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Abstract. For manifolds, topological properties such as Poincaré duality
and invariants such as the signature and characteristic classes, results and
techniques from complex algebraic geometry such as the Hirzebruch-Riemann-
Roch theorem, and results from global analysis such as the Atiyah-Singer in-
dex theorem, worked hand in hand in the past to weave a tight web of knowl-
edge. Individually, many of the above results are in the meantime available
for singular stratified spaces as well. The 2011 Oberwolfach workshop “Strat-
ified Spaces: Joining Analysis, Topology and Geometry” discussed these with
the specific aim of cross-fertilization in the three contributing fields.
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Introduction by the Organisers

The workshop Stratified Spaces: Joining Analysis, Topology and Geometry, or-
ganised by Markus Banagl (Heidelberg), Ulrich Bunke (Regensburg) and Shmuel
Weinberger (Chicago) was held December 11th – 17th, 2011. It had three main
components: 1) Three special introductory lectures by Jonathan Woolf (Liver-
pool), Shoji Yokura (Kagoshima) and Eric Leichtnam (Paris); 2) 20 research talks,
each 60 minutes; and 3) a problem session, led by Shmuel Weinberger.

In total, this international meeting was attended by 45 participants from Canada,
China, England, France, Germany, Italy, Japan, the Netherlands, Spain and the
USA. The “Oberwolfach Leibniz Graduate Students” grants enabled five advanced
doctoral students from Germany and the USA to attend the meeting. One of these
students, Florian Gaisendrees (Heidelberg), presented his thesis results. Both es-
tablished senior mathematicians and postdocs were well represented.
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The workshop pursued a twofold aim. While the attendees received an overview
of the current state-of-the-art in stratified space theory, we hoped that in addi-
tion the representatives of the three major fields algebraic geometry, topology
and global analysis, which contribute each in their own way to the study of sin-
gular stratified spaces, would move closer together and learn from each others’
viewpoints. Ample time between lunch and the afternoon session provided the
opportunity for discussions among the participants. In Germany, this was the first
such meeting on stratified spaces in decades and underscores the recent surge of in-
terest in this area, due on one hand to the realization that results and frameworks
capable of handling singularities are not limited to internal applications, but also
shed light on nonsingular spaces, and on the other hand to prodigious progress
that the area has made in the last dozen years. Naturally, the aforementioned
goal is an ambitious one that is not expected to be achieved by a single meeting.
Partly, the techniques in the three respective fields are very different from each
other, and to master them requires substantial effort from someone not already
in the field. But, as the meeting has shown, there is a lot of common ground as
well, and this is where one can start to interact: Characteristic classes of singular
spaces are a good example, as became clear in Yokura’s survey. The organizers
feel that a first step in reaching the goal has been made in view of the fact that
participants expressed vivid interest in the results presented by proponents of ad-
jacent fields and are now certainly aware of the kind of contribution each of the
fields is now making, or will make in the near future, to the advancement of the
theory of stratified spaces.

In his expository lecture, Jonathan Woolf gave an introduction to intersection
cohomology, choosing as his vehicle perverse sheaves. This approach is not new,
but more familiar to topologists and algebraic geometers than to analysts. This
theme was later in the week continued by Jörg Schürmann, who studied decom-
positions in the Witt group of perverse sheaves (jointly with Woolf). Yokura pro-
vided an overview of his joint work with Brasselet and Schürmann, which unifies
for singular varieties several genera and characteristic classes arising in algebraic
geometry and topology. Eric Leichtnam’s special lecture reviewed the higher sig-
nature index class first for manifolds, then for stratified (Witt) spaces.

By blow-up constructions, manifolds with fibered corners or cusps are closely
linked to stratified spaces. While the latter are hard to study directly analytically,
the former are more amenable to such methods. This was reflected in a number
of talks on analysis on manifolds with (fibered) corners/cusps (Daniel Grieser,
Jean-Marie Lescure, Paul Loya). Lie groupoids occurred in several talks; Hessel
Posthuma discussed localized index theory on them and Markus Pflaum studied
the stratified geometry of their orbit spaces. That the stratified point of view
has its merits in solving PDEs was proven by Bernd Amman’s talk, who intro-
duced Lie manifolds, equipped Euclidean space with such a structure, observed
that the Schrödinger operator defines a stratification, and obtained regularity re-
sults for eigenfunctions of the operator that way. Lie manifolds also appeared in
Victor Nistor’s lecture, who focused on the well-posedness of the Laplace equation



Stratified Spaces: Joining Analysis, Topology and Geometry 3219

on nonsmooth but suitably stratified domains. On a space with isolated singu-
larities, Ursula Ludwig established a comparison theorem between the geometric
Morse-Thom-Smale complex and Witten’s analytic complex. On the more topo-
logical side, Jim McClure reported on his work with Greg Friedman on further
clarifying the symmetric signature of Witt spaces. In collaboration with Cappell
and Weinberger, Min Yan achieves a surgery-theoretic classification of multiaxial
U(n)-manifolds. These, and their orbit spaces, carry natural stratifications and
the result expresses the structure set as a sum over relative structure sets associ-
ated to the strata. Matthias Kreck discussed a geometric construction of a new
equivariant cohomology theory which, for manifolds, is Poincaré dual to ordinary
equivariant homology, based on interpreting the latter as a bordism group of strat-
ified spaces (“stratifolds”) with free group action together with an equivariant map
to the manifold. Florian Gaisendrees implemented further steps in the program of
intersection spaces associated to a stratified space, pioneered by Markus Banagl.
Xianzhe Dai’s lecture centered on the relation of analytic torsion to (intersection)
Reidemeister torsion in the presence of an isolated conical singularity. For algebraic
(or analytic) varieties over a field of characteristic zero, Edward Bierstone and his
collaborators Lairez, Milman and Vera Pacheco, investigate a natural stratification
determined by the desingularization invariant, which can be used to compute local
normal forms for the singularities at every point of the variety. Manuel Villa, to-
gether with Budur and González-Pérez, explained that the motivic zeta function,
the motivic Milnor fiber, the Hodge-Steenbrink spectrum, and the log canonical
threshold of an irreducible quasi-ordinary hypersurface singularity (which is gen-
erally not isolated) are determined by its embedded topological type.
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Jörg Schürmann (joint with Jon Woolf)
Witt groups of perverse sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3262
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Genera and characteristic classes of singular varieties . . . . . . . . . . . . . . . . 3275

Problem Session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3279



Stratified Spaces: Joining Analysis, Topology and Geometry 3223

Abstracts

Regularity of eigenfunctions of Schrödinger type equations

Bernd Ammann

(joint work with Catarina Carvalho, Victor Nistor)

In this talk we present some regularity statements for elliptic differential operators
with singular potential, as for instance Schrödinger operators. The talk summa-
rizes results from [1] which is work in collaboration with Catarina Carvalho and
Victor Nistor. It is also intensively connected to collaborations with A. Ionescu
and R. Lauter.

At first, we describe Lie manifolds, which were introduced in [3]. Roughly
speaking the concept of a Lie manifold is a tool to compactify non-compact com-
plete manifolds. A Lie manifold is a manifold with cornersM (always with a fixed
differentiable structure) and a fixed Lie algebra of vector fields which satisfies some
axiomatic properties, for example we require that the Lie algebra of vector fields
be a projective module over the ring C∞(M). This Lie algebra of vector fields is
used to describe a complete metric on the interior M0 of M .

Examples of Lie manifolds are b-manifolds in the sense of Melrose, see e.g. [4],
asymptotically hyperbolic manifolds and many similarly constructed manifolds.
Euclidean space Rn is obtained from the scattering calculus [5].

We then describe a systematic way to conformally blow-up a Lie-manifold M
along a given submanifold N . The blow-up construction consists of two parts: at
first we obtain a new manifold with corners [M : N ]. This part is quite standard,
and also similar to [6]. We assume transversality at the boundary and N∩M0 6= ∅.
The second part is to specify a Lie algebra of vector fields on this blownn-up
manifold [M : N ]. A subtle step is to prove that the Lie algebra of vector fields is a
projective module, and one of the most amazing aspects is that no condition on the
behavior of the Lie algebra of vector fields on M is required for our construction.
Associated to this new Lie algebra of vector fields there is a complete metric on
the interior [M : N ]0 of [M : N ]. This new metric on [M : N ]0 ∼= M0 \ N is
conformal to the original metric on M0.

We apply this blow-up construction to the study of the eigenvalue equation for
Schrödinger type operators H. For example we study the classical Schrödinger
operator H := −∆+ V of a k-electron atom with

(1) V (x) =
∑

1≤j≤k

bj(x)

|xj |
+

∑

1≤i<j≤k

cij(x)

|xi − xj |
,

where x = (x1, x2, . . . , xk) ∈ R3k, xj ∈ R3, and bj and cij are suitable smooth
functions. Another example would be a molecule, where we consider the nuclei as
very heavy and thus with a fixed position.

The blow-up construction described above will be applied now. We start with
euclidean space R3k equipped with the Lie manifold structure from the scattering
calculus. The Schrödinger operator defines a structure of a stratified space on R3k.
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The highest dimensional strata are those where exactly two particles meet, and
these strata have codimension 3. The lowest stratum is where the number of
meeting particles is maximal, and it is typically a single point. The Schrödinger
operator has a singular potential along the strata, in the sense that the potential
is unbounded in the neighborhood of the strata. Our blow-up construction now
blows up the lowest-dimensional stratum first, and then iteratively the strata of
higher and higher dimension. During this blow-up-construction the eigenvalue
equation for the Schrödinger operator is translated into an equation which remains
“bounded with respect to the blown-up metric” in a neighborhood of the strata.

This allows us to apply regularity statements for Lie manifolds, developed in [2].
In this way we obtain the following regularity result for the eigenfunctions of the
Schrödinger equation. To express this result we define the Babuška-Kondratiev
spaces .

(2) Kma (R3k, rS) := {u : R3k → C | r|α|−aS ∂αu ∈ L2(R3k), |α| ≤ m},
where a ∈ R and m ∈ N. The weight function rS(x) is the smoothed distance
from x to the singular strata, however the distance rS is not measured with respect
to euclidean distance, but with respect to a metric on the ball compactification
of R3k. This modified choice does not effect Kma (R3k, rS) on closed balls, but it
does globally.

Theorem 1 ([1, Theorem 4.3]). Assume u ∈ L2(R3k) is an eigenfunction of the
single-nucleus k-electron Schrödinger operator, then

u ∈ Kma (R3k, rS)

for all m ∈ N and for all a ≤ 0.

This results is mainly interesting close to the strata of non-maximal dimension.
The result is already known for the classical Schrödinger operator locally along
the top-dimensional strata, in fact it follows from recent research by Fournais [7]
in which it is shown that the eigenfunction satisfies some modified version of
analyticity. Our result is stronger close to those places where at least three particles
meet. The approach in [7] is also more retrictive than ours, in particular as it
requires analyticity of the potential, which we do not assume.

In current work we modify the blow-up construction, and we expect to obtain
a version of the above theorem in which rS is replaced by the euclidean distance
to the singular stratum. It also seems likely to us that the coefficient a in the
above theorem can be improved to all a < 3/2. One motivation to conjecture this
is that the corresponding statement holds for the Schrödinger operator associated
to several nuclei and a single electron.

Theorem 2 ([1, Theorem 4.6]). Let u ∈ L2(R3) be such that Hu = λu, in distri-
bution sense. Then u ∈ Kma (R3, rS) for all m ∈ N and all a < 3/2.

Finally we also want to mention interesting developments by Flad, Harutyun-
yan,
Schneider, and Schulze, see [8, 9]. Their approach is partially related to ours, but
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has different goals, in particular they obtain precise asymptotic developments for
systems with few particles.
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Stratification by the desingularization invariant

Edward Bierstone

(joint work with P. Lairez, P. Milman, F. Vera Pacheco)

The philosophy of the talk is that the desingularization invariant [3] deterimines
a natural stratification of an algebraic or analytic variety X (over a field of char-
acteristic zero), and can be used to compute local normal forms for the singularity
of X at every point of a stratum. The idea will be illustrated in the following
problem.

The objects of study are (reduced) algebraic (or analytic) varieties X , together
with birational (or bimeromorphic) morphisms σ : X ′ → X .

Question. Can we find the smallest class of singularities S such that:

(1) S includes all normal crossings (nc) singularities;
(2) Given X , there is a proper birational (or bimeromorphic) morphism σ :

X ′ → X such that X ′ has only singularities in S, and σ is an isomorphism
over the normal crossings locus of X?

The question has interesting variants; e.g., in (2) we can require that σ is an
isomorphism over the S-locus of X (the points of X having only singularities in
S).

Why ask these questions? In characteristic zero, every variety is birationally
equivalent to a smooth variety. But birational models with mild singularities have
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to be admitted in natural situations. For example, we cannot simultaneously
resolve the singularities of a family of curves without allowing special fibres that
have normal crossings singularities.

In general, S is larger than the class of normal crossings singularities:
Example. The Whitney umbrella or pinch point pp, given by z2 + xy2 = 0, has
a pp singularity at the origin, but double normal crossings singularities nc2 along
the nonzero x-axis. There is no proper bimeromorphic mapping that eliminates
pp without modifying nc points.

Normal crossings at a point means that X is defined, in suitable local analytic
coordinates (x1, . . . , xn) at the point, by a monomial equation xα1

1 · · ·xαn
n = 0.

Philosophy. The desingularization invariant [3] deterimines a natural stratifica-
tion of an algebraic or analytic variety X , and can be used together with natural
geometric information to compute local normal forms for the singularity ofX at ev-
ery point of a stratum. In general, the invariant is a finite sequence inv = (HS, . . .),
beginning with the Hilbert-Samuel function HS of X at a point. If X is hypersur-
face (i.e., defined by a principal ideal), then HS is determined by the order of the
ideal at a point. As an example of the philosophy, we recall that stratification by
HS distinguishes the class of subanalytic sets on which one can do classical local
analysis:

Theorem 0.1. [2] The following are equivalent:

(1) HS is upper-semicontinuous on X (in the subanalytic Zariski topology).
(2) X is semicoherent, i.e., X has a locally finite stratification X = ∪Xi such

that Fa(X) is generated on Xi by
∑

α∈Nn

fij,α(a)(x− a)α ∈ R[[x− a]], j = 1, . . . , q,

where each fij,α is analytic on Xi and subanalytic.
(3) f : X → R is C∞ (i.e., the restriction of a C∞ function) if and only if f

is Ck, for all k.
(4) Composite function property. Consider a proper analytic map ϕ : M ։

X ⊂ Rn. Then f ∈ C∞(M) is a C∞ composite with ϕ (i.e., f = g◦ϕ, where
g ∈ C∞(Rn)) if and only if f is formally composite over every a ∈ X.

Resolution of singularities. Resolution of singularities of a variety X is given

by a sequence of blowings-up X = X0
σ1←− X1 ←− · · · σt←− Xt = X ′. The centre of

each blowing-up is the maximum locus of an upper-semicontinuous invariant inv
defined recursively over a sequence of admissible blowings-up.

Examples.
nc2 z2 + y2 = 0 inv(nc2) = (2, 0, 1, 0,∞)
pp z2 + xy2 = 0 inv(pp) = (2, 0, 3/2, 0, 1, 0,∞)

Lemma 0.2.
nc2 ⇐⇒ inv = inv(nc2)
pp ⇐⇒ inv = inv(pp) and codimSingX = 2

This is in year zero (i.e., before any blowings-up). In general, the invariant
depends on the history of blowings-up. For example, in 3 variables, the locus
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(inv = inv(nc2)) is a smooth curve. It is generically nc2. But, at a special point,
z2 + wαy2 = 0, where (w = 0) is the exceptional divisor. This equation can be
simplfied by cleaning: Blow up (z = w = 0). In the coordinate chart (w, y, wz),
we get w2(z2 + wα−2y2) = 0. Eventually, we get w∗(z2 + y2) = 0, if al is even, or
w∗(z2 + wy2) = 0, α odd.

Theorem 0.3. Minimal singularities [1], [4]. The class S in up to four vari-
ables:

xy = 0

xyz = 0

xyzw = 0 nc4

z2 + xy2 = 0 (or z2 + (y + 2x)(y − x)2 = 0)

z2 + (y + 2x2)(y − x2)2 = 0 degenerate pinch point dpp

x(z2 + wy2) = 0 prod

z3 + wy3 + w2x3 − 3wxyz = 0 cyclic point singularity cp3

For isomorphism over the S-locus (second version of the main problem), S in
four variables includes also

z2 + y(wy + x2)2 = 0 exceptional singularity exc.

The theorem depends on an understanding of limits of nc3 singularities in four
variables. Consider

f(w, x, y, z) = z3 + a(w, x, y)z2 + b(w, x, y)z + c(w, x, y),

nc3 on the non-negative w-axis. Suppose inv(0) = inv(nc3) = (3, 0, 1, 0, 1, 0,∞).
Then, at the origin:

f has 3 factors f has 2 factors f irreducible

f(w2, x, y, z) splits f(w3, x, y, z) splits

After cleaning:

f = xyz nc3 f = x(z2 + wy2) f = cp3
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Analytic Torsion and Intersection R-torsion for Manifolds with
Conical Singularity

Xianzhe Dai

§1. Cheeger-Müller Theorem

The Reidemeister torsion was originally introduced in the 3-dimensional setting
by K. Reidemeister in 1935. It was used to give a homeomorphism classification of
3-dimensional lens spaces. The R-torsion is not a homotopy invariant, but rather
a simple homotopy invariant and thus a topological invariant (under acyclicity
conditions). It was generalized to arbitrary dimensions by W. Franz, de Rham,
and later studied by many authors.

Ray-Singer [15] introduced analytic torsion in 1971 as an analytic analog of
the Reidemeister torsion. The celebrated Ray-Singer Conjecture states that the
analytic torsion equals the Reidemeister torsion on a closed manifold. Cheeger
and Müller independently proved Ray-Singer conjecture, [3, 13]. Later Müller
[14] generalized it to unimodular representations and Bismut-Zhang [1] dealt with
general representations.

In [6] Aparna Dar introduced intersection R-torsion for a class of singular man-
ifolds, namely the pseudomanifolds, using the intersection homology theory of
Goresky-MacPherson [9, 10]. She also defined analytic torsion for manifolds with
isolated conical singularity using Cheeger’s theory [5]. Roughly speaking a pseudo-
manifold is a manifold with iterated conical singularity. Thus it is an interesting
question as to what would be the generalization of Cheeger-Müller theorem for
pseudomanifolds.

§2. Variations of R-torsion and Analytic Torsion

Let X be a pseudomanifold with admissible conical metric. By Cheeger [4],

H∗
(2)(X) = (IHm̄

∗ (X))∗

for the upper middle perversity m̄ = (0, 1, 1, · · · , [k−1
2 ], · · · ).

Thus one can choose the preferred bases of IHm̄
∗ (X) according to the Hodge

theorem. Denote by Iτ(X) the intersection R-torsion of X with the upper middle
perversity m̄.

Proposition 1. Let g(s) be a family of admissible Riemannian metrics on X
which are of conical type near the singularity. Then

d

ds
ln Iτ(X) =

1

2

m+1∑

q=0

(−1)qTr(αHq)

where α = g−1 ∂
∂sg and Hq the orthogonal projection of L2 q-forms onto the

space of harmonic q-forms.
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For discussion about the analytic torsion we will restrict ourself to (m + 1)-
dimensional Riemannian manifold with isolated conical singularity satisfying the
Witt condition:

X = C(N) ∪M,

where ∂M = N and C(N) = (0, 1]×N is the finite cone with the conical metric
dr2 + r2gN ; in addition, Hm/2(N) = 0 if m is even.

Theorem 2.

d

ds
lnT (X) =

1

2

m+1∑

q=0

(−1)qTr(αHq) +Bm+1
2
,

where Bm+1
2

is the constant term in the asymptotic expansion of

1

2

m+1∑

q=0

(−1)q+1Tr(e−t∆qα).

In fact, if the metric near the conical singularity changes only along the cross
section in the variation, then Bm+1

2
can be computed explicitly in terms of the

spectral data of the cross section.

From the variational formulas of the intersection R-torsion and the analytic
torsion, the best hope for the Ray-Singer Conjecture for manifolds with conical
singularity is

lnT (X) = ln Iτ(X) + geometric correction term.

Our variation formulas also suggest that the geometric correction term depends
only on the conical singularity.

§3. Towards a Cheeger-Müller theorem for manifolds with conical sin-
gularity

For X = C(N)∪M satisfying the Witt condition, consider the smooth manifold
with boundary obtained by cutting off the conical tips:

Xǫ = Cǫ(N) ∪M
where Cǫ(N) = [ǫ, 1]×N .

For a manifold with boundaryM , the generalization of Cheeger-Müller theorem
is well understood by the work of Lück [12], Dai-Fang [7], Brüning-Ma [2].

Theorem 3 (Cheeger-D). There is an explicit constant a depending on the Betti
numbers of N such that difference

lim
ǫ→0

(ln T (Xǫ)− a ln ǫ)− lnT (X)

depends only on the cross section N and the normal geometry of the cross section
of the conical singularity.
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We are working to identify the difference in terms of geometric invariant of the
cone.

In [8] we computed the intersection R-torsion of a finite cone. However, so far,
we have not been able to connect it with the computation of analytic torsion of
the finite cone by Hartman-Spreafico [11] and Vertman [16].
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Singular Spin Structures and Witten spinors

Anda Degeratu

The first part of the talk was based on joint work with Mark Stern, and has
appeared in [1]. I ended with some work in progress with Richard Melrose.

The entire work is motivated by the following idea that Mark Stern and I had:
can one adapt Witten’s proof of the positive mass theorem to nonspin manifolds?

In what follows, (Mn, g) is an asymptotically flat complete Riemannian mani-
fold of order τ > n−2

2 . This means that there exists a compact set, K ⊂M , whose
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complement is a disjoint union of subsets M1, . . . ,ML – called the ends of M –
such that for each end there exists a diffeomorphism

Yl : R
n \BT (0)→Ml,

so that Y ∗
l g =: gijdx

idxj satisfies for ρ = |x|,
gij = δij +O(ρ−τ ), ∂kgij = O(ρ−τ−1), ∂k∂lgij = O(ρ−τ−2)

with δ the Euclidean metric on Rn, and T > 1.
It is well-known that the obstruction to having a spin structure on a oriented

differential manifold M is the second Stiefel-Whitney class w2(M). Based on the
interpretation of w2(M) as the obstruction to extending (n− 1) linearly indepen-
dent vector fields from the 1-skeleton to the 2-skeleton, we have:

Theorem 1. Let (M, g) be an asymptotically flat Riemannian manifold which is
nonspin. Then there exists a closed stratified subset V , locally quasi-isometric to
an iterated cone and lying in the compact part K ofM , so that the spin structure on
M \V is maximal, in the sense that it does not extend over any of the codimension
2 strata of V . The strata of V ,

V = V k2 ∪ V k3 ∪ . . . V kd−1 ∪ V kd ,
have codimensions kb = b(b − 1) in M . Moreover, the maximal spin structure on
M \ V is trivial on each asymptotically flat end of M .

This spin structure restricts to the trivial spin structure on each of the asymp-
totically flat ends of M . We denote with S the corresponding spinor bundle on
M \ V .

Next we define a special type of spinors, which have exactly those properties of
the spinor Witten used in his proof of the positive mass theorem in dimension 3:
Let ψ0 be a spinor on M \ V , constant near infinity. We say that a spinor ψ on
M \V is a Witten spinor asymptotic to ψ0, if the following conditions are satisfied:

(1) ψ−ψ0

ρ ∈ L2(M \ V, S),
(2) ψ is strongly harmonic, i.e. Dψ = 0, and
(3) ∇(ψ − ψ0) ∈ L2(Ml, S|Ml

) for each asymptotically flat end Ml of M .

We show that such spinors exist on M \ V .

Theorem 2. Let (M, g) be a nonspin Riemannian manifold which is asymptoti-
cally flat of order τ > n−2

2 and which has nonnegative scalar curvature. Given a
smooth spinor ψ0 on M \ V that is constant near infinity and that vanishes in a
neighborhood of V , there exists a Witten spinor on M \ V asymptotic to ψ0.

To implement Witten’s program, one needs to use the integral form of the
Lichnerowicz formula on the incomplete manifold M \ V . For this, one needs to
analyze the behaviour of the Witten spinors near V . We study the growth of such a
ψ near each of the strata V kb of V separately. Unless V kb is a closed stratum, there
are no tubular neighborhoods of uniform radius over the entire stratum. Hence, for
uniform estimates involving separation of variables, we formulate them in tubular
neighborhoods over relatively compact subsets of V kb that do not intersect the
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higher codimension strata. We denote by TRC(V kb) the set of all these good
neighborhoods around points in V kb . Letting r denote the distance to V 2 the
lowest codimension stratum, and rb denote the distance to the higher codimension
strata V kb of V , we have:

Theorem 3. Let ψ be a Witten spinor constructed as in Theorem 2. Then

(1) for all W ∈ TRC(V 2)

ψ

r1/2 ln1/2+a(1r )
∈ L2(W \ V, S|W\V ), for all a > 0,

(2) for all W ∈ TRC(V kb) with kb > 2

ψ

r
(kb−2)/2
b ln1/2+a( 1

rb
)
∈ L2(W \ V, S|W\V ), for all a > 0.

However, the decay estimates in (1) are borderline for our purposes. For any
class of manifolds for which we could set a = 0 in (1), Witten’s proof of the positive
mass theorem extends.

Theorem 4. Let (M, g) be an asymptotically flat nonspin manifold that satisfies
the hypothesis of the Positive Mass Theorem (i.e. the order of decay of the metric
is τ > n−2

2 and the scalar curvature is nonnegative and integrable). If the Witten
spinor constructed in Theorem 2 has the property

(1)
ψ

r1/2 ln1/2(1r )
∈ L2(W \ V, S|W\V )

for all W ∈ TRC(V 2), then the mass of (M, g) is nonnegative.

Since the spin structure on M \ V does not extend over V 2, spinors have non-
trivial holonomy around small circles normal to V 2. The L2-harmonic spinors
near V 2 have a Fourier decomposition in these normal circles whose leading order

modes in polar coordinates may behave like r−1/2e±
iθ
2 . Such modes prevent direct

application of the Lichnerowicz formula. But, if a spinor satisfies the hypotheses
of Theorem 4, these modes vanish, giving that its product with any element of
C∞

0 (M) is in the minimal domain of the Dirac operator. On the other hand, the
decay obtained in Theorem 3 near V 2 is not sufficient to remove them. Hence, our
estimates do not suffice to extend Witten’s proof of the positive mass theorem.

Next I presented some recent work in progress with Richard Melrose, in which
we study APS-type boundary conditions for spinors near V .

We assume for now that V is a smooth codimension 2 oriented compact sub-
manifold of M , connected for simplicity, and that M \ V has a spin structure
that does not extend over V . A result of Ammann-Bär (and also of Fang Wang
in his MIT thesis) gives that V has an induced spin structure. Let S(V ) be its
corresponding spinor bundle. In this context, we show:
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Theorem 5. (1) We have a well-defined boundary map
B : Dommax(D)→ L2(V, S(V )⊕ S(V )) such that the sequence

0→ Dommin(D)→ Dommax(D)
B→ L2(V, S(V )⊕ S(V ))

is exact. Moreover B has closed range which includes the smooth sections.
(2) The Dirac operator D has a self-adjoint extension, given by an APS bound-

ary condition.
(3) With the above APS boundary condition, D is Fredholm.
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Poincaré Duality Groups

James Fowler

The Borel conjecture asserts that aspherical manifolds are topologically rigid; par-
allel to this uiniqueness conjecture, there is an existence question: which groups π
are fundamental groups of closed aspherical manifolds? A necessary condition is
that K(π, 1) satisfy Poincaré duality (in which case we call π a “Poincaré duality
group” following [JW72]). Wall asked whether this suffices in [Wal79], problem
G2, page 391:

Is every Poincaré duality group Γ the fundamental group of a
closed K(Γ, 1) manifold? Smooth manifold? Manifold unique up
to homeomorphism?

Further history of this problem is discussed in [FRR95a, FRR95b, Dav00]; more re-
cently, in light of the Bryant–Ferry–Mio–Weinberger surgery for ANR Z-homology
manifolds [BFMW96, BFMW93], it is natural to ask for an ANR Z-homology
manifold rather than a topological manifold. Moreover, the existence question
for closed aspherical Z-homology manifolds can be formulated for R-homology
manifolds; Mike Davis asked whether every torsion-free finitely presented group
satisfying R-Poincaré duality is the fundamental group of an aspherical closed R-
homology n-manifold [Dav00]. In this talk, I produce a counterexample via the
following recipe:

• Let X = S2 ∪f D3 where f : ∂D3 → S2 is a degree two map; note that X
is Q-acyclic but not Z-acyclic.
• Triangulate X and apply Bestvina–Brady Morse theory [BB97] to get a
group G which is not FP(Z) but which is FH(Q), so there is a finite

complex K with π1K = G and K̃ rationally acyclic.
• Apply a variant of M. Davis’ reflection group trick [Dav83] to a regular
neighborhood ofK embedded in Euclidean space. This produces a torsion-
free group Γ which is not only FH(Q) but which also satisfies rational
Poincaré duality.
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Since K(Γ, 1) retracts onto K(G, 1), if there were a finite K(Γ, 1), then K(G, 1)
would be finitely dominated, but G is not FP(Z).

The counterexample arises from a finiteness issue. To circumvent the finiteness
issue, we can modify Mike Davis’ question by asking the following: given a finitely
presented group satisfying Q-Poincaré duality, is there a closed Q-homology man-
ifold M with π1M = Γ and Q-acyclic universal cover M̃? Note that we have now
dropped the torsion-free condition, so finite Γ are obvious 0-dimensional coun-
terexamples, but there are others.

Theorem. Let Γ be a uniform lattice in a semisimple Lie group containing p-
torsion (for p 6= 2). Then there does not exist an ANR Q-homology manifold X

having π1X = Γ and having Q-acyclic universal cover X̃.

The proof goes by a controlled symmetric signature calculation, and finishes with
a ρ invariant calculation. There is a nice relationship with stratified spaces: the
locally symmetric space K\G/Γ is an orbifold, having Γ as its orbifold fundamen-
tal group. The existence of the singular object K\G/Γ, along with uniqueness
(i.e., the Novikov conjecture for Γ), obstructs the existence of a non-singular Q-
homology manifold with the desired properties.
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[Dav00] , Poincaré duality groups, Surveys on surgery theory, Vol. 1, Ann. of Math.
Stud., vol. 145, Princeton Univ. Press, Princeton, NJ, 2000, pp. 167–193. MR MR1747535
(2001b:57001)

[FRR95a] Steven C. Ferry, Andrew Ranicki, and Jonathan Rosenberg (eds.), Novikov conjec-
tures, index theorems and rigidity. Vol. 1, London Mathematical Society Lecture Note
Series, vol. 226, Cambridge University Press, Cambridge, 1995, Including papers from the
conference held at the Mathematisches Forschungsinstitut Oberwolfach, Oberwolfach, Sep-
tember 6–10, 1993. MR MR1388294 (96m:57002)

[FRR95b] Steven C. Ferry, Andrew Ranicki, and Jonathan Rosenberg (eds.), Novikov conjec-
tures, index theorems and rigidity. Vol. 2, London Mathematical Society Lecture Note
Series, vol. 227, Cambridge University Press, Cambridge, 1995, Including papers from the
conference held at the Mathematisches Forschungsinstitut Oberwolfach, Oberwolfach, Sep-
tember 6–10, 1993. MR MR1388306 (96m:57003)

[JW72] F. E. A. Johnson and C. T. C. Wall, On groups satisfying Poincaré duality, Ann. of
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Intersection Spaces and Fiberwise Homology Truncation

Florian Gaisendrees

This talk is based on [2]. In [1] a spatial version of intersection homology is defined.
A key step is fiberwise homology truncation of the link bundle of a pseudomanifold.
This is done in order to construct an intersection space, the (ordinary) homology
of which is then considered. A comparison with the intersection homology of the
pseudomanifold reveals some differences and some similarities.

Fiberwise homology truncation of the link bundle is implemented in [1] for
trivial link bundles. The difficulty of extending said results to more general link
bundles is informed by two factors: firstly, the type of fiber (which is also the link
of the pseudomanifold), and secondly, the base space of the bundle (which is the
singular set of the pseudomanifold). We extend the methods introduced in [1] to
link bundles with fibers interleaf CW-complexes (see [1, Definition 1.62]) and base
space a sphere.

In this setting, truncation of the fiberwise gluing homeomorphisms yields only
homotopy equivalences. Hence homotopy theory is necessary to build a truncated
bundle with the right properties. We require the link bundle to be glued from triv-
ial bundles by means of cellular homeomorphisms. Generalized Poincaré duality
is shown for pseudomanifolds with such a link bundle.

Dold fibrations may be useful in other contexts as well. They enjoy two key
properties: firstly, they are preserved under fiberwise homotopy equivalence. This
greatly lowers the difficulty of showing that a bundle is a Dold fibration. Secondly,
under some mild restrictions, the mapping cylinder of a fiberwise homotopy equiv-
alence between Dold fibrations is again a Dold fibration. The latter is from [3] and
an overview of Dold fibrations and other weak fibrations is given in [4, Chapter
IV, Section 1].
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Pseudodifferential calculus for multiply fibred cusps

Daniel Grieser

(joint work with Eugenie Hunsicker)

We construct a pseudo differential calculus that allows to construct parametrices
for Dirac type and Laplace operators on non-compact Riemannian manifolds whose
geometry at infinity is conformal to a multiply fibred cusp. Such manifolds arise
naturally as Q-rank one locally symmetric spaces and as the spaces studied by
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Tian and Yau [5] in their proof of the non-compact Calabi conjecture, as well
as in various physical moduli space contexts as described in [2]. This work is
part of a broader project to study manifolds with corners which have fibration
structures at boundary faces that glue in an appropriate way. These include all
locally symmetric spaces, and conjecturally include moduli spaces such as the k-
monopole moduli spaces (ongoing work of Singer and Melrose), good resolutions
of projective varieties (ongoing work of Grieser and Melrose), and spaces arising
in variations of mixed Hodge structures (ongoing work of M. Kerr).

We define a notion of split ellipticity for operators on such spaces and prove that
certain Dirac and Laplace type operators (for example, the signature operator and
Hodge Laplacian) satisfy this condition under certain integrability assumptions on
the metrics at infinity. We then prove that split elliptic operators are Fredholm
between suitable spaces, allowing to define an index, and that the asymptotics of
elements in their kernel can be given, which is useful for Hodge theory.

To give more detail, we describe the setup in the case of two fibrations, for
ease of notation. By a manifold with doubly fibred boundary we mean a compact

manifold with boundary, M , together with two fibrations ∂M
φ2→ B1

φ1→ B0 of
compact manifolds. M is a compactification of the non-compact spaces mentioned
above. We denote the fibres of φ2 by F2 and those of φ1 by F1. Also, denote
the fibres of φ1 ◦ φ2 : ∂M → B0 by F . Thus, the boundary is fibred by ’big’
fibres F , which in turn are fibred by ’small’ fibres F2. We will also assume that a
trivialization of a neighborhood U of the boundary is given, U ≡ ∂M× [0, ε). This
fixes a boundary defining function near ∂M which we denote by x. The geometric
structure on these manifolds that we consider is most easily described by a set of
vector fields on M , whose elements are characterized by orders of tangency to the
boundary and to the various fibres in the boundary: Given a = (a1, a2) ∈ N2 we
consider vector fields onM which are tangent to order a2 to the fibres F2, to order
a1 + a2 to the fibres F and to order 1 + a1 + a2 to the boundary. More precisely,
we consider

aV(M) :=



V ∈ Γ(TM)

∣∣∣∣∣∣

(φ2)∗V = O(xa2 ),
(φ1 ◦ φ2)∗V = O(xa1+a2),
x∗V = O(x1+a1+a2)



 .

With respect to local coordinates adapted to the fibrations, i.e. the coordinate x,
coordinates y = (yj)j on B0, supplementing coordinates z on B1 (i.e. ’coordinates
on F1’) and supplementing coordinates w on ∂M (i.e. ’coordinates on F2’) this
set of vector fields is spanned over C∞(M) by

x1+a1+a2∂x, x
a1+a2∂y, x

a2∂z , ∂w.

and forms the set of sections of a rescaled tangent bundle aTM . Associated with
aV(M) are a-metrics, which are Riemannian metrics on the interior of M which,
when considered as sections of S2(aT ∗M), are positive definite and smooth up
to the boundary. Also, compositions of elements of aV(M) and smooth functions
yield a-differential operators, whose principal symbols are naturally homogeneous
functions on aT ∗M . Ellipticity of an operator is defined as invertibility of its



Stratified Spaces: Joining Analysis, Topology and Geometry 3237

principal symbol, and Dirac type and Laplace operators for a-metrics are elliptic.
All of these constructions are straightforward generalizations of the so-called φ-
calculus [3], which corresponds to one fibration and a = 1, and analogous to
constructions carried out in other geometric contexts, see [1] for references.

Unlike in the case of closed manifolds ellipticity does not guarantee Fredholm-
ness between the natural Sobolev spaces, so if one aims at index theory more
work is required. In addition to the principal symbol of an operator P , one needs
to consider a second symbol, the normal family, which is a family of operators
NP (µ, p) parametrized by p ∈ B1 and µ ∈ (TpB1)×R+, acting on the fibre F2p of
φ2 over p. For example, for the Hodge Laplacian ∆ we have

N∆(µ, p) = |µ|2 +∆p

where ∆p is the Hodge Laplacian on F2p. As in the φ-calculus, we call an operator
fully elliptic if it is elliptic and its normal family is invertible. A ’small’ pseudo-
differential calculus which contains parametrices (up to compact remainders) of
fully elliptic a-operators was constructed in [1], and it was shown there that these
operators are Fredholm between the natural Sobolev spaces.

However, many operators of interest are not fully elliptic, for example the op-
erator D = d + d∗ and the Hodge Laplacian ∆ in case of non-trivial fibres F2:
The kernel of N∆(0, p) consists of the space of harmonic forms on the fibre F2p.
Due to the topological nature of this space and to other special features of these
operators, they nevertheless satisfy a condition which we call split ellipticity. Es-
sentially, an a-operator P of order m is called split elliptic if it is elliptic and the
dimension of Hp = kerNP (0, p) is independent of p (thus yielding a vector bundle
over B1); if NP (µ, p) leaves Hp and a complement H⊥

p invariant for all µ, p; and

if, when writing P as 2 × 2 matrix with respect to the decomposition H ⊕ H⊥,
the H → H part is xa2m times an operator of similar type (but with respect to
the single fibration B1 × [0, ε) → B0 × [0, ε) and acting on sections of H), the
H⊥ → H⊥ part is fully elliptic and the off-diagonal terms are small in a suitable
sense. This is a recursive definition, and the definition for a single fibration recurs
to the case of no fibration, where the corresponding operators are b- (or totally
characteristic) operators. Our main theorems are then:

Theorem 1. Assume a manifold with k-fold fibred boundary and a-metric is given,
and that the a-metric induces a Riemannian submersion on the boundary.

The operator D = d + d∗ is split elliptic if k = 1, and also for k > 1 under
certain integrability assumptions on the boundary metric. The Hodge Laplacian
is split elliptic (for any k ≥ 1) under certain integrability assumptions on the
boundary metric.

The precise assumptions involve the mean curvature of certain fibres in the
tower of the fibration at the boundary, and also the integrability of certain partial
horizontal distributions. These conditions are closely related to those introduced
in [4] for the Laplacian and a simply fibred cusp.
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Theorem 2. Let P be a split elliptic operator on a manifold with multiply fi-
bred boundary. Then P is Fredholm between suitable split Sobolev spaces. Also,
elements in kerP have complete asymptotic expansions at ∂M .

The split Sobolev spaces are combinations of Sobolev spaces of different types.
Rather than give the general definition, we restrict here to the case of one fibration
φ : ∂M → B and a = 1 and integer orders. For m ∈ N0 let Hm

φ (M) be the

space of those L2-functions (or forms) on M so that applying m φ-vector fields
still yields an L2-function. Let H be the bundle over B defined by the operator.
Then Hm

split,H(M) is the space of functions which are in Hm
loc(M) over the interior,

whose H⊥ component (defined near the boundary) is in Hm
φ (M) and whose H-

component is in x−mHm
b (B×[0, ε),H). A special and inconvenient feature of these

Sobolev spaces is that they do not form a scale (i.e. spaces with larger m are not
contained in spaces with smaller m). But this is unavoidable, since considering
simple product type situations shows that precisely these spaces occur as natural
domains for split elliptic operators.

These results generalize results in [6] and in [2].
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Stratifolds and equivariant Poincaré duality

Matthias Kreck

LetG be a compact Lie group andX a G-space. Then equivariant (co)homology
groups are defined as the ordinary (co)homology groups of the Borel construction
X×GEG. If X is a closed oriented manifold (on which G acts orientation preserv-
ing), then for G trivial one of the most fundamental theorems is Poincaré duality.
For G non-trivial this is in general false, in a way as false as possible. It is nat-
ural to ask whether for equivariant homology HG

n (X) there is a new equivariant
cohomology theory, which one might call dual theory DHn

G(X), which is Poincré
dual to HG

n (X) and similarly for a new theory DHG
n (X), which is Poincaré dual

to Hn
G(X). In a much more general context an answer to this problem was given
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for arbitratry cohomology theories by Greenlees and May [G-M] in terms of equi-
variant spectra. In this talk I reported about a more geometric answer, where the
cocycles are certain equivariant stratified spaces together with an equivariant map
to X .

The background of this is my interpretation of ordinary (co)homology in terms
of bordism groups of stratifolds as defined in [K]. I explained this definition which
might be useful in other contexts. The next step was the corresponding interpre-
tation of equivariant homology Hn(X) as equivariant stratifold homology groups
SHG

n+dimG(X), where the latter is the bordism group of closed oriented strati-
folds with free G action together with an equivariant map to X . Following the
principles of [K] one gets a Poincaré dual cohomology theory for manifolds X as
bordism groups of non-compact oriented free G-stratifolds together with a proper
equivariant map to X .

It is natural to ask for a more classical interpretation of equivariant stratifold
cohomology SHn

G(X) in terms of chain complexes. It is not clear whether this can
be done for arbitrary compact Lie groups G but for finite groups this was done by
Haggai Tene in his thesis [T].

What are the relations between this new theory SHn
G(X) andHn

G(X)? Also this
was answered by Tene. He constructs a natural transformation from SHn

G(X) to
Hn
G(X) and a third cohomology theory which he calls equivariant Tate cohomology

since it is a generalization of ordinary Tata cohomology and an exact sequence re-
lating these three theories. In joint work with Tene we give a simple interpretation
of this natural transformation using infinite dimensional Hilbert stratifolds.

Finally I explained how the definition of Tate cohomology groups in terms of
stratifolds can be used to give a geometric interpretation of the ordinary cup
product in negative degrees. This is also contained in Tene’s thesis.

It is unclear what the relation between these new cohomology theories and
those constructed by Greenlees and May are. One should expect that they are
isomorphic.
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The Signature Package on Witt Space

Eric Leichtnam

(joint work with Pierre Albin, Paolo Piazza, Rafe Mazzeo)

This talk describes a joint paper ”The Signature Package on Witt Spaces”, by
Pierre Albin, Eric Leichtnam, Paolo Piazza and Rafe Mazzeo that will appear at
the Annales Scientifiques de l’Ecole Normale Supérieure.

We give a parametrix construction for the signature operator on any compact,
oriented, stratified pseudomanifold X which satisfies the Witt condition. This
construction is inductive over the ‘depth’ of the singularity. It is then used to show
that the signature operator is essentially self-adjoint and has discrete spectrum
of finite multiplicity, so that its index – the analytic signature of X – is well-
defined. This provides an alternate approach to some well-known results due to
Cheeger. We then show how to couple this construction to a C∗

rΓMischenko bundle
associated to any Galois covering of X with covering group Γ. The appropriate
analogues of these same results are then proved, and it follows that we may define
an analytic signature index class as an element of the K-theory of C∗

rΓ. We
establish in this setting and for this class the full range of conclusions, which
sometimes goes by the name of the signature package. In particular, we prove
a purely topological theorem, asserting the stratified homotopy invariance of the
higher signatures of X , defined through the homology L-class of X , whenever the
rational assembly map K∗(BΓ)⊗Q→ K∗(C

∗
rΓ)⊗Q is injective.

Pseudodifferential operators on manifolds with fibred corners and
Poincaré duality on statified spaces

Jean-Marie Lescure

(joint work with Claire Debord, Frédéric Rochon)

We present a pseudodifferential calculus adapted to stratified spaces. Pseudodif-
ferential calculi are useful to study linear elliptic equations, index theory and many
examples of them have been introduced over the years for certain type of singular
spaces ([8, 16, 15, 7, 6, 11, 14, 5], and many others). Our work [4] is an attempt to
give a unified treatment of this question in the case of (Thom-Mather) stratified
spaces. Our approach is based on two observations.

Firstly, stratified spaces can be desingularized into manifolds with corners car-
rying fibrations on boundary hypersurfaces, called manifolds with fibred corners.
This leads to a one-to-one correspondance between stratified spaces and manifolds
with fibred corners [1] which can be roughly described as follows. If X is a strati-
fied space of depth k, its unfolding 2X is obtained by doubling the stratified space
with boundary obtained from X by removing the minimal strata. Repeating this
operation k-times, we get a smooth manifold 2kX containing 2k copies of the reg-
ular part X• of X separated by k smooth hypersurfaces which are provided with
natural fibrations. The completion in 2kX of any copy of X• gives rise to the same
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manifold with fibred corners. Conversely, each manifold with fibred corners comes
with a natural equivalence relation whose quotient space is a stratified space.

The second observation is that blow-up technics [9] can be used on manifolds
with fibred corners. Indeed, if X is a manifold with fibred corners, natural geo-
metric considerations lead us to focus on the Lie algebra VS(X) of vectors fields
tangent to the boundary which are moreover tangent to the fibers of the fibrations
at the boundary hypersurfaces and also vanish at the second order in a normal
direction to the boundary hypersurfaces. This Lie algebra is a straight generaliza-
tion of that of [8] and already gives an algebra Diff∗

S(X) of differential operators.
Following [9], we define a suitable blow-up double space X2

π. It is a smooth man-
ifold with corners whose boundary hypersurfaces are labelled by the boundary
hypersurfaces of X and sorted in two types: front faces and boundary faces. The
manifold X2

π is also provided with a blow-down map βπ : X2
π → X2 and a lifted

diagonal ∆π . Then, one shows that elements of Diff∗
S(X) can be intepreted as

distibutions on X2
π conormal to the lifted diagonal ∆π. Then, we just define the

space Ψ∗
S
(X) of S-pseudodifferential operators as the space of distributions on X2

π

which are conormal with respect to ∆π and which fulfill a suitable vanishing condi-
tion at any boundary faces of X2

π. Conversely, we can interpret these distributions
as linear operators mapping C∞(X) into itself. Also, The Lie algebra VS(X) is
a finitely generated projective module over C∞(X) so there is a smooth vector
bundle πTX → X whose space of sections is precisely VS(X). In the groupoid
language, πTX → X is a Lie algebroid with anchor map given by a natural map

ιπ : πTX → TX , which is actually an isomorphism over
◦

X = X \∂X . The bundle
πTX , which is also isomorphic to TX but not in a canonical way, allows us to

define appropriate metrics and densities on
◦

X. These geometric data yield natural
Sobolev spaces H∗

S
(X) and the maps

P : xlHp
S
(X)→ xlHp−m

S
(X),

are continuous for all P ∈ Ψm
S
(X) and all l, p. Various symbol maps can be defined.

First of all, there is the principal symbol map:

ΨmS (X)
σm−→ S[m](πT ∗X)

which induces the short exact sequence:

0 −→ Ψm−1
S

(X) −→ ΨmS (X) −→ S[m](πT ∗X) −→ 0.

Next, by restricting the distributional kernels of S-operators to the front faces ffi
associated to the boundary hypersurfaces Hi of X , we get conormal symbol maps:

(1) σ∂i : Ψ
m
S (X)→ Ψmffi

(Hi),

for all i, where Ψmffi
(Hi) denotes the space of distibutions on ffi conormal to ffi ∩∆π

and satisfying suitable vanishing conditions. This gives the exact sequence:

(2) 0 −→ xiΨ
m
S (X) −→ ΨmS (X) −→ Ψmffi

(Hi) −→ 0

where xi denotes the intially chosen defining function of Hi. Next we prove the
composition theorem for S-operators, following a method inspired from [6] (that is,
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by using computations in local charts and a inductive argument on the dimension
and the depth of the manifold with fibred corners): if A ∈ Ψm

S
(X) and B ∈ Ψn

S
(X),

then A◦B ∈ Ψm+n
S

(X) and σ∂i (A◦B) = σ∂i(A)◦σ∂i (B) for all i. At this point, we
are able to discuss compactness, ellipticity and Fredholmness for the S-calculus.
The conclusions are rather natural and exaclty in the spirit of calculi developped
with blow-up technics:

(1) 0-orders operators are compact (on H0
S
(X) = L2(X)) if and only if their

principal and conormal symbols all vanish.
(2) An operator P ∈ Ψ∗

S
(X) is said to be fully elliptic when its principal

and conormal symbols are all invertible. If P ∈ Ψm
S
(X) is a fully elliptic

operator then P : Hp
S
(X)→ Hp−m

S
(X) is Fredholm for allm and its kernel

is contained into C∞(X).

While the micro-local analysis is performed on manifolds with corners, considera-
tions in K-theory related with the S-calculus give us information about the orig-
inal stratified space. For that purpose, we introduce a semi-classical S-calculus
associated with the blow-up space X2

π−sl obtained by blowing-up ∆π × {0} into

X2
π × [0, 1]ǫ. Once the boundary faces of X2

π−sl have been removed, we get an
amenable Lie groupoid Gπ−sl which can be thought as a generalization of the tan-
gent groupoid construction of A. Connes [2]. The slice at ǫ = 1 of this groupoid is a
Lie groupoid Gπ whose space of compactly supported pseudodifferential operators
is contained in Ψ∗

S
(X). The slice at ǫ = 0 of Gπ−sl is the Lie groupoid

πTX , which
is also the Lie algebroid of Gπ and eventually Gπ−sl is the adiabatic deformation
[13] of Gπ . Finally, the subgroupoid T FCX of Gπ−sl given by ǫ < 1 and xǫ = 0
(where x =

∏
xi) is a continuous family amenable groupoid which plays the role of

a tangent space of SX (ie, of the stratified space corresponding to X) in K-theory.
Then we show:

(1) The C∗-algebra C∗(T FCX) is Poincaré dual to C(SX) (see also [3]).
(2) Any fully elliptic operator P on X naturally provides a K-homology

class [P ] on SX while its noncommutative symbol (that is, the collection
of its principal and conormal symbols) gives a K-theory class [σ(P )] of
C∗(T FCX).

(3) Conversely, all elements of K0(C(SX)) and K0(C
∗(T FCX)) can be repre-

sented in this way.
(4) The Poincaré duality isomorphism K0(C(SX))→ K0(C

∗(T FCX)) induced
by (1) is precisely the map sending [P ] to [σ(P )].
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Sér. I Math. 325 (1997), 193–198.

[11] V. Nazaikinskii, A. Savin, and B. Sternin, Pseudodifferential operators on stratified mani-
folds, Differ. Uravn. 43 (2007), no. 4, 519–532.

[12] , Pseudodifferential operators on stratified manifolds II, Differ. Uravn. 43 (2007),
no. 5, 685–696.

[13] V. Nistor, A. Weinstein, and P. Xu, Pseudodifferential operators on groupoids, Pacific J.
Math. 189 (1999), 117–152.

[14] F. Rochon, Pseudodifferential operators on manifolds with foliated boundaries, preprint,
arXiv:1009.4272.

[15] B.-W. Schulze, The iterative structure of corner operators, preprint, arXiv:09.05.0977.
[16] , Pseudo-differential operators on manifolds with singularities, North-Holland, Am-

sterdam, 1991.

Witten’s holonomy theorem for manifolds with corners

Paul Loya

(joint work with Sergiu Moroianu, Jinsung Park)

We study the determinant line bundle for a family of Dirac operators on compact
manifolds with corners and we describe the Quillen metric and Bismut-Freed con-
nection in this context, then we compute the holonomy of the connection using the
eta invariant. In other words, we extend the so-called “global anomaly formula”,
or Witten’s holonomy theorem, to manifolds with corners. In more detail, Witten
studied the limiting behavior of the eta invariant of a Dirac operator on the total
space (assumed compact) of a fibration over S1, when the metric in the base S1

is blown-up in a certain manner, a process known as taking the adiabatic limit.
He argued that the limit equals (minus the logarithm of) the holonomy of the
determinant line bundle. This conjecture was subsequently proved independently
by Bismut and Freed [1] and Cheeger [2]. In this talk, we allow the fibers to be
compact manifolds with corners of arbitrary codimension endowed with cylindrical
end metrics and we allow the base to be any interval in S1. Thus, we shall consider
more generally parallel transport in the determinant line bundle. We also consider
the adiabatic limit of the eta function instead of the eta invariant, as in [3] for the
closed case. Assuming the fiber operators to be invertible, we compute the adia-
batic limit of the natural eta function in this setting and relate it to the integral
of the Bismut-Freed meromorphic family of one-forms and new correction terms
coming from the boundaries of the fibers and the ends of the interval. Setting the
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eta function variable equal to zero, we derive a parallel transport formula in the
manifolds with corners context. The “local anomaly formula” for the corners case
is work in progress; the case when the fibers are manifolds with boundary was
handled in [4].
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A comparison theorem between two complexes on a singular space

Ursula Ludwig

The aim of this talk is to present the de Rham type comparison result achieved
in [9] between an analytic complex and a geometric complex on a spaces X with
isolated cone-like singularities. The analytic complex is a subcomplex of the com-
plex of L2-forms on X , the geometric complex consists of cells which are allowed
for the middle lower perversity in the sense of intersection homology as defined by
Goresky and MacPherson in [6]. Both complexes are produced using Morse theory
on the singular space.

The result generalises the comparison between the so called Morse-Thom-Smale
complex and the Witten complex on a smooth compact manifold. Let us recall
the smooth result first: Let (M, g) be a smooth compact Riemannian manifold
and let f :M → R be a smooth Morse function on M .

(a) The geometric complex (Morse-Thom-Smale complex): If the pair (f, g) sat-
isfies the Morse-Smale transversality condition one can define the so called Morse-
Thom-Smale complex (Cu∗ , ∂∗). The complex (Cu∗ , ∂∗) is generated by the critical
points of the Morse function. The boundary operator ∂∗ is given by counting tra-
jectories of the gradient vector field between critical points of index difference 1.
Note that as a corollary of the existence of the Morse-Thom-Smale complex and
the well known fact that it computes the singular homology of M one gets the
Morse inequalities. The results on the Morse-Thom-Smale complex were known
already by Thom and Smale (for a proof see [11]).

(b) The analytic complex (Witten complex): Inspired by ideas from quantum
field theory Witten in [12] proposed a new proof of the Morse inequalities. Its
departure point is the deformation of the de Rham complex (Ω∗(M), d) of smooth
forms into a complex (Ω∗(M), dt), where dt = e−tfdetf . Hereby t ∈ R+ is the
deformation parameter, and one is interested in the limit t → ∞. Using the fact
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that the two complexes (Ω∗(M), d) and (Ω∗(M), dt) are isomorphic as well as the
Hodge theory for the deformed complex one has that

(1) ker∆t ≃ H∗(Ω∗(M), dt) ≃ H∗(Ω∗(M), d) =: H∗
dR(M).

Here HdR(M) denotes the de Rham cohomology of the manifold M , which, by
de Rham’s theorem, is isomorphic to the singular cohomology of M . The oper-
ator ∆t = (dt + δt)

2 is called the Witten Laplacian; δt denotes the adjoint of dt
with respect to the L2-metric on forms. The main result in this first part of Wit-
ten’s program is the spectral gap theorem for the Witten Laplacian, stating that
for t large enough and some appropriate constants C1, C2, C3 > 0 one has that
spec(∆t) ∩ (C1e

−C2t, C3t) = ∅. Moreover the number of the small eigenvalues of
the Witten Laplacian (counted with multiplicities) equals the number of critical
points of the Morse function. In view of (1) the finite dimensional subcomplex
(St, dt) of (Ω∗(M), dt), generated by the eigenforms of the Witten Laplacian to
small eigenvalues, still computes the de Rham cohomology of M . The Morse
inequalities follow as a corollary from the spectral gap theorem.

(c) Comparison between the two complexes: The second step of Witten’s pro-
gram aims at comparing the complex (St, dt) constructed in (b) with the Morse-
Thom-Smale complex: Witten suggested that in some appropriate sense the com-
plex (St, dt) should “converge” to the complex Hom((Cu∗ , ∂∗),R) as t→∞.

The rigorous proofs for the Witten deformation and the comparison result (c) for
smooth manifolds and smooth Morse functions were given by Helffer and Sjöstrand
in [8] using semi-classical analysis. In [2] Bismut and Zhang gave a second proof
using a result by Laudenbach (see Appendix of [1]) on the structure of the bound-
ary of the unstable cells of critical points of the Morse function. In [1] and [2] the
Witten deformation was used to prove comparison results between analytic and
Reidemeister torsion.

The Witten deformation on singular spaces: Let (X, g) be a Riemannian man-
ifold with cone-like singularities. The singular set of X will be denoted by Σ.
An important invariant for singular spaces is the intersection homology as defined
by Goresky and MacPherson in [6]. It has an analytic description in terms of
the L2-cohomology of X as defined by Cheeger (see [4]): The de Rham complex
(Ω∗

0(X \ Σ), d) of smooth forms, compactly supported outside the singular set Σ
admits a maximal extension into a Hilbert complex (C, dmax, 〈 , 〉) in the space of
L2-integrable forms. Here 〈 , 〉 denotes the the L2-metric, we use the language of
Hilbert complexes as introduced in [3]. The L2-cohomology of X is defined as the
cohomology of the Hilbert complex (C, dmax, 〈 , 〉),

H∗
(2)(X) := H∗((C, dmax, 〈 , 〉)).

Integration yields an isomorphism (see [5])

H∗
(2)(X) ≃ Hom(IHm

∗ (X),R),

where by IH
m
∗ (X) we denote the intersection homology of X with lower middle

perversity m. In [9] the Witten deformation has been generalised to the singular
situation by deforming the complex (C, dmax, 〈 , 〉) using a radial Morse function f :
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X → R. The Witten Laplacian ∆t := (dt,max+δt,min)
2 is the Laplacian associated

to the deformed Hilbert complex (Ct, dt,max, 〈 , 〉). The L2-Hodge theorem for this
situation gives an isomorphism

ker∆t ≃ H∗((C, dt,max, 〈 , 〉)) ≃ H∗
(2)(X).

In [9] we show that the spectral gap theorem holds also in this singular context:
For a radial Morse function f the restriction f|X\Σ is a Morse function in the
smooth sense and we denote by ci(f|X\Σ) the number of critical points of f|X\Σ

of index i. For a singular point p ∈ Σ, we denote by Lp the link of X at p and by
cLp the cone over Lp.

Theorem 1. (1) Let X be a Riemannian manifold with cone-like singularities
and let f : X → R be a radial Morse function on X. Then there exist
constants C1, C2, C3 > 0 and t0 > 0 depending on X and f such that for
any t > t0,

spec(∆t) ∩ (C1e
−C2t, C3t) = ∅.

(2) Let us denote by (St, dt, 〈 , 〉) the subcomplex of (Ct, dt, 〈 , 〉) generated by
all eigenforms of the Witten Laplacian ∆t to eigenvalues in [0, 1]. Then,
for t ≥ t0,

dimSit = ci(f|X\Σ) +
∑

p∈Σ

mi
p =: ci(f),

where the contribution of the singular point p to ci(f) is given by
mi
p := dim

(
Hom(IH

m
i (cLp, Lp),R)

)
.

The Witten deformation on singular spaces has been studied by the author
already in previous articles (see [10]). The Morse functions considered there were
called admissible Morse functions and were inspired from the Stratified Morse
theory of Goresky and MacPherson in [6]. In the context treated in [9] we are
however able to prove stronger results.

The geometric complex for the singular space: Let us shortly outline the strategy
in [9] of the construction of the geometric complex (Cu∗ , ∂∗) for the singular space
X : First we decompose X into the unstable cells of critical points of the radial
Morse function f . As one sees immediately, this decomposition does not have
enough cells. Therefore we refine it and get a chain complex (T∗, ∂∗). Now,
the subcomplex (T all∗ , ∂∗) ⊂ (T∗, ∂∗) of allowed chains (in the sense of intersection
homology) is too big. One gets the complex (Cu∗ , ∂∗) as a subcomplex of (T all∗ , ∂∗).
To pick this subcomplex in the right way, smooth Morse theory on the link is used.

The comparison result for the singular space: Finally in [9] we establish a com-
parison theorem between the Witten complex (Ct, dt,max, 〈 , 〉) and the geometric
complex (Cu∗ , ∂∗), which generalises Theorem 6.11 and Theorem 6.12 in [2] to the
singular setting.

Acknowledgements I would like to thank Jean-Michel Bismut and Jean-Paul
Brasselet for their continuous support during this project and for generously shar-
ing their expertise on the Witten deformation and on de Rham theorems on sin-
gular spaces with me.
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L
2approximation and homological growth

Wolfgang Lück

Let G be a group together with an inverse system {Gi | i ∈ I} of normal
subgroups of G directed by inclusion over the directed set I such that [G : Gi]
is finite for all i ∈ I and

⋂
i∈I Gi = {1}. Let K be a field. We denote by mg

the minimal number of generators, by ρZ the integral torsion, by b
(2)
n the p-th

L2-Betti number, and by ρ(2) the L2-torsion. The symbol N (G) stands for the
von Neumann algebra of the group G.

The starting point of this talk is the following result (see [7]).

Theorem Lück (1994) Let X be a finite connected CW -complex and let X → X
be a G-covering. Then

b(2)(X ;N (G)) = lim
i→∞

bn(Gi\X;Q)

[G : Gi]
;

The analogous result for signatures and η-invariants has been proved by Lück-
Schick [9].

Meanwhile the question has occurred whether a result like this is true also
for characteristic p. Then the theory of von Neumann algebras is not available
anymore. A partial result is given by Linnell-Lück-Sauer [6]

Theorem Linnell-Lück-Sauer (2010) Let X be a finite connected CW -complex
and let X → X be a G-covering. Suppose that G is torsionfree and elementary
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amenable. Then one assign to a Fp-module M its Ore dimension dimOre and one
has

dimOre

(
Hn(X;Fp)

)
= lim
i→∞

bn(Gi\X;Fp)

[G : Gi]
;

Bergeron-Lück-Sauer are currently working on a non-amenable situation given
by congruence subgroups.

The case n = 1 is of special interest for group theory. For instance the following
question is open

Question For which groups G, does the limit limi∈I
b1(Gi;K)
[G:Gi]

exist for all systems

(Gi)i∈I with
⋂
i∈I Gi = {1} and fields K and is independent of the choice of

(Gi)i∈I and K?

Abért-Nikolov [1, Theorem 3] have shown for a finitely presented residually finite
group G which contains a normal infinite amenable subgroup that the answer to
the questions above is yes.

The questions above is related to questions of Gaboriau (see [3, 4, 5]), whether
every essentially free measure preserving Borel action of a group has the same
cost, and whether the difference of the cost and the first L2-Betti number of a
measurable equivalence relation is always equal to 1.

The answer to the questions above is negative in general if we drop the condition
that the system {Gi | i ∈ I} has non-trivial intersection, as an example by Lück
shows.

The following two conjectures are motivated by [2, Conjecture 1.3] and [8,
Conjecture 11.3 on page 418 and Question 13.52 on page 478].

Conjecture (Approximation Conjecture for L2-torsion)
Let X be a finite connected CW -complex and let X → X be a G-covering.

(1) If the G-CW -structure on X and for each i ∈ I the CW -structure on
Gi\X come from a given CW -structure on X , then

ρ(2)(X;N (G)) = lim
i→∞

ρ(2)(Gi\X;N ({1}))
[G : Gi]

;

(2) If X is a closed Riemannian manifold and we equip Gi\X and X with the
induced Riemannian metrics, one can replace the torsion in the equality
appearing in (1) by the analytic versions;

(3) If b
(2)
n (X ;N (G)) vanishes for all n ≥ 0, then

ρ(2)(X ;N (G)) = lim
i→∞

ρZ(Gi\X)

[G : Gi]
.

Conjecture (Homological growth and L2-torsion for aspherical closed mani-
folds) Let M be an aspherical closed manifold of dimension d and fundamental
group G = π1(M). Then
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(1) For any natural number n with 2n 6= d we have

b(2)n (M ;N (G)) = lim
i→∞

bn(Gi\M̃ ;Q)

[G : Gi]
= 0.

If d = 2n is even, we get

b(2)n (M ;N (G)) = lim
i→∞

bn(Gi\M̃ ;Q)

[G : Gi]
= (−1)n · χ(M) ≥ 0;

(2) For any natural number n with 2n+ 1 6= d we have

lim
i∈I

ln
(∣∣tors

(
Hn(Gi\M)

)∣∣)

[G : Gi]
= 0.

If d = 2n+ 1, we have

lim
i∈I

ln
(∣∣tors

(
Hp(Gi\M)

)∣∣)

[G : Gi]
= (−1)n · ρ(2)

(
M ;N (G)

)
≥ 0.

Some evidence for the two conjectures above comes from the following result:

Theorem (Lück) Let M be an aspherical closed manifold with fundamental
group G = π1(X). Suppose thatM carries a non-trivial S1-action or suppose that
G contains a non-trivial elementary amenable normal subgroup. Then we get for
all n ≥ 0

lim
i→∞

bn(Gi\M̃ ;K)

[G : Gi]
= 0;

lim
i∈I

mg
(
Hn(Gi\M)

)

[G : Gi]
= 0;

lim
i∈I

ln
(∣∣tors

(
Hn(Gi\M)

)∣∣)

[G : Gi]
= 0;

lim
i∈I

ρ(2)
(
Gi\X;N ({1})

)

[G : Gi]
= 0;

lim
i∈I

ρZ
(
Gi\X

)

[G : Gi]
= 0;

b(2)n (M̃ ;N (G)) = 0;

ρ(2)(M̃ ;N (G)) = 0.

In particular the two conjectures above are true.
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The symmetric signature of Witt spaces

James McClure

(joint work with Greg Friedman)

For a compact oriented m-manifold M (and more generally for a Poincaré duality
space) the symmetric signature σ∗(M) is an element of the symmetric L-group
Lm(π1(M)). The symmetric signature was introduced by Mǐsčenko in [6] as a tool
for studying the Novikov conjecture, and since then it has become an important
part of surgery theory.

The basic ingredient in the construction of σ∗(M) is Poincaré duality on the
universal cover. Another situation where Poincaré duality occurs is the middle
perversity intersection homology of a certain class of pseudomanifolds, the Witt
spaces ([7]), so it is natural to ask whether there is a symmetric signature for Witt
spaces.

There are several constructions of the symmetric signature for Witt spaces in
the literature. Cappell, Shaneson, and Weinberger [3] give a brief description
of a construction which uses controlled topology; further information is given in
[8, pages 209–210], but the complete account has not been published. Banagl
[2, Section 4] uses the Ph. D. thesis of Thorsten Eppelmann [4] to construct an
L-homology fundamental class for a Witt space and then defines the symmetric
signature to be the image of this class under the assembly map. However, there are
gaps in Eppelmann’s work (Banagl, Laures and McClure are currently working on
a corrected version of [4], using the work of Friedman and McClure reported on in
this talk). An analytic construction of the symmetric signature (as an element of
the L-theory of the C∗ algebra of the fundamental group, for smoothly stratified
Witt spaces) has been given by Albin, Leichtnam, Mazzeo, and Piazza [1].

We give a new approach which has several useful features. It is similar in
spirit to that of Mǐsčenko (and thus answers a question in [1]). It works for
spaces more general than Witt spaces; the only requirement is that the map from
lower middle to upper middle perversity intersection homology is an isomorphism.
The actual construction uses only the diagonal map of the pseudomanifold and
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the cross product on intersection chains, and the supporting results use only the
Künneth theorem of [5] and standard facts about intersection chains. We give a
simple proof of stratified homotopy invariance; this is proved by a rather intricate
analytic argument in [1] and it is not known how to prove it using the approach
of [2]. We also give a simple proof of the product formula; to prove this using the
approach of [2] one would need to show that Eppelmann’s map MIP → L• is a
map of ring spectra up to homotopy.

An argument due to Weinberger (see [1, Proof of Proposition 11.1]) shows that
any two definitions of the symmetric signature for Witt spaces must agree ratio-
nally if (1) they are bordism invariant and (2) they agree with Mǐsčenko’s definition
for smooth manifolds. Thus all of the known constructions of the symmetric sig-
nature agree rationally; it would be interesting to know whether they agree over
the integers.
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Stratified spaces, Lie manifolds, and the well-posedness of Laplace’s
equation

Victor Nistor

(joint work with Bernd Ammann, Constantin Bacuta, Anna Mazzucato, Ludmil
Zikatanov)

We discuss the role of stratified spaces in the statement and proof of a well-
posedness (or continuous bijection) of the Laplacian on suitable weighted Sobolev
spaces.

We consider the Poisson problem with Dirichlet boundary conditions

(1)

{
−∆u = f in Ω

u = g on ∂Ω,
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defined on a bounded domain Ω ⊂ Rd, where ∆ is the analyst’s Laplacian ∆ =∑d
i=1 ∂

2
i . When ∂Ω is smooth, it is well known that this Poisson problem has

a unique solution u ∈ Hm+1(Ω) for any f ∈ Hm−1(Ω) and g ∈ Hm+1/2(∂Ω)
[6]. Moreover, u depends continuously on f and g. This result is the classical
well-posedness of the Poisson problem on smooth domains.

On the other hand, when Ω is not smooth, it is also known [5, 8, 9, 10] that there
exists a constant s = sΩ, such that u ∈ Hs(Ω) for any s < sΩ, but u 6∈ HsΩ(Ω) in
general, even if f and g are smooth functions. For instance, if Ω is a polygon (in
two dimensions), then sΩ = π/αMAX , where αMAX is the largest angle.

For polyhedra, we have sΩ <∞, and this phenomenon is called loss of regularity
and is responsible for the loss of accuracy in certain approximation methods for the
solutions of Equation (1). It is therefore desirable to establish an alternative well-
posedness result on polyhedra. In my presentation, I will argue that one way to
obtain a convenient well-posedness result for the Poisson problem on a polyhedron
Ω is to use the stratified space geometry of Ω. This leads, by successive conformal
changes of the metric, to a metric for which the smooth part of Ω is a smooth
manifold with boundary whose double is complete. The resulting Sobolev spaces
(defined by the new metric) will lead to spaces on which the Poisson problem is
well-posed [4]. Let us now describe these results in more detail.

A stratified curvilinear polyhedral domain Ω is an open subset of a Riemann-
ian manifold (M, g) of dimension d together with a stratification of Ω = Ω(d) ⊃
Ω(d−1) ⊃ . . . ⊃ Ω(1) ⊃ Ω(0). We then define stratified curvilinear polyhedral do-
mains by induction as follows. For d = 0, Ω is just a finite set of points. For
d = 1, Ω is a finite set of intervals. For simplicity, we shall consider only domains
Ω that coincide with the interior of their closure Ω. The stratum S0 for d = 1 will
contain all the boundary points of the intervals, but may contain also other points.
For d > 1, we require our domain Ω to satisfy the following conditions: for every
point p ∈ ∂Ω, there exist a neighborhood Vp in M such that if p ∈ Ω(l) \ Ω(l−1),
l = 1, . . . , n− 1, there is a stratified curvilinear polyhedral domain ωp ⊂ Sn−l−1,
ωp 6= Sn−l−1, and a diffeomorphism φp : Vp → Bn−l×Bl such that φp(p) = 0 and

(2) φp(Ω ∩ Vp) = {rx′, 0 < r < 1, x′ ∈ ωp} ×Bl,

inducing a homeomorphism Ω ∩ Vp → {rx′, 0 ≤ r < 1, x′ ∈ ωp} × Bl of stratified
spaces that is a diffeomorphism on each stratum.

We then introduce the desingularization of Ω, denoted Σ(Ω), by gluing in a
natural way all the sets [0, 1)× ωp ×Bl as in Equation (2). The resulting set is a
Lie manifold with boundary, in the sense of [1]. See also [2, 3, 4].

Let r0(x) ≥ 0 be the distance from x to the set Ω(0) if x is close to that set. We
assume that r0 is smooth outside Ω(0) and satisfying r0 ≤ 1, r0(x) > 0 for x /∈ Ω(0).
We replace then the metric g =: g0 with g1 := r−2

0 g. We repeat this construction
for the other strata, in the increasing order of dimension. Thus rk is the smoothed
distance to Ω(k) in the metric gk, and we let gk+1 := r−2

k gk, k ≤ d − 2. Then
gd−1 is a compatible metric on the desingularization Σ(Ω) [2, 4] and we can use
the results on Sobolev spaces from those papers. Let ρ := r0r1 . . . rd−2. The Lie
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algebra of vector fields on Σ(Ω) is V = C∞(Σ(Ω))ρΓ(Ω, TM). Thus a basis of V
over C∞(Σ(Ω)) is given by {ρ∂i}. The resulting Sobolev spaces are

Kma (Ω) := {u, ρ|α|−a∂αu ∈ L2(Ω), |α| ≤ m} = ρa−n/2Hm(Ω, gd−1),

where the space Hm(Ω, h) is the Sobolev space associated to the metric h. (Let
rΩ(x) denote the distance from x to Ω(d−2). We have that rΩ/ρ and ρ/rΩ are both
bounded, so in the above definition of Sobolev spaces we can replace ρ with rΩ.)

The stratification plays a role also in the formulation of the problem, especially
if one uses mixed boundary conditions. Indeed, the stratification of Ω does not
have to be determined by the geometry. One then chooses a set of open faces on
which to require Neumann boundary conditions (that is, the faces on which to
specify the normal derivative at the boundary). Let ∂NΩ be the union of these
faces and let ∂DΩ = ∂Ω r ∂NΩ. The set ∂DΩ is called the Dirichlet partof the
boundary. The set ∂NΩ is called the Neumann part of the boundary and are
endowed with the named boundary conditions.

The fact that the Sobolev spaces Kma are associated to a Lie manifold guarantees
that Laplacian ∆ satisfies elliptic regularity in the scale of spaces Kma (Ω). To this
end, one also needs to establish that ρ2∆ − ∆gd−1

is a lower order differential
operator generated by V and C∞(Σ(Ω)). Assume that there are no adjacent faces
that are endowed with Neumann boundary conditions, then one has a Hardy-
Poincaré inequality since there exists C > 0 such that every point of x is at a
distance ≤ C to the Dirichlet part of the boundary of Σ(Ω). The classical proof of
well-posedness for the Poisson problem (based on the Lax-Milgram lemma) and a
perturbation argument in a then give the following result [4]

Theorem. Assume that there are no adjacent faces with Neumann boundary
conditions. Then there exists ηΩ > 0 such that the Laplacian

∆ : Km+1
a+1 (Ω) ∩ {u = 0 on ∂DΩ} ∩ {∂νu = 0 on ∂NΩD} → Km−1

a−1 (Ω)

is a continuous bijection (with bounded inverse) for any |a| < ηΩ and any m ∈ Z+.

In two dimensions (and more generally for domains with conical points), the
above well-posedness result was established in [9]. The treatment of the case when
adjacent faces are endowed with Neumann boundary conditions requires more
work. In 2D it is based on a relative index theorem [7], but in higer dimensions it
is still open.
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Quasi-isometry topological invariants for finitely presented groups

Daniele Ettore Otera

(joint work with Valentin Poénaru)

In the talk given at the Workshop, I reported some of my recent results on the
geometry and the topology at infinity of finitely generated groups. I described
several tameness conditions at infinity for groups, and I presented some new classes
of qsf groups. Some of these results were obtained also with L. Funar (Grenoble).

0.1. (n)-Connectivity at infinity and its growth. Among the main asymp-
totic topological properties one finds the (n)-connectivity at infinity (i.e. spheres
‘very close’ to infinity bound balls which are ‘near’ infinity), and for groups, the
number of ends is already an essential characteristic (e.g. J. Stallings proved that
if a finitely generated group has infinitely many ends, then it is a non-trivial amal-
gam (or an HNN-extension) over finite groups). For one-ended groups, or for
groups that are simply connected at infinity (sci), there is a very natural question,
that we firstly studied in [5]. The idea being to measure the ‘minimal way’ two
points (resp. a loop) near infinity can be connected (resp. filled). More precisely:

Definition 1: Let X be a one-ended metric space and e be a base-point.
Consider the function f : r → V0(r) = inf(R) with the property that any two
points which sit outside the ball of radius R centered at e, can be joined by a path
outside B(e, r). The end-depth of X is then the (growth of the) function V0.

Definition 2: Let X be a simply connected non-compact metric space which
is simply connected at infinity. The rate of vanishing of π∞

1 (or the sci growth),
denoted V1(r), is the infimal N(r) with the property that any loop which sits
outside the ball B(N(r)) of radius N(r) bounds a 2-disk outside the ball B(r).

After considering the equivalence relation: f and g are rough equivalent if
there exist constants ci, Cj (with c1, c2 > 0) such that c1f(c2R) + c3 ≤ g(R) ≤
C1f(C2R) + C3, we looked at the growth-type of V0 and V1, and we proved:

Theorem 1: [Funar-Otera, [2, 4]]
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• The sci growth and the end-depth are well-defined quasi-isometry invari-
ants for finitely presented groups.
• The function V1 is linear for many co-compact lattices in Lie groups (semi-
simple, nilpotent and several classes of solvable Lie groups); and also for
some non-uniform lattices in higher rank Lie groups (those of Q-rank 1).
• All geometric 3-manifold groups have a trivial V1.
• Simply connected at infinity Coxeter and Artin groups have linear V1.
• The end-depth is linear for all finitely presented groups.
• The amalgamated free product of two sci groups over a one-ended group
is sci with a linear sci growth.

In particular all one-ended groups have the same type of connectedness at in-
finity, while we expect the same not to be true for the sci growth.

0.2. Other tameness conditions: qsf and ‘easy ’ groups. The simple con-
nectivity at infinity have been used for characterizing Euclidean spaces as being
the contractible manifolds that are simply connected at infinity (Siebenmann,
Stallings), and it has been conjectured for a long time that contractible universal
coverings of compact 3-manifolds were homeomorphic to R3 (i.e. simply connected
at infinity). V. Poénaru, in [8, 9], gave a partial solution to the 3-dimensional
covering conjecture, ‘approximating’ such universal cover by compact and simply-
connected 3-manifolds. Then S. Brick in [1] adapted this idea for arbitrary finitely
presented groups defining the quasi-simple filtration (abbreviated qsf) as follows:

Definition 3: A complex X is qsf if for any compact sub-complex C ⊂ X
there exists a simply connected compact complex K and a PL-map f : K → X so
that C ⊂ f(K) and f |f−1(C) : f

−1(C)→ C is a PL-homeomorphism.
This notion should be compared with the following two ones. The first is the

geometric simple connectivity, a topological condition well-known in differential
topology: a smooth manifold is said to be gsc if it admits Morse functions f
without critical points of index λ = 1. There is also a more combinatorial version,
in terms of handlebody decompositions, the condition being then that each 1-
handle should be in cancelling position with some 2-handle. This definition makes
also sense for cell-complexes and hence for groups (for more see [3, 5, 7, 8]).

The second one is an extension of this concept in the realm of polyhedra:
Definition 4: A polyhedron P is weakly geometrically simply connected (wgsc)

if any compact subspace of it is contained in a simply connected sub-polyhedron.
Theorem 2: [Funar-Otera, [3]] A finitely presented group Γ is qsf iff there is

a smooth compact manifold M such that π1M = Γ and M̃ is gsc or wgsc.
The gsc condition was heavily used by Poénaru since long ago. One of his meth-

ods was to “represent” in a special way several low-dimensional objects (homotopy
3-spheres, universal covering spaces of smooth closed 3-manifolds [8, 9, 10]), and
then groups [6, 7], where such an (inverse)-representation is defined as follows:

Definition 5: A gsc-representation for a finitely presented group Γ is a non-

degenerate simplicial map f : X2−→M̃3(Γ), with the following features:

(1) X2 is a gsc (i.e. geometrically simply connected) 2-complex.
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(2) The M̃3(Γ) is the universal cover of a compact (necessarily singular) 3-
manifold M3(Γ) associated to (a presentation of) the group Γ (see [6]).

(3) Ψ(f) = Φ(f) (see [8] for the definition of these equivalence relations); this
condition means that f is “realizable via a sequence of folding maps”.

(4) The map f is “essentially surjective”, in the sense that one can get M̃3(Γ)

from fX2 ⊂ M̃3(Γ) by adding 2- and 3-cells (possibly infinitely many).

Poénaru’s first representation-result (the “collapsible pseudo-spine representa-
tion theorem”) says that given a homotopy 3-sphere Σ3, there exist a collapsible
finite 2-complex K2 and a non-degenerate simplicial map f : K2 → Σ3 for which
the complement of f(K2) is a collection of open 3-cells, and for which one can pass
from K2 to f(K2) by a sequence of elementary “zipping moves” which push a sin-
gular point along the line of double points of f in certain ways. Recently Poénaru
and Tanasi in [10] gave an extension of these ideas to the case of a simply-connected
open 3-manifold V 3. In such a general case, at the source of the representation, the

set of double points is, generally speaking, no longer closed. However, if V 3 = M̃3

is the universal cover of a closed 3-manifold, then they construct an X2 with a free
π1(M

3)-action and having the equivariance property f(gx) = gf(x), g ∈ π1M3.
Definition 6: A representation is called easy if the sets Imf (i.e. fX2) ⊂

M̃3(Γ) and M2(f) (i.e. the set of double points of f) ⊂ X2 are closed subsets.
Theorem 3: [Otera-Poénaru, [6]] Groups admitting an easy gsc-representation

are qsf. In such a case we call the group easily-representable (or just easy group).
Comments: First of all V. Poénaru has developed a program for possibly show-

ing that all finitely presented group are qsf. In this spirit, the latter theorem can
be seen as a model for the full program and serve as a good introduction for it (but
observe that in general Poénaru works with representations which are not easy,
and so things become much more complicated and of difficult manipulation). Sec-
ondly, one may try to construct easy-representations for known geometric classes
of groups for which one already knows that they are qsf (e.g. hyperbolic groups,
almost-convex groups, combable groups, Tucker groups). It is worthy to note that,
as for the qsf, there is no example of a group which does not admit an easy gsc-
representation. So it is an intriguing question to ask whether the qsf property is
equivalent, for groups, to the condition to be easily-representable (we think so!).

We end by saying that if the qsf property were really valid for all (finitely
presented) groups, then it will be the very first example on a non-trivial geometric
condition for groups valid for all of them, and this will ‘stem’ Gromov’s philosophy
saying that such a property should have a trivial proof (by its thesis that “every
property of all groups is either false or trivial”).
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Geometry of orbit spaces of proper Lie groupoids

Markus J. Pflaum

(joint work with Hessel Posthuma and Xiang Tang)

Orbit spaces of proper Lie group actions and their stratification theory are well
studied in the mathematical literature. However, much less is known about the
quotient spaces of general proper Lie groupoids. In the paper [4], we study the
stratification theory and metric structure of such orbit spaces.

Let G be a proper Lie groupoid. Denote by G1 its arrow set and by G0 its set
of objects. Let X := G0/G be the orbit space, and π : G0 → X the projection of
the groupoid G. Choose a point x ∈ G0. By the Linearization Theorem of Zung
[6] and Weinstein [5] it follows that there is an open neighborhood U ⊂ G0 of x
such that the groupoid G|U is isomorphic to an action groupoid Gx⋉V , where Gx
is the isotropy group of x, and V is an open Gx-invariant open neighborhood of
the origin in the normal space Nx := TxG0/TxO, where O denotes the orbit in G0

through x. Moreover, one can choose U in such a way that G|U and G|π−1π(U) are
Morita equivalent.

It has been proved in [4] that under a linearization ϕ : G|U → Gx ⋉ V the set

germ
[
π
(
ϕ−1(V Gx)

)]
O

does not depend on the particular point x in O, but only
on the orbit O. Denote this set germ by SO. The following result then holds true.

Theorem 1. The map X ∋ O → SO defines on the quotient space X of a proper
Lie groupoid G a stratification in the sense of Mather [1]. Moreover, X carries in
a natural way the structure of a differentiable space (cf. [2, 3]) compatible with the
stratification. The stratification of X satisfies Whitney’s condition B and has a
system of smooth control data.

Since every stratified space with a smooth system of control data is triangulable,
one immediatley obtains:

Corollary. The orbit space X of a proper Lie groupoid G is triangulable.

There does not exist a meaningful notion of an invariant riemannian metric on
a general proper Lie groupoid, since a proper Lie groupoid does not act in general
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on its tangent bundle, but only on the normal bundles to its orbits. We therefore
introduce the following notion.

Definition. Given a riemannian metric η on G0, we shall say that it is adapted,
if, restricted to each orbit O, the induced metric on the normal bundle NO is
invariant under the canonical action of G.

It has been proved in [4] that every proper Lie groupoid carries a complete
adapted riemannian metric. Using this and a slice theorem for proper Lie groupoids
generalizing the Linearization Theorem by Zung and Weinstein, we could show the
following result on the metric structure of orbit spaces of proper Lie groupoids.

Theorem 2. Let G be a proper Lie groupoid such that the orbit space X is con-
nected. Let η be an adapted riemannian metric on G. Then there exists a metric
d on the orbit space X such that the following properties hold true:

(1) The metric d is uniquely determined by the property that for each orbit O
in G0 and every point q of an appropriate metric tubular neighborhood of
O the relation

d(O,Oq) = d(q,O)
holds true, where Oq is the orbit through q.

(2) The canonical projection π : G0 → X onto the orbit space is a submetry,
i.e. every ball Br(p) in (G0, η) with respect to the geodesic distance on the
riemannian manifold (G0, η) is mapped under π onto the ball Br(Op) in
X.

(3) (X, d) is a length space, i.e. the geodesic distance with respect to d coincides
with d. Moreover, the topology induced on X by d coincides with quotient
topology with respect to π.

(4) In case (G0, η) is a complete riemannian manifold, (X, d) is even a com-
plete locally compact length space, and every bounded closed ball is compact.

(5) In case (G0, η) has curvature bounded from below, (X, d) is an Alexandrov
space globally of dimension ≤ dimG0.

Finally, in [4], we proved a de Rham theorem for orbit spaces of proper Lie
groupoids.

Theorem 3. The singular cohomology H•
sing(X,R) of the orbit space X of a proper

Lie groupoid G coincides naturally with the basic cohomology H•
basic(G,R) of G,

i.e. the cohomology of the complex of basic differential forms on G0. Moreover, if
X is compact, the basic cohomology H•

basic(G,R) is finite dimensional.
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Localized index theory on Lie groupoids and the van Est map

Hessel Posthuma

(joint work with M. Pflaum, X. Tang)

Lie groupoids are natural generalisations of manifolds, Lie groups, actions of Lie
groups on manifolds and foliations. As such, they are models for singular spaces
and there are several connections to the theory of stratified spaces. Here we are
concerned with the index theory of longitudinally elliptic operator on such Lie
groupoids, generalizing the Atiyah–Singer families index theorem.

Let G be a Lie groupoid over the unit space M , and we denote the source and
target map by s, t : G → M . The composition g1g2 of two elements g1, g2 ∈ G is
defined only if t(g1) = s(g2). A longitudinal pseudodifferential operator [3, 4] on
G is a family of pseudodifferential operators on the t-fibers t−1(x), x ∈ M that
is smooth in x and invariant under the action of G. With the right conditions on
the support of such pseudodifferential operators, they form an algebra denoted by
Ψ∞(G). For us, two facts of this pseudodifferential calculus are important:

i) The universal enveloping algebra U(A), where A is the Lie algebroid associ-
ated to G embeds into Ψ∞(G) as families of invariant differential operators
on the t-fibers.

ii) The ideal of smoothing operators Ψ−∞(G) ⊂ Ψ∞(G) is isomorphic to the
convolution algebra A of G. Recall that the convolution algebra is given
by A = Γ∞

c (G; s∗
∧topA∗) equipped with the product

(a1 ∗ a2)(g) :=
∫

h∈Gt(g)

a1(gh
−1)a2(h),

where Gx is the submanifold of all arrows g ∈ G having target x ∈M .

All this is easily extended to the case of operators acting on sections on a vector
bundle pulled back from M . Therefore, for E → M a vector bundle, we write
U(A;E) for the tensor product U(A) ⊗ End(E). We say an element D ∈ U(A;E)
is elliptic if it defines an elliptic differential operator Dx on t−1(x) for each x ∈M .

Standard arguments using this pseudodifferential calculus construct an index
class

[Ind(D)] ∈ K0(A)
of such an elliptic operator. Unfortunately, the K-theory of A is still very poorly
understood in general, with the exception of so-called foliation groupoids where the
Connes–Skandalis index theorem gives a topological construction of the index class
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above out of the symbol of D. To go beyond the case of foliations, we therefore
apply the Chern-Connes character to cyclic homology and study the class

Ch([Ind(D)]) ∈ HC•(A).
In general, the cyclic homology of A is (again) not understood beyond the foliation
case where there is a complete computation due to Brylinski–Nistor and Crainic.

To circumvent this lack of understanding, we shall construct certain cyclic
cohomology classes, and compute the pairing with the homology class above. The
result is an index theorem valid for all Lie groupoids, not just the foliation ones,
cf. [5].

First of all, we construct the line bundle L =
∧top

T ∗M ⊗∧top
A of “transver-

sal densities”. It was first noticed by Evens–Lu–Weinstein that the groupoid G

naturally acts on this line bundle and therefore we can consider its differentiable
groupoid cohomology H•

diff(G;L). This is a straightforward generalization of dif-
ferentiable group cohomology with values in a representation of a Lie group, viz.
the case when M is a point. This cohomology is the domain of a canonical map

χ :
⊕

i≥0

H•+2i
diff (G;L)→ HC•(A).

This map can be thought of as the characteristic map associated to an action of a
Hopf algebroid on A. It enables us to pair elements in K0(A), such as the index
class, with differentiable groupoid cohomology classes.

Second, we construct the index class inK0(A) is such a way that it is represented
by idempotents in A with support arbitrarily close to the unit. In fact, one can
construct a “localized K-theory” K loc

0 (A) build from idempotents with exactly
this property, equipped with a canonical forgetful map K loc

0 (A) → K0(A). The
remark above then boils down to the statement that there is a natural refinement

[Ind(D)]loc ∈ K loc
0 (A)

of the index class. The crucial feature of the localized K-theory is that it naturally
pairs with Lie algebroid cohomology:

〈 , 〉 : K loc
0 (A)×Hev

Lie(A;L)→ C.

Similar to differentiable groupoid cohomology, Lie algebroid cohomology general-
izes the cohomology theory of Lie algebras and the representation of A on L is
just the infinitesimal part of the representation of G. As for Lie groups, there is a
natural “van Est” map for Lie groupoids

E : H•
diff(G;L)→ H•

Lie(A;L).

The first result relates the global pairing with the localized one via this van Est
map:

Theorem 1. Let G be a Lie groupoid, E →M a vector bundle over the unit space,
and D ∈ U(A,E) an elliptic element. Then, for α ∈ H2k

diff(G;L),

〈χ(α),Ch([Ind(D)])〉 = 〈E(α), [Ind(D)]loc〉 .
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This reduces the computation of the index to a local computation near the unit
space. We perform this computation using the fact that the pseudodifferential
calculus on G is a quantization of the Lie–Poisson structure on A∗, and reduce it
to the algebraic index theorem for this Poisson manifold. The final result is given
as follows:

Theorem 2. Let A → M be an integrable Lie algebroid, E a vector bundle over
M and D ∈ U(A,E) an elliptic element. For c ∈ H2k

Lie(A;L) we have

〈c, [Ind(D)]loc〉 =
1

(2π
√
−1)k

∫

A∗

π∗c ∧ Â(π!A) ∧ ρ∗π!Ach(σ(D)).

Here, the right hand side is a topological expression using the usual character-
istic classes, only now given in Lie algebroid cohomology rather than de Rham
cohomology. The notation π!A denotes the pull-back (in the category of Lie alge-
broids) of A along the projection π : A∗ → M . This is a Lie algebroid over A∗

with anchor map ρ∗π!A : π!A→ TA∗, which has the same Lie algebroid cohomology
as A.

Together, these two theorems give a complete understanding of the pairing
between the index class and Lie groupoid cohomology classes for any Lie groupoid.
Possibly, the localized index Theorem 2 is much more powerful and has more
applications. We can consider some special cases to get some more insight:

i) The pair groupoidM×M of any manifold is proper, and there is therefore
only one nonzero differentiable groupoid cohomology class which lives in
degree zero. In this case, we find the Atiyah–Singer index theorem for
elliptic operators on M . On the other hand, the associated Lie algebroid
is simply TM and its Lie algebroid cohomology is given by H•

dR(M). With
this, Theorem 2 recovers Connes–Moscovici’s localized index theorem [2].
The covering index theorem of Connes–Moscovici is a very natural state-
ment in the present framework about two Lie groupoid that induce the
same Lie algebroid.

ii) For a foliation F ⊂ TM , we can apply this theory to the holonomy
groupoid GF of F . In this case we find Connes’ index theorem [1, §III.7.γ]
for the pairing between the index class and elements in H•(BGF ), but
only for those classes that come from differentiable groupoid cohomology
of the holonomy groupoid. This restriction is the price we have to pay
for being able to extend the index theorem from foliation groupoids to
arbitrary Lie groupoids.
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Witt groups of perverse sheaves

Jörg Schürmann

(joint work with Jon Woolf)

1. Witt groups of Abelian categories. First we recall some classical results
and notions. Let (A,⊕) be an additive category with duality D : Aop → A, e.g.

with χ : id
∼→ D2. An (anti)symmetric selfdual object b ∈ obj(A) is a morphism β :

b→ Db such that β = ±Dβ ◦χ. For β an isomorphism it is called nondegenerate,
with the obvious notion of isomorphism of selfdual objects called isometry. Assume
now that A is Abelian. The orthogonal complement of a subobject i : a → b is
given by a⊥ := kern(Di◦β), with a isotropic (resp. Lagrangian) in caseDi◦βi = 0,

i.e. it factorizes as a → a⊥ (resp. as an isomorphism a
∼→ a⊥). b is anisotropic

(resp. metabolic) if it contains no isotropic subobject 6= 0 (resp. it contains a
Lagrangian subobject). The Witt group of A is defined as

W±(A) := {isom. classes of nondeg. (anti)symmetric selfdual obj.}/ ∼ ,
with b ∼ b′ := b⊕m ≃ b′⊕m′ for some metabolicm,m′. For an isotropic subobject
i : a→ b one gets by isotropic reduction a⊥/a ∼ b, so that for b Noetherian there
is a maximal isotropic subobject a with a⊥/a anisotropic. Since A has the exact
duality D, the following are equivalent:

A Noetherian ⇔ A Artinian ⇔ any object is of finite length ,

so that in this case any object has a finite decomposition series with simple factors.

Theorem 1. Let A be an Abelian and Noetherian category with exact duality D.
1) Any nondegenerate selfdual object is isometric to an anisotropic one, which is
a finite orthogonal sum of simple nondegenerate selfdual objects.
2) W±(A) =

⊕
[s≃Ds] W

±(〈s〉) as a direct sum over isometry classes of simple

selfdual objects s, with 〈s〉 the full subcategory generated by self-extensions of s.

An example is given by A = RepG(k) the category of finite dimensional rep-
resentations of a group G over a field k, with DV = V ∨ the dual representation.
For G = π1(X) the fundamental group of a nice connected topological space, this
corresponds to the category Loc(X) of local systems on X .

2. Witt groups of triangulated categories. Here we do not give the general
abstract definitions, but illustrate them by some important related results.
a) Cappell-Shaneson [3] studied in some steps mapping theorems for L-classes
for a stratified submersion f : Y → X of compact Whitney stratified spaces
with even dimensional strata and Y oriented by studying the total direct image
F = f∗ICY ∈ Db

c(X) of the intersection (co)homology complex of Y (for some
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field coefficients k), which is selfdual with respect to Verdier duality D on the
corresponding constructible derived category:

(1) They introduced a cobordism relation ∼ for such selfdual constructible
sheaf complexes F , and showed

(2) F ∼ ph0(F ), with ph0 the cohomology functor of the middle perversity
t-structure on Db

c(X).
(3) a decomposition formula ph0(F ) ∼⊕

S ICS(LS) into twisted intersection
complexes, with LS selfdual local systems on the strata S.

(4) an explicit formula LS = j∗Si
!∗
S F for jS : S → S̄ the open inclusion of the

stratum into its closure, and iS : S̄ → X the closed inclusion, with

i!∗SF := im
(
ph0(i!SF )→ ph0(i∗SF )

)
.

Here the image is taken in the Abelian heart Perv(X) ⊂ Db
c(X) of perverse

sheaves, and as observed in [4], the last explicit formula is only true under some
additional assumptions, but not in general. Youssin [7] generalized the steps (1-3)
to abstract triangulated categories with a selfdual t-structure, by introducing a
corresponding cobordism group Ω±(X) := Ω±(Db

c(X)) of selfdual objects, with

Ω±(Db
c(X))

ph0

−−−−→
∼

W±(Perv(X)) .

b) Balmer [1] introduced more general (4-periodic) Witt groups Wi (i ∈ Z) for
triangulated categories with duality, together with an important localization se-
quence (under some mild assumptions, e.g. these categories are also Z[1/2]-linear).
Using this, Woolf [6] showed for a compact PL-spaceX , that Balmer’s Witt groups

Wi(X ; k) :=Wi

(
Db
pl−c(X)

)

for the PL-constructible derived category (for some field coefficients k of char(k) 6=
2) form a generalized homology theory in this PL-context. Woolf also explained
the relation to Siegel’s bordism theory of PL-Witt spaces [5] and the symmetric
L-homology (with the colimit taken by crossing with [P 2(C)] ∈ ΩWitt

4 (pt)):

KO∗(X)[1/2]
Sullivan←−−−−−−
Siegel

colimΩWitt
∗ (X)

∼−−−−→ W∗(X ;Q)
∼←−−−− Lsym∗ (X ;Q) .

Similar results can be shown for k = R instead of Q if one uses Banagl’s PL-version
[2] of Minatta’s signature homology instead of Siegel’s Witt bordism.

3. Witt groups of perverse sheaves. In this last section with explain some
new results from [4]. These hold more generally in the context of triangulated
categories with a selfdual t-structure. But for simplicity, we only state the results
in the geometric context of perverse sheaves on stratified spaces fitting with the
theme of the workshop.

Theorem 2. Let X be a locally cone-like topologically stratified space with even
dimensional strata, and consider the Balmer Witt groups Wi(X) := Wi

(
Db
c(X)

)

of the corresponding constructible derived category with respect to Verdier duality
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(for some field coefficients k of char(k) 6= 2). Then Wi(X) = 0 for i odd, and if
we write + or − for i ≡ 0 or 2 mod. 4, then

W±

(
Db
c(X)

) ph0

−−−−→
∼

W± (Perv(X))
Y oussin←−−−−−

∼
Ω±

(
Db
c(X)

)
.

If X is compact and the stratification can be refined to a triangulation (e.g.
it is a Whitney stratification), then we get canonical group homomorphisms (for
i ≡ 0 or 2 mod. 4):

W± (Perv(X)) ≃W±

(
Db
c(X)

)
→Wi

(
Db
pl−c(X)

)
,

so that the following theorem implies similar results in Lsym∗ (X ;Q),KO∗(X)[1/2]
as well as for L-classes.

AssumeX has only finitely many strata (e.g. X is compact), so that Perv(X) is
Noetherian with simple objects given by twisted intersection complexes ICS(LS)
for LS a simple local system on a stratum S. Consider the “gluing context” of
stratified subspaces (i.e. union of strata)

Y
i−−−−→

closed
X

j←−−−−
open

U := X\Y .

Theorem 3. 1) Assume F ∈ Perv(X) is selfdual and nondegenerate. Then

[F ] =
[
i∗i

!∗F
]
+ [j!∗j

∗F ] ∈W± (Perv(X)) .

2) W± (Perv(X)) ≃ W± (Perv(Y )) ⊕W± (Perv(U)). Here the inclusion resp.
projection

W± (Perv(Y ))
i∗→W± (Perv(X))

j∗→W± (Perv(U))

is induced from the exact extension resp. restriction functors i∗, j
∗, which commute

with Verdier duality. The other inclusion resp. projection

W± (Perv(U))
j!∗→W± (Perv(X))

i!∗→W± (Perv(Y ))

is induced from the intermediate extension resp. restriction functors j!∗, i
!∗ applied

to an anisotropic representative of the corresponding Witt class.

Warning: For F not anisotropic, the decompositions in 1) and 2) above need
not be related! Inductively one gets from 2) above (with ǫ(S) := (−1)dim(S)/2):

W± (Perv(X)) ≃
⊕

S
W±·ǫ(S) (Loc(S)) .

For the more complicated explicit decomposition formulae corresponding to 1)
above we refer to [4].
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Motivic integration and invariants of singular points of complex
hypersurfaces: Applications to the quasi-ordinary case

Manuel González Villa

(joint work with N. Budur, P. González-Pérez)

This talk aims to illustrate the usefulness of the space of arcs (or n-jets) for the
study of the singularities of algebraic varieties.

This idea was proposed in the late sixties by Nash, who conjectured a bijection
between the essential divisors of the singularity and the irreducible components of
the space of arcs centered at the singularity. Ishii and Kollar have stablished the
Nash conjecture for toric singularities and found a counterexample in dimension 4.
More recently Fernández Bobadilla and Pe have settled the conjecture for normal
surfaces.

The interest in the arc space of algebraic varieties reflourished after the intro-
duction of motivic integration by Kontsevich in 1995. He introduced a notion of
motivic measure on a certain class of subsets of arcs. This measure takes values on
the Grothendieck ring of algebraic varieties, which is a universal additive invariant.
With help of a transformation rule for motivic integrals under birational maps,
Kontsevich showed that birational equivalent Calabi-Yau manifolds have the same
Hodge numbers.

The theory of motivic integration has been further developed by Batyrev, Denef
and Loeser and has found a wealth of applications to birational geometry and
singularity theory. See [3] for a survey on arc spaces, motivic integration and its
applications.

Finally, we announce some applications to the quasi-ordinary case.

1. Invariants of singularities of hypersurfaces

Let f : (Cd+1, 0)→ (C, 0) be a germ of an analytic function with a singular point
at 0 ∈ f−1(0). For 0 < δ << ǫ < 1 small enough, the map f : f−1(D∗

δ)∩B(0, ǫ)→
D∗
δ is a C∞-locally trivial fibration. Call Ff := f−1(t) ∩ B(0, ǫ) the Milnor fibre

of f at 0.
We are interested in invariants of the Milnor fibre such as the Betti numbers

bi(Ff ) := dimCH
i(Ff ,C) and Euler characteristic χ(Ff ) := Σi>0(−1)ibi(Ff ).

Going once along the border of the disc Dδ induces the monodromy, a diffeo-
morphism of the Milnor fiber Ff → Ff (defined up to isotopy). The monodromy
operator Mf : H•(Ff ,C) → H•(Ff ,C) is the induced map in cohomology. The
map M i

f is quasi-unipotent, hence the eigenvalues of M i
f are roots of unity.
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The cohomology groupHi
c(Ff ,Q) carries a mixed Hodge structure (MHS) which

is compatible with the monodromy operator Mf (Steenbrink, Saito, Navarro-
Aznar). The Hodge-Steenbrink spectrum hsp(f, 0) of f at 0 is a finer invariant
which describes the interplay between the eigenvalues of the monodromy and the
mixed Hodge structure of the cohomology of Ff .

2. Motivic zeta functions

The motivic viewpoint on the study of invariants of singularities has been de-
veloped by Denef and Loeser.

We denote by K µ̂
0 (VarC) the Grothendieck ring of algebraic varieties equipped

with a good action of the group µn (of n-th roots of unit) for some n. We denote

by L ∈ K µ̂
0 (VarC) the class of the affine line.

The space Ln(Cd+1)0 of n-jets of C
d+1 at 0 consists of ϕ = (ϕ1(t), ..., ϕd+1(t)) ∈

(C[[t]]/(tn+1))d+1 such that ϕi(0) = 0. The set Xn,1 given by

(1) Xn,1 = {ϕ ∈ Ln(Cd+1)0 | f ◦ ϕ = tn + an+1t
n+1 + · · · }

is a constructible subset of Ln(Cd+1)0, equipped with a good µn-action given by

(λ, ϕ) 7→ ϕ(λt). Hence the class [Xn,1] is a well defined element of K µ̂
0 (VarC).

The motivic zeta function of the germ f is

(2) Z(f, T ) :=
∑

[Xn,1]L−n(d+1)T n.

Denef and Loeser proved that Z(f, T ) is a rational function of the form

(3) Z(f, T ) =
∑

J

AJ
∏

i∈J

L−νiTNi

1− L−νiTNi
∈ K µ̂

0 (VarC)[L
−1](T ),

where the data νi, Ni ∈ Z≥0 and AJ ∈ K µ̂
0 (VarC) are expressed in terms of an

embedded resolution of {f = 0}.
There are interesting connections between zeta functions and monodromy.
For example, the Monodromy Conjecture predicts that relation between the

poles of the naive motivic zeta function and the eigenvalues of the monodromy.
Here naive means a weaker condition on the definition of (1). It should be remarked
that not all the pairs (νi, Ni) appearing in (3) give poles of the zeta function. There
are in general many cancellations between the candidates and the determination of
the poles is a difficult problem. This conjecture was originally proposed by Igusa
in the framework of p-adic zeta functions.

Another connection comes from the coefficients AJ in (3). There exists a notion
of limit (heuristically L−νiTNi(1 − L−νiTNi)−1 tends to −1 as T goes to ∞) for
expressions of the form (3) which allows to define motivic Milnor fibre of f at
0 ∈ Cd+1 as

Sf,0 := −limT→∞Z(f, T ) ∈ K µ̂
0 (VarC).

According to Denef and Loeser’s viewpoint Sf,0 is the motivic incarnation of
the classic Milnor fibre (equipped with Mf,0): They proved that the Milnor fibre
Ff and the motivic Milnor fibre Sf,0 define the same class in the Grothendieck
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ring K0(HS
mon) of Hodge structure with a quasi-unipotent endomorphism. In

particular, Sf,0 determines the Hodge-Steenbrink spectrum of f at 0.

3. Applications to Quasi-ordinary hypersurfaces

A germ of analytic function f : (Cd+1, 0) → (C, 0) is quasi-ordinary if it can
be defined in suitable local coordinates (x1, ..., xd, y) by a Weierstrass polynomial

f ∈ C{x1, ..., xd}[y] such that the discriminant ∆yf is of the form xδ11 · · ·xδdd ǫ,
with ǫ a unit in C{x1, ..., xd}. The germ (V, 0) defined by {f = 0} at 0 ∈ Cd+1 is
a quasi-ordinary hypersurface.

Quasi-ordinary singularities arise classically in the study of parametrizations
and resolutions of complex surface singularities (Jung, Walker, Zariski). Quasi-
ordinary singularities include plane curve singularities (d = 1) but are in general
non-isolated. The Whitney Umbrella (f = y2 − x21x2) is a well known example.

Jung-Abhyankar Theorem claims that quasi-ordinary hypersurfaces are parame-

trized by a special type of fractional power series ξ = Σcλx
λ ∈ C{x1/n1 , ..., x

1/n
d }. A

quasi-ordinary branch ξ has a finite and totally ordered set of characteristic expo-
nents {λ1 < · · · < λg} ⊂ 1

nZ
d+1
≥0 , which generalize the Newton-Puiseux exponents

of plane branches.
The characteristic monomials determine most of the geometry and the topology

(V, 0). In particular, Lipman and Gau proved that the characteristic monomials
of (V, 0) are equivalent to its embedded topological type of (V, 0) ⊂ (Cd+1, 0).

Together with González-Pérez we prove in [4] that

the motivic zeta function Z(f, T ), the motivic Milnor fibre Sf,0
and the spectrum hsp(f, 0) of an irreducible quasi-ordinary hyper-
surface singularity are determined by its embedded topological type.

These results generalize the work of Guibert [5] for plane curve singularities and
improve the results of [1] which is devoted to the study of naive zeta functions and
the Monodromy Conjecture in the quasi-ordinary case.

As an application of the previous results we consider in collaboration with Budur
and González-Pérez the log canonical threshold, which is an important invariant
of the singularity defined in terms of an embedded resolution as the minimun of
the ratios νi/Ni in (3). We prove in [2] that

the log canonical threshold of an irreducible quasi-ordinary hyper-
surface singularity is determined by its embedded topological type.

We give explicit formulas for all the above mentioned invariants in terms of the
characteristic exponents.
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An Introduction to Intersection Cohomology and Perverse Sheaves

Jon Woolf

We survey intersection cohomology and perverse sheaves from an algebraic per-
spective. For simplicity we work with a complex projective varietyX , with singular
set Σ, embedded in a non-singular projective variety M (which can be taken to
be CPm). We consider sheaves of C-vector spaces in the classical (rather than
Zariski) topology on X , and let Dc(X) denote the algebraically constructible de-
rived category of such. All functors will be derived, so we write f∗ etc not Rf∗. A
‘local system’, or locally constant sheaf, on a stratum S will be considered to lie
in degree − dimS. Poincaré–Verdier duality D : Dc(X)op → Dc(X) is an equiv-
alence whose square is (isomorphic to) the identity. One advantage of the above
shifting convention for local systems is that the dual of a local systems (with this
shift) on a closed stratum is once again a local system.

Many of the results in this survey, as well as generalisations to other settings,
can be found in [Dim04, Sch03, KS90, GM88, dCM09].

When X is non-singular and L ∼= DL is a self-dual local system

Hi (X ;L) = Hi (p∗L) ∼= Hi (p∗DL) ∼= Hi (Dp∗L) ∼= DH−i (p∗L) ∼= DH−i (X ;L)
where p : X → pt is the map to a point. However, when X is singular DL is not
in general a local system so the above Poincaré duality breaks down. The idea of
Goresky and MacPherson’s intersection cohomology theory [GM80, GM83a] is to
modify the coefficients L so that they become self-dual even on singular X .

Perverse sheaves and intermediate extensions. A self-dual local system L
on a stratum S : S →֒ X has two (dual) extensions, connected by a natural
morphism S !L → S∗L. An algebraically natural way to proceed would be to
take the image of this morphism, which should then be a self-dual extension. But
this we cannot do, since images are not well-defined in triangulated categories such
as Dc(X). However,

Theorem 1 ([BBD82]). There is a self-dual t-structure on Dc(X). The heart,
the category Perv(X) of perverse sheaves, is a full abelian subcategory preserved
by duality, and there is a cohomological functor pH0 : Dc(X) → Perv(X) left-
inverse to the inclusion.

The intermediate extension S !∗L is the image of the morphism obtained by
applying pH0 to the morphism between the two dual extensions. Thus we have
maps pH0(S !L) ։ S !∗L →֒ pH0(S∗L). The intermediate extension exists for
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any L, and is self-dual whenever L is. By definition the intersection cohomology
complex ICS(L) = S !∗L.

But what are these perverse sheaves? For a Whitney stratification S of X by
complex varieties we say E is perverse ⇐⇒ E is S-constructible and Hi(!SE)x = 0
for i < − dimS and Hi(∗SE)x = for i > − dimS, for all x in each S. For example,
a local system on a closed stratum S is perverse and, by construction intermediate
extensions are perverse. If E is perverse for one stratification then it is perverse for
any stratification for which it is constructible. Let Perv(X) = colim S PervS(X).

Whilst the above definition is brief, it is not very illuminating. More intuitively
PervS(X) is obtained by glueing together the categories of local systems (with our
shift) on the strata. This intuition can be made precise by using the technique of
glueing t-structures. Since each of these categories of local systems is preserved
by duality, so are the perverse sheaves.

It is traditional to remark that perverse sheaves are neither sheaves nor perverse.
But they do have nice algebraic properties. For instance perverse sheaves form
a stack (i.e. a sheaf of categories, so that both objects and morphisms can be
understood locally on X), Perv(X) has finite length (i.e. each perverse sheaf has
a finite composition series with simple factors), and the simple perverse sheaves
are the S !∗L for S and L irreducible. A much deeper property is

Theorem 2 ([BBD82, Sai88, Sai90, dCM05]). The pushforward under a proper
map of a simple perverse sheaf ‘of geometric origin’ (see [BBD82] for the definition)
is a direct sum of shifted simple perverse sheaves of geometric origin.

This algebraic result has many important consequences. For instance, it implies

that H∗(X̃) ∼= IH∗(X) ⊕ A∗ for any resolution X̃ → X , and combining it with
Hodge theory yields the Hard Lefschetz Theorem for IH∗(X).

Perverse sheaves and Morse theory. A different approach to perverse sheaves
is provided by stratified Morse theory. Fix a stratification S of X ⊂M . Say x ∈ S
is critical for smooth f : M → R if it is critical for f |S. Then f is Morse if

• the critical values are distinct,
• each critical point in S is non-degenerate for f |S ,
• dxf is non-degenerate at each critical point x.

(This last condition means that the derivative does not annihilate any limit of
tangent spaces to an adjacent stratum.) The main new ingredient in stratified
Morse theory is the normal Morse data: given E ∈ Dc(X) and critical x ∈ S this
is defined by NMD (E , f, x) = RΓ{f≥f(x)}(E|N∩X)x where N is a complex analytic
normal slice to S in M . It turns out that this depends only on E and the stratum
S ∋ x, so we write NMD(E , S).
Example 3. When X is a curve and E = ICX(C) one has NMD (E , x) = Cmx−bx ,
where mx is the multiplicity and bx the number of analytic branches, at singular x
and C at non-singular x. Note that the ‘Morse group’ may not be one-dimensional,
e.g. for a higher order cusp, and also that it may vanish, e.g. for an ordinary double
point.
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We say E is pure if, for each stratum S, the normal Morse data NMD (E , S) is
concentrated in degree − dimS. If x ∈ S is critical for Morse f and E is pure then

Hi(X≤fx−ǫ, X≤fx+ǫ; E) ∼=
{

NMD(E , S) i = λ− dimS
0 otherwise

where λ = index at x of f |S . So for pure E , critical points in S ‘contribute’ only
in degrees from − dimS to dimS. Hence Hi (X ; E) = 0 for |i| > dimX .

There is a beautiful Morse-theoretic characterisation of the perverse sheaves,
which says that they are exactly the pure objects of Dc(X). [KS90]

If S ⊂ Cn then it is a classical fact that any Morse critical point for a distance
function f |S has index ≤ dimS. Hence for an affine morphism  : U →֒ X we
have Hi(U ; E|U ) = 0 for i > 0 whenever E is perverse. Many important vanishing
theorems follow; here are two examples, the first obtained by applying this globally
and the second by applying it locally.

Theorem 4 ([GM83b]). If H is a generic hyperplane in CPm then
IHi(X)→ IHi(X ∩H) is an isomorphism for i < −1 and injective when i = −1.
Theorem 5 ([BBD82]). The extensions ! and ∗ preserve perverse sheaves. In
particular if U is a stratum with local system L then !L and ∗L are perverse.

Glueing and quiver descriptions. Let h : X → C be regular and Xt = h−1(t).
Then there are nearby cycles pψh (E), with

Hi (pψh (E))x ∼= Hi(MFx; E),
where Fx is the (local) Milnor fibre at x ∈ h−1(0), and vanishing cycles pϕh (E).
Theorem 6 ([GM83b, KS90, Mas09]). The nearby and vanishing cycles functors,
pψh and pϕh, preserve perverse sheaves, and commute with duality.

There is a canonical morphism c : pψh (E) → pϕh (E), and also a variation
morphism v : pϕh (E) → pψh (E). These can be used to describe the respective
monodromy operators 1 + vc and 1 + cv on the nearby and vanishing cycles.

The data in the unipotent (with respect to the monodromy) nearby and van-
ishing cycles, together with the canonical and variation morphisms between them
are exactly what is required to glue together perverse sheaves on a divisor and its
complement to obtain a perverse sheaf on X . More precisely

Theorem 7 ([Bĕı87]). The categories Perv(X) and Glue(X,h) are equivalent via

E 7→ (E|X−X0 ,
pϕun

h (E) , c, v) .
Here Glue(X,h) is the category with objects (E ,F , c, v) where E ∈ Perv(X −X0)

and F ∈ Perv(X0) with F v−→ pψun

h (E) c−→ F where µ = 1 + vc, and morphisms
given by commuting diagrams.

This glueing theorem is a key ingredient in obtaining linear algebra, or quiver,
descriptions of perverse sheaves which allow one to actually compute. For example
the category PervS(CP

n) of perverse sheaves on CPn, equipped with the standard
stratification with strata Ci for i = 0, 1, . . . , n is equivalent to representations of
the quiver
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0 1 · · · n
p

q

p

q

p

q

with 1 + qp invertible and all other length two paths zero.
In fact it turns out that every category of perverse sheaves, with respect to a

fixed stratification, has a quiver description [GMV96]. However, the description
is not unique and it is, in general, very hard to find a tractable one. Conversely,
when one does, it is often important. For instance, work of Braden [Bra02], Kho-
vanov [Kho00] and Stroppel [Str09] culminated in a diagrammatric description
of perverse sheaves on the Grassmannian Grm(C2m) which has close connections
with Khovanov’s categorification of the Jones polynomial (as well as being of in-
dependent interest in representation theory).
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Structure Set of Multiaxial Manifolds

Min Yan

(joint work with Sylvain Cappell, Shmuel Weinberger)

A manifold M with U(n)-action is multiaxial, if it is locally U(n)-homeomorphic
to an open subset of the U(n)-representation kρn ⊕ jǫ, where ρn is Cn with the
defining U(n)-action, and ǫ is R with trivial U(n)-action. The condition is equiv-
alent to that the action is locally linear, and any isotropy group is conjugate to a
unitary subgroup U(i).

In [2], M. Davis gave classification of multiaxial U(n)-manifolds for the case
k ≤ n. In [3], M. Davis and W. C. Hsiang classified the concordance class of
multiaxial U(n)-homotopy spheres, also for the case k ≤ n. Here we study the
structure set SU(n)(M), i.e., the homeomorphism classes of U(n)-manifolds iso-
variantly homotopy equivalent to M . Our results cover k ≤ n as well as k ≥ n.

A multiaxial U(n)-manifold is naturally stratified

M =M0 ⊃M−1 ⊃M−2 ⊃ · · · ⊃M−n, M−i = U(n)MU(i).

The quotient M̄ = M/U(n) is correspondingly stratified with M̄−i = M−i/U(n).
The stratification has the following special properties.

(1) M̄−i = MU(i)/U(n − i), where MU(i) is a multiaxial U(n − i)-manifold
modeled on kρn−i ⊕ jǫ.

(2) If k ≤ n, then the whole M is fixed by U(n− k), so that M̄ =M/U(n) =
M̄n−k = MU(n−k)/U(k). Since MU(n−k) is a multiaxial U(k)-manifold
modeled on kρk⊕ jǫ, the study for the case k ≤ n is equivalent to the case
k = n.

(3) If k ≥ n, then the link of M̄−i−1 in M̄−i is CP
k−n+i.

(4) For any i < j, the pure strata of M̄−j in M̄−i are all connected and simply
connected.

By the third property, half of the links between adjacent strata are CP even, which
are closed oriented manifolds of signature 1. The product with such a manifold
induces “periodicity isomorphism” on surgery theory [6, Chapter 9]. The periodic-
ity can be extended to the transfer along orientable bundles with such a manifold
as fibre [4, 5]. As a consequence of this and the stratified surgery theory of [7],
the computation of the structure set of the quotient space of the multiaxial U(n)-
manifold fits into the following in half the cases.

Lemma. Suppose X = X0 ⊃ X−1 ⊃ X−2 ⊃ · · · is a stratified space, satisfying
the following properties.

(1) The link of X−1 in X is a closed oriented manifold of signature 1.
(2) The link bundle of X−1 −X−2 in X is orientable.
(3) The pure strata of all links are connected and simply connected.
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Then there is a natural homotopy equivalence of structure spectra

S(X) = S(X, rel X−2)⊕ S(X−2).

Moreover, S(X, rel X−2) is the homotopy fibre of the assembly map

H(X,X−1;L)→ L(π1X, π1X−1).

Here S,H,L are the spectra whose homotopy groups are the usual structure set
S, the homology H , and the usual surgery obstruction group L. Note that for
the assembly map in the lemma, if X were a manifold with boundary X−1, then
the classical surgery theory of [6] says that the homotopy fibre would compute the
structure set of the manifold with boundary. Here for a pair of spaces (X,X−1),
the computation can still be algebraically carried out. To emphasize the algebraic
nature of such computation, we write

S(X, rel X−2) = Salg(X,X−1).

Correspondingly, for our multiaxial U(n)-manifold, if k ≥ n and k − n is even,
then

S(M̄) = Salg(M̄, M̄−1)⊕ S(M̄−2).

The left side is the isovariant structure set SU(n)(M). By the first special property

of M̄ , the second factor on the right is

S(M̄−2) = S(MU(2)/U(n− 2)) = SU(n−2)(M
U(2)).

Since k − (n − 2) is still even, the decomposition can be further applied to the
second factor. This leads to the following decomposition.

Theorem. Suppose M is a multiaxial U(n)-manifold modeled on kρn ⊕ jǫ. If
k ≥ n and k − n is even, then we have natural decomposition

SU(n)(M) = ⊕i≥0SU(n−2i)(M
U(2i), rel U(n− 2i)MU(2i+2))

= ⊕i≥0S
alg(M̄−2i, M̄−2i−1).

As remarked in the second special property for M̄ , the theorem actually also
includes the case k ≤ n.

If k−n is odd, similar decomposition still holds if the multiaxial U(n)-manifold
can fit into a larger multiaxial U(n+ 1)-manifold, for which k − (n+ 1) becomes
even.

Theorem. Suppose M is a multiaxial U(n)-manifold modeled on kρn ⊕ jǫ, such
that M = WU(1) for a multiaxial U(n + 1)-manifold modeled on kρn+1 ⊕ jǫ. If
k ≥ n and k − n is odd, then we have natural decomposition

SU(n)(M) = SU(n)(M, rel U(n)MU(1))⊕
(
⊕i≥0SU(n−2i−1)(M

U(2i+1), rel U(n− 2i− 1)MU(2i+3))
)

= Salg(M̄)⊕
(
⊕i≥0S

alg(M̄−2i−1, M̄−2i−2)
)
.
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We remark that in both theorems, the natural restriction

SU(n)(M)→ SU(n−i)(M
U(i))

is (split) onto when k − n + i is even. Geometrically, this means that, if F is a
U(n−i)-manifold and g : F →MU(i) is a U(n−i)-isovariant homotopy equivalence,
then there is a U(n)-manifold N and a U(n)-isovariant homotopy equivalence
f : N → M , such that F = NU(i), and the restriction of f to N is U(n − i)-
isovariantly homotopy equivalent to g. In other words, the U(i)-fixed points of M
can be homotpically replaced. In [1], we showed that it is possible to homotopically
replace the fixed points of the whole action group under certain general condition.
The replacement here is not for the fixed points of the whole action group, and
the kind of condition in [1] may not be satisfied. Therefore we get a new type of
replacement.

For the unit sphere of the multiaxial representation M = S(kρn ⊕ jǫ), we may
compute the structure set explicitly. The main computation is

Salg(M̄, M̄−1) = H2kn−n2−1(N̄ , N̄−1;L), N = S(kρn).

The homology may be computed by the spectral sequence

Ep,q2 = Hp(N̄ , N̄−1;πqL) =





Hp(N̄ , N̄−1;Z), if q = 0 mod4,

Hp(N̄ , N̄−1;Z2), if q = 2 mod4,

0, if q is odd.

Note that N̄ consists of k-tuples of vectors in Rn with total unit length 1, and the
quotient space N̄ has Schubert cell structures similar to the complex Grassmanni-

ans. Then we get Salg(M̄, M̄−1) = ZAk,n ⊕ Z
Bk,n

2 , where Ak,n counts the number
of cells in N̄ − N̄−1 of dimension 0(mod 4) and Bk,n counts the number of cells of
dimension 2(mod 4). This generalizes the classical computation of the structure
set of CPn in [6, Section 14C].

The computation of Salg(M̄, M̄−1) can be applied to the other factors in the
decomposition, simply by replacing kρn with kρn−2i. Then for k ≥ n and k − n
even, we get

SU(n)(S(kρn ⊕ jǫ)) = Z
∑

i≥0 Ak,n−2i ⊕ Z

∑
i≥0 Bk,n−2i

2 .

The formula is almost correct, except the last term in the decomposition may have
the empty singular part. This is the case j = 0 and n is odd, for which we have
one less copy of Z.

Similarly, for k ≥ n and k − n odd, we have

SU(n)(S(kρn ⊕ jǫ)) = ZAk,n+
∑

i≥0 Ak,n−2i−1 ⊕ Z
Bk,n+

∑
i≥0 Bk,n−2i−1

2 .

Again the number of copies of Z or Z2 need to be slightly adjusted in some excep-
tional cases.
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Finally, all the work can be done for multiaxial Sp(n)-manifolds in parallel way,
and we get (with slight adjustment in exceptional cases).

SSp(n)(S(kρn ⊕ jǫ)) =
{
Z
∑

i≥0(
k−1
n−2i ), k ≥ n, k − n even,

Z(
k−1
n )+

∑
i≥0(

k−1
n−2i−1 ), k ≥ n, k − n odd.

References

[1] S. Cappell, S. Weinberger, M. Yan, Replacement of fixed sets for compact group actions:
The 2ρ theorem, Pure and App. Math. Q. 8 (2012) 53–77.

[2] M. Davis, Multiaxial Actions. Lecture Notes in Math. 643, Springer (1978).
[3] M. Davis, W. C. Hsiang, Concordance classes of regular U(n) and Sp(n) action on homotopy

spheres, Ann. of Math. 2 (1977), 325–341.
[4] W. Lück, Surgery transfer, In: Algebraic Topology and Transformation Groups (Gẗtingen,
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Genera and characteristic classes of singular varieties

Shoji Yokura

(joint work with Jean-Paul Brasselet and Jörg Schürmann)

1. Genera

The cardinality c(F ) of a finite set F , i.e., the number of elements of F , satisfies
that

(1) X ∼= X ′ (set-isomorphism) =⇒ c(X) = c(X ′),
(2) c(X) = c(Y ) + c(X \ Y ) for a subset Y ⊂ X (a scissor formula),
(3) c(X × Y ) = c(X)× c(Y ),
(4) c(pt) = 1.

Let us consider a similar thing on the category T OP of topological spaces, by
modifying the condition (1) and (2), with (3) and (4) not changed, by

(1)’ X ∼= X ′ ( T OP-isomorphism) =⇒ c(X) = c(X ′),
(2)’ c(X) = c(Y ) + c(X \ Y ) for a closed subset Y ⊂ X .

If such a topological cardinality exists, then c(R1) = −1, hence c(Rn) = (−1)n.
Thus, for a finite CW -complex X , c(X) is equal to the Euler–Poincaré characteris-
tic χ(X). The existence of such a topological cardinality is guaranteed by the ordi-
nary homology theory, more precisely c(X) = χc(X) :=

∑
(−1)i dimRH

i
c(X ;R) =∑

(−1)i dimRH
BM
i (X ;R). Here HBM

∗ (X) is the Borel–Moore homology group of
X .

Furthermore let us consider a similar thing on the category VAR of complex
algebraic varieties, say “VAR-cardinality”, by modifying (1)’ and (2)’ by
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(1)” X ∼= X ′ ( VAR-isomorphism) =⇒ c(X) = c(X ′),
(2)” c(X) = c(Y ) + c(X \ Y ) for a closed subvariety Y ⊂ X ,

If such a cardinality exists, by setting y := −c(C1) (we cannot do the same trick
as we do for the above c(R1) = −1) we have that c(Pn) = c(C0 ⊔ C1 ⊔ · · · ⊔
Cn) = 1 − y + y2 − · · · + (−y)n. The existence of such an algebraic cardi-
nality is guaranteed by Deligne’s theory of mixed Hodge structures. Let u, v be
two variables, then the Deligne–Hodge polynomial χu,v is defined by χu,v(X) =∑

(−1)i(−1)p+q dimCGr
p
FGr

W
p+q(H

i
c(X ;C))upvq. In particular, χu,v(C

1) = uv.
Hence, if uv = −y, then χu,v is such an algebraic cardinality. Let us consider
u = y, v = −1.
Then we have χy(X) := χy,−1(X) =

∑
(−1)i(−1)q dimCGr

p
F (H

i
c(X ;C))yp. This

is called χy-genus of X .

2. χy-genus and motivic Hirzebruch class

Now let Iso(VAR) be the free abelian group generated by the isomorphism
classes of varieties. Then the above χy can be considered as the homomorphism
χy : Iso(VAR) → Z[y] defined by χy([X ]) := χy(X). Because of the condition
(2)” we get

χy : K0(VAR) :=
Iso(VAR)

{[X ]− [Y ]− [X \ Y ] | Y ⊂ X} → Z[y] →֒ Q[y].

Here Y is a closed subset of X and {[X ]− [Y ]− [X \Y ] | Y ⊂ X} is the free abelian
group generated by the elements of the form [X ] − [Y ] − [X \ Y ]. K0(VAR) is
called the Grothendieck group (or ring) of complex algebraic varieties. K0(VAR)
can be extended to a covariant (and also contravariant) functor K0(VAR/−) by

K0(VAR/X) :=
{[V → X ]}

{[W h−→ X ]− [Z
h|Z−−→ X ]− [W \ Z h|W\Z−−−−→ X ] | Z ⊂W}

.

Here Z is a closed subvariety ofW . For a complex vector bundle E, the Hirzebruch
class or the generalized Todd class of E is defined by

tdy(E) :=

rankE∏

i=1

(
αi(1 + y)

1− e−αi(1+y)
− αiy

)
,

where αi is the Chern root of E, i.e., c(E) =
∏rankE
i=1 (1+αi). Note the Hirzebruch

class unifies the three classes which are important in geometry and topology:

• y = −1: td−1(E) =
∏rankE
i=1 (1 + αi) = c(E), the total Chern class

• y = 0: td0(E) =
∏rankE
i=1

αi

1−e−αi
= td(E), the total (original) Todd class,

• y = 1: td1(E) =
∏rankE
i=1

αi

tanhαi
= L(E), the total Thom–Hirzebruch

L-class.

Now we can formulate a Grothendieck–Riemann–Roch-type theorem for the χy-
genus:

Theorem 1 ([3] (cf. [12], [16])). Let the set-up be as above.
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(1) There exists a unique natural transformation

Ty∗ : K0(VAR/−)→ HBM
∗ (−)⊗Q[y]

such that for a smooth variety X Ty∗([X
idX−−→ X ]) = tdy(TX) ∩ [X ].

Whether X is singular or non-singular, Ty∗(X) := Ty∗([X
idX−−→ X ]) is

called the motivic Hirzebruch class of X.
(2) When X = pt is a point, Ty∗ : K0(VAR/pt) = K0(VAR) → Q[y] equals

χy.

3. A “unification” theorem

The above Hirzebruch class Ty∗ : K0(VAR/−)→ HBM
∗ (−)⊗Q[y] “unifies” the

following three well-known characteristic classes of singular varieties:
(1) MacPherson’s Chern class transformation [11]:cMac

∗ : F (−) → H∗(−) ⊗ Q,
which is the unique natural transformation from the constructible function functor
F (X) to the Borel–Moore homology such that c∗(11X) = c(TX) ∩ [X ] for smooth
X .

(2) Baum–Fulton–MacPherson’s Todd class [1]: tdBFM∗ : G0(X)→ H∗(X)⊗Q,
which is the unique natural transformation from the Grothendiekc group functor
G0(X) of coherent sheaves such that tdBFM∗ (OX) = td(TX) ∩ [X ] for smooth X .

(3) Goresky– MacPherson’s homology L-class [9], which is extended as a natu-
ral transformation by Cappell-Shaneson [6] (see also [3, 14, 15]): LCS∗ : Ω(X) →
H∗(X) ⊗ Q defined on the cobordism group Ω(X) of selfdual constructible sheaf
complexes, such that LCS∗ ([QX [dimX ]]) = L(TX) ∩ [X ] for X smooth and com-
pact.

Now the “unification” means the following:

Theorem 2 ([3] (cf. [12], [16])). The following diagrams of natural transforma-
tions are commutative:

K0(VAR/X)

const

xxqq
qq
qq
qq
qq T−1∗

((P
PP

PP
PP

PP
PP

P

F (X)
cMac
∗ ⊗Q

// H∗(X)⊗Q.

K0(VAR/X)

coh

xx♣♣
♣♣
♣♣
♣♣
♣♣
♣

T0∗

((P
PP

PP
PP

PP
PP

P

G0(X)
tdBFM

∗

// H∗(X)⊗Q.

K0(VAR/X)

sd

xxqq
qq
qq
qq
qq T1∗

((P
PP

PP
PP

PP
PP

P

Ω(X)
LCS

∗

// H∗(X)⊗Q.
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Here const : K0(VAR/X) → F (X) is defined by const([V
h−→ X ]) := h∗11V .

The other two comparison transformations are characterized by coh([V
h−→ X ]) =

h∗([OV ]) and sd([V
h−→ X ]) = h∗([QV [dimV ]]) for V smooth and h proper.

For the details see [3, 12, 16], and for further and related works, e.g., see [4, 5]
for genera, [7, 17] for the motivic Hirzebruch–Milnor class, [8] for the equivariant
analogue of Ty∗, [13] for a bivariant-theoretic analogue of Ty∗, and [2] for fiberwise
bordism groups.
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Problem Session

Question by James Davis. By a theorem of Thom, the image of the following
map is a lattice of full rank.

Πn : Ω4n → Z{partitions of n}

[M ] 7→ (I 7→ pI(M))

It is injective up to torsion.
The question is to compute the image of Πn through a range of n’s and to

develop techniques to compute the images of Πtop
n and ΠPL

n .
Example: Zhixu Su (2009) computed the image of Π8 and concluded: there

exists a 32-dimensional, simply-connected, smooth, closed manifold M with

H∗(M ;Q) =

{
Q ∗ = 0, 16, 32
0 otherwise

It only has p4 and p8, so the image under Π8 is

4 + 4 7→ p24(M)
8 7→ p8(M).

Question by Greg Friedmann. Let F be a field. An F -Witt space is a piece-
wise linear stratified pseudomanifold such that if x is any point in a stratum of
codimension 2k + 1 and L2k is the link at x, then Im̄Hk(L;F ) = 0, where m̄
indicates the lower middle perversity and Im̄H is the corresponding intersection
homology group (with coefficients in F ). The interest in Witt spaces is that this
condition is sufficient to ensure Im̄Hk(L;F ) ∼= I n̄Hk(L;F ), where n̄ is the upper
middle perversity, which is complementary to m̄. It follows that if X is a com-
pact n-dimensional F -oriented F -Witt space, then there is a nonsingular Poincaré
duality pairing

Im̄Hi(L;F )⊗ Im̄Hn−i(L;F )→ F.

In particular, when n = 4j, there is a nonsingular symmetric middle-dimensional
pairing

Im̄H2j(L;F )⊗ Im̄H2j(L;F )→ F.

These spaces were first studied by Siegel [3] for F = Q. Siegel showed that the
middle-dimensional pairing provides a bordism-invariant element of the Witt group
W (Q) (hence the name “Witt space”) and used this to compute the bordism groups
of compact oriented Q-Witt spaces, ΩQ−Witt

∗ . It follows from this computation,
and in particular Siegel’s construction of generators for these groups, that every
Q-Witt space is bordant (via a Q-Witt space) to a Q-Witt space with at worst
isolated singularities (in fact at most one isolated singularity).

Question 1: Is it possible to demonstrate this last fact (that every Q-Witt
space is Q-Witt bordant to a Q-Witt space with at worst isolated singularities)
using a purely topological construction?
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The motivation for this question arises from an error in [2], in which the author

computes the bordism groups ΩF−Witt
i for other fields F . The error occurs in

the computation when F = Z2, the field with two elements, and i ≡ 2 mod 4.
For fields not of characteristic 2, one can use a version of the singular surgery of
[3] to conclude that all 4j + 2-dimensional F -Witt spaces are boundaries and so

ΩF−Witt
4j+2 = 0. This surgery argument is predicated on the assumption that the self-

intersection number of middle-dimensional intersection homology elements must
be 0. When the characteristic of F is not 2, this follows from the anti-symmetry
of the middle-dimensional pairing. When the characteristic is 2, one cannot draw
this conclusion; overlooking this point was the source of the error. However,
there is still a homomorphism ΩF−Witt

4j+2 → W (Z2) ∼= Z2, and one may still use
singular surgery to show it is injective. Thus the unsettled question is whether
or not there is a Z2-Witt space of dimension 4j + 2 whose middle-dimensional
pairing represents the non-trivial element of W (Z2). If one only asks that Z2-
Witt spaces be Z2-orientable (which would be reasonable as such spaces would
possess the desirable Z2-Poincaré duality), then the real projective spaces provide
such elements. However, one might still ask about bordism groups of Z-oriented
Z2-Witt spaces, in which case the question is still open:

Question 2: Is there a Z-oriented compact Z2-Witt space of dimension 4j +2
whose middle-dimensional pairing represents the non-trivial element of W (Z2)?

An affirmative answer to Question 1 would provide a negative answer to Ques-
tion 2 as follows: If X is a Witt space with at worst isolated singularities, then one
can choose an open neighborhoodN of the set of singularities such thatM = X−N
is a compact oriented manifold-with-boundary (if there are no singularities, M is
closed). Then the intersection pairing on Im̄H2j+1(X ;Z2) can be identified with
the intersection pairing on

im(H2j+1(M ;Z2)→ H2j+1(M,∂M ;Z2)).

It is known that such a pairing cannot represent the non-trivial element of W (Z2)
(by an argument using cohomology operations; see [1]). Hence if one could con-
struct Witt bordisms “by hand” to Witt spaces with at worst isolated singularities,
then the answer to Question 2 must be “no.” It also follows from this argument
that any possible example giving an affirmative answer to Question 2 must have
singular set of dimension greater that 0.
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Questions by Paolo Piazza. Let X be a Witt space. By definition this is a
stratified space X such that for all x ∈ X for which the link Lx is even dimensional
we have ICm̄dim(Lx)/2(Lx) = 0. On a Witt space we can define the homology L-class
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L∗(X) ∈ H∗(X). It turns out that the L-class is also equal to the Chern character
of the signature class in analytic K-homology.
Question 1: under which hypothesis can we define, topologically, the homology
Â-roof class Â∗(X)? A sufficient condition should be the existence of a metric
with positive scalar curvature on the links. How would it depend on the choice
of that metric? Is it equal to the Chern character of a suitable K-homology class
defined by the spin Dirac operator?
Question 2: Paolo also requests an update on the status of the relation between
L2-cohomology and intersection cohomology for projective varietiesX with Fubini-
Study-metric.

Daniel Grieser replies to the second question that there is ongoing work to
obtain an analytically satisfactory answer, via two steps: First prove that every
projective variety has a resolution which not only resolves the differentiable struc-
ture, but also the metric. The latter means that the metric pulled back to the
resolution has a certain normal form. This normal form is defined in terms of tow-
ers of fibrations of the exceptional divisor and associated weight vectors. To D.G.’s
knowledge some people in the resolution of singularities community are working
on this conjecture. As a second step analyze the Hodge Laplacian on spaces with
such metrics. Also here there is some work but no conclusive answers yet. This
program generalizes the approach taken by Hsiang and Pati in the two-dimensional
case.

Question by Julius Shaneson. Let M be a simply connected piecewise linear
manifold and M ≃ N a homotopy equivalence. Then there exists an embedding
M →֒ N × D2, even though their Pontryagin might not agree. Notice that a
PL-Manifold might not have a normal bundle. Take, for example,

Cone

( )
⊆ R4.

Can you stratify the embedding using only strata of even codimension?

Questions by Shmuel Weinberger. Question 1: Can you give a cycle theory
for KO where the cycles are “reasonable geometric objects”

The fundamental obstacle is a result of Browder-Liulivicious-Peterson which
shows that (in modern terminology) any cycle theory that is closed under crossing
with smooth oriented manifolds, must be Eilenerg-MacLane at 2. Spin conditions
could help.

I would be happy with something using almost complex structures as well.
Question 2: This question was adressed to Markus and involved the question

of whether one can rewrite his Annals paper on “non-Witt spaces” to view the
output as being, not a well defined self-dual complex of sheaves, but rather a well
defined cobordism class of these. Then the inductive step would be a “transport”
from a Lagrangian in one such realization to a Lagrangian of the other.

This would then imply the sequence of obstructions he defines is more canonical:
if one set of choices is obstructed, then so would another.
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The result about well definedness of signature and characteristic classes would
then also have a more natural understanding. Markus seemed to believe that this
was all correct, and (maybe I am now being optimistic) would mainly involve
reorganizing the ideas in the original paper.

Matthias Kreck gives two answers to the first question. First answer: Use
the theorem of Hopkins-Hovey:

ΩSpin
∗ (X)⊗KO∗(pt) ≃ KO∗(X).

This is a Conner-Floyd type description, but the proof is much more complicated.
Second answer (Kreck-Stolz): Consider Spin bordism of X and add a new

relation, which identifies total spaces of HP 2-bundles with 0. Invert the Bott-
manifold. The result is again KO∗(X).

Conjectural answer: Consider Riemannian stratifolds with all strata spin and
all links with positive scalar curvature. Conjecture: This gives a homology theory
that is equivalent to kon(X).

Reporter: Martin Ruderer
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