ R} be the ranking
pattern of x ∈ Rm, and let Fm = {F (x) : x ∈ Rm, x1 < x2 < · · · < xm} be the
family of ranking patterns. For example,

F3 = {{123, 213, 231, 321}}
and

F4 = { {1234, 2134, 2314, 3214, 3241, 3421, 4321},
{1234, 2134, 2314, 2341, 3241, 3421, 4321} }.

Finally, let r(m) = |Fm| be the number of ranking patterns arising fromm objects.
The following values are known: r(3) = 1, r(4) = 2, r(5) = 12, r(6) = 168,
r(7) = 4680, r(8) = 229386, r(9) = 18330206, see [1].

I presented that

c1 <
r(m)1/m

m2
< c2

holds for some positive constants c1, c2. The lower bound comes from a simple
combinatorial construction, while the upper bound is obtained by counting the
cells in a corresponding hyperplane arrangement. I sketch the proof below.
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Let xij =
xi+xj

2 be the midpoint of xi and xj . Then the set of midpoints
{xij : 1 ≤ i < j ≤ m} is a poset with partial order ≺, where xij ≺ xi′j′ iff
i ≤ i′ and j ≤ j′. There are exactly r(m) ways of extending this poset to a
totally ordered set. For example, if m = 4, then there are two possible orderings:
x12 < x13 < x23 < x14 < x24 < x34 and x12 < x13 < x14 < x23 < x24 < x34.
This motivates the mid-hyperplane arrangement Mm, which is a collection of
hyperplanes in Rm of type I {xi = xj : 1 ≤ i < j ≤ m} and type II {xi + xj =
xk + xℓ : i, j, k, l all distinct}. In [1] it is observed that the number of chambers of
Mm equals m! r(m). In general the number of chambers created by n hyperplanes
in Rd is at most (en/d)d. In our case d = m and n = |Mm| =

(
m
2

)
+ 3

(
m
4

)
, which

give r(m)1/m < c2m
2 with c2 = e2/8 ≈ 0.92 for m large.

For the lower bound, we first fix r(m) orderings of {xij : 1 ≤ i < j ≤ m}, and we
then add xm+1 to see how many orderings of {xij : 1 ≤ i < j ≤ m+ 1} appear on
these fixed r(m) orderings. A simple averaging yields roughly r(m+1) > 3

4m
2r(m),

which gives c1m
2 < r(m)1/m with c1 = 3/(4e2) ≈ 0.1 for m large.

The first 5 terms of r(m) coincide with the first 5 terms of the sequence
A059522 of the OEIS [3]. This is related to the number of acyclic-function di-
graphs (A058128). Does A059522 give a lower bound for r(m)? (This is true for
3 ≤ m ≤ 11.) If so, then this gives r(m)1/m > m2/3 ≈ 0.37m2 for m large.
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Construction of locally plane graphs

Gábor Tardos

A graph drawn in the plane with straight-line edges is called a geometric graph.
If no path of length k or shorter is self-intersecting in a geometric graph we call it
k-locally plane. The main result of this paper is a construction of k-locally plane
graphs with a super-linear number of edges. For the proof we develop random-
ized thinning procedures for edge-colored bipartite (abstract) graphs that can be
applied to other problems as well.

A geometric graphG is a straight-line drawing of a simple, finite (abstract) graph
(V,E), i.e., we identify the vertices x ∈ V with distinct points in the Euclidean
plane, and we identify any edge {x, y} ∈ E with the straight line segments xy in
the plane. We assume that the edge xy does not pass through any vertex of G
besides x and y. We call (V,E) the abstract graph underlying G. We say that the
edges e1, e2 ∈ E cross if the corresponding line segments cross each other, i.e., if
they have a common interior point. We say that a subgraph of G is self-intersecting
if it contains a pair of crossing edges.



2520 Oberwolfach Report 44/2011

Geometric graphs without crossing edges are plane drawings of planar graphs:
they have at most 3n− 6 edges if n is the number of vertices.

Avital and Hanani [3], Erdős, and Perles initiated in the mid 1960s the system-
atic study of similar questions for more complicated forbidden configurations: Let
H be set of forbidden configurations (geometric subgraphs). What is the maximal
number of edges of an n vertex geometric graph not containing any configuration
belonging to H? This problem can be regarded as a geometric version of the fun-
damental problem of extremal graph theory: What is the maximum number of
edges that an abstract graph on n vertices can have without containing subgraphs
of a certain kind.

Many questions of the above type on geometric graphs have been addressed in
recent years. In a number of papers linear upper bounds have been established
for the number of edges of a graph, under various forbidden configurations. They
include the configurations of three pairwise crossing edges [2], four pairwise cross-
ing edges [1], the configurations of an edge crossed by many edges [9], or even two
large stars with all edges of one of them crossing all edges of the other [13].

For a constant number of 5 or more pairwise crossing edges the Pavel Valtr has
the best result [11]: a geometric graph on n vertices avoiding this configuration
has O(n log n) edges. Adam Marcus and the present author [4] building on an
earlier result of Pinchasi and Radoičić [10] prove an O(n3/2 logn) bound on the
number of edges of an n vertex geometric graph not containing self-intersecting
cycles of length four. No construction is known beating the Ω(n3/2) edges of an
abstract graph having no cycles of length four.

For surveys on geometric graph theory, consult [5], [6] and [8].
In this talk we consider forbidding self-intersecting path. For k ≥ 3 we call

a geometric graph k-locally plane if it has no self-intersecting subgraph (whose
underlying abstract graph is) isomorphic to a path of length at most k.

Pach et al. [7] consider 3-locally plane graphs, i.e., the case of geometric graphs
with no self-intersecting paths of length three. They prove matching lower and
upper bounds of Θ(n logn) on the maximal number of edges of a 3-locally plane
graph on n vertices.

We extend the the lower bound result of [7] by forbidding all self-intersecting
drawings of longer paths. Technically k-locally plane graphs are defined by for-
bidding self intersecting paths of length k or shorter, but forbidding only self-
intersecting paths of length exactly k would lead to almost the same extremal
function. Indeed, one can delete at most nk edges from any graph on n vertices,
such that all the non-zero degrees in the remaining graph are larger than k. This
ensures that all paths can be extended to a path of length k. It is possible, but
not likely, that if one only forbids paths of length k with the first and last edges
crossing significantly higher number of edges is achievable.

For even k a geometric graph is k-locally plane if and only if the k/2-neigh-
borhood of any vertex x is intersection free. Note that this requirement is much
stronger than the similar condition on abstract graphs, namely that the k/2-neigh-
borhood of any point is planar. One can construct graphs with girth larger than k
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and Ω(n
k

k−1 ) edges. In such a graph the k/2-neighborhood of any vertex is a tree,
still by [7] the graph does not even have 3-locally plane drawing.

Extending the lower bound result in [7] we prove that for arbitrary fixed k ≥ 3

there exist k-locally plane graphs on n vertices with Ω(n log(⌊k/2⌋) n) edges. Here

log(t) denotes t times iterated logarithm and the hidden constant in Ω depends
on k.

As a simple corollary we can characterize the abstract graphs H such that any
geometric graph having no self-intersecting subgraph isomorphic to H has a linear
number of edges. These graphs H are the forests with at least two nontrivial
components. To see the linear bound for the number of edges of a geometric graph
avoiding a self-intersecting copy of such a forest H first delete a linear number
of edges from an arbitrary geometric graph G until all non-zero degrees of the
remaining geometric graph G′ are at least |V (H)|. If G′ is crossing free the linear
bound of the number of edges follows. If you find a pair of crossing edges in G′

they can be extended to a subgraph of G′ isomorphic to H . On the other hand, if
H contains a cycle, then even an abstract graph avoiding it can have a super-linear
number of edges. If H is a tree of diameter k, then a k-locally plane geometric
graph has no self-intersecting copy of H . Notice that the extremal number of
edges in this case (assuming k > 2) is O(n logn) by [7], thus much smaller than
the Ω(nα) edges (α > 1) for forbidden cycles.

The main tool used in the proof of the above result is a randomized thinning
procedure that takes a d edge colored bipartite graph of average degree Θ(d) and
returns a subgraph on the same vertex set with average degree Θ(log d) that does
not have a special type of colored path (walk) of length four. The procedure can be
applied recursively to obtain a subgraph avoiding longer paths of certain types. We
believe this thinning procedure to be of independent interest. In particular it can
be used to obtain optimal 0-1 matrix constructions for certain avoided submatrix
problems, see the the details in [12].
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Finite tilings

Igor Pak

(joint work with Jed Yang)

Beauquier et al (1995) showed that tiling of general regions with two rectangles is
NP-complete, except for few trivial special cases. In a different direction, Rémila
showed that for simply connected regions and two rectangles, the tileability can
be solved in quadratic time (in the area). We prove that there is a finite set of at
most 106 rectangles for which the tileability problem of simply connected regions
is NP-complete, closing the gap between positive and negative results in the field.
We also prove that counting such rectangular tilings is #P-complete, a first result
of this kind.

In the talk, I will survey known results and then give a general outline of the
proof.

Polytopes with low-dimensional realization spaces

Günter M. Ziegler

(joint work with Karim Adiprasito)

We discuss, dimension-by-dimension, the two questions

Question 1. Is it true that, up to projective transformations, there are only finitely
many combinatorial types of d-dimensional convex polytopes?

(This was conjectured to be true by Shephard and McMullen in the sixties;
compare [4].)

Question 2. How does, for d-dimensional polytopes, the dimension of the real-
ization space grow with the size of the polytopes?

(Suitable definitions of “realization space” and “size” are given below.)
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1. Definitions

Let P be a convex d-polytope of size size(P ) := f0(P )+ fd−1(P ). We define its
(centered) realization space as

R0(P ) :=
{
(V,C) ∈ Rd×(f0+fd−1) : conv(V ) = {x ∈ Rd : Ctx ≤ 1}realizesP

}
,

that is, as the set of combined vertex and facet descriptions of realizations of P
that have the origin in the interior. Note that (C, V ) ∈ Rd×(f0+fd−1) lies in this
set iff ctivj = 1 whenever vj lies on the facet Fi = {x ∈ Rd : ctix = 1} and ctivj < 1

otherwise. Thus this realization space is a primary semialgebraic set in Rd size(P );
it particular, its dimension is well-defined.

The polytope P is called projectively unique if the group PGL(Rd) of projective
transformations on Rd acts transitively on R0(P ). In particular, for projectively
unique polytopes we have dimR0(P ) ≤ dimPGL(Rd) = d(d+2), with equality in
all non-trivial cases (if the vertex set of the polytope contains a projective basis,
that is, it is not a join).

The naive guess for the dimension of the (centered) realization space is

NG(P ) := d(f0 + fd−1)− f0,d−1,

where f0,d−1 is the number of vertex-facet incidences. This quantity is “the number
of variables minus the number of equations” in the above system. (Compare [1].)

2. Examples

For d = 2, the only projectively unique 2-polytopes are triangle ∆2 and square�.
For d = 3, the projectively unique 3-polytopes are the four types of 3-polytopes

with at most 9 edges, that is: tetrahedron ∆3, square pyramid � ∗∆0, prism over
triangle ∆2 × ∆1, bipyramid over triangle ∆2 ⊕ ∆1 according to Grünbaum [2,
Exercise 4.8.30]. Indeed, this is compatible with the result of Steinitz [9] (see also
Richter-Gebert [6, Sect. 13.3]) that the dimension of the realization space R0(P )
of a 3-polytope is NG(P ) = f1 + 6 = f1 − 9 + dimPGL(Rd).

This answers Questions 1 and 2 for d ≤ 3: For Question 1 the answer is yes,
and the dimension of the realization space grows linearly with the size.

3. Universality

The naive guess NG(P ) yields the dimension of the (centered) realization space
correctly for all polytopes of dimension d ≤ 3, as well as for all simple or simplicial
polytopes. However, Robertson’s [7] claim that R0(P ) is always a differentiable
manifold of dimension NG(P ) is far from being true — indeed, according to Mnëv’s
universality theorem [5] [6], R0(P ) is “stably equivalent” to an arbitrary primary
semialgebraic set defined over Z; here “stable equivalence” means that we loose
the control over the dimension, but keep singularities as well as the (non)existence
of rational points. Thus, we cannot assume that NG(P ) yields the dimension of
the realization space in general — the guess could be way too high, or too low.
Indeed, according to Richter-Gebert [6] this already happens for d = 4.
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4. Shephard’s list

Construction methods for projectively unique d-polytopes were developed by
Peter McMullen in his doctoral thesis (Birmingham 1968) directed by G.C. Shep-
hard; see [4], where McMullen writes: “Shephard (private communication) has
independently made a list, believed to be complete, of the projectively unique
4-polytopes. All of these polytopes can be constructed by the methods described
here.”

If the conjecture is correct, then the following list of eleven projectively unique
4-polytopes (all of them generated by McMullen’s techniques, duplicates removed)
should be complete:
Construction (f0, f1, f2, f3; f03) NG facets

∆4 selfdual (5,10,10,5;20) 20 5 tetrahedra
� ∗∆1 selfdual (6,11,11,6;26) 22 4 tetrah., 2 square pyramids
(∆2 ⊕∆1) ∗∆0 (6,14,15,7;29) 23 6 tetrah., 1 bipyramid
(∆2 ×∆1) ∗∆0 (7,15,14,6;29) 23 2 tetrah., 3 sq. pyr., 1 prism
∆3 ⊕∆1 simplicial (6,14,16,8;32) 24 8 tetrah.
∆3 ×∆1 simple (8,16,14,6;32) 24 2 tetrah., 4 prisms
∆2 ⊕∆2 simplicial (6,15,18,9;36) 24 9 tetrah.
∆2 ×∆2 simple (9,18,15,6;36) 24 6 prisms
(�, v)⊕ (�, v) (7,17,18,8;36) 24 4 square pyramids, 4 tetrah.
. . . its dual (8,18,17,7;36) 24 2 prisms, 4 sq. pyr., 1 tetrah.
v.split(∆2 ×∆1) selfdual (7,17,17,7;32) 24 3 tetrah., 2 sq. pyr., 2 bipyr.

5. Neighborly cubical polytopes

The neighborly-cubical 4-polytopes NCP4(n) constructed by Joswig & Ziegler [3]
and further analyzed by Sanyal & Ziegler [8] are cubical 4-polytopes with the graph
of the n-cube. From these data, one can derive that the extended f -vector is

(f0, f1, f2, f3; f03) =
1
42

n(4, 2n, 3(n− 2), n− 2, 8n− 16).

In particular, we get that the naive guess is naive: NG(NCP4(n)) = 2n(6 − n) is
negative for high n.

Nevertheless the neighborly-cubical polytopes are not projectively unique, but
the dimension of the realization space is very small compared to the size:

Theorem. The dimension of the realization space of NCP4(n) grows quadratically
in n, and thus only logarithmically in size(NCP4(n)).

The quadratic lower bound follows from the construction as a generic projection
of a simple n-polytope with 2n facets. The upper bound uses the “cubical Gale
evenness criterion” combinatorial description of NCP4(n) from [3] and [8], and
then a suitable ordering of the vertices and facets, such that after a quadratic
number variables has been fixed, all further vertices and facets are determined
when they occur in the ordering. We note that this proof technique can establish
that a realization space is low-dimensional only if the naive guess is low as well.
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6. Complexity

Candidate 4-polytopes that could have a low-dimensional realization space (or
even be projectively unique) should thus have a low (or even negative) naive guess.
We note that this is closely related to the “complexity” parameter for polytopes

C(P ) :=
f0,3 − 20

f0 + f3 − 10

introduced in [10] being large; specifically, it should be at least 4. The only
examples we seem to know for this in the moment are the neighborly cubical
polytopes, and more generally the “projected deformed products of polygons” of
[11] [8]. However, all these are not projectively unique, by construction.
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Anchored rectangle packing

Csaba D. Tóth

(joint work with Adrian Dumitrescu)

We consider a rectangle packing problem popularized by Peter Winkler [4, 5, 6],
which has been open for decades. It is a one-round game between Alice and Bob.
First, Alice chooses a finite point set S in the unit square U = [0, 1]2 in the plane,
including the origin, that is, (0, 0) ∈ S (Fig. 1(a)). Then Bob chooses an axis-
parallel rectangle r(s) ⊆ U for each point s ∈ S such that s is the lower left corner
of r(s), and the interior of r(s) is disjoint form all other rectangles (Fig. 1(b)). The



2526 Oberwolfach Report 44/2011

rectangle r(s) is said to be anchored at s, but r(s) contains no point from S in its
interior. It is conjectured that for any finite set S ⊂ U , (0, 0) ∈ S, Bob can choose
such rectangles that jointly cover at least half of U [1, 4, 5, 6]. However, it has not
even been known whether Bob can always cover at least a positive constant area.
It is clear that Bob cannot always cover 1

2 + ε area for any fixed ε > 0. If Alice
chooses S to be a set of n equally spaced points along the diagonal [(0, 0), (1, 1)],
as in Fig. 1(c), then the total area of Bob’s rectangles is at most 1

2 + 1
2n .

Figure 1. (a) A set S of 6 points in a unit square [0, 1]2, includ-
ing the origin (0, 0). (b) A rectangle packing where the lower left
corner of each rectangle is a point in S. (c) Ten equally spaced
points along the diagonal [(0, 0), (1, 1)], and a corresponding rec-
tangle packing that covers roughly 1/2 area.

Very little is known about anchored rectangle packing. Recently, Christ et al. [2]

proved that if Alice can force Bob’s share to be less than 1
r , then n ≥ 22

Ω(r)

. Our
result indicates that this condition does not materialize for large r, since Bob can
always cover at least a constant fraction of the area for any n ∈ N.

We present two simple strategies for Bob that cover at least 0.09121 area. These
are theGreedyPacking and theTilePacking algorithms described below. Both
algorithms process the points in the same specific order, namely the decreasing
order of the sum of the two coordinates, with ties broken arbitrarily (hence (0, 0)
is the last point processed).

The GreedyPacking algorithm chooses a rectangle of maximal area for each
point in S sequentially, in the above order. The TilePacking algorithm con-
structs a packing of U with staircase-shaped tiles, and then chooses a rectangle of
maximal area within each tile independently. We next describe how the tiling is
obtained. Each tile is a staircase-shaped polygon, with a vertical left side, a hor-
izontal bottom side, and a descending staircase connecting them. The lower left
corner of each tile is a point in S. We say that the tile is anchored at that point.
The algorithm maintains the invariant that the set of unprocessed points are in the
interior of a staircase shaped polygon (super-tile), and in addition the anchor and
possibly other points are on its left and lower sides. Processing a point amounts
to shooting a horizontal ray to the right and a vertical ray upwards which together
isolate a new tile anchored at that point, and the new staircase shaped polygon



Discrete Geometry 2527

containing the remaining points is updated. Since (0, 0) ∈ S, TilePacking does
indeed compute a tiling of the unit square.

Theorem. For every finite point set S ⊂ U , (0, 0) ∈ S, each of GreedyPacking

and TilePacking chooses a set of rectangles of total area ρ ≥ 0.09121.

We show that the GreedyPacking algorithm covers at least as much area as
TilePacking. Hence it suffices to analyze the performance of the latter. The
bulk of the work is in the analysis of this simple TilePacking algorithm, which
involves geometric considerations and a charging scheme. A complete proof is
available in [3].
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Upper bounds for densest packings with congruent copies of a convex
body

Frank Vallentin

(joint work with Fernando Mario de Oliveira Filho)

Finding the maximum density of a packing of congruent copies of a compact con-
vex body K in Euclidean space Rn is an extremely difficult problem in discrete
geometry. A solution is known only for very few convex bodies. For instance,
if K is the unit ball then this is the sphere packing problem. Recently, the case
of regular tetrahedra got quite some attention, see Ziegler [7]. The last part of
Hilbert’s 18th problem states:

Ich weise auf die hiermit in Zusammenhang stehende, für die Zahlentheorie

wichtige und vielleicht auch der Physik und Chemie einmal Nutzen bringende

Frage hin, wie man unendlich viele Körper von der gleichen vorgeschriebe-

nen Gestalt, etwa Kugeln mit gegebenem Radius oder reguläre Tetraeter mit

gegebener Kante (bez. in vorgeschriebener Stellung) im Raume am dichtesten

einbetten, d.h. so lagern kann, daß das Verhältnis des erfüllten Raumes zum

nichterfüllten Raume möglichst groß ausfällt.

Here we present a theorem that can be used to find upper bounds for the maxi-
mum density of a packing of any given compact convex body K. The theorem relies
on the harmonic analysis of the Euclidean motion group which is a non-compact
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and non-commutative group. It generalizes a theorem of Cohn and Elkies [1]
that results the best known upper bounds for the densities of sphere packings in
dimensions 4 to 36.

By M(n) we denote the Euclidean motion group in dimension n which is gener-
ated by translations and rotations. It is the semidirect product of the non-compact
translation group Rn and the non-commutative rotation group SO(n). We can
model the body packing problem as the problem of determining the largest size
of an independent set in the infinite graph G = (M(n), E) where two vertices
(x,A), (y,B) ∈ Rn×SO(n) are connected whenever the intersection of the x+AKo

and y +BKo is not empty. Here Ko denotes the topological interior of K.
In general, finding the independence number of a finite graph is a computational

difficult problem. However, there are techniques using spectral properties of the
graph and using convex optimization, going back to Hoffman [3], Delsarte [2],
Lovász [4], which give upper bounds for it. These techniques can be transferred
to infinite graphs:

Main Theorem. Let P be a packing of congruent copies of a compact, convex
body K ⊆ Rn. Let f ∈ L1(M(n)) be a continuous function such that the conditions

(1) f is of positive type: for all N ∈ N and for all (x1, A1), . . . , (xN , AN ) ∈
M(n) the matrix

(
f((xi, Ai)(xj , Aj)

−1)
)
1≤i,j≤N

is positive semidefinite.
(2) f(x,A) ≤ 0 whenever Ko ∩ (x+AKo) = ∅,
(3) λ =

∫
M(n)

f(x,A)d(x,A) > 0

are fulfilled. Then, the density of P is bounded above by

f(0, I)

λ
volK.

In order to find a function f which proves a “good” upper bound, we make use
of convex optimization (semidefinite programming) and harmonic analysis. For
instance, if n = 2 we can parametrize the functions using their Fourier expansion,
which is due to Vilenkin [5], as follows:

f

((
a cosφ
a sinφ

)
,

(
cos θ − sin θ
sin θ cos θ

))

=

∫ ∞

0

∞∑

r,s=−∞
f̂rs(p)i

s−re−i(sθ+(r−s)φ)Js−r(pa)pdp,

where Jα is the Bessel function of the first kind of order α.
The fact that f is of positive type is reflected in the condition that for every

p ≥ 0 the infinite matrix
(
f̂rs(p)

)∞

r,s=−∞
is positive semidefinite. Conditions (2)

and (3) from the main theorem are linear conditions in these matrix coefficients.
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Hence, finding an optimal function can formulated as an infinite-dimensional semi-
definite program. This can be approximated using a sequence of finite-dimensional
semidefinite programs.

In the case when the compact convex body K is the unit ball, condition (2)
of the main theorem only depends on the length a of the vector x so one can
assume that the function f also only depends on a. So instead of using the infinite

semidefinite matrix
(
f̂rs(p)

)∞

r,s=−∞
it suffices to use only the non-negative central

coefficient f̂00(p). Doing this — the same reasoning works for n > 2 — we arrive
at the result of Cohn and Elkies.

For explicit numerical computations, which turn out to be different form those
of Cohn and Elkies, we may use tools from polynomial optimization (sums of
squares): For this we consider functions of the form

f̂00(p) =

d∑

k=0

f2kp
2ke−p2

.

Then, by a classical formula of Hankel, cf. Watson [6, p. 393], we have

f(a) =

∫ ∞

0

f̂00(p)J0(pa)pdp =
d∑

k=0

f2k
k!

2
Lk(a

2/4)e−a2

,

where Lk is the Laguerre polynomial of degree k. Now we are trying to find real
coefficients f0, f2, . . . , f2d such that

(1)
∑d

k=0 f2kp
2k ≥ 0 for all p ≥ 0.

(2)
∑d

k=0 f2k
k!
2 Lk(a

2/4) ≤ 0 if a ≥ 2,

(3) f0 = 1,

and such that
∑d

k=0 f2k
k!
2 is minimized.
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On transversals of quasialgebraic families of sets

Vladimir Dolnikov

(joint work with Grigory Chelnokov)

We consider the Helly–Gallai numbers for families of sets that are similar to fam-
ilies of algebraic sets.

Definition 1. A set X, |X | ≤ t, is called a t-transversal for a family of sets F if
A ∩X 6= ∅ for every A ∈ F .

Definition 2. The Helly–Gallai number HG(t, F ) of a family of sets F is called
a minimal natural number k, such that if every subfamily P ⊆ F with |P | ≤ k has
a t-transversal, then the family F has a t-transversal. We put HG(t, F ) = ∞ if
such natural number k does not exists.

Definition 3. For every family F , the existence of a 1-transversal is equivalent
to the condition that the intersection of all sets of F is nonempty. Therefore a
number HG(1, F ) is called the Helly number for a family F .

Remark. If F is a family of a convex compact sets in Rd, d ≥ 2, and t ≥ 2 then
HG(t, F ) = ∞. If F is a family of intervals on the line then HG(t, F ) = t+ 1.

The Helly numbers H(F ) for a family of algebraic varieties were found by T. S.
Motzkin.

Definition 4. Let Ad
m be a family of sets of common zeroes in Rd for a finite

collection of polynomials of d variables and degree not grater than m.

Theorem 5 (Motzkin [5], 1955).

H(Ad
m) =

(
m+ d

d

)
.

The Helly–Gallai numbers for algebraic varieties Ad
n were determined by M. De-

za and P. Frankl ([1], 1987), and Dol’nikov ([2], 1989). They are given by the
formula:

HG(t, Ad
m) =

((m+d
d

)
+ t− 1

t

)
.

In the papers [2, 3] the Helly–Gallai numbers for families of sets of more general
kind were considered. More precisely, they were the zero sets of linear finite
dimensional subspaces of functions on a ground set V with coefficients in a field F .

In particular, the Helly–Gallai numbers

HG(t, Sd−1) =

(
d+ t+ 1

t

)

for families of spheres Sd−1 in Rd were found. Independently they were found by
Maehara ([4], 1989).

Now we give some estimates for the Helly–Gallai numbers of quasialgebraic
families of sets.
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Definition 6. Let F be a family of sets. Denote inductively

F 1 = {Ai ∩ Aj : whereAi, Aj ∈ F andAi 6= Aj}
and

F k+1 = {Ai ∩ Aj : whereAi, Aj ∈ F k andAi 6= Aj}.

Definition 7. A family of sets F is called a (d,m)-quasialgebraic family or a
quasialgebraic family of dimension m and degree d if |B| ≤ d for every B ∈ Fm.

Denote the class of such families by QAd
m.

A family of lines in Fd, where F is a field, or a family of lines of a finite projective
plain, or a family of edges of a graph G are quasialgebraic families of a dimension 1
and a degree 1. We also call such families linear families.

Elements of a linear family have many properties of usual lines. For example,
the Sylvester–Gallai theorem is not true for linear families, but there we have a
following result:

Theorem 8 (Bourbaki). Let F be a linear family. Suppose {x1, x2, . . . xn} is a
set such that for each two distinct points {xi, xj} there exists a “line” Li,j ∈ F
passing through {xi, xj}. Then the number of distinct such lines is at least n.

A family of circles is a quasialgebraic family of a dimension 1 and a degree 2.
More generally, the family Ad

m is a quasialgebraic family (note that the numbers
d and m are not the same).

Let us give a lower bound for the Helly–Gallai number:

Theorem 9. There exist quasialgebraic families F ∈ QAd
m such that

HG(t, F ) ≥
(
d+m+ t

t

)
.

Sketch of the proof: Let F be a family of all (d +m)-element subsets of some
(d +m + t)-element set. Obviously, the family F has (d,m)-property and has no
t-transversal.

And the upper bound:

Theorem 10. For any F ∈ QAd
m:

HG(t, F ) ≤ td+m+1 − 1

t− 1
.

The proof of the upper bound is less trivial. It based on an accurate investi-
gation of properties of some critical configurations that are families F such that
F doesn’t have a t-transversal, but each subfamily of F has a t-transversal.

The lower estimate forHG(t, F ) is more natural than the upper estimate, which
seems far from being tight.

Consider the case F ∈ QA1
1 (a linear family). In this case we have more precise

upper bound:
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Theorem 11. (
t+ 2

2

)
≤ HG(t, F ) ≤ t2 + 1.

If 1 ≤ t ≤ 4 then it can be improved to:

HG(t, F ) =

(
t+ 2

2

)
.

In this case we cannot improve the upper estimate even for lines of a finite
projective plane.

Here we give another our result about sets behaving like circles:

Theorem 12.

HG(2, QAd
1) =

(
d+ 3

2

)
.

if 1 ≤ d ≤ 5.

Theorem 13.

HG(2, QAd
1) ≤ 2d2 + 3.
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Kadets type theorems for partitions of a convex body

Arseniy Akopyan

(joint work with Roman Karasev)

Alfred Tarski [9] proved that for any covering of the unit disc by planks (the sets
a ≤ λ(x) ≤ b for a linear function λ and two reals a < b) the sum of plank widths
is at least 2. Thøger Bang in [3] generalized this result for covering of a convex
body B in Rd by planks showing that the sum of the widths is at least the width
of B. He also posed the following question: Can the plank widths in the Euclidean
metric be replaced by the widths relative to B (as in Definition 1 below)?

Keith Ball proved the conjecture of Bang in [2] for centrally symmetric bodies B
or, in other words, for arbitrary normed spaces and coverings of the unit ball.
For possibly non-symmetric B, it is known (see [1]) that the Bang conjecture is
equivalent to the Davenport conjecture: If a convex body B is sliced by n − 1
hyperplane cuts then there exists a piece that contains a translate of 1

nB.
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In [4, 5] András Bezdek and Károly Bezdek proved an analogue of the Davenport
conjecture for binary partitions by hyperplanes. The difference is that they do not
cut everything with every hyperplane; instead they divide one part into two parts
and then proceed recursively.

The strongest possible result about coverings of a unit ball for the Hilbert (and
finite dimensional Euclidean) space was proved by Vladimir Kadets in [8] (see
also [6] for the proof in the two-dimensional case using the idea from [9]): For
any convex covering C1, . . . , Ck of the unit ball the sum of inscribed ball radii∑k

i=1 r(Ci) is at least 1.
The reader is referred to [7] for a detailed historical survey on the Tarski plank

problem.
In this work we prove analogues of the Kadets theorem for inscribing homo-

thetic copies of a (not necessarily symmetric) convex body, replacing arbitrary
coverings by certain convex partitions. By a partition of a convex set B we mean
a covering of B by a family of closed convex sets with disjoint interiors. In the two-
dimensional case the analogue of the Kadets theorem for possibly non-symmetric
bodies (Theorem 2) holds for any partition, while in higher dimensions we need
additional restrictions on the partition. In other words, we are solving positively
certain particular cases of [7, Problem 7.2] about extending the Kadets theorem
to Banach spaces.

Definition 1. Let B ⊂ Rd be a convex body. For a convex set C ⊆ Rd define the
analogue of the inscribed ball radius as follows:

rB(C) = sup{h ≥ 0 : ∃t ∈ Rd such that hB + t ⊆ C},
and put rB(C) = −∞ for empty C.

Theorem 2. Let B ⊂ R2 be a convex body and let C1 ∪· · · ∪Ck = B be its convex
partition. Then

k∑

i=1

rB(Ci) ≥ 1.

The proof is based on the following lemma

Lemma 3. Any convex partition C1 ∪ · · · ∪ Ck = B ⊂ R2 can be extended to a
partition V1 ∪ · · · ∪ Vk = R2.

Using it we can prove the theorem.

Proof of Theorem 2. We extend the partition C1∪· · ·∪Ck = B to V1∪· · ·∪Vk = R2

by Lemma 3. Then the function

r(y) =

k∑

i=1

rB(B ∩ (Vi + y))

is concave (since it sum of concave functions, which is minimum of linear functions),
so by varying y we can make one of B ∩ (Vi + y) have empty interior without
increasing r(y). Then we omit Vi, obtain a partition of B into fewer parts, and
use the inductive assumption. �
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Since Lemma 3 does not hold in higher dimension we need certain restriction
on the partitions.

Definition 4. Call a convex partition V1 ∪ · · · ∪ Vk of Rd inductive if for any
1 ≤ i ≤ k there exists an inductive partition W1 ∪ · · · ∪Wi−1 ∪Wi+1 ∪ · · · ∪Wk

such that Wj ⊇ Vj for any j 6= i. A partition into one part V1 = Rd is assumed to
be inductive.

Definition 5. Call a convex covering (by closed sets) V1∪· · ·∪Vk of Rd inductive if
for any 1 ≤ i ≤ k there exists an inductive covering W1∪· · ·∪Wi−1∪Wi+1∪· · ·∪Wk

such that Wj ⊆ Vj ∪ Vi for any j 6= i. A covering by one set V1 = Rd is assumed
to be inductive.

Theorem 6. Let B ⊂ Rd be a convex body and let C1 ∪ · · · ∪ Ck = B be induced
from an inductive partition (or covering) V1 ∪ · · · ∪ Vk = Rd; that is Ci = Vi ∩ B
for any i. Then

k∑

i=1

rB(Ci) ≥ 1.
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Remark on Coresets for Minimum Enclosing Ellipsoids

Kenneth L. Clarkson

Let S be a set of n points in d dimensions. The Minimum Enclosing Ellipsoid
MEE(S) is the unique ellipsoid of smallest volume that contains S. MEE(S) is
determined by some C ⊂ S of at most d(d+3)/2 points, called the contact points
or support points.

A coreset of S for MEE is S′ ⊂ S such that MEE(S′) is roughly the same as
MEE(S). There are (at least) two varieties of such approximation, with corre-
sponding coresets.

In one version, for given ǫ > 0, an ǫ-coreset S′ is such that S ⊂ (1+ǫ)MEE(S′).
(Here the multiplication by 1+ ǫ denotes c+(1+ ǫ)(MEE(S′)− c), where c is the
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center of MEE(S′).) There are ǫ-coresets, in this sense, of size O(d(log d + 1/ǫ))
[2, 3]. Such coresets amount to a combinatorial specification of an approximate
solution to the MEE problem; they give an approximately minimum ellipsoid.

Another kind of approximation, and ǫ-coreset, is ellipsoid E such that (1−ǫ)E ⊂
MEE(S) ⊂ (1 + ǫ)E . Call such an ellipsoid approximate to minimum. Rudelson
showed that there is such an ellipsoid E , with O(d(log d)/ǫ2) contact points, each
of which is a small perturbation of a point of S [5]. Recently Naor has observed
that the number of contact points can be reduced to O(d/ǫ2), using results of
Batson et al. [4, 1].

Approximate-to-minimum ellipsoids require more contact points, which is not
surprising. Also, their contact points are not a subset of S, and the above con-
structions by make use of MEE(S). In light of approximately minimum coresets,
it is natural to ask if it is possible to specify approximate-to-minimum ellipsoids
using a small subset S′′ of S, and to have the associated ellipsoid be MEE(S′′).
I can answer the first question affirmatively: there is a subset of size O(d/ǫ2),
such that an appropropriate linear algebraic construction using that subset yields
an approximate-to-minimum ellipsoid. (I don’t know the answer to the second
question.)
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Dense favourite-distance digraphs

Konrad J. Swanepoel

The following is an extended abstract of [8] and [9]. Let S be a set of n points in
the d-dimensional Euclidean space Rd. Let r : S → (0,∞) be a choice of a positive
number for each point in S. Define the favourite distance digraph on S determined

by r to be the directed graph ~Gr(S) = (S, ~Er(S)) on the set S where

~Er(S) := {(x,y) : x,y ∈ S and |xy| = r(x)} .
Here |xy| denotes the Euclidean distance between x and y. Write er(S) :=

| ~Er(S)|. Define

fd(n) := max
{
er(S) : S ⊂ Rd, |S| = n and r : S → (0,∞)

}
.
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The problem of determining fd(n) was originally introduced by Avis, Erdős and
Pach [1]. They determined f3(n) asymptotically:

Theorem 1 (Avis–Erdős–Pach 1990). f3(n) =
n2

4 +O(n2−ε) for some ε > 0.

We improve the asymptotics as follows:

Theorem A. For sufficiently large n, n2

4 + 5n
2 − 6 ≤ f3(n) ≤ n2

4 + 5n
2 + 6.

This theorem follows from the following structural result and an improved con-
struction. A finite set of points in R3 is called a suspension if it is contained in
some circle and its axis of symmetry.

Theorem B. For any S ⊂ R3 with |S| = n sufficiently large and r : S → (0,∞),

if | ~E(S, r)| = f3(n), then for some T ⊆ S with |T | ≤ 2, S \ T is a suspension
and, writing C for the circle of the suspension and ℓ for its axis of symmetry, r(x)
equals the distance from x to C for each x ∈ S ∩ ℓ.

We conjecture that the exceptional set T is empty.
Avis, Erdős and Pach also determined fd(n) asymptotically for even d ≥ 4.

Erdős and Pach [6] finished off the case of odd d ≥ 5.

Theorem 2 (Avis–Erdős–Pach [1], Erdős–Pach [6]). For any d ≥ 4,

fd(n) =

(
1− 1

⌊d/2⌋ + o(1)

)
n2.

For any set S ⊂ Rd of n points, let

u(S) := |{{x,y} : x,y ∈ S and |xy| = 1}|
and set

ud(n) := max
{
u(S) : S ⊂ Rd and |S| = n

}
.

Clearly fd(n) ≥ 2ud(n). We give a simple derivation of an asymptotic upper
bound for fd(n) (Theorem C below) using only the analogous upper bounds for
ud(n) stated in the following theorem.

Theorem 3 (Erdős [5], Erdős–Pach [6]). There exist constants c1, c2 > 0 such
that for each d ≥ 4 and all n ∈ N,

ud(n) ≤
1

2

(
1− 1

⌊d/2⌋

)
n2 +




c1n if d is even,

c2

(n
d

)4/3

if d is odd.

The above bounds are tight up to the values of c1 and c2 [6]. Since fd(n) ≥
2ud(n), the bounds in the next theorem are also tight up to the values of the
constants.

Theorem C. With the same constants c1, c2 > 0 as in Theorem 3, for each d ≥ 4
and all n ∈ N,

fd(n) ≤
(
1− 1

⌊d/2⌋

)
n2 +




2c1n if d is even,

2c2

(n
d

)4/3

if d is odd.
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By a Lenz configuration for distance λ > 0 we mean a finite set of the following
type [4, 2]. For any d ≥ 4, let p = ⌊d/2⌋ and consider any orthogonal decomposition
Rd = V1⊕· · ·⊕Vp with all Vi 2-dimensional, except that V1 is 3-dimensional when
d is odd. In each Vi, let Ci be the circle (Σ1 the sphere if i = 1 and d is odd) with
centre the origin o and radius ri, such that r2i + r2j = λ2 for all distinct i and j.

When d ≥ 6 this implies that each ri = λ/
√
2. Define a Lenz configuration for

the distance λ to be any finite subset S of some translate v +
⋃p

i=1 Ci when d is
even, or of v + Σ1 ∪

⋃p
i=2 Ci when d is odd. The partition associated to the Lenz

configuration S is the partition induced by the circles, i.e. the p subsets S1, . . . , Sp

where Si = S ∩ (v + Ci) (S1 = S ∩ (v +Σ1) if i = 1 and d is odd).
The following theorem states that the extremal sets for unit distances are Lenz

configurations, at least for a sufficiently large number of points.

Theorem 4 ([2, 7]). Let d ≥ 4 and let S ⊆ Rd be given with |S| = n sufficiently
large, depending on d, and such that u(S) = ud(n). Then S is a Lenz configuration
for the distance 1.

We show that when d ≥ 4, the extremal favourite distance digraphs are exactly
the same as the sets for which ud(n) is maximised, for all sufficiently large n,
depending on d, except when d = 4, where there is an exceptional construction for
all sufficiently large n ≡ 1 (mod 8).

Theorem D. Let d ≥ 4 and let S ⊂ Rd and a function r : S → (0,∞) be given
such that |S| = n is sufficiently large depending on d, and er(S) = fd(n). Then
r ≡ c for some c > 0, and S is a Lenz configuration for the distance c, except when
d = 4 and n − 1 is divisible by 8, where the following situation is also possible:
for some a ∈ S and c > 0, S \ {a} is a Lenz configuration for the distance c on

two circles C1 and C2 of equal radius c/
√
2, a is the common centre of the two

circles, Ci∩S consists of the vertices of (n−1)/8 squares inscribed in Ci (i = 1, 2),

and r|S\{a} ≡ c, r(a) = c/
√
2. In particular, fd(n) = 2ud(n) for all d ≥ 4 and

n ≥ n0(d).

The proof of the above theorem needs a stability result. The following theorem
is a known stability result for unit distances.

Theorem 5 ([7]). For any d ≥ 4, set p = ⌊d/2⌋. Then for any set S ⊂ Rd with
|S| = n sufficiently large that satisfies

u(S) >
1

2

(
1− 1

⌊d/2⌋ − o(1)

)
n2,

there exists a subset T ⊆ S such that |T | = o(n) and S \T is a Lenz configuration.
Furthermore, the partition S1, . . . , Sp of S \T associated to the Lenz configuration
satisfies |Si| = n

p + o(n) for all i ∈ [p].

The next theorem is an analogue of the above theorem for favourite distance
digraphs.
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Theorem E. For any d ≥ 4, set p = ⌊d/2⌋. Then for any S ⊂ Rd with |S| = n
sufficiently large and any r : S → (0,∞) that satisfy

er(S) >

(
1− 1

⌊d/2⌋ − o(1)

)
n2,

there exist T ⊆ S and c > 0 such that |T | = o(n), S \ T is a Lenz configuration
with distance c, and r|S\T ≡ c. Furthermore, the partition S1, . . . , Sp of S \ T

associated to the Lenz configuration satisfies |Si| = n
p + o(n) for all i ∈ [p].

By applying Theorem 5, the above theorem is relatively easy to prove for d ≥ 6,
but surprisingly, takes some work in the cases d ∈ {4, 5}. This is not so much
because the Lenz construction is slightly more complicated in dimensions 4 and 5,
but rather due to certain complications in the extremal theory of digraphs not
shared by the extremal theory of ordinary graphs [3].
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Open Problems in Discrete Geometry

Collected by Dömötör Pálvölgyi

Problem 1 (Hiroshi Maehara). A lattice L in a Euclidean space is called an
integral lattice if the inner product < x, y > is an integer for every x, y ∈ L.

Is every integral lattice L congruent to a sub-lattice of Zn for some n?

Remark. 1. If the dimension of L is at most 3, then this is true. (I could prove
that every 3-dimensional integral lattice is congruent to a sub-lattice of Z24.)

2. It is known that if L is an n-dimensional integral lattice, then L is congruent
to a subset of Qn+3, and hence L is similar to a sub-lattice of Zn+3.
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Problem 2 (Günter M. Ziegler). The space of convex n-partitions of 3-space.
What is the dimension of the space of all partitions of R3 into n > 3 convex

pieces?
There are only finitely many combinatorial types of such partitions, so the ques-

tion is for the maximal dimension of the realization space of such a combinatorial
type.

For dimension d = 2, one can work out that the space of partitions of the
plane into n convex polygons has dimension 4n− 1: This is achieved for a simple
partition (all vertices of degree 3) with only 3 unbounded rays. Note that the space
of power diagrams (also known as generalized Voronoi diagrams) has dimension
only 3n− 1, as one has two coordinates for each site and one weight for each site,
while the sum of weights can be normalized to be 0.

In dimension 3, all simple partitions are power diagrams, according to Whiteley
(see Rybnikov [1]). The dimension of the space of convex n-partitions is at least
the dimension of the space of power diagrams, which is 4n− 1, but it is not clear
whether it is larger.
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Problem 3 (Günter Rote). Is there a constant c such that, for every n ≥ 3, there
is a partition of the plane into convex regions whose boundaries form a connected
graph with n vertices and 3 unbounded rays, such that every monotone path in
the graph consists of at most c edges? Perhaps even with every region bounded
by only 3 edges? A path is monotone if there is some linear function R2 → R

which is strictly monotone along the path. Without the bound on the number of
unbounded rays, the statement is true with c = 9, even with triangular faces.

Note. Csaba D. Tóth and Adrian Dumitrescu have shown that for every convex
subdivision of the plane into n convex cell, 3 of which are unbounded, there is a
monotone path with Ω(logn/ log logn) vertices and this bound is best possible.

Problem 4 (Boris Bukh). Is it true that for every finite set P of points in general
position in Rd there are convex sets C1, . . . , Ck such that |C ∩ P | >= |P |/poly(d)
and every hyperplane H in Rd misses at least one of the C1, . . . , Ck.

A theorem of Yao–Yao asserts that one can partition the space into 2d convex
cones, each containing approximately the same number of points. It is not known
how to replace 2d even by 2d − 1. No superlinear lower bound is known.

Problem 5 (Luis Montejano). Let F be a set of points in Rd painted with colors
C = {1, ...k} (one point may be painted with several colors) and if β is contained in
C, let Fβ be the set of points painted with colors in β. I can prove that there is a
function f(., .) such that if for every subset of colors β of size n, there is a subset of
Fβ in general position of size greater than f(n, d), then there is a rainbow subset
of F in general position of size k.
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If d = 1, then f(n, 1) = n by the Hall’s Theorem for bipartite graph.

PROBLEM: give good bounds for f(n, d).

Problem 6 (Zoltán Füredi). A version of coin-weighting problems proposed by
ApSimon [1], discussed also in [2] can be reformulated as follows.

Consider a set V of n non-zero vectors on the plane with non-negative integer
coordinates. Let S(V ) be the set of the 2n − 1 non-empty subset sums. We are
looking for the smallest N = N(n) such that V is a subset of 0, 1, 2, 3, ..., N ×
0, 1, 2, ..., N and the slopes of the members of S are all distinct. Because they
formulate the problem differently, they only show a lower bound Ω(nc) and upper
bound O(n!) and ask if N(n) = O(2n). From our reformulation it is clear that

N(n) > 2n/2,

and a greedy algorithm gives N(n) = O(23n/2), and a random construction gives

N(n) < 2n
√
n.

There are many question. Tighten these bounds. Find the limit N(n)1/n, first
prove it exists. Find higher dimensional generalizations.
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Problem 7 (József Solymosi). Conjecture: There is a constant c > 0 and a
threshold n0 such that if the number of incidences between n > n0 lines and
n points in the plane is at least n

4
3−c then there is triangle in the arrangement.

All I can prove is that if there is no triangle in the arrangement then the number
of incidences is o(n

4
3 ) [1].
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Problem 8 (Volodya Dol’nikov). Definition 1. A set X , |X | ≤ t, is called a
t-transversal of a family of sets F if A ∩X 6= ∅ for every A ∈ F .

1. “Colored” Grünbaum’s problem.
Suppose F1, F2, F3 are families of translates of a convex compact set A in plane,

and Ai ∩ Aj 6= ∅ for each Ai ∈ Fi, Aj ∈ Fj , i 6= j.
Is it true that some family Fi has 3-transveral?

Definition 2. A family of sets has a (p, q)-property if among every A1, A2, . . . , Ap

∈ F there exist q sets with a common point.

2. Problem of Hadwiger–Debrunner type
Let F be a family of hyperplanes in Rd with (p, q)−property, d+ 1 ≤ q ≤ p.
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Is it true that the family F has (p− q + 1)-transversal?
2’. Problem 2’ is a corollary of Problem 2.

Let F be a family of r−element sets with (p, q)-property, r + 1 ≤ q ≤ p.
Is it true that the family F has (p− q + 1)-transversal?

Problem 9 (Imre Bárány). Let X be a finite point set in the plane with no
three points collinear. The degree of a pair x, y ∈ X is, by definition, the number
of z ∈ X such that the triangle with vertices x, y, z contains no further point
from X . Let d(X) denote the maximal degree of a pair in X . Show that d(X)
goes to infinity as |X | → ∞.

It is known that the average degree of a pair is at least six, and it is shown
in [1] that d(X) ≥ 10 for large enough |X |, but that is far from infinity.

This question appeared in a paper by Paul Erdős [2], and in [1] as well.
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Problem 10 (Dömötör Pálvölgyi). For A ⊂ [n] denote by ai the ith smallest
element of A.

For two k-element sets, A,B ⊂ [n], we say that A ≤ B if ai ≤ bi for every i.
A k-uniform hypergraph H ⊂ [n] is called a shift-chain if for any hyperedges,

A,B ∈ H, we have A ≤ B or B ≤ A. (So a shift-chain has at most k(n − k) + 1
hyperedges.)

We say that a hypergraph H is 2-colorable if we can color its vertices with two
colors such that no hyperedge is monochromatic.

Is it true that shift-chains are 2-colorable if k is large enough?

Remarks. For k = 2 there is a trivial counterexample: (12),(13),(23).
A very magical counterexample was found for k = 3 by Radoslav Fulek with a

computer program:
(123),(124),(125),(135),(145),(245),(345),(346),(347),(357),
(367),(467),(567),(568),(569),(579),(589),(689),(789).
If we allow the hypergraph to be the union of two shift-chains (with the same

order), then there is a counterexample for any k.

Problem 11 (Gábor Fejes Tóth). Is it true that there exist a constant c such that
for all coverings of the plane by closed unit circular discs any two points situated
at distance d from one another and covered by at least two discs can be connected
by a path of length

√
2d + c traveling within at least doubly covered part of the

plane?
The arrangement of discs in a square grid shows that the factor

√
2 cannot

be improved. E. Roldán-Pensado showed that two points at distance d apart
lying in at least doubly covered part of the plane can be connected by a path



2542 Oberwolfach Report 44/2011

remaining in the at least doubly covered part of the plane whose length is at most
(π/3 +

√
(3))d+ c with some constant c < 17.

There are two special types of path in the region covered at least twice by discs:
one that uses only boundary arcs of the discs, and another type that travels along
the sides of the Dirichlet cells. This gives rise to the following stronger conjectures.

There is a constat c1 such that if closed unit circular discs cover the plane and
a and b are two points at distance d apart, both lying on the boundary of some
of the discs, then a and b can be connected by a path whose length is at most
πd/2 + c1 and which uses only boundary arcs of the discs.

There is a constat c2 such that if closed unit circular discs cover the plane and
a and b are two points at distance d apart, both lying on the boundary of the
Dirichlet cell of some of the discs, then a and b can be connected by a path whose
length is at most

√
2d + c1 and which uses only boundary arcs of the Dirichlet

cells.
In [1] the second conjecture is confirmed for lattice-coverings.
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Problem 12 (Géza Tóth). The monotone crossing number of G is defined as the
smallest number of crossing points in a drawing of G in the plane, where every
edge is represented by an x-monotone curve, that is, by a connected continuous
arc with the property that every vertical line intersects it in at most one point.
This parameter can be strictly larger than the classical crossing number cr(G),
namely, there are graphs Gk with cr(Gk) = 6k+6 and mon-cr(G) = 7k+6. On
the other hand, mon-cr(G) < 2cr2(G) holds for every graph G.

Is there a constant c such that mon-cr(G) < ccr(G) holds for every G?

Problem 13 (Csaba D. Tóth). Let f(n) be the maximum integer such that every
3-connected cubic planar graph with n vertices contains a simple cycle of length
at least f(n). Find the order of magnitude of f(n).

It is known that f(n) ∈ Ω(nlog3 2). In fact, Chen and Yu (2002) proved that
every 3-connected planar graph with n vertices (and no degree constraints) con-
tains a simple cycle of length Ω(nlog3 2). It is also known that f(n) ∈ O(nlog38 37),
which follows from a recursive construction based on a counterexample to Tait’s
conjecture.

Problem 14 (Peter Braß). Given a curve γ in the plane and a small positive
number r, let ft(r, γ) denote the maximum density of a translative packing of the
Minkowski-sum of γ and a disc of radius r, and fc(r, γ) the same for congruent
copies. This corresponds to arranging copies of γ as densely as possible, such that
any two are separated by a distance at least 2r. I want to study the asymptotic
behavior for r small. Clearly Ω(r) ≤ f(r, γ) ≤ 1, and all these cases can occur:
if γ0 is the three-quarter square, γ1 the semicircle, and γ2 the V shape, then
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ft(r, γ0) = Θ(r), ft(r, γ1) = Θ(
√
r) and ft(r, γ2) = Θ(1). Also fc(r, γ0) = Θ(r)

and fc(r, γ2) = Θ(1). Is it true that fc(r, γ1) = Θ(
√
r)?

Problem 15 (Jan Kynčl). Is there a constant c such that for every simplicial
4-polytope P there is a coloring of its vertex set V (P ) with c colors such that no
2-face of P is monochromatic?

Remark 1. the simplex and the cyclic polytopes need only 3 colors. No example
of a polytope which requires more than 3 colors is known.

Remark 2. there exist triangulations of R3 where arbitrarily many colors are
needed.
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Problem 16 (Günter Rote). Is there, for every c, a locally finite (perhaps even
triply periodic) partition of 3-space into convex cells, such that every cell is incident
to at least c vertices, and every vertex is incident to at least c cells?

A weaker requirement would be that these incidence counts hold on average:
the number of incidences between vertices and cells is at least c times the combined
number of vertices and cells. (This problem goes back to Günter M. Ziegler.)

Problem 17 (Ken Clarkson). For a subset S of Rd, let MEE(S) denote the ellip-
soid of minimum volume that contains S and let DBM denote the Banach–Mazur
distance. For ǫ > 0, let f(d, ǫ) denote the supremum, over all S, of the minimum
cardinalityX ⊂ S such thatDBM (MEE(X),MEE(S)) ≤ ǫ. Is f(d, ǫ) = O(d/ǫ2)?

Background: Since f(d, 0) = Θ(d2), the interest is in trading a factor of d
for some function of ǫ. Mark Rudelson showed that there is an X ⊂ S of
size O(d(log d)/ǫ2) such that there is a small perturbation X̃ of X such that

DBM (MEE(X̃),MEE(S)) ≤ ǫ, Asaf Naor discussed the application of the ma-
chinery of Batson, Spielman, and Srivasta to remove the factor of log(d). It is not
hard to show, based on that prior work, that there is an X of size O(d/ǫ2) such
that an ellipsoid E(X) determined by X so that DBM (E(X),MEE(S)) < ǫ, but
E(X) is not MEE(X).

This problem is spiritually related to coresets for MEE, where an ǫ-coreset X
has S a subset of (1+ ǫ) ·MEE(X). There are ǫ-coresets of size O(d/ǫ), as shown
by Kumar and Yildirim, adapting an algorithm of Khachian that is an adaptation
of the Frank–Wolfe technique.

Problem 18 (Gábor Tardos).

Question 1. For any finite set S of points in the plane one can find another set H
of cardinality at most |S|/2 such that any axis parallel rectangle contains a point
of H or contains at most 1000 points of S.

Question 2. Q1 fails badly for almost all S. More concretely, for a uniform random
set S of n points in the unit square with high probability the following holds. For
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any set H of at most n/2 points there exists an axis parallel rectangle containing
no points from H and Ω(log logn) points of S.

Reporters: Jǐŕı Matoušek, Helena Nyklová
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