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Abstract. Combinatorial Optimization is a very active field that benefits
from bringing together ideas from different areas, e.g., graph theory and com-
binatorics, matroids and submodularity, connectivity and network flows, ap-
proximation algorithms and mathematical programming, discrete and com-
putational geometry, discrete and continuous problems, algebraic and geo-
metric methods, and applications. We continued the long tradition of trian-
nual Oberwolfach workshops, bringing together the best researchers from the
above areas, discovering new connections, and establishing new and deepen-
ing existing international collaborations.
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Introduction by the Organisers

The triannual Oberwolfach workshops on Combinatorial Optimization play a key
role for our field. No other workshop manages to bring together the best re-
searchers from all over the world. This success is due to the outstanding research
conditions at Oberwolfach, to the unique format of Oberwolfach workshops, and
above all to their reputation of excellence.

Continuing the tradition, the program consisted of pre-arranged one-hour focus
lectures - one each morning - followed by 24 thirty-minute presentations that were
scheduled during the week. As a new feature for the combinatorial optimization
workshops, all participants were asked to give a short presentation (four minutes
plus one minute discussion) on their recent or current work at the beginning of
the workshop. There were more than 50 of these short presentations on Monday
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and Tuesday; a list of titles appear in this report. The goal was to foster deeper
discussions and more collaborations between the participants, and indeed this is
what we observed during the week. The feedback was extremely positive. More-
over, the traditional open problem session on Wednesday evening was again very
active. In this session, ten interesting problems were presented and discussed, and
more had been presented already in some of the 4-minute presentations.

The focus lectures featured new approaches and the state-of-the-art in several
fundamental areas of combinatorial optimization:

• Bruce Shepherd (McGill, Montréal) — Minimum congestion versus maxi-
mum throughput: connections and distinctions.

• Bertrand Guenin (Waterloo) — Flows in matroids and related results.
• Frank Vallentin (Delft) — Applications of semidefinite programming and
harmonic analysis

• Gérard Cornuéjols (CMU, Pittsburgh) — Multi-row cuts and integer lift-
ing.

• Pablo Parrilo (MIT, Cambridge) — From stable sets to sums of squares.

During the workshop we were excited to see great advances in classical topics
such as multi-commodity flows, the traveling salesman problem, cutting plane clo-
sures, extended linear formulations of polytopes, or matroid matching. Very recent
solutions of important open problems, partly proving long-standing conjectures,
have been presented. At the same time, a large part of the workshop was de-
voted to new directions, such as geometric and algebraic techniques, semidefinite
relaxations, symmetry reduction, and harmonic analysis for geometric packing and
coloring in the continuous setting. The combination of classical hard problems and
a variety of new techniques makes our growing field more interesting than ever.

We feel that this workshop was very successful in bringing together the best
researchers from our field and in stimulating new cooperations. In many cases, two
or three participants who hardly knew each other before began to work together.
In one case, two participants discovered that they had just solved the same long-
standing open problem, but with completely different techniques. We concluded
the workshop with their lectures on Friday afternoon.

We would like to thank all participants for their carefully prepared contributions
and the many exciting discussions. Last but not least, we thank the Oberwolfach
research institute for providing outstanding meeting and working conditions and
the unique inspiring Oberwolfach atmosphere.

Short presentations

(1) Aardal, Karen: Norms and integer programming
(2) Bansal, Nikhil: On a signed sum of real numbers
(3) Conforti, Michele: Mixed-integer representability of sets
(4) Cook, William: Riven’s system for the subtour polytope
(5) Cunningham, William: Augmenting path algorithms for matroid problems
(6) de Oliveira, Fernando: Grothendieck inequalities with rank constraints
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(7) Dunkel, Juliane: The Gomory-Chvátal closure of a non-rational polytope
is a polytope

(8) Eisenbrand, Friedrich: Closest vector
(9) Fiorini, Samuel: The minimum generating set problem
(10) Fujishige, Satoru: Dual consistency of systems of linear inequalities
(11) Gijswijt, Dion: SDP with symmetries
(12) Goemans, Michel: Integrality gap for hypergraphic Steiner tree relaxations
(13) Guenin, Bertrand: Two questions on the set covering polyhedron
(14) Heismann, Olga: A special hypergraph minimum cut problem
(15) Held, Stephan: Maximum weight stable sets and graph coloring
(16) Hirai, Hiroshi: Tractability of µ-weighted maximum integer multiflow
(17) Hougardy, Stefan: Linear time strip packing algorithms
(18) Iwata, Satoru: Approximating max-min weighted T-join
(19) Jordán, Tibor: Globally or universally rigid frameworks and graphs
(20) Jünger, Michael: Separation of Kuratowski constraints
(21) Kaibel, Volker: Extended formulations for alternahedra
(22) Király, Tamás: The nine dragon tree conjecture
(23) Kobayashi, Yusuke: Restricted t-matchings
(24) Korte, Bernhard: Combinatorial optimization and chip design
(25) Laurent, Monique: Gram dimension of graphs
(26) Liebling, Thomas: Dependence on edge sharpness of spherotetrahedra pack-

ings
(27) Martin, Alexander: Towards globally optimal solutions for MinLPs by dis-

cretization techniques
(28) Möhring, Rolf: Optimizing ship traffic on the Kiel canal
(29) Murota, Kazuo: Discrete convex duality in matrix pencils
(30) Olver, Neil: Approximation algorithms for scheduling from games
(31) Onn, Shmuel: N-fold integer programming in cubic time
(32) Pap, Gyula: Kamiyama’s problem on robustness of min cost arborescences
(33) Parrilo, Pablo: Lifts of convex sets and cone factorizations
(34) Rendl, Franz: SDP and eigenvalue bounds for vertex separators
(35) Rinaldi, Giovanni: Computing the SDP bound for maxcut in large graphs
(36) Rothvoß, Thomas: Some 0/1 polytopes need exponential size extended for-

mulations
(37) Schrijver, Lex: Minimum-length disjoint flow
(38) Sebő, András: Integrality gap for anitblocking and blocking?
(39) Shmoys, David: Primal-dual approximations for 1-machine scheduling
(40) Singh, Mohit: Randomized rounding approach to TSP
(41) Skutella, Martin: Robust minimum spanning tree
(42) Steurer, David: Semidefinite programming hierarchies and the unique games

conjecture
(43) Szigeti, Zoltán: Packing of 2-connected and connected spanning subgraphs
(44) Thomassé, Stéphan: Closing gaps with VC-dimension
(45) Vallentin, Frank: Grothendieck inequalities
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(46) van Zuylen, Anke: The integrality gap of the subtour LP for the TSP
(47) Végh, László: Concave generalized flows
(48) Vygen, Jens: d-dimensional arrangement revisited
(49) Weismantel, Robert: Integer convex minimization
(50) Woeginger, Gerhard: Large gaps in subset sums
(51) Wolsey, Laurence: Two level lot-sizing
(52) Zimmermann, Uwe: Split-minimizing rail freight scheduling
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Abstracts

Min-Max Graph Partitioning

Nikhil Bansal

(joint work with Uriel Feige, Robert Krauthgamer, Konstantin Makarychev,
Viswanath Nagarajan, Joseph Naor, Roy Schwartz)

We study graph partitioning problems from a min-max perspective, in which an
input graph on n vertices should be partitioned into k parts, and the objective is
to minimize the maximum number of edges leaving a single part. The two main
versions we consider are where the k parts need to be of equal-size, and where they
must separate a set of k given terminals. We consider a common generalization of
these two problems, and design for it an O(

√
logn log k)-approximation algorithm.

This improves over an O(log2 n) approximation for the second version due to
Svitkina and Tardos [ST04], and roughly O(k logn) approximation for the first
version that follows from other previous work. We also give an improved O(1)-
approximation algorithm for graphs that exclude any fixed minor.

The main tool we use is a new approximation algorithm for ρ-Unbalanced Cut,
the problem o finding in an input graph G = (V ;E) a set S ⊂ V of size |S| = ρn
that minimizes the number of edges leaving S. We provide a bicriteria approx-
imation of O(

√
logn log(1/ρ)); when the input graph excludes a fixed-minor we

improve this guarantee to O(1). Note that the special case ρ = 1/2 is just the
Minimum Bisection problem, and indeed our bound generalizes that of Arora, Rao
and Vazirani [ARV08]. Our algorithms also work for the closely related Small Set
Expansion problem, which asks for a set S ⊂ V of size |S| ≤ ρn with minimum
conductance (edge-expansion), and was suggested recently by Raghavendra and
Steurer [RS10]. In fact, our algorithm handles more general, weighted, versions of
both problems. Previously, an O(log n) true approximation for both ρ-Unbalanced
Cut and Small Set Expansion follows from Räcke [Rac08].

At a high level, our algorithm for min-max partitioning works by writing a
configuration LP for which the dual separation problem is ρ-Unbalanced Cut. This
LP produces a fractional covering of the graph using about ρ size sets with small
cut sizes. To convert this into a partition, we introduce a certain randomized
uncrossing procedure which be feel could also be useful in other contexts. A
conference version of this work appears in [BFK], and the journal version can be
found here [BFK+].
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Split, Mixed Interger Rounding and Gomory inequalities

Michele Conforti

(joint work with Giacomo Zambelli)

1. Split inequalities

Let P := {(x, y) ∈ R
n×R

p : Ax+Gy ≤ b} and let S := P ∩ (Zn ×R
p). A split

is a disjunction (πx ≤ π0)∨ (πx ≥ π0 +1) where π ∈ Z
n and π0 ∈ Z. We will also

say that (π, π0) defines a split.
An inequality is a split inequality if, for some (π, π0) ∈ Z

n × Z, it is valid for
both sets

Π1 := P ∩ {(x, y) : πx ≤ π0} Π2 := P ∩ {(x, y) : πx ≥ π0 + 1}.
Split inequalities were introduced by Cook, Kannan and Schrijver [3]. Clearly

an inequality is a split inequality if and only if it is valid for the polyhedron
P (π,π0) := conv(Π1 ∪ Π2) for some (π, π0) ∈ Z

n × Z. Since S ⊆ P (π,π0) ⊆ P ,
P (π,π0) in general provides a formulation for S that is better than P and a split
inequality is valid for S. The split closure of P is the set defined by

P split :=
⋂

(π,π0)∈Zn×Z

P (π,π0)

2. Mixed Integer Rounding inequalities

It is easy to show that the convex hull of the 2-dimensional mixed-integer set
{(ξ, υ) ∈ Z×R+ : ξ−υ ≤ β} is defined by the original inequalities υ ≥ 0, ξ−υ ≤ β
and the simple rounding inequality

ξ − 1

1− f0
υ ≤ ⌊β⌋,

where f0 = β − ⌊β⌋. The simple rounding inequality is a split inequality, relative
to the split (ξ ≤ ⌊β⌋) ∨ (ξ ≥ ⌈β⌉).

The Mixed-Integer Rounding (MIR) inequalities were introduced by Nemhauser
and Wolsey [5], [6]. Later Wolsey [7] and Marchand and Wolsey [4]) revisited MIR
inequalities. MIR inequalities are derived from the simple rounding inequality
using variable aggregation.

Let Ax + Gy ≤ b be a system of m linear constraints that defines P . Given
u ∈ R

m such that uA ∈ Z
n and uG = 0, consider inequality u+Ax+u+Gy ≤ u+b,
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which is valid for P . (We define u+ to be the vector whose components are
max{0, uj} and u− := −(u)+, so u = u+ − u−.)

Such inequality can be re-written in the form

uAx− u−(b−Ax −Gy) ≤ ub.

Since uA is an integral vector and u−(b − Ax − Gy) ≥ 0 is a valid inequality for
P , by substituting ξ = uAx, υ = u−(b−Ax−Gy) and β = ub, we derive from the
simple rounding

(1) uAx− u−

1− f0
(b −Ax−Gy) ≤ ⌊ub⌋

where f0 = ub − ⌊ub⌋ his is the Mixed Integer Rounding (MIR) inequality. This
definition is more restrictive than the original one given by Nemhauser and Wolsey
[5].

Note that, if u ≥ 0, then the above is just the Chvàtal inequality uAx ≤ ⌊ub⌋
derived from the valid inequality uAx ≤ ub.

The MIR closure of P is the set PMIR defined as the intersection of P with
all the MIR inequalities. Since MIR are split inequalities, it follows that P split ⊆
PMIR. The next theorem implies that the reverse containment holds as well.

3. The main result

Theorem 1. Let P = {(x, y) ∈ R
n × R

p : Ax+Gy ≤ b} be a polyhedron and let
S := P ∩ (Zn × R

p). Given (π, π0) ∈ Z
n × Z, let Bπ be the set of basic solutions

to the linear system uA = π, uG = 0. Then

(2) P (π,π0) = P ∩
⋂

u∈Bπ:
π0<ub<π0+1

{
(x, y) : πx− u−(b−Ax−Gy)

1− (ub− π0)
≤ π0

}
.

Corollary 1 (Nemhauser and Wolsey [5]). Let P ⊆ R
n ×R

p be a polyhedron and
let S := P ∩ (Zn × R

p). Then

P split = PMIR = {(x, y) ∈ P : (x, y) satisfies (1) ∀u s.t. uA ∈ Z
n, uG = 0}.

Corollary 2 (Andersen, Cornuéjols, and Li [1]). Let P = {(x, y) ∈ R
n+p : Ax+

Gy ≤ b} be a polyhedron and let S := P ∩ (Zn × R
p). Let k = rank(A,G), and

let B be the family of subsets B of {1, . . . ,m} such that |B| = k and the vectors
(ai, gi), i ∈ B, are linearly independent. For every B ∈ B, let PB := {(x, y) :
aix+ giy ≤ bi, i ∈ B}. Then

P split =
⋂

B∈B
P split
B .

We prove that when the polyhedron P is defined by a system of inequalities
in nonnegative variables, the strengthening procedure of Balas and Jeroslow [2]
applied to the MIR inequalities produces the Gomory inequalities. We then discuss
the separation problem and indicate how a most violated MIR inequality can found
by solving an LP in the original space.
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Using our framework, we give a short proof of the following theorem.

Theorem 2 (Cook, Kannan and Schrijver [3]). Let P ⊆ R
n × R

p be a rational
polyhedron and let S := P ∩ (Zn × R

p). Then P split is a rational polyhedron.
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Multi-row cuts and integer lifting

Gérard Cornuéjols

Let S be the set of integral points in some rational polyhedron in R
n such that

dim(S) = n. We consider the following infinite relaxation to a general Mixed
Integer Linear Program

x = f +
∑

r∈Rn

rsr +
∑

r∈Rn

ryr

x ∈ S

sr ≥ 0, r ∈ R
n(1)

yr ≥ 0, yr ∈ Z, r ∈ R
n

s, y have finite support.

Given two functions ψ and π from R
n to R, the inequality

(2)
∑

r∈Rn

ψ(r)sr +
∑

r∈Rn

π(r)yr ≥ 1

is valid for (1) if it holds for every (x, s, y) satisfying (1). If (2) is valid, we say that
the function (ψ, π) is valid for (1). A valid function (ψ, π) is minimal if there is
no valid function (ψ′, π′) distinct from (ψ, π) such that ψ′(r) ≤ ψ(r), π′(r) ≤ π(r)
for all r ∈ R

n.
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The following simpler model has been studied recently [7]

x = f +
∑

r∈Rn

rsr

x ∈ S

sr ≥ 0, r ∈ R
n(3)

s has finite support.

We refer to this model as the continuous infinite relaxation relative to f . Given
a valid function ψ for (3), the function π is a lifting of ψ if (ψ, π) is valid for (1).

Minimal valid inequalities for (3) are well understood in terms of maximal S-
free convex sets [4, 8, 2]. We are interested in characterizing liftings of minimal
valid inequalities for (3).

If ψ is a minimal valid function for (3) and π is a lifting of ψ such that (ψ, π)
is minimal, we say that π is a minimal lifting of ψ.

We remark that, given any valid function ψ for (3) and a lifting π of ψ, the
function π′ defined by π′(r) = min{ψ(r), π(r)} is also a lifting for ψ. In particular,
if ψ is a minimal valid function for (3) and π is a minimal lifting of ψ, then π ≤ ψ.
Furthermore, there is always a ball centered at the origin where π = ψ.

We first concentrate on deriving the best possible lifting coefficient of one single
integer variable. Namely, given d ∈ R

n, we consider the model

x = f +
∑

r∈Rn

rsr + dz

x ∈ S

sr ≥ 0, r ∈ R
n(4)

z ≥ 0, z ∈ Z,

s has finite support.

Given a minimal valid function ψ for (3), we want to determine the minimum
scalar λ such that the inequality

∑

r∈Rn

ψ(r)sr + λz ≥ 1

is valid for (4). Given d ∈ R
n, let πℓ(d) be such minimum λ. By definition,

πℓ ≤ π for every lifting π of ψ. In general, the function (ψ, πℓ) is not valid for (1).
However, when (ψ, πℓ) is valid, πℓ is the unique minimal lifting for ψ.

In this talk we give a geometric characterization of the function πℓ, and use this
characterization to analyze specific functions ψ in which πℓ is the unique minimal
lifting [1, 3, 5]. The motivation for this work was provided by the results of Dey
and Wolsey [6] on lifting 2-row cuts.
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[5] M. Conforti, G. Cornuéjols, G. Zambelli, A Geometric Perspective on Lifting, Operations

Research 59 (2011) 569–577.
[6] S.S. Dey, L.A. Wolsey, Lifting Integer Variables in Minimal Inequalities Corresponding to

Lattice-Free Triangles, IPCO 2008, Bertinoro, Italy, LNCS 5035 (2008) 463–475.
[7] S.S. Dey, L.A. Wolsey, Constrained Infinite Group Relaxations of MIPs, SIAM Journal on

Optimization 20 (2010) 2890–2912.
[8] L. Lovász, Geometry of Numbers and Integer Programming, Mathematical Programming:

Recent Developements and Applications, M. Iri and K. Tanabe eds., Kluwer (1989) 177–210.

The Gomory-Chvátal Closure of a Non-Rational Polytope is a
Rational Polytope

Juliane Dunkel

(joint work with Andreas S. Schulz)

The question as to whether the Gomory-Chvátal closure of a non-rational poly-
tope is a polytope has been a longstanding open problem in integer programming.
In this paper, we answer this question in the affirmative, by combining ideas from
polyhedral theory and the geometry of numbers. This result is part of the disser-
tation “The Gomory-Chvátal closure: Polyhedrality, Complexity, and Extension”,
which revolves around theoretical aspects of Gomory-Chvátal cutting planes.

Cutting-plane methods, when combined with branch and bound, are among the
most successful techniques for solving integer programming problems in practice;
numerous types of cutting planes have been studied in the literature and several
of them are used in commercial solvers (see, e.g., [2] and the references therein).
Cutting planes also give rise to a rich theory (see again [2]). In general, a cutting
plane for a polyhedron P is an inequality that is satisfied by all integer points in P ,
and, when added to the polyhedron P , it typically yields a stronger relaxation of
its integer hull. A Gomory-Chvátal cutting plane [8, 1] is an inequality of the
form cx ≤ ⌊δ⌋, where c is an integral vector and cx ≤ δ is valid for P . The
Gomory-Chvátal closure of P is the intersection of all half-spaces defined by such
inequalities; it is usually denoted by P ′. Even though the Gomory-Chvátal closure
is defined as the intersection of an infinite number of half-spaces, the Gomory-
Chvátal closure of a rational polyhedron is again a rational polyhedron. Namely,
Schrijver [10] showed that, for a rational polyhedron P , the Gomory-Chvátal cuts
corresponding to a totally dual integral system of linear inequalities describing P
specify its closure P ′ fully. For polyhedra that cannot be described by rational data
the situation is different. It is well-known that the integer hull PI of an unbounded
non-rational polyhedron P may not be a polyhedron (see, e.g., [9]). In fact, the
integer hull may not be a closed set, and the Gomory-Chvátal closure may not be
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rational polyhedron. On the other hand, in the case of a non-rational polytope, PI

is the convex hull of a finite set of integer points and, therefore, a rational polytope.
Yet, there is no notion of total dual integrality for non-rational systems of linear
inequalities. In fact, it was unknown whether the Gomory-Chvátal closure of an
arbitrary polytope is a rational polytope. We show that this is indeed the case:
also the Gomory-Chvátal closure of a non-rational polytope is again a rational
polytope, that is, it can be described by a finite set of rational inequalities.

Even though Gomory-Chvátal cuts were originally introduced for polyhedra,
they have lately been applied to other convex sets as well. Of particular relevance
is the work by Dey and Vielma [5] who showed that the Gomory-Chvátal closure
of a full-dimensional ellipsoid described by rational data is a polytope. Dadush,
Dey, and Vielma [3] recently extended this result to strictly convex bodies and
to the intersection of strictly convex bodies with rational polyhedra. Since the
original proof of Schrijver for rational polyhedra relies strongly on polyhedral
properties, Dadush et al. had to develop a new proof technique, which can roughly
be described as follows: One first shows that there exists a finite set of Gomory-
Chvátal cuts that separate every non-integral point on the boundary of the strictly
convex body. In a second step, one proves that if the intersection of the boundary
of a convex body with a finite set of Gomory-Chvátal cuts is contained in the
Gomory-Chvátal closure, only a finite set of additional inequalities is needed to
fully describe the Gomory-Chvátal closure of the body. Our general proof strategy
for showing the polyhedrality of the Gomory-Chvátal closure of a non-rational
polytope is inspired by [3]. Yet, the key argument is very different and new,
since the proof in [3] relies on properties of strictly convex bodies that do not
extend to polytopes. More precisely, strictly convex bodies do not have any higher-
dimensional “flat faces”, and therein lies the main difficulty in establishing the
polyhedrality of the elementary closure for non-rational polytopes. Our proof is
geometrically motivated and uses ideas from convex analysis, polyhedral theory,
and the geometry of numbers. In particular, the underlying geometric idea relies
on properties of integer lattices and reduced lattice bases. For the complete proof,
we refer the reader to [7] and [6]. Simultaneously and independently from this
work, Dadush, Dey, and Vielma [4] proved that the Gomory-Chvátal closure of
any compact convex set is a rational polytope.

Basics and Notations. For any vector a ∈ R
n, we define aP := max{ax|x ∈ P}.

We denote the hyperplane {x ∈ R
n|ax = a0} by (ax = a0) and, similarly, (ax ≤ a0)

denotes the half-space of all points satisfying the inequality ax ≤ a0. For any
set S ⊆ Z

n, CS(P ) :=
⋂

a∈S

(
ax ≤ ⌊aP ⌋

)
denotes the intersection of all half-spaces

corresponding to Gomory-Chvátal cuts for P with normal vector in S.

General Proof Idea. Our general strategy for proving that for any polytope
a finite number of Gomory-Chvátal cuts is sufficient to describe the polytope’s
closure is a modification of the two-step technique in [3] for a strictly convex
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body: We first show that one can find a finite set S of integral vectors such that

CS(P ) ⊆ P ,(P1)

CS(P ) ∩ rbd(P ) ⊆ P ′ .(P2)

(Here, rbd(P ) denotes the relative boundary of P .) We then argue that, given
the polytope CS(P ), no more than a finite number of additional Gomory-Chvátal
cuts are necessary to describe the closure P ′. The main challenge of this proof
strategy lies in showing the existence of a set S satisfying property (P1). This
is due to the presence of higher-dimensional faces with non-rational affine hulls.
The other steps of the proof require modification compared to the strictly convex
body case. However, these adjustments come along quite naturally. Therefore, in
this abstract we will only provide some intuition of how we can construct a subset
of P from a finite number of Gomory-Chvátal cuts.

Suppose that we can find a set S ⊆ Z
n with CS(P ) ⊆ P for some poly-

tope P ⊆ R
n for which a non-rational inequality ax ≤ aP is facet-defining. As this

inequality cannot be facet-defining for the rational polytope CS(P ), there must
exist a finite set of Gomory-Chvátal cuts that dominate ax ≤ aP . More formally,
there must exist a subset Sa ⊆ S such that CSa(P ) ⊆ (ax ≤ aP ). If VR denotes
the maximal rational affine subspace of (ax = aP ), that is, the affine hull of all
rational points in (ax = aP ), then the Gomory-Chvátal cuts associated with the
vectors in Sa have to separate every point in (ax = aP ) \ VR. Indeed, our strategy
for the first step of the proof is to show that for each non-rational facet-defining
inequality ax ≤ aP for P there exists a finite set of integral vectors Sa that satis-
fies CSa(P ) ⊆ (ax ≤ aP ). This fact is proven in a series of steps. First, we establish
the existence of a sequence of integral vectors satisfying a specific list of properties.
These vectors are based on Diophantine approximations of the non-rational nor-
mal vector a, and they give rise to Gomory-Chvátal cuts that separate all points
in the non-rational facet F = P ∩(ax = aP ) that are not contained in the maximal
rational affine subspace VR of (ax = aP ). The number of Gomory-Chvátal cuts
needed in our construction for separating the points in (ax = aP ) \ VR depends
only on the dimension of VR. If dim(VR) = n−2, that is, the hyperplane (ax = aP )
has a single “non-rational direction”, then only two cuts are necessary. One can
visualize these cuts to form a kind of “tent” in the half-space (ax ≤ aP ), with the
ridge being VR. With each decrease in the dimension of VR by 1, the number of
necessary cuts is doubled. Hence, at most 2n−1 Gomory-Chvátal cuts are required
to separate the non-rational parts of a non-rational facet of the polytope. The
core argument for the construction of these cuts relies on integral lattices and, in
particular, on properties of reduced lattice bases.
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[5] S. S. Dey, J. P. Vielma, The Chvátal-Gomory closure of an ellipsoid is a polyhedron, Pro-
ceedings of the 14th Conference on Integer Programming and Combinatorial Optimization
(IPCO 2010), Lecture Notes in Computer Science, Volume 6080, 327–340.
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On sub-determinants and the diameter of polyhedra

Friedrich Eisenbrand

(joint work with Nicolas Bonifas, Marco Di Summa, Nicolai Hähnle, Martin
Niemeier)

One of the fundamental open problems in optimization and discrete geometry is the
question whether the diameter of a polyhedron can be bounded by a polynomial in
the dimension and the number of its defining inequalities. The problem is readily
explained: A polyhedron is a set of the form P = {x ∈ R

n : Ax ≤ b}, where A ∈
R

m×n is a matrix and b ∈ R
m is an m-dimensional vector. A vertex of P is a point

x∗ such that there exist n linearly independent rows of A whose corresponding
inequalities of Ax ≤ b are satisfied by x∗ with equality. Two different vertices x∗

and y∗ are neighbors if there exist n − 1 linearly independent rows of A whose
corresponding inequalities of Ax ≤ b are satisfied with equality both by x∗ and
y∗. In this way, we obtain the undirected polyhedral graph with edges being pairs
of neighboring vertices of P . This graph is connected. The diameter of P is the
smallest natural number that bounds the length of a shortest path between any
pair of vertices in this graph. The question is now as follows.

Can the diameter of a polyhedron P = {x ∈ R
n : Ax ≤ b} be

bounded by a polynomial in m and n?

Despite a lot of research effort during the last 50 years, the gap between lower
and upper bounds on the diameter remains huge. While, when the dimension n is
fixed, the diameter can be bound by a linear function of m [9, 2], for the general
case the best upper bound, due to Kalai and Kleitman [7], is O(m1+log n). The
best lower bound is of the form (1 + ε) ·m for some ε > 0 in fixed and sufficiently
large dimension n. This is due to a celebrated recent result of Santos [12] who
disproved the until then longstanding Hirsch conjecture. The Hirsch conjecture
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stated that the diameter of a bounded polyhedron is at most m−n. Interestingly,
this huge gap (polynomial versus quasi-polynomial) is also not closed in a very
simple combinatorial abstraction of polyhedral graphs [6]. However, it was shown
by Vershynin [13] that every polyhedron can be perturbed by a small random
amount so that the expected diameter of the resulting polyhedron is bounded by
a polynomial in m and n. See Kim and Santos [8] for a recent survey.

In light of the importance and apparent difficulty of the open question above,
many researchers have shown that it can be answered in an affirmative way in
some special cases. Naddef [10] has proven that the Hirsch conjecture holds true
for 0/1-polytopes. Orlin [11] provided a quadratic upper bound for flow-polytopes.
Brightwell et al. [3] have shown that the diameter of the transportation polytope
is linear in m and n, and a similar result holds for the dual of a transportation
polytope [1] and the axial 3-way transportation polytope [4].

The results on flow polytopes and classical transportation polytopes concern
polyhedra that are defined by totally unimodular matrices, i.e., integer matrices
whose sub-determinants are 0,±1. For such polyhedra Dyer and Frieze [5] had
previously shown that the diameter is bounded by a polynomial in n and m. Their
bound is O(m16n3(logmn)3). Their result is also algorithmic: they show that
there exists a randomized simplex-algorithm that solves linear programs defined
by totally unimodular matrices in polynomial time.

Our main result is a generalization and considerable improvement of the di-
ameter bound of Dyer and Frieze. We show that the diameter of a polyhedron
P = {x ∈ R

n : Ax ≤ b}, with A ∈ Z
m×n is bounded by O

(
∆2n4 logn∆

)
. Here, ∆

denotes the largest absolute value of a sub-determinant of A. If P is bounded, i.e.,
a polytope, then we can show that the diameter of P is at most O

(
∆2n3.5 log n∆

)
.

To compare our bound with the one of Dyer and Frieze one has to set ∆ above
to one and obtains O

(
n4 logn

)
and O

(
n3.5 logn

)
respectively. Notice that our

bound is independent of m, i.e., the number of rows of A.
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Linear vs. Semidefinite Extended Formulations: Exponential
Separation and Strong Lower Bounds

Samuel Fiorini

(joint work with Serge Massar, Sebastian Pokutta, Hans Raj Tiwary and Ronald
de Wolf)

In 1986–1987 there were attempts to prove P = NP by giving a polynomial-size
linear program (LP) that would solve the traveling salesman problem (TSP). Due
to the large size and complicated structure of the proposed LP for the TSP, it was
difficult to show directly that the LP was erroneous. In a groundbreaking effort
to prevent such attempts, Yannakakis [9] proved that every symmetric LP for the
TSP has exponential size. Because the proposed LP for the TSP was symmetric,
it could not possibly be correct.

In his paper, Yannakakis left as a main open problem the question of proving
that the TSP admits no polynomial-size LP, symmetric or not. We answer this
question by proving a super-polynomial lower bound on the number of inequalities
in every LP for the TSP. Moreover, we also prove super-polynomial lower bounds
for the maximum cut and maximum stable set problems. Therefore, it is impossible
to prove P = NP by giving a polynomial-size LP for any of these problems.

These results follow from a new connection that we make between one-way
quantum communication protocols and semidefinite programming reformulations
of LPs. We summarize our results here. For a full version, see [2].

1. State of the Art

An extended formulation (EF) or extension of a polytope P ⊆ R
d is a polytope

Q ⊆ R
e along with a linear map that projects Q onto P . Optimizing a linear

function f over P amounts to optimizing the linear function f ◦ π over its EF Q,
where π : Rd → R

e linearly projects P onto Q. We define the size of an EF Q
as the number of facets of Q, and the extension-complexity of P as the minimum
size of an EF of P .

Yannakakis [9] proved a 2Ω(n) lower bound on the size of any symmetric EF
of the TSP polytope TSP(n). Although he remarked that he did “not think that
asymmetry helps much”, it was recently shown by Kaibel et al. [5] that symmetry
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is a restriction in the sense that there exist polytopes that have polynomial-size
EFs but no polynomial-size symmetric EF.

The strongest unconditional lower bounds so far were obtained by Rothvoß [7].
Via a counting argument inspired by Shannon’s theorem, he proved that there exist
0/1-polytopes in R

d whose extension-complexity is at least 2d/2−o(1). However,
Rothvoß’s technique does not provide explicit 0/1-polytopes with an exponential
extension-complexity.

Yannakakis [9] discovered that the extension-complexity of a polytope P is de-
termined by certain factorizations of an associated matrix, called the slack matrix
of P , that records for each pair (F, v) where F is a facet and v is a vertex the
algebraic distance of v to a hyperplane supporting F . Defining the nonnegative
rank of a nonnegative matrix M as the smallest natural number r such that M
can be expressed as M = UV where U and V are nonnegative matrices with r
columns and r rows, respectively, it turns out that the extension-complexity of
every polytope P is exactly the nonnegative rank of its slack matrix.

This factorization theorem led Yannakakis to explore connections between EFs
and communication complexity. Let S = S(P ) denote the slack matrix of the
polytope P . He observed that: (i) every deterministic protocol of complexity k
computing S gives rise to an EF of P of size at most 2k, provided S is a 0/1-matrix;
(ii) the nondeterministic communication complexity of the support matrix of S is
a lower bound on the extension-complexity of P .

Recently, Faenza et al. [1] proved that the base-2 logarithm of the nonnegative
rank of a matrix equals, up to a small additive constant, the minimum complexity
of a randomized communication protocol (with nonnegative outputs) that com-
putes the matrix in expectation. In particular, every EF of size r can be regarded
as such a protocol of complexity log r + O(1) that computes the slack matrix in
expectation.

2. Contribution

Our contribution is three-fold.

• First, we generalize the factorization theorem to conic EFs, that allow reformu-
lating an LP through a conic program. In particular, this implies a factoriza-
tion theorem for semidefinite EFs: the semidefinite extension-complexity of a
polytope equals the positive semidefinite rank (shortly: PSD rank) of its slack
matrix.

• Second, we generalize the tight connection between (linear) EFs and classical
communication complexity found by Faenza et al. [1] to a tight connection
between semidefinite EFs and quantum communication complexity. We show
that any rank-r PSD factorization of a nonnegative matrix M gives rise to a
one-way quantum protocol computing M in expectation that uses log r + O(1)
qubits and, vice versa, that any one-way quantum protocol computing M in
expectation that uses q qubits results in a PSD factorization of M of rank
2q. Via the semidefinite factorization theorem, this yields a characterization of
the semidefinite extension-complexity of a polytope in terms of the minimum
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complexity of quantum protocols that compute the corresponding slack matrix
in expectation.

Then, we give a complexity log r + O(1) quantum protocol for computing a
nonnegative matrix M in expectation, whenever there exists a rank-r matrix
N such that M is the entry-wise square of N . This result implies in particular
that every d-dimensional polytope with 0/1 slacks has a semidefinite EF of size
O(d).

Finally, inspired by earlier work [8], we construct a 2n×2n matrixM =M(n)
that provides an exponential separation between classical and quantum protocols
that compute M in expectation. On the one hand, our quantum protocol gives
a rank-O(n) PSD factorization of M . On the other hand, the nonnegative rank
of M is 2Ω(n) because the nondeterministic communication complexity of the
support matrix ofM is Ω(n). This second part follows from an adaptation of the
well-known result of Razborov [6] on the disjointness problem, see de Wolf [8].

• Third, we use the matrix M =M(n) and a small-rank PSD factorization of M
to prove a 2Ω(n) lower bound on the extension-complexity of the cut polytope
CUT(n). That is, every (linear) EF of the cut polytope has an exponential
number of inequalities. Via reductions, we infer from this: (i) an infinite family
of graphs G such that the extension-complexity of the corresponding stable set

polytope STAB(G) is 2Ω(n1/2), where n denotes the number of vertices of G; (ii)

that the extension-complexity of the TSP polytope TSP(n) is 2Ω(n1/4).
In addition to settling simultaneously the open problems of Yannakakis [9]

and Rothvoß [7] described above, our results provide a lower bound on the
extension-complexity of stable set polytopes that goes well beyond what is im-
plied by a conjecture of Huang and Sudakov [4].

Finally, we remark that although our lower bounds are strong, unconditional
and apply to explicit polytopes that are well-known in combinatorial optimiza-
tion, they have very accessible proofs.

We would like to point out that some of our results were also obtained (see [2]
for a detailed account) by J. Gouveia, P. Parillo and R. Thomas [3]. However, this
does not apply to our main results.

References

[1] Y. Faenza, S. Fiorini, R. Grappe, and H. R. Tiwary. Extended formulations, non-negative
factorizations and randomized communication protocols. arXiv:1105.4127, 2011.

[2] S. Fiorini, S. Massar, S. Pokutta, H. R. Tiwary, and R. de Wolf. Linear vs. Semidefinite
Extended Formulations: Exponential Separation and Strong Lower Bounds arXiv:1111.0837,
2011.

[3] J. Gouveia, P.A. Parrilo, and R. Thomas. Lifts of convex sets and cone factorizations.
arXiv:1111.3164, 2011.

[4] H. Huang and B. Sudakov. A counterexample to the Alon-Saks-Seymour conjecture and
related problems. arXiv:1002.4687, 2010.

[5] V. Kaibel, K. Pashkovich, and D.O. Theis. Symmetry matters for the sizes of extended
formulations. In Proc. IPCO 2010, pages 135–148, 2010.

[6] A. A. Razborov. On the distributional complexity of disjointness. Theoret. Comput. Sci.,
106(2):385–390, 1992.



3022 Oberwolfach Report 53/2011

[7] T. Rothvoß. Some 0/1 polytopes need exponential size extended formulations.
arXiv:1105.0036, 2011.

[8] R. de Wolf. Nondeterministic quantum query and communication complexities. SIAM J.
Comput., 32:681–699, 2003.

[9] M. Yannakakis. Expressing combinatorial optimization problems by linear programs. J.
Comput. System Sci., 43(3):441–466, 1991.

Simple Push-Relabel Algorithms for Matroids and Submodular Flows

András Frank

(joint work with Zoltán Miklós)

1. Introduction

Push-relabel algorithms, unlike augmenting path type algorithms, use only
small, local steps. In selecting the current element where the next local step
is to be performed, they use a control parameter Θ : S → {0, 1, 2, . . .} called a
level (or distance) function. In the present work simple push-relabel algorithms
are developed for matroid partition, for membership in a matroid polytope, and
for submodular flow feasibility. The previous algorithms relied on a selection rule
based on a consistent ordering of the elements which is a counterpart of the lex-
icographic rule of Schönsleben [5]. The new push-relabel algorithms do not use
the consistency rule and the proof of strong polynomiality becomes much simpler.
The true role of the consistency rule is that, though not needed for strong poly-
nomiality, it improves the complexity of the algorithm by one order of magnitude.

Acknowledgements The authors received a grant (no. CK 80124) from the
National Development Agency of Hungary, based on a source from the Research
and Technology Innovation Fund.

2. Matroid partition

Let M1 = (S,B1),M2 = (S,B2), . . . ,Mk = (S,Bk) be k matroids on an n-
element ground-set S. We say that a subset F ⊆ S is coverable if F ⊆ B1∪· · ·∪Bk

for some Bi ∈ Bi (i = 1, . . . , 2). We construct a push-relabel algorithm for finding
a largest coverable subset. Previously, Edmonds and Fulkerson [2] developed an
augmenting path type algorithm for this purpose and proved that the largest
cardinality of a coverable subset of S is equal to min{∑i ri(Z)+ |S−Z| : Z ⊆ S}.
The optimality criteria are as follows.

(1) S − Z ⊆ ∪iBi

(2) Bi ∩Bj ∩ Z = ∅ for 1 ≤ i < j ≤ k

(3) Bi ∩ Z spans Z in Mi for i = 1, . . . , k.

We show how the push-relabel technique can be used for finding a subset Z
and k basis Bi ∈ Bi satisfying the three optimality criteria. At the beginning, Θ
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is identically 0. At an intermediate stage of the algorithm, we are given Mi-bases
Bi for i = 1, . . . , k and a level function Θ : S → {0, 1, . . . , n = |S|} for which the
following level properties hold.

(L1) Θ(u) = 0 holds for every u ∈ S covered by more than one of the bases Bi.
(L2) Θmin(Ci(Bi, u)) ≥ Θ(u)− 1 holds for every u ∈ S −Bi.

The algorithm terminates when one of the following stopping rules occurs.

(A) S = B1 ∪ · · · ∪Bk.
(B) There is an empty level set Lj so that every element under j is covered.

There are two basic operations at an uncovered element s. Lifting s means that
Θ(s) is increased by 1. A basis-change at s means that we take a basis Bi along
with an element t ∈ Ci(Bi, s)− s and replace Bi with Bi − t+ s.

The algorithm runs as follows. At a general step, assuming that neither of the
stopping rules holds, we select an uncovered element s for which Θ(s) ≤ n − 1.
If there is a basis Bi (1 ≤ i ≤ k) and an element t ∈ Ci(Bi, s) − s for which
Θ(t) = Θ(s) − 1, perform a basis-change by replacing Bi with Bi − t + s. If no
such a Bi and t exist anymore, lift s.

The algorithm terminates when lifting s leaves an empty level set such that all
elements under s is covered. In this case, (B) holds. The other way of termination
occurs when after the current basis-change every element is covered in which case
(A) holds.

3. Testing membership in a matroid polytope

Let M = (S, r) be a matroid. The matroid (or independence) polytope P (r) of
M is the convex hull of the characteristic vectors of independent sets of M . The
base polytope B(r) of M is the convex hull of the characteristic vectors of bases
of M . Edmonds proved the following polyhedral descriptions:

(4) P (r) = {x ∈ RS : x ≥ 0 and x̃(Z) ≤ r(Z) for every Z ⊆ S}.

(5) B(r) = {x ∈ RS : x ≥ 0 and x̃(Z) ≤ r(Z) for every Z ⊆ S, x̃(S) = r(S)}.
P (r) and B(r) are often called the matroid (or independence) polyhedron and the
base polyhedron of M , respectively.

Cunningham [1] developed a strongly polynomial algorithm to test if a given
vector g belongs to P (r). He also solved the more general problem when g is not
in P (r) and one is interested in finding a subset most violating (4) along with an
element x ≤ g of P (r) for which x̃(S) is maximum. His approach uses shortest
augmenting paths and also the technique of lexicographic selection rule introduced
by Schönsleben [5]. The lexicographic rule turned out to be an unavoidable de-
vice in all combinatorial algorithms concerning submodular frameworks. It was
adapted to push-relabel algorithms as well.

We describe a simple push-relabel algorithm for the matroid membership prob-
lem that does not use the lexicographic rule. The algorithm works for the slightly
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more general problem when a specified upper bound g : S → R+ is given and we
are interested in finding a member x ∈ P (r) for which x ≤ g and x̃(S) is maximum.
Clearly, g belongs to P (r) if and only if this maximum is g̃(S).

Theorem 3. Let M = (S, r) be a matroid and g : S → R+ function. Then

(6) max{x̃(S) : x ≤ g, x ∈ P (r)} = min{r(Z) + g̃(S − Z)}.
Proof. We call an element x ∈ P (r) feasible if x ≤ g. For a subset Z ⊆ S and
for a feasible x ∈ R, one has

(7) x̃(S) = x̃(Z) + x̃(S − Z) ≤ r(Z) + g̃(S − Z)

from which max ≤ min follows. In the estimation (7), equality holds if and only
if the following optimality criteria are met.

(8) x̃(Z) = r(Z)

(9) x̃(S − Z) = g̃(S − Z).

We shall prove the theorem by developing an algorithm that computes a feasible
x and a subset Z ⊆ S satisfying the optimality criteria. A convex combination
of bases of M will be described by a coefficient function λ : B → R+ for which∑

[λ(B) : B ∈ B] = 1. The element of B(r) defined by λ is xλ =
∑

[λ(B)χ
B

:

B ∈ B]. Clearly, a non-negative vector x belongs to P (r) if and only if there is a
convex combination xλ of bases such that xλ covers x in the sense that xλ ≥ x.
We say that a basis B is λ-active (or simply active) in the convex combination
xλ if λ(B) > 0. By a theorem of Charathodory, every element of B(r) can be
expressed as a convex combination of at most n bases. An element s ∈ S is g-
larger, g-smaller or neutral according to whether g(s) > xλ(s), g(s) < xλ(s)
or g(s) = xλ(s).

Beside a convex combination xλ of bases, the algorithm maintains a level func-
tion Θ : S → {0, 1, . . . , n}. In the following level properties we use again the
notation Θmin(X) := min{Θ(v) : v ∈ X} for X ⊆ S.

(L1) Θ(u) = 0 holds for every g-smaller u ∈ S.
(L2) Θmin(C(B, u)) ≥ Θ(u) − 1 holds for every λ-active basis B and for every
u ∈ S −B.

The algorithm terminates when one of the following stopping rules occurs.

(A) There is no g-larger element of S.
(B) There is an empty level set Lj so that there is no g-larger element under j.

Basic operations: push and lift Let s be a g-larger element for which
Θ(z) ≤ n−1. Lifting s means again that we increase Θ(s) by 1. Push is performed
at s when there is an active basis B not containing s for which Θmin(C(B, s)) =
Θ(s)−1. Let t ∈ C(B, s) for which Θ(t) = Θ(s)−1, let B′ = B− t+s, and define
∆ := min{g(s)− xλ(s), λ(B)}. A push decreases λ(B) by ∆ and increases λ(B′)
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by ∆. A push is called neutralizing if ∆ = g(s)− xλ(s). In this case s becomes
neutral. A non-neutralizing push does not change the number of active bases while
a neutralizing push either preserves or increases this number by 1. Note that the
only element that may become g-larger after a push operation is t and t is under
s. This observation will be used in estimating the number of steps.

Treating a g-larger element s with Θ(s) ≤ n − 1 means that we apply push
operations at s as long as possible. No more push is possible at s when either the
last push at s was neutralizing or else when there is no more active basis B not
containing s for which Θmin(C(B, s)) = Θ(s)− 1. In the latter case, lift s.

The algorithms runs as follows. As long as neither of the stopping rules holds
select a g-larger node s for which Θ(s) ≤ n− 1 and Θ(s) is maximum (the highest
level rule), and treat s. The algorithm terminates either when after a push there
are no more g-larger elements, that is, (A) holds, or else, when after a lift every
g-larger element is in Ln, in which case (B) holds.

The algorithm teminates after at mostO(n6) basic operations. If the complexity
of the required subroutine that determines for a basis B and an element s ∈ S−B
if there is an element t ∈ C(B, s) − s for which Θ(t) = Θ(s) − 1 is γ, then the
overall complexity of the algorithm is O(γn6).

A similar approach gives rise to a simple push-relabel algorithm for polyma-
troid intersection and for submodular flow. (For the full report, please contact A.
Frank.)
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Polyhedra with the Integer Carathéodory Property

Dion Gijswijt

(joint work with Guus Regts)

In this talk, we show the following. Any nonnegative integer combination of
(incidence vectors of) bases of a matroid can be written as such a combination
using at most n bases, where n is the size of the ground set. This answers a
question raised by Cunningham [5] in his paper on testing membership in base
polyhedra, see also [11, 7]. For earlier work on this problem, see [9, 3].
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The proof uses polyhedral methods and extends to other classes of integer poly-
hedra, such as: polymatroids, polyhedra defined by TU systems and projections
of these, see [8] for full proofs.

A polyhedron P ⊆ R
n has the integer decomposition property, introduced by

Baum and Trotter [1], if for every positive integer k, every integer vector in kP is
the sum of k integer vectors in P . Equivalently, every 1

k -integer vector x ∈ P is a
convex combination

(1) x = λ1x1 + · · ·+ λtxt, xi ∈ P ∩ Z
n, λi ∈ 1

kZ.

Examples of such polyhedra include: stable set polytopes of perfect graphs, poly-
hedra defined by totally unimodular matrices and (poly)matroid base polytopes.

It is worth pointing out the relation with Hilbert bases. Recall that a finite set of
integer vectors H is called a Hilbert base if every integer vector in the convex cone
generated by H , is an integer sum of elements from H . Hence if P is an integer
polytope and H := {( 1

x ) | x ∈ P integer}, then P has the integer decomposition
property, if and only if H is a Hilbert base.

Let P be a polyhedron with the integer decomposition property. It is natural to
ask for the smallest number T , such that we can take t ≤ T in (1) for every k and
every 1

k -integer vector x ∈ P . We denote this number by cr(P ), the Carathéodory
rank of P . Clearly, if P is a polytope, cr(P ) ≥ dim(P ) + 1 holds, since P is
not contained in the union of the finitely many affine spaces spanned by at most
dim(P ) integer vectors in P .

Cook et al. [4] showed that when H is a Hilbert base generating a pointed cone
C of dimension n ≥ 1, every integer vector in C is the integer linear combination
of at most 2n− 1 different elements from H . For n > 1, this bound was improved
to 2n− 2 by Sebő [11]. By the above remark, this implies that cr(P ) ≤ 2 dim(P )
holds for any polytope P of positive dimension.

Bruns et al.[2] gave an example of a Hilbert base H generating a pointed cone
C of dimension 6, together with an integer vector in C that cannot be written as
a nonnegative integer combination of less than 7 elements from H . Their example
yields a 0 − 1 polytope with the integer decomposition property of dimension 5
but with Carathéodory rank 7, showing that cr(P ) = dim(P ) + 1 does not always
hold.

In this talk we prove that if P is a (poly)matroid base polytope or if P is a
polyhedron defined by a totally unimodular matrix, then P and projections of P
satisfy the inequality cr(P ) ≤ dim(P )+1. For matroid base polytopes this answers
a question of Cunningham [5] whether a sum of bases in a matroid can always be
written as a sum using at most n bases, where n is the cardinality of the ground
set (see also [11, 7]).

In our proof we use the following strengthening of the integer decomposition
property, inspired by Carathéodory’s theorem from convex geometry. We say that
a polyhedron P ⊆ R

n has the Integer Carathéodory Property (notation: ICP) if
for every positive integer k and every integer vector w ∈ kP there exist affinely
independent x1, . . . , xt ∈ P ∩Z

n and n1, . . . , nt ∈ Z≥0 such that n1 + · · ·+ nt = k
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and w =
∑

i nixi. Equivalently, the vectors xi in (1) can be taken to be affinely
independent. In particular, if P has the ICP, then cr(P ) ≤ dimP + 1.

It is implicit in [4, 11] that the stable set polytope of a perfect graph has the
ICP since a ‘greedy’ decomposition can be found, where the xi are in the interior
of faces of strictly decreasing dimension, and hence are affinely independent.

Consider the class P of rational polyhedra P ⊆ R
n (for some n) satisfying the

following condition:

(2)
For any a, b ∈ Z≥0 and w ∈ Z

n

the intersection aP ∩ (w − bP ) is box-integer.

It is not hard to see that every P ∈ P has the integer decomposition property
and that the class P is closed under taking faces and taking the intersection with
an integral box. The main result is the following theorem.

Theorem 4. If P ∈ P, then any projection of P has the Integer Carathéodory
Property.

Examples of polyhedra that belong to P are the following: polyhedra defined
by a TU-matrix A (since then [AT − ATI − I]T is TU as well the intersection is
box-integer), and polymatroid base polytopes (by Edmonds matroid partitioning
theorem [6]).

Gammoids form a subclass of so-called strongly base orderable matroids. It
is known that for any two strongly base orderable matroids, the common base
polytope has the integer decomposition property (see [10]). Since gammoids are
projections of flow polyhedra, they have the ICP. It is an open question whether
this generalizes to intersections of other matroids.

Question 1. Does the intersection of two base polytopes of strongly base orderable
matroids have the ICP?

In [11] Sebő asks whether the Carathéodory rank of the r-arborescence polytope
can be bounded by the cardinality of the ground set. An r-arborescence is a
common base of a partition matroid and a graphic matroid.

Question 2. Does the r-arborescence polytope have the ICP?

Finally, we wonder whether for matroids a more intuitive greedy approach for
finding a decomposition into affinely independent vectors could work. We say that
polytope P admits greedy decomposition if for every positive integer k and every
w ∈ kP integral, there is an integral x ∈ P such that

max{λ ≥ 0 | w − λx ∈ (k − λ)P}

is integer.

Question 3. Does the spanning tree polytope admit greedy decomposition?
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Flows in matroids and related problems

Bertrand Guenin

1. Flows in graphs and matroids.

Let G be a graph with a set of demand edges Σ ⊆ E(G). Edges E(G) \ Σ are
the capacity edges. Every edge e is assigned a non-negative weight we. The weight
of a demand edge represents the amount of flow that needs to be carried between
the endpoint of that edge while the weight of a capacity edge indicates the total
flow that can be carried by that edge. Let C be the set of all circuits of G that
contain exactly one edge of Σ. A (G,Σ, w)-flow is an assignment yC ≥ 0 for every
C ∈ C that satisfies the following conditions:

∑
(yC : e ∈ C ∈ C) = we (e ∈ Σ),(1)

∑
(yC : e ∈ C ∈ C) ≤ we (e /∈ Σ),(2)

where (1) guarantees that all demands are met while (2) ensures that no capacity
is exceeded. A necessary condition for the existence of a (G,Σ, w)-flow is that for
every cut B the total demand across the cut does not exceed the total capacity
across the cut, i.e. w(C ∩ Σ) ≤ w(B \ Σ). This is known as the cut condition.
Weights w of G are said to be Eulerian if w(B) is even for every cut B of G.
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Consider a signed graph (G,Σ) with edge weights w, and assume that the cut-
condition holds. We may then ask,

(Q1) Does there exist an integer flow?
(Q2) Does there exist a fractional flow?
(Q3) Assuming the weights w are Eulerian, does there exist an integer flow?

We may replace circuits C of G with circuits of a binary matroid M in the afore-
mentioned definition of flow. Then any assignment yC ≥ 0 for every C ∈ C that
satisfies (1) and (2) is an (M,Σ, w)-flow. We extend the cut-condition and the
Eulerian condition to M by replacing cuts of G by cocycles of M . Thus we may
also ask (Q1)-(Q3) in the context of binary matroids.

A signed graph (G,Σ) admits three possible minor operations: deleting an edge,
contracting an edge not in Σ, and replacing Σ by Σ△B for some cut B of G. An
odd-Kn is the signed graph

(
Kn, E(Kn)

)
. A signed matroid is a pair (M,Σ) where

M is a binary matroid and Σ ⊆ E(M). The definition of minors for signed graphs
extend naturally to signed matroids.

2. Survey of results and conjectures

Consider a signed graph (G,Σ) with weights w, and assume that the cut-
condition holds. If (G,Σ) has no odd-K4 minor, then there exists an integer
flow [9]. If (G,Σ) has no odd-K5 minor, then there exists a fractional flow [4]. This
was further strengthened by showing that if in addition the weights are Eulerian
then there exists an integer flow [3]. Hence, (Q1)-(Q3) are well understood in the
case of signed graphs.

Consider a signed matroid (M,Σ) with weights w, and assume that the cut-
condition holds. Seymour [9] showed that if (M,Σ) does not have

(
M(K4), E(K4)

)

as a signed minor, then there exists an integer flow. For a short proof see [6].
Seymour’s flowing conjecture predicts that if (M,Σ) does not contain any of three
special signed minors, then there exists a fractional flow [10]. Seymour’s cycling
conjecture predicts that if (M,Σ) does not contain any of four special signed
minors and the weights are Eulerian, then there exists an integer flow [10]. The
flowing and cycling conjectures remain open even for very special cases. Hence,
(Q2) and (Q3) are unresolved in the case of signed matroids. It is straightforward
to show that it suffices to consider single commodity flows for both the flowing
and cycling conjectures. Hence, in the following discussion we will assume that we
are restricting ourself to this special case.

A cycle C ⊆ E(G) of a signed graph (G,Σ) is even if |C∩Σ| is even. A cut δ(U)
of a graft (G, T ) is even if |U ∩ T | is even. The set of all even-cycles of a signed
graph (resp. even-cut of a graft) forms the cycles of a binary matroid, called the
even-cycle matroid (resp. even-cut matroid) [11]. Denote byM1,M2,M3,M4 the
class of even-cycle, even-cut, duals of even-cycles, and duals of even-cut matroids
respectively. It is shown in [5] that the flowing conjecture holds for each of
M1,M2,M3,M4. A special case of the cycling conjecture for M1 was proved
recently [1]. The cycling conjecture remains open for each of M2,M3 and M4.
The cycling conjecture for these last two classes both imply the 4-color theorem.
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3. Proof strategy for the 1-flowing conjecture

As the cycling conjecture contains several wide ranging generalization of the 4-
coloring theorem, we focus our attention on the flowing conjecture. As previously
mentioned it suffices to consider the case where we have a single commodity. We
can weaken the conjecture by requesting that the max-flow min-cut relation hold
for every commodity (rather than a fixed commodity). The resulting conjecture
is known as the 1-flowing conjecture. The 1-flowing conjecture predicts that the
aforementioned minimax relation holds for all binary matroids that have no minor
in S := {AG(3, 2), T11, T ∗

11}. Together with Cornuéjols [2] we showed that any
counterexample to the flowing conjecture is “highly connected”.

Our working hypothesis for the flowing conjecture is that a sufficiently con-
nected binary matroid M that has no minor in S must be in one of the classes
M1,M2,M3,M4 or belongs to a “thin” (highly structured) class of matroids. To
prove such a result we will require an excluded minor characterization of even-
cycle and even-cut matroids. Alas this in itself appears to be a very challenging
problem. In the remainder of the abstract we discuss the easier, yet still open,
problem of recognizing if a binary matroid (given by its matrix representation) is
an even-cycle matroid.

4. The recognition problem

By a representation of an even-cycle matroidM , we mean a signed graph whose
even-cycles are equal to the cycles of M . We say that N is a stabilizer if for every
connected even-cycle matroidM that contains N as a minor, a representation of N
extends to at most one representation ofM (up to equivalence). Therefore, ifN is a
stabilizer, then the representations of N completely determine the representations
of M . In [8] we gave sufficient conditions for a matroid to be a stabilizer. In
particular, we show that any matroid that is not “close to being graphic” is a
stabilizer.

A strategy for recognizing if a binary matroid M is an even-cycle matroid is as
follows. Suppose M is a binary matroid. If it is graphic, then it is an even-cycle
matroid. Otherwise we can find a minimally non-graphic minor N of M . If N
were a stabilizer, then we could construct all the representations of M from the
representations of N . If any such representation exists, then M is an even-cycle
matroid, otherwise it is not. Unfortunately, minimally non-graphic matroids are
not stabilizers under our current definition of equivalence. We plan to rectify this
by modifying our definition of equivalence. The key difficulty is the presence of
blocking pairs in some of the representations of N . (A blocking pair in a signed
graph is a pair of vertices that intersect every odd circuit.) Of help should be a
recent result that characterizes the set of all possible blocking pairs in a signed
graph [7].
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Combinatorial Optimization in Chip Design

Stephan Held

(joint work with Berit Braun)

Chip design has a long history as an application field for combinatorial optimiza-
tion [4]. A central problem, which has to be solved several million times per chip,
is the distribution of an electrical signal from a root r to a set S of sinks by a
buffered interconnect. In the repeater tree problem a topology for the intercon-
nect is to be found that is embedded in the plane and that will later be filled with
repeaters.

Following the definition in [1, 2], an instance consists of a source r and a finite
non-empty set S of sinks with locations Pl : {r} ∪ S → R

2, a delay bound as ∈ R

for every sink s ∈ S, and two numbers c, d ∈ R>0. A feasible solution is a rooted
tree T = (V (T ), E(T )) with vertex set {r}∪S∪I where I is a set of |S|−1 vertices,
with embedding Pl : I → R

2, such that r is the root of T and has exactly one
child, the elements of I are the internal vertices of T and have exactly two children
each, and the elements of S are the leaves of T . Associated with a solution are its
length

l(T ) :=
∑

(u,v)∈E(T )

||u− v||,

where ||u−v|| := ||Pl(u)−Pl(v)||1, and the delay δT (s) from r to each sink s ∈ S:

δT (s) :=
∑

(u,v)∈E[r,s]

d||u− v|| − c(|E[r, s]| − 1).

The delay grows linearly with the path-length through the tree and with every
bifurcation on the path, which adds an electrical capacitance and, thus, delay.
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Two conflicting objectives in the computation of topologies are the minimization
of the length l(T ) and the maximization of the slack σ(T ) := min{0,mins∈S σ(T, s)},
where σ(T, s) := as − δT (s).

The minimization of the length is equivalent to the Steiner tree problem. In [2]
we describe a generic greedy algorithm that works like a PRIM-heuristic for the
length minimization, achieving a 3/2-approximation in the ℓ1-norm due to Hwang’s
theorem [6]. Furthermore, it solves the slack maximization problem neglecting the
length. However, in practice neither of these extreme cases is useful and a variant
of the greedy algorithm serves just as an effective heuristic for fast and light
topologies [1].

We present a bicriteria approximation algorithm that, given a topology Tσ
maximizing σ(T ) and a constant α ≥ 1 + 4·c

mins∈S(d(Tσ))
, generates a new topology

Tα with

(1) δTα(s) ≤ α δTσ (s), for all s ∈ S,

and

(2) l(Tα) ≤
(
1 + O

(
1

α

))
3

2
Steiner({r} ∪ S) + c

d
O
(n
α

)

with a running time bound of O(|S| log |S|), where Steiner({r}∪S) is the length of
a minimum Steiner tree for {r}∪S with respect to the ℓ1-norm. It is an extension
of an algorithm for the special case c = 0 that was given by Khuller et al. [7].

First, we compute a minimum spanning tree Tl for {r}∪S with a degree bound
of four. This can be done in O(|S| log |S|) with respect to the ℓ1-norm using a
Delaunay-triangulation and point perturbation. Then we traverse Tl in a depth-
first-search (DFS) order. Thereby, Tα is constructed by tentatively connecting
each traversed vertex s ∈ S to its predecessor through a new internal vertex. Let
K(s) := min{|E(Tσ(r, s

′))| − 1 : s′ ∈ subtree containing s} be the minimum
number of internal vertices on a r-s′-path in Tσ to a sink s′ in the subtree of
Tα containing s, and α′ := α − 4·c

mins∈S(d(Tσ))
. If the tightened delay constraint

δTα(pred(s)) + d · ||s − pred(s)|| + c · K(s) > α̃ · δTσ(s) is violated for s, we
disconnect it before continuing the traversal and mark s as a root of a new subtree
that will be connected later. The use of α′ instead of α makes sure that we will
be able to connect all subtree roots obeying (1).

During a backward step in the DFS-traversal, we will reconnect to a direct
successor v of s if δTα(s) + c ·K(s) > δTα(v) + d · ||s− v|| + 4 · c + c ·K(v). This
way the delay to s can be improved and s might loose its status as a subtree root.

Finally, we build a balanced tree at Pl(r) connecting all remaining subtree roots
s by Huffman-Coding [5] leading to a tree Tα fulfilling (1). The length of Tα equals
the length of Tl plus the length for connecting all subtree roots to r. An analysis
of these extra lengths shows that (2) holds.

By refining repeater trees in conjunction with the global optimization of layer-
assignments through a time-cost tradeoff algorithm using as costs the dual vari-
ables of a global routing solution, we were able to reduce the cycle time of a
currently developed microprocessor by 18%.
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Weight classification in multiflow problems

Hiroshi Hirai

Let G = (V,E) be an undirected graph with possible parallel edges and loops,
and S ⊆ V a set of terminals. An S-path is a path P whose ends sP , tP are
distinct terminals in S. A (fractional) multiflow is a pair (P , λ) of a set P of S-
paths and a nonnegative function λ : P → Q+ satisfying the capacity constraint∑

e∈P∈P λ(P ) ≤ 1 for e ∈ E. An integer multiflow is a multiflow f for which λ is
integer-valued.

We are given a weight function µ :
(
S
2

)
→ Q+ on the set

(
S
2

)
of pairs on

terminal set S. For a multiflow f = (P , λ), the µ-flow-value µ · f is defined by∑
P∈P µ(sP , tP )λ(P ). We consider the following weighted fractional and integer

multiflow problems:

µ-FMP: Maximize µ · f over all multiflows f in G,S.
µ-IMP: Maximize µ · f over all integer multiflows f in G,S.

Our interest is to classify weight functions µ for which µ-FMP or µ-IMP has
nice properties. For example, let S = {s, t}. Then µ-FMP is the maximum sin-
gle commodity flow problem. Ford-Fulkerson’s max-flow min-cut theorem [4] says
that µ-FMP always has an integral optimal solution, and µ-IMP is also polynomial
time solvable. Consider the case where S = {s, t, s′, t′}, and µ(s, t) = µ(s′, t′) = 1
and the other weights are zero. Then µ-FMP is the 2-commodity flow problem.
In this case, µ-FMP may not have an integral optimal solution, and the integer
version µ-IMP is NP-hard [3]. Hu [10] proved that there exists a half-integral op-
timal solution in µ-FMP. On the other hand, the 3-commodity flow problem does
not have such a half-integrality, more strongly, 1/k-integrality for every k. The
other interesting case is the all-one weight µ = 1, which corresponds to the frac-
tional/integral S-path packing problem. Lovász [18] and Cherkassky [1] indepen-
dently proved that 1-FMP always has a half-integer optimal solution. Mader [20]
established a min-max theorem for 1-IMP, and then extended it to a node-disjoint



3034 Oberwolfach Report 53/2011

version [21]. Lovász [19] derived it from the matroid matching theory. Schri-
jver [22] explicitly formulated it as a linear matroid matching problem. So 1-IMP
is polynomial time solvable. These results motivate us to consider the following
classification problems:

Fractionality problem: Classify weights µ for which µ-FMP has an opti-
mal solution with bounded denominator.

Tractability problem: Classify weights µ for which µ-IMP is polynomial
time solvable.

These classification problems have been considered by Karzanov [12, 13, 15] for
(mainly) 0-1 weights.

Recent works [5, 7, 8, 9] settled both classification problems. We first describe
the result on the fractionality problem. Define the fractionality of µ by the smallest
positive integer k such that µ-FMP has a 1/k-integral optimal solution for every
graph G having terminal set S. If such a k does not exist, then the fractionality
is defined to be infinity. Let us define a polyhedral set in RS

+ associated with µ:

Tµ := the set of minimal elements of {p ∈ RS
+ | p(s) + p(t) ≥ µ(s, t) s, t ∈ S}.

This polyhedral set Tµ is known as the tight span of µ, which was introduced by
Isbell [11] and Dress [2]. The finiteness of the fractionality is determined by the
dimension dim Tµ of Tµ:

Theorem 5.
(1) [5] If dimTµ > 2, then the fractionality of µ is infinity.
(2) [8] If dimTµ ≤ 2, then the fractionality of µ is at most 24.

A connection between tight spans and multiflows was discovered by Karzanov [16,
17] for metric weights µ. Based on it, [5] showed, for general weights, that the
linear program dual to µ-FMP reduces to a certain location problem on the met-
ric space (Tµ, l∞), and that if dimTµ ≤ 2, then this location problem can be
discretized, and gives a combinatorial min-max relation. The existence of such a
combinatorial min-max relation is a necessary condition for the finiteness of the
fractionality, which implies Theorem 1 (1). [7] further investigates this multiflow
combinatorial duality, and [8] proved Theorem 1 (2) by a fractional version of the
splitting-off, which was originally devised by [6] for a special case.

We next describe the result on the tractability problem. A weight µ is said
to be a tree metric if there exist a tree Γ and a map φ : S → V (Γ ) such that
µ(s, t) = dΓ (φ(s), φ(t)) for s, t ∈ S, where dΓ is the shortest path metric of Γ .
Also, µ is said to be a truncated tree metric if there exist a tree metric µ and
r : S → Q+ such that µ(s, t) = max{0, µ(s, t)− r(s)− r(t)} for s, t ∈ S.

Theorem 6 ([9]).
(1) If µ is a truncated tree metric, then µ-IMP is in P.
(2) If µ is not a truncated tree metric, then µ-IMP is NP-hard.
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Actually Theorem 1 (1) follows from the polynomial time solvability of the
minimum cost version of µ-IMP with tree metric µ. [9] showed that this prob-
lem has a combinatorial min-max relation extending Mader’s edge-disjoint S-path
theorem [20] and its mincost generalization by Karzanov [14, 15].
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Weighted Linear Matroid Parity

Satoru Iwata

The matroid parity problem [3] was introduced as a common generalization of
matching and matroid intersection problems. In the worst case, it requires an
exponential number of independence oracle calls [2, 5]. However, Lovász [4, 5, 6]
showed that the problem is solvable in polynomial time if the matroid in question
is represented by a matrix. Subsequently, efficient algorithms have been developed
for this linear matroid parity problem [1, 8].

In this talk, we present a combinatorial, deterministic, strongly polynomial
algorithm for its weighted version. The algorithm builds on a polynomial matrix
formulation of the problem using Pfaffian and an augmenting path algorithm for
the unweighted version by Gabow and Stallmann [1].

Independently of this work, Gyula Pap obtains the same result based on a
different approach, which is also presented in this meeting.

Let A be a matrix of row-full rank with row set U and column set V . Assume
that both r = |U | and n = |V | are even. The column set V is partitioned into
pairs, called lines. Each v ∈ V has its mate v̄ such that {v, v̄} is a line. We denote
by L the set of lines, and suppose that each line ℓ ∈ L has a weight wℓ ∈ R.

The linear dependence of the column vectors naturally defines a matroid M(A)
on V . Let B denote its base family. A base B ∈ B is called a parity base if it
consists of lines. As a weighted version of the linear matroid parity problem, we
will consider the problem of finding a parity base of minimum weight, where the
weight of a parity base is the sum of the weights of lines in it. We denote the
optimal value by ζ(A,Π, w). This problem generalizes finding a minimum-weight
perfect matching in graphs and a minimum-weight common base of a pair of linear
matroids on the same ground set.

Associated with this minimum-weight parity base problem, we consider a skew-

symmetric polynomial matrix Â(θ) in θ defined by

Â(θ) =

(
O A

−A⊤ D(θ)

)
,

whereD(θ) is a block-diagonal matrix in which each block is a 2×2 skew-symmetric

polynomial matrix Dℓ(θ) =

(
0 −αℓθ

wℓ

αℓθ
wℓ 0

)
corresponding to a line ℓ ∈ L.
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Assume that the coefficients αℓ are independent parameters (or transcendental
indeterminates).

Then Â(θ) is nonsingular if and only if there is a parity base in M(A). The
optimal value of the minimum-weight parity base problem is given by

ζ(A,Π, w) =
∑

ℓ∈L

wℓ − degθ PfÂ(θ).

For a base B ∈ B, we construct an auxiliary graph GB = (V, F ∪L) with vertex
set V and edge set F ∪L, where F = {(u, v) | u ∈ B, v ∈ V \B, B−{u}∪{v} ∈ B}.
A line ℓ = {v, v̄} is called a source line if exactly one of its two vertices belongs
to B. The fundamental circuit matrix C with respect to the base B is a matrix
with row set B and column set V \B obtained by C = A[U,B]−1A[U, V \B]. The
edges in F correspond to the nonzero entries in C.

The algorithm works on a matrix C♯ obtained from C by attaching some
columns and rows called transforms. It also uses an augmented graph G♯ =
(V ♯, F ♯ ∪ L) with vertex set V ♯ ⊇ V , which includes some transforms and the
vertices in V . The edges in F ♯ correspond to the nonzero entries in C♯. The row
set of C♯ is denoted by B♯, and the column set is V ♯ \B♯.

In addition to the graph G♯, the algorithm keeps a nested (laminar) collection
Λ = {H1, . . . , Hk} of vertices in V ♯. Each member in Λ is called a blossom. It
consists of lines and transforms. Each blossom Hi has its bud bi ∈ V \ Hi if it
does not contain a source line. The vertices in Hi adjacent to bi in G

♯ are called
tips of Hi. The set of the tips of Hi is denoted by Ti.

A transform v = τ(b, s, t) is defined with reference to the bud b of a blossom
H and a pair of its tips s and t. If b ∈ B♯, then s, t ∈ V \ B, and v ∈ V ♯ \ B♯.
The column vector of C corresponding to v is a linear combination of the columns

indexed by s and t such that C♯
bv = 0. Similarly, if b ∈ V ♯ \ B♯, then s, t ∈ B and

v ∈ B♯. The row vectors of C corresponding to v is a linear combination of the

rows indexed by s and t such that C♯
vb = 0. The transform thus defined belongs

to the blossom H .
For a blossom H and an edge (u, v) ∈ F ♯, we define η(H,u, v) as follows. Let

T denote the set of the tips of H . If one of u and v is a tip of H and the other
one is outside H , then η(H,u, v) = −1. If one of u and v is a vertex in H \ T and
the other one is outside H , then η(H,u, v) = 1. Otherwise (if |H ∩ {u, v}| 6= 1),
we put η(H,u, v) = 0.

The algorithm maintains a potential p : V → R and a nonnegative variable
q : Λ → R+. These are collectively called dual variables. For each edge (u, v) ∈ F ♯,
we denote

Quv =
∑

H∈Λ

η(H,u, v)q(H).

The dual variables are called feasible if they satisfy the following conditions.

(DF1): p(v) + p(v̄) = wℓ for every line ℓ = {v, v̄} ∈ L,
(DF2): p(v)− p(u) ≥ Quv for every (u, v) ∈ F ♯.
(DF3): p(v) = p(s) for any transform v = τ(b, s, t).
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Given feasible dual variables p and q, we say that an edge (u, v) ∈ F ♯ is tight
if p(v) − p(u) = Quv. Let F ◦ denote the set of tight edges. Then an augmenting
path in G◦ = (V ♯, F ◦ ∪ L) is defined as follows. For a vertex v ∈ V ♯, let v♮

denote s if v is a transform τ(b, s, t), and v otherwise. A parity path is a sequence

v0, v1, . . . , vh of vertices in V ♯ such that {v♮i−1, v
♮
i} ∈ L for odd i, and (vi−1, vi) ∈

F ◦ or (vi, vi−1) ∈ F ◦ for even i. A parity path P = v0v1 · · · vh is an augmenting
path if it satisfies the following conditions.

(AP1): The length h is odd.
(AP2): The vertices v0 and vh belong to distinct source lines. No other

vertices in P belong to source lines.
(AP3): If a transform τ(b, s, t) is in P , then t is a vertex in P , but s is not.
(AP4): For any blossom H that intersects P , the intersection forms an in-

terval vi · · · vj in P . In addition, if H does not have a source line, then
either vi−1 or vj+1 is the bud of H .

(AP5): The subgraph G∗[P ] of G∗ = (V ♯, F ◦) induced by P has a unique
perfect matching.

Note that an augmenting path P does not necessarily form a path in G◦.
The algorithm starts with splitting the weight wℓ into p(v) and p(v̄) for each

line ℓ = {v, v̄} ∈ L. Then it executes the greedy algorithm for finding a base
B ∈ B with minimum value of p(B) =

∑
u∈B p(u). If B is a parity base, then

B is obviously a minimum weight parity base. Otherwise, the algorithm proceeds
iterations of primal and dual updates as follows. If an augmenting path P is
found, then the algorithm updates the base B to the symmetric difference B△P ♮,
where P ♮ = {v♮ | v ∈ P}. This will reduce the number of source lines by two.
Otherwise, the algorithm updates the dual variables so that new edges will be
tight. The algorithm repeats this process until B becomes a parity base. Then B
will be a minimum weight parity base, which is proved via the polynomial matrix
formulation with a technique from combinatorial relaxation [7].
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Algorithms for Finding a Maximum Non-k-linked Graph

Yusuke Kobayashi

(joint work with Yuichi Yoshida)

A graph is said to be k-linked if it has at least 2k vertices and for any ordered
k-tuples (s1, . . . , sk) and (t1, . . . , tk) of 2k distinct vertices, there exist pairwise
vertex-disjoint paths P1, . . . , Pk such that Pi connects si and ti for i = 1, . . . , k.
The k-linkedness has been well-studied by many graph theorists, and there are
many results on relationships between the k-linkedness and the vertex-connectivity
of graphs. From the algorithmic point of view, the k-linkedness has attracted
attention because of similarities with the vertex-disjoint paths problem, which is
one of the most important problems in computer science and algorithmic graph
theory. In the vertex-disjoint paths problem, we are given a graphG and 2k distinct
vertices s1, . . . , sk, t1, . . . , tk called terminals, and the objective is to find pairwise
vertex-disjoint paths P1, . . . , Pk such that Pi connects si and ti for i = 1, . . . , k.
With the terminology of the vertex-disjoint paths problem, a graph is k-linked if
and only if the vertex-disjoint paths problem has a solution for any choice of 2k
terminals. In this talk, we consider the problem of finding a minimum number
of vertices whose removal makes the graph non-k-linked, which can be stated as
follows.

Max Non-k-Linked Induced Subgraph

Input: A graph G = (V,E).
Problem: Find a vertex set V0 ⊆ V with maximum cardinality such that
G[V0] (the subgraph induced by V0) is not k-linked.

We mainly discuss the case of k = 2, which is interesting because of its relation
to the problem of finding a maximum planar induced subgraph. By a classical
result on the 2 vertex-disjoint paths problem [3], it is well-known that the graph is
not 2-linked if and only if it cannot be embedded in a plane up to “3-separations”.
That is, the non-2-linkedness is a similar concept to the planarity. The prob-
lem of finding a maximum planar induced subgraph is an important problem in
theoretical computer science, because it amounts to computing a measure for non-
planarity of graphs. Max Non-2-Linked Induced Subgraph can also be regarded as
a problem of computing a measure for non-planarity of graphs, which is one of
our motivations for studying Max Non-2-Linked Induced Subgraph. In this talk,
we show that Max Non-2-Linked Induced Subgraph can be solved in polynomial
time. This result is surprising because most of all natural problems of computing
measures for non-planarity, such as finding a maximum planar (induced) subgraph
or computing the minimum number of crossings in an embedding in a plane, are
known to be NP-hard (see [2]).

We now give some remarks on proof techniques for the polynomial solvability
of Max Non-2-Linked Induced Subgraph. A natural approach to solve Max Non-2-

Linked Induced Subgraph is to consider the problem of finding a maximum vertex
set whose inducing subgraph contains no two vertex-disjoint paths connecting
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fixed terminal pairs. We call it Max 2-VDP-free Induced Subgraph, whose formal
description is as follows.

Max 2-VDP-free Induced Subgraph

Input: A graph G = (V,E) and distinct terminals s1, t1, s2, t2 ∈ V .
Problem: Find a vertex set V0 ⊆ V with maximum cardinality such that

{s1, t1, s2, t2} ⊆ V0 and the vertex-disjoint paths problem with terminal
pairs (s1, t1) and (s2, t2) has no solution in G[V0].

We can easily see that by solving Max 2-VDP-free Induced Subgraph for every
choice of the terminals s1, t1, s2, t2, we obtain a solution of Max Non-2-Linked

Induced Subgraph. However, we show that Max 2-VDP-free Induced Subgraph is
NP-hard. This result suggests that the above reduction does not work for solving
Max 2-VDP-free Induced Subgraph. Therefore, we need another approach to Max

Non-2-Linked Induced Subgraph.
An extended abstract of this talk appears in ESA 2011 and a preprint is [1].
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Grothendieck inequalities with rank constraint

Fernando Mário de Oliveira Filho

(joint work with Jop Briët and Frank Vallentin)

For an integer r ≥ 1 and a matrix A ∈ R
m×n consider the following optimization

problem:

SDPr(A) = max

{ m∑

i=1

n∑

j=1

Aijxi · yj : xi, yi ∈ Sr−1

}
,

where x · y denotes the Euclidean inner product and Sr−1 = { x ∈ R
r : x · x = 1 }

is the (r − 1)-dimensional unit sphere. We also allow r = ∞, in which case S∞ is
the set of all square-summable sequences of norm 1.

This is a semidefinite programming problem with an added rank constraint;
setting r = ∞ amounts to removing the rank constraint. Notice then that
if A ∈ R

m×n then SDP∞(A) = SDPm+n(A) and this number can be efficiently
approximated by means of semidefinite programming.

For each r ≥ 1, letK(r) be the smallest constant such that for all real matricesA
we have

SDPr(A) ≤ SDP∞(A) ≤ K(r) SDPr(A).
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Grothendieck [4] proved that K(1) < ∞ and since then there have been many
attempts to compute the exact value of K(1). Up until recently, the best lower
and upper bounds known for K(1) were

1.676956 . . .≤ K(1) ≤ 1.782213 . . . ,

where the lower bounds is due to Davie [2] and Reeds [7] and the upper bound
is due to Krivine [6]. Recently, Braverman, Makarychev, Makarychev, and Naor
have announced that the upper bound of Krivine is actually strict.

Krivine’s upper bound could be roughly sketched as follows: from an optimal
solution x∗1, . . . , x∗m, y∗1 , . . . , y∗n of SDP∞(A) one constructs new vectors x̃1,
. . . , x̃m, ỹ1, . . . , ỹn having some prescribed inner products, and then one rounds
these vectors to +1, −1 (that is, to vectors in S0) using the random hyperplane
rounding technique also used by Goemans and Williamson [3] in their approxima-
tion algorithm for the maximum-cut problem.

The random hyperplane technique itself can be thus described. One generates a
vector z ∈ R

n by picking each entry of z independently from a normal distribution
with mean 0 and variance 1. This can be seen as equivalent to picking a vector
from Sn−1 at random according to the uniform distribution. Then the result of
rounding a vector x ∈ Sn−1 is

z · x
|z · x|

which is just the sign of z · x.
In analyzing this procedure, one makes use of Grothendieck’s identity: if x,

y ∈ Sn−1 and z ∈ R
n is picked at random as above, then

E

[
z · x
|z · x|

z · y
|z · y|

]
=

2

π
arcsin(x · y).

In our work (cf. Br̈ıet, Oliveira, and Vallentin [1]) we extend the idea of Krivine
to be able to compute upper bounds for K(r) for r ≥ 1. Our main technical
contribution is a matrix version of Grothendieck’s identity, which can be so stated.
Let Z ∈ R

r×n be such that each of its entries if picked independently from a normal
distribution with mean 0 and variance 1. Then if x, y ∈ Sn−1 we have

E

[
Zx

‖Zx‖ · Zy

‖Zy‖

]
=

2

r

(
Γ((r + 1)/2)

Γ(r/2)

)2

(x · y) 2F1

(
1/2, 1/2

r/2 + 1
; (x · y)2

)
,

where 2F1 is the hypergeometric series.
From our approach we obtain Krivine’s upper bound for r = 1, and an upper

bound due to Haagerup [5] for r = 2. For r = 3 we obtain

K(3) ≤ 1.280812 . . . ,

a result with applications in physics.
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On the integrality gap of hypergraphic Steiner tree relaxations

Neil Olver

(joint work with Michel X. Goemans, Thomas Rothvoß and Rico Zenklusen)

Let G = (V,E) be a graph with a set R ⊆ V of terminals, and edge costs c :
E → R+. The NP-hard Steiner tree problem asks for a connected subgraph of
minimum cost that spans all the terminals.

Until recently, LP relaxations have only played a very limited role in the design
of approximation algorithms for this problem. For the well-studied bidirected cut
relaxation, no bound on the integrality gap better than 2 is currently known.
But in a breakthrough result, Byrka, Grandoni, Rothvoß and Sanità showed that
a different component-based LP, one of a family of equivalent “hypergraphic”
relaxations, could be used to obtain improved approximation algorithms. They
presented a ln(4) + ǫ ≈ 1.39 approximation based on this relaxation. Curiously
however, their analysis compares against the integral optimum, and they did not
show a matching bound on the integrality gap of the LP (though they did show a
bound of 1.55 using other methods).

The hypergraphic LP we use is the undirected component-based relaxation due
to Warme [4]:

(lp)

min
∑

C∈K
xCcost(C)

∑

C∈K
xC(|S ∩R(C)| − 1)+ ≤ |S| − 1 ∀ ∅ 6= S ⊆ R

∑

C∈K
xC(|R(C)| − 1) = |R| − 1

xC ≥ 0 ∀ C ∈ K.
Here, K is the set of all full components of the instance; these are subgraphs of
G forming trees where all leaves are terminals and all internal nodes are non-
terminals. For C ∈ K, cost(C) is the sum of the edge costs of the component, and
R(C) is the set of terminals in C. This LP is easily seen to be a relaxation of
the Steiner tree problem; notice in particular that if R = V , every full component
is simply an edge, and the relaxation reduces to a standard formulation of the
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spanning tree polytope. It can be approximately solved (to within a 1 + ǫ factor
for any positive ǫ) in polynomial time, by restricting to full components of bounded
size [1].

We show that indeed the integrality gap of (lp) (and hence any of the equivalent
hypergraphic relaxations [3]) is bounded by ln(4). Our approach relies heavily on
the theory of matroids and submodular functions, and in the process we obtain a
number of structural insights into the hypergraphic LPs.

To obtain our bounds, we provide an iterative algorithm along the lines of
Byrka et al. [2]. In each iteration, a component is chosen to be part of the integral
solution, and is contracted for the purpose of the next iteration. However, whereas
in [2] the LP is re-solved after each contraction, instead we update the LP solution
of the previous iteration to be feasible in the new contracted instance. Once
all of the terminals have been contracted together, the union of the contracted
components will be a Steiner tree for the original instance. Roughly speaking, the
goal is to show that the component to contract, as well as the modification to
the LP solution, can be chosen in such a way that the decrease in cost of the LP
solution is comparable to the cost of the contracted component.

In order to do this, it is necessary to answer the question: how can a solution x
to (lp) be modified after a contraction in order to retain feasibility? Consider the
projection π of a (feasible or not) solution x to (lp) onto the edges: π(x) = z where
ze =

∑
C∈K:e∈C xC . Then the cost of solution x can be written as

∑
e∈E ceπ(x)e;

we can think of π(x)e as the capacity that x induces on edge e. Then for two
vectors x, x′ ∈ R

K
+ and a vector y ∈ R

E
+, we say that x′ is a reduction of x by y

if π(x′) = π(x) − y. For some x that is infeasible after a contraction step, we will
only consider modifications that can be obtained by reducing x. The relationship
between x and x′ is somewhat complicated; reducing the capacity on an edge can
cause components to split up.

Let x be a feasible solution to (lp), which will then be infeasible after con-
tracting a component Q. Call a vector y ∈ R

E
+ a feasible capacity removal if x

can be reduced by y to obtain a feasible solution. Now consider BQ, the set of
all feasible capacity removals which in addition are minimal (with respect to the
standard partial order on vectors). Crucially, we show that these vectors form the
base polytope of a polymatroid. We also precisely describe the rank function, and
show that the polymatroid has a gammoid description (implying that the rank
of a given set can be determined efficiently with a maximum flow computation).
Requiring minimality is important in the definition of BQ; the set of all feasible
capacity removals does not seem to be as well structured. Note however that after
removing a vector in BQ, it may still be possible to remove more capacity and
remain feasible; we consider this as a kind of cleanup step, and it is important
for the analysis. Exploiting this structural understanding, as well as other tools
involving submodular functions, we are able to show the following. Let K be
a maximal subset of E such that each connected component of (V,E \ K) con-
tains precisely one terminal. Now let Q be a randomly chosen component, such
that the probability that any particular component C is chosen is proportional
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to xC . Then vectors yC ∈ BC (i.e., a minimal feasible removal vector upon con-
traction of C) with supp(yC) ⊆ K can be chosen for each component C so that
E{yQe } ≥ P{e ∈ Q} for every e ∈ K. For some perspective, notice that if this were
possible with K = E it would imply an integrality gap of 1, since then the decrease
in cost of the LP solution would be at least the expected cost of the contracted
component. Capacity in edges outside of K is removed only as part of a cleanup
operation; after a component Q is picked and the LP solution is reduced by yQ

to obtain a solution x′ feasible to the new instance, x′ may possibly be reduced
further by removing capacity in E \K, without affecting feasibility. This potential
extra decrease in the LP solution is important in obtaining the integrality gap
bound, and is accounted for by means of an appropriate potential function. We
show that upon choosing a random component Q to contract, the expected change
in the potential at each iteration of the algorithm is bounded by the expected cost
of the chosen component. By considering the specifics of the potential function,
this already yields the integrality gap bound.

Algorithmically, the randomization can be easily avoided by choosing at each
iteration a component with cost no larger than the change in potential in that
step. The analysis discussed above implies that such a component always exists,
and the gammoid structure of the feasible removal polymatroids allows such a
component to be found efficiently via flow computations. As well as yielding the
ln(4) integrality gap bound for general instances, our approach also easily yields
a bound of 73/60 for quasi-bipartite instances (meaning an instance where every
edge contains at least one terminal). Again, this matches the approximation factor
obtained by Byrka et al. [2].

Obtaining a near-optimal solution to (lp) is, while polynomial, unfortunately
very expensive. An advantage of our approach is that this LP only needs to
be solved once, rather than after every iteration. In the quasi-bipartite case,
we additionally show how to construct an optimal solution to the hypergraphic
LP from an optimal solution to the bidirected cut relaxation (extending a non-
constructive equivalence demonstrated by Chakrabarty et al. [3]). So in this case,
we obtain a dramatically more efficient algorithm.
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Polynomial Time Graver Bases Methods for Integer Programming

Shmuel Onn

With colleagues Berstein, De Loera, Hemmecke, Lee, Romanchuk, Rothblum, and
Weismantel, we developed a theory, described in my monograph [1] and video [2],
which uses Graver bases to solve linear and nonlinear integer programs in variable
dimension in polynomial time. It leads to polynomial time solutions of multidi-
mensional table problems, multicommodity flows, n-fold integer programming, and
stochastic integer programming. Moreover, this theory is universal and provides a
new, variable dimension, parametrization of all of integer programming, and sug-
gests a simple approximation hierarchy for every integer programming problem.

Our theory can be viewed as a culmination of the line of research on test set
iterative methods for integer programming, providing the first polynomial time
procedures for computing the Graver basis (which is a universal test set containing
the universal Gröbner basis) and using it iteratively for optimization. We believe
this is a very important and promising line of research in integer programming.

1. Universality and Parametrization. One way to view the universality and
parametrization provided by our theory is via multidimensional tables. Consider
linear optimization over three dimensional 3×m× n tables with given line sums:

min




wx : x ∈ Z
3×m×n
+ ,

∑

i

xi,j,k = aj,k ,
∑

j

xi,j,k = bi,k ,
∑

k

xi,j,k = ci,j




 .

Theorem. Every integer program can be put precisely into this form; and for any
fixed parameter m, the problem can be solved in polynomial time with variable n.

2. Some Applications. Let us briefly mention a few applications. Precise
statements, more details and further examples are in [1] and the references therein.

Corollary. For fixed m1, . . . ,mk, nonlinear optimization and data security prob-
lems over margined m1×· · ·×mk×n tables with variable n are polytime solvable.

Corollary. For fixed l commodities and m suppliers, the separable convex integer
multicommodity flow problem with variable n consumers is polytime solvable.

Corollary. Stochastic integer programming with n scenarios is polytime solvable.

3. Improved Complexity. Till lately, the polynomial running times of the
algorithms underlying our theory were huge, with the degrees being the Graver
complexities of the systems, very large and rarely known exactly; for instance, for
3× 4× n table problems, the running time was polynomial but at least Ω(n27).

Fortunately, very recently we found in [3] a drastic improvement, leading to
cubic running time for any system. This makes the theory practical and leads to
improved hierarchy of approximations for any integer program. Here is one result
of [3] on nonlinear n-fold integer programming (see [3] and [4] for more details).
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Theorem. The following n-fold integer programming problem defined by bimatrix
A with variable entries, with separable convex p-piecewise affine objective function,
is solvable in time cubic in n, linear in log(f, b, l, u), and polynomial in max |Ai,j |,

min
{
f(x) : A(n)x = b , l ≤ x ≤ u , x ∈ Z

nt
}
,

where A(n) is the n-fold product of the (r, s)× t bimatrix A = A(1), defined by

A(n) :=




A1 A1 · · · A1

A2 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · A2




.

4. Hierarchy of Approximations for Integer Programming. One simple
way of using our theory to set a Graver approximation hierarchy for any integer
programming problem is to use the above universal table problem and the following
hierarchy of increasingly better approximations of the true Graver basis Gm,n,

Gm,n
1 ⊆ Gm,n

2 ⊆ · · · ⊆ Gm,n
d ⊆ · · · ⊆ Gm,n

g(m) = Gm,n .

For fixed d the set Gm,n
d can be computed and used in polynomial time with both

m,n variable, and for fixed m, the true Graver basis is attained as Gm,n
g(m) with

g(m) the Graver complexity of the bipartite graph K3,m, see [1]. Experimentation
shows that already Gm,n

3 seems to yield rapid convergence over random instances.
Another Graver approximation hierarchy is suggested by the new algorithm of [3].
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Weighted linear matroid matching

Gyula Pap

An approach to construct a polynomial time algorithm is presented in the talk
to solve the weighted linear matroid matching problem. A completely different
approach for the same problem, proposed at this workshop by Satoru Iwata, has
resulted in a polynomial time algorithm as well – both approaches have been
discovered independently, and apparently at the same time. The coincidence has
been discovered at the Combinatorial Optimization Workshop in Oberwolfach.
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But first let us focus on the background, and relevant references in the theory of
matroid matching.

Matroid matching has been introduced as an open problem by Lawler in 1976,
as a highly non-trivial common generalization of matroid intersection and graph
matching (see definition below). Without any assumption on the input matroid,
the problem turned out to be of exponential time complexity in the oracle model, as
seen by Lovász 1981, and independently by Jensen and Korte 1982. NP-hardness
has been established by Schrijver via a direct reduction from stable sets. Thus
our attention is towards instances for which the matroid matching problem is
tractable. A major breakthourgh came with results of Lovász, 1980 showing the
polynomial time solvability of matroid matching in case the matroid has a linear
representation – a special case that is called linear matroid matching. Lovász
also proposed further combinatorial applications, including Mader’s disjoint S-
paths, thus providing the first polynomial time algorithm for this problem. Scores
of other applications have been investigated, including maximum genus embed-
ding, Nebesky 1981, Furst, Gross, McGeoch 1988; parity-constrained orientations,
Frank, Jordán, Szigeti 2001, Király, Szabó 2003; maximum triangle cactus, Szigeti
2003, minimum rigid pinning-down in the plane, Fekete 2007. The fastest algo-
rithm for linear matroid matching to date is given by Gabow, Stallman, 1986,
matched by a different algorithm by Orlin 2008. One should also mention a recent
result by Lee, Sviridenko, Vondrák 2010, who gave a PTAS for matroid matching
in an arbitrary matroid based on local search.

The linear matroid matching problem may be defined in several different ways,
we consider the following definition. Consider a vectorspace V . A rank-2 subspace
of V is called a line. Let E be a set of lines. The input of the problem is given by
specifying a basis – a pair of vectors in V – for each line in E. A subset of lines
M ⊆ E is called a matching if r(∪M) = 2|M |, i.e. if the lines are independent.
The (unweighted) linear matroid matching problem is to maximize |M | over all
matchings with respect to V,E. This problem is solved by the following min-max
formula of Lovász.

Theorem 7 (Lovász, 1980). The maximum cardinality of a matching with respect
to V,E is equal to

min
K,π

r(K) +
∑

F∈π

⌊
1

2
rV/K(F )

⌋
,

where K is a linear subspace in V , π is a partition of E, and we are using the
notation of rV/K(F ) = r(K ∪ F )− r(K).

A weighted generalization of the matroid matching problem is defined quite
naturally in the following way. Besides V,E, we are also given a weight function
w : E → R+, and our goal is to find the maximum of w(M) :=

∑
e∈M w(e) over all

matchingsM . Given the similarity between Lovász’ Theorem, and the Berge-Tutte
formula for graph matching, one might expect that also the weighted problem is
tractable, like the weighted graph matching problem is solvable due to results of
Edmonds. However, the weighted linear matroid matching problem stood open for
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all those decades, despite all those similarities. A good explanation for the ”delay”
is that no simple LP description is known for the convex hull of matchings, and
still no such description seems to follow from neither of this approach, nor from
Iwata’s approach.

Results on weighted linear matroid matching have been few and far between.
Graph matching and matroid intersection are solvable also in the weighted setting.
If the input matroid is a gammoid, then Tong, Lawler, Vazirani 1984 have shown
it to be solvable by a reduction to graph matching. By polynomial matrices,
Camerini, Galbiati, Maffioli 1992 have derived a randomized weakly polynomial
algorithm. A PTAS in case of strongly base orderable matroids is given by Soto
2011. As it seems, these results do not point in the direction of a general approach
for linear matroids.

The trouble with finding a linear programming description comes from the diffi-
culty of decomposing the expression in the minimum in Lovász’ min-max formula
into the linear combination of simpler looking valid inequalities. While Iwata’s
approach circumvents this difficulty by using a different kind of upper bound (an
algebraic one), the approach proposed in this talk is to determine an extended
LP description by introducing auxiliary variables to the problem. Thus we would
describe a polytope in a higher dimension such that its projection to the space of
R

E would be equal to the convex hull of matchings.
To describe the extended LP we need some definitions. For a matchingM ⊆ E,

we define the matching incidence vector xM := χM ∈ R
E , and for a pair of

subspaces L < K < V and subset F ⊆ E, we define a value for yMK,L(F ) :=

rV/L(K ∧ sp(M ∩ F )). Our extended LP is based on valid inequalities for the

extended vector xM , yM .
A chain is a set of subspaces in V that can be indexed by D = {Di : 0 ≤ i ≤ k}

such that {0} = D0 < D1 < · · · < Dk = V , where I = {i : 1 ≤ i ≤ k}. For all
l ∈ E we introduce a variable x : E → R+. For all pairs of subspaces L < K < V
and a subset F ⊆ E, we introduce a variable yK,L(F ) ∈ R+. A triple F ,D, j
is called a subchain triple if F is a subpartition of E, D is a chain, and j ≤ k.
A quadruple D, I1, I2, F is called an chain component if D is a chain, I1, I2 is a
partition of I, and F ⊆ E. The value of a chain component D, I1, I2, F is given
by val(D, I1, I2, F ) :=

⌊
1
2

∑
i∈I1

rV/Di−1
(Di ∧ sp(F ))

⌋
. We require the following

constraints:
∑

i≤j

∑

F∈F
yDi−1,Di(F ) ≤ r(Dj) subchain triple F ,D, j(1)

x(F )−
∑

i∈I2

yDi−1,Di(F ) ≤ val(D, I1, I2, F ) chain component D, I1, I2, F(2)

2x(e)−
∑

i≤j

yDi−1,Di(e) ≤ 0 chain D, e ⊆ Dj(3)

The ”necessity” of these inequalities is that for any matching M , xM , yM satis-
fies each of these constraints, which may be proved in a couple of lines of easy
computation based on the above definitions. The main result of the talk is that,
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conversely, the maximum weight of a matching is always determined by the opti-
mum over the above description, and an optimum dual solution of small support
always exists. The approach to prove this result is a primal-dual optimum that
maintains a nicely structured dual solution and, in each step, constructs an aux-
iliary unweighted instance that is equivalent with the complementary slackness
conditions. Once a ”perfect matching” is found in the auxiliary unweighted in-
stance, the algorithm terminates by expanding shrunk blossoms. Otherwise a dual
change is preformed based on a dual solution from Lovász’ unweighted min-max.

Theorem 8. For an instance V,E,w of linear weighted matroid matching, the
maximum weight of a matching is equal to the maximum of wx over solutions
(x, y) of (1)-(3), and the dual optimum attains with support of cardinality no
more than O(r(V )|E|). Moreover, there is an algorithm to find this dual optimum
and a maximum weight matching by no more than O(r(V )|E|) invokations of an
algorithm for unweighted linear matroid matching.

(Remark: The algorithm uses an algorithm for the unweighted problem merely
as a black box. Using the algorithm of Gabow and Stallman of running time
O(r(V )|E|3) we obtain a running time of O(r(V )2|E|4) for the weighted problem.
This may be improved by using Orlin’s unweighted algorithm of the same run-
ning instead, and exploiting its details instead of using it merely in a black box.
The author conjectures that one could eventually push the running time down to
O(r(V )|E|3), matching that of the unweighted problem.)

From stable sets to sums of squares and conic factorizations

Pablo A. Parrilo

(joint work with Joao Gouveia, Rekha Thomas)

Summary: The theta body TH(G) is a well-known relaxation of the stable set poly-

tope STAB(G) that is computable using semidefinite programming. These ideas can be

extended via sum of squares techniques to other combinatorial optimization problems,

providing a natural generalization to polynomial ideals. We describe these techniques, as

well as recent results on lifting of convex sets and their relations with conic factorizations

of slack operators. A complete version of these results can be found in [3].

Linear optimization over convex sets plays a central role in optimization. In
many instances, a convex set C ⊂ R

n may come with a complicated representation
that cannot be altered if one is restricted in the number of variables and type of
representation that can be used. However, if we are allowed to represent the set C
as the projection of a higher-dimensional convex set, then much more parsimonious
representations may be possible.

In our work, we ask the following basic geometric questions about a given convex
set C ⊂ R

n:
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(1) Given a full-dimensional closed convex cone K ⊂ R
m, when does there

exist an affine subspace L ⊂ R
m and a linear map π : R

m → R
n such

that C = π(K ∩ L)?
(2) If the cone K comes from a family {Kk} (e.g. {Rk

+} or {Sk
+}), then what

is the least k for which C = π(Kk ∩ L) for some π and L?

If C = π(K∩L), then K∩L is called a K-lift of C. In [5], Yannakakis points out
a remarkable connection between the smallest k for which a polytope has a R

k
+-lift

and the nonnegative rank of its slack matrix. In Theorem 10 (see [3] for context
and additional results), we prove an extension of Yannakakis’ result to the general
scenario of K being any closed convex cone and C any convex set, answering
Question (1). The main tool is a generalization of nonnegative factorizations of
nonnegative matrices to cone factorizations of slack operators of convex sets.

Stable Set Polytopes An interesting example of polytopes that arise from
combinatorial optimization is that of stable set polytopes. Let G be a graph with
vertices V = {1, . . . , n} and edge set E. A subset S ⊆ V is stable if there are
no edges between elements in S. To each stable set S we can associate a vector
χS ∈ {0, 1}n where (χS)i = 1 if i ∈ S and (χS)i = 0 otherwise. The stable set
polytope of the graph G is the polytope

STAB(G) = conv{χS : S is a stable set of G}.
Finding the largest stable set in a (possibly vertex-weighted) graph is a classic
NP-hard problem in combinatorial optimization that can be formulated as linear
optimization over STAB(G).

The polytopes STAB(G) also give rise to one of the most celebrated results
in semidefinite lifts of polytopes. Recall that a graph is perfect if the chromatic
number of every induced subgraph equals the size of its largest clique.

Theorem 9. [4] Let G be a perfect graph with n vertices, then STAB(G) has a
Sn+1
+ -lift.

Sum of squares and theta bodiesA natural class of lift-and-project methods
can be obtained using multivariate polynomials and sums of squares techniques.
Let I be a polynomial ideal. Given a polynomial p(x), we say that it is a sum
of squares (sos) modulo I, if there exist polynomials h1(x), . . . , hs(x) such that
p(x) −∑

hi(x)
2 ∈ I. If the degrees of all the hi are bounded above by k we say

that p is k-sos modulo I. This is a sufficient condition for nonnegativity over a real
variety that has been used often to construct sequences of semidefinite relaxations
to convex hulls of real varieties (see [2]). One such hierarchy is the theta body
hierarchy, defined geometrically by taking the k-th theta body relaxation, denoted
by THk(I), to be the intersection of all half-spaces {ℓ(x) ≥ 0} such that ℓ(x) is a
linear polynomial that is k-sos modulo I.

In the particular case where I is the ideal generated by the polynomials x2i − 1
for i ∈ V and xixj for (i, j) ∈ E, then the corresponding theta body is equal to
TH(G). These ideas can be extended to more general ideals, such as the ones
arising from binary matroids [1].
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Cone lifts and cone factorizations We have extended Yannakakis’ charac-
terization of the existence of a lift to general convex bodies. We sketch these ideas
below.

A convex set is called a convex body if it is compact and contains the origin in
its interior. Recall that the polar of a convex set C ⊂ R

n is the set

C◦ = {y ∈ R
n : 〈x, y〉 ≤ 1, ∀x ∈ C}.

Let ext(C) denote the set of extreme points of C, namely, all points p ∈ C such
that if p = p1 + p2, with p1, p2 ∈ C, then p = p1 = p2. Since C is compact, it
is the convex hull of its extreme points. Consider the operator S : Rn × R

n → R

defined by S(x, y) = 1− 〈x, y〉. We define the slack operator SC , of the convex set
C, to be the restriction of S to ext(C) × ext(C◦).

Definition 1. Let K ⊂ R
m be a closed convex cone and C ⊂ R

n a full-dimensional
convex body. A K-lift of C is a set Q = K∩L, where L ⊂ R

m is an affine subspace,
and π : Rm → R

n is a linear map such that C = π(Q). If L intersects the relative
interior of K we say that Q is a proper K-lift of C.

Definition 2. We say that the slack operator SC is K-factorizable if there exist
maps (not necessarily linear)

A : ext(C) → K and B : ext(C◦) → K∗

such that SC(x, y) = 〈A(x), B(y)〉 for all (x, y) ∈ ext(C)× ext(C◦).

With the above set up, we can now characterize the existence of a K-lift of C.

Theorem 10. If C has a proper K-lift then SC is K-factorizable. Conversely, if
SC is K-factorizable then C has a K-lift.

Cone ranks of slack operatorsWe established earlier necessary and sufficient
conditions for the existence of a K-lift of a given convex body C ⊂ R

n for a fixed
coneK. In many instances, the coneK belongs to a family such as (Ri

+)i or (Si
+)i.

In such cases, it becomes interesting to determine the smallest cone in the family
that admits a lift of C. In this section, we study this scenario and develop the
notion of cone rank of a convex body.

Definition 3. A cone family K = (Ki)i∈N is a sequence of closed convex cones Ki

indexed by i ∈ N. The family K is said to be closed if for every i ∈ N and every
face F of Ki there exists j ≤ i such that F is isomorphic to Kj.

We can then define a natural notion of cone rank for a nonnegative matrix
(or operator). By considering the slack operator of a convex body, we have the
corresponding notion of cone rank of a convex body.

Definition 4. Let K = (Ki)i∈N be a closed cone family.

(1) The K-rank of a nonnegative matrix M , denoted as rankK(M), is the
smallest i such that M has a Ki-factorization. If such an i does not exist,
say that rankK(M) = +∞.
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(2) The K-rank of a convex body C ⊂ R
n, denoted as rankK(C), is the smallest

i such that the slack operator SC has a Ki-factorization. If such an i does
not exist, say that rankK(C) = +∞.

Theorem 11. Let K = (Ki)i≥0 be a closed cone family and C ⊂ R
n a convex

body. Then rankK(C) is the smallest i such that C has a Ki-lift.

¿From the optimization viewpoint, perhaps the most interesting cases are those
when the cone family is the nonnegative orthant, or the positive semidefinite cone.
These give rise to the notion of nonnegative rank and PSD rank, respectively. In
the paper [3] we provide a number of results and bounds for these cone ranks.
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Some 0/1 polytopes need exponential size extended formulations

Thomas Rothvoß

Combinatorial optimization deals with finding the best solution out of a finite
number of choices X ⊆ {0, 1}n, e.g. finding the cheapest spanning tree in a graph.
If possible one aims of course to design a polynomial time algorithm. However
another popular way to study combinatorial problems is to express the convex hull
P = conv(X) by linear inequalities Ax ≤ b, i.e. describing them as the solutions
of a linear program. A drawback of this approach is that in general an exponential
number of inequalities is needed. In principle one could use the Ellipsoid method
to optimize these systems, if at least the separation problem can be solved in
polynomial time. But in practice this method is considered to be not applicable. A
more satisfactory approach is to allow polynomially many extra variables in order
to reduce the number of necessary inequalities to a polynomial. This is called a
compact formulation P = {x | ∃y : Ax + Uy ≤ b}. Such compact formulations
exist for example for the spanning tree polytope [5], the parity polytope and the
permutahedron (see [6] for an extensive account).

This naturally leads to the question for which problems such a compact formu-
lation does not exist. Yannakakis [8] showed that the TSP polytope PTSP (the
convex full of the characteristic vectors of all Hamiltonian cycles in the complete
graph on n nodes) does not have a subexponential size symmetric formulation.
Surprisingly the same result holds true for the matching polytope, though here a
complete description of all facets is known due to Edmonds [2] and the problem
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itself as well as the separation problem are solvable in polynomial time. Kaibel,
Pashkovich and Theis [4] demonstrate that symmetric formulations are in some
cases more restricted by proving that there is a compact non-symmetric formu-
lation for all logn-size matchings, while symmetric formulations still need size
nΩ(logn).

1. Our contribution

However, it remains a fundamental open problem to show that the matching
polytope or the TSP polytope do not admit any non-symmetric compact formu-
lation. In fact, it was even an open problem to prove that there exists any family
of 0/1 polytopes without a compact formulation1. In this paper we answer this
question affirmatively. Let xc(P ) be the minimum number of inequalities that are
needed to describe a polytope Q which can be linearly projected on P . We say
xc(P ) is the extension complexity of P .

Theorem 12. For any n ∈ N, there exists a set X ⊆ {0, 1}n such that

xc(conv(X)) ≥ Ω(2n/2/
√
n log(2n)).

In fact, this bound also holds with high probability, if the set X ⊆ {0, 1}n is
picked at random. More precisely, we have

Corollary 3. Let X(1), . . . , X(M) ⊆ {0, 1}n be distinct subsets and let 0 < δ < 1

be a parameter such that δM ≥ 2n
4

. Then for at least (1 − δ) ·M many indices

j ∈ {1, . . . ,M} one has xc(conv(X(j))) ≥ Ω
(√

log(δM)
n log(2n)

)
.

Since it is well known that there are doubly-exponentially many matroids on
n elements, this implies that there must be a family of matroid polytopes with
exponential extension complexity.

2. Proof sketch

Our idea is based on a counting argument similar to Shannon’s theorem [7]
(see also [1]) for lower bounds on circuit sizes: Let us assume for the sake of
contradiction that all n-dimensional 0/1 polytopes have a compact formulation
P = {x | ∃y ≥ 0 : Ax + Uy = b} of polynomial size r(n). Since there are
doubly-exponentially many 0/1 polytopes, there must also be at least that many
formulations of size r(n). This would lead to a contradiction under the additional
assumption that all coefficients in the system Ax + Uy = b have polynomial en-
coding length. Unfortunately there is no known result which guarantees that the
coefficients of U will even be rational. In our approach, we bypass these difficulties
by selecting a linearly independent subsystem of Ax+Uy = b which maximizes the
volume of the spanned parallelepiped; then we discretize the entries of U . We thus
obtain a subsystem Āx+ Ūy = b̄ with the property that x ∈ X if and only if there
is a short certificate y such that Āx + Ūy ≈ b̄ for the rounded system. Secondly,

1This was posed as an open problem by Volker Kaibel on the 1st Cargese Workshop in
Combinatorial Optimization.
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all numbers in Ā, Ū , b̄ have an encoding length which is bounded by a polynomial
in n. In other words, this construction defines an injective map, taking a set X
as input and providing (Ā, Ū , b̄). Since there are doubly-exponentially many sets
X ⊆ {0, 1}n and by injectivity, the number of such systems (Ā, Ū , b̄) must also be
doubly-exponential, which then implies the result.

3. Subsequent work

After publication of this work, Fiorini, Massar, Pokutta, Tiwary and de Wolf [3]
were able to prove that the TSP polytope does not admit a compact extended
formulation (the same holds true for the stable set polytope, the cut polytope and
the correlation polytope).
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From Pyramids to Virtual Private Network Polyhedra

András Sebő

(joint work with Nicola Apollonio, Gianpaolo Oriolo and Fabrizio Grandoni)

Consider a communication network which is represented by an undirected graph
G = (V,E) with a set of k terminals W ⊆ V and edge costs c : E → R+. The
terminals want to communicate with each other. However, the exact amount of
traffic between pairs of terminals is not known in advance. Instead, each terminal
i ∈ W has an upper bound b(i) ∈ ZZ+ on the cumulative amount of traffic that
terminal i can send or receive. The general aim is to install capacities on the
edges of the graph supporting any possible communication scenario at minimum
cost where the cost for installing one unit of capacity on edge e is c(e). More

generally, given a not necessarily linear cost function f : IRE −→ IR, we may want
to minimize the cost f(u) of a capacity vector u ∈ IRE that we want to buy.
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Inequalities (or equalities) between vectors or functions will be understood co-
ordinatewise (on the entire domain) respectively. If u ≥ v we will say that u
majorizes v.

A set of traffic demands D = {dij | i, j ∈
(
W
2

)
} specifies for each unordered pair

of terminals i, j ∈
(
W
2

)
, denoting by

(
W
2

)
the set of cardinality-two subsets of W ,

the amount dij ∈ R≥0 of traffic between i and j. A set D is valid if it respects
the upper bounds on the traffic of the terminals. That is, (setting dii = 0 for all
i ∈W ) ∑

j∈W

dij ≤ b(i) for all terminals i ∈ W . (∗)

A solution to the symmetric Virtual Private Network Design problem defined by
G, W , and b, c consists of an i-j-path Pij in G for each unordered pair i, j ∈

(
W
2

)
,

and edge capacities u(e) ≥ 0, e ∈ E. Such a set of paths P := {Pij : i, j ∈
(
W
2

)
}

is called a template. A template, together with edge capacities u(e), (e ∈ E), is
called a virtual private network. We are searching for an optimal one.

A virtual private network is feasible, if all valid sets of traffic demands D can
be routed without exceeding the installed capacities u where all traffic between
terminals i and j is routed along path Pij , that is

For all edges e ∈ E
∑

{i,j}∈(W2 ): e∈Pij

dij ≤ u(e).

A feasible virtual private network is called optimal if the total cost of the ca-
pacity reservation

∑
e∈E c(e)u(e) is minimal (or for more general cost functions

f : IRE −→ IR, the value f(u) has to be minimal).

For any given template P , the vector of optimal capacities u(P) is uniquely
determined (and can be efficiently computed as the maximum of a fractional b-

matching problem in the complete graph
(
W
2

)
[15]), as follows (irrelevant in the

sequel, since we will need it only in situations trivial from scratch):
Indeed, the solutions of (*) are fractional b-matchings in the complete graph(

W
2

)
. The maximum number of paths (with multiplicity, that may be fractional as

well) containing e is equal to the maximum weight of a b-matching with the weight

function 1 on pairs i, j ∈
(
W
2

)
for which e ∈ Pij and 0 otherwise. This maximum is

exactly the capacity uP(e) that has to be allocated to e when template P is used.
We define a multiflow with a pair (P , D) where P is a template and D a (not

necessarily valid) traffic matrix. A multiflow is a multiset of paths where the (pos-
sibly fractional) multiplicities - in other words coefficients are given in the matrix
D, the coefficient of path Pij being dij . The number of paths (with multiplicity)
containing an edge (that is, the sum of coefficients containing it) will be called
the flow value of the edge. Now uP(e) can be rephrased as the maximum flow
value of edge e where the maximum ranges over the multiflows with feasible traffic
matrices.

We have just seen that the object that has to be designed is a template, and
only a template. The capacity function uP associated with template P is in IRE –
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that is, the capacity uP(e) ∈ IR of edge e for all e ∈ E according to template P –,
is then uniquely determined. This is reassuring to know, furthermore important
for our intuition, but will not be explicitly used in the sequel.

A feasible virtual private network is a tree solution if the subgraph of G spanned
by the support of u (that is, edges e ∈ E with u(e) > 0) is a tree.

The problem was defined by Fingerhut, Suri and Turner [2] and by Gupta,
Kleinberg, Kumar, Rastogi, and Yener [8]. A question that has been open for a
while is whether for each instance of the problem there exists an optimal virtual
private network that is a tree solution. The following conjecture has been formally
stated by Italiano, Leonardi, and Oriolo [10] (see also [8], Erlebach and Rüegg [1]):

Conjecture 1 (The VPN Tree Routing Conjecture). For each SVPND instance
(G,W, b, c) there exists an optimal virtual private network which is a tree solution.

The conjecture was recently proved by Goyal, Olver and Shepherd [4], and
it follows that the optimal solution is equal to the optimal tree-solution, where
the latter has already been observed to be found in polynomial time by Gupta,
Kleinberg, Kumar, Rastogi, and Yener [8]. In this note we provide a polyhedral
light and a simple proof of this result:

Given an undirected graph G = (V,E) and W ⊆ V , a Steiner-tree (in (G,W )
) is a tree (U,H) such that W ⊆ U ⊆ V , H ⊆ E, and is (inclusionwise) minimal
with respect to these properties, that is, the vertices of degree 1 of (U,H) are inW .
A tree-template is a template equal to the set of paths between pairs of terminals
of a Steiner-tree of (G,W ). The tree-template whose members are the the paths
between terminals of a particular Steinet-tree F of (G,W ) will be denoted by TF .
Define the capacity polyhedron

C(G,W ) := conv(uP : P is a template in (G,W ) ) + IRE
+.

For basic notions of polyhedral combinatorics and linear programming we refer to
Schrijver [14], for instance conv(.) is the convex hull of vectors that figure in the
argument. The main point of this paper is a simplified proof, and deduction of
sharper consequences, of the following version of the VPN-tree conjecture:

Theorem 13. The set of vertices of the polyhedron C(G,W) equals
{uTF : F is a Steiner-tree}, that is, the set of capacity vectors of tree-templates.

It follows that conv(uTF : F is a Steiner tree ) + IRE
+ defines the same polyhe-

dron (its minimal faces are vertices, since the defined polyhedron is full dimensional
and its elements are non-negative) as C(G,W ). Note that the support of u = uTF

is F , and any template different from TF has a different capacity vector since even
its support is different from that of u.

Three direct new consequences of this theorem can then be deduced:

– The VPN tree conjecture, i.e. Goyal, Olver and Shepherd’s theorem [4]
and its polyhedral extension.

– An optimal VPN for convex functions f : IRE −→ IR can be found in
polynomial time with the ellipsoid method.
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– The VPN tree conjecture is true for concave cost functions f : IRE −→ IR
as well (even if the optimal solution is NP-hard to find), extending the
result for separable concave functions in [6].

Besides the results themselves, the main content of the talk may be the demys-
tification of the subject:

The mysterious “existence of tree solutions” turns out to be a special case of
the “existence of basic solutions” in linear programming. Indeed, the main result
of this work is that the vertices of a corresponding polyhedron are trees.

Furthermore, the “pyramidal” weight function [6] turns out to be simply the
capacity function of particular templates, called rooted templates (see next section).
No doubt, this function is pyramidal, but instead of this property we will have to
care about rooted and tree templates and their place on the capacity polyhedron.

Thereby the conceptually difficult proof clears up to a proof of the above poly-
hedral theorem in a polyhedral way. It uses a slight sharpening of Padberg and
Rao’s theorem about the relation of Gomory-Hu trees and minimum weight odd
cuts, and stimulates research on a possible elementary proof. A combinatorial
polynomial algorithm for finding an optimal template is then at hand without
further effort.
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Minimum Congestion versus Maximum Throughput: Connections and
Distinctions

Bruce Shepherd

We discuss two well-known problems in the theory of routing in graphs. The
first is the nminimum congestion problem, which given an (capacitated if you like)
undirected graph G = (V,E) and pairwise demands Dij asks to route all the
demands (fractionally if you like) so that the maximum load (congestion when
there are capacities) on any edge is minimized. This gives rise to the well-studied
notion of flow-cut gap, and the question of How much does the cut condition buy
you? One outstanding question asks if every planar instance has a flow-cut gap
of size O(1). This question (and similar questions for general graphs where it
is known the flow-cut gap is Θ(logn) [4]) have tended to be studied from the
dual perspective. In particular, the companion conjecture of whether every planar
graph (or indeed any minor-closed class) admits a low-distortion embedding into ℓ1
has attracted considerable attention from the metric embedding side. We present
several results and open questions with a more “primal” flavour. In particular we
discuss a conjecture about integral flow cut gaps [3].

The second part of the talk examines the maximum disjoint path problem. Here
we are only asked to find a feasible routing for a subset of the demands Dij .
However, they must route within the given capacitated graph (i.e., with no con-
gestion). This problem is harder than the congestion (flow-cut gap) version in
the sense that we must route integrally and also because any sensible linear (or
convex) relaxation only suggests which demands to route. E.g., it may say to
route .015 of the demand Dij and the problem is to determine which subset of
the demands to choose (round up); we call this the subset selection aspect. It
is easier than flow-cut gap problems however in a critical way. We do not need
to route all the demands and can sacrifice some for the sake of routing others.
This is used to great benefit in all of the constant approximation algorithms for
maximum disjoint paths to date (at least for the maximum cardinality version).
The maximum disjoint path problem is already interesting on a tree. It includes
for instance the maximum matching problem in general graphs! It also becomes
APX-hard as soon as tree edges may have capacities 1 and 2. This shows that
subset selection is one key hurdle. We discuss a weighted 4-approximation for a
tree [1] before examining a procedure which establishes a constant integrality gap
for planar graphs with edge capacities at least 2 [2, 5] (if capacities are 1, the gap
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may be as large as
√
n). Along the way we highlight many open problems for both

classes of routing problems: minimizing congestion and maximizing throughput.
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Improving Christofides’ Algorithm for the s-t Path TSP

David Shmoys

(joint work with Hyung-Chan An, Robert Kleinberg)

We present a deterministic
(

1+
√
5

2

)
-approximation algorithm for the s-t path TSP

for an arbitrary metric. Given a symmetric metric cost between n vertices includ-
ing two prespecified endpoints, the problem is to find a shortest Hamiltonian path
between the two endpoints; Hoogeveen [2] showed that the natural variant of the
classic TSP algorithm of Christofides [1] is a 5/3-approximation algorithm for this
problem, and this asymptotically tight bound in fact has been the best approxima-
tion ratio known until now. We modify this algorithm so that it chooses the initial
spanning tree based on an optimal solution to the Held-Karp relaxation rather
than a minimum spanning tree; we prove this simple but crucial modification
leads to an improved approximation ratio, surpassing the 20-year-old barrier set
by the natural Christofides’ algorithm variant. Our algorithm also proves an upper

bound of 1+
√
5

2 on the integrality gap of the path-variant Held-Karp relaxation.
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A randomized rounding approach to the Traveling Salesman Problem

Mohit Singh

(joint work with Shayan O. Gharan, Amin Saberi)

For some positive constant ǫ0, we give a (32 − ǫ0)-approximation algorithm for the
following problem: given a graph G0 = (V,E0), find the shortest tour that visits
every vertex at least once. This is a special case of the metric traveling salesman
problem when the underlying metric is defined by shortest path distances in G0.
The result improves on the 3

2 -approximation algorithm due to Christofides [5] for
this special case.

Similar to Christofides, our algorithm finds a spanning tree whose cost is upper
bounded by the optimum, then it finds the minimum cost Eulerian augmentation
(or T-join) of that tree. The main difference is in the selection of the spanning
tree. Except in certain cases where the solution of LP is nearly integral, we select
the spanning tree randomly by sampling from a maximum entropy distribution
defined by the linear programming relaxation. Despite the simplicity of the al-
gorithm, the analysis builds on a variety of ideas such as properties of strongly
Rayleigh measures from probability theory [4], graph theoretical results on the
structure of near minimum cuts [1, 2], and the integrality of the T-join polytope
from polyhedral theory. Also, as a byproduct of our result, we show new properties
of the near minimum cuts of any graph, which may be of independent interest.
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Semidefinite Programming Hierarchies and the Unique Games
Conjecture

David Steurer

We survey recent results about semidefinite programming (SDP) hierarchies in
the context of the Unique Games Conjecture. This conjecture has emerged as a
unifying approach towards settling many central open problems in the theory of
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approximation algorithms. It posits the hardness of a certain constraint satisfac-
tion problem, called Unique Games.

We give a subexponential-time approximation algorithm for this problem using
SDP hierarchies (based on joint work with Sanjeev Arora and Boaz Barak [ABS10]
and joint work with Boaz Barak and Prasad Raghavendra [BRS11]).

On the other hand, we show that certain SDP hierarchies cannot solve the
Unique Games problem in a quasi-polynomial number of rounds (joint work with
Boaz Barak, Parikshit Gopalan, Johan H̊astad, RaghuMeka, and Prasad Raghaven-
dra [BGH+11]).

Both works rely on novel connections between the spectrum of graphs and the
expansion of small sets. For example, we show that any regular n-vertex graph
with at least nO(ε) eigenvalues larger than 1− ε contains a set with cardinality at
most n1−Ω(ε) and expansion at most 1/100 [ABS10]. (Here, we consider eigenvalues
of the normalized adjacency matrix of the graph.)

Finally, we demonstrate that all known instances of Unique Games can be
solved in a constant number of rounds of a stronger SDP hierarchy based on
sum-of-squares proofs (joint work Boaz Barak, Aram Harrow, Jonathan Kelner,
Yuan Zhou [BHK+11]). This result establishes a strong separation between SDP
hierarchies based on sum-of-squares proofs and other hierarchies.
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An Excluded Minor Characterization of Seymour Graphs

Zoltán Szigeti

(joint work with Alexander Ageev, Yohann Benchetrit, András Sebő)

A graph G is said to be a Seymour graph if for any set F of edges of G, there exists
a complete packing of cuts, that is |F | pairwise edge disjoint cuts each containing
exactly one element of F , provided that F is a join, that is for every circuit C of
G the necessary condition |C ∩ F | ≤ |C \ F | is satisfied.

Several particular cases of Seymour-graphs have been exhibited by Seymour [5]
[6], Gerards [3] and Szigeti [7], while the existence of complete packing of cuts in
graphs has been proved to be NP-hard [4].
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A first coNP characterization of Seymour graphs has been shown by Ageev,
Kostochka and Szigeti [2]. A circuit is called tight if equality holds in the above
inequality. A graph G is called an odd K4 (respectively, odd prism) if it is a
subdivision of K4 (respectively, prism) such that the length of each circuit remains
of the same parity as before.

Theorem 14 (Ageev, Kostochka and Szigeti [2]). A graph is not a Seymour graph
if and only if it has a join and two tight circuits whose union forms an odd K4 or
an odd prism.

We show new minor-producing operations that keep this property, and prove
excluded minor characterization of Seymour graphs: the operations are the con-
traction of full stars and that of odd circuits.

We will say that a graph is the stoc-minor of G if it arises from G by a series of
star and odd circuit contractions. A subdivision of a graph G is said to be even if
the number of new vertices inserted in every edge of G is even (possibly zero).

Theorem 15 (Ageev, Benchetrit, Sebő, Szigeti [1]). A graph is not a Seymour
graph if and only if it has a stoc-minor containing an even subdivision of K4 as a
subgraph.

Stoc-minors generated an immediate simplification in the characterization: prisms
disappeared! Indeed, K4 is a stoc-minor of the prism. This sharpens the previous
results, providing at the same time a simpler and self-contained algorithmic proof
of the existing characterizations as well, still using methods of matching theory
and its generalizations.

It is an open problem to find an NP characterization of Seymour graphs.
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Applications of semidefinite programming and harmonic analysis

Frank Vallentin

Geometric packing and coloring problems
Many, often notoriously difficult, problems in combinatorics and geometry can

be modeled as packing and coloring problems of graphs G = (V,E) where the
vertex set V can be an infinite or even a continuous set. Packing problems corre-
spond to finding the independence number α(G) and coloring problems correspond
to finding the chromatic number χ(G). Both are standard problems in combina-
torial optimization. Examples:

• Error correcting q-ary codes:

V = F
n
q , x ∼ y ⇐⇒ 0 < ‖x− y‖ < d.

• Kissing numbers:

V = Sn−1 = {x ∈ R
n : x · x = 1}, x ∼ y ⇐⇒ 0 < ∠(x, y) < π/3.

• Body packing: Let K ⊆ R
n be a convex, compact body.

V = R
n × SO(n), (x,A) ∼ (y,B) ⇐⇒ x+AKo ∩ y +BKo 6= ∅.

• Coloring Euclidean space:

V = R
n, x ∼ y ⇐⇒ ‖x− y‖ = 1.

The combination of semidefinite programming and harmonic analysis often gives
the best known upper bounds for these packing and the best known lower bounds
for these coloring problems.

n-point bounds for packing problems
To compute upper bounds for α(G) for finite graphs the t-th step in Lasserre’s

hierarchy is a useful tool:

las(t)(G) = max
{

∑

x∈V

y{x} :
(

yI∪J

)

I,J∈(V
≤t)

� 0, y∅ = 1, yI∪J = 0, I ∪ J not indep.
}

.

It is known that the first step in Lasserre’s hierarchy coincides with Lovász’ ϑ-
number and that the hierarchy converges to α in α steps:

ϑ(G) = las(1)(G) ≥ las(2)(G) ≥ . . . ≥ las(α(G))(G) = α(G).

Many variations are possible to set up an SDP hierarchy: For instance one can
consider only “interesting” principal submatrices to simplify the computation and
one can also add more constraints. If one strengthens the Lasserre hierarchy

by adding the nonnegativity constraints yI∪J ≥ 0 one speaks about las′(t)(G). A
rough classification for all these variations can be given in terms of n-point bounds.
This refers to all variations which make use of variables yI∪J with |I ∪ J | ≤ n.

For defining a hierarchy for infinite graphs, it is convenient to work with the dual

of las′(t)(G) as it uses positive semidefinite continuous Hilbert-Schmidt kernels as
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optimization variables (and not Borel measures):

las′(t)(G) = inf
{
〈M∅,K〉 : K ∈ C

((
V
≤t

)
×
(
V
≤t

))

�0
,

〈M{x},K〉 ≤ −1 for all x ∈ V , 〈MI ,K〉 ≤ 0 if 2 ≤ |I| ≤ 2t, I indep..
}
,

where 〈MI ,K〉 = ∑
J∪J′=I K(J, J ′). Then,

ϑ′(G) = las′
(1)

(G) ≥ las′
(2)

(G) ≥ . . . ≥ las′
(α(G))

(G)
?
= α(G).

The above problem is in general an ∞-dimensional SDP. However, only feasible
solutions are needed to prove upper bounds. With help of harmonic analysis and
polynomial optimization one can perform explicit, finite-dimensional (of course)
computations.

Explicit computations of n-point bounds have been done in a variety of situa-
tions. The following table provides a first guide to the relevant literature:
packing space 2-point 3-point 4-point

binary codes Fn
2 Delsarte (1973) Schrijver (2005) Gijswijt, Mittel-

mann, Schrijver
(2011)

q-ary codes Fn
q Delsarte (1973) Gijswijt, Schri-

jver, Tanaka
(2006)

constant weight
codes

{x ∈ Fn
q : |x| =

w}

Delsarte (1973) Schrijver (2005),
Regts (2009)

spherical caps Sn−1 Delsarte,
Goethals, Seidel
(1977)

Bachoc, V.
(2008)

real projective
space

RPn−1 Kabatiansky,
Levenshtein
(1978)

Cohn, Woo
(2011)

sphere packing Rn Cohn, Elkies
(2003)

body packing Rn × SO(n) Oliveira, V.
(2011+)

Symmetry reduction and harmonic analysis
Now I illustrate how to apply harmonic analysis in order to be able to perform

the calculations of las′(t)(G). To simplify the notation I consider the case when
(V, µ) is a compact measure space and when t = 1. Then,

ϑ
′(G) = inf

{

λ : K ∈ C(V ×V )�0,K(x, x) = λ− 1 for x ∈ V ,K(x, y) ≤ −1 {x, y} 6∈ E
}

Suppose the graph G has Γ as its symmetry group. If K ∈ C(V ×V )�0 is feasible

for ϑ′, then also its group average K is:

K(x, y) =

∫

Γ

K(γx, γy)dγ.

So it suffices to consider only the Γ-invariant cone

C(V × V )Γ�0 = {K : ∀γ ∈ Γ : K(γx, γy) = K(x, y)}
and a theorem of Bochner (1941) gives an explicit parametrization of C(V ×V )Γ�0.
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We state Bochner’s theorem now which requires a bit of technical vocabulary.
The group Γ acts on C(V ) by (γf)(x) = f(γ−1x). So one can speak about Γ-
invariant and Γ-irreducible subspaces of C(V ). The Peter-Weyl theorem (1927)
says that one can decompose C(V ) orthogonally (using the inner product from
L2(V ))

C(V ) = (H0,1 ⊥ . . . ⊥ H0,m0
) ⊥ (H1,1 ⊥ . . . ⊥ H1,m1

) ⊥ . . . ,

where Hk,l is Γ-irreducible and dimHk,l < ∞ and where Hk,l ∼ Hk′,l′ iff k = k′.
We fix an orthonormal basis ek,1,1, . . . , ek,1,dimHk,1

and Γ-isomorphisms ϕk,l :
Hk,1 → Hk,l and set ek,l,1 = ϕk,l(ek,1,1), . . . , ek,l,dimHk,1

= ϕk,l(ek,1,dimHk,1
).

Bochner’s theorem:

C(V ×V )Γ�0 =
{

K(x, y) =
∞
∑

k=0

〈

Fk,

(

dimHk,1
∑

i=1
ek,l,i(x)ek,l′,i(y)

)

l,l′=1,...,mk

〉

: Fk ∈ R
mk×mk
�0

}

.

This means that instead of optimizing over the cone C(V ×V )�0 we can optimize
over the direct product of the semidefinite cones Sm0

�0 ×Sm1

�0 × . . . and since we are
interested only in feasible solutions we can set Fk = 0 for large enough k so that
the final SDP becomes finite-dimensional.

2-point bounds for coloring problems
To get lower bounds for coloring problems we make use of Lovász’ sandwich

theorem

α(G) ≤ ϑ′(G) ≤ χ(G),

where a definition of ϑ′(G) which generalizes to infinite graphs is

ϑ′(G) = max
{
1− M(A)

m(A)
: A ∈ R

V×V , A ≥ 0, A(v, w) = 0 ∀{v, w} 6∈ E
}
.

Here, M(A) = sup{(Af, f) : ‖f‖ = 1} is the largest eigenvalue of A and m(A) =
inf{(Af, f) : ‖f‖ = 1} is the smallest eigenvalue of A

Instead of symmetric matrices A we can also consider Hermitian, bounded op-
erators A : L2(V ) → L2(V ). We say that a measurable set I ⊆ V is independent
for A if for all f ∈ L2(I) the equality (Af, f) = 0 holds. If A is the adjacency
matrix of a finite graph, then this definition coincides with the usual one. The
(measurable) chromatic number of A is

χm(A) = inf{k : ∃ k-partition of V into independent sets}.
Let ω be the normalized Haar measure on Sn−1 and define the adjacency op-

erator of the unit distance graph by Aω : L2(Rn) → L2(Rn) with (Aωf)(x) =

(ω ∗ f)(x) =
∫
Sn−1 f(x − y)dω(y). Then, χm(Rn) ≥ χm(Aω) ≥ 1 − M(Aω)

m(Aω) =

1−
(
minu∈Rn

∫
Sn−1 e

iu·xdω(x)
)−1

, which can be explicitly computed with the help
of elementary properties of Bessel functions. This is a result from Oliveira, V.
(2010).
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A strongly polynomial algorithm for flows with separable convex
objectives

László A. Végh

A well-studied nonlinear extension of minimum-cost flows is to minimize the ob-
jective

∑
ij∈E Cij(fij) over feasible flows f , where on each arc ij of the network,

Cij is a convex function. The model has several applications, see [1, Chapter 14]
for further references. For this problem, multiple polynomial-time combinatorial
algorithms were given, by Minoux [8], by Hochbaum and Shantikumar [7], and by
Karzanov and McCormick [9].

These algorithms are weakly polynomial. Finding a strongly polynomial algo-
rithm seems impossible by the very nature of the problem: the optimal solution
might be irrational, and thus the exact optimum cannot be achieved. Beyond
irrationality, the result of Hochbaum [6] shows that it is impossible to find an
ε-approximate solution in strongly polynomial time even with the Cij ’s being
polynomials of degree at least three.

The remaining class of polynomial objectives with hope of strongly polynomial
algorithms is convex quadratic. For these functions, the existence of a rational op-
timal solution is always guaranteed. Strongly polynomial algorithms were obtained
for special cases, for example, fixed number of suppliers (Cosares and Hochbaum,
[2]), and series-parallel graphs (Tamir [13]).

Our paper [15] provides a strongly polynomial algorithm for a broad class of
objectives, characterized by some natural assumptions; the most important char-
acteristic of this class is that an optimal solution can be computed exactly provided
its support. The class contains separable convex quadratic objectives, providing an
algorithm with running time O(m4 logm). Besides quadratic objectives, the class
also includes certain market equilibrium settings, such as linear Fisher markets,
described below.

For linear minimum cost flows, Orlin [10] developed a strongly polynomial ver-
sion of the scaling algorithm of Edmonds and Karp [4]. This is achieved by main-
taining and gradually extending the set of edges which are guaranteed to carry
positive flow amount in a certain optimal solution. The algorithm of Minoux [8]
is a natural extension of the Edmonds-Karp scaling method to separable convex
objectives. We give a strongly polynomial version of Minoux’s algorithm in the
spirit of Orlin’s technique.

The linear Fisher market model, is one of the most fundamental models in
equilibrium theory. We are given a set B of buyers and a set G of goods. Buyer i
has a budget mi, and there is one divisible unit of each good to be sold. For each
buyer i ∈ B and good j ∈ G, Uij ≥ 0 is the utility accrued by buyer i for one unit
of good j.

An equilibrium solution consist of prices pi on the goods and an allocation xij ,
so that (i) all goods are sold, (ii) all money of the buyers is spent, and (iii) each
buyers i buys a best bundle of goods, that is, goods j maximizing Uij/pj . The
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first combinatorial algorithm for this problem was given by Devanur et al. [3]; a
strongly polynomial algorithm was obtained by Orlin [11].

The equilibrium solutions for linear Fisher markets were described by two differ-
ent convex programs, by Eisenberg and Gale [5] in 1959 and an entirely different
one by Shmyrev [12]. In this latter model, the basic fij variable represent the
money payed by buyer i for product j (fij = pjxij).

min
∑

i∈G

pj(log pj − 1)−
∑

ij∈E

fij logUij

∑

j∈G

fij = mi ∀i ∈ B

∑

i∈B

fij = pj ∀j ∈ G

f ≥ 0

The Shmyrev program can be interpreted as an instance of the flows with separable
convex objective model. Indeed, orient the edges from the goods to the buyers, and
add a new source s, connected to every good. The assumptions of our model hold
and thus we obtain a strongly polynomial algorithm for linear Fisher markets (the
first such algorithm is due to Orlin [11]). This also extends to the more general
setting of spending constraint utilities, defined by Vazirani [14]. We obtain the
first strongly polynomial algorithm for this problem.
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A proof of the Boyd-Carr conjecture

Anke van Zuylen

(joint work with Frans Schalekamp, David P. Williamson)

The traveling salesman problem (TSP) is the most famous problem in discrete
optimization. Given a set of n cities and the costs c(i, j) of traveling from city i
to city j for all i, j, the goal of the problem is to find the least expensive tour that
visits each city exactly once and returns to its starting point. An instance of the
TSP is called symmetric if c(i, j) = c(j, i) for all i, j; it is asymmetric otherwise.
Costs obey the triangle inequality if c(i, j) ≤ c(i, k)+c(k, j) for all i, j, k. The TSP
is known to be NP-hard, even in the case that instances are symmetric and obey
the triangle inequality. From now on we consider only these instances.

Because of the NP-hardness of the traveling salesman problem, researchers have
considered approximation algorithms for the problem. The best approximation
algorithm currently known is a 3

2 -approximation algorithm given by Christofides
in 1976 [4]. Better approximation algorithms are known for special cases. Exciting
progress has been made recently in the case of graph-TSP, in which costs c(i, j) are
given by shortest path distances in an unweighted graph (see [10, 8, 9, 3]). However,
to date, Christofides’ algorithm has the best known performance guarantee for the
general case.

There is a well-known, natural direction for making progress which has also
defied improvement for nearly thirty years. The following linear programming
relaxation of the traveling salesman problem was used by Dantzig, Fulkerson, and
Johnson [5] in 1954. For simplicity of notation, we let G = (V,E) be a complete
undirected graph on n nodes. In the LP relaxation, we have a variable x(e) for
all e = (i, j) that denotes whether we travel directly between cities i and j on our
tour. Let c(e) = c(i, j), and let δ(S) denote the set of all edges with exactly one



Combinatorial Optimization 3069

endpoint in S ⊆ V . Then the relaxation is

Min
∑

e∈E

c(e)x(e)

subject to:
∑

e∈δ(i)

x(e) = 2, ∀i ∈ V, (SUBT )(1)

∑

e∈δ(S)

x(e) ≥ 2, ∀S ⊂ V, 3 ≤ |S| ≤ |V | − 3,(2)

0 ≤ x(e) ≤ 1, ∀e ∈ E.(3)

The first set of constraints (1) are called the degree constraints. The second set of
constraints (2) are sometimes called subtour elimination constraints or sometimes
just subtour constraints, since they prevent solutions in which there is a subtour
of just the nodes in S. As a result, the linear program is sometimes called the
subtour LP.

The LP is known to give excellent lower bounds on TSP instances in practice,
coming within a percent or two of the length of the optimal tour (see, for instance,
Johnson and McGeoch [7]). However, its theoretical worst-case is not well un-
derstood. In 1980, Wolsey [12] showed that Christofides’ algorithm produces a
solution whose value is at most 3

2 times the value of the subtour LP (also shown
later by Shmoys and Williamson [11]). This proves that the integrality gap of the
subtour LP is at most 3

2 ; the integrality gap is the worst-case ratio, taken over
all instances of the problem, of the value of the optimal tour to the value of the
subtour LP, or the ratio of the optimal integer solution to the optimal fractional
solution. The integrality gap of the LP is known to be at least 4

3 via a specific
class of instances. However, no instance is known that has integrality gap worse
than this, and it has been conjectured for some time that the integrality gap is at
most 4

3 (see, for instance, Goemans [6]).
Not only do we not know the integrality gap of the subtour LP, Boyd and Carr

have observed that we don’t even know the worst-case ratio of the optimal 2-
matching to the value of the subtour LP, which is surprising because 2-matchings
are well understood and well characterized. A 2-matching is an integer solution to
the subtour LP obeying only the degree constraints (1) and the bounds constraints
(3).1 A fractional 2-matching is a 2-matching without the integrality constraints.
Boyd and Carr make the following conjecture.

Conjecture 2 (Boyd and Carr [1]). The worst-case ratio of an optimal 2-matching
to an optimal solution to the subtour LP is at most 10

9 .

It is known that there are cases for which the cost of an optimal 2-matching is
at least 10

9 times the optimal solution to the subtour LP. In the general case, the
only bound on this ratio we know is one of Boyd and Carr [2], who show that the
integrality gap of 2-matchings is at most 4

3 ; since the constraints of the subtour

1We note that what we refer to here as 2-matchings are also sometimes called 2-factors.



3070 Oberwolfach Report 53/2011

LP are a superset of the fractional 2-matching constraints, this implies the ratio
is at most 4

3 .
The contribution of this talk is to improve our state of knowledge for the subtour

LP by proving Conjecture 2. We start by showing that in some cases the cost of
an optimal 2-matching is at most 10

9 the cost of a fractional 2-matching, which is a
stronger statement than Conjecture 2; in particular, we show this is true whenever
the support graph of the fractional 2-matching is biconnected. As the first step
in this proof, we give a simplification of the Boyd and Carr result bounding the
integrality gap for 2-matchings by 4

3 . In the case that the support of an optimal
fractional 2-matching is biconnected, the proof becomes quite simple. The perfect
matching polytope plays a crucial role in the proof: we use the matching edges to
show us which edges to remove from the solution in addition to showing us which
edges to add. We note that this idea was independently developed in the recent
work of Mömke and Svensson [8]. We also use a notion from Boyd and Carr [2]
of a graphical 2-matching: in a graphical 2-matching, each node has degree either
2 or 4, each edge has 0, 1, or 2 copies, and each component has size at least
three. Given the triangle inequality, we can shortcut any graphical 2-matching to
a 2-matching of no greater cost.

To obtain our proof of the Boyd-Carr conjecture, we give a polyhedral formu-
lation of the graphical 2-matching problem, and use it to prove Conjecture 2. If
x is a feasible solution for the subtour LP, then, roughly speaking, we show that
10
9 x is feasible for the graphical 2-matching polytope. Our previous results give us
intuition for the precise mapping of variables that we need. Using the graphical
2-matching polytope allows us to overcome the issues with the degree constraints
faced in trying to use Goemans’ results.

We conclude by posing a new conjecture, namely that the worst-case integrality
gap is achieved for solutions to the subtour LP that are fractional 2-matchings
(that is, for instances such that adding the subtour constraints to the degree
constraints and the bounds on the variables does not change the objective function
value).
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Pohligstr. 1
50969 Köln
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