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Introduction by the Organisers

Noncommutative geometry applies ideas from geometry to mathematical struc-
tures determined by noncommuting variables. Within mathematics, it is a highly
interdisciplinary subject drawing ideas and methods from many areas of mathe-
matics and physics. Natural questions involving noncommuting variables arise in
abundance in many parts of mathematics and theoretical quantum physics. On the
basis of ideas and methods from algebraic and differential topology and Riemann-
ian geometry, as well as from the theory of operator algebras and from homological
algebra, an extensive machinery has been developed which permits the formula-
tion and investigation of the geometric properties of noncommutative structures.
This includes K-theory, cyclic homology and the theory of spectral triples. Areas
of intense research in recent years include topics such as index theory, quantum
groups and Hopf algebras, the Novikov and Baum-Connes conjectures as well as
the study of specific noncommutative structures arising from other fields such as
number theory, modular forms or topological dynamical systems. Many results
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elucidate important properties of fascinating specific classes of examples that arise
in many applications.

The talks at this meeting covered substantial new results and insights in several
of the different areas in Noncommutative Geometry. The emphasis this time was
on noncommutative structures and methods related to index theory on the one
hand and to number theory on the other. The workshop was attended by 55
participants.
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Abstracts

Beyond Ellipticity

Paul Baum

(joint work with Erik van Erp)

K-homology is the dual theory to K-theory. The BD (Baum-Douglas) isomor-
phism of Kasparov K-homology and K-cycle K-homology can be taken as provid-
ing a framework within which the Atiyah-Singer index theorem can be extended
to certain non-elliptic operators. This talk will consider a class of non-elliptic
differential operators on compact contact manifolds. These operators have been
studied by a number of mathematicians. Working within the BD framework, the
index problem will be solved for these operators. This is joint work with Erik van
Erp.

Index theory for non-elliptic operators. PB and co-worker Erik van Erp
have extended the Atiyah-Singer index formula to a naturally-arising class of hy-
poelliptic (but not elliptic) operators. A class of operators with similar analytical
and topological properties was introduced by Alain Connes and Henri Moscovici.
The operators of this talk occur on contact manifolds and have been investigated by
a number of mathematicians. This extension of Atiyah-Singer was achieved by us-
ing the BD (Baum-Douglas) isomorphism of analytic and topological K-homology
to reformulate and extend van Erp’s earlier partial result.
K-homology is the dual theory to K-theory. For a finite CW-complex X , there

are three ways to define its K-homology:
(1) homotopy theory. K-homology is the homology theory determined by the

Bott (i.e. K-theory) spectrum.
(2) functional analysis. K-homology is the Kasparov group KK∗(C(X),C).
(3) K-cycles. K-homology is the group of K-cycles on X .
In (2), C(X) denotes, as usual, the commutative C∗ algebra consisting of all

continuous functions f : X → C. The Kasparov group KK∗(C(X),C) will be
referred to as the analytic K-homology of X .

For (3), a K-cycle on X is a triple (M,E,ϕ) with

• M is a compact Spinc manifold without boundary.
• E is a C vector bundle on M.
• ϕ is a continuous map from M to X, ϕ :M −→ X .

Keeping X fixed, denote by {(M,E,ϕ)} the collection of all K-cycles on X . On
this collection impose the equivalence relation ∼ generated by three elementary
steps:

• bordism
• direct sum - disjoint union
• vector bundle modification
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Thus two K-cycles (M,E,ϕ) (M ′, E′, ϕ′) on X are equivalent if and only if it is
possible to pass from (M,E,ϕ) to (M ′, E′, ϕ′) by a finite sequence of the three ele-

mentary steps. TheK-cycle (or topological)K-homology of X , denoted, Ktop
∗ (X),

is the set of equivalence classes of K-cycles:

Ktop
∗ (X) := {(M,E,ϕ)}/ ∼

Addition in Ktop
∗ (X) is disjoint union of K-cycles :

(M,E,ϕ) + (M ′, E′, ϕ′) = (M ⊔M ′, E ⊔ E′, ϕ ⊔ ϕ′)

The equivalence relation ∼ on K-cycles (M,E,ϕ) preserves the dimension of M

modulo 2. Therefore, as an abelian group, Ktop
∗ (X)is the direct sum

Ktop
∗ (X) = Ktop

0 (X)⊕Ktop
1 (X)

where Ktop
j (X) is the subgroup of Ktop

∗ (X) consisting of those K-cycles (M,E,ϕ)
such that:

Every connected component ofM has dimension ≡ jmodulo 2 j = 0, 1

Theorem. Let X be a finite CW complex. Then the natural map

η : Ktop
j (X) −→ KKj(C(X),C) j = 0, 1

is an isomorphism of abelian groups.

The natural map η : Ktop
j (X) −→ KKj(C(X),C) is defined as follows. Given

a K-cycle (M,E,ϕ) on X , denote by DE the Dirac operator of M tensored with
E. Quite directly and immediately DE determines an element

[DE] ∈ KK∗(C(M),C).

Denote by
ϕ∗ : KK∗(C(M),C) −→ KK∗(C(X),C)

the map of abelian groups induced by ϕ :M → X . Then the natural map
η : Ktop

j (X) −→ KKj(C(X),C) is

η(M,E,ϕ) = ϕ∗[DE ].

Remark. Although the natural map is an isomorphism, there is no simple direct
formula for the inverse map. This is somewhat analogous to the de Rham theorem.
For any C∞ manifold X , the natural map from de Rham cohomology to singular
cohomology

H∗
DR(X) −→ H∗

sing(X)

is an isomorphism, but there is no simple direct formula for the inverse map.

General Index Problem. With X a finite CW complex, the general index
problem is: Given an element ξ ∈ KK0(C(X),C), explicitly construct a K-cycle
(M,E,ϕ) on X with

η(M,E,ϕ) = ξ.
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Given ξ ∈ KK0(C(X),C), suppose that the general index problem has been
solved for ξ so that a K-cycle (M,E,ϕ) has been constructed with η(M,E,ϕ) = ξ.
A corollary of such a construction is this topological formula for Index(F ⊗ ξ):

Index(F ⊗ ξ) = ǫ∗(ch(F ) ∩ ϕ∗(ch(E) ∪ Td(M) ∩ [M ]))

In this formula, F can be any C vector bundle on X and Index(F⊗ξ) is the integer
obtained by tensoring F with ξ and then taking the index of the resulting Fredholm
operator. ǫ : X → • is the map of X to a point and ǫ∗ : H∗(X ;Q) → H∗(•;Q) = Q
is the induced map in rational homology. ch is Chern character. ∪ and ∩ are the
standard cup and cap products of algebraic topology . Td(M) is the Todd class of
the Spinc manifold M. The Spinc structure of M orients M , so [M ] ∈ H∗(M ;Z)
is the orientation cycle of M . ϕ∗ : H∗(M ;Q) → H∗(X ;Q) is the map of rational
homology induced by ϕ :M → X .

Equivalently, set

Hev(X ;Q) =
⊕

l

H2l(X ;Q),

then for each ξ ∈ KK0(C(X),C) there exists a unique I(ξ) ∈ Hev(X ;Q) such
that whenever F is a C vector bundle on X ,

Index(F ⊗ ξ) = ǫ∗(ch(F ) ∩ I(ξ)).
To solve the index problem for ξ rationally is to explicitly calculate I(ξ). Using
KK0(C(X),C) alone, however, there is no topological solution to the problem of
calculating I(ξ). The above formula states that if a K-cycle (M,E,ϕ) on X has
been constructed with η(M,E,ϕ) = ξ, then

I(ξ) = ϕ∗(ch(E) ∪ Td(M) ∩ [M ])

which is a topological formula for I(ξ).
A contact manifold is an odd dimensional C∞ manifold X , dimension(X) = 2n

+ 1, with a given C∞ 1-form θ such that

θ(dθ)n is non zero at every x ∈ X − i.e. θ(dθ)n is a volume form for X.

Let X be a compact contact manifold without boundary (∂X = ∅) with given
1-form θ. Setting dimension(X) = 2n+ 1, let

γ : X −→ C− {. . . ,−n− 4,−n− 2,−n, n, n+ 2, n+ 4, . . .}
be a complex-valued C∞ function on X which for all x ∈ X satisfies:

γ(x) /∈ {. . . ,−n− 4,−n− 2,−n, n, n+ 2, n+ 4, . . .}
Associated to γ is a hypoelliptic Fredholm operator Pγ .
Pγ is a differential operator (of order 2) and is Fredholm and hypoelliptic but

not elliptic. Once the basic analytic properties of Pγ have been established it then
follows that Pγ gives an element

[Pγ ] ∈ KK0(C(X),C)

with Index[Pγ ]=Index(Pγ).
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PB and co-worker Erik van Erp have constructed a K-cycle (M,E,ϕ) on X
with η(M,E,ϕ) = [Pγ ], thus solving the index problem for Pγ .

Refined Analytic Torsion

Maxim Braverman

(joint work with Thomas Kappeler)

We construct a canonical element, called the refined analytic torsion, of the deter-
minant line of the cohomology of a closed oriented odd-dimensional manifold M
with coefficients in a flat complex vector bundle E, which depends holomorphically
on the flat connection. It encodes the information about both, the Ray-Singer η-
invariant of the Atiyah-Patodi-Singer odd signature operator. In particular, when
the bundle E is acyclic, the refined analytic torsion is a non-zero complex number,
whose absolute value is equal (up to an explicit correction term) to the Ray-Singer
torsion and whose phase is expressed in terms of the η-invariant. The fact that
the Ray-Singer torsion and the η-invariant can be combined into one holomorphic
function allows to use the methods of complex analysis to study both invariants.
We present several applications of these methods. In particular, we compute the
ratio of the refined analytic torsion and the Farber-Turaev refinement of the com-
binatorial torsion.

Definition of the refined analytic torsion. For α ∈ Rep(π1(M),Cn) we denote by
Eα the flat vector bundle over M whose monodromy is equal to α. Let ∇α be the
flat connection on Eα. We defined a canonical non-zero element

ρan(α) = ρan(∇α) ∈ Det
(
H•(M,Eα)

)
,

called the refined analytic torsion, of the determinant line Det
(
H•(M,Eα)

)
of

the cohomology H•(M,Eα) of M with coefficients in Eα. The construction is
based on the study of the graded determinant of the Atiyah-Patodi-Singer odd
signature operator. If the representation α is not unitary, this operator is not self-
adjoint. To carry out the construction of the refined analytic torsion we proved
several new results about determinants of non-self-adjoint operators, which have
an independent interest.

Analyticity of the refined analytic torsion. The disjoint union of the lines
Det

(
H•(M,Eα)

)
, (α ∈ Rep(π1(M),Cn)), forms a line bundle

Det→ Rep(π1(M),Cn),

called the determinant line bundle. It admits a nowhere vanishing section, given
by the Farber-Turaev torsion, and, hence, has a natural structure of a trivializable
holomorphic bundle.

We prove that ρan(α) is a nowhere vanishing holomorphic section of the bundle
Det. It means that the ratio of the refined analytic and the Farber-Turaev torsions
is a holomorphic function on Rep(π1(M),Cn). For an acyclic representation α,
the determinant line Det

(
H•(M,Eα)

)
is canonically isomorphic to C and ρan(α)
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can be viewed as a non-zero complex number. We show that ρan(α) is a holo-
morphic function on the open set Rep0(π1(M),Cn) ⊂ Rep(π1(M),Cn) of acyclic
representations.

Recently, Burghelea and Haller [3, 5, 4] and Cappell and Miller [6] constructed
different versions of complex valued Ray-Singer torsions. Their function is different
from ours and is not related to the η-invariant. The precise relationship between
all three versions of torsion are established in [1, 2], we show that the Burghelea-
Haller torsion can be computed in terms of the refined analytic torsion.

Comparison with the Farber-Turaev torsion. In [8, 9], Turaev constructed a re-
fined version of the combinatorial torsion associated to a representation α, which
depends on additional combinatorial data, denoted by ǫ and called the Euler struc-
ture, as well as on the cohomological orientation of M , i.e., on the orientation
o of the determinant line of the cohomology H•(M,R) of M . In [7], the Tu-
raev torsion was redefined as a non-zero element ρǫ,o(α) of the determinant line
Det

(
H•(M,Eα)

)
.

One of our main results states that, for each connected component C of the
space Rep(π1(M),Cn), there exists a constant θ ∈ R, such that

(1)
ρan(α)

ρǫ,o(α)
= eiθ · fǫ,o(α),

where fǫ,o(α) is a holomorphic function of α ∈ Rep(π1(M),Cn), given by an
explicit local expression.
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Mackey Machine and Duality of Gerbes on Orbifolds

Xiang Tang

(joint work with Hsian-hua Tseng)

Motivated by the study of conformal field theory (CFT) on gerbes over orbifolds,
mathematical physicists [4] formulated the so-called Decomposition Conjecture,
which states that CFTs associated to a G-gerbe (G is a finite group) Y over an

orbifold B is isomorphic to CFTs on a new orbifold Ŷ with the twist by a B-field
τ (i.e. a U(1)-gerbe over Ŷ).

We use the groupoid formulation of gerbes developed in [1], [7], and [5] to study
a G gerbe Y over an orbifold B. Let B be an orbifold, and G be a finite group.
A G-gerbe Y over B can be presented as a groupoid extension, which is an exact
sequence of groupoids,

1 → G i→ H j→ Q → 1,

where Q is a proper étale groupoid presenting B, and G is a locally trivial bundle
on G0 of groups isomorphic to G, and H is a Lie groupoid over H0 = G0 presenting
the G-gerbe Y. According to [5], Morita equivalence classes of G-extensions of
groupoid Q are 1-1 correspondent to G-gerbes over B.

Let us explain the construction of the “dual” Ŷ and the U(1)-gerbe c over it. We
first consider the following special case. Consider a group extension G→ H → Q.
Let the group H act on a manifold M such that the G action on M is trivial. The
following groupoid extension

(1) M ×G⇒M −→M ⋊H ⇒M −→ M ⋊Q⇒M,

defines a G-gerbe Y = M/H over the orbifold B = M/Q. Let Ĝ be the set of
isomorphism classes of finite dimensional irreducible unitary G-representations.

Observe that the conjugation action of H on G defines a Q action on Ĝ. The dual

orbifold Ŷ associated to the G-gerbe Y over B is the quotient (M × Ĝ)/Q. There

is a U(1)-gerbe on Ŷ defined as follows. Pick a set theoretic splitting s : Q → H ;

and for each element [ρ] in Ĝ, fix a representative of a unitary G-representation

ρ : G → GL(Vρ). Given any element q ∈ Q and [ρ] ∈ Ĝ, q(ρ) := ρ ◦ Ads(q) : G →
GL(Vρ) defines a new irreducible representation q(ρ) of G. Let [α] = [q(ρ)] in Ĝ.
Compare the α representation of G on Vα and the q(ρ) representation of G on Vρ.
As they are isomorphic, there is an isomorphism φq,[ρ] : Vρ → Vα to intertwine
q(ρ) and α. Composition of the intertwiners φq,[ρ] fails to satisfy associativity.
Schur’s lemma tells that the difference between these two operators takes value in

U(1) and hence defines a U(1)-valued 2-cocycle c on Ĝ⋊Q. Accordingly c can be

lifted to a U(1)-valued 2-cocycle c on (M × Ĝ)⋊Q determining a U(1)-gerbe on

Ŷ. (Note that the cohomology class of c is independent of the splitting s or the
family of representations {Vρ}.)

For a G-gerbe Y on a general orbifold B, we can first fix a cover of B such that
on each local chart Y can be presented by the above special example (1) coming
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from a group extension, and define Ŷ and a U(1)-gerbe on each open chart as
above, and finally glue the local construction using a partition of unity.

Our viewpoint toward the Decomposition Conjecture in [4] is that it suggests
the following claim:

Conjecture 1. The geometry of the G-gerbe Y is equivalent to the geometry of Ŷ
twisted by the discrete torsion c.

Conjecture 1 reveals a deep and highly nontrivial connection between different
geometric spaces. Consider the simplest example of a G-gerbe, namely, a G-gerbe

over a point, (i.e., B = pt and Y = [pt/G] = BG). Then the dual orbifold Ŷ
is the discrete set Ĝ, the space of isomorphism classes of unitary irreducible G-

representations, and the U(1)-gerbe c on Ŷ is trivial. Conjecture (1) states that
the geometry of the classifying space BG is equivalent to the geometry of the

discrete set Ĝ. However, there are no clear connections between BG and Ĝ at all
at the level of spaces. For example, when G = Z2, the realization of BZ2 is RP∞,

and the space Ẑ2 is a set of two points.

Inspired by the observation that both BG and Ĝ are related to G-representa-
tions, we studied in [6] Conjecture 1 using noncommutative geometry and the

Mackey machine [3]. We proved that Y and (Ŷ, c) are isomorphic as noncommu-
tative spaces. More precisely, the groupoid algebra associated to the G-gerbe Y is
Morita equivalent to the c-twisted groupoid algebra associated to the dual orbifold

Ŷ with the discrete torsion c. We applied this noncommutative geometry devel-
opment to obtain several interesting and important results in algebraic geometry
and symplectic topology.

(1) The category of (coherent) sheaves on Y is equivalent to the category of

c-twisted (coherent) sheaves on Ŷ ;
(2) when Y is symplectic, the Chen-Ruan orbifold cohomology [2] of Y is

isomorphic to the c-twisted orbifold cohomology of Ŷ as graded algebras.
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A local global principle for regular operators in Hilbert C
∗–modules

Matthias Lesch

(joint work with Jens Kaad)

A Hilbert C∗–module E over a C∗–algebra A is an A –right module equipped
with an A –valued inner product 〈·, ·〉 and such that E is complete with respect
to the norm ‖x‖ := ‖〈x, x〉1/2‖ = ‖〈x, x〉‖1/2. The notion was introduced by
Kaplansky in the commutative case [4] and in general independently by Paschke [9],
Rieffel [10] and Takahashi (for the latter cf. [10, p. 179]). Kasparov’s celebrated
KK–theory makes extensive use of Hilbert C∗–modules [5] and by now Hilbert
C∗–modules are a standard tool in the theory of operator algebras. Our standard
textbook reference will be Lance [7].

The elementary properties of Hilbert C∗–modules can be derived basically in
parallel to Hilbert space theory. However, there is no analogue of the Projection
Theorem which soon leads to serious obstructions and difficulties.

A Hilbert C∗–module E comes with a natural C∗–algebra L (E) of bounded
adjointable module endomorphisms. As for Hilbert spaces one soon needs to con-
sider unbounded adjointable operators, Baaj-Julg [1], Pal [8], Woronowicz [11]; see
also [7, Chap. 9/10].

The lack of a Projection Theorem in Hilbert C∗–modules causes the theory
of unbounded operators to be notoriously more complicated. To explain this let
us introduce some terminology: following Pal [8] by a semiregular operator in a
Hilbert C∗–module E over A we will understand an operator T : D(T ) −→ E
defined on a dense A –submodule D(T ) ⊂ E and such that the adjoint T ∗ is
densely defined, too. One now easily deduces that T is A –linear and closable and
that T ∗ is closed. Besides this semiregular operators can be rather pathologic (see
the discussion in Sec. 2.3 and Sec. 6 in [2]).

To have a reasonable theory (e.g. with a functional calculus for selfadjoint oper-
ators) one has to introduce the additional axiom of regularity: a closed semiregular
operator T in E is called regular if I + T ∗T is invertible. While in a Hilbert space
every densely defined closed operator is regular in general Hilbert C∗–modules
there exist closed semiregular operators which are not regular, see [2, Sec. 6].

The regularity axiom has the considerable disadvantage that it is difficult to
verify for specific unbounded operators on concrete Hilbert spaces, cf. [8, p. 332].
The aim of this project is to remedy this distressing situation.

Let us describe in non–technical terms the problem from which this paper arose.
In our study of an approach to the KK–product for unbounded modules [3] we
needed to study two selfadjoint regular operators S, T in a Hilbert C∗–module with
“small” commutator [2, Sec. 7]. More precisely, we were looking at unbounded odd
Kasparov modules (D1, X) and (D2, Y ) together with a densely defined connection
∇. The operator S then corresponds to D1⊗1 whereas T corresponds to 1⊗∇D2.
The Hilbert C∗–module is given by the interior tensor product of X and Y over
some C∗–algebra. As an essential part of forming the unbounded Kasparov prod-
uct of (D1, X) and (D2, Y ) one needs to study the selfadjointness and regularity
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of the unbounded product operator

(1) D :=

(
0 S − i T

S + i T 0

)
, D(D) =

(
D(S) ∩ D(T )

)2 ⊂ E ⊕ E.

With some effort we could prove that this operator is selfadjoint but all efforts to
prove regularity failed. For a while we even started to look for counterexamples.
On the other hand, in a Hilbert space regularity comes for free and the construction
of D out of S and T was more or less “functorial”.

So stated somewhat vaguely, the following principle should hold true: given a
“functorial” construction of an operator D = D(S, T ) out of two selfadjoint and
regular operators S, T . If then for Hilbert spaces this construction always produces
a selfadjoint operator then D(S, T ) is selfadjoint and regular.

To explain our result, let us consider a closed semiregular operator T in the
Hilbert C∗–module E. Furthermore, let ω be a state on A . ω gives rise to a
(possibly degenerate) scalar product

(2) 〈x, y〉ω := ω(〈x, y〉)
on E. Nω :=

{
x ∈ E

∣∣ 〈x, x〉ω = 0
}
is a subspace of E. 〈·, ·〉ω induces a scalar

product on the quotient E/Nω and we denote by Eω the Hilbert space completion
of E/Nω. We let ιω : E → Eω denote the natural map. Clearly ιω is continuous
with dense range; it is injective if and only if ω is faithful. The Hilbert space Eω

is called the localization of E with respect to the state ω.
The operator T induces a densely defined operator, Tω

0 , in the Hilbert space
Eω by putting D(Tω

0 ) = ιω
(
D(T )

)
and Tω

0 (ιωx) = ιω(Tx). It turns out that Tω
0

is closable and we call its closure, Tω = Tω
0 , the localization of T with respect

to the state ω. Tω is a closed densely defined operator in the Hilbert space Eω .
Furthermore,

(3) (T ∗)ω ⊂ (Tω)∗.

Instead of states, which correspond to the cyclic representations of the C∗–
algebra A , one can consider arbitrary representations π. Then Eπ is given by the
interior tensor product E⊗̂AHπ. For brevity the details are omitted here; they
can be found in [2].

It turns out that equality in (3) is intimately related to regularity:

Theorem 1 (Local–Global Principle).
1. For a closed semiregular operator T in a Hilbert C∗–module the following

statements are equivalent:

(1) T is regular.
(2) For every state ω ∈ S(A ) the localizations Tω and (T ∗)ω are adjoints of

each other.

2. For a closed, densely defined and symmetric operator T the following
statements are equivalent:

(1) T is selfadjoint and regular.
(2) For every state ω ∈ S(A ) the localization Tω is selfadjoint.
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The main tool for proving this Theorem is the following separation Theorem.

Theorem 2. Let L ⊂ E be a closed convex subset of the Hilbert C∗–module E
over A . For each vector x0 ∈ E \ L there exists a state ω on A such that ιω(x0)
is not in the closure of ιω(L). In particular there exists a state ω such that ιω(L)
is not dense in Eω and hence ιω(L)

⊥ 6= {0}.
In [2] we show by a couple of examples that the Local–Global Principle can

easily be checked in concrete situations. We would find it aesthetically more
appealing if in Theorems 1 and 2 one could replace “state” by “pure state”. We
conjecture that this is true, but so far we can only prove it for Hilbert C∗–modules
over a commutative C∗–algebra A and for the special Hilbert C∗–module E = A

over a general C∗–algebra A . That pure states suffice in these cases turns out
to be practically useful in Sec. 5 and in the discussion of examples of nonregular
operators in Sec. 6 of [2]. We therefore single out the following Conjecture:

Conjecture 3. If L is a proper submodule of the Hilbert A –module E then there
exists a pure state ω on A such that ιω(L)

⊥ 6= {0}.
Consequently, a closed densely defined symmetric operator in the Hilbert C∗–

module E over A is regular if and only if for each pure state ω on A the localiza-
tion Tω is selfadjoint.

Finally we mention our result that if E is a finitely generated Hilbert C∗–module
over A then every semiregular operator is regular.

The details of the material presented here have been published in [2].
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Quantum trees and actions of free quantum groups

Christian Voigt

(joint work with Roland Vergnioux)

In this talk we discuss K-theoretic properties of free quantum groups. In our
approach certain noncommutative analogues of trees occur naturally at several
points. This resembles the situation for classical free groups, and our results
support the point of view that free quantum groups behave like free groups in
many ways.
Let us first recall the definition of free quantum groups [13], [9].

Definition 1 (Wang-Van Daele). Let n ∈ N and Q ∈ GLn(C). The free unitary
quantum group Au(Q) is the universal C∗-algebra with generators uij , 1 ≤ i, j ≤ n
such that the matrices u = (uij) and QuQ−1 are unitary. Here u = (u∗ij) denotes
the transpose of the adjoint matrix u∗. The free orthogonal quantum group Ao(Q)
is the quotient of Au(Q) by the relation u = QuQ−1.

Both Au(Q) and Ao(Q) are naturally compact quantum groups in the sense of
Woronowicz. In the sequel we will use the notation C∗

f
(FU(Q)) and C∗

f
(FO(Q)) to

emphasize that we view these C∗-algebras as the full group C∗-algebras of discrete
quantum groups FU(Q) and FO(Q).
As in [11] we shall call a discrete quantum group G free iff it is of the form

G ∼= FO(P1) ∗ · · · ∗ FO(Pk) ∗ FU(Q1) ∗ · · · ∗ FU(Ql)

for some matrices Pj ∈ GLmj
(C) with mj > 1 for all j such that PjPj = ±1 and

Qj ∈ GLnj
(C). Observe that the classical free group Fl on l generators corre-

sponds to the case k = 0 and Q1 = · · · = Ql = 1 ∈ GL1(C). We remark that
free quantum groups can be characterized intrinsically in terms of classical Cayley
graphs [11].
Meyer and Nest have developed a categorical approach to the Baum-Connes con-
jecture [6]. Using their framework one can formulate and study an analogue of the
Baum-Connes conjecture for free quantum groups. For more information we refer
to [7], [12].
Our main result is that free quantum groups satisfy a strong version of the Baum-
Connes conjecture.

Theorem 2. Let G be a free quantum group of the form

G = FO(P1) ∗ · · · ∗ FO(Pk) ∗ FU(Q1) ∗ · · · ∗ FU(Ql)

for matrices Pj ∈ GLmj
(C) with mj > 2 for all j such that PjPj = ±1 and

Qj ∈ GLnj
(C). Then G has the strong Baum-Connes property, that is, the local-

izing subcategory 〈CI〉 ⊂ KKG generated by all algebras induced from the trivial
quantum subgroup is equal to KKG.

This may be formulated equivalently by saying that free quantum groups have
a γ-element and that γ = 1. Vergnioux has defined and studied quantum Cayley
trees for these quantum groups in [11]. Theorem 2 shows in particular that the
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resulting Julg-Valette elements are equal to 1, which answers a question left open
in [11].
As a corollary of theorem 2 one obtains the K-amenability of free quantum groups
and an explicit computation of their K-theory. Let us state explicitly the result
in the unitary case.

Theorem 3. Let n > 1 and Q ∈ GLn(C). Then FU(Q) is K-amenable. In
particular, the natural homomorphism C∗

f
(FU(Q)) → C∗

r (FU(Q)) induces an iso-
morphism in K-theory. We have

K0(C
∗
f
(FU(Q))) = Z, K1(C

∗
f
(FU(Q))) = Z⊕ Z,

and these groups are generated by the class of 1 in the even case and the classes
of u and u in the odd case.

We remark that the notion of K-amenability due to Cuntz [3] carries over to
the setting of quantum groups in a straightforward way [10].
Let us sketch the proof of theorem 2 in the case G = FU(Q) where Q ∈ GLn(C)
for n > 2 satisfies QQ = ±1. The basic idea is to consider the embedding
FU(Q) ⊂ FO(Q) ∗ Z studied by Banica [1]. It is known that the corresponding
free orthogonal quantum groups satisfy the strong Baum-Connes conjecture [12],
and the same holds for Z due to the work of Higson and Kasparov [4]. Therefore it
suffices to show that the strong Baum-Connes property passes to free products of
discrete quantum groups and suitable quantum subgroups. To prove inheritance
for free products, we adapt constructions of Kasparov and Skandalis [5] for group
actions on trees to the setting of quantum groups. An important difference to
the classical situation is that one has to take into account a natural action of the
Drinfeld double, compare [8].
For general matrices Q ∈ GLn(C) there is no embedding of the free unitary quan-
tum group FU(Q) into a free product as above. One proceeds using monoidal
equivalences in order to reduce to the case QQ = ±1, see [2], [12].
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Entropy and Fuglede-Kadison determinant

Hanfeng Li

(joint work with Lewis Bowen, Nhan-Phu Chung, David Kerr)

An algebraic action is an action of a countable discrete group Γ on a compact
metrizable abelian group by continuous automorphisms. Denote by Z[Γ] the in-
tegral group ring of Γ, which consists of finitely supported Z-valued functions on
Γ and has the multiplication given by convolution. Using the Pontryagin duality,
one can see that for any compact metrizable abelian group X , there is a one-to-one
correspondence between algebraic actions of Γ onX and left Z[Γ]-module structure

of the Pontryagin dual X̂ of X .
Classically, when Γ is amenable, entropy is defined for continuous actions of Γ

on compact metrizable spaces and measure-preserving actions of Γ on probability
measure spaces [12]. It is known that for any algebraic action of amenable Γ on
X , the topological entropy and the measure entropy corresponding to the Haar
probability measure of X coincide [1, 6], which we shall simply call the entropy of
the algebraic action.

Yuzvinskĭı calculated the entropy for algebraic actions of Z [14]. Lind, Schmidt
and Ward calculated the entropy for algebraic actions of Zd (1 ≤ d < ∞) [11].
The crucial case in the calculation of Lind, Schmidt and Ward is the entropy

for the principal algebraic action Zd y Xf = ̂Z[Zd]/Z[Zd]f for f ∈ Z[Zd] =
Z[Y ±

1 , . . . , Y ±
d ]. They showed that, for nonzero f the entropy is equal to logM(f),

for M(f) being the Mahler measure of f :

M(f) = exp(

∫

Td

log |f(s)| ds)

for T being the unit circle in C and Td being endowed with the Haar probability
measure.

In general, the principal algebraic action Γ y Xf := ̂Z[Γ]/Z[Γ]f is defined for
any countable discrete group Γ and any f ∈ Z[Γ]. Explicitly,

Xf = {x ∈ (R/Z)Γ : x · f∗ = 0},
where the adjoint f∗ of f is given by f∗

s = fs−1 for all s ∈ Γ and x · f∗ is the
convolution product. The action of Γ on Xf is given by

(sx)t = xs−1t
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for all x ∈ Xf and s, t ∈ Γ.
Given a von Neumann algebra M and a normal tracial state tr of M, Fuglede

and Kadison introduced a determinant detMf for any f ∈ M associated to tr [8].
Denote by µ the spectral measure of |f | on the interval [0, ‖f‖] associated to tr,
i.e. µ is the Borel probability measure on [0, ‖f‖] determined by

∫ ‖f‖

0

g(t) dµ(t) = tr(g(|f |))

for all complex-valued continuous functions g on [0, ‖f‖]. Then the Fuglede-
Kadison determinant is defined as

detMf = exp(

∫ ‖f‖

0

log t dµ(t)).

When f is invertible in M, one has the simpler formula

detMf = exp(tr(log |f |)).
For any countable discrete group Γ, one has the group von Neumann algebra

NΓ inside the algebra of bounded linear operators on ℓ2(Γ). Denote by δe the
elements in ℓ2(Γ) being 1 at the identity element e of Γ and 0 everywhere else.
Then NΓ has the canonical faithful normal tracial state tr given by

tr(a) = 〈aδe, δe〉 .
It is well known that Z[Γ] embeds into NΓ naturally. Thus for any f ∈ Z[Γ], one
has the Fuglede-Kadison determinant detNΓf (associated to tr). When Γ = Zd,
one has detNΓf = M(f) for every f ∈ Z[Zd]. Then it is natural to ask for
the relation between the entropy of the principal algebraic action Γ y Xf and
log detNΓf for general amenable Γ and f ∈ Z[Γ].

Theorem 1. [10] Let Γ be a countable amenable group. Let f ∈ Z[Γ] be invertible
in NΓ. Then the entropy of Γ y Xf is equal to log detNΓf .

Some special cases of Theorem 1 were proved in [6, 7] earlier. When Γ is
amenable and f ∈ Z[Γ] is a left zero-divisor in Z[Γ], the entropy of Γ y Xf is +∞
[5], while log detNΓf = −∞. It is conjectured that the assumption in Theorem 1
that f is invertible in NΓ can be weakened to that f is not a left zero-divisor in
Z[Γ]. One consequence of Theorem 1 is the following result, answering partially a
question of Deninger:

Corollary 2. [5] Let Γ be a countable amenable group. Let f ∈ Z[Γ] be invertible
in ℓ1(Γ). Then detNΓf = 1 if and only if f is invertible in Z[Γ].

The class of sofic groups was introduced by Gromov. For a nice survey about
sofic groups, see [13]. Discrete amenable groups and residually finite groups are
all sofic. Recently the entropy theory has been extended to continuous actions
of countable sofic groups Γ on compact metrizable spaces and measure-preserving
actions of countable sofic groups Γ on standard probability measure spaces [2, 9].
The entropy for such actions may depend on the choice of a sofic approximation
sequence for Γ, thus one actually gets a family of invariants for the actions. When
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Γ is countably infinite and residually finite, the simplest way to construct a sofic
approximation sequence for Γ is to take a sequence Σ = {Γn}n∈N of finite-index
normal subgroups of Γ converging to e in the sense that

⋂
n∈N

⋃
m≥n Γm = {e}

(and then proceed in a standard way to obtain a sofic approximation sequence for
Γ). In the rest of this abstract, we fix a countably infinite and residually finite
group Γ, a sequence Σ = {Γn}n∈N of finite-index normal subgroups of Γ converging
to e, and f ∈ Z[Γ].

Theorem 3. [3] Suppose that f is invertible in ℓ1(Γ). Then the sofic measure
entropy of Γ y Xf corresponding to Σ and the Haar probability measure of Xf is
equal to log detNΓf .

Theorem 4. [9] Suppose that f is invertible in the full group C∗-algebra of Γ.
Then the sofic topological entropy of Γ y Xf corresponding to Σ is equal to
log detNΓf .

Theorem 5. [4] Suppose that f satisfy the following conditions:

(1)
∑

s∈Γ fs = 0,
(2) fs ≤ 0 for every s ∈ Γ \ {e},
(3) f = f∗,
(4) the support of f generates Γ.

Then the sofic topological entropy and the sofic measure entropy of Γ y Xf corre-
sponding to Σ and the Haar probability measure of Xf are both equal to log detNΓf .
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The algebraic K-theory Novikov conjecture for group algebras

Guoliang Yu

Let R be an H-unital ring and G be any group. The isomorphism conjecture of
Farrell-Jones and Bartels-Farrell-Jones-Reich provides an algorithm for computing
the algebraic K-theory of the group algebra RG in terms of the algebraic K-theory
of R. More precisely, the isomorphism conjecture states that the assembly map
from a certain equivariant homology associated to the non-connective algebraic
K-theory spectrum of R to the algebraic K-theory Kn(RG) is an isomorphism.
Motivated by Connes-Moscovici’s higher index theory, we consider the case when
R is the ring of Schatten class operators. We prove that in this case, the assembly
map is rationally injective. As a consequence, we obtain the algebraic K-theory
Novikov conjecture for all group algebras over the ring of Schatten class opera-
tors. The main tool in the proof is an explicit construction of the Connes-Chern
character.
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Modular curvature for noncommutative two-tori

Henri Moscovici

(joint work with Alain Connes)

We report on substantive new advances in understanding the geometry of the non-
commutative two-torus T2

θ, cf. [7]. The differential geometry of T2
θ equipped with

the analogue of a flat metric, as well as its pseudo-differential operator calculus,
was first developed in [3]. To obtain a curved geometry, one introduces (cf. [1],
[2]) a Weyl factor or dilaton which modifies the metric by rescaling the volume
form while keeping the same conformal structure (both these notions are explained
in [4]). In [2] it was shown how to construct a twisted spectral triple (cf. [6])
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representing the Dirac operator D for the conformally curved geometry associated
to the dilaton h. Furthermore, a first computation was performed for the value
at s = 0 of the zeta function ζD2(a; s) = Trace(a|D|−2s), a ∈ C∞(T2

θ), or equiv-
alently for the constant term a2(a,D

2) of the heat expansion. Although partial,
that calculation, which was actually started in the late 1980’s (cf. [1]), suffices to
compute the total integral of the curvature and thus establish the analogue of the
Gauss–Bonnet formula (cf. [2]), [8]). The technical obstacles for computing in full
the local expression of a2(a,D

2) were overcome in 2009, essentially by means of
computer assisted calculations, facilitated by a generalized Rearrangement Lemma
(announced at the Oberwolfach 2009 conference). The same computation was in-
dependently done in [9].

The main additional input of the present work consists in relating that com-
putation to the Ray-Singer log-determinant of D2, and gaining in this way new
geometric insight into the meaning of the resulting expression. Moreover, comput-
ing the gradient of the Ray-Singer log-determinant in two different ways yields a
deep internal consistency relation for the calculated local formula and elucidates
the role of the complicated inner bi-differential terms.

We now briefly outline our main new results. As in the case of the standard
torus viewed as a complex curve, the total Laplacian associated to the modular
spectral triple splits into two components, one △ϕ on functions and the other

△(0,1)
ϕ on (0, 1)-forms; the two operators are isospectral outside zero. A first result

is the conformal invariance of the value at 0 of the zeta functions associated to
these Laplacians. In particular, this gives an priori proof for the validity of the
Gauss-Bonnet formula.

The full local expression of the constant term a2(a,D
2), resp. a2(γa,D

2), in-
volves as a crucial ingredient the modular operator ∆ of the non-tracial weight
ϕ(a) = ϕ0(ae

−h) associated to the dilaton h. Thus, a2(a,△ϕ) is of the form

(1) a2(a,△ϕ) = − π

2τ2
ϕ0(a

(
K0(∇)(△(h)) +

1

2
H0(∇1,∇2)(�ℜ(h)

)

where ∇ = log∆ is the inner derivation implemented by −h,
△(h) = δ21(h) + 2ℜ(τ)δ1δ2(h) + |τ |2δ22(h),

�ℜ is the Dirichlet quadratic form

�ℜ(ℓ) := (δ1(ℓ))
2 + ℜ(τ) (δ1(ℓ)δ2(ℓ) + δ2(ℓ)δ1(ℓ)) + |τ |2(δ2(ℓ))2 ,

and ∇i, i = 1, 2, signify that ∇ is acting on the ith factor. The operators K0(∇)
and H0(∇1,∇2) are new ingredients, whose occurrence is a vivid manifestation of
the genuinely non-unimodular nature of the conformal geometry of the noncommu-
tative 2-torus. The functions K0(u) and H0(u, v) by which they act seem at first
of a rather formidable nature, and they of course beg for a deeper understanding.
Their expressions, arising from the computation, are as follows:

(2) K0(s) =
−2 + s coth

(
s
2

)

s sinh
(
s
2

) ,
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and

H0(s, t) =

t(s+ t) cosh(s)− s(s+ t) cosh(t) + (s− t)(s+ t+ sinh(s) + sinh(t)− sinh(s+ t))

st(s+ t) sinh
(
s
2

)
sinh

(
t
2

)
sinh

(
s+t
2

)2

(3)

Our second main result is the following closed formula for the Ray-Singer de-
terminant:

(4) logDet′(△ϕ) = logϕ(1) + (2 log 2π + log |η(τ)|4) + π

8τ2
ϕ0

(
K̃0(∇1)(�ℜ(h))

)

The third new result is an abstract proof of a functional relation between the
functions K0 and H0; denoting

K̃0(s) = 4
sinh(s/2)

s
K0(s) and H̃0(s, t)) = 4

sinh((s+ t)/2)

s+ t
H0(s, t),

we prove, by an a priori argument, the identity
(5)

−1

2
H̃0(s1, s2) =

K̃0(s2)− K̃0(s1)

s1 + s2
+
K̃0(s1 + s2)− K̃0(s2)

s1
− K̃0(s1 + s2)− K̃0(s1)

s2

The function K̃0 is (up to the factor 1
8 ) the generating function of the Bernoulli

numbers, i.e. one has

(6)
1

8
K̃0(u) =

∞∑

1

B2n

(2n)!
u2n−2 .

Our a priori proof of the functional relation (5) is based on the computation of the
gradient of a scale-invariant version (cf. [10]) of the Ray-Singer determinant in
two different ways. Using the left hand side of (4) one obtains a formula involving
a2(a,△ϕ), while using the right hand side of (4) gives the local expression.

As a forth fundamental result, we establish the analogue of a version of the
classical uniformization theorem which asserts that in every conformal class the
maximum of log-det for metrics of a fixed area is unique and attained at the
constant curvature metric. The proof relies on the positivity of the function K̃0.
This function K̃0 is, by (6), the generating function of Bernoulli numbers and is
well known to play a key role in the theory of characteristic classes where it is
used as a formal power series. It is quite striking that in our context the same
function appears but no longer as a formal series and with a key role played by its
positivity.

In marked contrast to the ordinary torus, for which both a2(a,△ϕ) and

a2(a,△(0,1)
ϕ ) are constant multiples of the scalar (or Gaussian) curvature, the local

curvature functionals associated to the zeta functions of the two partial Lapla-
cians differ substantially. The function H1(s, t) of two variables involved in the
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expression of a2(a,△(0,1)
ϕ ) is related to H0(s, t) in a simple fashion, but a new term

appears, in the form of an operator S(∇1,∇2) applied to the skew quadratic form

(7) �ℑ(ℓ) := iℑ(τ) (δ1(ℓ)δ2(ℓ)− δ2(ℓ)δ1(ℓ)) , ℓ = 2h.

Finally, the gradient of the scale-invariant analytic torsion functional delivers in
turn the appropriate analogue of the notion of scalar curvature. Furthermore, the
corresponding evolution equation for the metric yields the appropriate analogue
of Ricci flow.
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Absolute geometric structures and their arithmetic: an overview

Caterina Consani

(joint work with Alain Connes)

The talk reviewed the origins, the meaning and the motivations to develop an
“absolute” geometric/arithmetic theory (i.e. geometry/arithmetic over F1). This
research has already shed a new light on a number of important topics pertaining to
the rich interconnection between the fields of noncommutative geometry and num-
ber theory. The talk focused on the description of a few recent results obtained by
the speaker in an on-going research project with A. Connes. In particular, it was
explained that the algebraic endomotive and the associated BC-system (quantum
statistical dynamical system) which are known to give the spectral realization of
the zeros of the Riemann zeta function as well as the trace formula interpretation
of the Riemann-Weil explicit formulas appear from first principles by studying the
algebraic closure F̄1 of the “field with one element”. The real counting function of
the hypothetical curve over F1 whose corresponding zeta function is the complete
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Riemann zeta function exists as a distribution and can be expressed as an inter-
section number involving the scaling action of the idèle class group on the adèle
class space.
The introduction of an elementary theory of algebraic geometry over the absolute
point Spec(F1) reveals the role of the natural monoidal structure of the adèle
class space. To understand it in more refined terms one needs to promote F1 to
the Krasner hyperfield K by implementing on the set {0, 1} the structure of a
hyperring (i.e. one endows the set {0, 1} with the obvious multiplication and a
hyper-addition requiring that 1+ 1 = {0, 1}). It follows that the adèle class space
of a global field inherits the (algebraic) structure of a hyperring extension of K.

In view of our recent results on the arithmetic properties of the BC-system and its
connections with the theory of Witt vectors and p-adic analysis (cfr. A. Connes’
talk) one derives a description of the geometric fibers of the sought for (absolute)
curve associated to the (complete) Riemann zeta function. The fiber over a non-
archimedean rational prime p is the total space of a principal bundle, with base the
space Valp(Qcyc) of extensions of the p-adic valuation to the maximal abelian field
extension of Q. The structure group is given by a connected, compact solenoid
whose presence is due to the fact that the connected component of the identity
in the idèle class group acts trivially, at the Galois level, on Qcyc. The integral
BC-system supplies a natural embedding of (each of) these fibers into a noncom-
mutative space whose description matches with the definition of the adèle class
space and whose algebraic structure is that of a free module of rank one over the
hyperring of adèle classes.
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Drinfeld twists and cohomology of quantum groups

Sergey Neshveyev

(joint work with Lars Tuset)

Let G be a simply connected semisimple compact Lie group. For q > 0 denote
by Gq the Drinfeld-Jimbo deformation of G. It is well-known that the irreducible
representations of Gq are classified by the set P+ of dominant integral weights, and
the dimensions of these representations are the same as in the classical case. This
implies that the von Neumann algebras W ∗(Gq) and W

∗(G) are isomorphic. Fix
such an isomorphism ϕ : W ∗(Gq) →W ∗(G) extending the identification of centers

of the algebras with ℓ∞(P+). Denote by ∆̂q the comultiplication on W ∗(Gq). The
isomorphism ϕ cannot be chosen to respect the comultiplications. Instead, by
virtue of a highly nontrivial result of Drinfeld, Kazhdan and Lusztig (see [4] for
a thorough discussion), there exists a unitary element F ∈ W ∗(G)⊗̄W ∗(G) such
that

(i) (ϕ⊗ ϕ)∆̂q = F∆̂ϕ(·)F−1;

(ii) (ε̂⊗ ι)(F) = (ι⊗ ε̂)(F) = 1, where ε̂ is the trivial representation of G;

(iii) (ϕ ⊗ ϕ)(R) = F21q
tF−1, where R is the R-matrix for Gq (considered as an

element affiliated with W ∗(Gq)⊗̄W ∗(Gq)) and t ∈ g ⊗ g ⊂ W ∗(G)⊗̄W ∗(G) is
the element defined by a properly normalized symmetric invariant form on the
complexified Lie algebra g of G;

(iv) (ι ⊗ ∆̂)(F−1)(1 ⊗ F−1)(F ⊗ 1)(∆̂ ⊗ ι)(F) = ΦKZ , where ΦKZ is Drinfeld’s
associator defined via monodromy of Knizhnik-Zamolodchikov equations.

We call F a unitary Drinfeld twist. What can be said about these elements?

Classification of Drinfeld twists leads to the problem of computing dual invariant
cohomology H2

Gq
(Ĝq;T), which is defined as follows. A unitary element F ∈

W ∗(Gq)⊗̄W ∗(Gq) is called a dual 2-cocycle on Gq if

(F ⊗ 1)(∆̂q ⊗ ι)(F) = (1⊗F)(ι ⊗ ∆̂q)(F).

A cocycle F is called invariant if it commutes with the image of ∆̂q. Two invariant
unitary cocycles E and F are called cohomologous, if there exists a central unitary
element u ∈ W ∗(Gq) such that E = (u ⊗ u)F∆̂q(u)

−1. The set of cohomology

classes of dual invariant unitary 2-cocycles forms a group, denoted by H2
Gq

(Ĝq;T).
Denote by Q the root lattice of G. Let c be a T-valued 2-cocycle on P/Q. It

defines a dual invariant unitary 2-cocycle Ec on Ĝq: the action of Ec on the tensor
product Vλ ⊗ Vν of irreducible representations with highest weights λ and ν is by
multiplication by c(λ, µ).

Theorem 1 ([2, 5]). The map c 7→ Ec defines an isomorphism

H2(P/Q;T) ∼= H2
Gq

(Ĝq;T).

Corollary 2. If g is simple and g 6∼= so4n(C) then H2
Gq

(Ĝq;T) is trivial. If g =

so4n(C) then H2
Gq

(Ĝq;T) ∼= Z/2Z.
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Corollary 3. Suppose E and F are two Drinfeld twists for the same isomor-
phism ϕ. Then there exists a central unitary element u in W ∗(G) such that

E = (u⊗ u)F∆̂(u)−1.

For q = 1 Theorem 1 can be extended to all compact connected groups.

Theorem 4 ([3]). Assume G is a compact connected group. Then there is a
canonical isomorphism

H2
G(Ĝ;T) ∼= H2(Ẑ(G);T).

Let us now consider the field of quantum groups Gq. For every q > 0 fix an
isomorphism ϕq : W

∗(Gq) → W ∗(G) as above. Consider the standard generators
Eq

i , F
q
i ,K

q
i of Uqg for q 6= 1, and the generators E1

i = Ei, F
1
i = Fi, H

1
i = Hi

of Ug. Write Kq
i = qdiH

q

i . We say that the family {ϕq}q is continuous if the map
q 7→ π(ϕq(X

q)) is continuous for every finite dimensional representation π of G
and for all Xq = Eq

i , F
q
i , H

q
i . It is not difficult to see that there exists a continuous

family of isomorphisms such that ϕ1 is the identity map [6].

Theorem 5. There exists a strongly operator continuous family of unitary Drin-
feld twists Fq such that F1 = 1. Furthermore, if {ψq : W

∗(Gq) → W ∗(G)}q>0 is
another continuous family of ∗-isomorphisms such that ψ1 = ι, and {Eq}q>0 is a
corresponding continuous family of unitary Drinfeld twists with E1 = 1, then there
exists a unique continuous family of unitary elements uq ∈ W ∗(G) such that

u1 = 1, and ψq = uqϕq(·)uq∗ and Eq = (uq ⊗ uq)Fq∆̂(uq)
∗ for all q > 0.

For every matrix coefficient a of a finite dimensional representation of G the
element aϕq ∈ W ∗(Gq)∗ is a matrix coefficient of a finite dimensional representa-
tion of Gq. The C

∗-algebras C(Gq) have a unique structure of a continuous field of
C∗-algebras such that the vector fields q 7→ aϕq are continuous [6]. Furthermore,
this structure does not depend on the choice of {ϕq}q. For 0 < s < t denote by
C(G[s,t]) the C∗-algebra of continuous sections over the interval [s, t]. For every
q ∈ [s, t] the evaluation maps C(G[s,t]) → C(Gq) are KK-equivalences [7]. In
particular, the C∗-algebras C(Gq) are canonically KK-equivalent to each other for
all q > 0.

Drinfeld twists were used in [1] to construct Dirac operators Dq on Gq. Using
the previous theorem we can then prove the following result.

Theorem 6 ([6]). The family of Dirac operators Dq is continuous in the sense
that it defines an element in RKKn(C(G[s,t]), C[s, t]), n = dimG(mod 2).

This element is independent of the choice of a continuous family of isomor-
phisms and a continuous family of unitary Drinfeld twists.

In particular, the K-homology classes of Dq correspond to each other under the
canonical KK-equivalences between the C∗-algebras C(Gq).
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Reconstructing global fields using noncommutative geometry

Gunther Cornelissen

(joint work with Matilde Marcolli)

The general philosophy can be described by the motto pluralizing zeta. Zeta
functions ζX are counting devices associated to invariants of objects X . For exam-
ple, counting ideals of a given norm in a number field, counting the spectrum of the
Laplace-Beltrami operator on a Riemannian manifold, counting points of varieties
over finite fields, lengths of geodesics, periodic orbits, and what not. However,
such a single zeta function does not always characterize the object up to isomor-
phism: for number fields, this is the phenomenon of arithmetic equivalence; for
Riemannian manifolds, that of isospectrality; for curves over finite fields, Tate’s
theory of isogenies of Jacobians, etc. We put this single zeta function into a fam-
ily of zeta functions, indexed by some algebra, and the problem disappears. For
number fields, the algebra is the group ring of the maximal abelian extension of
the field, for Riemannian manifolds, the smooth functions on it, and so on. In this
talk, I focussed on the case of number fields. For other examples, see [4], [5], [7].

I will list various objects that do/don’t determine a number field K.
The Dedekind zeta function of K is ζK(s) :=

∑
06=aNK(a)−s, where the sum

runs over all non-zero ideals a of the ring of integers of K, and NK is the norm
from K to Q. Knowing ζK is the same as knowing the inertia degree f(p|p) for
all prime ideals p. A theorem of Mihály Bauer (1903 [1]) says that if K,L are
two number fields that are Galois over Q, then K ∼= L is equivalent to ζK = ζL.
However, a result of Gaßmann from 1926 [8] says that in general, there do exist non-
isomorphic number fields K,L with ζK = ζL. Actually, he proves that ζK = ζL
is equivalent to the following statement: fix a common extension N of K and
L that is Galois over Q with Galois group G, and let HK and HL denote the
Galois groups of N/K and N/L, respectively. Then ζK = ζL if and only if each
G-conjugacy class intersects HK and HL in the same number of elements. A
result from Perlis from 1977 [15] says that the smallest degree of a field K/Q with
ζK = ζL but K 6∼= L is 7, and an example is given by K = Q(α), L = Q(β) with
α7 − 7α + 3 = 0 and β7 + 14β4 − 42β2 − 21β + 9 = 0. Here are some further
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attempts at finding objects that determine isomorphism of number fields K and
L: an isomorphism of adele rings AK

∼= AL is strictly stronger than equality of
zeta functions, but still does not imply field isomorphism (Komatsu, 1976 [10]);

an example is K = Q( 8
√
18)and L = Q( 8

√
288). An isomorphism of abelian Galois

groups Gab
K

∼= Gab
L is not enough either: Kubota [11] determined the isomorphism

type of Gab
K (its Ulm invariants) in terms ofK, and Onabe (1976 [14]) gave explicit

examples, such as Gab
Q(

√−2)
∼= Gab

Q(
√−3)

. At the other side of the spectrum, an

isomorphism of absolute Galois groups GK
∼= GL does imply that K ∼= L! This

is due to Neukirch (1969 [13]) when K,L are Galois over Q and Uchida (1976
[17]) in general. This last theorem is the first manifestation of what Grothendieck
called anabelian theorems. We conclude that the objects listed above, that are
internal to a number field K (i.e., can be described in terms of ideals of K), such
as ζK ,AK or Gab

K (which is internal by class field theory), lead to failure, whereas
a mysterious object GK , that is external to K (described in terms of extensions of
K, or via the Langlands program in terms of automorphic forms), leads to success
. . . Can we do better, and have “internal success”? A first example is the result
of Connes and Consani [3] that the two adele class spaces AK/K

∗ ∼= AL/L
∗ are

isomorphic as hyperrings over the Krasner hyperfield if and only if K and L are
isomorphic.

We go on and look for a good topological space (rather than ring) that does it.
And this space will turn out to be noncommutative. The method is to consider
class field theory as (noncommutative) dynamical system, as follows. Let
JK denote the group of fractional ideals of K, J+

K the semigroup of integral ideals

of K, ϑK : A∗
K → Gab

K the Artin reciprocity map and ÔK the integral finite adeles

of K. Choose a section s of the natural map A∗
K,f → JK : (xp)p 7→

∏
pvp(xp).

These objects were used by Ha and Paugam in 2005 [9] [12] to construct a dy-
namical system associated to K (for K = Q, this is the famous Bost-Connes

system [2]), as follows: we make a topological space XK = Gab
K ×Ô∗

K
ÔK , con-

sisting of classes [(γ, ρ)] for γ ∈ Gab
K and ρ ∈ ÔK , defined by the equivalence

(γ, ρ) ∼ (ϑK(u−1) · γ, uρ) for all u ∈ Ô∗
K . Then we consider the action of n ∈ J+

K

on XK given by n∗ [(γ, ρ)] := [(ϑK(s(n))−1γ, s(n)ρ)]. In this way, we get a dynam-
ical system (XK , J

+
K).

Theorem. For two number fields K and L, an isomorphism K ∼= L is equivalent

to a norm-preserving isomorphism of dynamical systems (XK , J
+
K) ∼= (XL, J

+
L ).

By isomorphism of dynamical systems, we mean a homeomorphism Φ: XK
∼→

XL and a group homomorphism ϕ : J+
K

∼→ J+
L such that Φ(n ∗x) = ϕ(n) ∗Φ(x) for

all x ∈ XK and n ∈ J+
K ; and norm-preserving means that NL(ϕ(n)) = NK(n) for

all n ∈ J+
K . The proof is really to “hit the dynamical system with a hammer until

enough isomorphic objects jump out”.
The result has a reformulation using quantum statistical mechanics, by

encoding the dynamics in Banach algebra language. We set AK := C(XK) ⋊ J+
K

to be the semigroup crossed product C∗-algebra corresponding to the dynamical
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system. Physically, it corresponds to the algebra of observables. If we let µn

and µ∗
n denote the partial isometries of the algebra corresponding to n ∈ J+

K ,

then we also need the non-involutive subalgebra A†
K of AK generated by C(X)

and 〈µn〉n∈J+
K

(but not the µ∗
n). We also consider a one-parameter subgroup of

automorphisms of AK , denoted σK : R →֒ Aut(AK), defined by σK(t)(f) = f
and σK(t)(µn) = NK(n)itµn. The algebra with this so-called time evolution is
an abstract quantum statistical mechanical system. A slightly stronger statement
than the main theorem is the following (the proof is similar to that of Davidson
and Katsoulidis in [6], combined with ergodicity):

Theorem. Two number fields K and L are isomorphic if and only if there is

an isomorphism of quantum statistical mechanical systems (AK , σK)
∼→ (AL, σL)

that maps A†
K to A†

L.

In a sense, these theorems show that a suitable combination of failure (ζK ,
which will be the partition function of the system, Gab

K and AK , which occur in the
system) may lead to success. It gives an “internal” description of the isomorphism
type of a number field by a noncommutative topological space. One may replace
“anabelian” by “noncommutative” . . .

From the main theorem, we deduce our answer to the problems outlined before:

Theorem. An isomorphism of number fields K ∼= L is equivalent to the existence

of an isomorphism ψ : Gab
K

∼→ Gab
L , such that all abelian L-series match: LK(χ) =

LL((ψ
−1)∗χ) for all χ ∈ Hom(Gab

K , S
1).

The L-series of the trivial character is the zeta function, so this theorem does
solve the number theoretical riddle we outlined before. What is more, we dis-
covered this theorem because L-series occur as evaluations of low temperature
equilibrium states of the system at particular test functions related to the charac-
ter. Our proof of this theorem is to deduce from L-series equality an isomorphism
of dynamical systems, which basically boils down to a bit of character theory, and
then using the main theorem.
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Semigroup C*-algebras and their K-theory

Xin Li

(joint work with Joachim Cuntz)

We introduce a new construction called semigroup C*-algebras. As in the group
case, it is possible to characterize amenability of semigroups in terms of these semi-
group C*-algebras. Moreover, we compute K-theory for semigroup C*-algebras
associated with certain semigroups from number theory.

Semigroup C*-algebras

By a semigroup, we mean a set P equipped with an associative binary operation.
Moreover, we always assume that our semigroups have unit elements. A semigroup
P is called left cancellative if for every p, q and q′ in P , pq = pq′ implies q = q′.
All our semigroups are supposed to be left cancellative.

Given a left cancellative semigroup P , we can construct its left regular repre-
sentation: Consider the Hilbert space ℓ2(P ) with the canonical orthonormal basis
{εq}q∈P (given by εq(p) = δp,q). We define for every p ∈ P an isometry Vp by

setting Vpεq = εpq. Note that our assumption that P is left cancellative ensures
that the assignment εq 7→ εpq indeed extends to an isometry. Now the reduced
semigroup C*-algebra of P is given as the sub-C*-algebra of L(ℓ2(P )) generated
by these isometries {Vp: p ∈ P}:
Definition 1. C∗

r (P ) := C∗ ({Vp: p ∈ P}) ⊆ L(ℓ2(P )).
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We now turn to the construction of full semigroup C*-algebras. The “simplest”
construction would be to define the full semigroup C*-algebra as

C∗
(
{vp: p ∈ P} vp are isometries

satisfying vpq = vpvq

)
.

However, even in the case of very simple semigroups, this construction leads to
very complicated C*-algebras which are not suited for studying amenability. For
instance, for P = N0 × N0, the definition above yields the universal C*-algebra
generated by two commuting isometries. But this C*-algebra is not nuclear by [3],
Theorem 6.2. So we need to impose more relations on the generating isometries.
The idea is to make use of right ideals of our semigroups to control the range
projections of the generating isometries. Let us start with some notations:

Given a subset X of P and an element p ∈ P , we set

pX := {px: x ∈ X} and p−1X := {q ∈ P : pq ∈ X} .
In other words, pX is the image and p−1X is the pre-image of X under left
multiplication with p. A subset X of P is called a right ideal if it is closed under
right multiplication with arbitrary semigroup elements, i.e. if for every x ∈ X and
p ∈ P , the product xp always lies in X . Let J be the smallest family of right
ideals of P containing P and ∅, i.e.

P ∈ J , ∅ ∈ J ,
and closed under left multiplication, taking pre-images under left multiplication,

X ∈ J , p ∈ P ⇒ pX, p−1X ∈ J ,
as well as finite intersections,

X,Y ∈ J ⇒ X ∩ Y ∈ J .
With the help of this family of right ideals, we can now construct the full semigroup
C*-algebra of P . The idea is to ask for a projection-valued spectral measure,
defined for elements in the family J and taking values in projections in our C*-
algebra.

Definition 2. The full semigroup C*-algebra of P is the universal C*-algebra
generated by isometries {vp: p ∈ P} and projections {eX :X ∈ J } satisfying the
following relations:

I.(i) vpq = vpvq I.(ii) vpeXv
∗
p = epX

II.(i) eP = 1 II.(ii) e∅ = 0 II.(iii) eX∩Y = eX · eY
for all p, q in P and X, Y in J . We denote this universal C*-algebra by C∗(P ):

C∗(P ) := C∗


{vp: p ∈ P} ∪ {eX: X ∈ J }

vp are isometries
and eX are projections

satisfying I and II.



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Of course, the question is: Where do all these relations come from? The idea
is that we can think of C∗(P ) as a universal model of the reduced semigroup C*-
algebra C∗

r (P ). To make this precise, let us again consider concrete operators on
ℓ2(P ). We have already defined the isometries Vp for p ∈ P . Let X be subset of
P and let EX be the orthogonal projection onto ℓ2(X) ⊆ ℓ2(P ). It is now easy to
check that the two families {Vp: p ∈ P} and {EX : X ∈ J } satisfy relations I and
II (with Vp in place of vp and EX in place of eX). This explains the origin of these
relations. At the same time, we obtain by universal property of C∗(P ) a non-zero
homomorphism λ : C∗(P ) → C∗

r (P ) sending vp to Vp and eX to EX for every
p ∈ P and X ∈ J . This homomorphism is called the left regular representation of
C∗(P ).

We remark that if P happens to be a group, then the C*-algebras we constructed
will just be the reduced and full group C*-algebras. Moreover, for special types of
semigroups, the constructions we have presented have already been introduced by
A. Nica in [4] and J. Cuntz (see [1]).

Amenability of semigroups

Let us now explain the connection to amenability of semigroups.
A (discrete) semigroup P is left amenable if there exists a left invariant mean

on ℓ∞(P ), i.e. a state µ on ℓ∞(P ) such that for every p ∈ P and f ∈ ℓ∞(P ),
µ(f(p⊔)) = µ(f). We remark that in the case of left cancellative semigroups, a
semigroup is left amenable if and only if it satisfies the (strong) Følner condition
(see [5] for details). Here are our main results concerning amenability:

Theorem 1. If P is cancellative and satisfies the
⋃
-condition, then the following

are equivalent:

• P is left amenable
• The left regular representation λ : C∗(P ) → C∗

r (P ) is an isomorphism and
there exists a non-zero character on C∗(P ).

Here “cancellative” means left and right cancellative. The
⋃
-condition is a

technical condition on the family J of right ideals of P . It says that given X ∈ J
and finitely many proper subsets X1, . . . , Xn ∈ J of X (i.e. Xj ( X), then⋃n

j=1Xj is a proper subset of X (i.e.
⋃n

j=1Xj ( X).

Theorem 2. Let P be cancellative and countable. If P is right amenable, then
C∗(P ) is nuclear. Conversely, if C∗(P ) is nuclear and if there exists a non-zero
character on C∗(P ), then P is left amenable.

The reader may consult [2] for details.

K-theory

We consider special semigroups from number theory. Let K be a number field,
i.e. a finite field extension of Q, and let R be the ring of integers in K, i.e. the
integral closure of Z in K. We are interested in the multiplicative semigroup
R× = R \ {0} and in the ax+ b-semigroup R⋊R×. Here is our K-theoretic result:
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Theorem 3 (joint with J. Cuntz).

K∗(C
∗(R×)) ∼=

⊕

γ∈ClK

K∗(C
∗(R∗)),

K∗(C
∗(R⋊R×)) ∼=

⊕

γ∈ClK

K∗(C
∗(Iγ ⋊R∗))

and similarly for K-homology.

Here ClK is the ideal class group of K. R∗ is the (multiplicative) group of units
in R. Moreover, in the second formula, we choose for every γ ∈ ClK an ideal Iγ
of R which represents γ.

Let us remark that for each of these semigroups, the left regular representation
is an isomorphism, so that we obtain the K-theory of the reduced semigroup C*-
algebras as well. Moreover, we can actually prove that C∗(R×) is KK-equivalent to⊕

γ∈ClK
C∗(R∗) and that C∗(R⋊R×) is KK-equivalent to

⊕
γ∈ClK

C∗(Iγ⋊R∗). In
addition, for every semigroup P , we can define the diagonal map C∗(P ) → C∗(P )⊗
C∗(P ), vp 7→ vp ⊗ vp. This means that there is a canonical product structure on
the K-homology K∗(C∗(P )). Our K-homology formulas for the semigroups R×

and R ⋊R× (which are analogous to the K-theoretic ones in the theorem above)
are compatible with the product structures.
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Arithmetic of the BC-system

Alain Connes

(joint work with C. Consani, JHU)

For each prime p and each embedding σ of the multiplicative group of an alge-
braic closure F̄p of the finite field Fp as complex roots of unity, we construct a
p-adic indecomposable representation πσ of the integral Bost–Connes system as
additive endomorphisms of the big Witt ring of F̄p. These representations are the
p-adic analogues of the complex, extremal KMS∞ states of the BC-system. The
initial motivation to seek for these representations came from the discovery that
the algebraic relations fulfilled by the basic operators σn and ρ̃n acting on the
group ring of Q/Z of the BC-system are identical to the relations of the Frobenius
endomorphisms Fn, n ∈ N, and Verschiebung additive functorial maps Vn, n ∈ N,
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in the Witt construction. This is first used at the level of the Witt ring viewed as
a functor which to each commutative ring A associates the ring W0(A) classifying
endomorphisms of finite projective modules over A (modulo zero endomorphisms).
We then use the completion of W0(A) to the ring W (A) of big Witt vectors. In
our recent joint work we have pursued this analogy much further by implementing
the Iwasawa theory of p-adic L-functions to construct, in the p-adic case, the par-
tition function and the KMSβ states. The role of the Riemann zeta function, as
partition function of the BC-system over C is replaced, in the p-adic case, by the
p-adic L-functions and the polylogarithms whose values at roots of unity encode
the KMS states. In particular, we have shown that the division relations for the
p-adic polylogarithms at roots of unity correspond to the KMS condition. We first
obtained the result for inverse temperature β in the “extended s-disk” Dp which
is standard in p-adic analysis. We then use Iwasawa theory to extend the KMS
theory to a covering of the completion Cp of an algebraic closure of Qp.
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Algebraic index theorem for gerbes

Ryszard Nest

(joint work with Paul Bressler, Sascha Gorokhovsky and Boris Tsygan)

This talk is about the index theorem in the context of an algebroid stack defor-
mations of gerbes and modules over them.

An algebroid stack is a natural generalization of a sheaf of rings. It gives rise to a
sheaf of categories that, in the case of a sheaf of rings, is the sheaf of categories of
modules. The role of algebroid stacks in deformation theory was first emphasized in
[10] and in [15]. Deformations of a sheaf of rings as such are more difficult to classify
than their deformations as a stack. This is closely related to the fact that some of
the most natural deformations appearing in complex analysis happen to be stacks
and not sheaves. As an example, the sheaf of differential operators on a manifold
gives rise to a deformation of the sheaf of functions on the cotangent bundle. If one
replaces the cotangent bundle by an arbitrary holomorphic symplectic manifold,
this deformation has a natural generalization which in general is an algebroid
stack. The first obstruction for this stack to arise from a sheaf of algebras is the
first Rozansky-Witten class in the second Dolbeault cohomology [1].

Study of deformations of algebroid stacks is being carried out from different per-
spectives in [1], [2], [4], [3], [12], [13], [14], [23], [22], [6], and in other works.

Analytic constructions of algebras on a manifold twisted by a gerbe appeared in
[18]. In this paper the authors also prove a related index theorem. On the more
algebraic side, in [13], Kashiwara and Schapira defined the Hochschild homology
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of an algebroid stack deformation of the sheaf of functions on a manifold, and
the characteristic class hh (M) in this homology for a coherent sheaf M. For
symplectic deformations, they constructed the trace density morphism from their
version of Hochschild homology to the de Rham cohomology. On the other hand, in
[3] we defined the Hochschild and cyclic homologies of an algebroid stack, as well as
the Chern character ch (M) of a perfect complex of modules in the negative cyclic
homology. Presumably, the two definitions of the Hochschild homology coincide,
and hh (M) is the image of ch (M) under the map from the negative cyclic to the
Hochschild homology.

In this work we define the trace density for gerbes. It is a morphism from our
versions of the Hochschild and the negative cyclic homology of a symplectic defor-
mation of a gerbe to the de Rham cohomology. We expect that our map from the
Hochschild cohomology coincides with the one defined in [13]. There is another
map from the negative cyclic homology to the de Rham cohomology, namely reduc-
tion modulo ~ followed by the gerbe version of the Hochschild-Kostant-Rosenberg
map.

The main result is the computation of the trace density map for gerbes in terms of
the Hochschild-Kostant-Rosenberg map. Specifically, we establish that the trace
density map is the Hochschild-Kostant-Rosenberg map, multiplied by the coho-

mology class

√
Â (TM )⌣ eθ where θ is the characteristic class of the deformation

defined in [1] . From this we deduce the Riemann-Roch formula for the Chern
character of a perfect complex. These results were proven for the sheaf defor-
mations in [20] for the smooth case and in [5] for the analytic case. The index
theorem for elliptic pairs conjectured in [24] follows from the partial case when the
manifold is the cotangent bundle with the standard symplectic structure.

The proof goes essentially through the same steps as the one given in [5]. One
needs however to replace all the constructions by the appropriate twisted versions.
The development of these is the focus of the present work. Using the results from
[1] and [3] we develop the analogue of Fedosov’s construction [7] for gerbes. We
also construct an appropriate analogue of the Gelfand-Fuks map which allows us
to apply the arguments of formal differential geometry developed by Gelfand and
Kazhdan [9].
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Relative pairings, eta cocycles and the Godbillon-Vey index theorem

Paolo Piazza

(joint work with Hitoshi Moriyoshi)

Let N be a closed compact manifold. Let Γ → Ñ → N be a Galois Γ-cover. Let T
be a smooth oriented compact manifold with an action of Γ which is assumed to
be by diffeomorphisms, orientation preserving and locally faithful, as in [7]. Let

Y = Ñ ×Γ T and let (Y,F) be the associated foliation. Let D be a Γ-equivariant

family of Dirac operators on the fibration Ñ × T → T ; such a family induces a
longitudinal Dirac operator on (Y,F).

The Godbillon-Vey index theorem of Alain Connes is a theorem on a codimen-
sion 1 foliation (thus we take T = S1 in this case). Following the treatment of
Moriyoshi-Natsume in [7], it can be stated in the following way:

There is a cyclic 2-cocycle τGV on C∞
c (Y,F) := C∞

c ((Ñ × Ñ × S1)/Γ) which can
be paired with the (compactly supported) index class Indc(D) ∈ K0(C

∞
c (Y,F));

there is a holomorphically closed subalgebra A, C∞
c (Y,F) ⊂ A ⊂ C∗(Y,F), con-

taining the C∗-index class Ind(D) and such that τGV extends to A; the pairing
〈Ind(D), [τGV ]〉 can be written down explicitly and it involves the Godbillon-Vey
class of the foliation, GV ∈ H3(Y ).

One might wonder if Connes index theorem for the Godbillon-Vey cocycle can
be extended to foliated bundles with boundary, in the spirit of the seminal work
of Atiyah-Patodi-Singer [1].

The main goal of my talk was to explain recent results, in collaboration with
Hitoshi Moriyoshi, establishing such a result. See the announcement [5] and the
complete paper [6]. Notice that our index formula constitutes the first instance of
a higher APS index theorem on type III foliations. Notice also that, consequently,
we define a Godbillon-Vey eta invariant on the boundary-foliation; this is a type III
eta invariant. In tackling this specific index problem we develop a new approach to
index theory on geometric structures with boundary, heavily based on the interplay
between absolute and relative pairings.

Let us give a brief description of our main results.
It is clear from the structure of the classic Atiyah-Patodi-Singer index formula

that one of the basic tasks in the theory is to split in a precise way the interior
contribution from the boundary contribution in the higher index formula. We
look at operators on the boundary through the translation invariant operators
on the associated infinite cyclinder; by Fourier transform these two pictures are
equivalent. We solve the Atiyah-Patodi-Singer higher index problem on a foliated
bundle with boundary (X0,F0), X0 = M̃ ×Γ T , by solving the associated L2-
problem on the associated foliation with cylindrical ends (X,F). With the goal
of splitting the interior contribution from the boundary contribution in mind, we
define a short exact sequence of C∗-algebras

0 → C∗(X,F) → A∗(X,F) → B∗(cyl(∂X),Fcyl) → 0 .
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This is an extension by the foliation C∗-algebra C∗(X,F) of a suitable algebra
of translation invariant operators on the cylinder; we call it the Wiener-Hopf ex-
tension. We briefly denote the Wiener-Hopf extension as 0 → C∗(X,F) → A∗ →
B∗ → 0. These C∗-algebras are the receptacle for the two C∗-index classes we will
be working with. Thus, given a Γ-equivariant family of Dirac operators (Dθ)θ∈T

with invertible boundary family (D∂
θ )θ∈T we prove that there exist an index class

Ind(D) ∈ K∗(C∗(X,F)) and a relative index class Ind(D,D∂) ∈ K∗(A∗, B∗) . The
higher Atiyah-Patodi-Singer index problem for the Godbillon-Vey cocycle consists
in proving that there is a well defined paring 〈Ind(D), [τGV ]〉 and giving a formula
for it, with a structure similar to the one displayed by the Atiyah-Patodi-Singer
index formula. Now, as in the case of Moriyoshi-Natsume, τGV is initially defined
on the small algebra Jc(X,F) of Γ-equivariant smoothing kernels of Γ-compact
support; however, because of the structure of the parametrix on manifolds with
cylindrical ends, there does not exist an index class in K∗(Jc(X,F)). Hence, even
defining the index pairing is not obvious. We solve this problem by showing that
there exists a holomorphically closed intermediate subalgebra J containing the in-
dex class Ind(D) but such that τGV extends. This point involves elliptic theory
on manifolds with cylindrical ends in an essential way.

Once the higher Godbillon-Vey index is defined, we search for an index formula
for it. Our main idea is to show that such a formula is a direct consequence of the
equality

(1) 〈Ind(D), [τGV ]〉 = 〈Ind(D,D∂), [(τrGV , σGV )]〉
where on the right hand side a new mathematical object, the relative Godbillon-
Vey cocycle, appears. The relative Godbillon-Vey cocycle is built out of the usual
Godbillon-Vey cocycle by means of a very natural procedure. First, we proceed
algebraically. Thus we first look at a subsequence of 0 → C∗(X,F) → A∗ → B∗ →
0 made of small algebras, call it 0 → Jc(X,F) → Ac → Bc → 0; Jc(X,F ) are, as
above, the Γ-equivariant smoothing kernels of Γ-compact support; Bc is made of
Γ × R-equivariant smoothing kernels on the cylinder of Γ × R-compact support.
The Ac cyclic 2-cochain τrGV is obtained from τGV through a regularization à
la Melrose. The Bc cyclic 3-cocycle σGV is obtained by suspending τGV on the
cylinder with Roe’s 1-cocycle. We call this σGV the eta cocycle associated to τGV .
One proves that (τrGV , σGV ) is a relative cyclic 2-cocycle for Ac → Bc. We obtain
in this way a relative cyclic cohomology class [τrGV , σGV ] ∈ HC2(Ac, Bc).

We remark here that for technical reasons having to do with the extension of
these cocycles to suitable smooth subalgebras, see below, we shall have to consider
the cyclic cocycle and the relative cyclic cocycle obtained from τGV and (τrGV , σGV )
through the S operation in cyclic cohomology, see [2]: thus we consider Sp−1τGV

and (Sp−1τrGV ,
3

2p+1S
p−1σGV ) obtaining in this way a class in HC2p(Jc) and a

relative class in HC2p(Ac, Bc). With a small abuse of notation we still denote
these cyclic 2p-cocycles by τGV and (τrGV , σGV ).

Once the algebraic theory is clarified, we need to pair the class [τGV ] ∈ H2p(Jc)
and the relative class [τrGV , σGV ] ∈ HC2p(Ac, Bc) with the corresponding index
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classes Ind(D) ∈ K∗(C∗(X,F)) and Ind(D,D∂) ∈ K∗(A∗, B∗). To this end we
construct an intermediate short exact subsequence 0 → J → A → B → 0 of
Banach algebras, sitting half-way between 0 → C∗(X,F) → A∗ → B∗ → 0 and
0 → Jc(X,F) → Ac → Bc → 0. Much work is needed in order to define such
a subsequence, prove that Ind(D) ∈ K∗(J) ∼= K∗(C∗(X,F)) and Ind(D,D∂) ∈
K∗(A,B) ∼= K∗(A∗, B∗) and establish that the Godbillon-Vey cyclic 2p-cocycle
τGV and the relative cyclic 2p-cocycle (τrGV , σGV ) extend for p large enough from
Jc and Ac → Bc to J and A → B, thus defining elements

[τGV ] ∈ HC2p(J) and [τrGV , σGV ] ∈ HC2p(A,B).

We have now made sense of both sides of the equality (1) 〈Ind(D), [τGV ]〉 =
〈Ind(D,D∂), [(τrGV , σGV )]〉. The equality itself is proved by establishing and using
the excision formula: if αex : K∗(J) → K∗(A,B) is the excision isomorphism,
then αex(Ind(D)) = Ind(D,D∂) in K∗(A,B) . The index formula is obtained
by explicitly writing the relative pairing 〈Ind(D,D∂), [(τrGV , σGV )]〉 in terms of the
graph projection eD, multiplying the operator D by s > 0 and taking the limit
as s ↓ 0. The final formula in the 3-dimensional case (always with an invertibility
assumption on the boundary family) reads:

(2) 〈Ind(D), [τGV ]〉 =
∫

X0

ωGV − ηGV ,

with ωGV equal, as in the closed case, to (a representative of) the Godbillon-Vey
class GV and

(3) ηGV :=
(2p+ 1)

p!

∫ ∞

0

σGV ([ṗt, pt], pt, . . . , pt, pt)dt ,

with pt := etDcyl the graph projection associated to the cylindrical Dirac family
tDcyl. Observe that by Fourier transform the Godbillon-Vey eta invariant ηGV

only depends on the boundary family D∂ ≡ (D∂
θ )θ∈T .
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KO Invariants and Topological Insulators

Terry A. Loring

(joint work with Matthew B. Hastings, Adam Sørenson)

Topological Insulators. A topological insulator is a state of matter that is in-
sulating in the interior and allows movement of charge along its boundary. A
related phenomenon is the quantum Hall effect, but a topological insulator exists
without an externally applied magnetic field. Of course, the quantum Hall effect
has been investigated using noncommutative geometry by Bellissard [1]. Both 2D
and 3D topological insulators are observed to be robust, often explained as being
“topologically protected.” A system in a topological insulating state that is being
deformed to an ordinary insulator is expected to first go through a metallic state.

Finite Models. After many reductions, the transitions between ordinary insu-
lators, metallic phases and topological insulators can studied via a finite lattice
model, with closed geometry, for noninteracting Fermions. Conclusions made to
real world systems with boundary will be more convincing if based on multiple
closed geometries, at least including the sphere and torus of the appropriate di-
mension.

We consider a tight binding model for non-interacting fermions moving within
sites on a compact subset of Rn or Cn. Thus we consider n commuting operators,
or just n diagonal matrices, to specify position. For the geometry of an n-torus
we consider scaled unitaries Û1, . . . , Ûn. We also need a Hamiltonian H∗ = H to
specify dynamics. The standard basis vector es has position

p(es) =
(〈
Û1es, es

〉
, . . . ,

〈
Ûnes, es

〉)

and, using Euclidean metric, we obtain a distance d(es, et) defined between two
standard basis vectors.

Band-Compressed Position Operators. For 2D investigations, we tend to
assume

Û1
∗
Û1 = Û2

∗
Û2 = L2

in Md(C), so are using the geometry of a torus. System size should be allowed to
grow, meaning L → ∞ and n → ∞, and we need technical conditions to reflect
the fact that this is a 2D system, thus disallowing clumping near a circle. Assume
H has bounded strength ‖H‖ ≤ J and acts locally: ∃R,

d(es, et) > R =⇒ 〈Hes, et〉 = 0.

This implies
∥∥∥
[
H, Ûr

]∥∥∥ ≤ CRJ (or with X̂r if we work on a sphere, meaning

X̂∗
r = X̂r and X̂2

1 + X̂2
2 + X̂2

3 = L2I).
If modeling an insulator, H will have a spectral gap:

(EF , EF +∆) ∩ σ(H) = ∅.
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The “Band projector” P is spectral projection of H for (−∞, EF ]. From here we
obtain ∥∥∥

[
P, X̂r

]∥∥∥ ≤ 2C
RJ

∆
.

If modeling a semimetal or semiconductor, we still expect
[
P, X̂r

]
≈ 0 will be

caused by a “mobility gap.” Even in the lab, one freely varies EF . (Doping or gate

insulators.) We form 1
LPÛ1P and 1

LPÛ2P to get matrices that almost commute.
Working in a smaller Hilbert space (low-energy) we end up with matrices U1 and U2

that describe 1
LPÛ1P and 1

LPÛ2P and are almost unitary and almost commuting.

We find, with O(L−2) convergence, ‖[U1, U2]‖ → 0 and ‖U∗
rUr − I‖ → 0. The

following are equivalent (more-or-less):

(1) approximating these by commuting matrices
(2) H can be deformed to a trivial Hamiltonian respecting locality and spectral

gap.
(3) localized basis for band subspace exists (generalized Wannier functions).

There is a potential obstruction.

(1) What physicists call the Chern number of the band.
(2) What mathematicians call the Bott element, in K0 (Md(C)) ∼= Z.

One way to compute the Bott element is as

Sig

([
f(U2) g(U2) + h(U2)U1

g(U2) + U∗
1h(U2) I − f(U2)

])

where f, g, h : S1 → R are some specific functions with f2 + g2 + h2 = 1. Here Sig
is “signature” meaning half the number of positive eigenvalues minus the number
of negative eigenvalues.

Spin Chern numbers. If we have time reversal (TR) invariance, the Chern

number vanishes. However, we find U ♯
1 = U1 where

X♯ = −ZXTZ,

using Z =

[
0 I
−I 0

]
∈ M2N (C), and then

Q∗
[

f(U2) g(U2) +
1
2 {h(U2), U1}

g(U2) +
1
2 {h(U2), U

∗
1 } I − f(U2)

]
Q

is pure imaginary and hermitian. (Q is a specific unitary.) The spin Chern number
lives in the group Z2 = {−1, 1}, and is computed in O(N3) time with the Pfaffian,

Sign

(
Pf

(
iQ∗

[
f(U2) g(U2) +

1
2 {h(U2), U1}

g(U2) +
1
2 {h(U2), U

∗
1 } I − f(U2)

]
Q

))
.

In less computational terms, the spin Chern number is created using the “almost
homomorphism” (

C(T2), id
)
→

(
M2N (C), ♯

)
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determined by the band-projected position matrices. It is an element of

hom
(
K−2

((
C(T2), id

))
,K−2

((
M2N(C), ♯

)))

and leads to an element in

K−2

((
M2N (C), ♯

)) ∼= K2

((
M2N+2(C),T

)) ∼= Z2.

The spin Chern number is the only obstruction to TR-invariant Wannier func-
tions, [6]. The proof uses the quaternionic version of Lin’s theorem [5]. We prove
results for S2 and T2 and many other geometries, such as an n-hole torus. How-
ever, our results are nonquantitative in the direction

trivial invariant =⇒ localized TR-invariant basis.

Going 3D. We finished by discussing a 3D invariant, that lives in

K−3

((
M2N (C), ♯

))
.

We also discussed the data from 2D [4], [7] and 3D [2] numerical studies.
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The Chern-Connes character is not rationally injective

Michael Puschnigg

The Chern-Connes character is the unique nontrivial multiplicative natural
transformation

chbiv : KK(−,−) −→ HC∗
loc(−,−)

from Kasparov’s bivariant K-theory of separable C∗-algebras [1] to bivariant local
cyclic cohomology [3]. It is known to be rationally injective on the bootstrap
category of C∗-algebras KK-equivalent to commutative ones. The first examples
of C∗-algebras not in this class were provided by G. Skandalis [5], who showed
that the reduced group C∗-algebra of a word hyperbolic group with Kazhdan’s
Property (T ) cannot beKK-equivalent to a nuclear C∗-algebra. As a consequence,
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he showed that the image of Kasparov’s ”Gamma”-element [1] under descent is
not equal to one (even rationally) for such groups:

jr(γ) 6= 1 ∈ KK(C∗
r (Γ), C

∗
r (Γ))⊗Z Q.

The main result announced in my talk is a complete calculation of the bivariant
local cyclic cohomology of the reduced C∗-algebra of a word-hyperbolic group:

HC∗
loc(C

∗
r (Γ), C

∗
r (Γ)) ≃ Hom(H∗(Γ,CΓfin), H∗(Γ,CΓfin)),

where CΓfin is the linear span of the set of torsion elements in Γ. This result in
conjunction with the axiomatic characterization of the ”Gamma”-element permits
to calculate its Chern-Connes character:

chbiv(jr(γ)) = 1 = chbiv(1) ∈ HC∗
loc(C

∗
r (Γ), C

∗
r (Γ)).

In particular, one learns from Skandalis’ work that the Chern-Connes character

chbiv : KK(C∗
r (Γ), C

∗
r (Γ)) −→ HC∗

loc(C
∗
r (Γ), C

∗
r (Γ))

is not rationally injective for word-hyperbolic groups with Kazhdan’s Property (T ).
There are two approaches to these results. The first uses Lafforgue’s recent

breakthrough proof of the Baum-Connes conjecture with coefficients for word hy-
perbolic groups [2]. The homotopy between the ”Gamma”-element and the unit
element, which he constructs among Fredholm representations of weakly exponen-
tial growth, passes to local cyclic cohomology under the Chern-Connes character
and leads to the above claims. The second approach, which is considerably shorter
and simpler, is based on the explicit calculation of the local cyclic cohomology
groups involved. It seems to yield however only the slightly weaker result, that
the Chern-Connes character of the ”Gamma”-element equals one in reduced local
cyclic cohomology. The calculation is carried out as follows. As local cyclic co-
homology is stable under passage to holomorphically closed subalgebras (at least
under some technical conditions which are satisfied in our context), one may pass
from the group C∗-algebra to an unconditional isospectral Banach subalgebra.
For such algebras one may consider an unconditional version of the analytic cyclic
bicomplex, which can be identified explicitely in the derived ind-category [3] with
the complex calculating the homology of Γ with coefficients in CΓfin. This un-
conditional cyclic bicomplex is then identified with the original analytic cyclic
bicomplex in the appropriate triangulated category.
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Graphs with large girth and the (coarse) Baum-Connes conjecture

Rufus Willett

(joint work with Guoliang Yu)

Let (Xn) be a sequence of finite graphs, with girth(Xn) → ∞ as n → ∞ (recall
that the girth of a graph is the length of its shortest non-trivial cycle). We study
such sequences from the point of view of coarse (metric) geometry and the coarse
Baum-Connes conjecture. To do this, let X = ⊔Xn be the disjoint union of
the Xn, and metrize X using any metric d that restricts to the edge metric on
each individual graph, and is such that the distance between each Xn and its
complement tends to infinity as n tends to infinity.

Such spaces X have been of interest recently, as Gromov has shown [2, 1] that
(under additional assumptions) there exists a finitely presented group ‘containing’
X in its Cayley graph, where ‘containing’ is to be understood in the sense of coarse
geometry. The assumption that girth tends to infinity is necessary for Gromov’s
methods.

It is possible to make Gromov’s ideas work in cases where the sequence (Xn)
is an expander (and has girth tending to infinity); in this case the resulting group
is called a Gromov monster group, and provides a counterexample to the Baum-
Connes conjecture with coefficients. Gromov monster groups provide the only
known such counterexamples.

Using a comparison of a sequence of graphs (Xn) with girths tending to infinity
with the corresponding sequence of universal covers, Yu and I study the coarse
Baum-Connes conjecture for (Xn). We obtain a fairly complete analysis.

Theorem. Let (Xn) be a sequence of graphs with bounded degrees such that
girth(Xn) → ∞, and X = ⊔Xn the space built above. Let

µ : lim
R→∞

K∗(PR(X)) → K∗(C
∗(X))

be the coarse Baum-Connes assembly map for X. Then:

• µ is injective;
• if X is also an expander, µ is not surjective;
• the maximal version of µ is an isomorphism.

On the other hand, based on work of Oyono-Oyono and Yu [4], we introduce
a strengthening of the notion of ‘expander’ called geometric property (T); if (Xn)
has geometric property (T) (for example if (Xn) is a Margulis-type expander built
as a sequence of quotients of a property (T) group), then the third part above
fails.

The theorem above has the following corollary, which can be thought of as an
extension of results of Higson–Lafforgue–Skandalis [3] on counterexamples to the
Baum-Connes conjecture with coefficients.

Corollary. Let Γ be a Gromov monster group. Then there exists a (commutative)
Γ-C∗-algebra A such that if

µ : Ktop
∗ (Γ;A) → K∗(A⋊r Γ)
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is the Baum-Connes assembly map for Γ with coefficients in A then:

• µ is injective;
• µ is not surjective;
• the maximal version of µ is an isomorphism.

The third parts of the theorem and corollary can be thought of as a mitigation
of monstrosity for Gromov’s groups.
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Propagation and controlled K-theory

Hervé Oyono-Oyono

(joint work with Guoliang Yu)

The study of elliptic differential operators from the point of view of index theory
and its generalisations to higher order indices gives rise to C∗-algebras where
propagation makes sense and encodes the large scale geometry of the underlying
space. Prominent examples for such C∗-algebras are Roe algebras, group C∗-
algebras and cross product C∗-algebras. The locallity of these differential operators
implies that these (generalised) indices can be defined as classes of idempotent
with finite propagation. For instance, let D be an elliptic differential operator on
a compact manifold M and let Q be a parametrix for D. Then S0 := Id − QD
and S1 := Id−DQ are smooth kernel operators on M ×M and

(1) PD =

(
S0

2 S0(Id+ S0)Q
S1D Id− S1

2

)

is an idempotent. Since Q can be choosen with support arbitrary close to the
diagonal i.e with arbitrary small propagation, then so are the coefficients of PD.
The index of the Fredholm operator D is then

IndD=[PD]−
[(

0 0
0 Id

)]
∈ K0(K(L2(M)) ∼= Z.

Unfortunately, K-theory for C∗-algebras does not keep track of propagation. Our
purpose is to develop a quantitative K-theory that takes into account propagation
phenomena. C∗-algebras with propagation are modelized in the following setting:
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Definition 1. A filtered C∗-algebra A is a C∗-algebra equipped with a family
(Ar)r>0 of linear subspaces such that Ar ⊂ Ar′ if r 6 r′, Ar is stable by involution,
Ar · Ar′ ⊂ Ar+r′ and

⋃
r>0Ar is dense in A. If A is unital, we also require that

the identity 1 is an element of Ar for every positive number r.

Example 1.

(1) If X is a metric space and µ a borelien measure, then K(L2(X)) is filtered
by ({T ∈ K(L2(X)) with support of kernel of diameter less than r})r>0;

(2) Let Σ be a proper discrete metric space, and let H be a separable Hilbert
space. Let C[Σ]r be the space of locally compact operators on ℓ2(Σ)⊗H with
propagation less than r, i.e such that when written T = (Tx,y)(x,y)∈Σ2 as
operator blocks on H, then Tx,y is a compact operator on H and Tx,y = 0

if d(x, y) > r. The Roe algebra of Σ is then C∗(Σ) = ∪r>0C[Σ]r ⊂
L(ℓ2(Σ)⊗H) and is by definition filtered by (C[Σ]r)r>0.

(3) If Γ is a discrete finitely generated group equipped with a word metric, let
B(e, r) be for any r > 0 the ball of radius r centered at the neutral element.
Let us set C[Γ]r = {x ∈ C[Γ] with support in B(e, r)}. Then C∗

red(Γ) and
C∗

max(Γ) are filtered by (C[Γ]r)r>0.
(4) More generally, if Γ acts on a C∗-algebra A by automorphisms, then

A⋊redΓ and A⋊maxΓ are in the same way filtered C∗-algebras.

Definition 2. For ε in (0, 1/4) and r > 0, an element q in a filtered C∗-algebra
A = (Ar)r>0 is an ε-r projection if q is in Ar, q = q∗ and ‖q2 − q‖ < ε.

If q is a ε-r-projection, then q gives rise by continuous functional calculus to a
projection κ(q) such that ‖κ(q)− q‖ < 2ε.

Example 2. Recall that a family of graphs (Xn)n∈N is a family of expanders if
|Xn| → ∞ and there exists k ∈ N and 0 < c 6 2 such that each Xn has valence at
most k and (normalized) Laplacian ∆Xn

with spectrum in {0} ∪ [c, 2]. Set then

PXn
=

1

|Xn|



1 . . . 1
...

...
1 . . . 1




for the spectral projection on ker∆Xn
. Because of the uniform spectral gap, we

get that for every 0 < ε < 1/4, there exist r > 0 and a family of ε-r-projections
(QXn

)n∈N such that κ(QXn
) = PXn

for all integer n.

We are now in the position to define quantitative K-theory. We proceed indeed
as for usual K-theory. Let A = (Ar)r>0 be a unital filtered C∗-algebras and let
Pε,r(A) be the set of ε-r-projections of A. We set Pε,r

∞ (A) =
⋃

n∈N Pε,r(Mn(A)).
We define on Pε,r

∞ (A)× N the equivalence relation: (p, l) ∼ (q, l′) if there is k ∈ N
and h ∈ Pε,r

∞ (C([0, 1], A)) such that h(0) = diag(p, Ik+l′ ) and h(1) = diag(q, Ik+l).

Definition 3. For a unital filtered C∗-algebras A = (Ar)r>0, then Kε,r
0 (A) =

Pε,r(A)/ ∼ and [p, l]ε,r is the class of (p, l) mod. ∼.
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We can check that [p, l]ε,r + [p′, l′]ε,r = [diag(p, p′), l + l′]ε,r provides Kε,r
0 (A)

with an abelien group structure. If we equip C with its obvious filtration, then

we can show that we have an isomorphism Kε,r
0 (C)

∼=→ Z; [p, l]ε,r 7→ rank κ(p)− l.
This allows to define the quantitative K-theory in the non-unital case as follows:

Definition 4. If A is a non-unital filtered C∗-algebra and A+ is its unitalization,
then Kε,r

0 (A) = ker : Kε,r
0 (Ã) → Kε,r

0 (C) ∼= Z for the map induced by A+ →
C; (a, λ) 7→ C

In the same way, we can define Kε,r
1 (A) in term of ε-r-unitaries (u ∈ Ar,

‖u∗ · u − 1‖ < ε and ‖u · u∗ − 1‖ < ε). Althought Kε,r
1 (A) is only an abelian

semigroup, it can be turned into a group by enlarging control and propagation
in the homotopy. We have for 0 < ε 6 ε′ < 1/4 and 0 < r 6 r′ structure
homomorphisms

• ιε,r0 : Kε,r
0 (A) −→ K0(A); [p, l]ε,r 7→ [κ(p)]− [Il].

• ιε,r1 : Kε,r
1 (A) −→ K1(A); [u]ε,r 7→ [u].

• ιε,ε
′,r,r′

0 : Kε,r
0 (A) −→ Kε′,r′

0 (A); [p, l]ε,r 7→ [p, l]ε′,r′ .

• ιε,ε
′,r,r′

1 : Kε,r
1 (A) −→ Kε′,r′

1 (A); [u]ε,r 7→ [u]ε′,r′ .

• ιε,r∗ = ιε,r0 ⊕ ιε,r1 and ιε,ε
′,r,r′

∗ = ιε,ε
′,r,r′

0 ⊕ ιε,ε
′,r,r′

1 .

Then we can check that for any 0 < ε < 1/4 and any y in K∗(A), there exists
r > 0 and x in Kε,r

∗ (A) such that ιε,r∗ (x) = y.
Back to our index formula (1), if D is an elliptic differential operator on a

compact manifold M , then for every 0 < ε < 1/4 and r > 0, we can by choos-
ing the parametrix Q with very small propagation and approximating the pro-
jection ((2P ∗

Q − 1)(2PQ − 1) + 1)1/2PQ((2P
∗
Q − 1)(2PQ − 1) + 1)−1/2 (equivalent

to PQ) by a power series, construct a ε-r-projection qε,rD in K(L2(M)) such that

IndD = [κ(qε,rD )] −
[(

0 0
0 Id

)]
. We can define in this way a controlled index

Indε,rD = [Qε,r
D , 1]ε,r in Kε,r

0 (K(L2(M))) such that IndD = ιε,r0 (Indε,rD) in
K0(K(L2(X))) ∼= Z. More generally, we have

Lemma 1. Let X be a compact metric space. For any 0 < ε < 1/4 and any r > 0,
there exists a controlled index map Indε,r

X : K0(X) → Kε,r
0 (K(L2(X))) such that

(1) ιε,ε
′,r,r′

0 ◦ Indε,rX = Indε
′,r′

X ;

(2) the composition K0(X) → Kε,r
0 (K(L2(X)))

ιε,r0→ K0(K(L2(X))) ∼= Z is the
index map.

For small propagation, this controlled index map turns out to be an isomor-
phism.

Theorem 1. Let X be a finite simplicial complex equipped with a metric. Then
there exists 0 < ε0 < 1/4 such that the following holds :

For every 0 < ε < ε0, there exists r0 > 0 such that for any 0 < r < r0 then
Indε,rX : K0(X) → Kε,r

0 (K(L2(X))) is an isomorphism.
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We focus now on large propagation properties for reduced cross product C∗-
algebras.

Theorem 2. Let Γ be a finitely generated discrete group. Assume that

• Γ satisfies the Baum-Connes conjecture with coefficients;
• Γ admits a cocompact universal example for proper actions.

Then for some universal λ > 1, any ε ∈ (0, 1
4λ) and any r > 0, there exists

R > r such that for any action of Γ on a C∗-algebra A by automorphisms, the
following holds:

Let x and x′ be elements in Kε,r
∗ (A⋊redΓ) such that ιε,r∗ (x) = ιε,r∗ (x′) in

K∗(A⋊redΓ) then ι
ε,λε,r,R
∗ (x) = ιε,λε,r,R∗ (x′) in Kλε,R

∗ (A⋊redΓ).

By a recent result of V. Lafforgue, Gromov hyperbolic groups satisfy the as-
sumptions of the theorem . If we choose A = C0(Γ), equipped with the action
of Γ by left translations, we can identify C0(Γ)⋊r Γ and K(ℓ2(Γ)) as filtered C∗-
algebras. We get under the assumptions of theorem 2 the linear algebra statement:

Corollary 1. For some universal λ > 1, any ε ∈ (0, 1
4λ) and any r > 0, there

exists R > r such that the following hold:
Let [q, l]ε,r and [q′, l′]ε,r be elements in Kε,r

0 (K(ℓ2(Γ))) such that rankκ(q)+l′ =
rankκ(q′) + l then [q, l]λε,R = [q′, l′]λε,R in Kλε,R

0 (K(ℓ2(Γ))).

The so-called Atiyah conjecture on rationality of L2-Betti numbers

Thomas Schick

(joint work with Mikaël Pichot, Andrzej Zuk)

In the seventies, Atiyah defined L2-Betti numbers of a compact manifold M in
terms of harmonic L2-forms on the universal covering. A priori, these could be
arbitrary non-negative real numbers. However, their alternating sum is the Euler
characteristic of M . This led Atiyah to the question about the possible values
these L2-Betti numbers can assume, in particular whether they always have to be
rational. Various conjectures in this direction have been popularized as the “strong
Atiyah conjecture”. These conjectures predict in particular that the numbers are
rational.

The L2-Betti numbers can (by Dodziuk’s L2-Hodge de Rham theorem) also be
computed from the cellular chain complex of the universal covering, which is a
chain complex of free Z[Γ]-modules —this way, their definition extends to finite
CW-complexes. It turns out that the strong Atiyah conjecture is equivalent to
the following purely algebraic statement about elements of the integral group ring
Z[Γ].

Let A be a d × d-matrix over ZΓ. It acts by left convolution multiplication as
bounded operator on the Hilbert space l2(Γ)n. Let pA be the orthogonal projection
onto the null space of A. Let δe ∈ l2(Γ) be the characteristic function of the
identity element and δie ∈ l2(Γ)n the vector with entry δe at position i and 0 at all
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other positions. Then b(2)(A) :=
∑d

i=1〈pAδie, δie〉l2(Γ)n . This is the normalized von

Neumann trace of pA. The set of possible values of L
2-Betti numbers of manifolds

with fundamental group Γ coincides with the set of possible values of b(2)(A),
where A varies over matrices over ZΓ. Note that Γ must be finitely presented to
be the fundamental group of a compact manifold.

The question now is to find groups Γ and elements A ∈ Z[Γ] where ker(A) and
b(2)(A) are explicitly calculable and have transcendental values.

First calculations in this direction for the random walk operator on the lamp-
lighter group have been carried out in [1], where a complete eigenspace decom-
position is derived. This has been taken up for free lamplighter groups, i.e. the
restricted wreath product of Z/2Z by non-abelian free groups. Recently an ex-
plicit irrational (algebraic over Q) L2-Betti number for a random walk operator
on a free lamplighter group has been computed by Lehner and Wagner [2]. The
main point here is to get hold on the combinatorial difficulties of understanding
all finite connected subgraphs in the Cayley graph of a free group (a regular tree)
and the kernel of the graph Laplacian on these.

In a different direction and slightly earlier, Austin [7] uses suitable quotients
of the free lamplighter group and taylor-made (very much generalized) relatives
of the random walk operator to produce an uncountable set of L2-Betti numbers,
so that transcendental ones have to exist. The drawback, however, is that this
method is not explicit and does not give finitely presented groups as examples.

The talk cumulated in a report on [8]. The main thread there is the refinement
of the work of Austin in such a way as to arrive at explicit calculations. For this,
a different class of operators is used.

We arrive at the following results:

• there are explicit finitely presented groups and elements in their group ring
with transcendental L2-Betti numbers; therefore also closed manifolds with
such L2-Betti numbers.

• every algebraic number is an L2-Betti number of a closed manifold, more-
over every real number which admits a Turing machine producing its dec-
imal expansion (in correct order), e.g. π.

• purely algebraically, every element of R≥0 is a b
(2)(A) for a suitable matrix

over A the integral group ring of a suitable discrete group, but here, one
has to allow for groups which are not finitely presented.

Very similar results have been obtained independently, using a way to imple-
ment Turing machines into groups and elements of their group ring, by Lukasz
Grabowski in [4].

References

[1] W. Dicks and T. Schick, The spectral measure of certain elements of the complex group
ring of a wreath product, Geom. Dedicata 93 (2002), 121–137. MR 1934693 (2003i:20005)

[2] F. Lehner and S. Wagner, Free Lamplighter Groups and a Question of Atiyah, arXiv:
1005.2347, to appear in Amer. J. Math.



2598 Oberwolfach Report 45/2011

[3] W. Lück, L2-invariants: theory and applications to geometry and K-theory, Ergebnisse der
Mathematik und ihrer Grenzgebiete. 3. Folge, Springer-Verlag, Berlin 2002. MR 1926649
(2003m:58033)

[4] L. Grabowski, On Turing machines, dynamical systems and the Atiyah problem, arXiv:
1004.2030, 2010.

[5] R. I. Grigorchuk, P. Linnell, T. Schick and A. Żuk, On a question of Atiyah, Comptes
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Relative Cyclic Cohomology and Geometric Invariants

Markus J. Pflaum

(joint work with Henri Moscovici, Matthias Lesch)

Pairings in relative cyclic (co)homology allow for a conceptually clear construc-
tion of geometric invariants such as the divisor flow originally defined by Melrose
[11] and its higher dimensional versions [9] or the η-cochains which appear in the
study of the Atiyah-Patodi-Singer index theorem within the framework of non-
commutative geometry (cf. [5, 14]). In a series of papers [6, 7, 8] we explained this
philosophy, applied it to the above mentioned examples and set up the foundations
for further applications (see also [12, 13, 15, 16] for related work).

The fundamental ingredient in our approach to pairings in relative cyclic coho-
mology is the following result which essentially is based on the cone construction
in homological algebra.

Proposition 1 ([7]). Assume to be given a short exact sequences of algebras

(1) 0 −→ J −→ A σ−→ B −→ 0.

Then the relative cyclic cohomology HC•(A,B) coincides with the cohomology of
the total complex

(
Tot•⊕ BC•,•(A)⊕ Tot•+1

⊕ BC•,•(B), b̃+B
)
,

where the differential is given by

b̃ +B =

(
b+B −σ∗

0 −(b+B)

)
.

Moreover, each class in HCk(A,B) has a representative (ϕ, ψ) ∈ Ck
λ(A)⊕Ck+1

λ (B)
with bϕ = σ∗ψ, where C•

λ stands for the subcomplex of cyclic cochains [2, 3].
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Likewise, the relative cyclic homology HC•(A,B) is the homology of the complex(
Tot⊕• BC•,•(A,B), b̃+ B̃

)
, where BCp,q(A,B) = BCp,q(A)⊕ BCp,q+1(B),

b̃ =

(
b 0

−σ∗ −b

)
, and B̃ =

(
B 0
0 −B

)
.

Finally, the natural pairing between cyclic chains and cochains gives rise to a
pairing in the relative case,

〈−,−〉 : C•
λ(A,B)× Cλ

• (A,B) → C,

((ϕk, ψk+1), (ak, bk+1)) 7→ 〈ϕk, ak〉+ 〈ψk+1, bk+1〉
(2)

which ultimately induces a pairing HCk(A,B)×HCk(A,B) → C.

An analogous result holds true for pairings in relative periodic cyclic (co)homology.
For short exact sequences of algebras as in (1), both the homological and co-

homological Connes–Chern characters [3] have natural extensions to the relative
setting:

ch• : Kev/odd(A,B) → HCper
ev/odd(A,B), ch

• : Kev/odd(A,B) → HCev/odd
per (A,B).

By excision in periodic cyclic (co)homology, one knows that the relative Connes–
Chern character for the pair (A,B) has to coincide with the Connes–Chern char-
acter of the ideal J . One of the goals of the papers [6, 7, 8] is to provide a
representation of the homological and cohomological relative Connes–Chern char-
acters not only in terms of the ideal J but in terms of A plus correction terms
coming from B, and then study the corresponding pairings in relative cyclic coho-
mology. This could be dubbed the “relative philosophy” within noncommutative
geometry.

Pairings in relative cyclic (co)homology give new insight to certain geometric,
possibly secondary, invariants. For example, in [7], we succeeded to reinterpret
Melrose’s divisor flow and its higher variants as relative pairings of the relative
Chern character of a path of elliptic elements in the suspended algebra of pseudo-
differential operators over a closed manifold with some odd relative cyclic cocycle
coming from a regularized trace on the suspended algebra of pseudodifferential
operators. By the interpretation of the divisior flow as a relative pairing one im-
mediately derives its fundamental properties such as integrality, additivity and
homotopy invariance.

In [8] the “relative philosophy” in noncommutative geometry has been illus-
trated in detail by the example of a b-Dirac operator D on a compact manifold
with boundaryM of dimension m within the framework of the b-calculus [10]. Let
us briefly sketch the fundamental idea. By the work of Baum–Douglas–Taylor [1],
the Dirac operator D defines a Fredholm module over the pair

(
C∞(M), C∞(∂M)

)
,

hence an element [D] ∈ Km(M,∂M).
Under certain assumptions on the spectrum of D, Getzler [5] constructed the

Connes–Chern character of [D] with values in entire cyclic cohomology. It can be
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understood as a b-version of the JLO-cocycle:

bChk(D)(a0, . . . , ak) :=
b〈a0, [D, a1], . . . , [D, ak]〉D, where

b〈A0, A1, . . . , Ak〉D :=

∫

∆k

b Str
(
A0e

−σ0D
2

A1 · . . . · Ake
−σkD

2)
dσ.

By extending a retraction procedure of Connes–Moscovici [4] to the relative set-
ting, we succeeded to convert the entire Connes–Chern character into the periodic
one within the relative setting. More precisely, we put for t > 0

bchkt (D) :=
∑

j≥0

Chk−2j(tD) +BT /ch
k+1
t (D),

chkt (D
∂) :=

∑

j≥0

Chk−2j+1(tD∂) +BT /ch
k+2
t (D∂),

where D
∂ is the Dirac operator induced on the boundary, /ch

•
the transgressed

Connes–Chern character, and T /ch
k+1
t (D) :=

∫ t

0
b/ch

k
(sD,D)ds.

Theorem 2 ([8]). Under the assumptions as above and the assumption that m is

even, the pair of cochains
(
bchkt (D), ch

k+1
t (D∂)

)
with t > 0, k > dimM + 4, and

k ≡ dimM mod 2 is a cocycle in the relative total complex
Tot•⊕ BC•,•(C∞(M), C∞(∂M)

)
of the pair

(
C∞(M), C∞(∂M)

)
. Its periodic cyclic

cohomology class is independant of k >> dimM and of t > 0 and represents the
Connes–Chern character of the class [D] ∈ K0(M,∂M). Moreover, the limit tց 0
exists, is local, and also represents the Connes–Chern character of [D]:

lim
tց∞

(
bchkt (D), ch

k+1
t (D∂)

)
=

(∫

bM

bωD ∧ −,
∫

∂M

ω∂D ∧ −
)

If D∂ is invertible, the limit limt→∞
(
bchkt (D), ch

k+1
t (D∂)

)
is computable, involves

the relative APS-index and represents the Connes–Chern character of [D] as well.
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On the Radul cocycle

Denis Perrot

Let M be a closed, not necessarily orientable, smooth manifold and denote by
CL(M) the algebra of classical, one-step polyhomogeneous pseudodifferential op-
erators on M . The space of smoothing operators CL−∞(M) is a two-sided ideal
in CL(M), and we call the quotient CS(M) = CL(M)/CL−∞(M) the algebra
of formal symbols on M . The cyclic homology of CS(M) has been studied by
Wodzicki [6]. In this talk we are interested in a particular cyclic cocycle, originally
introduced by Radul in the context of Lie algebra cohomology [4]: it is the bilinear
functional defined by

c(a0, a1) =

∫
− a0[log q, a1]

for any two formal symbols a0, a1 ∈ CS(M). The above integral denotes the
Wodzicki residue [5], which is a trace on CS(M), and q is a fixed positive elliptic
symbol of order one. One can show that c is a cyclic 1-cocycle over CS(M), and
that its cyclic cohomology class does not depend on the choice of q. Hence the
class [c] ∈ HC1(CS(M)) is completely canonical. Therefore a natural question
is to identify this class. We give the answer for the image of [c] in the periodic
cyclic cohomology of the subalgebra CS0(M) ⊂ CS(M), the formal symbols of
order ≤ 0. This goes as follows. First, the leading symbol map gives rise to an
algebra homomorphism λ : CS0(M) → C∞(S∗M), where S∗M is the cosphere
bundle of M . This allows to pullback any homology class of S∗M (with complex
coefficients) to the periodic cyclic cohomology of the symbol algebra:

λ∗ : H•(S
∗M,C) → HP •(CS0(M)) .

In fact, Wodzicki shows that λ∗ is an isomorphism, provided that the natural
locally convex topology of CS0(M) is taken into account [6]. Our main result is



2602 Oberwolfach Report 45/2011

the following theorem, which holds in the algebraic setting or the locally convex
setting regardless to Wodzicki’s isomorphism.

Theorem 1: Let M be a closed manifold. The periodic cyclic cohomology class
of the Radul cocycle [c] ∈ HP 1(CS0(M)) is

(1) [c] = λ∗
(
[S∗M ] ∩ π∗Td(TCM)

)
,

where Td(TCM) ∈ H•(M,C) is the Todd class of the complexified tangent bundle,
and π : S∗M → M is the cosphere bundle endowed with its canonical orientation
and fundamental class [S∗M ] ∈ H•(S∗M,C).

This is a statement of pure algebraic topology, hence we give a purely algebraic
proof. The central idea is to consider the algebra of formal symbols CS(M) as
a bimodule over itself. We develop a formalism of generalized Dirac operators
and graded traces within the algebra CS(M)⊗ CS(M)op, and use it to construct
cyclic cocycles over CS0(M). The latter are given by algebraic analogues of JLO
formulas [2]. By choosing genuine Dirac operators we obtain equality (1). Note
that our algebraic JLO formula actually provides an explicit representative of the
Todd class as a closed differential form overM involving the curvature of an affine
torsion-free connexion.

As an immediate corollary we obtain the Atiyah-Singer index formula for elliptic
pseudodifferential operators [1]. It calculates the index of such an operator in terms
of its leading symbol. The latter is a (matrix-valued) invertible function g over the
cosphere bundle, thus defines a class in the algebraic K-theory K1(C

∞(S∗M)).
Corollary (Index theorem): Let Q be an elliptic classical pseudodifferential
operator of order ≤ 0 on a closed manifold M , with leading symbol class [g] ∈
K1(C

∞(S∗M)). The index of Q is the integer

(2) Ind(Q) = 〈[S∗M ], π∗Td(TCM) ∪ ch([g])〉
where ch([g]) ∈ H•(S∗M,C) is the Chern character of the K-theory class [g].
The corollary is proven using the well-known fact (see for example [3]) that the
Radul cocycle is the image of the operator trace under the excision map of the
fundamental extension

0 → CL−∞(M) → CL0(M) → C∞(S∗M) → 0 .

In fact, at least in the locally convex setting, (1) and the index formula are equiv-
alent. Hence our approach gives a new, purely algebraic approach of the index
theorem. The interesting fact is that our formalism can be applied to more general
geometric situations, including smooth groupoids. As a first step in this direction,
using the same methods, we state the following equivariant index theorem on the
circle.
Theorem 2: Let M = S1 be the circle, and G be a discrete group acting on M
by diffeomorphisms. The periodic cyclic cohomology class of the equivariant Radul
cocycle [c] ∈ HP 1(CS0(M)⋊G) is

(3) [c] = λ∗
(
Φ(Td(TCM))

)
,
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where Φ : H•(S∗M ×G EG) → HP •(C∞(S∗M) ⋊G) is Connes’ map from equi-
variant cohomology to periodic cyclic cohomology.
This provides a non-trivial result since the first Chern class of the equivariant
tangent bundle already appears in dimension one.
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Computing the modular curvature of the noncommutative two torus

Masoud Khalkhali

(joint work with Farzad Fathizadeh)

In this work we give a local expression for the modular curvature of the noncom-
mutative two torus Aθ = C(T2

θ) equipped with an arbitrary translation invariant
complex structure and Weyl factor. More precisely, for any complex number τ
in the upper half plane, representing the conformal class of a metric on T2

θ, and
a Weyl factor given by a positive invertible element k ∈ C∞(T2

θ), we give an ex-
plicit formula for an element R = R(τ, k) ∈ C∞(T2

θ) that is the scalar curvature
of the underlying noncommutative Riemannian manifold T2

θ. This is achieved by
evaluating the value of the (analytic continuation of the) spectral zeta functional
ζa(s) := Trace(a△−s) at s = 0 as a linear functional in a ∈ C∞(T2

θ). A new,
purely noncommutative, feature here is the appearance of the modular automor-
phism group from the theory of type III factors and quantum statistical mechanics
in the final formula for curvature. This result will ppear in our forthcoming pa-
per [17]. This formula exactly reproduces the formula that was recently obtained
independently by Connes and Moscovici in their forthcoming paper [14]. It also
reduces, for τ =

√
−1, to a formula that was earlier obtained by Alain Connes for

the scalar curvature of the noncommutative two torus.
Our main result extends and refines the recent work on Gauss-Bonnet theorem

for the noncommutative two torus that was initiated in the pioneering work of
Connes and Tretkoff in [15] (cf. also [5, 4] for a preliminary version) and its later
generalization in our paper [16]. In fact after applying the standard trace of the
noncommutative torus to the scalar curvature R one obtains, for all values of τ
and k, the value 0. This is the Gauss-Bonnet theorem for the noncommutative two
torus and, in the commutative case, is equivalent to the classical Gauss-Bonnet
theorem for a surface of genus 1.
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The backbone of the present work is Connes’ noncommutative differential ge-
ometry program [6, 7, 9, 11]. According to parts of this theory that is relevant
here the metric information on a noncommutative space is fully encoded as a
spectral triple on the noncommutative algebra of coordinates on that space. Var-
ious technical results corroborates, in fact fully justifies, this vision. First of all,
Connes’ reconstruction theorem [10] guarantees that in the commutative case, the
notion of spectral triple is strong enough to fully recover the Riemannian (spin)
manifold from its natural spectral triple data defined using the Dirac operator
acting on spinors. Secondly, as it is shown by Connes [8, 9, 11], ideas of spectral
geometry, in particular formulation of several invariants of a Riemannian mani-
fold like, volume and scalar curvature in terms of asymptotics of the trace of the
heat kernel of Laplacians and Dirac operators, have very natural extensions in
the noncommutative setting and recover the classical results in the commutative
case. Other relevant results are the Connes-Moscovici local index formula [12] and
Chamseddine-Connes spectral action principle [2]. In passing to the noncommu-
tative case, sooner or later one must face the prospect of type III algebras and the
lack of trace on them. It was exactly for this reason that twisted spectral triples
were introduced by Connes and Moscovici in [13]. The spectral triple at the foun-
dation of the present paper was defined in [15] and is in fact, via the right action
corresponding to the Tomita anti-linear unitary map, a twisted spectral triple.

One of the main technical tools employed in this work [17] is Connes’ pseudodif-
ferential operators and their symbol calculus on the noncommutative torus [6] and
the use of the asymptotic expansion of the heat kernel in computing zeta values.
This, however, by itself is not enough and, similar to [5, 15, 16], one needs an extra
and intricate argument to express ζa(0) in terms of the modular operator defined
by the Weyl factor. As a first step, the calculation of the asymptotic expansion
of the heat operator for arbitrary values of the conformal class is quite involved
and must be performed by a computer. We found it impossible to carry this step
without the use of symbolic calculations. Finally we should mention that, as is
explained in [15, 16], there is a close relationship between the subject of this paper
and scale invariance in spectral action [2, 3] on the one hand, and non-unimodular
(or twisted) spectral triples [13] on the other hand.

The following formula in our paper [17] gives the local expression for the modu-
lar curvature of the noncommuative two torus. It was also independently obtained
by Alain Connes and Henri Moscovici [14].

Theorem 1. Let θ be an irrational number, τ a complex number in the upper half
plane representing the conformal class of a metric on T 2

θ , and k an invertible pos-
itive element in A∞

θ playing the role of the Weyl factor. Then the scalar curvature
R of the perturbed spectral triple attached to (T 2

θ , τ, k), up to an overall factor of
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− π
τ2
, is equal to

R1(log∆)
(
δ21(log k) + |τ |2δ22(log k) + 2τ1δ1δ2(log k)

)

+ R2(log∆(1), log∆(2))
(
δ1(log k)δ1(log k) + |τ |2δ2(log k)δ2(log k) +

τ1
(
δ1(log k)δ2(log k) + δ2(log k)δ1(log k)

))

− iW (log∆(1), log∆(2))
(
τ2
(
δ1(log k)δ2(log k)− δ2(log k)δ1(log k)

))
,

where

R1(x) := K(x) + S(x) = −2 coth(x/4)

x
+

1

2 sinh2(x/4)
=

1
2 − sinh(x/2)

x

sinh2(x/4)
,

R2(s, t) := H(s, t) + T (s, t) = −(1 + cosh((s+ t)/2))×
−t(s+ t) cosh s+ s(s+ t) cosh t− (s− t)(s+ t+ sinh s+ sinh t− sinh(s+ t))

st(s+ t) sinh(s/2) sinh(t/2) sinh2((s+ t)/2)
,

and

W (s, t) =
−s− t+ t cosh s+ s cosh t+ sinh s+ sinh t− sinh(s+ t)

st sinh(s/2) sinh(t/2) sinh((s+ t)/2)
.

Remark 2. We note that the above local expression R for the scalar curvature
of (T2

θ, τ, k), reduce to the scalar curvature of the ordinary two torus when θ = 0.
Namely, since

lim
x→0

R1(x) = −1

3
,

lim
x→0

Rγ
1 (x) = 1,

lim
s,t→0

R2(s, t) = lim
s,t→0

Rγ
2 (s, t) = 0,

and

lim
s,t→0

W (s, t) = −2

3
,

in the commutative case, the expression for R stated in the above theorem, reduces
to constant multiples of

1

τ2
δ21(log k) +

|τ |2
τ2

δ22(log k) + 2
τ1
τ2
δ1δ2(log k).

It is a great pleasure to thank and to express our indebtness to Alain Connes
for motivating and enlightening discussions and for much help during the various
stages of the work on this paper. At several crucial stages he generously shared his
insight and ideas with us and communicated their relevant joint results in [14] with
us. This gave us a good chance of finding potential errors in the computations. In
fact the idea of using the full Laplacian, on functions and 1-forms, as opposed to
just functions, was suggested to us by him. While in the commutative case one can
recover the curvature from zeta functionals from the Laplacian on functions, this
is no more the case in the noncommutative case. We would also like to heartily
thank Henri Moscovici for a push in the right direction at an early stage. After the
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appearance of our Gauss-Bonnet paper [16], he and Alain Connes kindly pointed
out to us that the calculations in that paper might be quite relevant for computing
the scalar curvature of the noncommutative two torus.
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Verlinde modules and quantization

Varghese Mathai

This work is partly inspired by a theorem of Freed, Hopkins and Teleman [1, 2],

which identifies the twisted G-equivariant K-homology group KG(G, η) of a com-
pact Lie group G, with the Verlinde algebra Rℓ(G) of G at a level ℓ determined by

the twist η. Firstly, they show that KG(G, η) is an algebra, with product induced
by the multiplicationm : G×G −→ G on the group G, and that their isomorphism
“explains” the combinatorially complicated fusion product in the Verlinde algebra.
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Another consequence of their theorem is that the Verlinde algebra Rℓ(G) has the

same functorial properties as KG(G, η). Recall that the importance of the Verlinde
algebra is that it encodes the selection rules for the operator product expansion in
certain rational conformal field theories such as the WZW-model. That is, they en-
code the dimensions of spaces of conformal blocks of these rational conformal field
theories, i.e. dimensions of certain spaces of generalized theta functions (cf. [4]).
These dimensions and their polynomial behaviour are of fundamental importance
in conformal field theory.

Another source of inspiration is the recent work by Meinrenken [3] on the rela-
tion of quasi-Hamiltonian manifolds to the work of Freed, Hopkins and Teleman.
To every compact quasi-Hamiltonian manifold (M,ω,Φ) with group-valued mo-
ment map Φ :M → G (which satisfies Φ∗(η) = dω), Meinrenken defines the quan-

tization Q(M) to be the element of the Verlinde algebra Φ∗([M ]) ∈ KG(G, η) ∼=
Rℓ(G), where [M ] denotes the equivariant fundamental class of the compact G-

manifold M , which is an element in KG(M,Cliff(TM)), since he shows that M
has an equivariant twisted Spinc structure, (explained later in the section). He
then establishes several very interesting properties of his quantization procedure,
as well as calculations of it.

Here we outline the following, full details to be given elsewhere. Given a com-
pact simple Lie group G and a primitive degree 3 twist η, we define a braided,
balanced, strict monoidal category C(G, η) with a May structure given by disjoint
union and fusion product. An object in the category C(G, η) is a pair (X, f), where
X is a compact G-manifold and f : X → G a smooth G-map with respect to the
conjugation action of G on itself. Such an object determines a module, the twisted
equivariant K-homology group KG(X, f∗(η)), for the Verlinde algebra, termed a
Verlinde module, where the module action is induced by the G-action on X . In or-
der to understand which objects in C(G, η) can be quantized, we define the closely
related monoidal category D(G, η) consisting of equivariant twisted geometric K-
cycles, which also has a May structure given by disjoint union and fusion product.
There is a forgetful functor D(G, η) → C(G, η), showing that an object in D(G, η)
determines a Verlinde module. Every object in the category D(G, η) also has a
quantization, valued in the Verlinde algebra. Finally, the quantization functor
induces an isomorphism between the geometric equivariant twisted K-homology
ring KG

geo(G, η) and the Verlinde algebra.
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Hopf cyclic cohomology, Weil algebra, and characteristic classes

Bahram Rangipour

(joint work with Serkan Sütlü)

We report on the recent developments in Hopf cyclic cohomology. Admitting
coefficients is one of the most significant properties of this theory [1, 3, 2, 4]. The
one dimensional coefficients are called modular pairs in involution. An algebra
map δ : H → C is called a character. An element σ ∈ H is called a group-like
if ∆(σ) = σ ⊗ σ. The pair (δ, σ) is called modular pair in involution (MPI) if

δ(σ) = 1 and S̃2
δ (h) = σhσ−1. Here S̃δ(h) =

∑
δ(h(1))S(h(2)) and we have used the

Sweedler notation ∆(h) =
∑
h(1) ⊗ h(2) .

In [1], Connes-Moscovici prove:

(1) For any n ≥ 1 and any oriented flat manifold Mn, there is a canonical
Hopf algebra Hn acting on the algebra An := C∞

c (FM) >⊳ Diff(M).
(2) There is a cyclic cohomology theory for Hopf algebras. The cyclic coho-

mology of Hn is canonically isomorphic to the Gelfand Fuks cohomology
of the Lie algebra of formal vector fields on Rn.

(3) There is a characteristic map from the mentioned cyclic cohomology of Hn

to the cyclic cohomology of the algebra An such that the index cocycle is
trapped in its image.

The general coefficients for Hopf cyclic cohomology are called stable-anti-Yetter-
Drinfeld (SAYD) modules [3]. An SAYD module is a right H-module and a left
H-comodule M such that

H(m · h) = S(h(3))m<−1>h(1) ⊗m
<0> · h(2) , m

<0> ·m
<−1> = m.

To the datum (H,M) one associates a cocyclic module and hence defines its Hopf
cyclic cohomology which is denoted by HC•(H,M) [3].

A bicrossed product Hopf algebra F ◮⊳ U is made of a pair of Hopf algebras
(U ,F) satisfying certain conditions which guarantees that F ⊗U is a Hopf algebra
via F >⊳ U as an algebra and F ◮< U as a coalgebra [5]. As a working example
we focus on the bicrossed product Hopf algebra associated to a matched pair
of Lie algebras (g1, g2). Here the commutative Hopf algebra F := R(g1) is the
Hopf algebra of representative functions on the enveloping algebra U(g1), and the
cocommutative Hopf algebra U is U(g1).

There is a canonical MPI for such bicrossed product Hopf algebras [9]. Any
representation of the total Lie algebra g1 ⊕ g2 induces a YD module over the
associated bicrossed product Hopf algebra [9]. The tensor product of an MPI and
a YD module produces an AYD module [3]. In our case, the resulting module is
also stable. These SAYD modules are called induced modules [9]. The Hopf cyclic
cohomology of F ◮⊳ U is isomorphic to the Lie algebra cohomology of the Lie
algebra g1 ⊲⊳ g2 with coefficients in the original representation.

SAYD modules over Lie algebras were defined and studied in [10]. It was observed
that the corresponding cyclic complex is known by different names in literature.
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It is proved that the (truncated) polynomial algebra of a Lie algebra is a SAYD
module and the corresponding cyclic complex is identified with the (truncated)
Weil algebra [10]. The category of SAYD modules over the enveloping algebra of
a Lie algebra is identified with those on the Lie algebra. It is shown that such
comodules over U(g) are in one to one correspondence with the nilpotent modules
over the symmetric algebra S(g∗). Using this fact, we identify AYD modules
over U(g) with modules over the semidirect sum Lie algebra g̃ = g∗ >⊳ g. Here
g∗ = Hom(g,C) is considered to be a commutative Lie algebra and to be acted
upon by g via the coadjoint representation. SAYD modules over U(g) correspond
to SAYD modules over g. Furthermore, their cyclic cohomologies are identified.

As the most general case, we show that SAYD modules over F ◮⊳ U and
SAYD modules over g1 ⊲⊳ g2 are the same. We upgrade the van Est isomorphism
between Hopf cyclic cohomology and Lie algebra cohomology evolved in [1, 7, 8, 9].
Precisely we prove that the Hopf cyclic cohomology of F ◮⊳ U with coefficients in
σMδ = M ⊗ σCδ and the Lie algebra cohomology of g1 ⊲⊳ g2 relative to a Levi
subalgebra with coefficients in the g1 ⊲⊳ g2-module M [11].

From [7], we know that Hn is a bicrossed product Hopf algebra F(N) ◮⊳ U
endowed with a canonical MPI [1]. We prove in [11] that this is the only AYD
module over Hn .

Following [11] we illustrate our theory with a nontrivial example. We produce
a SAYD module over the Schwarzian Hopf algebra H1S introduced in [1]. By
definition, H1S is a quotient Hopf algebra of H1 by the Hopf ideal generated by
δ2 − 1

2δ
2
1 . Here δi are generators of F(N). So the Hopf algebra H1S is generated

by X, Y, and δ1.

As we know, Hcop
1S is isomorphic to R(C) ◮⊳ U(gℓaff1 ) [6]. Our theory guarantees

that any SAYD module M over sℓ2 = gℓaff1 ⊲⊳ C will produce a SAYD module
Mδ over Hcop

1S . We take the truncated polynomial algebra M = S(sℓ2)[2] . The

resulting 4-dimensional SAYD module Mδ is then generated by 1, RX , RY , and
RZ . The action and coaction of Hcop

1S on Mδ are defined by

⊳ X Y δ1

1 0 0 RZ

RX −RY 2RX 0

RY −RZ RY 0

RZ 0 0 0

H :Mδ −→ H1S cop⊗Mδ

1 7→ 1⊗ 1+X ⊗RX + Y ⊗RY

RX 7→ 1⊗RX

RY 7→ 1⊗RY + δ1 ⊗RX

RZ 7→ 1⊗RZ + δ1 ⊗RY + 1
2δ

2
1 ⊗RX .

The surprises here are the nontriviality of the action of δ1 and the appearance of
X and Y in the coaction. In other words this is not an induced module [9].

We apply the machinery developed in [7] by Moscovici and one of the authors
to prove that the following two cocycles generates the Hopf cyclic cohomology of
Hcop

1S with coefficients in Mδ.
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codd = 1⊗ δ1 +RY ⊗X +RX ⊗ δ1X +RY ⊗ δ1Y + 2RZ ⊗ Y,

ceven = 1⊗X ⊗ Y − 1⊗ Y ⊗X + 1⊗ Y ⊗ δ1Y −RXXY ⊗X

−RX ⊗ Y 2 ⊗ δ1X −RX ⊗ Y ⊗X2 +RY ⊗XY ⊗ Y +RY ⊗ Y 2 ⊗ δ1Y

+RY ⊗X ⊗ Y 2 +RY ⊗ Y ⊗ δ1Y
2 −RY ⊗ Y ⊗X −RX ⊗XY 2 ⊗ δ1

− 1

3
RX ⊗ Y 3 ⊗ δ1

2 +
1

3
RY ⊗ Y 3 ⊗ δ1 −

1

4
RX ⊗ Y 2 ⊗ δ1

2 − 1

2
RY ⊗ Y 2 ⊗ δ1.

As can be seen by the inspection, the expression of the above cocycles cannot
be easily found directly. The machinery in [7] is used to arrive at this elaborate
formulae.
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Fredholm modules and boundary actions of hyperbolic groups

Bogdan Nica

(joint work with Heath Emerson)

The boundary ∂Γ of a non-elementary hyperbolic group Γ is a compact space on
which Γ acts by homeomorphisms. In this report, we sketch the construction of
certain finitely summable Fredholm modules for the crossed product C∗-algebra
C(∂Γ)⋊Γ. These Fredholm modules enjoy the following features:
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• homologically relevant: they represent a distinguished K-homology class,
which is typically non-trivial;

• meaningful summability: roughly speaking, they are p-summable for every
p greater than the Hausdorff dimension of the boundary;

• very simple form, quite unlike any other Fredholm modules known so far.

It should be noted that we are in a Type III situation - C(∂Γ)⋊Γ is purely infinite
simple [6, 2] - so there are no finitely summable spectral triples.

The boundary extension class. The action of Γ on ∂Γ is amenable [1]. There-
fore the maximal and the reduced crossed products for the action coincide, and
C(∂Γ)⋊Γ is a nuclear C∗-algebra. For unital nuclear C∗-algebras, we may identify
the K1-group of homotopy classes of odd Fredholm modules with the Ext-group of
extensions by compacts. There is a natural extension of C(∂Γ)⋊Γ by compacts,
given by the boundary compactification Γ = Γ ∪ ∂Γ:

0 → K(ℓ2Γ) → C(Γ)⋊Γ → C(∂Γ)⋊Γ → 0

The corresponding odd homology class, denoted [∂Γ], is called the boundary ex-
tension class.

Assume that Γ is torsion-free. On the one hand, from [4] we know that there is
a Poincaré duality isomorphism K∗(C(∂Γ)⋊Γ) ∼= K∗+1(C(∂Γ)⋊Γ), and that the
Poincaré dual of the K1-class [∂Γ] is the K0-class of the unit [1]. (The proof from [4]
- though most likely not Poincaré duality itself - needs a mild symmetry condition
on ∂Γ, but we shall disregard this minor technical point in what follows.) On the
other hand, from [5] we know that the order of [1] ∈ K0(C(∂Γ)⋊Γ) is determined
by the Euler characteristic of Γ as follows: [1] has finite order |χ(Γ)| if χ(Γ) 6= 0,
and infinite order otherwise. Combining these two facts, we obtain:

Theorem 1 (from [4] & [5]). Let Γ be torsion-free. Then [∂Γ] is non-trivial, unless
χ(Γ) = ±1. Furthermore, [∂Γ] has infinite order if and only if χ(Γ) = 0.

Naive Fredholm modules for crossed products. Let us consider the gen-
eral situation of a discrete group G acting by homeomorphisms on a compact
space X . In order to construct a Fredholm module for the reduced crossed prod-
uct C(X)⋊r G, we need a representation of C(X)⋊r G on a Hilbert space, and
a projection in that Hilbert space. For the representation, we make the obvious
choice: a regular representation. If µ is a fully supported Borel probability measure
on X , then C(X) is faithfully represented on L2(X,µ) by multiplication, which in
turn defines a faithful representation of C(X)⋊rG on ℓ2

(
G,L2(X,µ)

)
. This is the

regular representation of C(X)⋊r G defined by µ, and we denote it by λµ. Next,
the choice of a projection is again the obvious one: we consider the projection of
ℓ2
(
G,L2(X,µ)

)
onto ℓ2G.

In order to describe the Fredholmness and the summability of (λµ, Pℓ2G), we
define dynamical versions of two standard probabilistic notions, expectation and
standard deviation. The G-expectation and the G-deviation of φ ∈ C(X) are the
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maps Eφ : G→ C and σφ : G→ [0,∞) given by the formulas

Eφ(g) =

∫

X

φ d(g∗µ), σφ =
√
E |φ|2 − |Eφ|2.

Now the Fredholmness and the summability of (λµ, Pℓ2G) can be characterized by
decay conditions for the G-deviation, as follows:

Proposition 2. (λµ, Pℓ2G) is a Fredholm module for C(X)⋊r G if and only if
σφ ∈ C0(G) for all φ ∈ C(X). Furthermore, (λµ, Pℓ2G) is p-summable if and only
if σφ ∈ ℓpG for all φ in a dense subalgebra of C(X).

Alternately, and interestingly, the Fredholmness of (λµ, Pℓ2G) can be described
by a kind of “pure proximality” à la Furstenberg:

Proposition 3. (λµ, Pℓ2G) is a Fredholm module for C(X)⋊rG if and only if g∗µ
only accumulates to point masses in Prob(X) as g → ∞ in G.

We need two further properties in what follows. The first is an independence
result motivated by the fact that, in general, there is no canonical measure on
the boundary of a hyperbolic group. The second is a multiplicativity property
motivated by the desire to extend Theorem 1 to virtually torsion-free Γ. We say
that two measures are comparable if one is between constant multiples of the other.

Proposition 4. Let µ′ be a fully supported Borel probability measure on X which is
comparable to µ. Then (λµ′ , Pℓ2G) enjoys the same Fredholmness and summability
as (λµ, Pℓ2G). If (λµ, Pℓ2G) and (λµ′ , Pℓ2G) are Fredholm modules, then they are
K1-homologous.

Proposition 5. Assume that (λµ, Pℓ2G) is a Fredholm module for C(X)⋊rG, and
that the measures {g∗µ}g∈G are mutually comparable. Let H ≤ G be a subgroup
of finite index. Then [(λµ, Pℓ2G)] = [G : H ] · [(λµ, Pℓ2H)] in K1(C(X)⋊r H).

Back to hyperbolic groups. The boundary of a non-elementary hyperbolic
group carries certain natural measures induced by “hyperbolic fillings”. Namely,
if Γ acts geometrically - that is, isometrically, properly, and cocompactly - on a
(hyperbolic) space X , then ∂X is a topological incarnation of ∂Γ. A visual metric
on ∂X is any metric comparable with exp(−ǫ(·, ·)•), where (·, ·)• stands for the
extended Gromov product. It turns out that such metrics exist for small enough
ǫ > 0, and any two visual metrics are Hölder equivalent. The visual probability
measures on ∂X are the normalized Hausdorff measures induced by visual metrics.
Any two visual probability measures are comparable. Most importantly, visual
measures are Ahlfors regular [3]: if d is a visual metric on ∂X , then the correspond-
ing visual probability measure µ has the property that µ(R-ball) ≍ R hdim(∂X,d).
The point is that, roughly speaking, Ahlfors regularity implies that the Γ-deviation
of Lipschitz maps on (∂X, d) is in ℓpΓ for p > hdim(∂X, d). By Proposition 2,
this means that (λµ, Pℓ2Γ) is a p-summable Fredholm module for p > hdim(∂X, d).
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However, since the summability is independent of the choice of visual probabil-
ity measure (Proposition 4), we are led to considering the “minimal Hausdorff
dimension” of ∂X with respect to the visual metrics:

visdim ∂X = inf{hdim(∂X, d) : d visual metric}.

We may now state our main result:

Theorem 6. Let Γ act geometrically on X. Then, for every visual probability
measure µ on ∂X, the following hold:

i) (λµ, Pℓ2Γ) is a Fredholm module for C(∂Γ)⋊Γ which is p-summable for
every p > max{visdim ∂X, 2}. In the case when visdim ∂X > 2 and it is
attained, (λµ, Pℓ2Γ) is in fact (visdim ∂X)+-summable;

ii) (λµ, Pℓ2Γ) represents [∂Γ].

The last point is based on the fact that extending φ ∈ C(∂Γ) by Eφ on Γ yields
a function, denoted Eφ, on Γ which is continuous. Hence E is a Γ-equivariant
cp-section for 0 → C0(Γ) → C(Γ) → C(∂Γ) → 0, and then E can be promoted to
a cp-section for 0 → K(ℓ2Γ) → C(Γ)⋊Γ → C(∂Γ)⋊Γ → 0. One concludes by a
Stinespring dilation argument.

From Proposition 5 we deduce a multiplicativity property for the boundary
extension class: if Λ ≤ Γ is a subgroup of finite index, then the natural map
K1(C(∂Γ)⋊Γ) → K1(C(∂Λ)⋊Λ) sends [∂Γ] to [Γ : Λ] · [∂Λ]. For virtually torsion-
free groups, which have a well-defined notion of rational Euler characteristic, The-
orem 1 and the above multiplicativity property imply the following criterion:

Corollary 7. Let Γ be virtually torsion-free. If χ(Γ) /∈ 1/Z then [∂Γ] is non-trivial.
If χ(Γ) = 0 then [∂Γ] has infinite order.
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Arithmetic models of Bost-Connes sytems

Bora Yalkinoglu

The definition of the Bost-Connes system AK = (AK , σt) for a number field K
is based on a natural action of the monoid of integral ideals IK of K on the

balanced product YK = ÔK ×Ô×

K

Gal(Kab/K) of the finite integral adeles and the

maximal abelian Galois group of K. Namely, the BC-system AK is defined as the
semigroup crossed product C∗-algebra AK = C(YK)⋊ IK together with a natural
time evolution σt. BC-systems for arbitrary number fields were first defined by
Ha and Paugam [8] inspired by important foundational work of Bost and Connes
[3] and Connes, Marcolli and Ramachandran [6]. The systems AK satisfy the
following remarkable properties.

Theorem 1 (cf., [8] and [9]).

(i) The partition function of AK is given by the Dedekind zeta function of K.

(ii) The maximal abelian Galois group Gal(Kab/K) acts as symmetries on
AK .

(iii) For each inverse temperature 0 < β ≤ 1 there is a unique KMSβ-state.

(iv) For each β > 1 the action of the symmetry group Gal(Kab/K) on the set
of extremal KMSβ-states is free and transitive.

Now, an arithmetic model of AK is a K-rational subalgebra Aarith
K of AK such

that

(v) For every extremal KMS∞-state ̺ and every f ∈ Aarith
K we have

̺(f) ∈ Kab

and further Kab is generated over K by these values.
(vi) If we denote by ν̺ the action of a symmetry ν ∈ Gal(Kab/K) on an

extremal KMS∞-state ̺ (given by pull-back) we have for every element
f ∈ Aarith

K the following compatibility relation
ν̺(f) = ν−1(̺(f))

(vii) The C-algebra Aarith
K ⊗KC is dense in AK .

The existence of an arithmetic model implies in particular that the class field
theory of K is realized through the dynamics of AK .
Beforehand, the existence of an arithmetic subalgebra was known in the case of Q
[3] and in the case of imaginary quadratic fields Q(

√
−D) [6] for D a square-free

positive integer and relied on the explicit class field theory for the corresponding
number fields.
Despite the fact that for other number fields an explicit class field theory is not
known, our main result reads as follows.

Theorem 2. For every K there exists an arithmetic model Aarith
K of the BC-

system AK .
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Moreover, it was shown by Sergey Neshveyev (see Appendix [10]) that the arith-
metic model Aarith

K is in fact unique.
Our construction of the arithmetic model Aarith

K relies on two main ingredients,
the theory of endomotives introduced by Connes, Consani and Marcolli [4] and a
Galois correspondence for finite, étale Λ-rings developed by Borger and de Smit [2].
This Galois correspondence allows us to encompass the missing explicit class field
theory in that it provides us with an inductive system of finite, étale K-algebras
(Ef)f∈IK together with an action of IK on the direct limit EK = lim−→f∈IK

Ef by

Frobenius lifts. Here Ef is isomorphic to the finite product
∏

d|fKf/d of strict ray

class fields of K of conductor dividing f. Our arithmetic model Aarith
K is then

defined by the (algebraic) crossed product EK ⋊ IK . More precisely we prove

Theorem 3. Aarith
K is an algebraic endomotive whose associated measured analytic

endomotive is naturally isomorphic the BC-system AK .

Further, there are two important corollaries from our construction, first, using
the results of [2] it is clear that Aarith

K can be expressed in terms of generalized
Witt vectors [1] and, second, the space YK used in the definition of the BC-system
is in fact naturally isomorphic to the so called Deligne-Ribet monoid DRK used
in [7] to construct p-adic L-functions for totally real number fields. These two
observations pave the way for generalizing recent work of Connes and Consani [5]
on p-adic representations of the classical BC-system AQ to more general number
fields.
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Transfer in differential algebraic K-theory

Ulrich Bunke

(joint work with David Gepnerr)

We define the j + 1’th polylogarithm, j ≥ 1 by

Lij+1(x) :=

∞∑

n=1

xn

nj
.

We consider the real Gal(C/R)-module R(j) := C/ij+1R and the Gal(C/R) set of
p’th roots of unity µp ⊂ C for a prime p ≥ 3. The polylogarithm on roots of unity
gives rise to an invariant function

Lij+1 ∈ [R(j)µp ]Gal(C/R) .

We consider the cyclotomic ring R := Z[ξ]/(1 + ξ + · · · + ξp−1) and the Borel
regulator map

b : K2j−1(R) → [R(j)µp ]Gal(C/R) .

Theorem 1 (Borel, [Bor74]). The image of b is a lattice of full rank, and the
kernel of b is the torsion subgroup.

This opens the question about the image of the regulator map.

Theorem 2 (Beilinson, [Bĕı86]). There exists an element x ∈ K2j−1(R) and
q ∈ Q such that b(x) = q Lij+1.

In the talk I explaind how this result can been seen as a consequence of a
conjectural index theorem for the Becker-Gottlieb transfer in differential algebraic
K-theory.

I start with a description of differential cohomology via the differential function
spectrum [HS05]. As data we take a spectrum E, a chain complex A of real vector
spaces, and an equivalence of spectra c : E ⊗ R → H(A), where H(A) is the
Eilenberg-MacLane spectrum associated to A. We have a natural spectrum-level
de Rham isomorphism

j : H(ΩA(M))
∼→ H(A)M ,

where ΩA(M) is the de Rham complex of a smooth manifoldM with coefficients in
A, and H(A)M denotes the function spectrum. The differential function spectrum
is now defined as a homotopy pull-back in spectra

Diff(E)(M) //

��

H(σΩA(M))

��

EM // H(ΩA(M))

.

Here σΩA(M) is the cut-off to non-negative degrees, and the lower horizontal
and the left vertical maps are given by c and j−1, and the natural inclusion,
respectively. The differential E-cohomology of M is by definition

Ê0(M) := π0(Diff(E)(M)) .
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It comes with natural transformations

ΩA0
cl(M)

ΩA−1(M)/im(d)
a // Ê0(M)

R

99sssssssss

I

%%KKKKKKKKK

E0(M) .

Let now π :W → B be a proper submersion. The Becker-Gottlieb transfer [BG75]
is a natural homotopy class of maps EW → EB which induces a homomorphism
tr : E0(W ) → E0(B) on the zero’th homotopy group. We show:

Theorem 3. Given a Riemannian structure (vertical metric and horizontal dis-
tribution) on π we can define a natural differential refinement Diff(E)(W ) →
Diff(E)(B). The induced map t̂r : Ê0(W ) → Ê0(B) is compatible with tr (via
I) and

ΩA0
cl(W ) ∋ ω 7→

∫

W/B

e(π) ∧ ω ∈ ΩA0
cl(B)

(via R), where e(π) is the Euler form of π.

We now consider a number ring R and define the complex A with trivial differ-
ential by Ai := Ki(R) ⊗ R. For i ≥ 2 its dimension is determined by Theorem 1.
A geometry on a local system V of finitely generated projective R-modules on a
manifold M is a collection of metrics hV on the collection of flat complex vector
bundles induced by V for all the complex embeddings of R. To such a geometry,
following ideas of [BL95], we can associate a characteristic form

ω(hV) ∈ ΩA0
cl(M) .

Let KR denote connective algebraic K-theory spectrum of R and c : KR⊗ R →
H(A) be the canonical equivalence. We have the following result:

Theorem 4. There exists a natural additive cycle map which associates to an
isomorphism class of pairs (V , hV) an element

cycle(V , hV) ∈ K̂R
0
(M)

such that

R(cycle(V , hV)) = ω(hV) , I(V , hV) = [V ] ∈ KR0(M) .

Let now π : W → B be a proper submersion with a Riemannian structure g
and (V , hV) be given on W . We define the topological index by

îndex
top

(V , hV) := t̂r(cycle(V , hV)) ∈ K̂R
0
(B) .

We further define

îndex
an
(V , hV) := cycle(Rπ∗V , hRπ∗V

L2 )− a(T (π, g,V , hV)) ,
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where the L2 metric is given by fibrewise Hodge theory and T (π, g,V , hV) is the
Bismut-Lott torsion form. We define

îndex
top

(V , hV)− îndex
an
(V , hV) =: δ ∈ K̂R

0
(B) .

The conjectural index theorem is now

Conjecture 5.
δ = 0 .

The following consequences are known to be true:

Theorem 6 (Bismut-Lott, [BL95]). R(δ) = 0

Theorem 7 (Dwyer-Weiss-Williams, [DWW03]). I(δ) = 0.

Theorem 8 (Cheeger/Müller, [Che79], [Mül78]). δ = 0 if B = ∗.
Finally we assume that R is the cyclotomic number ring above, W → B is

the U(1)-bundle on CPn with Chern class pc1, and V is one-dimensional with
holonomy ξ ∈ R. Then, after some calculations, the following theorem is equivalent
to Theorem 2:

Theorem 9. In the case described above, δ is a torsion element.
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