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Introduction by the Organisers

The workshop Mathematical Logic: Proof Theory, Constructive Mathematics was
held November 6-12, 2011 and included three tutorials:

(1) Sergei N. Artemov: Provability vs. computational semantics for intuition-
istic logic (2 times 1 hour),

(2) Jan Kraj́ıček: Search for hard tautologies (3 times 1 hour),
(3) Angus MacIntyre: Issues around proving Fermat’s Last Theorem (FLT)

in Peano Arithmetic (3 times 1 hour).

Artemov’s tutorial gave an introduction to the provability semantics (based on ex-
plicit proof polynomials) for intuitionistic logic as developed for propositional logic
by the author since 1995 and its very recent 2011 extension to a first-oder logic of
proofs by himself and T. Yavorskaya. Kraj́ıček’s tutorial gave a survey on recent
developments in the area of proof complexity and bounded arithmetic. Macintyre
presented some of the key ingredients of Wiles’ proof of FLT and outlined how the
necessary mathematics could in principle be formalized in a suitable conservative
extension of Peano Arithmetic PA.
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In addition to these tutorials, 24 short talks of 25 minutes were given aiming:

To promote the interaction of proof theory with core areas of mathematics via
the use of proof theoretic techniques to unwind ineffective proofs in mathematics.
Two talks (L. Leu̧stean, P. Safarik) reported on recent extractions of explicit rates
of metastability (in the sense of T. Tao) from proofs in nonlinear ergodic theory,
while J. Gaspar gave an unwinding of a proof in metric fixed point theory and
reported on proof-theoretic results concerning different finitizations (again in the
sense of Tao) of the infinite pigeonhole principle. Applications of the method of
cut-elimination to proofs in theories with axioms having a suitable logical form
were the subject of another talk (S. Negri). A. Kreuzer talked about a proof-
theoretic analysis of important principles in Ramsey theory and their connection
to analytic principles. Other talks focussed on the more theoretical side of proof
interpretations such as a novel functional interpretation for nonstandard analy-
sis (B. van den Berg), refined negative interpretations (H. Ishihara), connections
between Spector’s bar recursion and methods to compute Nash equilibria based
on products of selection functions (P. Oliva) and recent developments on the ε-
substitution method (G. Mints). P. Schuster gave a constructive reformulation
of certain type of ineffective proofs in algebra while D.S. Bridges talked about
different constructive formulations of the Riemann series theorem. A talk by H.
Schwichtenberg was concerned with a novel inductive/coinductive treatment of
continuous functions. Real numbers as an abstract data type for the extraction of
programs from proofs was presented by A. Setzer.

To further develop foundational aspects of proof theory and constructive mathe-
matics. Two talks (G.E. Leigh, T. Strahm) investigated proof-theoretic properties
of theories of truth. Other talks dealt with new conservation results for systems
of constructive set theory (L. Gordeev) and recent developments in Voevodsky’s
program of ‘univalent foundations’ which was the subject of another Oberwolfach
workshop in October (P. Aczel). Two further talks discussed approaches to or-
dinal notations based on reflection principles (L. Beklemishev) and ‘patterns of
resemblance’ due to T.J. Carlson (G. Wilken), respectively. A talk by G. Jäger
investigated the proof-theoretic strength of operational systems of set theory (for-
mulated in the framework of Feferman’s explicit mathematics). A talk by A. Visser
was concerned with the provability logic of arithmetics.

To explore further the connections between logic and computational complex-
ity: this concerns both proof-theoretic results of systems of bounded arithmetic
(A. Beckmann) as well as an understanind of what makes certain formulas hard
for current SAT-solvers while even very large formulas stemming from concrete
applications often can be decided rather efficiently by these tools. (J. Nordström).
An axiomatic approach to the issue of the intrinsic complexity for general classes of
algorithmic problems in arithmetic and algebra in terms of absolute lower bounds
was developed in a talk by Y. Moschovakis based on a so-called homomorphism
method.
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Abstracts

On Voevodsky’s Univalence Axiom

Peter Aczel

The aims of my talk were (1) to state the Univalence Axiom, a new axiom to be
added to Per Martin-Löf’s Dependent type theory MTT, and (2) to motivate the
axiom as an expression of a strong form of the Structure Identity Principle (SIP).
This principle expresses that isomorphic structures are structurally identical; i.e.
have the same structural properties. But what is a structural property?

In mathematical practise, the notion is not precisely defined, but is usually
intuitively understood.

In logic, there can be a precise answer: Given a signature s for a certain kind
of structure and a suitable logical formal language L, each set of sentences T of L
determines the structural property PT where, for s-structures A,

PT (A) iff A is a model of T .

In category theory, when working with a category of structures, equality be-
tween structures is considered not to be meaningful and so not allowed to be
expressed in the language used to express properties of the category, so that all
properties of the objects of the category are structural.

It seems to turn out that, in MTT with the Univalence Axiom for a given type
universe of small types, all properties of a small structure that can be expressed in
the language of MTT can be taken to be structural, as isomorphic small structures
are identical in the sense of the type theoretic identity relation on the type of such
small structures.

Provability vs. computational semantics for intuitionistic logic

Sergei N. Artemov

The intended semantics of intuitionistic logic is Brouwer-Heyting-Kolmogorov
(BHK) provability semantics (cf. [8, 10, 13]). It starts from Brouwer’s thesis
that intuitionistic truth is provability, i.e., a proposition is true if it has a proof.
In particular, it stipulates that

(1) a proof of A → B is a construction which, given a proof of A, returns a
proof of B;

(2) a proof of A ∧B consists of a proof of A and a proof of B;
(3) a proof of A∨B is given by presenting either a proof of A or a proof of B;
(4) a proof of ∀xA(x) is a function converting c into a proof of A(c);
(5) a proof of ∃xA(x) is a pair (c, d) where d is a proof of A(c).

Speaking informally, BHK semantics deals with both proofs and computable func-
tions (constructions). Since in a formal mathematical setting, a computational
program does not yield a proof of its correctness, one should not expect a purely
computational model to provide an adequate account of BHK. On the other hand,
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a formal proof of a sigma-formula yields a corresponding computational program,
hence a proof-based semantics could, in principle, represent BHK in its entirety.

BHK ideas inspired Kleene’s realizability [9], which led to the class of com-
putational interpretations for intuitionistic logic with their vast applications in
constructive logic, Computer Science, etc. Despite basic similarities, there are
conceptual differences between provability and computational BHK models, e.g.,
the basic proof predicate ‘p is a proof of F’ is decidable, whereas the basic real-
izability assertion ‘p realizes F’ is not decidable. Realizability does not satisfy
the original BHK clause concerning disjunction. In realizability, there is the extra
requirement of a bit indicator that points at the proper disjunct (cf. [14, 15, 16])
which was not present in the original BHK since, given a proof p, we always ‘know’
which of the disjuncts it proves. As it was pointed out by Kreisel in [11], in clause
(4), BHK semantics should provide a proof that the corresponding function has the
property required, but realizability does not appear to do this. A good example
of computational BHK semantics is given by Martin-Löf type theory [12]. Though
it uses a BHK proof terminology, Martin-Löf ‘proofs’ or ‘constructions’ are not
identified with formal proofs (cf. [15]), but rather have a natural computational
interpretation.

The original provability reading of BHK, despite early progress made by Gödel
in [6, 7], turned out to be quite elusive. An exact provability BHK semantics
for the propositional intuitionistic logic IPC was found only in 1995 within the
framework of the logic of proofs LP [1, 2]. This led to a mathematical theory of
justifications with a fast growing area of applications, e.g., in epistemology [3, 4].

In this talk, in addition to surveying the aforementioned results, we present the
first-order logic of proofs FOLP capable of realizing the first-order intuitionistic
logic HPC and enjoying a provability interpretation (a joint work with Tatiana
Yavorskaya [5], 2011). We show that FOLP provides an exact provability semantics
for intuitionistic logic, meets the original BHK specifications, and escapes the
discussed defects of the computational BHK semantics.
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Provable Total NP Search Problems and Improved Witnessing
Arguments

Arnold Beckmann

(joint work with Samuel R. Buss)

A typical “old-style” witnessing argument relates an arithmetic theory and a for-
mula class Φ to a complexity class C in the following way: If T proves ∀x∃yϕ(x, y)
for some property ϕ in Φ, then there exists a function f in C whose graph Gf can
be described by some formula in Φ, such that T proves (a) the totality of f using
Gf , and (b) that f solves ∀x∃yϕ(x, y), i.e. ∀x∀y(Gf (x, y) → ϕ(x, y)).

Recent witnessing arguments, which were used implicitly or explicitely by sev-
eral authors who studied provable total NP search problems of various theories of
bounded arithmetic (cf. [1, 2, 3, 4, 5]), improved the “old-style” ones in the way
that (b) can now be proven in a theory of bounded arithmetic weaker than T ,
which is suitable to formalise feasible reasoning (like the theory S1

2).
In the talk, we have described such new style witnessing arguments for 2nd order

theories of bounded arithmetic (U1
2 and V 1

2 ) related to the complexity classes
PSPACE and EXPTIME. We have then used these results to improve on
recent characterisations of provable total NP search problems of 2nd order theories
of bounded arithmetic U1

2 and V 1
2 in terms of combinatorial games, called local

improvement principles [3].
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Provability algebras for theories of Tarskian truth

Lev D. Beklemishev

(joint work with Evgeny Dashkov)

We study theories in the language of Peano arithmetic augmented by new a unary
predicate T (x) representing the set of Gödel numbers of all true arithmetical sen-
tences. Formulas in the language with T are naturally classified into a hierarchy of
classes Π0

α, where α < ω2 is an ordinal. Our basic system is elementary arithmetic
EA together with the standard full Tarski commutation conditions for truth. We
consider extensions of this basic system by restricted forms of induction (in the
language with T ) and show that these induction axioms are equivalent to the re-
flection principles of appropriate logical complexity.

Reflection principles in the language with T are then studied using methods of
provability algebras [1]. In particular, we define a sound and complete proposi-
tional reflection calculus that adequately describes the interaction of such reflection
principles and provides a system of ordinal notation suitable for a proof-theoretic
analysis of these systems. It is a novel form of provability logic whose formulas
correspond to (arithmetized) schemata rather than individual sentences. As a con-
sequence we obtain a generalization of Schmerl’s formula for the iterated reflection
principles of restricted arithmetical complexity to the hierarchy of classes Π0

α. This
yields natural axiomatizations of the fragments of the systems with induction of
any specific logical complexity class Π0

α, α < ω2, in terms of iterated reflection
principles and allows us to compute the corresponding proof-theoretic ordinals.

This is joint work with Evgeny Dashkov (Moscow M. V. Lomonosov State Uni-
versity). It extends and bears upon the results of H. Kotlarsky and Z. Ratajczyk
[2, 3] on the inductive satisfaction classes.
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A functional interpretation for nonstandard arithmetic

Benno van den Berg

(joint work with Eyvind Briseid and Pavol Safarik)

In the work we presented we started a proof-theoretic investigation of systems
for nonstandard analysis in the style of Nelson’s Internal Set Theory (IST) using
functional interpretations (see [1]).

The idea of Nelson was to add a new unary predicate symbol st to ZFC for
“being standard”. In addition, he added three new axioms to ZFC governing the
use of this new unary predicate, called Idealization, Standardization and Transfer.
The resulting system he called Internal Set Theory or IST. The main logical result
about IST is that it is a conservative extension of ZFC, so any theorem provable
in IST which does not involve the st-predicate is provable in ZFC as well.

The conservativity of IST over ZFC was proved twice. In the original paper
where he introduces Internal Set Theory [6]1, Nelson gives a model-theoretic argu-
ment which he attributes to Powell. In a later publication [7], he proves the same
result syntactically by providing a “reduction algorithm” (a rewriting algorithm)
for converting proofs performed in IST to ordinary ZFC-proofs. There is a remark-
able similarity between his reduction algorithm and the Shoenfield interpretation
[8]; this observation was the starting point for our work.

Instead of working with extensions of ZFC, we work in the context of Heyting
and Peano arithmetic in all finite types (HAω and PA

ω). We begin with HA
ω and

proceed in a similar way as Nelson: we add a new unary predicate st to its language
(in fact, we will add unary predicates stσ for every type σ) and add nonstandard
axioms in the extended language. Our main result is the existence of an algo-
rithm which rewrites proofs performed in this constructive nonstandard system
to ordinary proofs performed in HA

ω. This algorithm is a functional interpreta-
tion in the style of Gödel, with features reminiscent of the Diller-Nahm [2] and
the bounded functional interpretation [3] (the relation to the latter is especially
close). Then by combining this rewriting algorithm with negative translation one
obtains a Shoenfield-type functional interpretation for a nonstandard extension of
PA

ω.
The existence of such a rewriting algorithm has two corollaries: first of all, it

shows that the nonstandard systems we consider are conservative extensions of
HA

ω and PA
ω, respectively. Secondly, they show how one can extract terms in

Gödel’s T (and hence computational content) from nonstandard proofs. In the
future we would like to investigate if this second feature can be used for proof-
mining nonstandard proofs (as in [5]).

Other questions which we hope to take up in future work are the following: we
believe that we have not obtained the optimal conservation result in the classi-
cal context, so we still hope to be able to make some further progress here. In
addition, we would like to understand proof-theoretically the role of saturation

1This paper was reprinted with a foreword by G. F. Lawler in volume 48, no. 4, of the Bulletin
of the American Mathematical Society in recognition of its status as a classic.
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principles in nonstandard proofs: we have shown that constructively they do not
add any strength. But we have also shown that classically they make the system
much stronger (something similar happened in [4]). Presently, we are working on
determining their exact strength over our classical nonstandard system.
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Constructive Complements on Riemann’s Series Theorems

Douglas S. Bridges

In the nineteenth century, Bernhard Riemann proved two now-famous theorems
about rearrangements of an infinite series

∑
an of real numbers:

RST1: If
∑

an is absolutely convergent, then every rearrangement of it con-
verges to the same sum.

RST2: If
∑

an is convergent but not absolutely convergent, then for any
real number x, there exists a rearrangement of the series that converges
to x. Moreover, there are rearrangements that diverge to ±∞.

In 1974, Michael Beeson asked whether one could prove these theorems in BISH:
Bishop-style constructive mathematics, which is, roughly, mathematics with intu-
itionistic logic [3, 4, 6]. The affirmative answer was given in 2009 by Berger and
Bridges [1].

It is not hard to extend the conclusion of RST2 to what we call its full, extended
version, which includes the existence of permutations of the series

∑
an that di-

verge to ∞ and to −∞. In consequence, a simple reductio ad absurdum argument
proves classically that if a real series

∑
an is permutably convergent—that is,

every permutation of
∑

an converges in R—then it is absolutely convergent. An
intuitionistic proof of this last result was provided by Troelstra ([14], pages 95 ff.),
using Brouwer’s continuity principle for choice sequences. That result actually has
one serious intuitionistic application: Spitters ([13], pages 2101–2) uses it to give
an intuitionistic proof of the characterisation of normal linear functionals on the
space of bounded operators on a Hilbert space; he also asks whether there is a
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proof of the Riemann-Troelstra result within BISH alone. To deal with Spitters’
question, we first recall a definition and a principle due to Ishihara [8].

A subset S of the set N of natural numbers is said to be pseudobounded

if for each sequence (sn)n≥1 in S, there exists N such that sn/n < 1 for all

n ≥ N—or, equivalently, if sn/n → 0 as n → ∞. Every bounded subset of N is
pseudobounded. The converse holds classically, intuitionistically, and in recursive
constructive mathematics, but Lietz [10] and Lubarsky [11] have produced models
of BISH in which it fails to hold for inhabited, countable, pseudobounded sets.
Thus the principle

BD-N: Every inhabited, countable, pseudobounded subset of N is bounded

is independent of BISH. It is a serious problem of constructive reverse math-
ematics [5, 9] to determine which classical theorems are equivalent to BISH +
BD-N.

Berger et al. [2] have proved the following:

Theorem 1. BISH + BD-N ⊢ Every permutably convergent series of real
numbers is absolutely convergent.

While this result steps outside unadorned BISH, it is valid in both intuitionistic
and constructive recursive mathematics, in which BD-N is derivable.

Theorem 1 raises the question: over BISH, does the absolute convergence of
every permutably convergent series imply BD-N? Thanks to Diener and Lubarsky
[7], we now know that the answer is negative. In turn, this raises another question:
is there a proposition that is classically equivalent to, and clearly cognate with, the
absolute convergence of permutably convergent series and that, added to BISH,
implies BD-N? In order to answer this question affirmatively, we work with a
new notion, defined as follows.

By a bracketing of a real series
∑

an we mean a series of the form

∞∑

n=1

f(n+1)−1
∑

k=f(n)

ak,

where f is a strictly increasing mapping of the set N+ of positive integers into
itself with f(1) = 1. We say that

∑
an is weak-permutably convergent if

it is convergent and if for each permutation σ of N+, there exists a convergent
bracketing of

∑
aσ(n). Clearly, permutable convergence implies weak-permutable

convergence.
A nontrivial argument involving the careful construction of an appropriate per-

mutation of
∑

an leads to this result:

Lemma 2. BISH ⊢ Let
∑

an be a weak-permutably convergent series of real
numbers, and σ a permutation of N+. Then it is impossible that

∑∣
∣aσ(n)

∣
∣ diverge.

It follows classically from this lemma and RST1 that if
∑

an is weak-permutably
convergent, then

∑
an is permutably convergent; in view of the Diener-Lubarsky

results in [7], the latter cannot be proved within BISH.
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Constructively, Lemma 2 enables us to prove that if
∑

an is permutably conver-
gent, then for each permutation σ of N+, every convergent bracketing of

∑
aσ(n)

converges to the same sum as
∑

an itself.
An extremely complicated argument leads to:

Lemma 3. BISH ⊢ Let S ≡ {s1, s2, . . .} be an inhabited, countable, pseu-
dobounded subset of N. Then there exists a sequence (an)n≥1 of nonnegative ra-
tional numbers with the following properties.

(i)
∑

(−1)n an is convergent and weak-permutably convergent.
(ii) If

∑
an converges, then S is bounded.

It is then relatively straightforward to prove our second main result:

Theorem 4. BISH ⊢ If every weak-permutably convergent series in R is abso-
lutely convergent, then BD-N holds.

To summarise: inBISH + BD-N the Riemann permutability theorem is deriv-
able; in BISH, the absolute convergence of every weak-permutably convergent
series implies BD-N; and, by the work of Diener and Lubarsky, we can neither
drop BD-N from the first of these statements nor replace weak-permutably by
permutably in the second.
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Infinite pigeonhole principle

Jaime Gaspar

The infinite pigeonhole principle is one of the world’s most evident statements: if
we colour the natural numbers with finitely many colours, then some colour occurs
infinitely often. Despite its obviousness, its treatment in both proof theory and
mathematics can be surprisingly challenging. We are going to illustrate this with
two case studies.
Case study 1: Tao’s “finitary” infinite pigeonhole principle1. Terence Tao [5, 6]
wrote on his blog essays about finitising principles in analysis: finding for infinite
qualitative “soft analysis” statements equivalent finitary quantitative “hard analy-
sis” statements. One of his prime examples is an (almost) finitisation of the infinite
pigeonhole principle. Tao’s finitisation turned out to be mistaken and we [2] gave
a counterexample. Then Tao and we independently proposed corrections.

In this case study we:

• try to determine, in the context of reverse mathematics, which one of the
corrections is a more faithful finitisation of the infinite pigeonhole principle;

• argue that Tao’s finitisations can be done systematically by proof theoretic
tools, namely the monotone functional interpretation.

Then we finish with an open problem.
Case study 2: Infinite pigeonhole principle in proof mining. Proof mining [4] is a
research program that seeks to extract computational content from proofs in math-
ematics using proof theoretic tools, notably the monotone functional interpreta-
tion. We [1] proof mined Hillam’s [3] theorem which characterises the convergence
of fixed point iterations.

The proof of Hillam’s theorem uses the Bolzano-Weierstrass theorem, an in-
effective principle. To proof mine Hillam’s theorem, we improved the situation
by replacing the Bolzano-Weierstrass theorem by the infinite pigeonhole principle.
But then, contrarily to what usually happens, it seems that we cannot eliminate
the infinite pigeonhole principle, at least without strengthening our hypotheses.

In this case study we study two ways to deal with the infinite pigeonhole prin-
ciple:

• to interpret the infinite pigeonhole principle with the monotone functional
interpretation, getting a stronger but more complicated proof mining of
Hillam’s theorem;

• to strength the hypotheses and eliminate the infinite pigeonhole principle,
getting a weaker but simpler proof mining of Hillam’s theorem.

1This is a joint work with Ulrich Kohlenbach.
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Then, again, we finish with an open problem.
Acknowledgments. Financially supported by the Portuguese Fundação para a
Ciência e a Tecnologia under grant SFRH/BD/36358/2007 co-financed by Pro-
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Proof-theoretic conservations of weak weak intuitionistic constructive
set theories

Lev Gordeev

J. Myhill [4] and H. Friedman [1] introduced several constructively meaningful
principles and formal systems of weak extensional intuitionistic set theory of
proof-theoretic strengths shown in [1] to range between that of standard first-
and second-order Arithmetic, PA (or HA) and PA2 (or HA2), respectively, thus
being essentially weaker than standard classical set theory ZF. Furthermore [1]
posed a deeper problem conjecturing that intuitionistic set theories under con-
sideration are conservative extensions of the underlying arithmetical intuitionistic
formalisms. These conjectures (et al) have been confirmed [3] for the set the-
ories of proof-theoretic strengths up to Howard Ordinal |ID1|; the proofs were
based on the author’s constructive semantics [2] of analogous weak set theories.
Moreover [3] strengthened Friedman’s conjectures by also proving conservations
in the presence of consistent combinations of other constructive principles like an
anti-foundation axiom Cpl and/or finite-types axiom of choice ACft. Actually
for every weak set theory T in question [3] expressed the solution in the most
conservative form T ⊢ A ⇔ HA+ TI (< |T|) ⊢ A, for any arithmetical statement
A, where TI (< |T|) denotes the arithmetical transfinite induction scheme below
proof theoretic ordinal of T.
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Working in classical logic and using analogous set theoretic semantics K. Sato
[5] introduced several weak refinements of basic weak set theory – both intensional
and extensional – and determined their proof-theoretic ordinals. Notably Sato’s
weak weak classical set theories are less expressive than Myhill-Friedman’s weak
intuitionistic formalisms, which can (arguably) simulate the full expressive power
of ZF. In particular, Zermelo’s classical power set axiom

Pow : “for every x there exists the set of all subsets of x”
has natural constructive interpretation in the form
Exp : “for every x and y there exists the set of all functions from x to y”
occurring in Myhill-Friedman’s formalisms. Since constructive functions are

thought to simulate only algorithms, Exp is weaker than Pow in the intuitionis-
tic environment. This might on one hand illuminate proof-theoretic weakness of
Myhill-Friedman’s intuitionistic constructive formalisms, and on the other hand
explain the lack of Exp in Sato’s classical ones. However, adding Exp to the in-
tuitionistic versions of the weak weak set theories would hardly affect their proof-
theoretic strengths. It is thus natural to investigate proof-theoretic strengths of
the resulting extended weak weak intuitionistic constructive set theories and ask
whether they are conservative extensions of the underlying arithmetical intuition-
istic formalisms. We recall basic results of [5] :

Theorem 5. |Basic+Ext| = ε0 , |Basic+Ext+∆0-Sep| = Γ0 .

and observe that the increase of proof theoretic strength of Basic+Ext+∆0-
Sep, relative to Basic+Ext , is caused by essentially classical argument that
allows to infer the comparability of arbitrary countable well-orderings fom Basic’s
collapsing axiom Clps. However, this argument fails intuitionistically and we
refine Sato’s results by the following intuitionistic counterpart.

Theorem 6.
∣
∣Basic(i) +Ext

∣
∣ =

∣
∣Basic(i) +Ext+∆0-Sep+Exp

∣
∣ = ε0 . More-

over Basic(i) +Ext+∆0-Sep+Exp is a conservative extension of HA.

The latter theorem, in turn, is strengthened as follows, where
Θ = SC+ Ful+AC! +Enm and:

SC ≡ (∀x ∈ a)∃yϕ (x, y) →
∃z ((∀x ∈ a) (∃y ∈ z)ϕ (x, y) ∧ (∀y ∈ z) (∃x ∈ a)ϕ (x, y))

,

AC! ≡ (∀u ∈ x) (∃!v ∈ y)ϕ (u, v) →
∃f (Func (f, x, y) ∧ (∀u ∈ x)ϕ (u, f (u)))

,

Ful ≡ (∃z)
(

(∀r ∈ z)Tot (r, x, y) ∧ ∀r
(

Tot (r, x, y) → (∃s ∈ z)
(s ⊂ r ∧ Tot (s, x, y))

))

,

where Tot (r, x, y) ≡ r ⊂ x× y ∧ (∀u ∈ x) (∃v ∈ y) (〈u, v〉 ∈ r),

Anti-Reg ≡ Ord (x) ∧ (∀s, t ∈ x) (〈s, t〉 ∈ r ↔ 〈s, t〉 /∈ r′) →
(∃f, y)TrClps (f, x, r, y) ,

Cpl ≡ r ⊂ x× x → (∃f, y)TrClps (f, x, r, y),
Enm ≡ (∃y ⊂ ω) (∃f) Surj (f, y, x).
Note that Cpl and Anti-Reg are both incompatible with Fnd.
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Theorem 7.

Basic(i) +Ext+∆0-Sep+Θ+ Fnd

and

Basic(i) +Ext+∆0-Sep+Θ+Cpl

are both conservative extension of HA.

Remark 8. (1) Basic(i) +Ext+∆0-Sep+Θ+ Fnd is a proper extension
of Friedman’s T1.

(2) Within Basic(i)+∆0-Sep+Θ : Ful implies Exp (but not otherwise),
both being much weaker (in the proof theoretic sense) than Pow.

(3) Within Basic(i)+∆0-Sep+Enm : Cpl is equivalent to Anti-Reg.
(4) For brevity we use standard constructive version of Ord (x) :

Ord (x) ≡ POrd (x) ∧∅ ∈ x∧
(∀u) ((∀y ∈ x) (y ⊂ u ↔ y ∈ u) → x ⊂ u)

.
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Some conservative extension results of classical logic over intuitionistic
logic

Hajime Ishihara

It is well known that classical predicate logic is conservative over intuitionistic
predicate logic with respect to negative formulas; see Troelstra and van Dalen [12,
2.3.6] or van Dalen [3, 5.2.9]. A number of papers in the literature contain exten-
sions of the conservative extension result, such as Mints and Orevkov [6], Orevkov
[9] and Cellucci [2]. Leivant [5] gave another systematization of the conservative
extension results, not only for predicate logic but also for mathematical theories;
see also [12, 2.3.11–26].

In 2000, the author showed the following conservative extension result, based on
the translation A$ ≡ Ag[⊥/$] where Ag is the Gödel-Gentzen negative translation
and $ is a special proposition letter (place holder). We define simultaneously
classes R, J , Q and K of formulas as follows. Let P range over atomic formulas
distinct from ⊥, R and R′ over R, J and J ′ over J , Q and Q over Q, and K and
K ′ over K. Then R, J , Q and K are inductively generated by the clauses

(1) ⊥, R ∧R′, R ∨R′, ∀xR, J → R ∈ R;
(2) ⊥, P, J ∧ J ′, J ∨ J ′, ∃xJ,R→ J ∈ J ;
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(3) ⊥, P,Q ∧Q′, Q ∨Q′, ∀xQ, ∃xQ, J →Q ∈ Q;
(4) J,K ∧K ′, ∀xK,Q→K ∈ K.

A set Γ of formulas is closed under the translation (·)$ if Γ ⊢i A
$[$/C] for each A

in Γ and each formula C which is free for $ in A$. We showed that

if Γ is a set of formulas closed under (·)$ and A ∈ K, then Γ ⊢c A
implies Γ ⊢i A,

where ⊢c and ⊢i denote derivability in classical and intuitionistic logic, respec-
tively; see [4, Theorem 10]. Since formulas in Q were proved to be closed under
(·)$ in [4, Proposition 7], we have, as a corollary,

if Γ ⊆ Q and A ∈ K, then Γ ⊢c A implies Γ ⊢i A.

This result extends the Orevkov σ-classes {→+,¬+, ∀+} and {→−,¬−,∨+, ∃+};
see [9].

An application of the result is the conservative extension result, Barr’s theorem,
for geometric theories, that is, theories axiomatized by (universal closures of)
implications, called geometric implications, between formulas which do not contain
→ nor ∀. Note that (universal closure of) geometric implications belong to Q and
K; see Palmgren [10] and Negri [7] for other syntactic proofs of Barr’s theorem.

Since it is straightforward to show that the axioms and the axiom schema of the
first-order arithmetic are closed under (·)$, we have an application of the theorem:

if A ∈ K, then PA ⊢ A implies HA ⊢ A.

As a corollary, we have the well known result that PA is conservative over HA
with respect to Π0

2 formulas, and, moreover, we are able to know that PA is
conservative over HA with respect to formulas of the form

∀x[∀u1∃v1 . . .∀un∃vn(s(~u,~v, x) = 0)→∃y(t(x, y) = 0)].

See also Berger, Buchholz and Schwichtenberg [1] and Schwichtenberg and Wainer
[11, Chapter 7] for related classes of formulas in extracting computational content
of proofs.

Helmut Schwichtenberg has asked the author about a possibility of introducing
∃ and ∀ in the clauses for the classes R and J , respectively. This talk answers
him with the following result.

We define simultaneously classes R0, J0, Qm and Km (m = 1, 2) of formulas as
follows. Let P range over atomic formulas distinct from ⊥ (and the proposition
letter ∗ which will be introduced later), R and R′ over R0, J and J ′ over J0, Qm

and Q′
m over Qm, and Km and K ′

m over Km (m = 1, 2). Then R0, J0, Qm and
Km (m = 1, 2) are inductively generated by the clauses

(1) ⊥, R ∧R′, R ∨R′, ∀xR, ∃xR, J →R ∈ R0;
(2) ⊥, P, J ∧ J ′, J ∨ J ′, ∀xJ, ∃xJ,R→ J ∈ J0;
(3) P,R,Q1 ∧Q′

1, Q1 ∨Q′
1, ∃xQ1, J →Q1 ∈ Q1;

(4) P,R,Q2 ∧Q′
2, ∀xQ2, ∃xQ2, J →Q2 ∈ Q2;

(5) J,Km ∧K ′
m, ∀xKm, Qm →Km ∈ Km (m = 1, 2).
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We will show that, for each m = 1, 2,

if Γ ⊆ Qm and A ∈ Km, then ⊢c Γ ⇒ A implies ⊢i Γ ⇒ A,

where ⊢c and ⊢i denote derivability of the sequent Γ ⇒ A in the classical and intu-
itionistic sequent calculi G3c and G3i, respectively; see [13] and [8] for G3c and
G3i. This result extends the Orevkov σ-classes {→+,¬+,∨−} and {→+,¬+, ∀−};
see [9].
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Operational closure and stability

Gerhard Jäger

After introducing the basic formalism of operational set theory OST and men-
tioning some basic facts about OST, the notion of an operationally closed set –
Opc[d] – is presented. Then it is show that operationally closed sets resemble many
aspects of stability. Finally, the proof-theoretic strength of the theory

OST+ ∀x∃y(x ∈ y ∧Opc[y])

is characterized in terms of Kripke-Platek set theory with infinity extended by the
schema of Σ1 separation.
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Search for hard tautologies

Jan Kraj́ıček

In this three-part tutorial I first recalled the classical relation between short prov-
ability of tautologies expressing the soundness of a proof system and the exis-
tence of a simulation of the system, although I have modified the whole set-up for
SAT algorithms. I then outlined the framework of proving lengths-of-proofs lower
bounds via constructions of extensions of models of suitable bounded arithmetic
theories. In the last lecture I presented some basic ideas of the theory of proof
complexity generators and constructed a model of the true universal theory in the
language of PV where the range of a Nisan-Wigderson type function based on a
hard NP ∩ coNP -function intersects any given infinite NP set.

Program extraction and Ramsey’s theorem for pairs

Alexander P. Kreuzer

We study with proof-theoretic methods the function(al)s provably recursive rela-
tive to Ramsey’s theorem for pairs and the chain-antichain-principle.

Ramsey’s theorem for pairs (RT2
2) is the statement that every coloring of pairs

of natural numbers with two colors has an infinite homogeneous set. The chain
antichain principle (CAC) states that each partial ordering over N contains an
infinite chain or an infinite antichain. CAC is a consequence of RT2

2.
For RT2

2 we obtain the upper bounded that the type 2 functionals provable
recursive relative to WKL0 + Σ0

2-IA + RT2
2 are in T1. This is the fragment of

Gödel’s system T containing only type 1 recursion — roughly speaking it consists
of functions of Ackermann type. With this we also obtain a uniform method for
the extraction of T1-bounds from proofs that use RT2

2. Moreover, this yields a new
proof of the fact that WKL0 +Σ0

2
-IA+ RT2

2
is Π0

3-conservative over RCA0 +Σ0
2
-IA.

Our main result on CAC is that the type 2 functionals provably recursive from
WKL0 + CAC are primitive recursive. This also provides a uniform method to
extract bounds from proofs that use this principle. As a consequence we could
obtain of proof of the fact that WKL0 + CAC is Π0

2-conservative over PRA. This
refines a result by Chong, Slaman, Yang.

Since CAC implies a weak variant of the Bolzano-Weierstraß principle, this result
can be applied not only to combinatorial but also analytical proofs.
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The results are obtained in two steps: in the first step a term including Skolem
functions for the above principles is extracted from a given proof. This is done
using Gödel’s functional interpretation. After this the term is normalized, such
that only specific instances of the Skolem functions are used. In the second step
this term is interpreted using Π0

1-comprehension. The comprehension is then elim-
inated in favor of induction using Howard’s ordinal analysis of bar recursion (for
RT2

2
) or a refinement of Howard’s ordinal analysis (for CAC).
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Truth over intuitionistic logic

Graham E. Leigh

In this talk I investigated the role classical logic plays in restricting the free use
of principles of truth. I presented two examples of classical theories of truth with
which certain attractive principles of truth are inconsistent, but consistent with
their intuitionistic sub-theories. Moreover, it was shown that these new principles
of truth do not add any new truth-free theorems. We argue that in the analysis of
formal theories of truth, intuitionistic logic can play an intermediary role between
full classical logic in which paradoxes abound and much weaker logics such as
partial or para-consistent logic which are hard to reason in and mathematically
not well understood.

Recent developments in proof mining

Laurentiu Leuştean

(joint work with Ulrich Kohlenbach)

The talk is a report on joint work [2, 3] with Ulrich Kohlenbach and presents new
developments in the proof mining program, which is concerned with the extrac-
tion, using proof-theoretic tools, of hidden finitary and combinatorial content from
mathematical proofs that make use of highly infinitary principles

We present effective uniform rates of metastability (in the sense of Tao [6, 7]) on
two nonlinear generalizations of the classical von Neumann mean ergodic theorem,
due to Saejung [4] and Shioji-Takahashi [5]. These results constitute a significant
extension of the actual context of proof mining, as both Saejung’s and Shioji-
Takahashi’s proofs make use of Banach limits, whose existence requires the use of
the axiom of choice. We develop a method to convert such proofs into elementary
ones which no longer use Banach limits.
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Let X be a CAT(0) space, C ⊆ X a convex subset X and T : C → C be
nonexpansive. The Halpern iteration starting from x ∈ C is defined as follows:

x0 := x, xn+1 := λn+1u⊕ (1 − λn+1)Txn,

where x, u ∈ C and (λn)n≥1 is a sequence in [0, 1]. In a geodesic space (X, d),
given a geodesic segment [x, y] and α ∈ [0, 1], we denote by (1 − α)x ⊕ αy the
unique point z ∈ [x, y] satisfying d(x, z) = αd(x, y) and d(y, z) = (1− α)d(x, y).

One can see easily that if X is a Hilbert space, T is linear and λn := 1
n+1 , then

xn coincides with the Cesàro mean. The most important result on the convergence
of Halpern iterations in Hilbert spaces was obtained by Wittmann [8]. The follow-
ing theorem, proved by Saejung [4] using Banach limits, generalizes Wittmann’s
theorem to CAT(0) spaces.

Theorem 9. Let C be a bounded closed convex subset of a complete CAT(0) space
X and T : C → C a nonexpansive mapping. Assume that (λn) satisfies

lim
n→∞

λn = 0,

∞∑

n=1

λn+1 = ∞ and

∞∑

n=1

|λn+1 − λn| converges.

Then for any u, x ∈ C, (xn) converges to the projection PFix(T )u of u on Fix(T ).

While one cannot expect to get effective rates of convergence for the sequence
(xn) in the above theorem, an effective and highly uniform rate of metastability is
guaranteed to exist, after the elimination of Banach limits from the proof, by [1,
Theorem 3.7.3].

Theorem 10. [2] In the hypotheses of Theorem 9, let α be a rate of convergence of

(λn), β be a Cauchy modulus of sn :=

n∑

i=1

|λi+1 −λi| and θ be a rate of divergence

of

∞∑

n=1

λn+1. Then for all ε ∈ (0, 2) and g : N → N,

∃N ≤ Σ(ε, g,M, θ, α, β) ∀m,n ∈ [N,N + g(N)] (d(xn, xm) ≤ ε),

where M ∈ Z+ is an upper bound on the diameter of C.

The rate of metastability Σ, extracted in [2, Theorem 4.2], depends on the
error ε, the counterfunction g, the diameter of C and on (λn) via θ, α, β, but it is
uniform in the nonexpansive mapping T , the starting point x ∈ C of the iteration
or other data related with C and X . We remark that in practical cases, such as
λn = 1

n+1 , the rates α, β, θ are easy to compute.

In [3] we apply the same method of eliminating Banach limits from the proof of
Shioji-Takahashi’s generalization of Wittmann’s theorem to Banach spaces with a
uniformly Gâteaux differentiable norm. Furthermore, we prove a logical metathe-
orem for a class of Banach spaces, called by us spaces with a uniformly continuous
duality selection map, that guarantee the extractability of a highly uniform rate
of metastability for the Halpern iterations in this setting.
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Issues around proving FLT in PA

Angus John MacIntyre

I present some of the dramatic personae in Wiles’s proof, and give an idea of what
is needed to code them in PA.

Non-Deterministic Epsilon Substitution for ID1: effective proof

Grigori Mints

In another paper [7] we defined a simplified non-deterministic epsilon substitution
method for PA and ID1 and gave a short but non-effective termination proof for it.
Here we present an effective termination proof via cut-elimination using ideas from
[4], [6] and [5]. For historical introduction and motivation (including comparison
with the first effective termination proof for more complicated formulation by T.
Arai in [1]) see [7]. Definitions and proofs in the present paper are independent of
[7].

To simplify technical details we use a formulation with special (but still univer-
sal) form of inductive definition: the system S1 of constructive ordinals [9]. It was
introduced by S. Kleene [3] using slightly different notation. The general scheme of
the termination proof for the ǫ-substitution method and resulting proof-theoretic
analysis is as follows.

(1) The problem of termination is reduced to provability of some existential
statement: existence of solving substitution for a given finite set E of
axioms (critical formulas).
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(2) Simple (but non-effective) recursion-theoretic proof of existence of such
solving substitution is expanded into a proof (called original derivation)
in some infinitary system with a rule similar to Ω-rule introduced by W.
Buchholz [2].

(3) Cut-elimination procedure from [2] with suitable adjustments is applied
to the original derivation.

(4) The result of cut-elimination is a “complete protocol” including all steps
of the epsilon substitution method leading from the empty substitution to
the solution of given system E of critical formulas.
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The axiomatic derivation of absolute lower bounds

Yiannis N. Moschovakis

My lecture was based on [5], whose main aim is to develop, explain and discuss
some applications of the homomorphism method for establishing lower bounds for
problems in arithmetic and algebra. These lower bounds apply to many complexity
measures, and they are provably robust with respect to the choice of computation
model and plausibly absolute, i.e., they restrict all algorithms which compute a
given function from specified primitives. In this abstract I will omit a discussion
of its justification—which is an important foundational aspect of this work—and
I will report on just one, typical application in algebraic complexity.

The idea for this research project came from analysing the derivations of lower
bounds for arithmetic decision problems (e.g., coprimeness) in [3, 4], most of
which are grounded on the fact that the natural complexity measures of recursive
programs are preserved under embeddings. In the process of abstracting a general
theory from those results and then applying it to problems in algebra, it became
clear that one should use homomorphisms rather than embeddings, so that equality
tests (which are important in algebra) can also be counted.
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(Partial) structures and homomorphisms. A (partial) Φ-structure is a tuple

M = (M,ΦM) = (M, {φM : φ ∈ Φ})
where each φM is a partial function or a partial relation of nφ ≥ 0 arguments
on M , as specified by the vocabulary Φ. (We view an n-ary partial relation as a
partial function R : Mn ⇀ {tt,ff}.) The restriction M ↾Φ0 of M to part of its
vocabulary and its expansion (M,ΨM) to a larger set of primitives are defined as
usual.

The (equational) diagram of M is the set of all formal equations satisfied in M
by the primitives,

eqdiag(M) = {(φ, ~x, w) : φ ∈ Φ, ~x ∈ Mn, w ∈ M ∪ {tt,ff} and φM(~x) = w}.
If M is finite, then the cardinal number |eqdiag(M)| is a good measure of its size.

A homomorphism π : U → V of one Φ-structure to another is any function
π : U → V such that

[~x ∈ Unφ & φU(~x) = w] =⇒ φV(π(~x)) = π(w) (φ ∈ Φ),

where (by convention) π(tt) = tt and π(ff) = ff; it is an embedding if it is injective.
A (partial) substructure U ⊆p V is a Φ-structure such that U ⊆ V and the

identity function id : U → V is an embedding.
For example,

R = (R, 0, 1,+,−, ·,÷,=)

is the expansion of the real field by the equality relation. We will be mostly
concerned with R and its substructures, and it is important to keep in mind that
U ⊆p R does not insure that U is a subfield of R; in fact, of most interest to us
will be the finite substructures of R, which are never subfields.

Forcing and certification. Suppose M is a Φ-structure, f : Mn ⇀ W (with
W = M or W = {tt,ff}), U ⊆p M, and f(~x) ↓ . A homomorphism π : U → M
respects f at ~x if

(1) ~x ∈ Un & f(~x) ∈ U ∪ {tt,ff} & π(f(~x)) = f(π(~x)).

Next come forcing and certification, the two basic notions of this work:

U M f(~x) = w ⇐⇒ f(~x) = w

& every homomorphism π : U → M respects f at ~x,

U M

c f(~x) = w ⇐⇒ U is finite, generated by ~x & U M f(~x) = w,

U M

c f(~x)↓ ⇐⇒ (∃w)[U M

c f(~x) = w].

If U M
c f(~x) = w, we call U a certificate for f at ~x in M.1

It can be shown that if f : Mn → W is computed from the primitives of M by
any one of the standard (deterministic or non-deterministic) computation models

1To the best of my knowledge, certificates were first introduced in [7], Pratt’s proof that
primality is NP. The present notion is model theoretic and more abstract than Pratt’s, but the
idea is the same.
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of algorithms from primitives, then f is certified in M at every ~x. More is true: if
C is a computation of f(~x) from ΦM by one of the standard models, then

{(φ, ~u, φM(~u)) : C calls φ at ~u} = eqdiag(U)

for some U ⊆p M such that U M
c (f(~x)) ↓ . This is the robustness of the

homomorphism method mentioned above. On the other hand, it is easy to check
that every f : N

n → N is certified at every ~x ∈ N
n in (N, 0, S): certification

captures some aspects of the uniformity of algorithms from primitives—that they
apply “the same process” on all inputs—but not their effectiveness.

The intrinsic number-of-calls complexity measure. If Φ0 ⊆ Φ is part of the
vocabulary and f is certified at ~x in M, we set

callsΦ0
(M, f, ~x) = min{|eqdiag(U↾Φ0)| : U M

c f(~x)↓}.
By the analysis above, if C is a computation of f(~x) from ΦM by any of the
standard computation models, then

callsΦ0
(M, f, ~x) ≤ the number of calls to ΦM

0 in C.

One can also argue that callsΦ0
(M, f, ~x) is an “absolute” lower bound to the num-

ber of calls to primitives in ΦM
0 , that is it restricts every algorithm that computes

f(~x) from ΦM. This cannot, of course, be proved without a precise definition of
what algorithms are.

Horner’s rule is optimal for nullity. For n ≥ 1 and a0, . . . , an, x ∈ R, let

NR(a0, a1, . . . , an, x) ⇐⇒ a0 + a1x+ · · ·+ anx
n = 0.

This is the nullity relation (0-testing) for real polynomials. The classical Horner’s
rule decides NR using no more than n multiplications, n additions and one equality
test. Its optimality for computing the value a0 + a1x+ · · ·+ anx

n by straight line
programs is proved in [6], in which Pan introduced the substitution method, an
early and basic tool of algebraic complexity theory.

Theorem 11. Let R = (R, 0, 1,+,−, ·,÷,=). If n ≥ 1 and a0, . . . , an, x are
algebraically independent, then:

(1) calls{·,÷}(R, NR,~a, x) = n,
(2) calls{+,−}(R, NR,~a, x) = n− 1,
(3) calls{+,−,=}(R, NR,~a, x) = n+ 1.

For algebraic decision trees, (1) is proved in [2], and a result equivalent to (3)
is proved in [1]. The methods in these papers are quite different from ours. We
follow closely Winograd’s argument in [8, 9] for polynomial evaluation: we show by
induction on n three much stronger (and somewhat different) results which include
(1) – (3) as special cases. For (3) which requires the use of homomorphisms rather
than embeddings, we show the following lemma about an arbitrary substructure
U ⊆p R, where K = the field of real algebraic numbers and for a1, . . . , an > 0,

Roots(~a) = { m
√
ai : m ∈ N, i = 1, . . . , n}.
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An addition u+ v, subtraction u− v or equality test u = v, u 6= v in eqdiag(U)
is trivial if u, v ∈ K(x, z).

Lemma 12. Suppose n ∈ N, g ∈ K, g 6= 0, z, a1, . . . , an, x are positive, alge-
braically independent real numbers, and U is a finite substructure of R generated
by

(U ∩K) ∪ {x, z} ∪ (U ∩ Roots(~a))

which has < (n + 1) non-trivial additions, subtractions and equality tests. Then
there is a field homomorphism π : K(x, z,Roots(~a)) → K(x,Roots(~a)) such that

(a) π(u) = u for every u ∈ K(x),
(b) π is totally defined on U , and

(c) π(z) + g
(

π(a1)x
1 + · · ·+ π(an)x

n
)

= 0.
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The geometry of proof analysis: from rule systems to systems of rules

Sara Negri

The basic goal of proof analysis is a maximal extraction of information from the
analysis of proofs in a formal inference system. This is made possible through the
determination of complete analytic sequent calculi with good structural properties
such as admissibility of cut, weakening, and contraction.

The goal has been achieved fully for classical and intuitionistic logic, but the
extension to mathematical theories and to modal and other non-classical logics
presents well known difficulties. When a purely logical system is extended by
axioms, the generalized Hauptsatz permits only to reduce cuts to cuts on axioms,
so full analyticity is lost.
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In previous work, it has been shown how the conversion of axioms into rules of
inference allows full cut elimination for theories with universal axioms [7], geomet-
ric theories [5], cogeometric theories [8] and for a wide class of non-classical logics,
including provability logic, substructural logics [6], and intermediate logics [1].

The conversion of axioms into rules of inference is obtained by a uniform pro-
cedure that eliminates the logical constants by absorbing them into the geome-
try of the rules of inference. The added rules are are either all left or all right
rules; depending on whether the left or right rule paradigm is chosen, conjunc-
tion/disjunction correspond to commas/branchings, implication to the split of
antecedent/succedent into conclusion/premisses and negative existential/positive
universal quantifiers to variable conditions in left/right rules. The result is a cal-
culus that is complete for the theory or logic under consideration and that has the
same structural properties as the logical calculus one started with.

An application of proof analysis to epistemic logic has lead to the need of an
extension of the conversion of axioms into rules of inference for axioms that have
a more complex structure than that of geometric or cogeometric implications. It
has been shown [4] that the frame condition that corresponds to the knowability
principle, expressed in natural language by “If A is true, then it is possible to
know A” and in the language of bimodal logic by A ⊃ ♦KA, is the condition

∀x∃y(xR♦y& ∀z(yRKz ⊃ x 6 z))

Here 6 , R♦, and RK indicate the intuitionistic, alethic, and epistemic accessibility
relations, respectively. This condition can in turn be converted into two inference
rules

xR♦y,Γ → ∆

Γ → ∆
Ser♦

x 6 z, xR♦y, yRKz,Γ → ∆

xR♦y, yRKz,Γ → ∆
♦K-Tr

The rules come with additional conditions, namely that y is not in the conclusion
of Ser♦, that ♦K-Tr is applied above Ser♦, and that the middle term y of ♦K-Tr
is the eigenvariable of Ser♦.

A set of rules subject to an interdependency expressed by certain conditions on
their order of applicability and by a mutual variable condition is called a system
of rules.

As another example, the conversion of the axiom of least upper bound into a
system of two rules is considered. It is shown that the axiom

∀xy∃z((x 6 z& y 6 z)& ∀w(x 6 w& y 6 w ⊃ z 6 w)) lub-A

is derivable by the system of rules

x 6 z, y 6 z,Γ → ∆

Γ → ∆
lub-E

z 6 w, x 6 w, y 6 w,Γ → ∆

x 6 w, y 6 w,Γ → ∆
lub-U

Here the condition is that in rule lub-E the variable z is not in Γ,∆, that in a
derivation rule lub-U should always be applied above (but not necessarily imme-
diately above) rule lub-E, and that the variable z is the eigenvariable of lub-E.
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Conversely, it is shown that any derivation that uses the two rules in compliance
with the side conditions can be converted into a derivation that uses cuts on the
axiom in place of the extra rules.

The procedure of conversion of axioms into systems of rules is generalized by
defining inductively a class of generalized geometric implications and of generalized
geometric rule schemes. The base case is given by geometric implications, also
called geometric axioms, denoted by GA, and by the geometric rule scheme GRS:

GA0 ≡ GA, GRS0 ≡ GRS

The inductive step is defined as follows:

GAn+1 ≡ ∀x(&Pi ⊃ ∃y1 &GAn ∨ · · · ∨ ∃ym &GAn)

Here &GAi denotes a conjunction of GAi-axioms.
The generalized geometric scheme GRSn+1 is defined inductively with the same

conditions as above, once the schemes GRSn have been defined, as follows:

Γ′
1 → ∆′

1....
D1

n....
Γ′′
1 → ∆′′

1....
D1
....

z1 = z1, P ,Γ → ∆ . . .

Γ′
m → ∆′

m....
Dm

n....
Γ′′
m → ∆′′

m....
Dm
....

zm = zm, P ,Γ → ∆

P,Γ → ∆

Here zi are the eigenvariables of the last inference step, the derivations indicated
with Di

n use rules of the form GRSn(zi) that correspond to the geometric axioms
GAn(zi/xi) in addition to logical rules, and the Di use only logical rules.

It is shown by induction on n that the generalized geometric axioms GAn and
the generalized geometric rule schemes GRSn are equivalent (in the sense of being
interderivable) and that the addition of systems of generalized geometric rules to
a classical or intuitionistic sequent calculus of G3-type, such as G3c and G3im,
maintains the admissibility of all the structural rules.

As an immediate application, a generalized Barr theorem is proved: For all n,
if a geometric implication is derivable in G3c +GRSn, it is derivable in G3im
+GRSn.

Related results on conservative classes are based on permutation and translation
arguments [9, 2, 3]. Further work includes an extension of the method to cover
properties, such as well foundedness, not expressible by first-order sentences, and
the determination of analytic proof systems for a wide class of non-classical logics.
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Understanding the Hardness of Proving Formulas in Propositional
Logic

Jakob Nordström

(joint work with Eli Ben-Sasson)

Proving formulas in propositional logic is a fundamental problem in computer
science and mathematics. On the one hand, this problem is believed to be the-
oretically intractable in general, and deciding whether this is the case is one of
the famous million dollar Millennium Problems. On the other hand, these days
automated theorem provers, or so-called SAT solvers, are routinely used to solve
large-scale real-world applications of this problem with millions of variables. This
is in contrast to that there are also known small example formulas with just hun-
dreds of variables that causes even state-of-the-art SAT-solvers to stumble.

What lies behind the spectacular success of SAT-solvers? And how can one
determine whether a particular formula is hard or tractable? In this talk, we will
discuss what the field of proof complexity has to say about these questions.

In particular, we propose that the space complexity of a formula could be a good
measure of its hardness. We prove that this would have drastic implications for the
impossibility of simultaneously optimizing time and memory consumption, the two
main resources of SAT solvers. Somewhat surprisingly, our results are obtained by
relatively elementary means from combinatorial pebble games on graphs, studied
extensively in the 70s and 80s.

This talk is based on joint work with Eli Ben-Sasson at the Technion in Haifa,
Israel.
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Bar Recursion and the Product of Selection Functions

Paulo Oliva

(joint work with Mart́ın Escardó)

1. Selection Functions

In recent joint work with Mart́ın Escardó [2] we have identified a family of func-
tionals of finite type, so-called selection functions, which play a major role in the
computational interpretation of classical proof in arithmetic and analysis. For-
mally, selection functions are functionals ε of type

ε : (X → R) → X,

where X and R are finite types. Such types are abbreviated as JRX ≡ (X →
R) → X , as they are a strong monad JR, for any fixed R. The terminology
“selection function” derives from the observation that in the particular case when
R is the type of booleans, then ε “picks” an element of X given a predicate over
X , i.e. εp ∈ X for p : X → B. An example of such selection function is the family
of Hilbert’s epsilon terms, which for any primitive recursive predicate py(x), over
variable x and y, was such that

py(t) → py(εypy).

Such “critical axioms” allow one to define the existential quantifier in terms of ε
as

∃x py(x) ≡ py(εypy).

In our terminology we would say that ε is a selection function for the existential
quantifier. Generalising this idea to arbitrary types X and R led to the concept
of an arbitrary quantifier φ : (X → R) → R and the set (possibly empty) of its
corresponding selection functions ε : (X → R) → X satisfying the equation

(1) φp = p(εp).

For instance, the supremum functional sup: ([0, 1] → R) → R is an attainable
quantifier with argsup: ([0, 1] → R) → [0, 1] as its selection function since we have

sup p = p(argsup p).

Moreover, any fixed point operator fix: (X → X) → X can be viewed as both a
selection function and a quantifier, and the fixed point equation

fix p = p(fix p),

says that fix is an attainable quantifier with fix itself as its selection function.
In the same way that quantifiers over types X and Y can be nested to produce

a quantifier over the product space X×Y , so can selection functions. The product
of two selection functions ε : JRX and δ : JRY (cf. [2]) is given by

(2) (ε⊗ δ)(qX×Y →R)
X×Y
= (ε(λx.q(x, b(x)))

︸ ︷︷ ︸

a

, δ(λy.q(a, y)
︸ ︷︷ ︸

b(a)

))
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where b(x) = δ(λy.q(x, y)).

2. Bar Recursion

Moreover, given a family of selection function (εn)n∈N : Πn∈NJRXi we can simply
iterate the binary product above as

(3) IPSn(ε) = εn ⊗ IPSn+1(ε)

to obtain a selection function on the product space IPSn : JRΠi≥nXi. This is called
the implicitly controlled product of selection function and has been first defined in
[2] and shown to be primitive recursively equivalent to modified bar recursion in
[1, 3]. For this product to be well-defined, however, one must require that R be a
discrete type (e.g. N or B) and continuity of q : ΠiXi → R must be assumed.

Alternatively, one can drop the assumption that R is discrete by having a
“measure” function l : R → N so that the product can be iterated as

(4) EPSn(ε) = λq.

{
0 if l(q(0)) < n

(εn ⊗ EPSn+1(ε)) (q) otherwise,

where 0 is the constant zero functional. This, as also shown in [1, 3], is primitive
recursively equivalent to Spector’s bar recursion [6]. We have also recently shown
(together with Thomas Powell) [5] that Gödel’s system T can alternatively be
formulated with the finite product of selection function (where l is a constant
function λr.n), since having such finite product allows one to define the primitive
recursive recursors for all finite types.

3. Sequential Games

Finally, the most novel aspect of selection functions and their corresponding prod-
ucts, is in the connection with sequential games and the computation of optimal
strategies and plays. As explained in [2, 4], we can think of the types Xi as the set
of possible moves at round i, and R as the set of possible outcomes of the game.
They q : ΠiXi → R is the usual utility function (also called payoff function), which
for any play α : ΠiXi calculates the outcome qα : R. Moreover, the selection func-
tions εi : JRXi specify the goal of the player at round i, as it calculates a move
εp : Xi given any mapping p : Xi → R which can be thought of as a mapping from
possible moves to their respective outcome. What we have shown is that, looking
at these types as such, the product of selection functions computes an optimal
play

α = IPS0(ε)(q)

in the corresponding sequential game. The play is optimal in the sense that for
some family pi : Xi → R we have that α(i) = εipi (so each move was chosen
according to the given selection function) and that pi(α(i)) = q(α) (so that from
the point of view of player i the function pi indeed maps the chosen move to the
corresponding outcome.

We found surprising that such construction not only appears in Game Theory
( backward induction) but is also the same construction behind Bekic’s lemma,
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viewing fixed point operators as selection functions, when R = X (see [4] for
details).
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A quantitative nonlinear strong ergodic theorem for Hilbert spaces

Pavol Safarik

In [5], R. Wittmann presented the following strong nonlinear ergodic theorem for
(a class of possibly even discontinuous) selfmappings of an arbitrary subset of a
Hilbert space:

Theorem 13 (Wittmann). Let S be a subset of a Hilbert space and T : S → S be
a mapping satisfying

(W) ∀u, v ∈ S (‖Tu+ Tv‖ ≤ ‖u+ v‖).
Then for any starting point x ∈ S the sequence of the Cesàro means

Anx :=
1

n+ 1

n∑

i=0

T ix

is norm convergent.

In my talk, we investigate the computational content of this theorem. Although
in general the sequence of the ergodic averages does not have a computable rate
of convergence (even for the von Neumann’s mean ergodic theorem for a separable
space and computable x and T ), as was shown by Avigad, Gerhardy and Towsner
in [1], the so called metastable (or quantitative) version nevertheless has a prim-
itive recursive bound. In our case this means that given the assumptions from
Wittmann’s theorem, the following holds

∀b, l ∈ N, g : N → N, x ∈ S∃m ≤ M(l, g, b)
(
‖x‖ ≤ b → ‖Amx−Am+g(m)x‖ ≤ 2−l

)
,



Mathematical Logic: Proof Theory, Constructive Mathematics 2995

for a primitive recursive M . Such a bound M can be defined as follows:

M(l, g, b) := (N(2l + 7, gM) + P (2l+ 7, gM , b))b22l+8 + 1,

P (l, g, b) := P0(l, F (l, g,N(l, g), b), b),

F (l, g, n, b)(p) := p+ n+ g̃((n+ p)b2l+1),

N(l, g, b) :=
(
H(l, g, b)

)b22l+2

(0),

H(l, g, b)(n) := n+ P0(l, F (l, g, n, b)) + g̃((n+ P0(l, F (l, g, n, b)))b2l+1),

where

P0(l, f, b) := f̃ b22l(0), g̃(n) := n+ g(n), gM (n) := max
i≤n+1

g(i).

Note that apart from the counterfunction g and the precision l, this bound de-
pends only on b (a bound for the norm of x) and not on S, T , or x itself.
It is one of the goals of this talk to demonstrate that there are proof-theoretic
means to systematically obtain such uniform bounds. In fact, for many theorems
the existence of a uniform bound is guaranteed by Kohlenbach’s metatheorems
introduced in [3] and refined in [2]. Additionally, proof theoretic methods such as
Kohlenbach’s monotone functional interpretation (see [4]) can be used to system-
atically obtain these effective bounds.
On the other hand, we have here a rare example of an application of these tech-
niques to not necessarily continuous operators. In logical terms this amounts to
the subtlety that only a weak version of extensionality is available. Also, for the
first time, we obtain a bound which in fact makes use of nested iteration. One
can see this quickly on the term M above. While F as a function is defined via
iteration of the counterfunction g, it itself is being iterated by P . This is a direct
consequence of the logical form of Wittmann’s original proof.
It is a surprising observation that so far for all metastable versions of strong ergodic
theorems primitive recursive bounds could be obtained.

References

[1] J. Avigad, P. Gerhardy, and H. Towsner. Local Stability of Ergodic Averages. Trans. Amer.
Math. Soc., 362:261–288, 2010.

[2] P. Gerhardy and U. Kohlenbach. General logical metatheorems for functional analysis.
Trans. Amer. Math. Soc., 360:2615–2660, 2008.

[3] U. Kohlenbach. Some logical metatheorems with application in functional. Trans. Am. Math.
Soc., 357:89–128, 2005.

[4] U. Kohlenbach. Analyzing proofs in analysis. In W. Hodges, M. Hyland, C. Steinhorn, J.
Truss, Editors, Logic: from Foundations to Applications at European Logic Colloquium
(Keele, 1993), pages 225–260. Oxford University Press, 1996.

[5] R. Wittmann. Mean Ergodic Theorems for nonlinear operators. Proceedings of the AMS,
108(3):781–788, 1990.



2996 Oberwolfach Report 52/2011

Induction in Algebra: a Toy Example

Peter Schuster

As is well known, the statement ”every nonconstant coefficient of an invertible
polynomial is nilpotent” can be reduced to the case, which in turn is readily
settled, of polynomials over an integral domain. The reduction is usually done by
an instance of Krull’s Lemma in combination with a proof by contradiction. From
this however one can extract a direct proof without prime ideals that is based on
induction over a finite poset.

Simultaneous inductive/coinductive definition of continuous functions

Helmut Schwichtenberg

When extracting computational content from proofs in constructive analysis it
can be helpful to use simultaneous inductive/coinductive definitions of (uniformly)
continuous real functions. The talk reports on an attempt to design the underlying
theory, based on recent work of Ulrich Berger.
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Ideal and Concrete Objects in Type Theory

Anton Setzer

(joint work with Chi Ming Chuang)

Usually in type theory we work only with computationally meaningful objects, i.e.
concrete objects. In this talk we explore the use of ideal objects in type theory,
which will be represented as postulated axioms.

In the presence of postulated axioms, we loose in general the property that
every element of an algebraic data type starts with a constructor. The reason is
that there is no reduction, if we introduce an element by a postulated axiom and
then eliminate it using an elimination rule.
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However, if we add the restriction that all postulated axioms have as result
type only postulated types, this problems doesn’t occur any more. We prove this
property assuming that the type theory is normalising.

We will apply this to exact real number computations. Natural numbers, in-
tegers and rationals are introduced as concrete data types. The real numbers
are axiomatized as postulated types. Since we can embed the concrete numbers
into the postulated real numbers we get a link between the ideal and concrete
world. Then we can define the concrete real numbers as the ideal reals which are
Cauchy reals or have a signed digit representation. This approach has been used
for efficient exact real number computations for signed digit representable reals.

Finally we explore that in the ideal world we can add classical logic using
postulated connectives. Negated axioms (using the concrete falsity) can be allowed
provided the type theory is consistent. Here we obtain an instance of Hilbert’s
statement: consistency implies existence.

Weak theories of operations, truth and types

Thomas Strahm

(joint work with Sebastian Eberhard)

In this talk we survey recent developments in the study of proof-theoretically
weak systems of Feferman’s explicit mathematics and theories of truth. We start
off from pure first-order applicative theories based on a version of untyped com-
binatory logic and augment them by the typing and naming discipline of explicit
mathematics or, alternatively, by a truth predicate in the sense of Frege struc-
tures. We discuss the proof-theoretic strength of the so-obtained formalisms and
the general relationship between weak truth theories and explicit mathematics.
In particular, we consider two truth theories TPR and TPT of primitive recursive
and feasible strength. The latter theory is a novel abstract truth-theoretic setting
which is able to interpret expressive feasible subsystems of explicit mathematics
and arithmetic.
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M. Baaz, S. Friedman, and J. Kraj́ıček, Eds., vol. 20 of Lecture Notes in Logic. Association
for Symbolic Logic, 2005, pp. 108–138.

[3] Eberhard, S. A truth theory over an applicative framework of strength PT. Preliminary
draft, February 2011.

[4] Eberhard, S., and Strahm, T. Weak theories of truth and explicit mathematics. Submitted
for publication.

[5] Probst, D. The provably terminating operations of the subsystem PETJ of explicit math-
ematics. Annals of Pure and Applied Logic 162, 11 (2011), 934–947.

[6] Spescha, D., and Strahm, T. Elementary explicit types and polynomial time operations.
Mathematical Logic Quarterly 55, 3 (2009), 245–258.



2998 Oberwolfach Report 52/2011

[7] Spescha, D., and Strahm, T. Realizability in weak systems of explicit mathematics. Math-
ematical Logic Quarterly 57, 6 (2011), 551–565.

[8] Strahm, T. Theories with self-application and computational complexity. Information and
Computation 185 (2003), 263–297.

The Provability Logic of All Arithmetics of a Theory

Albert Visser

In this talk, we first explain the notion of the provability logic of an (interpretation
of) arithmetic in a theory.

We give an exposition of the state of the art concerning the scope of Solovay’s
theorem about the arithmetical completeness of Löb’s Logic. There is a gap be-
tween the theories for which the soundness of Löb’s Logic can be proved sine ira
et studio and the theories for which we can prove Solovay’s theorem. However, if
we consider the simultaneous provability logic of all arithmetics of a given theory,
we can give a definitive result in full generality.

We present an example to show that there is a sequential theory such that the
provability logic of all arithmetics in that theory is not assumed as the provability
logic of any arithmetic in that theory. The verification of the example employs
a generalization of results by Jan Kraj́ıček and, independently, Harvey Friedman.
We have a brief look at the generalization.

On Elementary Patterns of Resemblance

Gunnar Wilken

We give a heuristically detailed illustration on elementary patterns of resemblance,
an approach to ordinal notations discovered by Timothy J. Carlson, with a focus
on the arithmetical analysis of patterns of orders 1 and 2. For further details see
my Habilitationsschrift (Arithmetic Analysis of Elementary Patterns of Order 1
and 2., WWU Muenster 2011), which is available at the library.

Reporter: Pavol Safarik
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