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equations. The talks covered a broad range of topics, including large de-
viation and variational principles, rate-independent evolutions and gradient
flows, heat flows in metric-measure spaces, propagation of fracture, applica-
tions of optimal transport and entropy-entropy dissipation methods, phase-
transitions, viscous approximation, and singular-perturbation problems.

Mathematics Subject Classification (2000): 30Lxx, 35A15, 35Qxx, 49xx, 74xx, T6xx.

Introduction by the Organisers

It is well known that the study of many important evolution problems gains benefit
by adopting a variational point of view. Variational methods can be quite helpful
to better understand the intimate structure of the problem, to derive new prop-
erties concerning existence, uniqueness, stability, approximation, and long-time
behaviour, to guess new estimates, to find the right or more appropriate formu-
lations, to produce new kind of solutions, to explain the relationships between
different approaches or techniques, to derive or justify some equations in terms
of general principles and stochastic models, to study the stability of a system in
terms of a set of parameters or to capture its behavior in a singular perturbation
limit.

The workshop, organized by Alexander Mielke (WIAS, Berlin), Felix Otto (Max
Planck Institute, Leipzig), Giuseppe Savaré (Univ. Pavia) and Ulisse Stefanelli
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(IMATI-CNR, Pavia), aimed to present many new, striking and promising achieve-
ments in this wide area, thanks to the contribution of over 50 participants with
broad geographic representation and a variety of research fields, each revealing
different methodology, interests, and level of abstraction.

One of the organizers’ main goal was to generate a strong interaction between
various subjects and people with different backgrounds, covering calculus of vari-
ations, optimal transport, phase transitions, fluid mechanics, materials science,
stochastic calculus, and models. Approximately 25 talks of varying lengths were
delivered by experts in the fields but also by quite a number of young post-docs
and PhD students and stimulated a lot of discussions in a friendly and inspiring
atmosphere, that contributed to the overall success of the meeting.

Among the main themes presented during the workshop, we quote here

- the interplay between the theory of large deviation in stochastic analysis on
the one hand and variational principles on the other; e. g. an interpretation
of the Wasserstein gradient flow structure in terms of large deviation,
rigorous low-temperature bounds for the relaxation in multi-well energy
landscapes, singular limits of rate functionals;

- the energetic approach to rate-independent evolution problems and various
viscous regularizations, with applications to damage, fracture, and phase
transitions;

- crack propagation, e. g. an emerging analysis of fully dynamic models,
novel functional analytic aspects of the quasi-stationary models, and the
analysis of alternative propagation criteria;

- the classic or new gradient-flow structure of various linear and nonlinear
PDE’s;

- the application of optimal transport techniques to solve, study, or ap-
proximate efficiently evolution equations from fluid mechanics, particle
interaction, quantum problems;

- entropy-entropy dissipation methods for evolution and their link with
sharp functional inequalities;

- the interplay between evolution problems and geometry in metric-measure
spaces; e. g. a clear distinction between Riemannian and Finsler settings
is emerging;

- phase-transitions, viscous approximation, and singular-perturbation prob-
lems.

Special event
On Thursday afternoon, the Oberwolfach Prize was awarded to Nicola Gigli and
Laszlo Székelyhidi for their excellent achievements in Analysis and Applied Mathe-
matics. The award presentation by Gert-Martin Greuel, Director of the Institute,
and by Manfred Feilmeier of the Oberwolfach Foundation, was followed by the
Laudationes of the two price-winners. Luigi Ambrosio explained the crucial con-
tributions of Gigli concerning the metric theory of gradient flows, the structure of
the Wasserstein space, and the heat flow in non-smooth metric-measure spaces.
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Stefan Miiller explained the fundamental new insights of Székelyhidi into the the-
ory of nonlinear partial differential equations and their applications in continuum
mechanics, focusing in particular on compensated compactness, partial regularity
and its failure.

Nicola Gigli then gave a lecture on his more recent results on metric measure
spaces with a lower Ricci curvature bound and Laszlé Székelyhidi presented his
recent achievements on the Euler equations, in particular the Onsager conjecture,
and its relation to the Nash-Kuiper embedding in geometry. In the evening, there
was a festive dinner.
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Abstracts

A diffusion equation for 3D divergence-free vector fields
YANN BRENIER

Introduction. We show how the evolution equation

((VxB)x B)xB
|BJ? ’

(1) 0¢B =V x V-B =0,

can be seen as a ’canonical’ diffusion equation for 3D divergence-free vector fields,
which we claim to be the vectorial counterpart of the standard diffusion equation
for scalar density fields, namely

To justify, this claim, we proceed in three steps:

i) using a classical ’particle’ approximation of the heat equation (2) , with a mol-
lification parameter €, we get an evolution equation for the particle positions;

ii) we write this evolution equation, in an abstract form, as a (suitably normal-
ized) gradient flow, with a suitable energy functional, that can be interpreted as
a mollified version of the squared L? norm of the density field p;

iii) we use the same abstract framework in the case of a loop (instead of a set of
particles) and the corresponding divergence-free vector field B: we let evolve the
loop according to the (normalized) gradient flow of the mollified squared L? norm
of B;

iv) we express the resulting equation as an evolution equation for B, let the cut-off
parameter go to zero and finally obtain the desired equation (1).

Particle approximation of the diffusion equation. It is 'folklore’ of particle
methods (as been developed in Los Alamos since the 50’s, in particular with F.H.
Harlow) to look for special solutions of form

N
1
= — - X
3) plt) = 7 30l = Xalt),
of the mollified diffusion equation
Ve
(4) atp + V- (p’U) = Oa v = _p—pa pﬁ(ta :C) = /6€($ - y)p(t’y)dya

where d, is a positive smooth approximation of the Dirac mass. We immediately
get, for the particle positions (X, (t),a = 1,- -+, N), the following self-contained
dynamical system

ey VE(Xa — X))
2117\[:1 66(Xa - Xb)

(5) 6tXa =
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(This approximation has been studied by Degond and Mustieles [1]. See also
[4, 6, 2] for related topics.) The dynamical system can be written in abstract form

(6) L —%

where J'[X] denotes the ’functional’ derivative of
1N

(7) JIX] =3 MZ:l 0e(Xa = Xy)

and j[X] denotes the ’integrand’
N

(8) JX]a = 0(Xa— Xp), a=1,---N.
b=1

Notice that 2J[X]/N? can be viewed as a mollified version of the squared L? norm
of p.

Loop evolution. We now consider a loop a € R/Z — X, € RP and the corre-
sponding divergence-free vector field

(9) B(z) = / §(z — Xo)X.da € RP,
R/Z
where X/ = dX,/da. We introduce the functional
1
(10) J[X] = 3 /6€(Xa — Xp) X! - X} dadb.

This is just a mollified version of [, [B(x)|*dxz/2 (which does not make sense for
a loop). We also introduce the integrand j[X]

(11) j1X]a = /&(Xa — Xo)X,, - X{ db.

Then, after elementary calculations, we get from the abstract equation (6), an
evolution equation for B, which, after letting € go to zero, reads:

N
(12) 6,531' + Z Gj (Bi’Uj — Bj’Ui) = 0,
Jj=1
1 N
(13) v; = @ Z(()]BZ - &-Bj)Bj,
j=1

which is nothing but (1) in the special case D = 3.
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Comments.

|(V x B) x BJ?
14 B =
(14) 2dt/||cz+/ Fr—dr =0

formally follows from equation (1). Thus, the diffusion process stops for all fields
B = B(x) such that (V x B)x B = 0. Such fields are special stationary solutions of
the 3D Euler equations and seem to play an important role in Turbulence Theory
[3] The same property holds true for the variant of equation (1), where there is no
denominator |B|2. The later equation was considered by Nishiyama [5] as a way
of getting special stationary solutions of the 3D Euler equations.

The analysis of equation (1) seems to us entirely open, as well as its possible
interpretation in terms of stochastic processes.
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A vanishing viscosity approach in damage mechanics
DOROTHEE KNEES
(joint work with R. Rossi and C. Zanini)

We analyze a rate-independent model for damage evolution in elastic bodies. The
central quantities are a stored energy functional (¢, z, u) depending on time ¢, the
displacements u and the damage variable z (z = 1 means undamaged, while z = 0
stands for maximum damage), and a dissipation functional R, which is assumed
to be positively homogeneous of degree one. The damage evolution is governed by
the following doubly nonlinear system:

(1) 0 =Dy&(t, 2(t), u(t)),

(2) 0 € IR(2(t)) + D.E(L, 2(), u(t)).

The first equation describes the quasistatic balance of forces for an elastic body,
while the second equation characterizes the evolution law for the damage variable
z. The irreversibility of the damage process, i.e. healing is excluded, is enforced by

setting R({) = oo if ¢ > 0 on some part of the physical body. As a consequence,
the subdifferential 9R(0) is unbounded, which makes the analysis challenging.
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Since in typical damage models the energy £ is not simultaneously convex in the
damage variable and the displacements, solutions may have jumps as a function
of time, as we will illustrate in the example below. The latter circumstance makes
it necessary to introduce a suitable notion of weak solutions.

In the by-now classical concept of global energetic solutions the equations (1)—
(2) are reformulated in terms of a global stability criterion and an energy balance
that must hold for all ¢ (U, Z suitable function spaces; special structure of E due
to irreversibility):

S: forallv €U, £ € Z: E(t,2(t),u(t)) < E(t, & v) +R(E — 2(t))

E: E(t,u(t), 2(t))+R(2(t) — 2(0)) = £(0, z(O),u(O))—i—fOt OE(T, 2(7), u(r))dr.
Within this framework the existence of solutions for damage models was investi-
gated eg. in [5]. This point of view allows for solutions that are discontinuous in
time. However, as will be shown in the example below, solutions may jump too
early and in particular they may jump although a local force balance criterium
would predict no motion at all.

As an alternative to the global energetic framework, jump criteria can also
be derived by adding an additional viscous dissipation to the problem and then
studying the rate-independent limit model as the viscosity tends to zero. This
strategy was introduced in the abstract papers [1, 4] and applied to damage models
in [3]. There, we use a technique for taking the vanishing viscosity limit, which is
based on arc-length reparameterization. In this way, in the limit we obtain a novel
formulation for the rate-independent damage model, which highlights the interplay
of viscous and rate-independent effects in the jump regime, and provides a better
description of the energetic behavior of the system at jumps. In [3] we prove the
existence of nondegenerate Z-reparametrized vanishing viscosity solutions of the
damage model.

Definition 1. A triple (,2,4) € Crip([0,5];[0,7] x Z x U) is a non-degenerate
Z-reparametrized vanishing viscosity solution of the damage model, if (1) is valid,
and if there exists a Borel function A : [0,.5] — [0, 00) such that for a.e. s € [0, 5]
it holds #'(s) > 0, #(s) + ||#'(s)|| = 1 and

(3) 0 € OR('(s)) + A(s)3'(s) + D.E(E(s), 2(s), u(s)),
(4) 0 = A(s)t'(s).

As can be seen from (4), £ > 0 on some interval (s1,s3) implies A = 0 and (3)
is just a reparametrized version of the original doubly nonlinear inclusion (2). On
the other hand, # = 0 on some interval means that the physical time is frozen
and an evolution of Z in this interval induces a jump in the slow external time
scale. In this regime, A might be positive, and hence viscous dissipation is active.
It is ongoing research to reformulate the reparametrized model with respect to
the original time ¢ and to deduce explicitly the jump criteria. For our analysis it
is essential that Z and the thermodynamically conjugate forces D, E(¢, z,u) are in
duality so that a chain rule can be applied. Due to the irreversibility constraint
on R and the resulting unboundedness of the setvalued operator OR(0) : Z — Z*
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FIGURE 1. Left: Vanishing viscosity solution (solid) and global
energetic solution (dashed) for Z; Right: Solution for Zs.

the usual energy estimates do not give enough information and refined estimates
have to be carried out.

The following zero-dimensional example reveals the differences between the pre-
dictions of the vanishing viscosity model and the global energetic model. For
t,z,e € Rlet E(t,z,e) = $g(2)e? — te with g(z) = $(22 +6), and let R({) = r (|
if ( <0 and R({) = oo otherwise (6 = 0.1, x = 500). Then (1) is satisfied if
e(t,z) = t/g(z) and we define Z(t,2) = min, (¢, z,e) = —t2/2g(z). Observe that
Z(t,-) is not convex in the second variable although g(-) is. Relations (1)—(2) are
equivalent to the following conditions:

2(t) <0, D.I(t,2(t)) — K <0, 2(t)(D.Z(t,2(t) — k) = 0.

In Fig. 1 (left), in the white region it holds D,Z(t,2) — k < 0, while in the grey
region we have D,Z(t,z) — k > 0. Starting with the initial value zp = 0.8, the
solution according to Definition 1 (Fig. 1, left, solid line) is constant until time ¢,
for which D,Z(t., z9) = k for the first time. Then a jump in z takes place, which
due to (3)—(4) crosses exactly the region with D, Z(t,z) — k > 0 (grey). After this
jump a slow, rate-independent evolution along the separating line between the two
regions (white and grey) takes place.

In contrast to this, in the global energetic framework described by S and E the
energy balance implies that at jump points ¢; we have fj((tt]]j)) D.Z(tj,§)—rd€ = 0.
Hence, the jump has to cross both, regions where the integrand is negative (white)
as well as regions, where the integrand is positive (grey). Due to the global stability
S this jump takes place as early as possible. After the discontinuity, the solution
follows the separating line (see Fig. 1, left, dashed line).

If one replaces g with g2(2) := (2/g(1) + (1 — 2)/g(0)) 7%, ( g2 is the harmonic
mean of ¢g(0) and g(1) with weight z), the situation changes completely. Now,
T5(t,-) is linear, and in particular convex, in the second variable. In this case, the
global energetic solution and the solution according to Definition 1 coincide, see
Fig. 1 (right). The energy with go arises (in 1d) in the model discussed in [2].
At least in 1d the convexity of Zo explains, why the solutions in [2] are so-called
threshold solutions (meaning that damage does not evolve unless the forces reach
a certain threshold) although they are defined via a global minimization principle
in the spirit of S and E.
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On dynamic Griffith fracture
CHRISTOPHER J. LARSEN

We consider a displacement-crack pair (u(t), I'(t)) to be a dynamic fracture solution
if
i) u follows elastodynamics off of T’
ii) T can only grow in time
iii) the total energy (stored elastic + kinetic + surface energy + work done
by loading) is balanced
iv) an additional principle holds, such as a form of maximal dissipation, that
can require the crack to grow (otherwise a stationary crack is always a
solution).

It is a dynamic Griffith fracture solution if the above hold and the surface energy
is (locally) proportional to H~~1(I"). We note that i)-iii) above are apparently not
controversial, and possibilities for iv) based on maximal dissipation were discussed
in [2]. Here our focus is on properties i)-iii).

Giving a meaning to i) is not obvious, especially with the spaces required if the
only assumption on T is a bound on HY¥~!(T'(¢)). The main point of [1] was to
give such a meaning, and show, for a given growing crack and initial data, that
there exists a u satisfying i).

More precisely, we have the following definitions: u is a weak solution of the
damped wave equation on the cracking domain ¢ — Q\ I'(¢), ¢t € [0,T], with
homogeneous Neumann boundary conditions if

(1) ue€ HY0,T;V)nWh>=(0,T; L?),

(2) for every ¢ € [0,T] we have u(t) € V4,

(3) for every s € [0,T) we have u € W*>(s,T; V),
(4) sup ||’u||Loc(s,T;VS*) < 400,

s€[0,T)
and for a.e. ¢t € [0,7]

(5) (U(t), d)t + (Vu(t) + yVu(t), V)2 = (f(t),¢)p2 for every ¢ € V4,
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where V := Vp, V* is the dual of V; with pairing (-,-);, consistent with the L2
pairing. V; := {v € GSBV(Q) N L?(Q) : Vv € L2(,RN), S, C T'(t)}.

u is a weak solution of the (undamped) wave equation on the cracking domain
t— Q\T(t) if

(6) u€ L0, T;V)nWh>=(0,T; L?),

(7) for every ¢ € [0,T] we have u(t) € V4,

(8) for every s € [0,T) we have u € W (s, T; V),
(9) sup |[di[[ oo (5, 7v) < 00,

s€[0,T)
and for a.e. t € [0, T

(10) (U(t), oy + (Vu(t), Vo) 2 = (f(t),d)rz for every ¢ € V;.

The main difference between (1) and (6) is that Va(t) ¢ L? without damping.

We then prove (Theorems 3.2 and 4.2) the following. Given suitable initial data
u(® 4 there exist solutions for both, plus, in the damped case, there is energy
balance:

SIVaO + 510+ [ IVadr = [ (). ir) e

is constant, and therefore we have uniqueness.

Note that this energy balance is undesirable, since it rules out the balance of
the total energy, which includes the surface energy. The main future interest
is therefore in the undamped equation (or perhaps, a damped equation with a
different kind of damping).

Outline of existence proof: We define u!, for i = —1,0, ..., n inductively by the
following: First,

(11) u® =u®, urt = u® — W,
then, for i = 0,1,...,n — 1, the function u/" is the minimizer in V,i+1 of
; ; 12
U — ut ut — uzfl )
i || =2 — e 4 | VulFs + |V — V.
T’n/ n L2 T’n/

It follows that we have

i+1 i i i1 .
<“” e 3> + (Vu ! V) 1o
L2

Tn Tn  Th

(12) + (VUi — Vil Ve =0

Tn

for every ¢ € Vii+1. We can take ¢ = uitt —uf and eventually get:
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for every t € (¢, tiT1):

n»’n

ti+1

o 2
[on ()22 dt + 7 /

i
th

. 2 4 ) . 2
i ()12 + [V un (61172 + Tn/o [Vt (8) ][ 2t

ti+1

n

(13) 12y / Vi (8)]2 dt = [JuD 2 + [ V@2,

where u,(t) is the affine interpolation between u;, and uit', and v,(t) is the

i -1 i+l
affine interpolation between “2—2— and “2=—==_ This gives bounds we need for
compactness.

Note that this holds also with v = 0. We also get that for all ¢ € (¢, t5F1),
(14) (0n(t), d)r2 + (Viin(t) +yVin(t), Vo) 2 = 0
for every ¢ € Vii+1, where 1, is piece-wise constant in time. We then show that
Uy, — U, Vi, = Vu, and Vi, — Vi, in the appropriate senses. (I
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uantum Navier-Stokes equations: kinetic and Lagrangian approaches
t Navier-Stok ti kineti dL i h
ANSGAR JUNGEL
(joint work with P. Fuchs and M. von Renesse)

We review some results obtained for a certain class of quantum fluid models,
namely the quantum Navier-Stokes equations. Quantum fluid models have the
advantage that quantum effects are included by correction terms, which allows,
e.g., for a hybrid classical-quantum modeling. Isothermal quantum Navier-Stokes
equations have been formally derived by Brull and Méhats [1] from the Wigner-
BGK equation (named after Bhatagnar, Gross, and Krook) by a Chapman-Enskog
expansion around the quantum equilibrium and by expanding the resulting non-
local equations in terms of powers of the scaled Planck constant. The equations
for the particle density n and the velocity u read as

(1) On +div(nu) =0, x€R? t>0,

2

(2) O(nu) + div(nu @ u) + Vp(n) + nVV(z) — S v (A\/ﬁ
6 vn

where p(n) = n” (v > 1) is the pressure, V(z) is a potential, and D(u) = +(Vu+

Vu') is the symmetric velocity gradient. The (scaled) physical parameters are

the Planck constant € > 0 and the viscosity constant v > 0 (related to the mean

free path in the Wigner-BGK model). Finally, initial conditions for n and nu

) = vdiv(nD(u)),
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are prescribed, n(-,0) = ng, (nu)(-,0) = noup in R?. Non-isothermal quantum
Navier-Stokes equations have been derived in [4].

When equations (1)-(2) are considered on the d-dimensional torus T¢ (to avoid
technicalities due to boundary conditions), the global-in-time existence of weak
solutions has been proved [3]. The key idea of the proof is the discovery that the
system possesses two energy functionals. Indeed, the standard energy

2
n g
E, = —|u*+ H — 2)d
X /Td(2|u|+ (n) + SIVVal)dr,

where H(n) =nY/(y—1)ifv > 1 and H(n) = n(logn—1) if v = 1, is not sufficient
for the existence analysis since it gives only an H'! estimate for v/n. On the other
hand, using the new velocity variable w = v + vV logn, the energy dissipation of
the second functional
2
By = / (ﬁ|w|2 + H(n) + l(5— - y2)|vﬁ|2)dx

Ta \2 4\ 3
provides H? estimates for /n if £2/3 > v2. This forms the basis of the existence
analysis, which is carried out by using a Faedo-Galerkin approximation and weak
compactness tools, see [3] for details.

One may ask why the system possesses two energies. In order to investigate
this question, we have formulated a Lagrangian mechanics theory on the space of
probability measures [2]. Given a classical Lagrangian function L(q,q), a lifted
Lagrangian £(y,7) is defined by the infimum of the integrals [, L(z, u(x))p(dz)
over the set of velocities u € C*(R?;R?) satisfying 7 + div(uu) = 0. Here,
u is a probability measure (corresponding to the particle density n) and 7 is an
element of the tangent space at u (corresponding to d¢n). For example, the kinetic
energy L(q,q) = %|q’|2 gives Otto’s Riemannian tensor on the tangent bundle,
L(p,1) = [ga IVS(2)]*p(dx), where S := A7 'n and A,S := div(uVS) in RY,

The quantum Navier-Stokes equations are recovered as a (formal) critical point
of the dissipative Euler-Lagrange equation

d oL 9L 9D

@ o op o "

for the quantum Lagrangian

£ = [ (FIV8P = U0 = V() = IV tog o)

where U (1) denotes the internal energy, and the dissipation potential is D(u, n) =
(v/2) [ga IVul*p(dz) with u = VS. More precisely, it is shown in [2] that a smooth
curve pu(t) satisfies the above Euler-Lagrange equation if and only if (u, pu) solves
the quantum Navier-Stokes equations (1)-(2) with n = p and the viscosity replaced
by V,uVA;l(VQ : (uVu)). Projecting this expression on the space of curl-free
fields, we recover the viscosity term in (2).

Now, we come back to the question raised above. We will give a partial answer.
In classical Noether theory, the Noether current for the transformation ¢ +— ¢ + 6t,
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g+ q+dq is defined by J = 6t(§OL/0q— L) — 6gOL/q. This motivates the lifted
Noether current on the space of probability measures:

oL oL
T (u,m) = 5155—77(#, n)n — 6tL — a_n(“’ )0

As expected, under time shifts §¢ = 1, du = 0, the Noether current equals the
classical energy functional F;. Surprisingly, with the transformation dt = 1, fu =
vAyu, the corresponding Noether current equals the second energy E5. This gives
rise to a number of open problems:

(1) Are there other transformations leading to new energy functionals?

(2) How can we develop a dissipative Noether theory on the space of measures?

(3) Can this theory be applied to classical fluid dynamics? Which fluid dy-
namical models possess several energies?

(4) Ts this a first step to devise an optimal transportation formulation of quan-
tum mechanics?
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On the coarsening rates in demixing binary viscous liquids
CHRISTIAN SEIS
(joint work with Y. Brenier, F. Otto)

We consider a demixing process of a binary viscous liquid. Thermodynamics favors
the separation of the mixture into two domains of the two equilibrium volume
fractions. The average size of these domains grows during the evolution, and thus,
the domain morphology coarsens. We report on a work [1] that investigates the
rates at which this coarsening proceeds.

The demixing process can be described in terms of the order parameter m, a
measure for the local composition of the mixture. In viscous mixtures, material
transport is due to diffusion, i.e., the cross-motion of unlike particles, and convec-
tion, i.e., the transport by the hydrodynamic bulk flow. Therefore, the evolution
equation comes as a convection-diffusion equation for m:

om+u-Vm—AAp = 0,

where p is the chemical potential defined by p = —Am — 2m(1 — m?). The
parameter A measures the strength of diffusion compared to convection. The
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liquid velocity u obeys a Stokes equation:

—Au+Vp = —mVpu
Veu = 0,

where p is the hydrodynamic pressure. The system is supplemented by periodic
boundary conditions with period cell [0, A]¢, where A > 1, i.e., the period length
is supposed to be much larger than the thickness of the interfacial layer between
the domains.

This dynamical system has a formal gradient flow interpretation, that is, the
evolution follows the steepest descent in an energy landscape, O;m+VE = 0. The
energy functional is given by the Ginzburg-Landau energy density

1 1 1
L 20 201 _m2)2
Ad/2|Vm| +2( m*)® du,
and the metric tensor is
gm (dm, om)
1 1

In the following we will consider convective transport alone, and therefore we
set A = 0 (which enforces j = 0).

In real experiments and numerical simulations it is observed that the typical
size £ of the domains grows during the demixing process according to the power
law

(2) 0~

when ¢ denotes time. A first heuristic explanation of this coarsening law is due to
Siggia [4].

First rigorous estimates on coarsening rates were derived by Kohn and Otto
in [2] for two Cahn—Hilliard equations. The authors introduce a method that is
based on the gradient flow structure of the dynamics and produce lower bounds
on the energy. Since the energy scales, at least heuristically, as an inverse length,
and assuming that there is only one length scale present in the dynamics, lower
bounds on the energy can be interpreted as upper bounds on the coarsening rates.

For convenience, we suppose that m € {+1}, and F is proportional to the
quotient of the interfacial area and the system volume. Following the method of
[2], we introduce a function L that can be considered as a proxy to the geodesic
distance function induced by the metric tensor (1) (with A = 0). Indeed, choosing

L = igf{%//lnﬂzy|+1)d7r(z,y)‘ /dﬁ(~,y)m+1,/d7r(z,~)1},

we establish the dissipation inequality

(%) = ()
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as a consequence of the gradient flow structure of the dynamics. The function L,
a so-called Monge-Kantorovich-Rubinstein distance, measures the optimal trans-
portation cost for transferring the configuration “1” into the configuration “m+1”
subject to the logarithmic cost function, cf. [5]. Moreover, E and L are dual in
the sense that

L 2 In i

~ K

The heart of the Kohn—-Otto method is an ODE argument that translates the infor-
mation on how fast the energy decreases as a function of distance into information
on how fast the energy decreases as a function of time:

Theorem 1.
T
/ E(t)dt Z InT provided that InT > L(0).
0
In fact, this result is a weak, one-sided version (2) with E ~ %. Notice that
due to the existence of ungeneric, slowly evolving solutions, only upper bounds

on coarsening rates can be established via a priori estimates. Coarsening rates for
the full model that allows for diffusive and convective transport is treated in [3].
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Understanding the origins of Wasserstein gradient flows
MARK A. PELETIER

‘Variational Modelling’ is an appealing way of modelling real-world systems. In
the case of gradient flows, one models a system by postulating a driving functional
(energy or entropy) and a dissipation mechanism. These two choices together
determine the evolution, and especially for more complex systems they often give
a simpler modelling route than other methods. Also, thermodynamic consistency
is usually automatically satisfied.

But Wasserstein gradient flows have components whose modelling interpreta-
tions are obscure. The Wasserstein metric itself, but also the entropy and the free
energies that often drive such systems do not have a straightforward modelling
interpretation in the context of evolving systems.

In this talk I showed how the role of entropy, free energy, and of the Wasser-
stein metric and Wasserstein gradient flows can be understood, and should be
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understood, by connecting the deterministic gradient flows with large deviations
of stochastic particle systems. The central observation is that Wasserstein gradi-
ent flows typically describe the evolution of densities p, which can be thought of
as the limit of empirical measures

(1) Ln = %Z(SXZ

as the number n of particles tends to infinity.
With this observation one can understand a number of properties.

(1) The entropy Ent(p) := [ plogpdx arises from the indistinguishibility of
the particles in an empirical measure. This is the property that renumber-
ing the particles leaves the empirical measure unchanged. The degeneracy
that follows from this indistinguishibility can be shown, by a counting
argument and Stirling’s formula, to lead to the entropy [1]. The mathe-
matical expression of this property is the fact that if we draw n particles
X, from a distribution g on a state space X, we have the large-deviation
result (by Sanov)

Prob(L,, =~ p) ~ exp —nl(p) as n — 0o,
where I has the characterization in terms of the relative entropy H,
d d
/—plog—pd,u if p < p,
du dp

+00 otherwise.

I(p) = H(plp) =

This large-deviation result shows how the relative entropy H(p|p) charac-
terizes the (im)probability of observing L,, = p.

(2) A free energy of the form H(p|u) + [ e(x) p(dx) can similarly be inter-
preted as a large-deviation rate functional. It arises from the coupling of a
system as above to a heat bath. A heat bath, in this setup, is represented
by a second system ) with distribution v, and the two are coupled by
choosing energy functions e : X — R and ey : Y — R and imposing a
prescribed total energy E:

1 n
Prob(n ;5;@. ~p

1
n

n

=1

nN
1 —
e(Xi) + — D ex(vy) = E)
j=1
~ exp —nJ(p) asn — oo and N — oo

where

kT

where the constant is chosen such that inf J = 0, and k7T is defined by a
characterization in terms of the properties of the heat bath. In this setup
we take n particles from X, and nN particles from ), where N is large;
this represents the assumption that the heat bath is ‘large’ with respect to

J(p) = H(plp) + 1 /X e(z) p(dzx) + constant,
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the system X. The limit N — oo allows us to characterize the influence
of the heat bath by the single constant k7. The whole argument can be
found in [3].

(3) The Wasserstein distance d(pg, p1)? arises as the characterization of the
mobility of empirical measures of Brownian particles. If X; are Brown-
ian particles in R?, then L, defined in (1) is a time-dependent, random
measure ¢t — L, (t). We then have [2, 4]

Prob(Ln(t) ~ pt‘Ln(O) ~ po) ~ exp —nKi(pt; po) as n — 0o,

where .
”Q(ﬁpd‘E*ZdOMw)Q ast| 0.

For small times, therefore, the Wasserstein metric characterizes the mo-
bility of empirical measures of Brownian particles, in the same way as
the entropy characterizes empirical measures of particles drawn from a
distribution.

(4) Finally, the result above can be strengthened [1] to

1 r 1 1
Ki(-;p0) — Ed(po, D — §Ent( )= §Ent(p0) ast 0.

This result suggests that

1 1 1
Ki(p; po) ~ Ru(p; po) = :d(po, p)* + 5Ent(p) = SEnt(po)  ast 0,

and R, is the well-known JKO functional that defines a time-discrete ap-
proximation of the Wasserstein gradient flow of entropy, given for time
step h by

k+1 k+1

For each k, define p by p

€ argmin Ry, (p; p*).
P

Each of the large-deviation results above connects the probabilistic behaviour
of empirical measures of a system of stochastic particles on one hand with de-
terministic objects that appear in the modelling of Wasserstein gradient flows on
the other. This connection provides the explanation why they appear, how their
appearance (and their structure) depends on assumptions that are made, and how
they might be generalized to more complex systems. In this way they provide a
valuable basis for the modelling of Wasserstein gradient flows.
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Radial Stability /Instability for Repulsive-Attractive Potentials
Josi: A. CARRILLO
(joint work with D. Balagué, T. Laurent, G. Raoul)

Nonlocal interaction equations with repulsive-attractive radial potentials were dis-
cussed. In their simplest form, nonlocal interaction equations can be written as

du
(1) E+d1v( w) =0 , v=-VWsxypy

where u(t,x) = u:(z) is the probability or mass density of particles at time ¢
and at location z € RY, W : RY — R is the interaction potential and v(t,x)
is the velocity of the particles. We always assume that the interaction potential
W (z) = k(|z|) is radial and C?- or C3-smooth away from the origin, depending
on the results. Typically the potentials we will consider have a singularity at the
origin.

Such equations describe the evolution of a continuum density of particles in
which they repulse each other in the short range and attract each other in the
long range. We proved that under some conditions on the potential, radially
symmetric solutions converge exponentially fast in some transport distance toward
a spherical shell stationary state. Otherwise we proved that it is not possible
for a radially symmetric solution to converge weakly toward the spherical shell
stationary state. We also investigated under which condition it is possible for
a non-radially symmetric solution to converge toward a singular stationary state
supported on a general hypersurface. Finally we provided a detailed analysis of
the specific case of the repulsive-attractive power law potentials.

More precisely, we focused primarily on proving rigorous results about the con-
vergence of radially symmetric solutions toward spherical shell stationary states in
multi-dimensions. The spherical shell of radius R, denoted dg, is the probability
measure which is uniformly distributed on the sphere 9B(0, R) = {x € RN : |z| =
R}. Given a repulsive-attractive radial potential whose attractive force does not
decay too fast at infinity, there always exists an R > 0 so that the spherical shell
of radius R is a stationary state.

It is classical that the equation (1) is a gradient flow of the interaction energy

=5[], W= piu@iat

with respect to the euclidean Wasserstein distance. Thus, stable steady states of
(1) are expected to be local minimizers of the interaction energy. Simple energetic
arguments will show that in order for the spherical shell of radius R to be a local
minimum of the interaction energy, it is necessary that the potential W satisfies:
(CO0) Repulsive-Attractive Balance: w(R, R) =0,
(C1) Fattening Stability: 0;w(R, R) <0,
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(C2) Shifting Stability: 1w(R, R) + dsw(R, R) < 0,
where the function w : RZ — R is defined by

1
(2) w(r,n) = —— VW (re1 —ny) - e1do(y),
ON JoB(0,1)

on is the area of the unit ball in RY, e; is the first vector of the canonical basis of
RY, do denotes the volume element of the manifold where the integral is performed
and R? = (0, +00)x (0, +00). Condition (CO) simply guarantees that the spherical
shell dg is a critical point of the interaction energy. We showed that if condition
(C1) is not satisfied then it is energetically favorable to split the spherical shell
into two spherical shells. Heuristically this indicate that the density of particles,
rather than remaining on the sphere, is going to expand and occupy a domain in
RY of positive Lebesgue measure. If condition (C1) is not satisfied we say that
the “fattening instability” holds. It can be easily checked that if w(R, R) = 0, then
Ow(R, R) is simply the value of the divergence of the velocity field on the sphere
of radius R. So the fattening instability corresponds to an expanding velocity
field on the support of the steady state. We also showed that if condition (C2)
is not satisfied it is energetically favorable to increase or decrease the radius of
the spherical shell. This instability is referred as the “shift instability”. These
conditions then dictate the radial nonlinear stability/instability of the spherical
shells.

A two-scale proof of the Eyring-Kramers formula
GEORG MENZ
(joint work with André Schlichting)

We apply a combination of the two-scale approach [4] and a transportation tech-
nique [2] to give a new proof of the Eyring-Kramers formula. Let us consider a
diffusion in a potential landscape given by a smooth Hamiltonian H : R" — R in
the regime of small noise ¢ < 1. The generator of the diffusion is given by

L=¢A—-VH-V.
The associated Dirichlet form is given by

E(f) = / (“Lf)f du=c / VFP dp.

Under some growth assumptions on H, there exists an equilibrium measure of the
according stochastic process. It is called Gibbs measure and is given by

u(dz) = Zi#exp (—Hiz)) dr  with 2, = /eXp (—@) dz.
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The Eyring-Kramers formula asymptotically determines the Spectral Gap (SG)
of the operator L in the regime of small noise ¢ < 1. The SG constant of L is
determined by the largest constant ¢ > 0 such that for any function f

€
1) vay(f) < = [ 191Pdn.
For convenience, we state the Eyring-Kramers formula in a simplified situation:

Proposition (Eyring-Kramers formula [3]). Assume that

e H has only two local minima at mg and my such that H(mg) < H(my);
e s denotes the smallest saddle between mg and mq;
e A\~ denotes the negative eigenvalue of Hess H(s).

Then the SG constant o of the operator L is given by
27 | det Hess H (s)| ( H(s)— H(my)
exp | ——————=

<
~ (AT /| det Hess H (m;)]

1 ) (1+O(\/§|1n5|%)).
0 €

The last theorem states that for small noise ¢ < 1 the SG constant g is es-
sentially determined by the saddle height (H(s) — H(m1)) (cf. Figure 1). The
first rigorous proof of the Eyring-Kramers formula in full generality was given by
Bovier, Gayrard, and Klein [1] using potential theory. Slightly later, a different

proof was given by Helffer, Klein, and Nier [5] via the Witten complex approach.

Now, let us sketch the main idea of our new proof: Let u;, ¢ = 1,2, denote the
restriction of the Gibbs measure i to the domain of attraction of the local minima

FiGURE 1. Example of an one-dimensional Hamiltonian H
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m; respectively i.e.

i 3

/,L,L(dl') = Zi 1(21' €xXp <@> d.fC,

H
Zi:/ exp (ﬂ) dr and €; = {xGRN; lim y; = my, yozx}.
Qs I t—o0

As in the two scale-approach [4], the starting point of our proof is the decomposi-
tion of var,(f) into local variances with respect to po and g1 and into the variance

of a Bernoulli variable i.e.
Z Zo 74 2
— —— dpg — d .
Z, vary,, (f) + Z, 7, </f 1o /f H1>

The first two terms on the right hand side of (2) are estimated by an application
of the SG for the restricted measures po and p1, The SG constants are of order 1.
Heuristically, this fact seems to be plausible because there are no metastabilities
on the sets ; and 2. However, the rigorous proof of this fact in higher dimen-
sions is technically challenging because of the lack of convexity of H. The main
contribution to the SG constant comes from the third term on the right hand side
of (2). Motivated by the transportation technique of Chafi and Malrieu [2], the
third term is represented by using a transport ®; between pg and p; as

/fduo/fdul/ol/%focbt dyso dt/ol/Vﬂ(cbtocbl) dyy dt,

where y; denotes the push forward (®;)4 . With some basic intermediate steps,
this representation yields the estimate

(/fduo/fdu1>2§/</01|¢>t0<1)1| % dt)2du /|Vf|2 an

Now, the last step is to estimate the weighted transportation cost on the right
hand side of the last inequality. For small noise ¢ < 1, it suffices to consider
truncated Gaussian measures around the local minima mg and my instead of the
restricted measures o and pq. This simplifies the estimation of the weighted
transportation cost yielding the Eyring-Kramers formula after an optimization
procedure.

A nice feature of this proof is that it replicates the behavior of the correspond-
ing stochastic process: The fast convergence to local minima is expressed by the
good local SG estimate of the restricted measures po and w1, whereas the main
contribution to the overall SG constant comes from a Markov chain jumping from
one local minima to another. Additionally, this approach has the perspective of
being applicable to the LSI. Our argument for the local SG also seems to be fruit-
ful: It may be used to show that the asymmetric Mexican hat does not freeze at
low temperatures.

Zo
Z_H Var#o(f) +

(2) var,(f) =
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Motion of vortices in ferromagnets
MATTHIAS KURZKE
(joint work with C. Melcher, R. Moser, D. Spirn)

Ferromagnetic materials can be modeled by a vector field m : Q — S2, where
is a domain representing the magnetic sample. A reasonable simplified model for
thin films is to use Q C R? and to consider the energy functional

E.(m) = /Q co(m) = /Q <%|Vm|2 + 2%%)

with a Dirichlet boundary condition. As € — 0 one observes the formation of
vortices, very similar to the complex Ginzburg-Landau energy studied by Bethuel-
Brezis-Hélein [1] and many other authors. A crucial difference is, however, that
in our case, the vector field can point up or down in the vortex center instead of
having a zero. While this makes no difference for the energy, it is important for
dynamics.

The time evolution of m is governed by the Landau-Lifshitz-Gilbert equation,

(1) m X 0ym + adym = f.,

where f. is the tangential part of the energy gradient,
1
f. = Am + |[Vm|’m — — (mze3 — mim).
€

This equation is a hybrid between the purely precessional Schrédinger map flow
and the harmonic map heat flow. It is analogous to the complex Ginzburg-Landau
equation
. 1

(2) (1 + a)Ou = Au + 5—2(1 — Ju*)u

The motion of vortices for (2) was studied by Miot [8] in the whole plane and
by our group [2] in bounded domains. The result is that the vortex centers move
according to a system of ODEs. A crucial assumption is the well-preparedness of
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the initial data, meaning that the energy is minimal for the given vortex positions.
In [3] this result is proved for (1). In both cases a coercivity property of the
renormalized energy is used to show strong convergence away from the vortices,
which in turn ensures that well-preparedness stays true. To prove the motion law,
one passes to the limit in evolution laws for quantities describing the vortices. The
quantity “O—lgs‘ (0ym, Vm) appears in these evolution laws. As its limit was not
known, in [8, 2, 3] this quantity is cancelled at the vortex core using a suitable
combination of test functions.

A more powerful proof, developed in [4], contains an argument that the quan-
tity m (0ym, Vm) actually converges, simplifying the structure and making it
possible to generalize the proof to situations involving spin-current driven vortex
motion. The convergence proof can be made quantitative in e, at least for the
Ginzburg-Landau case, and using an estimate in [6] allows one to study situations
with unbounded number of vortices and to pass to the hydrodynamic limit [7].

For the complex Ginzburg-Landau equations, another approach is available that
uses compactness results for the space-time Jacobian, see [9].

In a rather different approach [5], the strong convergence is proved using PDE
methods inspired by the theory of partial regularity. While energy concentration
may happen, it only affects the motion law when they lead to a flipping of the
vortex core polarization. This proof requires less well-preparedness. The resulting
motion law can be written as

ra 4 krq(t)at = —VW(a),

where « is 1 for the complex Ginzburg-Landau case and 2 in the Landau-Lifshitz-
Gilbert equations. The function ¢(t) only appears in the LLG case (otherwise it is
identically 1) and describes the vortex core polarization. It is a piecewise constant
function taking values in 1+ 2Z. A typical switching process would be a change
from +1 to —1 or vice versa. While such spontaneous switching may look like an
odd result, the possibility of easy switching is an important point for applications,
and a long-term goal of our ongoing research is to understand how switching can
be induced by electric currents or magnetic fields.
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Renormalized energy for points in the plane
ETIENNE SANDIER
(joint work with Sylvia Serfaty)

We report here on results contained in the forthcoming paper [SS3]. Consider the

energy of n points x1,...,z, in the plane
W (L1, ... Zy) = — Zlogbci — x|+ nZV(ml)
i#j i

One may investigate minimizers of w,,, but also the probability measure on (R?)"

e—ﬂwn(mla---vzn) d:Cl . dmn
Zn,3 ,

Qn,p =

which arises in statistical mechanical models and random matrix models (for

V(z) = |z|? and 8 = 1,2,4).

First Gamma limit. Minimizers were studied extensively (see for instance Saff-
Totik [ST] and the references therein), especially in the classical case where V is
zero on a given compact set, and +o0o elsewhere, in which case the minimizers of
wy,, are known as Fekete points. In particular it is known under mild assumptions
on V that, in modern language, #wn Gamma-converges to

1) =~ [ [ ogle = vl dutz) dutw) + [ V dn

where p is any probability measure in R2. For the case of Fekete points this result
is usually attributed to Fekete, Polya and Szegé ([F], [PZ]). Moreover, and this
time the result goes back to Gauss, the unique minimizer po of I is characterized
by the fact that for some constant ¢y, the function

1
Ciflog*MOﬂLgVﬂLCo

is positive in R? and vanishes on the support of jio. In the case V(z) = |z|?, it is
not difficult to deduce from this characterization that

1
o = — daxB(0,1).
i

This Gamma-convergence statement has a corresponding large deviations result,
due tu Benarous and Zeitouni [BZ] in the case V(z) = |z|?: Large deviations for
Qn. holds with speed n? and rate function I.
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Second Gamma limit. To further investigate properties of minimizing sequences
for wy,, one possible route is to extract from them a limiting object more detailed
than the limit p of the empirical measures %(6551 +---+3, ), from which one would
then recover the term following n2I(u) in the asymptotic expansion of wy(x;)
with respect to n. This object is akin to the Young measures on micropatterns
introduced by Alberti-Miiller [AM], and is defined as follows (we set V(z) = |z|?
for convenience.)

Given z1,. .., T, we let H, be the unique solution in R? tending to 0 at 4o0c of

" 1
7AHn =27 (Z 5\/511 - ;13(07\/ﬁ)> 3

i=1
and
jn = —V+H,.
(The reason for considering j, is that it will be a convergent quantity, whereas

H,, may not be under our assumptions.) Then, fixing p < 2 we have that j, €
LY (R? R?), and that

, - 1 o
curl j,, = 2w <Z O fmws — ;13(01\/5)) , divj, =0.

i=1

We define the following probability measure on L? (R? R?)

loc

Pn :]Z 5jn(z+‘) dx.
B(0,v/n)

Results.

Theorem 1. The functionals
1
F, == (wn —n?I (o) — n 1ogn)
n 2
Gamma converge to
F(P) = [ W) Py,
where W is defined to be +oo outside the admissible class A C LY _(R? R?) of

loc

vector fields satisfying divj = 0 and curl j = 2« (zzl Og, — %) with #{i | |zi] <
R} < CR for some constant independant of R. For j € A, W(j) =* fo. 4.

Here the quotation marks refer first to the fact that the average is over R2,
hence needs to be defined more carefully, and second to the fact that if j € A then
j ¢ L?, which implies the need to take away the infinite part when computing the
integral.

The above result yields as a byproduct, with some additional ingredients, several
properties of @, g. In particular, denoting by a the infimum of F, which is also
the infimum of W on A,
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Theorem 2. There exists a function f(8) tending to 0 as 8 — +oo such that

1
limsup — log Qn g (F, — > 6) < =0 + f(f).

n— 00 nﬂ

Concluding remarks.

The above results hold for potentials V' wich are of the type |z|? in the
sense that they must have as equilibrium measure a g which is supported
on a smooth enough set of positive measure, with a density with respect
to the Lebesgue measure which is smooth on this set. Note that when the
density is not constant, the definition of P, must be modified.

Random matrix models on the real line, or the Fekete points case are under
investigation.

The Gamma convergence we prove is not exactly true as stated because
the divergence free condition may be lost in the recovery sequence (see
[SS3)).

The minimization of the so-called renormalized energy W on A is an in-
teresting problem in itself, which is thought to admit as a minimizer the
triangular lattice. A partial result in this direction in [SS1] is that among
simple lattices, the triangular lattice is minimizing.

One of the main technical difficulties in proving the Gamma-convergence
lies in the fact that Fj, is the finite part of an L? norm, hence a posi-
tive quantity from which infinite quantities are subtracted. This causes
problems in passing to the limit that are resolved by techniques initially
devised for the analysis of Ginzburg-Landau vortices. (see [SS2]).
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Revisiting elasto-plasticity: the heterogeneous case
GILLES A. FRANCFORT
(joint work with Alessandro Giacomini)

The first existence results in elasto-plasticity are due to P.-M. Suquet [5],[6], and
C. Johnson [3]. This was completed by various works of R. Temam [7] and of R.V.
Kohn and R. Temam [4]. That last paper focusses on the duality between stress
fields (o), or, more precisely, between the deviatoric part op of o, and plastic
strains (p). The (time derivative of the) plastic strain p is merely a measure, while
the stress field op is typically not continuous, so that their product is not a priori
meaningful. However, the analysis of the problem hinges on a good definition of
that product which represents the mechanical dissipation.

Then, after a twenty five year mathematical lull, G. Dal Maso, A. De Simone
and M.-G. Mora [2] revisited the existence of a quasi-static evolution as a time-
parameterized set of minimization problems for the sum of the elastic energy and of
the add-dissipation. The minimizing triplet(s) in displacement u(t), elastic strain
e(t), and plastic strain p(t) are kinematically compatible, that is that they should
satisfy

Eu(t) :==1/2 (Du(t) + (Du(t))") = e(t) + p(t)
at all times t. They should also be such that an energy conservation statement
holds throughout the evolution. Once the existence of a variational evolution is
established, it remains to show that the obtained time-dependent solution paths
satisfy the more classical evolution laws for elasto-plasticity encountered in the me-
chanics literature. In particular, the flow rule states that, whenever the deviatoric
stress op(t) (linearly related to e(t) through Hooke’s law) reaches the boundary
of its admissible set K, the plastic strain p(t) should flow in the direction normal
to that set, that is p(t) € 0Ik (op(t)), where Ik stands for the indicatrix function
of K. For this, the duality evoked earlier plays an essential role.

Here, we revisit that evolution, paying close attention to duality. We show
that, roughly speaking, all needed results can be derived for a Lipschitz domain,
and not only for C?-domains, the required regularity if one follows [4]. Then, the
heterogeneous case is investigated; the only manageable setting seems to be that
of a domain € comprising a finite number of phases with piecewise C2-interfaces,
while the boundary of the domain is merely assumed to be Lipschitz. In particular,
the general case of a set of admissible stresses K (x) that would depend pointwise
on the point z of the domain is open, unless the multi-function x — K(z) is
piecewise continuous.

Since the plastic strain p(t) is a bounded Radon measure — and its Lebesgue-
singular part is the Lebesgue-singular part of the BD(Q)-function u(t) — it can
charge the interfaces, so that the dissipation functional must account for such
an occurrence. The correct definition of that potential along the interfaces is as
follows: at each point of the interface between two phases, say phases 1 and 2,
and for each value of the plastic strain, the dissipation potential is the pointwise
in space inf-convolution of that in either phase, but this for matrices of the form
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a ® v only, where v is the normal to the interface and a L v. By convex duality,
this corresponds to choosing as admissibility set for the tangential part (ov), of
the normal stresses ov to the interface the intersection of the admissibility sets
(Kyv), and (Kov),, where K; is the admissibility set for phase i. That condition
is not akin to taking the intersection of the sets K; on the boundary, which would
produce the wrong dissipation.

The existence result is contingent upon a lower semi-continuity result for the
dissipation which is tailored to the kinematic structure of elasto-plasticity and does
not apply to any general sequence of weak-* converging Radon measures, unlike
Reshetnyak’s theorem. Then, using the extended duality that we introduced and
the existence of the variational evolution, we recover the classical evolution, plus
an interfacial flow rule which seems to be a missing ingredient in the literature on
elasto-plasticity.

By the way, the same arguments also lead to a boundary flow rule which, to our
knowledge, was only noted by G. Anzellotti ans S. Luckhaus [1], but seems to be
equally absent from the mechanics literature. We contend that, absent such a flow
rule, the classical elasto-plastic evolutions envisioned earlier, are underdetermined.
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Inviscid limit of viscoelasticity with delamination
ToMAS ROUBICEK

Some mechanical systems exhibit discontinuous “catastrophic-like” response un-
der mechanical loading; examples are damage, fracture, friction, or delamination
(called also debonding). Stored energies driving such problems are necessarily
nonconver. A quasistatic formulation of such evolution processes is a well suited
approach but one should rather carefully adopt a suitable concept of solution; cf.
[5] for a menagerie of such concepts and their mutual comparison. We want to
illustrate these features on a relatively simple problem of the Frémond-type [2]
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delamination at small strains of the elastic body ©Q C R? subjected to a time-
dependent bulk load f = f(t) which uses the nonconvex energy

E(t,u, z) = %/Q Ce(u):e(u) — f(t)-udx + %/FCZKUU —a(z)dsS

if the delamination parameter z ranges [0,1] and if the displacement u satisfies
the unilateral condition u-77 < 0 on the delaminating part I'c of 0f), otherwise
E(t,u, z) = co. If « is uniformly concave, we can speak about a cohesive contact.

The main concept well suited for mathematical analysis is the so-called ener-
getic solutions, invented in [6, 7], based on global minimization of the recursive
incremental problems (uF, 2¥) € Argmin, E(kT,u,z) + R(z—2F~1) with some
phenomenological 1-homogeneous dissipation energy R reflecting the Griffith con-
cept of an energy needed for (and dissipated by) delamination and with 7>0 a time
step. Especially in such nonconvex problems, the energetic solutions may jump
sometimes unrealistically early, and thus some concepts based rather on a local
minimization are more appropriate; when £(t, -, z) is convex, this occurs typically
due to domination of stored energy in a very large bulk like in [1, Sect.4.3]. This
phenomenon was well recognized also in engineering literature, cf. e.g. [4].

A physically justified treatment of the phenomenon is by introducing a small
viscosity into the evolution rule of internal parameters. Its asymptotics leads to a
so-called vanishing-viscosity-solution concept. An alternative physically justified
treatment is by introducing a viscous enough dissipative rheology into the equation
for u; here Kelvin-Voigt model is to be considered.

Unless « is affine, rigorous treatment needs a modification by involving gradient
theory for z to have it controlled in W1 (I'¢) with r > d—1. Better convergence
also needs gradient theory for e(u), the concept of so-called 2nd-grade non-simple
materials involving the elasticity tensor Cy. Denoting the relaxation time (i.e. vis-
cosity in the Kelvin-Voigt model) by v > 0 and the solution (u,, z,) to the model
dlv((Ce(u,,Jrl/au” )— div((CQVe(u,,Jrl/a“t“ ))) = f with the boundary conditions char-
acterized by a semi-stability E(t,u, (t), z,(t)) < E(t,uy(t), 2) + R(£—=2,(t)) for all
admissible z’s and all times t’s. This solution is continuous in time if the cohesive
contact is considered, i.e. « is uniformly concave.

As inertia is neglected, we have uniform control of the BV-norm of u via the
standard BV-estimate of z. This allows for a lot of convergence results if v — 0.
In particular, we have u,(t) — u(t) in H2(Q;R?) and 2,(t) — z(t) in WHr([¢)
weakly for all times ¢ and strongly with exception only at most countable number
of time instances t, and also E(t,u,(t), z,(t)) — E(t,u(t), z(t)) with exception
only at most countable number of time instances ¢’s. The viscous-like dissipation
energy ue(agt“ )): (au, ))—i—uVe(a“” )): Ve(agg )) converges weakly™* to a ‘defect-like’
measure g on [0,00)xQ. In the limit, we thus get the energy balance

E(t, u(t) / )(dSdt) + //Q (dzdt) E0+/5( u(t), z(t)) dt
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for a.a. ¢ > 0 (with an inequality “<” for all ¢’s) with Ey := £(0,u(0), z(0)).
Completing it with equilibrium of the stresses on 2 and the semistability

E(t,u(t),z(t)) < E(t,u(t), 2) + R(2—2(t))

for all admissible Z’s and all times t’s, we obtain a definition of a certain semi-
energetic solution (u,z,p). This definition exhibits a concatenation property at
least generically, i.e. for a.a. time intervals. Moreover, u and z are continuous in
time except at most countable number of jumps.

It can be shown that, in a 1-dimensional experiment under increasing loading
of a elastic bar with an adhesive contact, this ‘semi-energetic’ concept of solution
leads to the same breakage time as the mentioned vanishing-viscosity solution,
and always later than the energetic solution. Also 2-dimensional computations of
a ‘real’ engineering problem clearly document the difference of the semi-energetic
and the energetic concept.

After semi-implicit discretization, the Kelvin-Voigt viscous ‘regularization’ leads
to recursive couples of strictly convex minimization problems, which enjoys the
MPEEC (=Mathematical Programme with Evolution Equilibrium Constraints)
structure and thus also gives a good basis for optimization of such system like in
[3].
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Elliptic regularization for gradient flows in metric spaces
ANTONIO SEGATTI
(joint work with R. Rossi, G. Savaré, U. Stefanelli)

The aim of this talk is to illustrate a novel variational view at gradient flows in
metric spaces ([6],[7]). Given (X,d) a complete metric space, we consider the
proper, lower semicontinuous, A-geodesically convex and with compact sublevels
functional

¢ : X — (—o0,+o0].
A-Geodesic convexity (A € R) is the natural extension to metric spaces of the
usual A-convexity and means that every couple of points in D(¢) := {¢ < oo}
can be connected by a minimal and constant speed geodesic 7 : [0,1] — X (thus
satistying d(7s,7t) = (t—s)d(70,71)), such that ¢(y) < (1 — H)é(v0)+té(11) —
2t(1 — t)d?(vyo,m) for all t € [0,1].
The starting point is the minimization of the functionals I¢ : AC?(X) — (—o0, 00]
given, for ¢ > 0, by

rw- [ T (o) ar

Here, AC?(X) is the set of absolutely continuous curves ¢ € [0, +00) — u(t) € X,
for which the metric derivative t — |u/|(t) := lims_y; d(u(t), u(s))/|t — s| exists a.e.
and belongs to L2(0,+00) (see [1]). Now, for any € > 0 and any @ € D(¢), one
can show that there exists u. € Argmin ¢ ac2(x),0(0)=al (V). Then, we may ask
the following question:

Does u. converges in some suitable sense to some curve w, with u a curve of
mazimal slope (for the functional ¢, with respect to the upper gradient |0¢| and
originating from u)?

Curves of maximal slope turn out to be the natural extension to the metric setting
of the concept of gradient flow and are defined as trajectories u € AC?(X) such
that «(0) = @ and

(1) o(ut) +%/O |u'|2(t)dt + %/O |06 (u(t))dt = p(a) for all t > 0.

The symbol [0¢|(u) := limsup,_,,, (¢(u)—¢(v))t/d(u,v), for u € D(¢), stands for
the local descending slope of ¢ at u [1]. To see why the question of the convergence
ue — u is quite natural, let us briefly comment the Hilbert space scenario. If
X is an Hilbert space, the minimizers u. are shown to satisfy the Euler Lagrange
equation
—eul (t) + u.(t) + 0p(us(t)) 20 for a.a.t >0,

thus, at least formally, when € \, 0 one expects that u. approaches the solution
of the gradient flow u/(t) + 0¢(u(t)) > 0. This argument has been made rigorous
by Mielke & Stefanelli in [4]. Note that minimizing I¢ basically corresponds in
addressing an elliptic-in-time regularization of the original gradient flow evolution.
Our main result reads as follows (see [6] and [7]).
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Theorem 1 (Variational principle). Ase |0, u. € Argmin e ac2(x),0(0)=al® (V)
admit a subsequence which locally uniformly converges to a curve of maximal slope.

This convergence result entails the possibility of reformulating the differen-
tial problem (1) as a (limit of a class of) minimization problem(s). In particu-
lar, it paves the way to the application of the specific tools of the Calculus of
Variations to (1), especially relaxation and I'-convergence. As a by-product, we
have an alternative existence proof for curves of maximal slope (see [1]). This
variational approach has been firstly applied to rate-independent evolution by
Mielke & Ortiz [3]. Then, two examples of relaxation of gradient flows via I¢
are shown in Conti & Ortiz [2] in the context of microstructure evolution. We
point out that our interest in extending the above results to a purely metric
setting is not at all academical, but rather motivated by applications to evolu-
tion PDEs with nonnegative solutions u : R% x [0, +00) — [0, +00), in the form
du — V- (uV(6u¢(u))) =0 in R% x [0, 4+00), where d,¢(u) is the suitably de-
fined first variation of an integral functional (even with nonlocal terms) as in [1]
where the aforementioned PDE is reformulated as a gradient flow equation, in
the metric space P2(R?) of probability measures with finite second moment, en-
dowed with the Wasserstein 2-metric (see also [5]). A key ingredient in the proof
of Theorem 1 is the analysis of the value function @ € D(¢) — V(u) defined by

Ve(a) = min If(u). In particular, we show that V. satisfies some nice
u€AC?(X),u(0)=u

properties which resemble the Moreau-Yosida approximation of convex analysis.
Moreover, V. is shown to satisfy a metric version of the Dynamic Programming
Principle. Then we show that V. solves the corresponding (metric) Hamilton Ja-
cobi equation which, eventually, implies the interesting fact that wu. is a curve
of maximal of maximal slope w.r.t. V.. Finally, relying on the A-convexity of ¢
we obtain suitable a priori estimates on u. which allow to pass to the limit and
conclude.
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Least barriers to minimal hypersurfaces: an approach via MCF with
obstacle

EMANUELE SPADARO

In this talk T present some recent results on a mean curvature type equation
for a geometric evolution with obstacle. The motivations come from a problem
in differential geometry on the characterization of the least barrier for minimal
hypersurfaces. More precisely, given a closed set Q C R? with 9Q € C*!, which is
the least set containing all minimal hypersurfaces with boundary in Q7

A set © C R" is a global barrier if:

3} minimal hypersurface, > C©® = X C O,

and we call mean-convez hull of £ the least barrier containing 2

(1) are= () e,

QCOcA

where A denotes the family of global barriers in R™. (A similar notion of mean-
convex hull have been introduced for minimal hypersurfaces spanning a fixed ex-
treme boundary, see [3].)

Clearly, the closed convex hull 2°° is a global barrier containing 2, hence the
intersection in (1) is non-trivial. Nevertheless, °° may not be the smallest one.
Moreover, if Q"¢ were smooth, it would turn out to be a mean-convex set. On the
contrary, it is not difficult to see that a mean-convex set may fail to be a global
barrier.

The result we show is the following.

Theorem 1. Let Q C R™, with n < 7, be a bounded closed set with 0Q € CL:L.
Then, Q™ is a closed mean-convex set with C1' regular boundary. Moreover,
0™\ Q is a minimal hypersurface with boundary in .

The proof of Theorem 1 goes through an evolution approach for a Mean Cur-
vature Flow (MCF) with obstacle. The heuristic idea is to consider the evolution
of the boundaries of sets F; containing {2 such that the normal velocity s, at any
point of OF; satisfies the equation:

B Hor, (z) if z € 0F; \ Q,
(2) th (:E) = { 7 — } N .
max § Hop, -1p,,0p fip, ifx € dFNQ,

where 7ip, denotes the unit external normal to dF;. In words, the evolution of
F; follows the classical mean curvature flow equation away from the obstacle (2
while on the boundary of €2 satisfies a unilateral constraint, namely it can leave
the obstacle if its mean curvature vector points outward, otherwise it stops. The
idea is to show that

Q"™ = lim F;.

t—+oo
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We suggest a variational formulation of (2) following the ideas in [1] and [2].
Let Ey C R™ be the initial bounded closed set of the evolution such that

|Eb|::0 and € C‘Eb.

We define the approximate flow of time step h > 0 in the following way. We set
Eéh) = FEy and, given EZ-(h) for some i € N, we let Ez(ﬂ be a minimizer of the
functional F (-, h, EZ-(h)) given by

dist (z, 0E™
]-'(E,h,EZ_(h)) := Per(E) +/ M dz,

EAE® h

where Per(FE) is the perimeter of a set E and the minimum is taken among all the
sets E containing () a.e.,

f(E(h) h, EZ-(h)) = min {]:

i+ E(h) (E) : E D) Q a.e.} .

In particular, we consider the evolution of a minimizing hull Ey, i.e. a set
satisfying
Per(Ey) < Per(F) VECF suchthat F\E CCR".

It is possible to show that, starting from a minimizing hull a unique maximal
") can be defined and the following holds.

flow Efnax’t
Proposition 2. For every h > 0 and Ey C R" minimizing hull with
QCEy and |0Ey| =0,
it holds:
G) EW c BL).  for every 0 < s < t;

max,t =

(ii) Ez(rigx,t is a minimizing hull for every t > 0;
h

(ii) ET(T@X@O = ﬁtzoElgﬂa)M satisfies 8E,(ri2x,00 € CbY with uniform estimates
145500, NIz~ < collAsol|z~;

(iv) aEEI{QX,OO \ Q is a smooth minimal hypersurface.

The mean-convex hull 7€ is, finally, recovered as a double limit of the asymp-

)
an:: (1 LJ E&Z&iﬁ’

totic sets EI(naX’OO:
e>0h>0

where Eﬁ{;),foo are the asymptotic evolutions for the enhanced obstacles

Q. = {z: dist(z,Q) < e}.
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Generalised functions of bounded deformation
GIANNI DAL MASO

The space GBD(Q) of generalized functions of bounded deformation on a bounded
open set 2 C R" is defined by slicing. For every £ € S*~1 := {¢ € R" : [¢] = 1}
let II¢ := {y € R™ : y-& = 0} be the hyperplane orthogonal to ¢ passing through
the origin. For every set B C R™ and for every y € II¢ we define

§ . .
By :={teR:y+t{c B},
Moreover, for every u: B — R™ we define the function ugz B§ — R by

u§(t) = u(y + t€) - €,

where the dot denotes the scalar product.

If u: Q — R" is L™measurable, the approximate jump set J, is the set of
points x € Q for which there exist u™(z), u™(z) € R", with u*(z) # u™(z), and
vu(z) € S*71 such that

aplim  wu(y) =u*(z) and aplim  u(y) =u" (z)
(y—x) - vy () >0 (y—x) - vy (2) <0
y—x y—x

(we refer to [4] for the definition of the approximate limit).
For H" '-a.e. y € II¢ the jump set of ug is denoted by J,. Moreover we
Y
consider the set

Jig = {t € J,e [(u§) T (t) — (u) ™ (1) > 1}

The space GBD(2) is defined as the space of all L£"-measurable functions
u: £ — R™ such that there exists a bounded Radon measure A on 0 with the
following property: for every & € S*~1 and for H" '-a.e. y € TI¢ the function ug
belongs to BV;OC(QE) and

| (IDuSIB§\ k) + #0501 75)) dHe ) < A(B).
T1¢ Y Y

for every Borel set B C €2, where D denotes the derivative in the sense of distri-
butions. If we replace BV;OC(Qg) by SBVZOC(Qg) (see [2]), we obtain the definition
of the space GSBD(Q). The inclusions BD(2) C GBD(f) and SBD() C
GSBD(R) follow from the results of [1].
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We can prove two structure theorems for every u € GBD(Q) (see [3]). The first
one concerns the approximate jump set J,: this set is countably (H"~!,n — 1)-
rectifiable according to [4] and can be reconstructed from the jump sets of its
one-dimensional slices ug; more precisely, if [u] := uT — «~ is the jump of u on
Ju and J§ = {x € Jy : [u](z)-§ # 0}, then (J5)5 = Jus for every £ € S"~! and
for H" 1-a.e. y € II¢. The second theorem concerns the approzimate symmetric
gradient: for L"-a.e. © € Q) there exists a symmetric matrix, denoted by Eu(x),

such that
- (u(y) —u(z) - E@)(y —2)) - (y — )
ap lim
y—x |y - :L'|2

We also prove the following analogue of the compact embedding of BD(f) into
LY(Q;R™) (see [3]): every equi-integrable sequence uy in GBD(Q2) N LY(Q;R™)
satisfying uniform bounds for the measures \g, considered in the definition, is
relatively compact L*(£2; R™) and the limit of a subsequence belongs to GBD(Q)N
LY(Q;R™).

From these results on GBD(2) we deduce the following compactness property
for GSBD(Q) (see [3]): if uy, is a sequence in GSBD(QQ) such that |lugl/z2(q;rn),
|EuklL2(@rnxn), and H™ (], ) are bounded uniformly with respect to k, then
there exist a subsequence, still denoted by wug, and a function u € GSBD(f2), such
that ur — u in LY(Q;R"), Eup — Eu weakly in LY(Q;R™™™), and H"1(J,) <
lim inf, H" 1 (Jy, ).

Thanks to this compactness result, GSBD(2) seems to provide the best func-
tional framework for the study of variational models in linear elastic fracture me-
chanics, when the crack path is not prescribed.

=0.
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Free energies, nonlinear flows and functional inequalities
JEAN DOLBEAULT
(joint work with Giuseppe Toscani)

Consider on R?, d > 3, the fast diffusion equation

(1) % +V- (Vo) =0

for some m € [mq,1) with m; := (d—1)/d. Assume that the initial data is a given
nonnegative function ug in L*(R?) such that uj* € L'(R?) and |z|> ug € L*(R?).
Large time asymptotics of the solution are governed by Barenblatt self-similar
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profiles, which can be studied either by comparison methods as in [7] or using
time-dependent rescalings and free energy functionals. This second approach goes
as follows.
Define the function w such that
Y

(2) o(r,y +m0) = R %u(t,x), R=R(r), t=43IlogR, z=45

where v is a solution of (1) with initial datum ug. A simple computation shows
that u has to be a solution of
0
(3) a—?+v[u (o%<m*mc>vum*172xﬂ:o t>0, zeRI,
with initial datum wg if we assume that R is chosen such that R(0) = 1. The
diffusion coefficient o given by
) 4R
dr

A standard choice is to choose 0 = 1 (which amounts to do a self-similar change
of variables) and study the convergence of u as ¢ — oo towards the stationary
solution Bi, where

20.—%(m—mc) — Rl—d(l—m

B,(z) := 07% (CM—I—%|.T|2)m Yz eR?

and the constant Cj; is chosen so that fRd Bidr =M = fRd ug dx. Consider the
free energy and relative Fisher information functionals respectively defined by

1
.7:0'['“] = —m—l /]Rd [um_B(’rTn_mB;n—l ('U/—BU)] de
and ja[u] = U%(mfmc) _m_ " ‘Vumfl _ VB?71‘2 dr .
1= m Jaa
It has been established in [4] that
1
(4) Folul < 3 Tolul,

which amounts to an interpolation inequality of Gagliardo-Nirenberg type. As a
special case for m = my, with u = |f|?", it is equivalent to Sobolev’s inequality

(5) IVfl3—Sa llfl3- >0 ¥ feD"3(RY)

d2—_d2, Sq is the optimal constant of T. Aubin and G. Talenti and

DL2(RY) is the completion with respect to the norm || - || defined by | f||*> =
IV £]I5 + Hngd/(dd) of the set of smooth functions with compact support. Since

d
(6) S olult, )] = =Tolult, )]
if u is a solution of (3), we find that F, [u(t,-)] < F,[ug] e~ for any t > 0, which
proves the convergence of u(t, ) to By in various norms if o = 1. Such results have
a nice interpretation in terms of gradient flows as was observed first in [8].

where 2* =
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Rates of convergence are related to the following Hardy-Poincaré inequality.
For any a € (—o00, a,) U (s, 0), there is a positive constant A, 4 such that

7) Mo [ 1fPdpas < [ [9FPdua ¥ f € L (duar)

R R
under the additional condition [p, fdua—1 = 0 if @ < .. Here po(z) =
(1 + |z|?)%, has to be applied with a = 1/(m — 1) < 0 and a, = —(d — 2)/2.

The proof relies on the observation that F,[u(t,-)] is asymptotically equivalent
t0 [gu [f1? dpta—r if u(t,) = By (1 + f B{~™) while F,[u(t,-)] can be controlled
by f]Rd |V f|? dito.. The method covers a range which is actually not restricted to
m € [mq,1): see [1] for details. Moreover, according to [2], for any m € (mq,1)
there exists two constants C > 0 and A > 4 such that

(8) Folu(t,)] <Ce ™ Yt>0

if 29 = 77 Jga @ uo(z) dz. The spectral gap given by (7) gives exactly A = 4 but
the associated eigenspace is generated by the translations of B; and is discarded
by the above choice of xg. At this point no improvement is achieved in the Sobolev
case, that is for m = my. The next eigenspace is generated by the dilations of Bj.
It can also be discarded as it has been shown in [5], thus showing that A can be
taken strictly larger than 4 even for m = m;y, but for the solution of a different
equation. Namely, we shall consider the case where ¢ is now time-dependent and
chosen in order to minimize o — F,[u(t,)]. As measured by the relative entropy,
by doing so we are choosing the best matching Barenblatt profile B,y among all
possible ones. An easy computation shows that this amounts to fix o = o(t) such
that [o, [@]? By do = [p. |z[*u(t,x) dz, thus making (3) non-local, and (2) non
explicit. Three main ingredients have now to be taken into account:
(i) Estimates (6) and (4) are unchanged in the new choice of o(t),
(ii) When applying the Bakry-Emery method, %jg [u(t,-)] involves an addi-
tional term which has the right sign because 92 can be related to F, [u(t, -)],
(iii) Using [Jull; = ||Bs|l; and [p. |2[* w dz = [z.|2|* By dx, one can prove a
Csiszar-Kullback type inequality according to which we have

Folu) m 1 2
i > C — B, t 2lu— B,|d )
ot-m) = 8 [L, B dx ( | It o /Rd ™ u | z>

With u = |f|>", we obtain an improvement of Sobolev’s inequality (5), which gives
an answer to the question of H. Brezis and E. Lieb in [3, Question (c), p. 75].

Theorem 1 ([6]). Let d > 3. There is some explicit constant €4 such that

2 2 <q . 24 24
IVAllz = Sa Ifllz- 2 — 57 inf |[If[*2 —g7

2*
Here My is the manifold of optimal functions for (5).

V f € DVA(RY).

Estimate (8) is optimal in the large ¢ regime, but the price we pay for it is
that the constant C is not explicitly known in terms of the initial datum. On the
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other hand, the result of Theorem 1 provides an improvement of the decay rate
of Fy[u(t,-)] when it is large, that is for small values of ¢. This raises the open
question of giving sharp estimates of the decay of F,[u(t, )] at any time ¢ > 0.
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Kramers and non-Kramers Phase Transitions in Many-Particle
Systems with Dynamical Constraint
MICHAEL HERRMANN
(joint work with Barbara Niethammer and Juan J.L. Veldzquez)

We study the different dynamical regimes in a nonlocal Fokker-Planck equation
and use formal asymptotics to derive reduced evolutionary models for different
small-parameter limits.

Nonlocal Fokker-Planck equations were introduced in [2] to model many-particle
storage systems such as lithium-ion batteries or interconnected rubber balloons.
In the simplest case, see also [3], the equations read

roholt, ) = 0 (v2uolt, @) + (H'(2) - o(t))olt, @)

o(t) = /R H'(z)o(t, z)dx + T4(t).

Here, p is a time-dependent probability measure, x € R denotes the state of a
single particle, H is a generic double-well potential, and 7, v are two parameters.
Moreover, £ is a prescribed function of time that controls the first moment, that
means we have

/Rxg(t, x)dz = £(t)

for any solution, provided that the initial data are admissible.
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Numerical simulations as displayed in Figure 1, as well as heuristic arguments
indicate that for 0 < 7, v < 1 there exist mainly two dynamical regimes.

T
<~
i
oo

FIGURE 1. Typical solutions with £ > 0 for slow (left) and fast reac-
tions (right). The solid curves in Black and Gray represent the evolu-
tion of ¢ and the phase fraction yu = fR sgn(x)odz, respectively.

The fast reaction regime corresponds to
b
T=€Xp(——2), 0 < b < beyit, l<rl,
v

so phase transitions due to large deviations are possible. The main difficulty,
however, is to understand how Kramers’ formula [4] can be applied to an effective
potential H,(x) = H(x) — o that depends implicitly on time ¢ via the dynamical
constraint £.

As main result on fast reactions, we show the existence of two constants o, and
dp such that the limit dynamics for v — 0 and (>0is governed by

oo for t; <t <ty, o[ dyb(t) for t; <t < to,
olt) = { H'(£(t)) else, Alt) = { 0 else.

Here, the times ¢; < t; are uniquely defined by H'({(t;)) = o, and H” (¢(t;)) > 0.

In the slow reaction regime we have
a
V:exp(——), 0 < a < aerit, 0<Tkl,
T

and mass exchange according to Kramers’ formula is not relevant anymore. In-
stead, the limit dynamics is governed by (i) quasi-stationary transport of either
single-peak or two-peaks configurations, and (i) a sequence of singular times cor-
responding to switching, merging, and splitting of peaks. We refer to Figure 2 for
an illustration, and to [1] for more details.
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| stable transport (in z < —x,) |

W

( switching: t = tswitching ) | stable-stable transport | —> switching: t = twitching

W A v

| unstable transport | mass splitting problem | unstable-stable transport
mass update: m; = m; + [m;]

¢

<> R —— splitting: t = tupiitting < <>

merging: t = tmerging

(m‘vfal merging: t = L,wg,“y) —> | stable transport (in v > +7,) | €—

FIGURE 2. Flowchart of the limit dynamics with slow reactions, £ > 0,
and £(0) < 0. Intervals of quasi-stationary transport are interrupted
by several types of singular events.

Existence of Eulerian solution to the Semi-Geostrophic system on the
2D torus

GUuIDO DE PHILIPPIS
(joint work with Luigi Ambrosio, Maria Colombo, Alessio Figalli)

The Semi-Geostrophic system. Consider the Semi Geostrophic system on the
2D torus
Opuf (z) + (ue(@) - V)ui (z) + Vpe(z) = = Jue(2)
(5G)  qui(z) = Jth( )

0 -1
()
The stability principle of Cullen ad Purser (see [5, Chapter 3]) says that is natural

to assume that P; = |z|>/2 + p(x) is convex in R?. In particular to (SG) there
exists an associated dual system (see [5] and [3, Appendix])

Opr +V - (Uipt) =0
( J(z — VP (z))
(VPt)ﬁ[,Tz
( ) = (@) + |2[*/2.

with p¢ and u¢ Z?—periodic and

(SGD)
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where P/ is the convex conjugate of P;. Existence for (SGD) has been proved in
1998 by Benamou and Brenier, see [4]. However the existence of a distributional
solution of (S) has remained open. In fact given a solution of (SGD) at a formal
level a solution of SG is given by (P; — |z|?/2, u;) where

D) w=w(2) =[O VP(VP(2) + [V2P(VP(2) ] (VP () — o).

However a-priori P/ is just a convex function and its Hessian is just a Radon
measure, due to this fact it is not clear which is the meaning to give to the
previous equation. Recentely in [7] the authors succeed in proving W?! regularity
for solutions to the Monge-Ampere equation. As a consequence the second term
appearing in the expression of the velocity field it is a well defined L' function;
arguing as in [9] we can prove that also the first one belongs to L'. The prove of
the existence of distributional solutions now can be easily completed (see [3]).

Inspired by the theory of Regular Lagrangian Flows (see [1, 2] ) we also show
that the weak Lagrangian solution introduced in [6] are actually a RLF, in partic-
ular there exists a notion of flow associated to u;.

Open Problems. In this section I report some open problems related to the
study of (SG) and (SGD)

e Are distributional solution unique? This is unknown both for (SG) and
for (SGD).

e Which is the relation between the uniqueness for (SG) and for (SGD)?

e Is the flow associated to u; unique? (note that the folow associated to Uy
is unique thatnks to the Theory developed in [1])

e If the initial data are smooth there exists a smooth solution? This has
been shown in [10] for small times.
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Heat Flow on Finsler Spaces
KARL-THEODOR STURM
(joint work with Shin-Ichi Ohta)

A Finsler manifold is a smooth manifold M equipped with a norm F,(-) : T,M —
R on each tangent space. More generally, F;,(.) might be chosen to be a Minkowski
norm (i.e. symmetry F,(v) = F,.(—v) is not required). Mostly, we will require
that this norm is strongly convex and smooth and that it depends smoothly on
the base point x. The particular case of a Hilbert norm on each tangent space
leads to the important subclasses of Riemannian manifolds where the heat flow
is widely studied and well understood. In a series of papers with Shin-ichi Ohta
[OS1] we analyzed heat flow on a Finsler manifold. It can be defined

e cither as gradient flow on L?(M,m) for the energy

E(u) = %/M F%(Vu) dm;

e or as gradient flow on the reverse L?-Wasserstein space P2(M) of proba-
bility measures on M for the relative entropy

Ent(u):/ ulogudm.
M

Both approaches depend on the choice of a measure m on M and then lead to the
same nonlinear evolution semigroup. We prove C!*®-regularity for solutions to the
(nonlinear) heat equation on the Finsler space (M, F,m). Typically, solutions to
the heat equation will not be C2. Moreover, we derive integrated upper Gaussian
estimates 4 la Davies and pointwise comparison results 4 la Cheeger-Yau [OS1].
The latter requires appropriate lower bounds on the curvature. It turned out
that flag Ricci curvature is the appropriate notion. Indeed, this is exactly the
quantity which is characterized by the curvature condition
)
in the sense of Lott-Sturm-Villani. Surprisingly enough, however, this K-convexity
of the relative entropy does not imply any bound of the form

(1) Wa (e, pev) < X' Wa(, v)

for the heat flow — which already was identified as the gradient flow of the relative
entropy. Such an exponential growth bound (1) essentially holds true only in
Riemannian cases. For general gradient flows of some functional S on a Finsler
space (like the Wasserstein space on a given Finsler space), it is equivalent to
the so-called skew-convexity of S, a property identified in [OS2]. In Riemannian

Ent(p:) < (1 —¢)Ent(uo) + tEnt(py) — K
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settings, convexity and skew-convexity coincide. In general, these are two entirely
different properties.
In the linear theory, the L!-version of property (1) is equivalent to the bound

(2) Lip(p:f) < ™ *Lip(f).

Despite the fact that (1) typically is not true, in [OS3] we could deduce a far
reaching extension of (2), the so-called Bakry-Emery gradient estimate

IVpefl?(x) < e qe (IIV £1%) (2)-

(Here ¢; denotes the semigroup for an appropriate linearization of the heat flow.)
This is a consequence of the more fundamental Bochner inequality

%AV“(HVuHQ) — D(Au)(Vu) > K||Vul]* + % (Au)?

which could be proven to hold pointwise on M, = {x € M|Vu # 0} and in
distributional sense on all of M.
Another important consequence of the latter is the differential Harnack inequal-

ity a la Li and Yau
1 KAO
IV (log u)(t, 2)||* — 69, (log u)(t, @) < N6 <27 Ta0-1 1>)

for nonnegative solutions u to the heat equation on (0,7] x M or in integrated

form
£\ /2 fd(z,y)*  O(K NO)N(t —s)
o) <uttn): () e (G2 - M)

forany 0 >1,0<s<t<T and z,y € M.

REFERENCES

[OS1] S. Ohta, K.-T. Sturm, Heat flow on Finsler manifolds. Comm. Pure. Appl. Math. 62
(2009), 1386-1433

[0S2] S. Ohta, K.-T. Sturm, Non-contraction of heat flow on Minkowski spaces. Sep 2010, to
appear in Arch. Ration. Mech. Anal.

[0S3] S. Ohta, K.-T. Sturm, Bochner- Weitzenbock formula and Li-Yau estimates on Finsler
manifolds. Apr 2011, http://arxiv.org/abs/1105.0983

Transition paths of maximal probability
FLORIAN THEIL
(joint work with Andrew Stuart, Frank Pinski)

Chemical reactions can be modeled via diffusion processes conditioned to make a
transition between specified molecular configurations representing the state of the
system before and after the chemical reaction. In particular the model of Brow-
nian dynamics — gradient flow subject to additive noise — is frequently used. If
the chemical reaction is specified to take place on a given time interval, then the
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most likely path taken by the system is a minimizer of the Onsager-Machlup func-
tional. The I'—limit of this functional is determined explicitly in the case where
the temperature is small and the transition time scales as the inverse temperature.

Consider the following conditioned SDE for x € C([0,7]; RY) making a transi-
tion between two states 2~ and zT in time T

dz = —VV(z)dt + V2 dW,

M 2(0)=2" and z(T)=2z".

We assume throughout that V' € C3(RY,R) and
(1) the set of critical points

E={zecRY | VV(z) =0}

is finite;
(2) the Hessian D2V (x) has no zero eigenvalues for every x € &;
(3) the weak coercivity condition

3R > 0 such that | ilnfR|VV(x)| >0
x|>

is satisfied.

To enforce the scaling of interest we choose T' = 7!

and rescale time as t =
e~ !s. Girsanov’s formula, together with an integration by parts yields that the
path density 7. is proportional to exp(—%glg(x)) where the Onsager-Machlup

functional I. : H1((0,1)) — R is defined by

2) L= | (:

Minimizers of the Onsager-Machlup functional have received considerable atten-
tion in the chemistry literature, e.g. [2]. To characterize the asymptotic behavior
of minimizing sequences of I. we introduce the auxiliary functional

J(m):/jo (% dz

oo

dx

2
1 2
i 2—€|VV(30)| — EAV(x))ds.

2
1 2
+§vvmn)m,

ds
and define the transition energy
®(x~,2") = inf {J(y) | ye X(x ,zh) } ,

where the set of admissible paths is defined as
Xz~ ,at) = {y € BV (R) ‘ t_l}l? y(t) = 2* and y € L*(R) } .

The existence of minimizer of J in X (2~ ,z") cannot be expected without addi-
tional assumptions on the initial state £~ and the final state . However, if we
allow for intermediate transition states we can establish a direct representation
of the transition energy ® which involves only minima and avoids the usage of
infima.



Variational Methods for Evolution 3193

Proposition 1. Let V' be admissible and z& € £ be two critical points of V.. Then
there exists a finite sequence {xi}fzo € & such that v = 2=, x), =+ and

k
Oz, 2t) = Zmin{J(y) |y € X(xi—1,:) }.

We observe that X (z~,z%) can be computed explicitly in many situations.
This result establishes a clear link to transition state theory although the setup
prevents a direct comparison.

Proposition 2. If 2* € X(x~,2") is a minimizer of J and either x= or ™ is a
local extremum of V' then x* solves

da* N
(3) o = +VV(z*)
and
4) (a7, at) = |V(aT) =V (z7)].

A compact representation of the results is available in the form of the I'-limit
of I..

Theorem 3. The I'-limit of the functional I. as € tends to 0 is
Sz (r),2t (1) — [} AV(x(s))ds if = € BV([0,1])

T7€D
In(z) = and z(s) € € a.e. s €[0,1],

400 else,

where D(x) is the set of discontinuity points of x and x* (1) are the left and right-
sided limits of x at 7.
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Analysis of Lennard-Jones interactions in 2D
ANDREA BRAIDES
(joint work with M.S. Gelli)

The behaviour of systems of Lennard-Jones atomic interactions as the number of
atoms N goes to +0o has been thoroughly analyzed in one dimension. After in-
troducing an increasing parameterization the position of each atom is interpreted
as a displacement from a regular configuration, and we obtain a limit continuum
theory of brittle fracture with an internal parameter and opening fracture (see
[10, 3, 4, 6]). Here, we consider a two-dimensional system of nearest-neighbour
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Lennard-Jones interactions, for which we have to make some simplifying assump-
tions. A first one is to consider displacements as perturbation from a ground state
for which crystallization (see [9]) holds on the triangular lattice T (or rather on a
bounded portion A of T). For such perturbations it makes sense to assume that
only short-range interactions be taken into account.

In order to prevent undesired “foldings” at a discrete level without considering
longer-range interactions, Friesecke and Theil [8] proposed to add a three-point
condition on neighbouring nodes. In the case of a triangular lattice, this condition
simply amounts to requiring that

det Vu > 0,

where u is the affine interpolation of the function defined on the vertices of each
triangle. We use the terminology and techniques of I'-convergence applied to
a discrete-to-continuum analysis [2]; in this framework we study the overall be-
haviour of the energies as the size of A diverges, by considering A = %Q N T, with
Q a fixed bounded domain in R?, and using Q N eT as the set of parameters. We
focus on the surface scaling; i.e., the energies we are going to examine will be of

the form
O o = )

1,j€QNeT,|i—j|=¢
(we have scaled the energies by an additive constant so that the energy density
is always positive), where w; is the value of the discrete function u at the node
ei € QNeT, and the piecewise-affine interpolation of v on the triangulation related
to €T is supposed to satisfy the positive-determinant constraint. Under these
assumption we address the two issues

e determine whether some condition of “opening crack” still hold in the two-
dimensional case;

e characterize a limit surface energy defined on functions defined on 2.

Other two issues present in the one-dimensional analysis; i.e., the characteri-
zation of the bulk energy close to ground states and surface relaxation have been
separately addressed by Braides, Solci and Vitali (for the bulk analysis) [5] and
Theil [9] (for the external surface relaxation).

We note that by [7] gradients of limits of sequences (u.) with equi-bounded
energy are piecewise rotations with an underlying partition of 2 into sets of finite
perimeter. On the boundaries of such sets we have a normal v on whose two sides
we have the values u®(z) of u and two rotations RT among those labeling the
sets of the partition. Note that interfaces are limits of triangles of side-length e
which are deformed by w. into triangles with one side (actually two) of diverging
length but with the same ordering of the vertices. If only one layer of triangles
is deformed that gives a limit interface, then this produces a relation between v,
u®(x) and R*. In the simplest case when v is orthogonal to one of the unit vectors
of T (we call these coordinate normals), this relation reads as

(u™(z) — uf(x),Riw >0,
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and can be regarded as an opening-crack condition in the “finite” case. In such case
the surface density can be computed and gives a crystalline norm with hexagonal
symmetries as for spin systems in the same geometry (see [1]).

If v is not a coordinate normal then the opening-crack condition is more com-
plicated, due to microscopic anisotropies of the lattice, which disfavor cracks not
orthogonal to lattice directions. However, the situation described above is not
the only possibility, since more than one layer of triangles may be “strongly de-
formed”. This gives a higher energy on the interface, but relaxes the constraints
on v, ui(:zz) and R*. Moreover, additional energy contributions may be given by
points where three or more interfaces meet; in this case, even though the opening-
crack condition above may be satisfied on each interface, the system of interfaces
may be incompatible with the positive-determinant condition in their common
point. It must be observed that by introducing a high number of extra inter-
faces at the discrete level, the finite opening-crack condition on interfaces and the
positive-determinant constraint at meeting points can be removed altogether, at
the expenses of a complex non-local form of the final energy.
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Singularity at the tip of a 2D fracture
ANTONIN CHAMBOLLE
(joint work with G. Francfort, A. Lemenant, J.-J. Marigo)

The Griffith theory, in planar elasticity, assumes that the elastic energy wich is
dissipated for opening a crack in a linear elastic material is proportional to the
length of the crack. It is also based on the assumption that the crack will grow
continuously, along a given path. Many attempts have been done to understand
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how to predict the correct crack path. We address particularly in this talk the
issue of “kinking”, that is, the brutal change of direction of a fracture which is
loaded in a non-symmetric way. First, we have recalled our previous work on the
subject in collaboration with G. A. Francfort and J.-J. Marigo [6, 7].

In that work, we have considered the global energy+dissipation functional

(1) Ew,T) = /Q\F Ce(u) : e(u) dx + HY(T),

defined for a fracture I and a displacement u € H} _(Q\T) satisfying a boundary
condition v = u® on O9.

Then, we have considered the different criteria for deciding the direction in
which a crack should grow, at the tip of a straight initial fracture I'*. It is known
since [15] that at the tip (assumed to be at the origin), the minimal » (which
we also denote by uo) is singular, with a singularity of the form K;¢; + Kiro1y,
where ¢, are 1/2-homogeneous displacements, the I eigenmode corresponding to
a pure opening (symmetric w/r the crack) and the I eigenmode corresponding
to a shear opening, where the lips of the fracture move tangentially. If K;; = 0
the fracture is expected to grow in a straight direction, as soon as its energy relase
rate is large enough.

If Kj; # 0, the is expected to turn, and it raises stability issues. In [6, 7], we
have considered a new (in)stability criterion: we claim that the fracture should
be unstable as soon as at any small scale € > 0, there exists an add-crack I' (we
assume it is a connected, compact one-dimensional set containing the tip) of length
€ such that the release of energy

. ) 0 . ,(s0
F(T) . (uEHl(ISI‘R?FiUF)) /Q\gieu(ly)) e(u) dex /Q\FCi’e(u ) :e(u )d:c)
is larger than 1. This criterion must be satisfied for crack evolutions built by
incremental minimizations of (1), such as proposed in [11, 10, 5, 13, 17] (the last
of which involves local minimizations).

More precisely, letting (for T' of length ~ 1) F.(I') = 1F(l'), we show that if
I'c — T is the Hausdorff sense as € — 0 then F(T') — Fo(T"), where the expression
Fo is given in terms of a minimization problem in R? \ (R_ x {0} UT), and
which involves only the singular (1/2-homogeneous) part at the tip of u° (hence,
essentially, is linear in K7, K;r). We can show that there exists a (non straight)
pattern I' such that F(T') is larger than any energy release rate predicted by the
classical theory, which assumes straight (or smoothly growing) add-cracks. This
shows that in theory, the system should be unstable for smaller loads u°® than
predicted by the classical theory.

The main issues in this study is that the non-interpenetrability of the material
along the crack is never taken into account (the work [16] tries to deal with this
issues, but it involves only straight, possibly kinking, cracks), and that we need to
assume that the crack is flat near the tip (this could be released a little, but still
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strong regularity needs to be assumed. A recent work [18] considers C1! cracks,
but only in the scalar setting).
With A. Lemenant, we are trying to extend these results to “arbitrary” cracks.
In the scalar setting, we could show the following [8] result. We assume that
€ HL .(Q\T7) (with Vu € L?) solves
Au—divAVu = f in Q\T?
AVu-v=0 on both sides of T'*
u=ug € L>®(0) on 0N
and that either A > 0, f € L>(Q), or A =0 and f = 0. We also assume that A(z)
is a Holder-continuous positive definite tensor. Then it holds the theorem:

Theorem [8]. Assume I'* is connected and has density 1/2 at 0:

H' (TN B,) 1

lim ———% =
pd0 2p 2
Then the limit
1
K? =lim = AVu -Vudz

PO p JB\T

exists and is finite. Moreover, up to rotations (assuming A(0) = Id), the blowups

ue(y) = (u(ey) — u(0))/v/€ converge to
uh = K\/2ﬂ_z sin g

The existence of the limit is based on simple generalizations of Bonnet’s mono-
tonicity formula [3]. The fact that the limit is a “crack-tip” function, with no
loss of energy, is based on the adaption of standard result on the limit of elliptic
problems in 2D sets with connected boundary [4, 5].
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Brittle Crack Propagation in Mixed Mode
MATTEO NEGRI

Brittle crack propagation is currently a very active field of research in applied anal-
ysis. In the collection [1] of open problems in the mathematical theory of elasticity
J. Ball suggested to “clarify the status of models based on the energy functional F
with respect to classical fracture mechanics and to non-linear elastostatics”, where
F stands for the energy functional

F(u)= | We(e)dx + G.H (J.,),
Q

to be defined in SBV, SBD or the most recent GSBD (depending on the setting).
This talk presents indeed an analysis and some partial results on the classical
criteria for the prediction of the path along which a crack evolves quasi-statically
subject to a mixed mode loading. The talk focuses on regularity issues: on the
crack and on the displacement field. A very recent result on the energy F' can be
found instead in the talk of G. Dal Maso.

We consider a two dimensional setting in which the reference configuration
is an open, bounded Lipschitz set {2, cut by a pre-existing straight crack I'y.
Proportional Dirichlet boundary conditions are imposed on a portion dp{? of the
boundary. When the setting is not symmetric (as it is in general) the crack does
not propagate along the straight extension of the initial cut I'g, it extends instead
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along a curved path with a sharp deflection angle (the kink) at initiation. Several
theories have been advanced in Fracture Mechanics to explain, and to predict,
the path (and the kink angle); among them, the most popular are probably the
Principle of Local Symmetry (PLS) [4] and the Maximal Energy Release Rate
(GMAX) [3].

To understand, and even state, these criteria it is first necessary to introduce
the stress intensity factors. After [5] we know that for a straight crack, say I'g, the
equilibrium configuration (for linearized isotropic elasticity) can be represented in
the form

ug = Kip'? Ur(0) + Kup'? U (0) + 1,

for w € H?(B, \ Tp). On the base of [6] (where actually the anti-plane setting is
adopted) we can expect the above representation to hold for cracks of class C'*!
or Cllo’cl. The Stress Intensity Factors K; and Ky are related respectively to Mode
I (opening) and Mode II (sliding) on the faces of the crack I';. When both are
non-zero the crack undergoes a mixed mode loading.

Now, let us go back to the criteria: PLS and GMAX. The former states that
the crack propagates only in Mode I (opening), i.e. along a path I'y that satisfies
K (Ts) = 0. The latter states that the crack propagates following the direction of
steepest descent of the elastic energy, i.e. the direction v that makes the Energy
Release Rate G, maximal. Note that G, as well relies on the SIF since it is given
by a quadratic form for K; and K. Both the criteria are theoretically sound and
consistent with the experimental observations. For a comparative analysis of PLS
and GMAX we refer to [2].

We employ a system of coordinates with the origin at the crack tip and with é;
aligned with I'g. The crack path will be represented by the graph of a Lipschitz
function y belonging to the convex set

(1) Y ={ye " ([0,8]) : y(0) =0,y < C},

for S < 1 and C > 1. We will focus on finding the path of propagation and
not on its parametrization in time. For y € C%! it is not known whether the
stress intensity factors exist; however, we known that the elastic field has a higher
integrability property: there exists 2 < ¢ < 4 such that for every y € ) and every
s € [0,5] the equilibrium configuration, say wus, belongs to W14(Q2\ T'y). Thanks
to this property we can define the following quantities

Ry, 6) = /B (s i) K0 = )

where 5 denotes the displacement of the crack tip, 6 is the argument in a system of
polar coordinates centered at the crack tip and translating rigidly, ¢ € (—m, 7) and
k; is a suitable convolution kernel. When the SIF exist and when ¢ = arctan(y’)
then I?i(FS, ¢) provides an approximation, denoted by I}i(FS), of the true SIF
K;(T's). Moreover for every s € [0,S] there exists a unique angle ¢, such that
f(i(l"s, ¢s) = 0. Then, the crack path is found by solving the first order functional



3200 Oberwolfach Report 55/2011

differential equation

y'(s) = tan @, for a.e. s € (0,5)
y(0) =0.

Indeed, if 3/(s) = tan ¢, then f(n(l—‘s, ¢s) = IN(H(FS) = 0. In this way, the path will
satisfy the Principle of Local Symmetry, in approximated form, for a.e. s € [0, S].
Moreover, the solution is of class C*%([0, S]) for &« = 1 — 2/q and ¢ the higher
integrability exponent. Therefore, IN(H(I‘S) = 0 for every s € (0, S].
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Notions of differential calculus on metric measure spaces
NicorA GIGLI
(joint work with Luigi Ambrosio and Giuseppe Savaré)

Aim of the talk is to present recent advances on abstract analysis over metric
measure spaces, with a particular focus on those having Ricci curvature bounded
from below in the sense of Lott-Sturm-Villani.

In particular, it will be shown how enhancing the curvature dimension condition
with the requirement that the heat flow is linear, leads to a new class of spaces
which is still stable w.r.t. measured Gromov-Hausdorff convergence, compatible
with the Riemannian case, which rules out Finsler geometries.

Among other properties of these notion there are:

e exponential contractivity of the Wasserstein distance W5 along two heat
flows,

full compatibility with the theory of Dirichlet forms,

existence of a Brownian motion with continuous sample paths,

validity of the Bakry-Emery curvature condition,

in case the measure is doubling and supports a local Poincaré inequality:
Lipschitz continuity of the heat kernel.
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The h-principle for the Euler equations
LASzLO SZEKELYHIDI JR.

In this talk I report on recent joint work with Camillo De Lellis. We consider the
incompressible Euler equations on the torus T3, given by

) Ow~+dive®v+ Vp =0,
(1) div v = 0.

It is well known that classical solutions (say, v € C'') conserve the energy E(t) =
1 [|v|>dz. On the other hand in recent years there has been a lot of focus on
understanding weak solutions, which do not necessarily conserve the energy. The
motivation for this comes from the Kolmogorov-Onsager theory of homogeneous
isotropic turbulence, laid down some 70 years ago.

In the formulation of Onsager the conjecture is that weak solutions of the Euler
equations preserve the energy if the solution is Holder-continuous with exponent
a > 1/3, whereas if a < 1/3, weak solutions need not preserve the energy. Re-
markably, the critical exponent 1/3 matches exactly with exponents obtained by
Kolmogorov for the decay of the energy spectrum in the inertial regime, even
though Kolmogorov’s calculations were for ensemble averages of solutions to the
Navier-Stokes equations, based on the assumption that there is an energy cascade.
In turn, the energy cascade links to an idea of Richardson concerning the struc-
ture of turbulent flows, which, roughly speaking, amounts to a cascade of vortex
structures appearing in a self-similar fashion. Thus, the conjecture of Onsager, on
the face of it a conjecture about optimal regularity, is linked to a (less precise)
conjecture about a possible self-similar structure in weak solutions of the Euler
equations. It is this problem that is addressed in the talk.

The first example of a weak solution of (1), which does not conserve the energy,
is due to V. Scheffer in 1993, an example by A. Shnirelman was produced by a
different method in 1997. It turns out, that the existence of such weak solutions
can be understood when formulating (1) in the framework introduced by L. Tartar
and R. DiPerna in the 1970s. Observing that the equations (1) are in form of a
conservation law, we can formulate them as

Azazz = 0,
8 2
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By studying special one-dimensional oscillatory solutions (plane-waves) of the form
(3) 2(y) = 26,

one obtains a relazation of (2), taking the form

Azazz = 0,
@ 2
2(y) € KN,

where, in general, K ¢ K» c K. In the case of the Euler equations it turns out
(see [1]) that K* = K°°, in some sense meaning that the are many oscillations
compatible with the Euler equations.

Conversely, it is known that in certain cases where K is sufficiently large, most
solutions of (4) are in fact solutions of (2). Indeed, one can start from a solution
of (4) and iteratively reintroduce localized versions of the plane-waves (3) in order
to arrive at a solution of (2). The origin of this idea can be traced back to the
landmark work of Nash on C!-isometric embeddings and the generalization thereof
by Gromov into what became known as convex integration. This method has been
subsequently adapted to the situation (2), in particular for systems coming from
nonlinear elasticity, by S. Miiller and V. Sverdk, B. Kirchheim, B. Dacorogna-
P. Marcellini, and many others. The corresponding statement arising from this
theory for (1) is:

Theorem 1 ([2]). Lete € C(T" x (0,T)). Then there exist infinitely many weak
solutions v € LSS (T™ x (0,T)) of the Euler equations such that

loc
1jv]* =€ for a.e. (z,t).

In the formulation of Theorem 1 we deliberately avoided mentioning the initial
data. The reason for this stems from the fact, that, as has been argued in [1, 2],
the Euler equations abide by Gromov’s h-principle. A typical feature of the h-
principle is that one can distinguish between a local and a global aspect. The local
aspect would involve the passage from subsolutions to solutions, as in Theorem 1
(in other words the passage from (4) to (2)), whereas the global aspect involves
matching initial/boundary conditions. Indeed, it is not difficult to extend the
proof of Theorem 1 to produce counterexamples to well-posedness of the initial-
value problem, as has been done in [2].

The basic idea of passing from (smooth) solutions of (4) to (rough) solutions
of (2) by reintroducing oscillations has been first used by Nash in producing C'!
isometric immersions. In local coordinates the problem can be formulated as

VulVu =g,

which can again be cast in the form (2). Here, once again K* = K°°, correspond-
ing to short embeddings. The oscillations in this case take the very explicit form of
spirals. Assuming that u is a smooth strictly short embedding, let 1, be normal
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vector fields to the image of u, i.e. unit vector fields satisfying Vu'n = VuT¢ = 0.
The perturbed embedding takes locally the form

u(z) = u(x) + @ (sin()\«f ~x)n(x) + cos(AE - x)ﬁ(m))

It is easy to see that the perturbed metric has now the form
(5) V' Vu = Vu' Vu+ a®¢ ® €+ O(%).

The explicit form of the perturbation makes it possible to obtain a continuous
gradient in the limit. In the generality of (2) this seems to be out of reach.
Nevertheless, for the Euler equations (1) this turns out to be possible:

Theorem 2 ([3]). Assume e : [0,1] = R is a positive smooth function. Then there
is a continuous weak solution v : T3 x [0,1] — R of the Euler equations (1) such
that

e(t) = / |v|?(z,t) dz vVt e [0,1].

Though the proof shares several similarities with Nash’s scheme, there are many
points where the method departs dramatically from Nash’s, due to some issues
which are typical of the Euler equations and are not present for the isometric
embeddings.

1) Perhaps the most important new aspect of our scheme is a “transport term”
which arises, roughly speaking, as the linearization of (1): this term is typical of
an evolution equation, whereas, instead, the equations for isometric embeddings
are “static”. At a first glance this transport term makes it impossible to use a
scheme like the one of Nash. To overcome this obstruction we need to introduce
a phase-function that acts as a kind of discrete Galilean transformation of the
(stationary) Beltrami flows, and to introduce an “intermediate” scale along each
iteration step on which this transformation acts.

2) The convex integration scheme of Nash and Gromov heavily relies on one-
dimensional oscillations - the simple reason being that these can be “integrated”,
hence the name convex integration. As already mentioned, the main building
blocks of our iteration scheme are Beltrami flows, which are truly three-dimensional
oscillations. The issue of going beyond one-dimensional oscillations has been raised
by Gromov as well as Kirchheim-Miiller-Sverak, but as far as we know, there have
been no such examples in the literature so far. In fact, it seems that with one-
dimensional oscillations alone one cannot overcome the obstruction in 1).

3) A third, more technical, new aspect is the absence of a simple potential to
generate solutions of the Euler system: in a sense we cannot simply “integrate”
Beltrami flows. In order to overcome this issue we introduce a “corrector term”
to the main perturbation. In order to estimate the corrector and show that its
contribution is o(1) (analogously to the O(%) term in (5)), we use a combination
of standard Schauder theory and oscillatory integrals estimates. This gives to our
proof a “hard” PDE flavor compared to the construction of Nash, which is more
on the side of “soft analysis”.
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Optimal-Transportation Meshfree Approximation Schemes
MicHAEL ORTIZ
(joint work with Bo Li, Bernd Schmidt)

Approximation schemes based on Optimal Transportation theory (e. g., [2]), when
combined with with meshfree interpolation (cf., e. g., [1]) and material point
sampling [3] supply a powerful alternative to the strictly Lagrangian or Euler-
ian paradigms that combines some of the best attributes of both. A simple case
in point is furnished by Euler flows over time dependent domains, e. g., resulting
from fluid-structure interaction. For these systems, inertia competes with free en-
ergy in determining the flow of mass. Conveniently, the free energy of a fluid can
be expressed directly in terms of its mass density and the resulting action can also
be expressed directly in terms of the mass density. A class of semi-discrete actions
that is well-suited to computation is [3]

(1)
TUPIP o fc T

300+ Uk} 10,
k=0

2 (g1 —tg)? 2

which is expressed directly in terms of densities pg, p1, ..., Pk, ... pn at the
discrete times to, t1, ..., tg, ... ty. In this expression, the functional U(p) gives
the total internal energy of the fluid and py and py are presumed given. We note
that, in (1), the inertial part of the action is given by the Wasserstein distance
T2(pk, pr+1) between consecutive mass densities. Further extensions to solid flows,
which requires consideration of more general actions, and to viscous and inelastic
behavior are presented in [3]. The discrete equations of motion now follow by

rendering the semi-discrete (1) action stationary. Taking appropriate variations of
(1) gives [3]

(2) 20 (wk%kﬂ B IR id) = Vpi + prbr
lot1 — te—1 lot1 — U te — th—1

where pj and by are the pressure and body-force fields at time tx, and @41 is
the transportation map, or incremental deformation mapping, between the con-
figurations at time t; and tgxy1. Evidently, the semi-discrete equations of motion
(2) supply a central-difference-like time discretization of the equations of motion
of the fluid.

In order to obtain a fully discrete action for computations, the semi-discrete
action (1) needs to be discretized in space. The scope of this discretization is
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three-fold and it concerns: i) the discretization of the volume measure £; ii) the
discretization of the mass densities py; and iii) the discretization of the incremental
transportation maps @i ,+1. We achieve the first of these spatial discretizations
simply by approximating the usual Lebesgue measure £ by discrete measures of
the form

M
(3) Eh,k = va’k 5Ip,k 5

p=1

concentrated at material points xp 1, each of which is assigned a discrete volume
vp, k. We achieve the second spatial discretization simply by identifying the discrete
mass distributions as measures that are absolutely continuous with respect to the
discrete volume measure Ly, 3, with Radon-Nykodim density pp &, i. €.,

M
(4) Phi(T) = Z Pp,kvp7k5($ - zpyk) :

p=1

The quantity m, = pp rvUpr may be regarded as the mass carried by material
point p. A weak reformulation of the continuity equation then shows that discrete
mass is conserved if and only if m,, is constant and independent of time. Finally,
the incremental transportation maps ¢ r+1 may be interpolated by mesh-free
conforming interpolation of the form

N
(5) Phkoki1(2) = Y Ta ki1 Nok(@),
a=1
where {4 k11, a =1,..., N} are coordinates of nodes on the configuration at time

ty+1 and N, x(x) are conforming shape functions defined over the configuration
at time t;. The use of max-ent meshfree interpolation [1] is particularly appeal-
ing, as the incremental shape functions N, i (z) are defined essentially explicitly
in terms of the nodal coordinates {zq %, a = 1,..., N} at time t;. By continu-
ously updating these shape functions, unconfined flows can be computed free of
mesh-entanglement obstructions. This combination of optimal transportation and
meshfree interpolation has been termed Optimal-Transportation Meshfree (OTM)
approximation in [3].

Applications of OTM approximation to fluid-structure interaction problems and
extensions to plastic solid flows may be found in [3]. A particularly appealing
feature of OTM approximation is that it results in geometrically exact updates
of mass and volume, without the need for solving a Poisson equation for the
pressure or approximating advection equations. In addition, because the flow of
computations is of the updated Lagrangian form, the coupling of fluids and solids
or structures or the implementation of moving boundaries and free surfaces in fluid
flows is trivial. These features, in conjunction with the mesh-free character of the
interpolation, confers OTM approximation excellent properties of robustness and
computational efficiency.
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Stability and instability of asymptotic profiles for fast diffusion
GORO AKAGI
(joint work with Ryuji Kajikiya)

Introduction. Let Q be a bounded domain of RV with smooth boundary 0.
We are concerned with the Cauchy-Dirichlet problem for fast diffusion equations
of the form

(1) O (|ul™2u) = Au  in Q x (0,00),
(2) u=0 on 09 x (0, 00),
(3) u(,0) =up in Q,

where 9; = 9/0t, 2 < m < 2* := 2N/(N — 2); and ug € Hg(Q). Every solution
u = u(z,t) of (1)—(3) for up # 0 vanishes at a finite time ¢, > 0 with the rate of
(t. —t)*/(m=2) The finite time t, = t,(ug) is called extinction time (of the unique
solution u) for a data up. Then one can define the asymptotic profile ¢ = ¢(x) of
each solution u = u(x,1):

o(x) (te — )Yy (1) in HE(Q).

= lim
t

In order to characterize ¢, we apply the following transformation:

(4) v(z,s) = (t, —t) "V Dy(x,t)  and s :=log(t./(t. —t)) > 0.

Then the asymptotic profile ¢ = ¢(z) of u = u(x,t) is reformulated as ¢(x) =
limg oo v(,8) in H}(Q). Moreover, the Cauchy-Dirichlet problem (1)—(3) for
u = u(x,t) is rewritten by

(5) ds (|v]™?v) = Av + Apfv[™ v in Q x (0, 00),
(6) v=0 on 90 x (0,00),
(7) ’U(', 0) = Yo in Qv

where vy = t,(uo) /"Dy and \,, = (m —1)/(m —2) > 0.
In a celebrated paper by Berryman and Holland [2] and several papers (see
[3, 4]), the existence of asymptotic profiles for each solution for (1)—(3) was proved,
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and moreover, every asymptotic profile turns out to be a nontrivial solution of the
Dirichlet problem for the Emden-Fowler equation,

(8) —A¢=Apn|d|™%p in Q, ¢=0 on ON.

Then one can also find that the set of all asymptotic profiles of solutions for (1)—(3)
coincides with the set of all nontrivial solutions of (8). In this talk, we address
ourselves to the stability/instability of asymptotic profiles.

Main results. We first introduce the notions of stability and instability of as-
ymptotic profiles.

Definition 1 ([1]). Let ¢ € H}(Q2) be an asymptotic profile of vanishing solutions.

(i) ¢ is said to be stable, if for any € > 0 there exists § = d(¢) > 0 such that
any solution v of (5)—(7) satisfies

v(0) € XN B(¢;6) = sup [o(s) — ¢
5€[0,00)
with a surface X' := {t.(uo) ™ "™ Dug: ug € H}(Q)\ {0}}.
(i) ¢ is said to be unstable, if ¢ is not stable.
(iii) ¢ is said to be asymptotically stable, if ¢ is stable, and moreover, there
exists dp > 0 such that any solution v of (5)—(7) satisfies

v(0) € XN B(¢500) = lim [lu(s) — ¢

1,2 <€

1,2 = 0.

Let di be the least energy of a functional J associated with (8) and given by

1 At
Tw) = 3wl = 2wl for we H(®)

over nontrivial solutions, i.e.,

dy = ing J(v), & :={ nontrivial solutions of (8)}.
ve

A least energy solution ¢1 of (8) means ¢ € S satisfying J(¢1) = di. We remark
that every least energy solution of (8) is sign-definite by maximum principle. Then
we present criteria for the stability and instability of asymptotic profiles.

Theorem 2 ([1]). Let ¢ be a least energy solution of (8). Then

(i) ¢ is a stable profile, if ¢ is isolated in Hg () from the other least energy
solutions.

(ii) ¢ is an asymptotically stable profile, if ¢ is isolated in H} () from the
other sign-definite solutions.

Theorem 3 ([1]). Let ¢ be a sign-changing solution of (8). Then

(i) ¢ is not an asymptotically stable profile.
(ii) ¢ is an unstable profile, if ¢ is isolated in H}(Q) from {1 € S: J() <
J(9)}-
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Global solvability of the Landau-Lifshitz-Gilbert equation
CHRISTOF MELCHER

For director fields m = (0,00) x R™ — S? with values in the unit sphere S C R3
we consider the Landau-Lifshitz-Gilbert equation (LLG)
om

(1) B

where ) is a positive damping parameter and x is the vector product on R3.
This quasilinear evolution equation is a hybrid between the heat and Schrodinger
flow for harmonic maps. As such it is neither a gradient flow nor a hamiltonian
system, but with the Dirichlet energy E(m) = 1 [o. [Vm|?dz still serving as a
Liapunov functional. According to the natural parabolic scaling symmetry, the
critical dimension is n = 2, where the topological lower bound E(m) < 47 for an
initial map myg implies global regularity, see [8, 3, 4]. In dimension n > 3, how-
ever, LLG becomes super-critical and arguments exclusively based on the energy
are insufficient for ruling out concentration effects and the formation of finite time
singularities. The regularity theory for the heat flow equation in higher dimensions
relies heavily on specific features stemming from its gradient flow structure, in par-
ticular Bochner identities and Struwe’s monotonicity formulas, see [9, 11]. These
tools are not available for LLG, and auxiliary methods based on elliptic problems
on suitable time slices are restricted to dimensions n = 3,4, see [6, 7, 10]. In this
talk we establish a relationship between LLG and a covariant complex Ginzburg-
Landau equation with a nonlinearity that is essentially cubic. This observation is
motivated by recent developments in the context of Schrodinger maps, see [1, 2].
The main point is that we have transformed the problem into a semilinear one.
Inspired by Kato’s weighted-in-time approach to the well-posedness of the Navier-
Stokes equation in L™(R™), see [5], we were able to prove the following global
existence, uniqueness and regularity result, valid in arbitrary dimensions:

=-—-mxAm-—-ImxmxAm

Theorem. Suppose A > 0 andn > 3. Then there exist constants p > 0 and ¢ > 0
with the following property: Given my, € S? and initial data mg : R™ — S? such
that mg — ms € H* N WH(R™; R3) and such that

[Vmo| - < p,
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then there exists a global smooth solution m : (0,00) x R™ — S? for the Landau-
Lifshitz-Gilbert equation (1) with the properties that

sup [|m(t) — meol|mr < [[mo — Mmool
t>0

and
sup\/f [Vm(t)|| Lo + sup ||[Vm(t)||L» < ¢ [|[Vmg||Ln
t>0 t>0

and such that lime o (m(t) — mo) = 0 strongly in H* N WH™(R™; R3). The solu-
tion is unique in its class and satifies tlim m(t) = my in CHR™;R3).
— 00
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Remarks on the limit of the Cahn-Hilliard equation in 1D
GIOVANNI BELLETTINI
(joint work with L. Bertini, M. Mariani and M. Novaga)

Given € € (0, 1], let us denote by u = uc(-,,u) the solution to the Cahn-Hilliard
equation

up = (W’(u) — GQUM)M in (0,4+00) x T,

M) uU=1u on {0} x T,

where T is the one-dimensional torus, W(z) = (1 —22)? for z € R, and the initial
datum @ is of class C1(T). This equation is the gradient flow, in the H ~!(T)-metric,
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of the functional
(2) F.(v) := /T <62% + W(v)> de.

We are interested in the existence of the limit (if any) as € | 0 of u.(-, -, @), which
is a question posed in [3] for another equation, but similar in spirit to the one
considered here. We are not able to answer this question, and we will analyze,
instead, the limit of w.(, -, (u.)) for suitable sequences (u.) of initial data converg-
ing to w. The main difficulty is the forward-backward parabolic character of the
equation in (1) when considered formally for e = 0, namely of the gradient flow of
the nonconvex functional

Fv) := /W(v) dzx.
Following [4], denote by '
Yr@) :={zxeT: W (u(z)) <0}
the local unstable region of w, by W** the convex envelope of W, and let also
Yo(u) = {z € T: W(u(x)) > W (u(z))}

be the global unstable region of w. The interesting initial data are those for which
(@) # (. Indeed, when dist(u(T), X (w)) > 0, the gradient flow equation of F' is
forward parabolic, and therefore gives raise to a global smooth solution, different
in general, when Y. (u) # 0, from the solution

{atu = (W*'(w)), . in (0,400) x T,

®) u=1u on {0} xT

obtained as the gradient flow of the convexified functional
4) F**(v) := /W**(v) dzx.
T

For an initial datum @ with 3 (%) # 0, numerical experiments [2] show the quick
formation of a microstructure in the graph of u.(-,-, @), actually only in 3 (),
and not on the whole of Y () *. Still following the heuristic arguments in [2], let
us now artificially superimpose to w a microstructure in a region ¥ which satisfies

(5) % C Eg(u) \ Br(w),

corresponding to a sequence (i) of initial data approximating u. Denoting by
ue(+, +, (we)) the solution of (1), the numerical observations lead to believe that the
limit solution depends on ¥ and, in general, differs from the solution obtained as
a limit (if any) of uc(,-,@). In conclusion, considering two sequences (u.), ()
of initial data both approximating @, and corresponding to different choices of ¥

1This remarkable observation appeared in the paper [4], where a a different ill-posed problem,
and a different regularization, were considered.
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satisfying (5), it seems that one cannot exclude that (assuming the existence of
the limits)

leiﬁ)luf('a ) (ﬂé)) 7é 161&1“‘6(7 ) (aﬁ))

Our main result consists in the assertion that such limits can be characterized,
when X (7) # 0, under the assumption (6) that u is energetically well-prepared
(heuristically, this corresponds to take ¥ = ¥ (@) \ X1 (1) in (5)). The statement
is the following.

Theorem. Let @ be such that F(u) < +oo. Take a sequence (@.) of initial
data satisfying Fe(u.) < +00, [;Ue dz = [T dx, converging to u and such that

(6) lim F.(,) = F™* ().

Then the corresponding solutions (-, -, (@)) of (1) converge to the solution u of
(3).

The proof of this result is entirely variational, and it is based on some ideas
formalized in [6] (see also [5] for another application of these techniques) which
reduce, in some sense, the asymptotic analysis of the sequence (u¢) to the compu-
tation of the I'-limsup of the sequence (F,), and to the I'-liminf of the sequence of
slopes (|VF,|) of F. (as defined, for instance, in[1]).
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A shape optimization problem for Moreau’s sweeping process
GIOVANNI COLOMBO

The sweeping process is the evolution inclusion

i(t) € —Negyl(a(t))

S xz(0) ==x9 € C(0),

where t € [0,T], t — C(t) is a moving set in a Hilbert space, and N¢ ) (x) denotes
(a suitable) normal cone. Under natural assumptions (¢ — C(t) Lipschitz, C(t)
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closed and convex for all ¢) it is well known, see, e.g., [3, 4, 2], that (1) admits one
and only one solution in [0, T, which is Lipschitz continuous.

We formulate and study an optimal control problem for the sweeping process,
where control functions enter the moving set, considering a cost functional J de-
pending on the trajectory of (1). To the best of our knowledge, this is the first
study in the literature devoted to such problem (see also the partially related paper
[5]). We first establish an existence theorem of optimal solutions in the case where
C(t) = {x : u(t,z) <0}, where u : [0,T] x R™ — R is Lipschitz with respect to ¢
and convex with respect to z, under suitable a priori bounds on the unknown u
and natural assumptions on J. Next we derive necessary optimality conditions in
the particular case where u is affine with respect to z. Our approach to necessary
conditions is based on the method of discrete approximations and advanced tools
of variational analysis and generalized differentiation. The final results obtained
are given in terms of the initial data of the controlled sweeping process and are
illustrated by some examples. In particular, if the cost functional is the distance
of the final point from a given closed set, optimal trajectories may be explicitly
computed.

The talk is based on [1].
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