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Introduction by the Organisers

The half-size workshop on Correlations and Interactions for Random Quantum
Systems was organised by Peter D. Hislop (Lexington, KY), Werner Kirsch (Ha-
gen), Peter Müller (München) and Simone Warzel (München). It was attended by
30 participants from Canada, Japan, the US and various European countries. The
program consisted of 22 lectures covering new results, recent developments and
future challenges in the field. Special attention was paid throughout to providing
a platform for younger researchers. This report contains extended abstracts of
these lectures. On behalf of all participants, the organisers would like to thank
the staff and the director of the Mathematisches Forschungsinstitut Oberwolfach
for providing such a stimulating and inspiring atmosphere.

Mathematical research on random quantum systems covers various branches:
the theory of random Schrödinger operators, random matrices and the analysis of
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models in quantum statistical mechanics with random parameters. The common
theme is to describe localization phenomena arising in different branches of quan-
tum physics from condensed matter theory to quantum information processing.
While being motivated by physics, these models pose interesting mathematical
challenges in themselves which call for a combination of ideas from functional
analysis to probability. The interplay of mathematical disciplines in this area is
nicely illustrated by the topics covered in this workshop. For examples, A. Klein
presented a joint work with J. Bourgain on a 30-year-old problem concerning the
regularity of the density of states of rather general Schrödinger operators which
need not be random. On the other hand, B. Virag gave a lecture on his recent
results pertaining to the Brownian corousel, a stochastic processes which is related
to the random process of eigenvalues of the Anderson model in dimension d = 1
in a weak disorder limit.

The Anderson model is the prototypical example of a random Schrödinger op-
erator describing a single quantum particle in a random potential. One of its
striking features is the occurrence of a dense point spectrum and the absence of
transport for d = 1 and in higher dimension close to band edges or for strong
disorder. For low disorder and d > 2, physicists expect a region with absolutely
continuous spectrum and diffusive transport. This remains an open challenge for
mathematicians. Recent progress related to proofs of transport in albeit different
models than the Anderson model were presented at the meeting (e.g. in the talks
by A. Joye and J. Schenker).

One other challenge in the field is to step beyond the framework of single-
particle operators and investigate the localization properties of systems of many
interacting particles. Some progress has been made in this direction: for a fixed,
but finite number of particles the localization regime in the Anderson model was
proven to be stable under finite-range interactions. However, for systems of infin-
itely many particles with a positive density, the precise formulation and stability
of the localization regime generally remains an open problem. All the more re-
markable are therefore recent results for special systems such as the one related
to the Quantum Hall Effect and certain integrable models of quantum statistical
mechanics in d = 1. The latter were presented at the workshop in the talks of
B. Sims and G. Stolz. Moreover, these talks were conveniently framed by survey
talks of B. Nachtergaele and L. Pastur explaining the greater challenges and ques-
tions to the community emerging from the field of quantum information theory
and quantum statistical mechanics.
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Abstracts

Dissipative Dynamics for Electrons in Semiconductors

Jean Bellissard

(joint work with G. Androulakis and C. Sadel)

Semiconductors are made of perfectly crystalline materials with a large gap. They
are doped with a very low concentration of impurities. The groundstate of the
valence electrons of the impurities have energy in a very narrow band close to
either the valence band or the conduction band. At room temperature these
electrons can thermally be activated to fill the bottom of the conduction band
and produce electric current. This phenomenon is the reason why semiconductors
can be used to built electronic devices such as transistors or diodes. At very low
temperature, however, below the evaporation point of liquid Helium, the impurity
electrons are confined in the impurity bands and are localized on the impurities.
The problem is: what mechanism permits to understand how these electrons are
transported if a small electric field is switched on ?. The answer was provided
by physicists between 1960 and 1974. Namely, phonons are produced at a very
low rate but can kick an electron away from its mother-impurity. It has to find
another impurity free from electrons. This may happen at the price of crossing
an energy barrier by tunneling effect. The Mott theory shows that the distance
such electrons should cross is enormous, at least ten times the average distance
between impurities. This is called variable range hopping. Mott, using this scheme,
predicted that the conductivity must behave as

σ ∼ e(T0/T )1/(d+1)

(Mott’s law)

where d is the space dimension and T0 a constant temperature characteristic of
the material.

In order to construct a mathematically rigorous model liable to lead to a proof of
the Mott law, several difficulties have to be taken into account:

(i) The impurity electrons see only the location of the impurities, which lie on
a random sublattice. These sublattices break the translation invariance.

(ii) The impurity electrons must be treated in the second quantization scheme
to take into account the correlation due to the Fermi statistics. The theory
must be made in the infinite volume limit to account for the absence of
surface phenomena. In particular this leads to use a quasilocal C∗-algebra
of observables like the ones used for quantum spin systems or in algebraic
quantum field theory.

(iii) The lack of translation invariance can be treated by using the formalism of
groupoids through the ensemble of possible impurity lattices. This lead to
a covariant field of C∗-algebras which has to be proved to be continuous.

(iv) The thermal equilibrium is described through a continuous covariant field
of KMS-states of these algebras.
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(v) The interaction electron-phonons is weak enough to be treated in the so-
called Markov approximation, obtained after integrating out the phonon
degrees of freedom. The generator of the Markov semigroup is a Lindbla-
dian, with various jump operators that are built from the scheme proposed
by Mott to describe the electron transport.

The main results are

(A) a precise description of this dynamics and various theorems proving the
convergence of the model in the infinite volume limit,

(B) the proof of the existence of a unique equilibrium state for this dynamics,
(C) the proof that this model has a gap above the groundstate, showing that

the return to equilibrium is exponentially fast in time.

References

[1] G. Androulakis, J. Bellissard, C. Sadel, “Dissipative dynamics in semiconductors at low
temperature”, arXiv:1107.1248, submitted to J. Stat. Phys..

Dynamical localization for generic deterministic operators

Victor Chulaevsky

We study localization properties of parametric families of lattice Schrödinger op-
erators (LSO) of the form

H(ω) = ∆ + gV (x;ω, θ), x ∈ Z
d,

where ∆ is the nearest-neighbor lattice Laplacian and the potential V is generated
by the values of a function v : Ω × Θ → R (called the hull of the potential V )
along the trajectories of a dynamical system T : Zd × Ω → Ω on a probability
space (Ω,F ,P):

V (x;ω, θ) = v(T xω, θ), ω ∈ Ω = T
ν , θ ∈ Θ.

The hulls are parameterized by elements θ of an auxiliary probability space (pa-
rameter space) (Θ,B, µ).
Principal example: incommensurable shifts of a torus Tν .

Our approach naturally extends to a more general situation where Ω is a com-
pact Riemannian manifold with distance dist(·, ·).
Principal assumption. ”Uniformly slow returns” (USR):

∃C,A ∈ (0,+∞) ∀ω ∈ Ω ∀x ∈ Z dist(T xω, ω) ≥ C(1 + |x|)−A.

Additional assumption. Tempered local divergence of trajectories:

∃C′, B ∈ (0,+∞) ∀x ∈ Z dist(T xω, T xω′) ≤ C′(1 + |x|)Bdist(ω, ω′)

for all ω, ω′ ∈ Ω. This assumption rules out hyperbolic systems, such as hyperbolic
toral automorphisms, e.g., the ”Arnold’s cat map”. Indeed, our method is adapted
to dynamical systems with very weak disorder properties: speaking informally, we
work with systems of zero entropy. In fact, even the ergodicity is not required
per se, although it follows from the (USR) condition, e.g. for translations of the



Correlations and Interactions for Random Quantum Systems 2843

torus T1. As a result, a sufficiently rich auxiliary parameter space Θ is required to
avoid ‘abnormally small denominators’ appearing in the scaling procedure which
is a variant of the Multi-Scale Analysis (MSA).

Naturally, hyperbolic dynamical systems possess intrinsic mechanisms which
should enhance localization phenomena, but in the author’s opinion, these mecha-
nisms should be exploited in a more direct way in the course of the MSA induction.

The key to an adaptation of the MSA to deterministic potentials with very weak
disorder properties (including quasi-periodic potentials) is a special construction
of the parameter space Θ or, more precisely, of the parametric families of hulls
(referred to as ”grand ensembles”). We give two different constructions.
1. ”Randelette” expansions.

v(ω, θ) =

∞∑

n=1

an

Kn∑

k=1

θn,kϕn,k(ω)

where {θn,k, n ≥ 1, k ∈ [1,Kn} are IID on (Θ,B, µ) e.g., ∼ Unif([0, 1]), and
diam suppϕn,k = O(2−n).

• Piecewise constant randelettes (”haarsh”; inspired by Haar’s wavelets):
θn,k(ω) = 1[2−nk,2−n(k+1)](ω).

• CM -randelettes (e.g., B-splines); possibly C∞, but not analytic.

2. Gaussian random fields on Ω.
v : Ω×Θ → R is a Gaussian random field on Ω, relative to the probability space

(Θ,B, µ), with a.s. continuous samples and satisfying the following condition:
∃C′′, b ∈ (0,+∞) such that for any ball Bǫ(ω0) ⊂ Ω of radius ǫ > 0 the con-

ditional variance of the random variable v(ω0, ·) given all the values {v(ω, ·), ω 6∈
Bǫ(ω0)} outside the ball admits a lower bound by C′′ǫb.

In other words, the random field v is ‘locally non-deterministic’: the local in-
terpolation problem must not admit an a.s. exact (i.e., unique) solution. This
property can be expressed for homogeneous Gaussian random fields on a torus
Ω = Tν in terms of a tempered decay of their Fourier coefficients, playing here
the role of spectral measure. Clearly, this rules out the case where samples are
analytic and makes our approach complementary to that developed earlier by
Bourgain, Goldstein and Schlag (cf. [1, 2, 3]).

Note that Chan [4] has proven Anderson localization for a family of 1D single-
frequency quasi-periodic LSO with C3-hulls, using a topological parameter exclu-
sion technique different from ours.

Note also that despite the fact that the auxiliary parameter space Θ is con-
structed in probabilistic terms, this does not mean that one adds to the result-
ing potential V (x;ω, θ), with fixed θ conserved by the dynamical system, a ‘hid-
den’ random noise. It is to be stressed that, for example, quasi-periodic opera-
tors H(ω, θ), forming an ergodic ensemble for each fixed θ, are ‘genuinely quasi-
periodic’. Yet, the construction of the grand ensembles of deterministic potentials
allows to adapt, in a very natural way, the probabilistic MSA techniques used so
far only for ‘genuinely random’ (i.e., non-deterministic) potentials.
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Theorem 1 (Main Theorem). ∃ g∗ < ∞ such that for |g| ≥ g∗ ∃ Θ̃(g) ⊂ Θ of

measure ≥ 1 − Cg−1/2 such that ∀ θ ∈ Θ̃(g) and for P-a.e. ω, operator H(ω, θ)
has p.p. spectrum with exponentially decaying eigenfunctions:

|ψj(x;ω, θ)| ≤ Cj(ω, θ) e
−m(g)‖x‖

with lim
g→+∞

m(g) = +∞. Furthermore, for any finite set K ⊂ Z
d and ∀ s > 0

E

[
sup
t

‖XseitH(ω,θ)1K‖
]
<∞,

where X is defined by (Xf)(x) = |x|f(x).

Minami-type estimates.

Theorem 2. For B′ ∈ (0,+∞) large enough, for any finite interval I ⊂ R and
any L > 0

µ
{
trΠI

(
HΛL(u)(ω, θ)

)
≥ J

}
≤ CJ L

B′J |I|J , J ≥ 1.
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Snakes, Hybrids and non-classical edge modes, a semi-classical analysis

Nicolas Dombrowski

(joint work with P. Hislop and E. Soccorsi)

In this talk, we make a brief synthesis of previous results from [DGR] and recent
one from [DHS]. We give a descriptions of edge-transport recently pointed out by
physicists [RP]. Edge transport has received a lot of attention since a decade. The
two main motivations coming from, first, the so-called quantum wave-guides and
secondly, that the origin of transport in Quantum Hall systems (QHS) is believed,
and proved in many cases, as being these Edge-transport.
Until now, all the models of edge considered in the past are of electrical nature
having variations only in one direction implying the one dimensionality of the
problem (soft wall) or considering Dirichlet restriction (hardwall).
Recently, physicist address the question of look at the magnetic counterpart of
this phenomenon having in mind some magneto-electrical hybrid edge-mode.
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In this work we are focus on precise analysis of the sole magnetic variation influ-
ence on the transport. First, we were interested in global proper characterization
of such systems, namely we were looking for the quantization conductance. We
have exhibit two classes of variations implying two different quantum topological
numbers, what we call type I and type II magnetic profile.
We have proved that if we look at a translationally-invariant magnetic field, two
kind of magnetic profiles exhibit qualitatively different behavior. More precisely,
we call an edge-magnetic profile a magnetic field such that B ∈ C2(R), B is mono-
tone and lim

x→±∞
B(x) = B±. In this case we call type I potential such magnetic

field adding the condition that B+ > B− > 0 and type II potential if the pro-
file is antisymmetric i.e B+ = −B− = B. First, in [DGR], we have proved that
the edge-conductance, namely σI

e with I a spectral window taken in the n−th

so-called Landau-gap, has the same type of quantization than in the electrical
edge-model and therefore (as proved in [SBKR]) equals to the Bulk conductance
(model without edge). But, surprisingly for the type II potential we proved that
this quantization are two times the bulk-quantization, pointing out a an new kind
of transport phenomenon of which we now make the spectral analysis. We compare
the spectral and transport-band estimates for both of these limit cases. In order
to do this we choose a Toy model. This model was chosen for three reasons, first
because it is the simplest one, avoiding us precise computations, secondly, being a
limiting case it is very illustrative of what is happening really, and finally because
it is the one used by physicists to perform numerical computations enabling us to
compare the theoretical and numerical results. (furthermore our analysis provides
us to perform more accurate numerical approximations.)
We would point out that for the Type I potential everything happen like we would
hope from classical mechanic (by example: localization of wave functions near the
magnetic one dimensional edge in a strip of width proportional to the square roots
of the magnetic modulus), whereas for the type II there arise states spreading
current in one direction having pure quantum nature and non-equivalent classical
counterpart.
More precisely, we prove that considering a sharp case with B(x) = B+χR+ +
B−χR− . We look at the Toy model given by H•(B−, B+) := p2x + (py − β•(x))2

on L2(R2) with px = −i∇x and β• being for • = I (respc. for • = II) with
B+ > B− > 0 (respc. for B+ = B− = B). We can decompose the two dimen-
sional problem into a one dimensional one by partial Fourier Transform. Thus,
we are looking for h•(k,B±) = p2x + (k + β•(x))2 acting on L2(R). We denote
{ωj(k,B±)}j∈N the dispersive curve e.g the eigenvalues of h•(k,B±) and φj(k,B±)
the corresponding wave functions.
We then make the spectral analysis in order to get a better understanding of the
local behavior in the momentum space.

Type I potential: In this case the effective potential is a simple-well with a
singularity coming from the magnetic jump at zero, we call this jump the magnetic
singularity. Being in a harmonic-well like potential, we can get estimate à la De
Bièvre-Pullé, (see [DBP]) as follow. More precisely, we get a lower bound on the
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band-velocity, the current spreading and finally get an estimation on the expo-
nential localization of these edge-states near the magnetic singularity in a region
delimited by the magnetic radius, namely

√
B− (respc.

√
B+) on the left (respc.

on the right).
We recall that the current operator in this case is given by vy := py − β(x)
and we denote the associated functional given by Jy(ϕ) := 〈vyϕ, ϕ〉. We proved

that for N ∈ N
∗, there exist positive constants CN,j , C̃N,j and such that for

any j ∈ {1, · · · ,N} and some ∆j ⊂
(
(2j − 1− C̃N,j)B−, (2j + 1− C̃N,j)B+

)

we have for ϕ such that ϕ = P∆j (H)ϕ with P the spectral projector associ-
ated to the Hamiltonian. We then get that for ϕ such that ϕ = P∆j (H)ϕ that

Jy(ϕ) ≥ C(B±)‖ϕ‖2 and finally that
∫
R2 χIǫ,η |ϕ|2dxdy ≥ 1 − ˜C(B±)e

ηB2
−ǫ with

Iǫ,η := [−cηB− 1
2+ǫ

− ; cηB
− 1

2+ǫ
+ ].

We have then finally all the expected properties of these edge-modes adding to the
usual quantization coming from that the spectral flows are topologically equiva-
lents. What is surprising is that it is not the case for the Type II potential as we
can conclude by its semi-classical analysis.

Type II potential: This case is more subtle and more rich of applications in

a new type of technological devices ( see physicist paper [RP]).
In this case we will use semi-classical analysis, being more adapted to this local
analysis. In such a way we recall that perform an analysis with fixed Planck
constant and strong magnetic field is equivalent ( by scaling) to perform an semi-
classical analysis ( i.e small ~) with fixed magnetic field. Arguing of that, we
now consider the following local operator, h(~, k) = ~2p2x + (k − |x|)2. First of all,
we can get some information on the global behavior using the symmetries of the
hamiltonian and get a Bolley-Dauge-Helffer formula, and that w′

2n+1 < 0 for any
k ∈ R and that w′

2n(k) < 0 for k ∈ (−∞, k0) and w′
2n(k) > 0 for k ∈ (k0,+∞)

which shows that we have a qualitatively very different behavior of the dissipative
curves. In order to get a local behavior we must perform a semi-classical analysis.
We distinguish two different behaviors, for k negative or positive.
First for k ≤ 0, the potential is a one-well having only one minimum at the origin
with value k2. Thus, this is the linear term of the potential which is dominating
the spectral behavior. And so on, performing the semi-classical approximation of
the spectrum (see [BDPR]) we get an asymptotic given by

ω2n(~, k) ∼~∼0 k
2 −Z ′

n(~|k|)
2
3 +O(~k)

4
3

ω2n+1(~, k) ∼~∼0 k
2 −Zn(~|k|)

2
3 +O(~k)

4
3

with Zn (respc. Z ′
n ) the n−th zero of the Airy function (respc. the n−th zero of

the derivative of the Airy function).
Secondly, for k positive we have that the effective potentials is given by a symmetric
double-well leading to tunneling. We have to use the Helffer-Söjstrand technology
of interaction matrix and we have that the decay of eigenvalue is controlled by the
Agmon-like estimate. And so we get that the splitting between the two eigenvalues
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around the Landau level is given by ω1(~, k)−ω0(~, k) ∼~∼0 C(~, k)O(e
−k2

~ ), where
the even eigenvalues are corresponding to the Von-Neumann case and the odd case
corresponds to the Dirichlet one and with C(~, k) growing at most polynomially
w.r.t. ~ and k.
In conclusion, in the first paper we have, by the study of conductance, exhibit
two types of edge profiles. After that we have done the local analysis of dispersive
curve giving spectral interpretation to this difference of behaviors. In the same
way we have pointed out the pure quantum nature of certain of these magnetic
edge-states called non-classical edge-states. We see that the topological nature
of the band spectrum is strictly non-equivalent to the usual Quantum Hall one,
justifying that the conductance has a different quantization relying on the idea
that the characterization of Hall systems by topological invariant take its origin
in the spectral flow topology.
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Fractional moment analysis for random multiparticle Schrödinger
operators

Michael Fauser

(joint work with S. Warzel)

We report on recent work concerning localization properties of systems of n inter-
acting quantum particles in d-dimensional space subject to an alloy-type random
potential. The Hamiltonian under consideration acts on L2(Rdn) and has the form

H(n)(ω) =

n∑

j=1

(−∆j + V0(xj) + V (ω, xj)) + α
∑

j<k

w(xj − xk) ,

where ∆j is the Laplacian acting on the coordinates xj of the j-th particle, V0 is
a Zd-periodic bounded background potential and w ∈ L∞

c (Rd) corresponds to a
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two-body interaction whose strength is controlled by the parameter α ≥ 0. The
random potential V (ω) is of the form

V (ω, xj) =
∑

ζ∈Zd

ηζ(ω)U(xj − ζ) ,

where the single-site potential U ≥ 0 is bounded and compactly supported and
the random variables (ηζ)ζ∈Zd are independent and identically distributed with a
Lebesgue density ρ ∈ L∞

c (R). In addition, we require the single-site potential to
satisfy a covering condition, i.e., infxj

∑
ζ U(xj − ζ) > 0.

The goal of our work is to prove localization in an interval I = [E
(n)
0 , E

(n)
0 +η(n)]

at the bottom E
(n)
0 = inf σ(H(n)) of the deterministic spectrum of the n-particle

Hamiltonian. More specifically, we obtain dynamical localization in the sense of
estimates of the form

E
[
sup
t∈R

‖χxe
−itH(n)

PI(H
(n))χy‖

]
≤ Ce−µdistH(x,y),

where PI(H
(n)) denotes the spectral projection of H(n) onto the interval I, χx and

χy are characteristic functions of the unit balls around the configurations x,y ∈
Rdn and distH(x,y) denotes the Hausdorff distance of the sets {xj |j ∈ {1, . . . , n}}
and {yj |j ∈ {1, . . . , n}}.

In the one-particle case, results of this type have been obtained for certain
models satisfying the above assumptions, cf. [1] and references therein. For our

multiparticle results, i.e., n ≥ 2, we will assume that an interval [E
(1)
0 , E

(1)
0 + η(1)]

of localization for the one-particle operator exists.
Two different notions of localization in an interval I play an important role in

our analysis. For this purpose, it is convenient to consider the Hamiltonian on
finite volumes Ωn, where Ω ⊂ Rd is open and bounded. The restriction of H(n) to

Ωn with Dirichlet boundary conditions is denoted by H
(n)
Ω .

Definition 1. An interval I is a regime of n-particle fractional moment localization
if there are C, µ > 0 and s ∈ (0, 1) such that

sup
Rez∈I
|Imz|≤1

E
[
‖χx(H

(n)
Ω − z)−1χy‖s

]
≤ Ce−µdistH (x,y)

holds for all open and bounded sets Ω ⊂ Rd and all x,y ∈ Rdn satisfying B1(x) ∩
Ωn, B1(y) ∩ Ωn 6= ∅.
An interval I is a regime of n-particle eigenfunction correlator localization if there
exist C, µ > 0 such that

E

[ ∑

E∈σ(H
(n)
Ω )∩I

‖χxP{E}
(
H

(n)
Ω

)
χy‖

]
≤ Ce−µdistH (x,y)

holds for all open and bounded sets Ω ⊂ Rd and all x,y ∈ Rdn satisfying B1(x) ∩
Ωn, B1(y) ∩ Ωn 6= ∅.
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These two concepts of localization are closely related: Fractional moment local-
ization in a bounded interval I implies eigenfunction correlator localization in I,
which in turn implies fractional moment localization in intervals J ⊂ I satisfying
dist(J, ∂I) > 0. In addition, dynamical localization in the sense discussed above
follows easily from eigenfunction correlator localization.

Our main result is the following:

Theorem 1. Assume that the interval [E
(1)
0 , E

(1)
0 +η(1)] is a regime of one-particle

fractional moment localization. Then the following holds:

• For any η(n) ∈ (0, η(1)), there exists α(n) > 0 such that for all α ∈ [0, α(n)]

the interval [E
(n)
0 , E

(n)
0 + η(n)] is a regime of n-particle fractional moment

localization.
• If w ≥ 0, then for any α ≥ 0 there exists η(n) ∈ (0, η(1)) such that the

interval [E
(n)
0 , E

(n)
0 + η(n)] is a regime of n-particle fractional moment

localization.

The first part of the theorem focuses on the case of weak interactions, whereas
the second part addresses the case of repulsive interactions of arbitrary strength,
where we obtain localization in a smaller interval. An extension of this result to
the case of attractive interactions, i.e., w ≤ 0, will be the focus of further research.

The proof of our result is an induction on the number of particles that makes
use of the close relation between fractional moment localization and eigenfunction
correlator localization. It is very similar to what was done in [2], where localization
in an Anderson model for n particles in Zd was proved. In particular, one studies
the implications of localization in subsystems. In this regard, it is important
to note that if J∪̇K = {1, . . . , n} is a partition of the n-particle system into two
subsystems andH(J,K) is the n-particle Hamiltonian with interactions between the
clusters J and K removed, then σ(H(J,K)) ⊆ σ(H(n)) almost surely. Apart from
these considerations specific to the multiparticle nature of the problem, the proof
relies heavily on techniques that were developed for the one-particle continuum
model in [1].

There is also a different approach to multiparticle localization via a multiscale
analysis instead of the analysis of fractional moments. It has been developed for
continuum as well as discrete models, cf. [3, 4, 5] and references therein.
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Spectral concentration estimates for trees

Richard Froese

(joint work with W. Kirsch, M. Krishna and W. Spitzer)

This talk is a preliminary report on work in progress. Let T be a (d + 1)-regular
infinite tree and let

H = ∆+ κq

be an Anderson Hamiltonian acting on ℓ2(T ). Specifically, ∆ is the adjacency
operator for T , q is an i.i.d. random potential whose single site distribution has
bounded support, and κ ≥ 0 is a coupling constant.

Let Xn be a (d + 1)-regular labeled graph with |Xn| = n, chosen uniformly at
random and let

Hn = ∆n + κq

acting on ℓ2(Xn), where ∆n is the adjacency matrix for Xn.
We wish to determine how well Hn approximates H as n tends to infinity by

comparing the density of states for these operators. Pick vertices 0 ∈ T and 0 ∈ Xn

and define e0 in ℓ2(T ) and also in ℓ2(Xn) by

e0(x) =

{
1 x = 0

0 x 6= 0.

Let χI denote the indicator function of the interval I. For H , the density of states
at the site 0 for the energy interval I is defined as

E [ tr (|e0〉〈e0|χI(H)) ] = E [ 〈e0, χI(H)e0〉 ]

= E

[ ∫
χI(x)dµ(x)

]

where dµ is the spectral measure for e0. The density of states does not depend on
the choice of 0. For Hn the density of states is defined as

E [ tr (|e0〉〈e0|χI(Hn)) ] = E [ 〈e0, χI(Hn)e0〉 ]

=
1

n
E [ trχI(Hn) ]

=
1

n
#{σ(Hn) ∩ I}

= E

[∫
χI(x)dρn(x)

]
.

Here dρn(x) =
1
n

∑
λ∈σ(Hn)

δ(x − λ) is the empirical counting measure.
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To compare the density of states, we introduce the respective Green functions

G(E + iǫ) = 〈e0, (H − E − iǫ)−1e0〉
Gn(E + iǫ) = 〈e0, (Hn − E − iǫ)−1e0〉,

whose expectations are the Stieltjes transforms of the density of states measures
Edµ and Edρn. In both cases their distribution does not depend on the choice of
0.

Our main observation is that since a point in Xn typically has a tree neighbour-
hood with log(n)/ log(d) levels [4], we can compare the Green functions for Xn

and T using contraction estimates similar to those that have been used to prove
the existence of absolutely continuous spectrum for H [2, 3]. For fixed ǫ and small
κ an ǫ dependent contraction estimate shows that

E |Gn(E + iǫ)−G(E + iǫ)| → 0

as n → ∞. This implies that the density of states measure for Hn converges
vaguely to that of H . When κ = 0 this is a classical result of McKay [5]. Our goal
is to go beyond this and show that for a sequence ǫn → 0 we have

E |Gn(E + iǫn)−G(E + iǫn)| → 0,

for |E| < 2
√
d and κ small. This would imply spectral concentration estimates.

We are able to do this if we let the coupling constant κ = κn also depend on n
with κn → 0. In this case G can be replaced by Green function of the tree without
a potential. This is the (deterministic) Stieltjes transform of the Kesten-McKay
law. We can also consider the case where the co-ordination number increases with
n. If d = dn with dn → ∞ and if we scale Hn by 1/

√
dn a similar estimate is

true where G is replaced by Stieltjes transform of the semi-circle law. The random
graph case where κ = 0 and dn → ∞ has been the subject of recent activity and
stronger results are known [1].
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Random block operators

Martin Gebert

(joint work with P. Müller)

We study spectral properties of random block operators which arise in the mod-
eling of mesoscopic disordered systems such as dirty superconductors. More pre-
cisely we consider a system of fermions and approximate the second quantized
Hamiltonian by a self consistent field method introduced by the BCS theory of
superconductivity. This yields the Boguliobov-de Gennes equations [dG66] and,
moreover, restricting ourselves to the symmetry class C1 in [AZ97], the following
eigenvalue problem for a quasi-particle excitation in block operator form

(
H B
B −H

)(
ψ+

ψ−

)
= E

(
ψ+

ψ−

)
.

Here H := H0 + V is the one-particle Hamiltonian and B the so called pair
potential. From now on we assume the Hilbert space to be l2(Zd) ⊕ l2(Zd). We
introduce randomness by letting V := Vω and B := Bω be multiplication operators
by two independent iid sequences of random variables with single site distribution
µV , respectively µB. In particular, H := Hω is the Hamiltonian of the Anderson
model. Throughout we denote the random block operator defined in this way by
H.

Considering this model, Kirsch, Metzger and Müller [KMM11] proved that the
integrated density of states N of H exists and is self-averaging. They also found
that there is a robust spectral gap of H around energy 0 if H or B is bigger than
a positive constant and that under these circumstances one can prove a Wegner
estimate, i.e. we have a Lipschitz continous integrated density of states. Here one
has to cope with a non monotone dependence of the eigenvalues on the potential.
First, we extend this Wegner estimate to operators without a gap in the spectrum.
However, we still we have to assume that H and B are non-negative.

Theorem 1 (Wegner estimate [Geb11]). Assume that B ≥ 0 and V ≥ 0. More-
over, suppose that µV and µB are absolutely continuous with piecewise continuous
Lebesgue densities φV , φB of bounded variation and compact support.
Then the integrated density of states N of H is Lipschitz continuous with a bounded
density D := dN/dE satisfying

(1) ‖D‖∞ ≤ 2 (‖φV ‖BV + ‖φB‖BV ) .

Here, ‖ · ‖BV denotes the bounded-variation norm.

In [KMM11] one can also find an approach to deduce Lifschitz tails of the
integrated density of states near the spectral gap around 0 assuming once again
H bounded away from 0. We improve this statement again to non-negative H .
Before stating the result precisely, we note that the spectral gap around energy

0 is precisely given by (−
√
λ2 + β2,

√
λ2 + β2) provided the bounds H ≥ λ and

B ≥ β are sharp for λ, β ≥ 0 [KMM11].
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Theorem 2 (Lifschitz Tails [Geb11]). Assume H ≥ λ for some λ ≥ 0 and that at
least one of the following conditions is fulfilled:

(1) B ≥ β, for some β ≥ 0,
(2) −B ≥ β, for some β ≥ 0,
(3) 0 ∈ σ(B), in which case we set β := 0.

Then we have for the integrated density of states N the following Lifschitz-tail
behaviour

(2) lim sup
ǫց0

ln
∣∣∣ ln
[
N(
√
λ2 + β2 + ǫ)− N(

√
λ2 + β2)

]∣∣∣
ln ǫ

≤ −d
2
.

Remark 1. (1) The proof of the Lifschitz-tails result relies heavily on a vari-
ational principle for block operators [Tre08]. Simplified to our case the
variational principle tells us that once we have H > 0 we obtain for the
n-th positive eigenvalue of H the formula

λn = min
L⊂H

dimL=n

max
f∈L

‖f‖=1

max
g∈H
‖g‖=1

(〈f,Hf〉 − 〈g,Hg〉)
2

+

√( 〈f,Hf〉+ 〈g,Hg〉
2

)2

+ |〈f,Bg〉|2.

(2) The assumptions of the theorem include cases where the spectral gap
around 0 is closed but nevertheless we infer Lifschitz tails at energy 0.

Having those results, it is natural to ask if we can infer localization in some
spectral regime near the inner band edges. The answer is given by

Theorem 3 (Localization [Geb11]). Assume H ≥ λ for some λ ≥ 0 and that the
single site distributions µV and µB fulfill the hypotheses of the Wegner estimate.
Then there exists some interval I = [−a, a], a > 0, with σ(H) ∩ I 6= ∅ such that
a.s.

(3) σ(H) ∩ I = σpp(H) ∩ I,
where σpp denotes the pure point spectrum.

Remark 2. The proof is done by the multiscale analysis, and also yields expo-
nential decay of the eigenfunctions. In order to adapt the multiscale analysis to
the block operator case without changing its formal structure it is advantageous
to formulate it in terms of Green’s functions with a 2×2-matrix-valued kernel

GE(n,m) :=(H− E)−1(n,m)

=




〈(
δn
0

)
, (HΛL − E)−1

(
δm
0

)〉 〈(
δn
0

)
, (HΛL − E)−1

(
0
δm

)〉

〈(
0
δn

)
, (HΛL − E)−1

(
δm
0

)〉 〈(
0
δn

)
, (HΛL − E)−1

(
0
δm

)〉
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where n,m ∈ Z
d and δn denotes the canonical basis vector of l2(Zd) associated

with site n. The only remaining change is then to replace the modulus of the
Green’s function’s kernel in the standard case by the matrix norm of the 2 × 2-
matrix kernel above.
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Enhanced Wegner and Minami estimates and applications to
eigenvalue statistics for the Anderson model

François Germinet

(joint work with F. Klopp)

We consider the discrete Anderson Hamiltonian Hω := H0 +Vω, acting on ℓ2(Zd),
where H0 is a convolution matrix with exponentially decaying off-diagonal coeffi-
cients i.e. exponential off-diagonal decay that is H0 = ((hk−k′ ))k,k′∈Zd such that,

h−k = hk for k ∈ Zd and such that for some c > 0, |hk| ≤ 1
ce

−c|k|, k ∈ Zd. Next
Vω is an Anderson potential: Vω(x) :=

∑
j∈Zd ωjΠj , where Πj is the projection

onto site j, and ω = {ωj}j∈Zd is a family of independent identically distributed
random variables whose common probability distribution µ is non-degenerate and
has a bounded density g.
We denote by Σ ⊂ R the almost sure spectrum of Hω, and by ΣSDL ⊂ Σ ⊂ R

the set of energies where strong dynamical localization holds (see e.g. [GK06]).
We denote by Hω(Λ) the restriction of Hω to a given cube Λ, and by 1I(H) the
spectral projection associated to the operator H onto the interval I. The Inte-
grated Density of States (IDS) is denoted by N(I) = Etr(1I(Hω)Π0) where I is
an interval, and we set N(E) = N(]−∞, E]) when E ∈ R. We have the following
results.

Fix ξ ∈ (0, 1). Let L > 1 and I ⊂ ΣSDL be a compact interval so that
|N(I)| ≥ C exp(−cLξ) then, the following estimates holds:

(1) (Wegner) E(tr1I(Hω(Λ))) ≤ 2N(I)|Λ|,
and

(2) (Minami) E [tr1I(Hω(Λ))(tr1I(Hω(Λ))− 1)] ≤ 2N(I)|I||Λ|2.
Let E0 be an energy in ΣSDL. As in [Mol82, Min96] we investigate the local

statistics of the eigenvalues, and extend results of [GKl10] to situations where the
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IDS is very small. The unfolded local level statistics near E0 is the point process
defined by

(3) Ξ(ξ;E0, ω,Λ) =
∑

j≥1

δ|Λ|(N(Ej(ω,Λ))−N(E0))(ξ).

PickE0 be an energy in ΣSDL such that the integrated density of states satisfies,
for some ρ ∈ (0, 1/d), ∃ a0 > 0 s.t. ∀a ∈ (−a0, a0) ∩ (Σ− E0),

(4) |N(E0 + a)−N(E0)| ≥ e−|a|−ρ

.

When |Λ| → +∞, the point process Ξ(E0, ω,Λ) converges weakly to

• a Poisson point process on the real line with intensity 1 if E0 ∈
◦
Σ, the

interior of Σ.
• a Poisson point process on the half line with intensity 1 if E0 ∈ ∂Σ, the
half-line being R+ (resp. R−) if (E0−ε, E0)∩Σ = ∅ (resp. (E0, E0+ε)∩Σ =
∅) for some ε > 0.

As a direct consequence, we obtain Poisson statistics at the edge of the spectrum
in dimension 1. To our best knowledge, this is the first such result.

Next, the enhanced Wegner and Minami estimates (1)-(2) enable us to extend
results obtained in [GKl10, Kl10] on the asymptotic ergodicity of the local eigen-
value distribution and on eigenlevel spacings statistics.

Finally, in some regimes, we also can improve upon the deviation estimate
obtained for the eigenvalue counting function in [GKl10] for which we also prove
a central limit theorem:

For L > 1, let Λ = ΛL. Pick a sequence of compact intervals IΛ ⊂ ΣSDL so
that, for some 1 ≤ β ≤ β′ < α′ ≤ α <∞, for all L, one has

(5) |IΛ|−α′
. |Λ| . |IΛ|−α and |IΛ|β

′
. N(IΛ) . |IΛ|β .

Set ν0 =
1

α− β
min

(
α′ − β′,

1

d+ 1

)
.

(1) Deviation estimate. For ε > 0 small enough (depending on ν0), we have

P

{
|tr1IΛ(Hω(Λ))−N(IΛ)|Λ|| ≥ (N(IΛ)|Λ|)max( 1

2 ,1−ν0)+ε
}

≤ exp (−(N(IΛ)|Λ|)ε) .
(2) Central limit theorem. Assume ν0 >

1
2 . Then the random variable

tr1IΛ(Hω(Λ))−N(IΛ)|Λ|
(N(IΛ)|Λ|) 1

2

converges in law to the standard Normal distribution.
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Anderson Localization for Random Magnetic Schrödinger Operators

David Hasler

(joint work with L. Erdös)

We consider an electrically charged quantum mechanical particle moving in two
dimensions and interacting with a perpendicular magnetic field which is random
and stationary. We show Wegner estimates which can be used to prove Anderson
localization.

First we discuss the continuous model with Hilbert space L2(R2) and Hamil-
tonian

(1) H(A) = (−i∇−A)2,

where A = (A1, A2) : R
2 → R2 denotes a vector potential for the magnetic field

B : R2 → R, that is, B = ∇ × A. We consider a random magnetic field of the
following form

(2) Bω(x) = b0 +

∞∑

k=0

∑

z∈Λ(k)

ω(k)
z u(2k(x− z)), x ∈ R

2,

where b0 > 0 denotes a constant magnetic field, u ∈ C1
0 (R

2; [0, 1]) is a profile func-
tion, and the randomness, living on arbitrarily small scales Λ(k) = 1

2kZ
2, is given

by the a collection of independent random variables, {ω(k)
z : k ∈ N0, z ∈ Λ(k)},

with mean zero.
Let Aω denote a vector potential for the magnetic field Bω, and let HL(Aω)

denote the Hamiltonian restricted to the square [−L
2 ,

L
2 ]

2 with Dirichlet boundary
conditions. With some additional assumptions on the profile function u and the

probability distributions of the random variables ω
(k)
z one can prove the following

theorem [1].

Theorem 1. For K > 0, there exist positive constants C0, C1, and L0 such that

(3) ETr1[E−η/2,E+η/2](HL(Aω)) ≤ C0ηL
C1 ,

for all E ∈ [0,K], 0 ≤ η ≤ 1, and L ≥ L0.

Inequality (3) can be shown by analyzing the derivatives of the eigenvalues of
HL(Aω) with respect to the random variables. This does not necessarily yield
sign definite expressions. However, a strictly positive expression can be obtained
by summing the squares of the derivatives with respect to each random variable.
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In [1] this positivity is used to prove (3). Previously, Wegner estimates for the
operator (1) have been obtained for stationary random vector potentials [4, 8].

The Wegner estimate (3) can be used to prove Anderson localization at band
edges. It is well known that the Hamiltonian for a constant magnetic field of
magnitude b0 has pure point spectrum. The spectrum is given by the so called
Landau-levels {(2n + 1)b0 : n ∈ N0} and the eigenvalues are infinitely degener-
ate. Under small perturbations of the constant magnetic field, b0, the spectrum
remains in bands around the Landau levels. The spectral type is unstable under
perturbations and arbitrarily small perturbations can lead to purely absolutely
continuous spectrum [5]. However, for a random magnetic field of the form (2)
one observes Anderson localization. In [3] it is shown that there exists a subset
Σ ⊂ R such that almost surely σ(H(Aω)) = Σ. Moreover, there exist intervals
{Σn} such that Σn contains the n-th Landau level, (2n+ 1)b0, and

Σ =

∞⋃

n=0

Σn.

Furthermore, for each n ∈ N0 the operator H(Aω) has dense pure point spectrum
at both edges of Σn with exponentially localized eigenfunctions, provided b0 is
sufficiently large.

Let us now consider the discrete case where the particle moves on the lattice
Z
2. In this model the magnetic field is described by a function

B : F → T := R/(2πZ),

where F denotes the set of so called plaquets defined by

F = {{x, x+ e1, x+ e1 + e2, x+ e2} : x ∈ Z
2},

with unit vectors e1 = (1, 0) and e2 = (0, 1). A vector potential for B is a function
A : E → T on the set of directed edges

E = {(x, y) ∈ Z
2 × Z

2 : |x− y| = 1}
with the following properties: A(x, y) = −A(y, x), and B(f) = 1

2

∑
e∈∂f A(e)

for all plaquets f ∈ F , where the boundary, ∂f , is defined as the set consisting
of all directed edges for which both endpoints are in f . For the square ΛL =
[−L

2 ,
L
2 ]

2 ∩ Z
2 we define the Hamiltonian acting on ψ ∈ l2(ΛL) by

[hL(A)ψ](x) = 4ψ(x)−
∑

y∈ΛL:|x−y|=1

eiA(x,y)ψ(y), ∀ x ∈ ΛL.

Let {ωf}f∈F denote i.i.d. random variables with values in T and with density
function v ∈ C2(T), such that for some c0 ∈ (0, π/2) one has ±c0 ∈ supp v and
almost surely

ωf ∈ [c0, π − c0] + Zπ.

We define the random magnetic field, Bω, by Bω(f) = ωf . Let Aω denote a vector
potential for Bω. The following Wegner estimate can be proven by invoking similar
ideas as in the continuous case [2].
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Theorem 2. Let E∗ < 4−
√
8. Then there exists a finite constant C such that

ETr1[E−η/2,E+η/2](hL(Aω)) ≤ CηL8,

for all η ≥ 0 and E ≥ 0 with E + η/2 ≤ E∗.

Theorem 2 together with initial length scale estimates obtained in [7, 6] imply
that the infinite volume Hamiltonian exhibits Anderson localization near the edges
of the spectrum with pure point spectrum and exponentially localized eigenfunc-
tions.
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Correlated Markov Quantum Walks

Alain Joye

(joint work with E. Hamza)

We consider the discrete time unitary dynamics given by a quantum walk on Zd

performed by a particle with internal degree of freedom, a spin, according to the
following iterated rule: a unitary update of the spin takes place, followed by a shift
on the lattice, conditioned on the spin state of the particle. We study the large
time behavior of the quantum mechanical probability distribution of the position
observable in Zd for random updates of the spin states of the following form. The
random sequences of unitary updates are given by a site dependent function of
a Markov chain in time, with the following properties: on each site, they share
the same stationary Markovian distribution and, for each fixed time, they form a
deterministic periodic pattern on the lattice.

This choice is motivated by a crude analogy with the time one evolution gen-
erated by the lattice Anderson model. The shift is viewed as the effect of the
discrete Laplacian and the random unitary update as the effect of the random on-
site potential. The choice of time dependent unitary updates corresponds to the
case of a time dependent potential given by a space periodic function of a discrete
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time Markov process. Such time dependent Anderson operators were tackled in
[4, 3, 1] in various degrees of generality. The situation we consider corresponds in
our unitary setup to the case addressed in [1]. The case where the unitary updates
are independent of the space variable was dealt with in [2].

We prove a Feynman-Kac formula to express the characteristic function of the

averaged distribution over the randomness at time n in terms of the nth power of
an operator M . By analyzing the spectrum of M , we show that this distribution
possesses a drift proportional to the time and its centered counterpart displays
a diffusive behavior with a diffusion matrix we compute. Moderate and large
deviations principles are also proven to hold for the averaged distribution and the
limit of the suitably rescaled corresponding characteristic function is shown to
satisfy a diffusion equation.

An example of random updates for which the analysis of the distribution can
be performed without averaging is worked out. The random distribution displays
a deterministic drift proportional to time and its centered counterpart gives rise
to a random diffusion matrix whose law we compute.
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Absolutely continuous spectrum on trees: random potentials, random
hopping and Galton-Watson trees

Matthias Keller

(joint work with D. Lenz and S. Warzel)

We study operators on rooted trees with an underlying substitution structure.
These trees are often called trees of finite cone type and their graph Laplacians
exhibit finitely many bands of purely absolutely continuous spectrum. This abso-
lutely continuous spectrum is shown to be stable under various random perturba-
tions - small but extensive as well as large but rare. These include small random
potentials and hopping terms and on the other hand multi-type Galton-Watson
trees with a distribution close to a deterministic one.

Trees of finite cone type are defined by a finite set A and a matrixM : A×A →
N. To each j ∈ A we associate a rooted tree T = T(M, j) with root o = o(j) and
labeling in A by the following rules: The root carries label j and each vertex of
label k has Mk,l forward neighbors of label l for k, l ∈ A.
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We consider the Laplacian ∆ : ℓ2(T) → ℓ2(T) with a boundary condition at the
root

∆ϕ(x) =
∑

y∼x

(ϕ(x) − ϕ(y)) + 1{x=o}ϕ(o).

It is well known that the Green functions z 7→ Gx(z,∆) = 〈δx, (∆− z)−1δx〉,
x ∈ T, are analytic functions from the upper half plane H into itself. In order to
study the spectrum σ(∆) of ∆, we investigate the Green functions in the limits
ℑz ↓ 0. For the Laplacian we get the following:

Theorem 1 ([5, 7]). For all x ∈ T, the functions E 7→ Gx(E + iε,∆) stay
uniformly bounded as ε ↓ 0 and there is a finite set Σ0 ⊂ R such that Gx(E +
i0,∆) = limε↓0Gx(E + iε,∆) exists all for E ∈ R \ Σ0. Moreover, the function

R \ Σ0 → R ∪H, E 7→ Gx(E + i0,∆)

is continuous and takes values in H on finitely many intervals. In particular, σ(∆)
consists of finitely many bands of purely absolutely continuous spectrum.

The absolutely continuous spectrum on non-regular trees turns out to be very
stable under radially symmetric perturbations.

Theorem 2 ([5, 7]). Let T be non-regular and I ⊂ σ(∆) \ Σ0 be compact. Then
there is λ > 0 such that for all radially symmetric v : T → [−λ, λ] the map

I → H, E 7→ Gx(E + i0,∆+ v)

is continuous. In particular, the spectrum of ∆+ v is purely absolutely continuous
on I. If additionally v(x) → 0 as |x| → ∞, then σac(∆) = σac(∆ + v).

We now turn to the stability of the absolutely continuous spectrum under ran-
dom perturbations. In particular, we look at three models: random potentials,
random hopping and multi-type Galton-Watson trees.

(a) Random potentials. Let (vx)x∈T be independent identically distributed
random variables with support in [−1, 1]. For λ ≥ 0, let

Hω = ∆+ λvω , ω ∈ Ω.

Stability of absolutely continuous spectrum for small λ on regular trees was first
proven in [9] which was followed by [1, 2, 3].

(b) Random hopping. Let (txy)x∼y be independent identically distributed
random variables on the edges with support in (−1, 1). Then, for λ ∈ [0, 1] the
operators Tω : ℓ2(T) → ℓ2(T) given by

Tωϕ(x) =
∑

y∼x

(1 + λtωxy)(ϕ(x) − ϕ(y))

define the random hopping model. It sometimes goes under the name of first
passage percolation, where transit times of random walks are studied.

(c) Multi-type Galton-Watson trees. Finally, we consider a randomization
of the geometry. Let b be a multi-type Galton-Watson branching process with



Correlations and Interactions for Random Quantum Systems 2861

types in A. Denote the set of realizations by Θ. We are interested in the absolutely
continuous spectrum of the operators ∆θ : ℓ2(θ) → ℓ2(θ) given by

∆θϕ(x) =
∑

y∼x

(ϕ(x) − ϕ(y)), θ ∈ Θ.

For s ∈ NA
0 , j ∈ A, denote by P

(b)
j (s) the probability that a vertex of label j has

sk, k ∈ A, forward neighbors. We impose two assumptions on b:

(i) Every vertex has at least one forward neighbor: P
(b)
j (s ≡ 0) = 0, j ∈ A.

(ii)
∑

s∈NA
0
P
(b)
j (s)‖s‖2 <∞, j ∈ A, where ‖s‖ =

∑
k∈A sk.

Note that in order to expect purely absolutely continuous spectrum, assumption
(i) is vital. Dropping (i) immediately yields eigenvalues with compactly supported
eigenfunctions spread all over the spectrum. Furthermore, for b1, b2 satisfying (ii)
we can define the metric

d(b1, b2) = max
j∈A

∑

s∈NA
0

∣∣P(b1)
j (s)− P

(b2)
j (s)

∣∣‖s‖2.

If a process b satisfies P
(b)
j (s =Mj,·) = 1 for all j ∈ A, then the set of realizations

consists exactly of the elements T which are given by substitution matrix M . In
this case, we denote b = bM . Apart from the deterministic case, the simplest
example is the one of a binary tree, where one of the forward edges of each vertex
is deleted with probability 1− p, p ∈ (0, 1). For small p this model is discussed in
[4].

For the models (a), (b) and (c) we have the following theorem:

Theorem 3. Let I ⊂ σ(∆) \ Σ0 be compact. There is λ > 0 such that

(a) ([5, 8]) Hω has purely absolutely continuous spectrum in I a.s.,
(b) ([5, 8]) Tω has purely absolutely continuous spectrum in I a.s.,
(c) ([6]) ∆θ has purely absolutely continuous spectrum in I for a.e. θ ∈ Θb

whenever b is such that d(b, bM ) < λ for some M .
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Bounds on the density of states for Schrödinger operators

Abel Klein

(joint work with J. Bourgain)

We consider the Schrödinger operator

H = −∆+ V on L2(Rd)
(
or ℓ2(Zd)

)
,

where ∆ is the Laplacian operator and V is a bounded potential.
We let

ΛL(x) := x+
]
−L

2 ,
L
2

[d

denote the (open) box of side L centered at x ∈ Rd (or Zd). By a box ΛL we will
mean a box ΛL(x) for some x ∈ R

d (or Zd).

Given a finite open box Λ ⊂ Rd (or Zd) we let H♯
Λ and ∆♯

Λ be the restriction
of H and ∆ to L2(Λ) (ℓ2(Λ)) with ♯ boundary condition, where ♯ = D (Dirichlet),
N (Neumann), or P (periodic). (Our results will be independent of the boundary
condition.)

We define finite volume (normalized) density of states measures η♯Λ on Borel
subsets B of Rd by

ηΛ(B) = ηΛ,∞(B) := 1
|Λ| tr {χB(H)χΛ} ,

ηΛ,♯(B) := 1
|Λ| tr

{
χB(H

♯
Λ)
}

for ♯ = D,N, P.

Note that for ♯ = ∞, D,N, P and B ⊂]−∞, E] we have

ηΛ,♯(B) ≤ Cd,V∞,E <∞.

We define outer-measures on Borel subsets B of Rd for ♯ = ∞, D,N, P by

η∗L,♯(B) := sup
x∈Rd

ηΛL(x),♯(B),

η∗♯ (B) := lim sup
L→∞

η∗L,♯(B).

If for some value of ♯ we have

lim
ε→0

η∗♯ ([E − ε, E + ε]) = 0 for all E ∈ R,

it is known that for all E1, E2 ∈ R, E1 ≤ E2, we have

η∗([E1, E2]) := η∗∞([E1, E2]) = η∗D([E1, E2]) = η∗N ([E1, E2]) = η∗P ([E1, E2]).

We prove the following results:
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Theorem 1 (Discrete Schrödinger operators). Let H be a Schrödinger operator
on ℓ2(Zd). Then for all E ∈ R and ε ≤ 1

2 we have

η∗ ([E,E + ε]) ≤
Cd,‖V ‖∞

log 1
ε

.

Theorem 2 (Continuous Schrödinger operators). Let H be a Schrödinger operator
on L2(Rd), where d = 1, 2, 3. Then, given E0 ∈ R, for all E ≤ E0 and ε ≤ 1

2 we
have

η∗ ([E,E + ε]) ≤
Cd,‖V ‖∞,E0(
log 1

ε

)κd
, where κ1 = 1, κ2 = 1

4 , κ3 = 1
8 .

The Integrated Density of States for the Wilson Dirac Operator

Carolin Kurig

(joint work with V. Bach)

The strong nuclear force is described by Quantum Chromodynamics (QCD) and
the associated Lagrangian density is given by

(1) L(x) = −1

4
Fµν(x)F

µν(x) + ψ(x)
(
iD(A)−m

)
ψ(x),

with D(A) := γµ(∂µ + iAµ) being the Dirac operator of the fermion field ψ(x),
ψ(x), which depends on the gauge field A := (Aµ(x))µ,x, and Fµν(x) = ∂µAν(x)−
∂νAµ(x)− [Aµ(x), Aν(x)] being the field tensor. Concrete quantitative predictions
are difficult to derive from (1), and one often resorts either to calculations in
perturbation theory or numerical simulations on a discretized (Euclidean, after
Wick rotation) space-time, known as lattice QCD.

We fit the formulation of the model in LQCD into the mathematical frame-
work of ergodic operator families. In contrast to random Schrödinger operators,
however, the randomness in LQCD models lies on the lattice bonds.

The gauge fields associated to the bonds are elements of a compact Lie group
G, the gauge group. In LQCD we have G = SU(N). We need the product of the
gauge fields along a plaquette p = p(x;µ, ν),a collection of four bonds that form a
plane square in Zd,

(2) Up := U−1
x,ν U

−1
x+êν ,µ

Ux+êµ,ν Ux,µ,

where the orientation of the bonds leads to the inverse gauge fields.
A priori, we let the gauge field Ub on a single bond be a random variable that

is uniformly distributed with respect to the Haar measure µH of G. The product

measure P̃ is modified by a weight function that represents the gauge action.
Formally, the measure P is defined as

(3) dP(U) = Z−1e−S(U) dP̃(U)
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with Z being a normalization factor. We assume the gauge action to be of the
Wilson action used in lattice QCD calculations,

(4) SΛ(U) = β
∑

p⊂Λ

ℜTr(1 − Up)

with β > 0, Λ ⊂ Zd and Up the plaquette variable as defined in (2). We use the

Gibbsian formalism to establish the existence of the Gibbs measure P on GZ
d

and
Dobrushin’s uniqueness criterion ensures its uniqueness, provided

(5) 0 < β <
1

12N(d− 1)
.

Using a result of Föllmer [1] we show that the measure P is even ergodic, provided
(5) holds true.

In lattice gauge theories the Wilson Dirac operator D is used, which is a dis-
cretized version of the QCD-Dirac operator DQCD = γµ(∂µ+ iAµ)+m with gauge
fields Aµ. The corresponding matter fields are defined on the hypercubic lattice Z4

and are assumed to have a Dirac structure labeled by Dirac indices α ∈ {1, 2, 3, 4},
as well as a colour structure with labels c ∈ {1, . . . , Nc}. The Dirac structure is
represented by the 4× 4 Euclidean Dirac matrices {γµ}µ=1,...,4. The Wilson Dirac
operator DU is defined by

(6) [DUφ](x) = γ5
[
φ(x) − κ

4∑

µ=1

∑

σ=±1

(r − σγµ)Ux,σµ φ(x + σêµ)
]
.

The parameter r ∈ (0, 1] is the Wilson parameter and κ > 0 the hopping pa-
rameter. We remark that {DU}U∈GB is an ergodic operator family provided P is
ergodic.

Our aim is the definition of the integrated density of states for {DU}U∈Ω. Let

(Ωn)n∈N be a sequence of nested cubes in Zd and let NΩn,U (E) denote the number
of eigenvalues of DU restricted to Ωn smaller than E. As it turns out, the boundary
condition imposed is immaterial. Provided P is ergodic, we proof that the limit

(7) ρ(E) = ρU (E) := lim
n→∞

1

|Ωn|
NΩn,U (E)

exists and is independent of the chosen sequence and gauge field configuration,
P-almost surely.

As on outlook we present the idea that the distribution of the low-lying eigenval-
ues of the fermion Dirac operator is very close to the one of the corresponding (i.e.,
respecting symmetries) random matrix ensemble, as was put forward in [2, 3, 4]
and affirmed by numerous numerical studies, for a review see for example [5].
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Periodic and quasiperiodic approximations for slowly oscillating
potential

Asya Metelkina

This is a report about some new results on Schrödinger operators with a slowly
oscillating potential obtained in [4].

We consider a family {Hθ} of self-adjoint operators in L2(R+), indexed by θ ∈
[0, π). For each θ, Hθ is defined by (Hθf)(x) = −f ′′(x) + (V (x) +W (xα))f(x) for
all f ∈ D(Hθ) = {f ∈ H2(R+) | f(0) sin θ + f ′(0) cos θ = 0}. We assume that
the periodic potential V : R → R is a function in L2,loc(R) and V (x + 1) = V (x)
and the slowly oscillating potentialW (xα) is composition of a functionW : R → R

in C1 with W (x+ 2π) =W (x) and xα with α ∈ (0, 1).
It is known [7, 6] that this family {Hθ} exhibits interesting spectral phenomena

such as a sharp mobility edge separating the absolutely continuous spectrum from
the dense pure point spectrum (delocalization-localization transition). Moreover,
there is a Gδ-dense set of values of θ for which Hθ exhibits the singular continuous
spectrum.
In [5], Simon-Zhu studied the particular family {Hθ} corresponding to V ≡ 0 and
W ≡ cos. They proved the existence and obtained the formula for the integrated
density of states k(E) and for the Lyapunov exponent γ(E).

Put ln := (2πn)α, n ∈ N, and (Hθ(n)f) = −f ′′(x) + (V (x) +W (xα)f(x) for
f ∈ D(Hθ(n)) = {f ∈ H2([0, ln]) | f(0) cos θ + f ′(0) sin θ = 0, f(ln) = 0}.
For a semibounded self-adjoint operator A with a discrete spectrum denote PI(A)
its spectral projection to the interval I ⊂ R and define the eigenvalue counting

function N(A,E) = dim Ran P(−∞,E](A). Define kn(E, θ) =
N(Hθ(n),E)

ln
.

Definition 1. When the limit exists, we call k(E) := lim
n→∞

kn(E, θ) the integrated

density of states for Hθ.

Denote H0 the self-adjoint periodic operator in L2(R) defined by (H0f) =
−f ′′(x) + V (x) for all f ∈ D(H0) = H2(R).

Theorem 1. The integrated density of states k(E) exists for all E ∈ R, is indepen-

dent of θ and is given by the formula: k(E) = 1
2π

2π∫
0

k0(E−W (x))dx. Moreover, one

has an estimate of the convergence: |k(E)−kn(E)| ≤ Cn−ν with ν = min
(
1−α
3α , 1

)
,

where k0(E) = 1
πℜκp(E) is the integrated density of states for the periodic operator

H0.
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One proof of this theorem follows the ideas of Simon-Zhu [5], using periodic
approximations.

In the case of real analytic W and α > 1
2 , the rate of convergence can be

improved (n− 1−α
α instead of n−ν in theorem 1) using different method based on

quasiperiodic approximations and a rotation number approach.
Let {f1, f2} be a basis of solutions of (Hθf)(x,E) = Ef(x,E) and F(x,E) =(
f1 f2

(f1)
′ (f2)

′

)
(x,E). The matrix T (x, y, E) := F(x,E)F−1(y, E) is called the

transfer matrix for Hθ.

Definition 2. We call the Lyapunov exponent γ(E) for Hθ the following limit

when it exists γ(E) = lim
n→∞

ln ‖T (ln,0,E)‖
ln

.

Theorem 2. The Lyapunov exponent γ(E) exists for all E\D∞ where D∞ is a set
of capacity zero (and thus of Hausdorff dimension zero). For E ∈ R\D∞ we have

a formula: γ(E) = 1
2π

2π∫
0

γ0(E −W (x))dx, where γ0(E) = ℑκp(E), the integrated

density of states for periodic operator the H0.

One proof uses the Sturm oscillations theory and theorem 1 to prove the Thou-
less formula γ(E)−γ0(E) =

∫
R
ln |E−E′|d(k−k0)(E′). Proving this formula, one

needs to eliminate the bad set D∞ of resonant energies.
For real analytic W and α > 1

2 there is an other proof of this result leading
to a more accurate description of the set D∞. One approaches the associated
Schrödinger equation by −f ′′

z,ε(x,E)+(V (x)+W (εx+z))fz,ε(x,E) = Efz,ε(x,E)
with parameters z and ε and uses a version of the complex WKB method of
Fedotov-Klopp [1, 2] in order to obtain the asymptotic of transfer matrices and
compute the Lyapunov exponent.

Let l̃n be the entire part of ln and εn = 2π
ln+1−ln

. In order to obtain the asymp-

totic of transfer matrix T (l̃n+1, l̃n, E), we use the approach based on quasiperi-
odic approximations of the form −f ′′

z,ε(x,E) + (V (x) +W (εx + z))fz,ε(x,E) =
Efz,ε(x,E) of the equation Hθf(x,E) = f(x,E). This leads to the following
result:

Theorem 3. Suppose E ∈ σac(Hθ), W real analytic and α > 1
2 . The transfer

matrix T (l̃n+1, l̃n, E) has the following asymptotic as n tends to infinity:

T (l̃n+1, l̃n, E) = (Φ0(E) + on(1))diag{ei
φ(E)
εn

+iλn , e−iφ(E)
εn

−iλn}(Φ0(E) + on(1))
−1.

Here the matrix Φ0(E) =

(
f+ f−
f ′
+ f ′

−

)
(0, E−W (0)) is formed by values in x = 0

of Bloch solutions f± of H
0f(x,E) = (E −W (0))f(x,E) and their derivatives.

λn = iq(E)(αn − αn+1) with φ(E) = πσ(k(E) + 2πC), C = 2[m2 ], σ = (−1)m and
m ∈ N; q(E) = σ(κp(E −W (0)) + 2πC) ∈ (0, π) where κp(E) is the main branch
of Bloch quasimomentum; αn is the fractional part of ln. The 2 × 2 matrix on(1)

satisfies ‖on(1)‖ ≤ cn−min( 1
α−2,1− 1

α ).
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On each interval [l̃n, l̃n+1] one chooses good parameters zn and εn. The proof
is based on the analysis of transfer matrices Tz,ε for quasiperiodic approximations
using the relationship between Tz,ε and the monodromy matrixMz,ε(E) associated
to a consistent basis of solutions (satisfying fz,ε(x + 1, E) = fz+ε,ε(x,E)) of the
quasiperiodic equation. One gets the asymptotics of Mz,ε(E) as ε tends to zero
from [3].
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What is a gapped ground state phase?

Bruno Nachtergaele

(joint work with S. Bachmann, S. Michalakis and R. Sims)

Let (Γ, d) be an sufficiently regular infinite metric graph such as, e.g., Zν with
the standard lattice distance. The C∗-algebra of quasi-local observables, A, of a
quantum spin system on Γ is the completion of the algebra of local observables
Aloc, which itself is defined as the inductive limit:

Aloc =
⋃

X⊂Γ

AX ,

where the union is over finite subsets X and

AX =
⊗

x∈X

C
d.

A quantum spin model on Γ is defined by specifying an interaction Φ, which is a
map from the finite subsets Λ ⊂ Γ to the algebra of local observables Aloc with
the property that Φ(X) = Φ(X)∗ ∈ AX . The local Hamiltonian associated with
any finite Λ ⊂ Γ is given by

HΛ =
∑

X⊂Λ

Φ(X).

The Heisenberg dynamics generated by HΛ given by τΛt (A) = eitHΛAe−itHΛ , is
a group of automorphisms that we can regard as acting on AΛ, or Aloc or A as
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desired. Under suitable conditions, the limit Λ ↑ Γ of τΛt (A) defines a strongly
continuous group of automorphisms {τt | t ∈ R} on A.

We are interested in the ground states ψΛ of HΛ and in the set S of all their
possible thermodynamic limits as linear functionals ω on A:

ω(A) = lim
Λ↑Γ

〈ψΛ, AψΛ〉.

More specifically, we are interested in understanding the classification of the so-
called “gapped” ground state phases which are equivalence classes of sets of ground
states defined as follows. Suppose S0 and S1 are two sets of ground states for
a given quantum spin system on Γ, obtained as the thermodynamic limits of
the ground states of two models with interactions Φ0 and Φ1, respectively. If
there exists a differentiable family of interactions Φs, for s ∈ [0, 1], that satisfy
suitable conditions (in particular that they are sufficiently short-ranged) and such
that there exists a constant γ > 0 that is a common lower bound for the gap
between the ground state and first excited state energies of the corresponding

local Hamiltonians H
(s)
Λ =

∑
X⊂Λ Φs(X), then we say that S0 and S1 belong to

the same phase.
For the situation described in the previous paragraph, we constructed in [1] a

strongly continuous co-cycle of automorphisms αs,t of the algebra of quasi-local ob-
servables A, such that S1 = S0 ◦α1,0. The automorphisms satisfy a Lieb-Robinson
bound with uniformly bounded velocity and posses all the symmetries of the fam-
ily of models H(s). In particular, it follows that if S0 and S1 are not isomorphic
as convex sets of states on the observable algebra, the gap must close somewhere
on any curve of Hamiltonians connection the two. Lieb-Robinson bounds [2, 3, 4]
and a version of Hastings’ quasi-adiabatic evolution [5], which we call the spectral
flow, play an essential role in this work.
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Remarks on the spectral shift function and the Friedel sum rule

Shu Nakamura

(joint work with M. Kohmoto and T. Koma)

We consider Schrödinger operator H = H0 + V (x) on L2(Rd) with d ≥ 1, where
H0 = −△. We study the spectral shift function and a related quantity, called the
excess charge in the solid state physics, and then we show they are equivalent.
This implies a formula, called the Friedel sum rule.

We suppose

|V (x)| ≤ C 〈x〉−α , x ∈ R
d,

where α > d+3 and 〈x〉 =
√
|x|2 + 1. Let us fix v ∈ C∞

0 (Rd) such that v = 1 in a

neighborhood of 0, and we set vR(x) = v(x/R) for x ∈ Rd, R > 0. Then we define

ZR(λ) = Tr[vR(EH(λ)− EH0 (λ))vR], λ > 0,

where EA(λ) denotes the spectral projection for a self-adjoint operator A. Here λ
corresponds to the Fermi energy in the solid state physics. It is natural to consider

Z(λ) = lim
R→∞

ZR(λ)

is a rigorous expression of Tr[EH(λ) − EH0(λ)], which is often called the excess
charge.

The spectral function (SSF) (of Lifshitz, Krĕin) is defined as a function ξ(λ) on
R such that

Tr[f(H)− f(H0)] = −
∫ ∞

−∞
f ′(λ)ξ(λ)dλ

for any f ∈ C∞
0 (R), and it is also considered as another regularization of

Tr[EH(λ)− EH0 (λ)] (see [BY] and references therein). We show

Theorem 1. On (0,∞) \ σp(H), ξ(λ) is continuous, and ξ(λ) = limR→∞ ZR(λ)
for λ ∈ (0,∞) \ σp(H).

We recall the Birman-Krĕin formula for the SSF:

e2πiξ(λ) = detS(λ), λ > 0,

where S(λ) is the scattering matrix for the pair (H,H0). If we denote

θ(λ) =
1

2πi
log detS(λ)

(with suitable choice of the branch), we have θ(λ) = ξ(λ). Combining these
observations, we learn:

Theorem 2. (The Friedel sum rule [F]) Z(λ) = θ(λ) for λ ∈ (0,∞) \ σp(H).

The proof of Theorem 1 relies on the construction of the SSF due to M. Krĕin,
but instead of the L1-convergence, we show the pointwise convergence for λ ∈
(0,∞)\σp(H) under our stronger assumption on V . In order to show Z(λ) = ξ(λ),
we also use a microlocal propagation estimate due to Isozaki and Kitada [IK].
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Entanglement, Gibbs Distribution, Etc.

Leonid Pastur

We discuss several topics of quantum informatics, statistical physics, and spectral
theory, related to the notion of the entanglement and its quantifications.

We start from the short history and basic definitions: reduced density matrix,
its von Neumann entropy and related quantities (linear entropy, Renyi entropy,
entanglement spectrum). We then present important theoretical physics findings
on the validity of the area law for the entanglement entropy, the corresponding
rigorous results as well as certain models, where the area law is not valid. This
is, in particular, the Ising model in transverse external field (known also as the
quantum Ising model) and the the typical (random) states.

In both cases the leading term of the entanglement entropy is proportional to the
logarithm of the size of the system, although the mathematical mechanisms of these
asymptotics is quite different as well as the constants in front of the logarithm. In
the case of the the quantum Ising model the mechanism is due to the quantum
phase transition at zero temperature, i.e., due the spins interactions, resulting in
strong quantum correlations and slow decay of corresponding correlation functions
(zero gap in the excitation spectrum). In the second model the mechanism is the
linearity of the density of states and the analog of the corresponding partition
function in the size of the system. We give a simple proof of the validity with
probability 1 of the Page conjecture for the model for any random pure state, whose
components are arbitrary i.i.d. random variables whose mean is not necessarily
zero. Note that the initial page conjecture was for the Gaussian states and for the
mean entropy.

We then present the links of the entanglement topics, the reduced density ma-
trix and its von Neumann entropy in particular. with those on the validity and
derivation of the Gibbs distribution in the traditional setting of the equilibrium
statistical mechanics, i.e., as the distribution of the subsystem of the large system,
which are allowed to have the energy exchange (the large system is usually called
the reservoir or the thermal bath and determines via its entropy the temperature
of the subsystem). We discuss first physics arguments leading to the Gibbs dis-
tribution and then several models, where it can be proved: boson-boson models
both classical (Bogolyubov) and quantum (Glauber), spin boson (Caldeira-Legget
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and others), and spin-random matrix (Lebowitz-Pastur) as a result of certain as-
ymptotic procedures. We then present our recent results on the derivation of the
Gibbs distribution for a certain generalization of the last model, in which the spin
(two-level system or qubit) is replaced by an arbitrary finite dimensional matrix.

We conclude by discussing another scheme of derivation of the Gibbs distribu-
tion as the large time limit (stationary measure) of the time dependent reduced
density matrix of the subsystem, the time dependence results from from the joint
dynamics of the system and reservoir. We outline conditions under which this
derivation can be implemented in various models, in particular the Bogolyubov-
van Hove limit and various assumptions and asymptotic regimes, guarantying the
macroscopic nature of the reservoir.

Dynamical localization for Delone-Anderson operators

Constanza Rojas-Molina

(joint work with F. Germinet and P. Müller)

We study dynamical localization in Delone-Anderson operators, a particular case
of non-ergodic random Schrödinger operators. A discrete point set D ⊂ R

d is
called an (r,R)-Delone set for r, R > 0, if it satisfies the following properties,

• D is uniformly discrete: for any x ∈ Rd, ♯(D ∩ Λr(x)) ≤ 1,
• D is relatively dense: for any x ∈ Rd, ♯(D ∩ ΛR(x)) ≥ 1,

where Λy(x) is a box of side length y centered in x and ♯ stands for cardinality.
Then there exist constants Cr,d and CR,d such that CR,dL

d ≤ ♯(D ∩ ΛL(x)) ≤
Cr,dL

d for all L > 0. Specific examples are the lattice (periodic Delone set) and
the Penrose tiling (aperiodic Delone set).

We consider the operator Hω = H0+λVω, on L
2(Rd), where λ > 0 is a parame-

ter of disorder, the free Hamiltonian H0 = −∆, and the random Delone-Anderson
potential is defined as

Vω(x) =
∑

γ∈D

ωγu(x− γ),

where D is a (r, R)-Delone set, {ωγ} are independent identically distributed ran-
dom variables with absolutely continuous probability density µ, and suppµ =
[0,M ], 0 < M . The probability space is Ω = [0,M ]D. The single-site potential
u ≥ 0 is assumed to be bounded and not “too small”.

Then Hω is a self-adjoint, lower semi-bounded operator with spectrum σω =
[0,∞) ,for a.e. ω ∈ Ω. Since the Delone set D is non-periodic in general, Hω is non-
ergodic, in the sense that there is no family of unitary operators {Uγ} associated
to a group of translations τγ acting on Ω such that the usual covariance relation
Hτγ(ω) = UγHωU

∗
γ holds.

Dynamical localization for similar models has been discussed in [BdMNSS] us-
ing the Fractional Moment Method, where the localized regime lies below the
fluctuation boundary level. However, since the Delone set is non-periodic, there is
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actually no information on how the fluctuation boundary depends on the param-
eters of the model. On the other hand, [G] considered Bernoulli random variables
and proved related results using Bourgain and Kenig’s multiscale analysis [BoK].

In our approach, we aim to obtain a more quantitative description of the local-
ization regime and, in particular, to get explicit information for the length of the
localization interval in terms of the parameters of the model. We use the Bootstrap
Multiscale Analysis for non-ergodic operators (MSA), developed in [RM], to draw
stronger conclusions than [G, GK11]. As a result, we show the existence of an
energy E(R, λ) = Cd,λR

−(2d+2)(lnR)−2/d > 0, where Cd,λ is a positive constant,
such that for any subinterval I ⊂ [0, E(R, λ)], the operator Hω exhibits, among
other features, strong dynamical localization in I. Furthermore, we prove the
almost-sure existence of the Integrated Density of States (IDS) for these models
under some assumptions on the “extent of aperiodicity” of the Delone set.

In order to start the MSA, we need to prove a uniform Wegner estimate and an
initial length scale estimate for the finite-volume operatorHω,x,L = −∆x,L+Vω,x,L,
that is, Hω restricted to a box ΛL(x) of side L centered in x ∈ Rd. In order to
do this we use a spatial averaging trick used in [BoK] and [G] that consists in
considering an auxiliary potential V̄x,L defined as

V̄ω,x,L(·) :=
1

Rd

∫

ΛR(0)

Ṽω,x,L(· − a)da

where Vω,x,L denotes the restriction of Vω to the box ΛL(x). It enables us to derive
a simple quantitative unique continuation principle type estimate which is the key
for the needed uniform Wegner estimate (see e.g. [RMV]).

On the other hand, for the Hamiltonian H̄ω,x,L = −∆x,L + V̄ω,x,L, we estimate
the probability that there is a gap in the spectrum above zero, as done in [G]. The
gap is shown to be big enough, which enables us to use Combes-Thomas estimates
to prove the initial length scale estimate.

In order to study the IDS, the lack of ergodicity prevents us from applying
Birkhoff’s Ergodic Theorem, and therefore there is no straight answer to the
question on the existence of the IDS. However, this can be overcome by treating
Hω as a function of a randomly coloured Delone set, that encodes the informa-
tion of the random potential Vω. We consider the randomly coloured version of
D, Dω = {(γ, ωγ) : γ ∈ D,ωγ ∈ [0,M ]} and the closed Rd-orbits of D and Dω:

XD = {D + t : t ∈ Rd}, Xω
D = {Dω + t : t ∈ Rd}, where the closure is taken with

respect to the vague topology in the space of all Delone sets in Rd.
In this context, we use an ergodic theorem for randomly coloured point sets

proved by [MR] and show that, for any energy E ∈ R , if the dynamical system
XD is uniquely ergodic, that is, there exists a unique ergodic measure µ on XD,
then the eigenvalue counting function

νω,x,L(E) =
1

Ld
♯{eigenvalues of Hω,x,L ≤ E}

has a limit when L tends to infinity, everywhere in XD and for a.e. ω ∈ Ω, which
we denote by ν(E). In particular, for the Delone set D ∈ XD we started with,
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this limit exists almost surely, and it is called the IDS of Hω. Since a uniform
Wegner estimate is satisfied at the bottom of the spectrum, the IDS is shown to
be Lipschitz continuous. Moreover, it exhibits a Lifshitz-tail behavior, as expected
near a fluctuation boundary, that is

lim
Eց0

ln | ln(ν(E))|
ln(E)

= −d
2
.

In the magnetic case, dynamical localization was proved in [RM] for Delone
random Landau Hamiltonians, where the Delone set is aperiodic.
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Diffusion for Markov Random Schrödinger Equations

Jeffrey Schenker

(joint work with Y. Kang, E. Hamza and B. C. Musselman)

It is generally expected that over long times wave packets in a disordered material
will propagate diffusively, at least in dimension d ≥ 3. This expectation stems
from a picture of wave propagation as a multiple scattering process. However, so
far this heuristic argument has not been turned into rigorous analysis, at least
without restricting the time scale over which the wave evolution is followed, as
in the work of Erdös et. al. [1, 2]. One major obstacle is a lack of control over
recurrence: the wave packet may return often to regions visited previously, denying
us the independence needed to carry out the central limit argument.

A natural way to avoid recurrence difficulties is to bring a time dependence
into the disordered background — to suppose that the environment evolves as the
packet propagates. With Yang Kang, we studied the unitary evolution

(1) i∂tψt(x) = H0ψt(x) + ωt(x)ψt(x)
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on ℓ2(Zd) where H0 is a translation invariant hopping term satisfying a non-
degeneracy condition spelled out in [5], and ωt(x) is a time dependent random
potential, which evolves in time as a Markov process. The key assumption is that
the process has a “spectral gap,” which means roughly that

(2)

∣∣∣∣Ef(ωt)−
∫

Ω

f(ω)dµ(ω)

∣∣∣∣ ≤ e−t/T ,

for some T > 0 with µ a non-trivial invariant measure. For this evolution, we
obtained the following result which shows that the density of the wave converges,
in a scaling limit, to a solution of a heat equation:

Theorem 1 (Kang and Schenker 2009 [5]). For solutions to (1), with the assump-
tions of [5], we have

(3) lim
τ→∞

∑

x∈Zd

e
−i

~k√
τ
·x
E|ψτt(x)|2 = e−t

∑
i,j Di,jkikj ,

with Di,j a positive definite matrix. Furthermore

lim
T→∞

1

T

∑

x∈Zd

|x|2E|ψT (x)|2 =
∑

i

Di,i.

A key assumption in [5] was that potentials at various sites of the lattice should
be distinct. Specifically,

inf
x 6=y∈Zd

E
(
|ω(x) − ω(y)|2

)
> 0.

With Eman Hamza and Yang Kang we studied an equation in which this assump-
tion is violated in an extensive way:

(4) ωt(x+ Lξ) = ωt(x)

for any x, ξ ∈ Zd for some L > 1. That is ωt is a random periodic function on
Z
d with period L. For this equation we determined that the motion was diffusive

after an additional Fourier transform to account for the additional conserved quasi-
momentum associated with the symmetry under translations by multiples of L:

Theorem 2 (Hamza, Kang and Schenker 2011 [4]). For solutions to (1) with the
potential of the form (4) but under the remaining assumptions of [5], we have

lim
τ→∞

∑

x∈Zd

e
−i

~k√
τ
·x
E|ψτt(x)|2 =

∫

Td

e−t
∑

i,j Di,j(p)kikjw(p)dp,

where Td = (−π, π]d is the d-torus, Di,j(p) is positive definite for each p ∈ Td

and w(p) is a positive weight depending on the initial condition ψ0.

The proofs of each of these results rely on an “augmented space” representation,
similar to that used in the study of random walk in a random environment [6, 7,
3]. It is remarkable to note that there is no weak disorder or high dimension
assumption here – the time dependence of the potential eliminates recurrence and
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produces diffusion even in a regime for which a static potential would produce
localization.

Each of these results rely crucially on the gap condition (2) to allow for a spectral
analysis of the generator in the “augmented space.” To examine how crucial
this gap condition is we have examined with B. Clark Musselman a Schrd̈ingier
equation with divergence form generator

(5) i∂tψt(x) =
∑

<y,x>

θ<y,x>(ωt) (ψt(y)− ψt(x)) .

Here, for each nearest neighbor bond < x, y > of the lattice Zd, the variable
θ<x,y>(ωt) is non-negative and evolves as an independent Markov process. Because
of the divergence form coupling, even with a gap condition on the Markov generator
there is no gap in the spectrum of the relevant generator in the augmented space.
We have not been able to derive diffusion as in (3), however we do obtain a result
with time averaging:

Theorem 3 (Musselman and Schenker 2011 [8]). For solutions to (5), we have

lim
τ→∞

∫ ∞

0

e−ηt
∑

x∈Zd

e
−i

~k√
τ
·x
E|ψτt(x)|2dt =

1

η +
∑

i,j Di,jkikj

with Di,j a positive definite matrix.
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Orbital magnetization for disordered media

Hermann Schulz-Baldes

(joint work with S. Teufel)

The orbital magnetization of a system of independent electrons is defined as the
derivative of the pressure w.r.t. the magnetic field. In recent years there were
several works showing that for Bloch electrons it can be expressed in terms of the
Berry curvature and the Rammal-Wilkinson tensor. We present a general formula
holding for any space-homogeneous Hamiltonian. In the situation where the Fermi
level µ lies in a region of dynamical localization, the zero-temperature magnetiza-
tion in the direction j = 1, 2, 3 takes a form similar to the Chern invariants:

Mj =
1

2 ı
T
(
(µ−H)(1− 2P )[[Xj+1, P ], [Xj+2, P ]]

)
.

Here T is the trace per unit volume, H the Hamiltonian on ℓ2(Z3,CL), P is the
Fermi projection and Xj are the components of the position operator with index
j calculated cyclically. The derivative of Mj w.r.t. µ is then equal to the Chern
invariant, a fact that is simply related to Streda’s formula. It is also shown that
these Chern invariants in turn determine the surface currents when the system is
restricted to a half-space. An example where all the above is non-trivial is the
Haldane model, a prime example of a topological insulator. The main technique
leading to a proof of the above formula is Bellissard’s Ito derivative w.r.t. the
magnetic field and a new generalized DuHamel formula for this Ito calculus (at
complex times).

Locality Bounds and Correlation Estimates

Robert Sims

(joint work with E. Hamza and G. Stolz)

1. Quantum Lattice Systems

Consider a collection of quantum systems labeled by x ∈ Zν . By this, we mean
that corresponding to each site x ∈ Zν there is a Hilbert space Hx and a densely
defined, self-adjoint operator Hx acting on Hx. The operator Hx is typically
referred to as the on-site Hamiltonian. For finite Λ ⊂ Zν , the Hilbert space of
states corresponding to Λ is given by

(1) HΛ =
⊗

x∈Λ

Hx ,

and the algebra of observables is

(2) AΛ =
⊗

x∈Λ

B(Hx) = B(HΛ) ,

where B(H) is the set of bounded linear operators over the Hilbert space H. In
this case, an observable A ∈ AΛ depends only on those degrees of freedom in Λ.
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In general, these collections of quantum systems are used to describe many inter-
esting physical phenomena e.g., the moments associated with atoms in a magnetic
material, a lattice of coupled oscillators, or an array of qubits in which quantum
information is stored. For simplicity, we have described them on a lattice Zν . In
general, this is not necessary.

The systems described above are of particular interest when they are allowed to
interact. In general, a bounded interaction for such quantum systems is a mapping
Φ from the set of finite subsets of Zν into the algebra of observables which satisfies

(3) Φ(X)∗ = Φ(X) ∈ AX for all finite X ⊂ Z
ν .

A model over Zν is defined by a collection of quantum systems {(Hx, Hx)}x∈Zν

and an interaction Φ.
Associated to a given model there is a family of local Hamiltonians, {HΛ},

parameterized by the finite subsets of Zν . In fact, to each finite Λ ⊂ Zν ,

(4) HΛ =
∑

x∈Λ

Hx +
∑

X⊂Λ

Φ(X)

is a densely defined, self-adjoint operator. Here the second sum is over all fi-
nite subsets of Λ, and is therefore finite. By Stone’s theorem, the corresponding
Heisenberg dynamics, τΛt , given by

(5) τΛt (A) = eitHΛAe−itHΛ for all A ∈ AΛ and t ∈ R,

is a well-defined, one-parameter group of automorphisms on AΛ; see [1] for more
of the general theory.

2. Locality Bounds

Locality bounds, also known as Lieb-Robinson bounds [4], hold for a large class
of models comprised of bounded interactions with sufficiently short range. To be
more precise, fix a > 0 and denote by Ba(Z

ν) the set of all those interactions Φ
for which

(6) ‖Φ‖a = sup
x,y∈Zν

ea|x−y|
∑

X⊂Zν :
x,y∈X

‖Φ(X)‖ < ∞.

It is easy to see that all finite range, uniformly bounded interactions Φ are in
Ba(Z

ν) for all a > 0.
A typical Lieb-Robinson bound, as proven e.g. in [7, 3, 5, 6], can be stated as

follows.

Theorem 1. Fix a collection of on-site Hamiltonians {Hx}x∈Zν . Let a > 0,
Φ ∈ Ba(Z

ν), and take finite subsets X,Y ⊂ Zν . For any finite Λ ⊂ Zν with
X ∪ Y ⊂ Λ, any A ∈ AX , B ∈ AY , and t ∈ R, one has that

‖[τΛt (A), B]‖ ≤ Ce−a(d(X,Y )−vΦ|t|),

where

C = cν‖A‖‖B‖min[|X |, |Y |] and vΦ =
2‖Φ‖ac′ν

a
.
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3. Correlation Estimates

It is an interesting fact, see [7, 3, 5] for a proof, that locality bounds imply
correlation estimates for many systems. The phrase exponential clustering refers
to a proof that the existence of a spectral gap implies exponential decay of spatial
correlations in the ground state.

Fix a > 0, let Φ ∈ Ba(Z
ν), and take a finite set Λ ⊂ Zν . Suppose that HΛ ≥ 0

and assume that Ω0 ∈ HΛ is the unique normalized vector such that HΩ0 = 0.
Let γ = γ(Λ) > 0 denote the spectral gap, i.e.,

γ = sup{δ > 0 | σ(HΛ) ∩ (0, δ) = ∅}.
Theorem 2. Under the assumptions above, there exists µ > 0 and a constant
C <∞ such that for any X,Y ⊂ Λ with X ∩ Y = ∅,

|〈AB〉0 − 〈A〉0 〈B〉0| ≤ C‖A‖ ‖B‖min[|X |, |Y |]e−µd(X,Y ).

holds for all A ∈ AX and B ∈ AY . Here

〈A〉0 = 〈Ω0, AΩ0〉 for all A ∈ AΛ

One can take

µ =
aγ

γ + 4‖Φ‖a
.

General review articles for the above information can be found in [8, 9].
Our recent result (see [2]) is a proof that, under certain additional assumptions,

one can prove a clustering result with a decay rate independent of the size of the
gap.

Definition 1. Let Φ be an interaction on a quantum spin system over Zν . We
say that Φ satisfies a zero-velocity Lieb-Robinson bound if there exists µ > 0
such that given any finite X,Y ⊂ Zν there exists C(X,Y ) <∞ with

(7) ‖[τΛt (A), B]‖ ≤ C(X,Y )min[|t|, 1]‖A‖‖B‖e−µd(X,Y )

for all finite Λ with X,Y ⊂ Λ, A ∈ AX , B ∈ AY , and t ∈ R.

In [2] we prove that dynamical localization, in the form of a zero-velocity Lieb-
Robinson bound, implies exponential clustering with a decay rate independent of
the gap size. In fact, we show the following.

Theorem 3. Let Φ satisfy a zero-velocity Lieb-Robinson bound. Let X and Y be
finite, disjoint subsets of Zν and take Λ finite with X ∪ Y ⊂ Λ. Suppose HΛ ≥ 0
and has a unique normalized ground state Ω0 = Ω0(Λ) satisfying HΛΩ0 = 0. Then
for any A ∈ AX and B ∈ AY , the estimate

|〈AB〉0 − 〈A〉0〈B〉0| ≤ C‖A‖‖B‖e−µd(X,Y )

where one may take

C = 1 +
C(X,Y )

π

[
2− ln

(
γ√

πµd(X,Y )

)]
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Here, as before, 〈·〉0 denotes ground state expectations, µ is as in (7), and
γ = γ(Λ) is the gap.

In [2], we demonstrate that the above result applies to a random xy model.
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A multi-component Sherrington–Kirkpatrick spin-glass in a transverse
magnetic field

Wolfgang Spitzer

(joint work with R. Ruder)

We consider a classical mean-field spin-glass model of multi-component spins in
a transverse magnetic field. Let 2 ≤ N ∈ N be the number of spins (or sites).
For every i ∈ {1, . . . , N} the single-site spin-configuration Si = (Sx

i , S
y
i ) ∈ S1,

where S
1 is the Euclidean unit sphere in R

2. By S := (S1, . . . , SN ) we denote the
spin-configuration of all N spins.

Furthermore, let (gij)1≤i<j≤N be a family of independent Gaussian random
variables of mean zero and variance one. The Sherrington–Kirkpatrick spin-glass
Hamiltonian that we consider is of the form

(1) S 7→ HN (S) := −N−1/2
∑

1≤i<j≤N

gijS
x
i S

x
j − h

∑

1≤i≤N

Sy
i .

Here, h ∈ R is the strength of an exterior magnetic field transversal to the direction
of the spin-glass mean-field pair interaction.

For inverse temperature β > 0 we define the partition function and free energy
(density)

ZN(β, h) := tr exp (−βHN ) , fN (β, h) := −(βN)−1 logZN(β, h) ,

where for a function A : (S1)N → R and a fixed measure µ on S1,

trA :=

∫

(S1)N

N∏

i=1

dµ(Si)A(S) .
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If µ = 1
2δ(−1,0)+

1
2δ(1,0) then HN reduces to the mean-field Ising spin-glass Hamil-

tonian (with zero magnetic field, see (4)) introduced by Sherrington and Kirk-
patrick [7] in 1975. In the following we assume µ to be the uniform (probability)
measure on S1.

In 2002/3, Guerra and Toninelli [2, 3] proved the existence of the free energy
in the thermodynamic limit N → ∞ for one and multi-component Sherrington–
Kirkpatrick models, which marked the beginning of a renewed interest and very
successful activities in this field. So let us denote by f(β, h) := limN→∞ fN (β, h)
the limiting free energy.

In their seminal paper [7], Sherrington and Kirkpatrick used a replica-symmetric
ansatz for the computation of the free energy, which we denote by fSK. Our main
result is that for large β or for large h, the free energy, f , equals fSK. In order to
write down fSK we define the function Lr,q on the single-site spin space, S1, as

(2) S 7→ Lr,q(S) := −√
g qSx − β

2
(r − q)(Sx)2 − hSy ,

where g is a Gaussian random variable with mean zero and variance one. fSK is
given by the formula

(3) fSK(β, h) := inf
r∈R

sup
q∈R

{β
4
(r2 − q2)− 1

β
E log tr exp (−βLr,q)

}
,

where E denotes the expectation with respect to g.
Here is our main result [6]:

Theorem 1 (High-temperature paramagnetic phase).

(i) If β ≤ 1 then for all h ∈ R we have that f(β, h) = fSK(β, h).
(ii) If β > 1 then there exists an h large enough so that f(β, h) = fSK(β, h).
(iii) There exists an hc with 1.5 < hc < 2 such that limβ→∞ f(β, h) = −|h| for

|h| > hc.

The free energy, f , is, of course, a random variable but, by a result of Pastur
and Shcherbina [5], almost surely equal to its expectation value. All three above
statements are understood in the almost sure sense.

The method of proof is an extension of Guerra and Toninelli’s proof [4] of a sim-
ilar result for the one-component Sherrington–Kirkpatrick model in a longitudinal
magnetic field of strength γ with Hamiltonian,

(4) S ∈ {−1, 1}N 7→ H̃N (S) := −N−1/2
∑

1≤i<j≤N

gijSiSj − γ
∑

1≤i≤N

Si .

Concerning statement (iii) in Theorem 1, there is now no critical γc at zero tem-

perature that separates the paramagnetic from the spin-glass phase.
In 1987, Aizenman, Lebowitz, and Ruelle [1] proved (among other things) the

existence of a low-temperature spin-glass phase for the above Hamiltonian H̃N

(with γ = 0) in terms of a spin-glass parameter, Q. To this end, let 〈·〉 be the
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Gibbs-expectation value with respect to HN from (1) and let E be the expectation
value with respect to the random variables (gij). Then we define

Q := lim
N→∞

2

N(N − 1)

∑

1≤i<j≤N

E(〈Sx
i S

x
j 〉2) .

In the high-temperature phase described in the above theorem Q = 0.
Following the line of arguments of [1] we can show the following [6]:

Theorem 2 (Low-temperature spin-glass phase). For β large enough and |h| small
enough we have Q > 0.
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Dynamical Localization for a Random XY-Spin Chain

Günter Stolz

(joint work with E. Hamza and R. Sims)

The anisotropic xy spin chain in an exterior magnetic field is given by the Hamil-
tonian

(1) Hn =
n−1∑

j=1

µj [(1 + γj)σ
x
j σ

x
j+1 + (1 − γj)σ

y
j σ

y
j+1] +

n∑

j=1

νjσ
z
j .

acting on H =
⊗n

j=1 C
2. Here σx, σy, and σz are the Pauli matrices. The real-

valued sequences {µj}, {γj}, and {νj} will be considered random variables and E

will denote the expectation with respect to the disorder.
We denote the Heisenberg evolution of an observable A ∈ B(H) under Hn by

τnt (A) := eiHntAe−iHnt.

For a subset N0 ⊂ {1, . . . , n} we identify the linear operators A ∈ AN0 :=⊗
j∈N0

B(C2) only acting on the spins at sites j ∈ N0 with the operator A′ =

A⊗ I ∈ B(H) =
⊗n

j=1 B(C2), where I acts on the spins at sites {1, . . . , n} \N0.
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Define a 2n× 2n-matrix by

M (n) =

(
A B
−B −A

)
,

where

A =




ν1 −µ1

−µ1
. . .

. . .

. . .
. . . −µn−1

−µn−1 νn



,

,

B =




0 −µ1γ1

µ1γ1
. . .

. . .

. . .
. . . −µn−1γn−1

µn−1γn−1 0



.

Definition: We say the matrices M (n) are dynamically localized if there exist
numbers C > 0 and η > 0 such that for any integers j, k, n ≥ 1 with j, k ∈ [1, n],

(2) E

(
sup
t∈R

|M (n)
j,k (t)|+ sup

t∈R

|M (n)
j,n+k(t)|

)
≤ Ce−η|j−k| ,

where M
(n)
j,k (t) =

(
e−iM(n)t

)

j,k
.

Dynamical localization ofM (n) implies the following zero velocity Lieb-Robinson
bound for the xy chain after averaging over the disorder:

Theorem 1: Assume that M (n) is dynamically localized. Then there exists C > 0
such that for η as in (2), any integers 1 ≤ j < k and any n ≥ k, the bound

(3) E

(
sup
t∈R

‖[τnt (A), B]‖
)

≤ C‖A‖‖B‖e−η|k−j|

holds for all A ∈ Aj and B ∈ A[k,n].

A special case of (1) where the assumption of the Theorem are fulfilled is the
isotropic xy chain in random exterior magnetic field given by

(4) Hn,iso = µ

n∑

j=1

[σx
j σ

x
j+1 + σy

j σ
y
j+1] +

n∑

j=1

νjσ
z
j ,

where µ is a non-zero constant. We assume that the magnetic field νj , j ∈ N, in
(4) is given by i.i.d. random variables, whose common distribution is absolutely
continuous with bounded and compactly supported density.

In this case dynamical localization of M (n) reduces to dynamical localization
for the Anderson model, which is known under this assumption. Thus we have

Corollary: The Heisenberg evolution of Hn,iso satisfies the zero-velocity Lieb-
Robinson bound (3).
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For deterministic quantum spin systems, under mild assumptions and up to
a correction term which depends logarithmically on the ground state gap, zero-
velocity Lieb-Robinson bounds imply exponential decay of ground state correla-
tions, see the talk of R. Sims at this workshop. With similar arguments one shows

Theorem 2: The groundstate ψ0 of (4) is almost surely non-degenerate and there
exist C′ <∞ and η′ > 0 such that

E (|〈ψ0, ABψ0〉 − 〈ψ0, Aψ0〉〈ψ0, Bψ0〉|) ≤ C′‖A‖‖B‖n e−η′|j−k|

for all A ∈ Aj, B ∈ A[k,n] and all 1 ≤ j < k ≤ n.

More details and proofs of the above results as well as references to related
works can be found in E. Hamza, R. Sims and G. Stolz, Dynamical Localization
for Disordered Quantum Spin Systems, Preprint 2011, arXiv:1108.3811.

Random matrices and random Schrödinger operators

Bálint Virág

(joint work with E. Kritchevski and B. Valkó)

We consider the one-dimensional discrete random Schrödinger operators

(Hnψ)ℓ = ψℓ−1 + ψℓ+1 + vℓψℓ,

ψ0 = ψn+1 = 0 where vk = σωk/
√
n. and the ωk are independent random variables

with mean 0, variance 1 and bounded third absolute moment.
The matrix Hn is a perturbation of the adjacency matrix of a path. When the

variance of vk does not depend on n, eigenvectors are localized and the local sta-
tistics of eigenvalues are Poisson (see [1, 3], from which this abstract was distilled,
for detailed references). Our regime, where the variance of the random variables vℓ
are of order n−1/2 captures the transition between localization an delocalization.

If there is no noise (i.e. σ = 0) then the eigenvalues of the operator are given
by 2 cos(πk/(n+ 1)) with k = 1, . . . , n. The asymptotic density near E ∈ (−2, 2)

is given by ρ
2π with ρ = ρ(E) = 1/

√
1− E2/4. We will study the spectrum Λn of

the scaled operator ρn(Hn − E). By the well-known transfer matrix description
the eigenvalue equation Hnψ = µψ is written as

(1)

(
ψℓ+1

ψℓ

)
= T (µ− vℓ)

(
ψℓ

ψℓ−1

)
=Mλ

ℓ

(
ψ1

ψ0

)
,

where T (x) :=

(
x −1
1 0

)
and with µ = E + λ

ρn and εℓ =
λ
ρn − σωℓ√

n
, we have

(2) Mλ
ℓ = T (E + εℓ)T (E + εℓ−1) · · ·T (E + ε1) for 0 ≤ ℓ ≤ n.

Then µ is an eigenvalue of Hn if and only if Mn

(
1
0

)
= c
(
0
1

)
. The scaling of vℓ =

σωℓ/
√
n ensures that, with high probability, the transfer matricesMλ

ℓ are bounded
and the eigenfunctions are delocalized.
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The starting observation is that Mλ
ℓ cannot have a continuous limit, since for

large n the transfer matrix T (E + εk) in (2) is not close to I but to T (E). Thus
we are led to consider, instead of Mλ

ℓ , the regularly-evolving matrices

(3) Xλ
ℓ = T−ℓ(E)Mλ

ℓ , 0 ≤ ℓ ≤ n.

To control the correction factor T−ℓ(E), we diagonalize T (E) = ZDZ−1 with

(4) D =

(
z 0
0 z

)
, Z =

(
z z
1 1

)
, z = E/2 + i

√
1− (E/2)2.

Theorem 1. Assume 0 < |E| < 2. Let B(t),B2(t),B3(t) be independent stan-
dard Brownian motions in R, W(t) = 1√

2
(B2(t) + iB3(t)). Then the stochastic

differential equation

(5) dXλ =
1

2
Z(

(
iλ 0
0 −iλ

)
dt+

(
idB dW
dW −idB

)
)Z−1Xλ, Xλ(0) = I

has a unique strong solution Xλ(t) : λ ∈ C, t ≥ 0, which is analytic in λ. Moreover
with τ = (σρ)2

(Xλ
⌊nt/τ⌋, 0 ≤ t ≤ τ) ⇒ (Xλ(t), 0 ≤ t ≤ τ),

in the sense of finite dimensional distributions for λ and uniformly in t. Also, for
any given 0 ≤ t ≤ τ the random analytic functions Xλ

⌊nt/τ⌋ converge in distribution

to Xλ(t) with respect to the local uniform topology.
Moreover the shifted eigenvalue process Λn−arg(z2n+2) converges in distribution

to a point process Schτ .

The point process Schτ is only invariant under translation by integer multiples
of 2π. A translation-invariant version (shifted by an independent uniform random
variable) Sch

∗
τ = Schτ + U [0, 2π] can be described through a variant of the the

Brownian carousel introduced in [2].
The Brownian carousel. Let (V(t), t ≥ 0) be Brownian motion on the hy-

perbolic plane H. Pick a point on the boundary ∂H and let xλ(0) equal to this
point for all λ ∈ R. Let xλ(t) be the trajectory of this point rotated continuously
around V(t) at speed λ. Recall that Brownian motion in H converges to a point

V(∞) in the boundary ∂H. Then we have Sch
∗
τ

d
= {λ : xλ/τ (τ) = V(∞)}.

The following properties of Schτ help compare it to random matrices.

Theorem 2 (Eigenvalue repulsion). For µ ∈ R and ε > 0 we have

(6) {Schτ [µ, µ+ ε] ≥ 2} ≤ 4 exp
(
−(log(τ/ε)− τ)2/τ

)
.

whenever the squared expression is nonnegative.

Theorem 3 (Probability of large gaps). The probability that Schτ has a large gap
is

P(Schτ [0, λ] = 0) = exp

{
−λ

2

4τ
(1 + o(1))

}

where o(1) → 0 for a fixed τ as λ→ ∞.
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The above results show that the eigenvalue statistics of 1D random Schrödinger
operators are not universal. However, GOE statistics appear for very thin boxes
in Z2. The proof first establishes a fixed higher dimensional version of Theorem 1
and then uses recent results in universality of Wigner matrices.

Theorem 4. [3] There exists a sequence of weighted boxes on Z2 with diameter
converging to ∞ so that the rescaled eigenvalue process of the adjacency matrix
plus diagonal noise converges to the bulk point process limit of the GOE ensemble.
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Quantitative unique continuation principle and Wegner estimates

Ivan Veselić

(joint work with C. Rojas-Molina)

Let us denote boxes centered at the origin by ΛL :=
[
−L

2 ,
L
2

]d
. For a Schrödinger

operator −∆+V we denote its restriction to ΛL with periodic boundary conditions
by (−∆− V )ΛL .

The main result is the following scale-free quantitative unique continu-
ation principle: Let K,E0, δ ∈ (0,∞). There is a constant CUCP ∈ (0,∞)
depending only on K,E0 and δ such that for any sequence {yk}k∈Zd satisfy-
ing Bδ(yk) ⊂ Λ1 for all k ∈ Zd, any scale L ∈ N, any measurable potential
V : Rd → [−K,K], any energy E ≤ E0, any solution ψ ∈ W 2,2(ΛL) with periodic
boundary conditions of the equation

(−∆− V )ΛLψ = Eψ

the following bound holds:

(1)

∫

ΛL

|ψ(x)|2dx ≤ CUCP

∫

SL

|ψ(x)|2dx

where SL :=
⋃

k∈Zd Bδ(yk + k) ∩ ΛL.
The main point of the statement is that the constnt CUCP does not depend

on the scale L ∈ N. Note also that the constant does not depend on the specific
shape of the potential V , but only on its supremum ‖V ‖∞ ≤ K.

If all yk are equal to zero, we will say that the balls S =
⋃

k∈Zd Bδ(k) are
arranged periodically. This is a very important special case.

Similar (and in some cases and some aspects even stronger) statements have
been obtained previously:
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Energies near the spectral minimum: The earliest results of the type
above have been obtained in the situation where E0 is small, where the
smallness depends on the parameter δ > 0, and for more specific choices
of the structure of the potential. For a proof of the statement in the case
that the points yk are all equal to the origin, see e.g. [7]. For general
sequences Bδ(yk) ⊂ Λ1 of balls see e.g. [3]. The last result holds actually
for functions ψ with sufficiently small expectaion value 〈ψ,−∆ψ〉.

Energies near spectral edges: Properties of eigenfunctions associated to
eigenvalues near spectral edges have been considered e.g. in [8, Prop.3.2].
The potential there consists of a periodic part plus a random alloy-type
part. For this types of potentials there is a well defined notion of spectral
edges. The considered arrangement of balls S is again periodic in this
paper.

One space dimension: In one space dimension the scale free quantitative
unique continuation principle holds for all functions ψ belonging to the
spectral subspace associated to the interval (−∞, E0] and the operator
(−∆ + V )ΛL . This has been proven in [10, 9]. Actually the formulation
there refers to periodic arrangements of balls, but the proof holds also in
the non-periodic situation, as has been stated explicitly in [6].

Periodic arrangement of balls: In the case that the arrangement of balls
S and the potential V is periodic, the scale-free unique continuation prin-
ciple holds for all functions ψ belonging to the spectral subspace associated
to the interval (−∞, E0] of the Schrödinger operator. This has been proven
in [2]. Here there is no restriction on the value of E0. An alternative proof
for this result with more explicit control of constants has been derived in
[4].

The above stated scale-free unique continuation principle has several conse-
quences for random Schrödinger operators with non-negative potentials of Delone-
alloy-type.

• A Wegner estimate holds (under the usual assumptions on the regularity
of the coupling constants) which is linear in the volume of the box ΛL and
almost linear in the length 2ε of the considered energy interval [E−ε, E+
ε] ⊂ (−∞, E0]. This result uses [5].

• The bottom of the spectrum of a Schrödinger operator is lifted by the
addition of a non-negative Delone-alloy-type potential.

• Using [1] it follows that the scale-free quantitative unique continuation
principle holds for all functions ψ belonging to the spectral subspace asso-
ciated to the interval (−∞, E0] of the Schrödinger operator (for sufficiently
small E0).
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Lützowstr. 125
58095 Hagen

Prof. Dr. Peter Müller

Mathematisches Institut
Ludwig-Maximilians-Universität
München
Theresienstr. 39
80333 München

Prof. Dr. Bruno Nachtergaele

Department of Mathematics
University of California, Davis
1, Shields Avenue
Davis , CA 95616-8633
USA

Prof. Dr. Shu Nakamura

Graduate School of
Mathematical Sciences
University of Tokyo
3-8-1 Komaba, Meguro-ku
Tokyo 153-8914
JAPAN

Prof. Dr. Leonid A. Pastur

Institute for Low Temperatures
47 Lenin’s Ave.
61103 Kharkov
UKRAINE

Constanza Rojas-Molina

Departement de Mathematiques
Universite de Cergy-Pontoise
Site Saint-Martin, BP 222
2, avenue Adolphe Chauvin
F-95302 Cergy-Pontoise Cedex

Prof. Dr. Jeffrey H. Schenker

Department of Mathematics
Michigan State University
Wells Hall
East Lansing , MI 48824-1027
USA

Prof. Dr. Hermann Schulz-Baldes

Department Mathematik
Universität Erlangen-Nürnberg
Bismarckstr. 1 1/2
91054 Erlangen

Dr. Robert Sims

Department of Mathematics
University of Arizona
617 N. Santa Rita
Tucson AZ 85721-0089
USA

Prof. Dr. Wolfgang Spitzer

Mathematisches Institut der
Fernuniversität Hagen
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