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Introduction by the Organisers

The workshop Manifolds with Lower Curvature Bounds, organised by Anand Des-
sai (Fribourg), Wilderich Tuschmann (Karlsruhe) and BurkhardWilking (Münster),
was held January 1st–January 7th, 2012. The meeting was attended by 17 partic-
ipants, ranging from second year graduate students to senior researchers.

The purpose of the meeting was to relate and study new developments in the
geometry and topology of Riemannian manifolds with lower curvature bounds.
Special emphasis was given to manifolds with given lower bounds on Ricci curva-
ture as well as to manifolds of nonnegative/positive sectional curvature.

The meeting was organised around ten one-hour talks, two mini courses, and
two short talks by young PhD students, leaving plenty of time between and after
talks for informal discussions.

The workshop started off with a talk by Guofang Wei surveying various char-
acterizations of lower Ricci curvature bounds. Later on in the week Nicola Gigli
(Oberwolfach Prize Winner 2010) and Giuseppe Savaré each gave 2 hour mini
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courses on optimal transport, lower Ricci curvature bounds and their work on
gradient flows on metric spaces thereby also providing a gentle introduction to the
recent work of Lott-Villani and Sturm. David Wraith described new methods to
construct invariant metrics of positive Ricci curvature on G-manifolds with finitely
many non-principal orbits.

Other talks were related to lower bounds on sectional curvature (curvature for
short). In his talk Igor Belegradek considered the space R(N) of complete metrics
of nonnegative curvature on an open connected manifold N and showed in par-
ticular that the complement of any countable subset of R(R2) is path connected.
Dmitri Panov discussed a polyhedral analogue of Frankel’s conjecture and sup-
porting evidence for it in low dimensions. Comparison theorems for integrals and
Hölder norms under curvature bounds in the absence of injectivity radius bounds
were addressed in Patrick Ghanaat’s talk. Marco Radeschi showed that singu-
lar Riemannian foliations of the round sphere with leaves of dimension ≤ 3 are
homogeneous. Computations for the algebra of stable polynomial invariants of
Riemannian manifolds and speculations on how to describe it by graphs using a
Rozansky-Witten approach were discussed by Gregor Weingart.

Another bulk of talks was devoted to the topology of Riemannian manifolds
with nonnegative/positive sectional curvature and large symmetry. Fernando
Galaz-Garcia and Wolfgang Spindeler discussed the (equivariant) classification of
nonnegatively curved manifolds of dimension 4 and 5 with isometric action of
the 2-torus and nonnegatively curved fixed point homogeneous 5-manifolds. Lee
Kennard explained his use of the Steenrod algebra to prove generalized Hopf con-
jectures for positively curved manifolds under logarithmic lower bounds on the
symmetry rank.

The meeting also included two short talks by young PhD students. Martin
Herrmann presented a criterion for the total space of principal bundles to admit
almost nonnegative curvature operators. Nicolas Weisskopf discussed a conjecture
on the strong rigidity of the elliptic genus for positively curved spin manifolds with
symmetry.
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Abstracts

Characterizations of Lower Ricci Curvature Bound

Guofang Wei

We survey several characterizations of lower Ricci curvature bound for Riemannian
manifolds, including Bochner inequality, comparison theorems, gradient estimate
of heat kernel and entropy. This motivated the definition of lower Ricci curvature
bound for general metric measures spaces defined by Lott-Villani [2] and Sturm
[4, 5] independently.

The fundamental tools for studying Ricci curvature are the Bochner formula
and the Jacobian determinant of the Exponential map. The Bochner formula for
functions is

Theorem 1 (Bochner’s Formula). For a smooth function u on a Riemannian
manifold (Mn, g),

(1)
1

2
∆|∇u|2 = |Hessu|2 + 〈∇u,∇(∆u)〉+ Ric(∇u,∇u).

When Ric ≥ (n−1)H , combining with the Cauchy-Schwarz inequality |Hess u|2 ≥
(∆u)2

n , we obtain the Bochner inequality

(2)
1

2
∆|∇u|2 ≥ (∆u)2

n
+ 〈∇u,∇(∆u)〉+ (n− 1)H |∇u|2.

This gives us the first characterization:

Theorem 2. A Riemannian manifold (Mn, g) has RicM ≥ (n − 1)H iff the
Bochner inequality (2) holds for all u ∈ C3(M).

Now we give some comparison characterizations. If RicM ≥ (n− 1)H , one can
apply the Bochner formula to the distance function to deduce

• The Laplacian comparison: For r(x) = d(p, x)

∆r ≤ ∆Hr,

where ∆H is the Laplacian in the model space Mn
H , the n-dimensional

simply connected space with constant sectional curvature H .
• Write the volume element in polar coordinate: dvol = A(r, θ)drdθ, dvolH =
AH(r)drdθ. Since (logA)′ = ∆r, the Laplacian comparison yields the vol-
ume element comparison:

A(r, θ) ≤ AH(r).

• Fix p ∈Mn. For any measurable set B ⊂M , connect every point y ∈ B to
p with a minimal geodesic γy such that γy(0) = p, γy(1) = y. For t ∈ [0, 1],
put Bt = {γy(t)|y ∈ B}. Integrating the volume element comparison, one
gets, for 0 ≤ t ≤ 1, localized Bishop-Gromov comparison:

vol(Bt) ≥ t

∫

B

AH(td(x, y))

AH(d(x, y))
dvoly.
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This comparison was formulated by Ohta [3] and Sturm [5] independently.

Theorem 3. RicM ≥ (n− 1)H is equivalent to each of the above comparisons.

On the other hand, Bakry-Emery [1] gives the following characterization in
terms of gradient of heat kernel, which follows from the Bochner formula.

Theorem 4. RicM ≥ (n− 1)H is equivalent to the inequality

|∇(Etf)|2(x) ≤ e−2(n−1)HtEt(|∇f |2)(x),
for all f ∈ C∞c (M), t > 0, x ∈M . Here Et = et∆ is the heat operator.

Now we focus on the Jacobian determinant of the exponential map. Let ξ be
a vector field on a Riemannian manifold Mn, Tt(x) = expx(tξ(x)) : Mn → Mn.
Denote J(t, x) = dTt(x) : TxM → TTt(x)M . Then for each v ∈ TxM , J(t, x)(v) is
a Jacobi field along Tt(x) and satisfies the Jacobi equation

J ′′(t, x)(v) +R(J(t, x)(v), Ṫt(x))Ṫt(x) = 0.

In addition, J(0, x) = Id, J ′(0, x) = ∇ξ(x).
Let U(t, x) = J̇ ·J−1. Then the Jacobi equation becomes the first order Riccati

type equation

U̇ +R(·, Ṫt(x))Ṫt(x) + U2 = 0.

Taking trace, we have

d

dt
(trU) + tr (U2) + Ric(Ṫt(x), Ṫt(x)) = 0,

which is another important formula involving Ricci curvature. This is in fact
equivalent to the Bochner formula. The two are dual to each other, with the above
equation being the Lagrangian viewpoint while the Bochner formula Eulerian.

When ξ = ∇ψ is a gradient vector field, ∇ξ = Hessψ is symmetric, which
implies that U(t, x) is symmetric. Therefore we can use the Cauchy-Schwartz

inequality, tr(U2) ≥ (trU)2

n , to obtain

d

dt
(trU) +

(trU)2

n
+Ric(Ṫt(x), Ṫt(x)) ≤ 0.

Recall U(t, x) = J̇ · J−1. Therefore trU = J̇ (t,x)
J (t,x) , where J (t, x) = detJ(t, x).

Hence
J̈
J − (1 − 1

n
)(
J̇
J )2 ≤ −Ric(Ṫt(x), Ṫt(x)).

Let D(t) = (J (t))
1
n , l(t) = − logJ (t). Then the above rewrites as

D̈
D ≤ −Ric(Ṫt(x), Ṫt(x))

n
,

l̈(t) ≥ l̇(t)2

n
+Ric(Ṫt(x), Ṫt(x)).

We arrive at the ODE characterizations of lower Ricci curvature bound.
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Theorem 5. RicM ≥ H is equivalent to either of the inequalities

D̈
D ≤ −H |Ṫt(x)|2

n
,

l̈(t) ≥ l̇(t)2

n
+H |Ṫt(x)|2.

These ODEs has equivalent integral versions. For example, HessF ≥ kg is
equivalent to

F (γ(t)) ≤ tF (γ(1)) + (1 − t)F (γ(0))− k

2
t(1 − t)d2(γ(0), γ(1))

for each geodesic γ : [0, 1] → X , and all t ∈ [0, 1]. We refer to these functions as
k-convex.

These considerations motivate the entropy characterization of lower Ricci cur-
vature bound. Given a metric measure space (X, d, µ), let P2(X) be the space of
Borel probability measures equipped with Wasserstein distance W2, then it is a
length (geodesic) space. Set

P2(X,µ) = {ν ∈ P2(X) | ν = ρµ,

∫

X

d2(x0, x)ρ(x)dµ(x) <∞}.

The relative (Shannon) entropy of ν ∈ P2(X) with respect to µ is defined by

Hµ(ν) =

{

limǫ→0

∫

ρ>ǫ
ρ log ρ dµ if ν ∈ P2(X,µ)

+∞ otherwise
.

Von Renesse & Sturm [6] gave the following characterization.

Theorem 6. RicM ≥ k is equivalent to that the Shannon entropy Hµ(ν) is k-
convex on P2(M).

Remark. Among all the characterizations the local Bishop-Gromov compar-
ison and entropy characterization do not use differential structure. Though the
local Bishop-Gromov comparison is much simpler and more geometric, it is not
stable under the measured Gromov-Hausdorff limit. Therefore one uses entropy
characterization to define lower Ricci bound for non-smooth metric measure spaces.
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On G-manifolds with finitely many non-principal orbits

David J. Wraith

(joint work with Stefan Bechtluft-Sachs)

We consider a compact Lie group G acting smoothly on a compact manifold M .
The cohomogeneity of such an action is the dimension of the space of orbits M/G.

In recent years, the geometry of cohomogeneity-one manifolds has been exten-
sively studied. (See for example [7].) Our motivating aim is to ask what can be
said about topology and geometry in cohomogeneity greater than one? This ques-
tion is deliberately vague, and allows many possible interpretations depending on
the additional assumptions one makes in order to create a reasonable problem.
Our approach is to focus on G-manifolds with only finitely many non-principal
orbits. Thus each non-principal orbit is isolated in the sense that it has a tubular
neighbourhood (with respect to some G-invariant background metric) in which all
other orbits are principal. For an alternative interpretation of the above question,
see [2].

In the following, K will denote the principal isotropy of the G-action, and
H1,...,Hp will denote the non-principal isotropy groups. Let Ni denote a tubu-
lar neighbourhood of the non-principal orbit G/Hi. Then M − ∪p

i=1Ni has the
structure of a principal-orbit bundle. Let B denote the base of this bundle, so
B = (M − ∪p

i=1Ni)/G. It is clear that B is a manifold with p boundary com-
ponents. We note that Ti := ∂Ni has two fibration structures: it is fibered by
principal orbits, and is also fibered by normal spheres Sr.

We first consider the structure of the orbit space M/G. The key to understand-
ing this is the following result:

Theorem. ([1]; chapter 4, §6) Let L be a compact Lie group acting locally smoothly,
effectively and with one orbit type on Sr. If dimL > 0 then L acts transitively
or freely, and if L acts freely, we must have L ∼= U(1), NSU(2)U(1) or SU(2). If
dimL = 0 then Sr → Sr/L is the universal covering, so L must also act freely.

In our case, if any Hi acts transitively then the cohomogeneity must be one. As
we wish to study cohomogeneities greater than one, we will assume the Hi-action
is not transitive. We deduce:

Corollary. If the cohomogeneity is greater than one, then K is ineffective kernel
of the Hi action on Sr, so K is normal in Hi and Hi/K ∼= U(1), NSU(2)U(1),
SU(2), or is finite, and acts freely and linearly on Sr.

In turn we deduce:

Corollary. If the cohomogeneity is greater than one, then Ti/G is either a complex
or quaternionic projective space, or a Z2 quotient of an odd dimensional complex
projective space in the case of a singular orbit, or in the case of an exceptional
orbit a real projective or lens space. Also, each Ni/G is a cone over one of these
spaces.

The structure of M/G is then given by:
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Theorem. M/G is the union of a manifold with boundary B, where each boundary
component is one of the above listed spaces, together with cones over the boundary
components.

Notice that if there is at least one singular orbit, this forces the cohomogeneity
to be odd. For more details about the topology of these objects, see [3].

We now consider the geometry of these objects, and in particular we consider
the existence of invariant metrics with positive Ricci curvature. To provide some
motivation for this, let us recall the following result for cohomogeneity one:

Theorem. ([5]) A compact cohomogeneity one manifold admits an invariant met-
ric with positive Ricci curvature if and only if its fundamental group is finite.

There is little possibility of proving a result as strong as this in the current
context: the space of orbits in cohomogeneity one is either a circle or an interval.
Either way, this makes no contribution to the curvature. However, in higher
cohomogeneities, it is to be expected that the geometry of the space of orbits will
play some role in determining the global geometric properties.

In the statement of the theorem below, gi denotes a metric on the appropriate
boundary component induced via the standard submersion from the round metric
of radius one. For more details, see [4].

Theorem. Suppose that π1(G/K) is finite. Then if B admits a Ricci positive
metric such that
i) the metric on boundary component i is λ2i gi, and
ii) the principal curvatures (with respect to the inward normal) at boundary com-
ponent i are greater than −1/λi,
then M admits an invariant Ricci positive metric.

Corollary. All G-manifolds with two singular orbits, orbit space a suspension
ΣCPm or ΣHPm, and principal orbit G/K with π1(G/K) < ∞ admit invariant
metrics with positive Ricci curvature.

To illustrate this, given any two Aloff-Wallach spaces Wp1,p2
and Wq1,q2 , there

is a 11-dimensional SU(3)-manifold M11
p1p2q1q2 of cohomogeneity 3 with two sin-

gular orbits Wp1,p2
and Wq1,q2 and orbit space ΣCP 1 = S3. This family contains

infinitely many homotopy types, and all manifolds in this family admit invariant
metrics of positive Ricci curvature.

The above corollary raises the question of whether there are Ricci positive
examples with more than two non-principal orbits. The key to answering this is
the following result, which relies on a construction in [6].

Proposition. For each n ≥ 3, m ≥ 1 and sufficiently small ρ > 0, there is a
δ0 = δ0(ρ) > 0 such that for all 0 < δ < δ0 there is a Ricci positive metric on
Sn −∐m

i=1D
n such that each boundary component is a round sphere of radius δ,

and the principal curvatures at the boundary (with inward normal) are all equal to
−ρ/δ.
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Using this Proposition in conjunction with the above Theorem yields the fol-
lowing:

Theorem. In cohomogeneities 3 and 5, there are G-manifolds with any given
number of isolated singular orbits admitting an invariant metric of positive Ricci
curvature.

For example, in cohomogeneity 3, there is an 11-dimensional SU(3)-manifold
with an invariant Ricci positive metric having isolated singular orbits equal to any
given (finite) collection of Aloff-Wallach spaces.

Open question. Can we find manifolds with more than two non-principal orbits
and an invariant Ricci positive metric in cohomogeneities 6= 3, 5?

The problem in this case is to understand the geometry of the space of orbits.
We know for example that HP 2k+1, CP 2k+1 and RP 2k+1 are boundaries, and so
we can create manifolds with boundary (by a connected sum on the interior of the
bounding manifolds) having any selection of these spaces as boundary components.
These are all candidates for the manifold B. Geometrically, what can be said about
such manifolds? Do any admit Ricci positive metrics?
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4- and 5-dimensional simply connected manifolds with nonnegative
curvature and torus actions

Fernando Galaz-Garcia

(joint work with Martin Kerin, Catherine Searle)

The study of Riemannian manifolds with positive and, more generally, nonnegative
(sectional) curvature is a field in which metric aspects of differential geometry, such
as comparison arguments, play a central role (cf. [15, 16]). Despite the existence
of general structure results (e.g., the Cheeger-Gromoll soul theorem [2]) and of
obstructions to nonnegative curvature (e.g., Gromov’s Betti number theorem [7]),
examples of positively and nonnegatively curved manifolds are scarce, as well as
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techniques for their construction. Thus, finding new spaces in this class remains a
central problem in the field. In this context, considering manifolds with a “large”
isometry group provides a systematic approach to the study of both positively and
nonnegatively curved manifolds (see [8]).

LetM be a compact Riemannian manifold and G its isometry group, which is a
compact Lie group. Observe thatG acts onM by isometries. One possible measure
for the size of G is the symmetry rank ofM , denoted by symrank(M), and defined
as the rank of G. Here “large” is interpreted as symrank(M) being big. Grove
and Searle [9] showed that the maximal symmetry rank of a compact positively
curved n-manifold M is ⌊(n+ 1)/2⌋ and that, if M has maximal symmetry rank,
then it must be diffeomorphic to a sphere, a lens space, or a complex projective
space.

If M is assumed to have nonnegative curvature, an upper bound on the sym-
metry rank smaller than the dimension of the manifold, as in the positively curved
case, cannot be achieved in full generality, since the n-dimensional flat torus has
maximal symmetry rank n. Under the additional hypothesis of simple connec-
tivity, it has been conjectured (cf. [5]) that if M is a compact, simply connected
nonnegatively curved n-manifold, then symrank(M) ≤ ⌊2n/3⌋. In joint work with
Searle, this conjectural bound on the symmetry rank has been verified in dimen-
sions at most 9 (cf. [5]) and compact, simply connected manifolds of nonnegative
curvature and maximal symmetry rank have been classified up to diffeomorphism
in dimensions at most 6:

Theorem 1 ([5]). LetMn be a compact, simply connected Riemannian n-manifold
with nonnegative curvature and an effective, isometric torus action of maximal
rank.

(1) If n = 4, then M4 is diffeomorphic to S4, CP2, S2 × S2 or CP2#± CP2.
(2) If n = 5, then M5 is diffeomorphic to S5, S2×S3 or S2×̃S3, the non-trivial

S3-bundle over S2.
(3) If n = 6, then M6 is diffeomorphic to S3 × S3.

The classification program for compact, simply connected nonnegatively curved
manifolds of maximal symmetry rank consists of two parts. The first one is the
topological classification, whose goal is to determine, up to diffeomorphism, all
possible compact, simply connected nonnegatively curved manifolds supporting
an (effective) isometric torus action of maximal rank. The second part is the
equivariant classification, where the goal is to determine, up to equivariant diffeo-
morphism, all possible isometric torus actions of maximal rank on a given compact,
simply connected nonnegatively curved manifold. Thus, the natural next step after
Theorem 1 is the equivariant classification of compact, simply connected nonnega-
tively curved manifolds of maximal symmetry rank in dimensions 4, 5 and 6. This
classification was carried out in joint work with Kerin:

Theorem 2 ([4]). Let Mn, n ∈ {4, 5, 6}, be a compact, simply connected n-
manifold which admits a Riemannian metric with nonnegative curvature and max-
imal symmetry rank. Then every smooth, effective action on Mn by a torus T n−2
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is equivariantly diffeomorphic to an effective, isometric action on a normal biquo-
tient.

Recall that a biquotient is a quotient of a Lie group G by the two-sided, free
action of a subgroup U ⊂ G×G. If G is equipped with a bi-invariant metric, then
the action of U is by isometries and the quotient G//U equipped with the induced
metric (of nonnegative curvature) is called a normal biquotient.

When considering the classification of compact, simply connected manifolds
with nonnegative curvature equipped with an effective isometric torus action, one
can systematically decrease the amount of symmetry, starting with those with
maximal symmetry rank, in the hope of eventually reaching a complete classifi-
cation without any symmetry assumptions. Thus, in dimension 4, one considers
compact, simply connected, nonnegatively curved 4-manifolds with an isometric
S1 action, and, in dimension 5, compact, simply connected 5-manifolds of nonneg-
ative curvature with an isometric T 2 action. In dimension 4 both the topological
and the equivariant classification problems have been solved (cf. [3, 4, 10]). The
topological classification in dimension 5 was carried out in joint work with Searle:

Theorem 3 ([6]). LetM5 be a compact, simply connected, nonnegatively curved 5-
manifold. If T 2 acts isometrically and effectively on M5, then M5 is diffeomorphic
to one of S5, S3×S2, S3×̃S2 (the non-trivial S3-bundle over S2) or the Wu manifold
SU(3)/SO(3).

The proofs of these results rest on the determination, via Alexandrov geometry,
of the possible orbit spaces of the actions and on classification results for compact,
simply connected smooth 4-, 5- and 6-manifolds with smooth torus actions, in the
case of Theorems 1 and 2 (cf. [11, 12, 13]), and on the Barden-Smale classifica-
tion of compact, simply connected smooth 5-manifolds (cf. [1, 14]), in the case of
Theorem 3.
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Nonnegatively curved fixed point homogeneous 5-manifolds

Wolfgang Spindeler

(joint work with Fernando Galaz-Garcia)

The classification of closed Riemannian manifolds with positive or nonnegative
sectional curvature is a fundamental open problem in Riemannian geometry. In
this context, the classification of these manifolds in the presence of a non-trivial
symmetry group can be regarded as a first step towards more general classification
results. One is led in this way to consider positively or nonnegatively curved closed
Riemannian manifolds with an isometric action of a compact Lie group.

Let M be a smooth manifold with a smooth action of a compact Lie group G.
One possible measure for the size of the action G×M →M is its cohomogeneity,
defined as the dimension of the orbit space M/G. Under this interpretation, the
largest actions will be those for which dimM/G = 0, i.e., the action is transitive
andM is a homogeneous space. If the action has fixed points, dimM/G is bounded
below by the dimension of the fixed point set Fix(M,G) and

dimM/G ≥ dimFix(M,G) + 1

for any non-trivial action. In this case the fixed point cohomogeneity of the action,
denoted by cohomfix (M,G), is defined by

cohomfix (M,G) = dimM/G− dimFix(M,G)− 1 ≥ 0.

For an action with fixed points, “large” may be interpreted as having low fixed
point cohomogeneity. If the fixed point cohomogeneity of the action is 0, we say
that the action is fixed point homogeneous and M is a fixed point homogeneous
manifold (cf. [3]).

Grove and Searle [3] classified closed Riemannian manifolds with positive cur-
vature and a fixed point homogeneous isometric Lie group action, along with the
possible actions. In the simply connected case one has the following topological
classification:
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Theorem (Grove, Searle). Any closed, simply connected fixed point homoge-

neous manifold with positive curvature is diffeomorphic to either Sn,CPm,HP
k,

or OP2.

In dimensions at most 5, where fixed point set components have dimension at
most 3, a complete topological classification can be given in the simply connected
case. In dimensions 4 and below the topological classification was carried out in
[2]. Here we address the topological classification in dimension 5. Our main result
is the following theorem.

Theorem. Let M5 be a closed, simply connected 5-dimensional nonnegatively
curved fixed point homogeneous G-manifold. Then G is SO(5), SO(4), SU(2),
SO(3) or S1 and we have the following classification.

(a) If G = SO(5), SO(4) or SU(2), then M5 is diffeomorphic to S5.

(b) If G = SO(3) or S1, then M5 is diffeomorphic to S5 or to one of the two
bundles over S2 with fiber S3.

Observe that the list of fixed point homogeneous 5-manifolds in the Main The-
orem contains every known closed, simply connected 5-manifold of nonnegative
sectional curvature except for the Wu manifold SU(3)/SO(3).

When G is one of SO(5), SO(4), SU(2) or SO(3) the result follows easily from
results in the literature. When G equals S1 the argument is more complicated;
the hypothesis of nonnegative curvature allows us to show, by looking at the orbit
space structure, that M5 decomposes as a union of two disc bundles over smooth
submanifolds of M5, one of which is a 3-dimensional component of Fix(M5, S1).
This in turn allows us to show, after some work, that H2(M

5,Z) is either 0 or
Z, whence the conclusion follows from the Barden-Smale classification of smooth,
closed simply connected 5-manifolds [1, 4].
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Integral norms and Hölder estimates under curvature bounds

Patrick Ghanaat

We discuss comparison theorems for volume normalized integrals or Lp–norms
and for Hölder norms of functions on distance balls in a Riemannian manifold
M . Specifically, we show that the norm of a function u defined on a distance ball
B(p, r) ⊆M is comparable to the corresponding euclidean norm of its lift u ◦ expp
on the ball Bp(0, r

′) in the tangent space TpM , sometimes with a modified radius
r′. The radius r is required to satisfy an inequality r ≤ const/

√
κ, where κ is a

curvature bound, but no assumption on the injectivity of expp is made.

The estimates can be used to transplant inequalities of analysis, such as esti-
mates of the Sobolev type or regularity theorems on differential operators, from
euclidean space to Riemannian manifolds in a geometrically controlled manner.
We illustrate this via Morrey’s Sobolev inequality and an Lp-estimate for the
Hodge-Dirac operator d + δ. This is an extract from joint work with B. Colbois
[1]. In the present account, we restrict attention to the comparison of integrals.

Consider a complete Riemannian manifold (M, g) of dimension n. For measur-
able subsets Ω ⊆M , let

∮

Ω

u dµ :=
1

vol(Ω)

∫

Ω

u dµ

denote the average value of a function u : Ω → R with respect to the Riemannian
volume element dµ. On balls B(p, r) ⊆ M of radius r, these averages have the
following monotonicity property.

Lemma. Let u : M → R be a non-negative measurable function, p ∈ M , and
0 < r1 ≤ r2. Suppose Ric ≥ (n− 1)ρ on the ball B(p, r2) for some real number ρ.
Then

∮

B(p,r1)

u dµ ≤ vn(r2, ρ)

vn(r1, ρ)

∮

B(p,r2)

u dµ.

Here vn(r, ρ) is the volume of a ball of radius r in the simply connected Riemannian
n–manifold of constant sectional curvature ρ.

This is an immediate consequence of the volume comparison theorem of Bishop–
Günther–Gromov. The following lemma, obtained from a standard packing argu-
ment, serves to globalize local estimates of integral norms.

Lemma. Let u :M → R be non-negative and measurable, p ∈M and 0 < r1 ≤
r2. Suppose Ric ≥ (n− 1)ρ on the ball B(p, r1/2 + 2r2). Then

∮

B(p,r2)

u dµ ≤ vn(r1/2 + 2r2, ρ)

vn(r1/2, ρ)
sup

q∈B(p,r2)

volB(q, r1)

volB(p, r2)

∮

B(q,r1)

u dµ.

In particular, if M is compact with diameter d, then for r ≤ d,
∮

M

u dµ ≤ vn(d, ρ)

vn(r/2, ρ)
sup
p∈M

∮

B(p,r)

u dµ.
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For p ∈M , let Bp(0, r) denote the euclidean ball of radius r in the tangent space
TpM . The exponential map expp : TpM → M maps Bp(0, r) onto B(p, r) ⊆ M .
The next result compares the average value of a function u on B(p, r) to the
average of its lift u ◦ expp on Bp(0, r) with respect to the Lebesgue measure dλ.

Theorem. Assume Ric ≥ (n− 1)ρ and a sectional curvature bound K ≤ κ on
B(p, 3r) for real numbers κ and ρ. Let r ≤ π/(3

√
κ) in case κ > 0. Then, for

every measurable function u ≥ 0 on M ,

a1

∮

B(p,r/3)

u dµ ≤
∮

Bp(0,r)

u ◦ expp dλ ≤ a2

∮

B(p,r)

u dµ.

Here

a1 := 3−nsρ(r)
1−n vn(r/3, κ)

vn(r/3, 0)
and a2 := 3nsκ(r)

1−n vn(3r, ρ)

vn(3r, 0)

if ρ < 0 and κ > 0. If ρ ≥ 0, sρ(r) is replaced by 1, and if κ ≤ 0, then sκ(r) is re-
placed by 1. The functions sρ and sκ are defined by sρ(r) = sinh(

√−ρ r)/(√−ρ r),
1 or sin(

√
ρ r)/(

√
ρ r) depending on whether ρ < 0, ρ = 0 or ρ > 0, respectively.

In any case, the constants a1 and a2 depend only on κr2, ρr2, and n.

Proof. We prove the second inequality. For q ∈ B(p, r) let

Np(q, r) := ♯ exp−1p (q) ∩ Bp(0, r)

denote the number of inverse images of q in Bp(0, r) under the exponential map.
Let ũ := u ◦ expp. The area formula yields

∫

Bp(0,r)

ũ(x) | det Tx expp | dλ(x) =

∫

B(p,r)

Np(q, r)u(q) dµ(q)

≤ max
q∈B(p,r)

Np(q, r)

∫

B(p,r)

u(q) dµ(q).

The sectional curvature bound K ≤ κ implies the lower bound

| detTx expp | ≥ sκ(|x|)n−1

for the Jacobian | det Tx expp |. If κ ≤ 0, we use sκ(t)≥1 for t ≥ 0. If κ > 0, then

the function sκ(t) is decreasing for 0 ≤ t ≤ π/
√
κ. We obtain

∫

Bp(0,r)

ũ(x) | det Tx expp | dλ(x) ≥ sκ(r)
n−1

∫

Bp(0,r)

ũ(x) dλ(x)

and therefore
∫

Bp(0,r)

ũ(x) dλ(x) ≤ sκ(r)
1−n max

q∈B(p,r)
Np(q, r)

∫

B(p,r)

u(q) dµ(q) . (1)

Using the area formula again, we have
∫

Bp(0,3r)

| det Tx expp | dλ(x) =
∫

B(p,3r)

Np(q, 3r) dµ(q) ≥
∫

B(p,r)

Np(q, 3r) dµ(q)

≥ min
q∈B(p,r)

Np(q, 3r) volB(p, r) .
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The integral on the left hand side of this inequality is the volume of Bp(0, 3r) with
respect to pullback Riemannian metric g̃ = exp∗p g. Since g̃ satisfies Ric ≥ (n−1)ρ,
volume comparison yields

∫

Bp(0,3r)

| det Tx expp | dλ(x) ≤ vn(3r, ρ) =
vn(3r, ρ)

vn(3r, 0)
3nvolBp(0, r)

and we obtain

1

volBp(0, r)
≤ vn(3r, ρ)

vn(3r, 0)
3n

1

minq∈B(p,r)Np(q, 3r)

1

volB(p, r)
. (2)

We now claim that

maxq∈B(p,r)Np(q, r)

minq∈B(p,r)Np(q, 3r)
≤ 1 . (3)

To show this, we define a one to one map

φγ : exp−1p (q) ∩ Bp(0, r) → exp−1p (q′) ∩ Bp(0, 3r)

for q and q′ in B(p, r) as follows. Let γ : [0, 1] → M be a geodesic of length less
than 2r joining q to q′. For x ∈ exp−1p (q) ∩ Bp(0, r) let γ̄x : [0, 1] → TmM denote
the lift of γ with initial point x, so that exp ◦γ̄x = γ and γ(0) = x. Then we
define φγ(x) = γ̄x(1). This map is easily seen to have the required properties.
Inequalities (1),(2) and (3) together imply the upper bound in the theorem. The
proof of the lower bound is similar.

Discussion. After the talk, Guofang Wei pointed out the utility of smoothing
methods for geometric estimates on analytic constants. The counting argument
employed in the proof above is not restricted to exponential coordinates. Non–
injective “coordinate charts” are used in [2].
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on a Riemannian manifold, unpublished.

[2] Peter Petersen, Guofang Wei, Rugang Ye, Controlled geometry via smoothing, Com-
ment. Math Helv. 74 (1999), 345–363.



22 Oberwolfach Report 01/2012

The space of complete nonnegatively curved metrics on the plane

Igor Belegradek

In the last decade there has been considerable progress in studying spaces of Rie-
mannian metrics that satisfy various curvature assumptions. In this report we
are interested in the set R(N) of complete metrics of nonnegative sectional curva-
ture on a fixed open connected manifold N . Here R(N) is given the topology of
C∞-uniform convergence on compact subsets, and more generally, this topology
is given to all function spaces discussed below. Let M(N) denote the associated
moduli space, i.e. the quotient space of R(N) by the pullback Diff(N)-action.

Recall that any open complete manifold of nonnegative sectional curvature is
diffeomorphic to a normal bundle of a compact totally convex submanifold called
a soul. A soul is not unique but all souls of a given metric are isometric. Thus the
isometry class of the soul is a basic invariant of the metric.

Kapovitch-Petrunin-Tuschmann [3] proved that if the normal bundle to a soul
of some metric in R(N) has nonzero Euler class, then the diffeomorphism type of
the soul defines a locally constant function on R(N) and M(N). More recently
Belegradek-Kwasik-Schultz [1] showed that the result still holds when the ”dif-
feomorphism type” of the soul is replaced by its “ambient isotopy type”. These
results lead to examples of manifolds for which M(N) has infinitely many path-
components [3, 1, 2, 4].

If N admits a metric with a codimension one soul, then the topology of M(N)
can be easily described in terms of the topology of the corresponding moduli spaces
of its souls, of which there could be more than one [1].

The simplest case in which the methods of [3, 1] fail is whenN has a codimension
two soul with trivial normal bundle. To study the spaces of metrics for such
manifolds it seems necessary to understand what happens for N = R2. It is easy
to see that R(R2) is path-connected, and more generally, the following is true,
which is the main result of this report.

Theorem 1. Any countable (or finite) subset of R(R2) has the path-connected
complement. The same holds for M(R2) in place of R(R2).

The proof is based on the uniformization theorem, properties of subharmonic
functions, and infinite-dimensional topology. The starting point is a classical result
of Huber that any complete metric g on R2 of nonnegative curvature is conformal
to the standard flat metric g0. Thus g can be written as φ∗(e−2ug0) where u is
a smooth function on R2, and φ is a self-diffeomorphism of R2. Nonnegativity
of the curvature is equivalent to subharmonicity of u. Deciding which subhar-
monic functions give rise to complete metrics is more subtle, and is crucial for the
proof. One can normalize φ so that it fixes two points of R2, say the complex
numbers 0 and 1, so the map (u, φ) → φ∗(e−2ug0) defines a continuous bijection
C × Diff0,1(R

2) → R(R2), where C is a certain star-shaped set of subharmonic
functions in the Fréchet space of smooth functions on R2, and Diff0,1(R

2) is the
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subgroup of Diff(R2) that fixes 0 and 1. There is also a continuous surjection
C → M(R2) whose fibers are closed subgroups of Aff(R2), the group of conformal
automorphisms of (R2, g0). The topological group Diff0,1(R

2) is homeomorphic to
the separable Hilbert space l2. Also we shall make use of the classical result of
infinite dimensional topology that the complement of any countable union of com-
pact subsets of a separable Fréchet space is homeomorphic to l2. Unfortunately,
the homeomorphism type of C is unclear (to the author). There is a well-known
topological classifications of closed convex subsets of separable Fréchet spaces, e.g.
such a subset is homeomorphic to l2 if and only if it is not locally compact. This
classification does not seem to apply to C because it is probably neither closed nor
convex; nevertheless, combining the classfication with a more detailed description
of C allows one to show that the complement in C of any countable union of
compact sets is path-connected, which easily implies Theorem 1.

Similar techniques yield Theorem 1 for S2 in place of R2, and in fact, even
stronger results hold in the S2 case, which will be discussed elsewhere.
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Polyhedral analogue of Frankel conjecture.

Dmitri Panov

(joint work with Misha Verbitsky)

In this talk we propose a conjecture that can be seen as a polyhedral analogue of
the celebrated Frankel’s conjecture in Kähler geometry proved by Mori [3] and Siu-
Yau [6]. Frankel conjecture states that a Kähler manifold with positive bisectional
curvature is biholomorphic to a complex projective space. We explain an approach
to our conjecture based on the theory of polyhedral Kähler manifolds, developed
in [4]. Before stating the conjecture we need to give some definitions.

Definition. A polyhedral manifold is a manifold that is glued from a collection
of Euclidean simplexes by identifying their hyperfaces via isometry.

Example. The surface of a tetrahedron in R3 represents a two-sphere with flat
metric that has four singularities, namely conical points.

The singularities of a polyhedral metric happen in real codimension 2 (at codi-
mension two faces) and at generic points the singularity is locally isometric to a
product of Rd−2 with a two-dimensional cone. A polyhedral manifold is called
non-negatively curved if the cone angle at each face of codimension two is at most
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2π. An important result about non-negatively curved manifolds was obtained by
Cheeger [2].

Theorem (Cheeger). Suppose that a compact polyhedral manifold Mn is non-
negatively curved. Then any harmonic form h in Hi(Mn) is parallel, i.e., ∇h = 0.

It follows from this theorem that the holonomy of the non-negatively curved
metric on Mn satisfies non-trivial constraints, provided some non-trivial Betti
number bi of M

n, 0 < i < n is non-zero. In particular in the case b2 > 0 and the
holonomy of the metric is irreducible, a simple lemma shows that the manifold is
even dimensional and the holonomy of the metric belongs to U(n2 ) ⊂ SO(n). This
observation was one of the main motivations for the following definition and the
conjecture:

Definition ([4]). An even-dimensional polyhedral manifoldM2n is called poly-
hedral Kähler if the holonomy of the metric belongs to U(n).

Now we formulate our conjecture:
Conjecture 1. Consider a non-negatively curved non-flat polyhedral manifold

M . Suppose that the holonomy of the metric on M is irreducible and b2(M) > 0.
Then M has a natural holomorphic structure with respect to which it is biholomor-
phic to CPn and the original polyhedral metric on M is a singular Kähler metric
with respect to this natural complex structure.

It follows immediately from the results of [4] that Conjecture 1 holds in case
dim(M) ≤ 4. Below we will outline the strategy of the proof of Conjecture 1 that
is a work in progress with Misha Verbitsky.

Step 1. By Cheeger’s theorem, any manifold satisfying the conditions of Con-
jecture 1 is polyhedral Kähler. Even though in Conjecture 1 we start with a space
that does not have complex structure, the following conjecture (proven in [4] in di-
mension four and in [5] in dimension six) claims that polyhedral Kähler manifolds
are naturally complex spaces. This justifies the formulation of Conjecture 1.

Conjecture 2. Every polyhedral Kähler manifold M2n has a natural complex
structure. More precisely, M2n is PL diffeomeorphic to a complex analytic space
with complex singularities in complex co-dimension 3; the diffeomorphism is a bi-
holomorphism outside of metric singularities. The singularities of the metric form
a collection of divisors on M2n.

The following example explains why complex singularities can appear in a poly-
hedral Kähler manifold even though the underlying PL structure is smooth.

Example. Consider the complex hypersurface zn0 + z21 + z22 + z23 = 0, n = 3 in
C4. The link of the isolated singularity at 0 is the so-called Kervaire sphere and
it is diffeomorphic to S5; more generally we can replace 3 by n = 3, 5 mod 8.
These manifolds admit a polyhedral Kähler metric whose underlying PL structure
is smooth. Indeed, to construct such a metric just consider the ramified cover of
the hyperplane

∑

i zi = 0 in C4 given by the map (z0, z1, z2, z3) → (zn0 , z
2
1 , z

2
2 , z

2
3)

and take the pullback of a flat metric on
∑

i zi = 0.
Step 2. It might happen that proving Conjecture 2 in full generality will be

too complicated, but in [5] we are going to prove this conjecture provided the
polyhedral Kähler manifold is non-negatively curved. Then the main task will be
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to prove that in fact in the case when the metric in non-negatively curved, the
complex structure does not have singularities at all. Note, that the example given
above is very far from been non-negatively curved.

Step 3. In the case one knows that the underlying complex structure of the
manifold is smooth the proof can be finished by applying Mori’s result [3].

Theorem (Mori). A compact complex manifold with ample tangent bundle
is biholomorphic to CPn.

One proves immediately, that the tangent bundle of the manifold from Con-
jecture 1 is nef. Since the holonomy of the metric on the manifold is irreducible,
b2 = 1. Moreover, since the manifold is assumed to be non-flat, the manifold
is Fano type. The total space of the projectivization of the tangent bundle has
b2 = 2 and one needs to check that O(1) bundle on the projectivisation restricts
positively on any complex curve. For vertical curves this is obvious, for non-
vertical this holds since their projection to the base intersects the singular locus
of the metric on the base.

As a final remark we note that the following question ([1]) seems to be open in
dimensions higher than three.

Question [1]. Does there exist an algebraic torus quotient Y = A/G by a freely
acting finite group G, such that b2(Y ) = 1?

If one can rule out existence of such flat complex manifolds with b2 = 1, one
can remove the condition on non-flatness from Conjecture 1.
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Introduction to optimal transport and relations with Ricci curvature
bounds

Nicola Gigli

This lecture is not aimed to present new research achievements, but rather to give
a quick overview on the Wasserstein distance and its relation with Ricci curvature
bounds. We refer to [7] and [1] for a more comprehensive introduction and detailed
references.
The first step is the introduction of the distance W2 on the space P(X) of Borel
probability measures on a metric space (X, d), which for simplicity we assume



26 Oberwolfach Report 01/2012

compact. Given µ, ν ∈ P(X) it is defined as

W 2
2 (µ, ν) := inf

∫

d2(x, y) dγ(x, y),

where the inf is taken among all measures γ ∈ P(X ×X) such that

π1
♯ γ = µ,

π2
♯ γ = ν.

The basic properties of such distance are analyzed, in particular: the fact that it
is indeed a distance, that (P(X),W2) is complete and separable and that if (X, d)
has geodesic, then the same is true for (P(X),W2).

Then the relative entropy functional is introduced. Assume that (X, d) is also
endowed with a reference measure m ∈ P(X). Then Entm : P(X) → [0,∞] is
defined by

Entm(µ) :=







∫

ρ log ρ dm if µ = ρm,

+∞ if µ is not absolutely continuous w.r.t. m.

A key theorem of Sturm-von Renesse states that for a compact and smooth Rie-
mannian manifold M endowed with the Riemannian distance and the normalized
volume measure vol the following two are equivalent:

i) The Ricci curvature of M is uniformly bounded from below by K ∈ R.
ii) The relative entropy functional Entvol is K-geodesically convex on the

space (P(M),W2).

The latter condition means that for any two µ, ν ∈ P(M) with finite entropy, there
exists a (constant speed and minimizing) geodesic (µt) connecting them such that

Entvol(µt) ≤ (1− t)Entvol(µ0)+ tEntvol(µ1)−
K

2
t(1− t)W 2

2 (µ0, µ1), ∀t ∈ [0, 1].

An intuition of Lott-Villani on one side, and of Sturm on the other has been to
revert such theorem and propose condition (ii) as abstract definition of ‘Ricci
curvature bounded from below by K’ for metric measure spaces. The key features
of this definition are the compatibility with the Riemannian case and the stability
w.r.t. the Gromov-Hausdorff convergence.
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Heat flow in metric measure spaces

Giuseppe Savaré

(joint work with Luigi Ambrosio and Nicola Gigli)

It is well known that in a complete Riemannian manifold (X, g) the heat equation

(1) ∂tu−∆gu = 0,

associated to the Laplace-Beltrami operator ∆g, is the gradient flow in the Hilbert
space L2

m
(X) of the Dirichlet energy

(2) D(u) :=
1

2

∫

X

|∇u|2g dm, u ∈ W 1,2
m

(X, g),

where m is the Riemannian volume measure and W 1,2
m (X, g) is the usual Sobolev

space of L2
m
(X) functions whose (distributional) gradient is square summable.

Entropy and Wasserstein distance. In their seminal paper [9], Jordan, Kin-

derlehrer, and Otto showed that the Heat equation in the Euclidean space
X := Rd (endowed with the canonical metric and the d-dimensional Lebesgue
measure) can also be viewed as the gradient flow of the Entropy functional

(3) Entm(ρ) :=

∫

X

u logu dm if ρ = um ≪ m, Entm(ρ) = +∞ if ρ 6≪ m,

with respect to the so-called L2-Wasserstein distance W2 in the space of the Borel
probability measures P(X): the (extended, since it can take the value +∞) dis-
tance W2(µ, ν) between two measures in P(X) can be defined as

(4) W 2
2 (µ, ν) := min

∫

d2(x, y) dπ(x, y) ∈ [0,∞],

where the minimum is taken among all the couplings π ∈ P(X × X) having
marginals µ and ν and d(x, y) denotes the Riemannian distance induced by g.

This new characterization of the heat flow (in fact stated for the more general
class of Fokker-Planck equations) has been further extended to Hilbert spaces
[1, 3], Riemannian manifolds [6, 13], Finsler [11] and Alexandrov spaces [7].

Metric-Measure spaces with lower Ricci curvature bounds. The talk has
been devoted to present the recent results of [2] concerning the identification of
these flows in a wide class of metric-measure spaces (X, d,m), including in particu-
lar those satisfying the lower Ricci curvature bound CD(K,∞) recently introduced
by Sturm [12] and Lott-Villani [10].

Here (X, d) is a complete metric space and m is a Borel measure on X such that
∫

X

e−L d2(x,x0) dm <∞ for some x0 ∈ X, L ≥ 0.

CD(K,∞) spaces naturally arise in the Wasserstein approach, since they are de-
fined by assuming the geodesic K-convexity of the entropy functional (3). More
precisely, (X, d,m) has Ricci curvature bounded from below by K ∈ R according
to [12, 10] if every couple µ0, µ1 ∈ D(Entm) = {ρ ∈ P(X) : Entm(ρ) < ∞} with
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W2(µ0, µ1) <∞ can be connected by a minimal geodesic curve s 7→ µs ∈ D(Entm),
s ∈ [0, 1], such that for every s, t ∈ [0, 1]

(5)

W2(µs, µt) = |s− t|W2(µ0, µ1),

Entm(µs) ≤ (1 − s)Entm(µ0) + sEntm(µ1)−
K

2
s(1− s)W 2

2 (µ0, µ1).

The gradient flow of the Entropy functional in the Wasserstein space.
Let us recall (see e.g. [1]) that a curve of maximal slope for the Entropy functional
in the Wasserstein space (P(X),W2) is a curve ρ : [0,∞) → D(Entm) satisfying

(a) ρ ∈ AC2
loc([0,∞);P(X),W2), i.e. there exists a function v ∈ L2

loc(0,∞) s.t.

W2(ρs, ρt) ≤
∫ t

s

v(r) dr whenever 0 ≤ s ≤ t <∞;

its metric velocity |ρ̇| is then defined by

|ρ̇t| := lim
h→0

W2(ρt, ρt+h)

|h| for a.e. t ∈ (0,∞).

(b) For every 0 ≤ s ≤ t <∞ we have

Entm(ρt) +
1

2

∫ t

s

(

|ρ̇r|2 + |∇−Entm|2(ρr)
)

dr = Entm(ρs),

where |∇−Entm|(ρ) := lim sup
σ→ρ

(Entm(ρ)−Entmσ)+
W2(ρ,σ)

denotes the descending slope

of the entropy.

If (X, d,m) is a CD(K,∞) space, then adapting the arguments of [1, 8] it is possible
to prove [2] that for every initial datum ρ0 = u0m in D(Entm) there exists a unique
curve of maximal slope ρt = utm for the Entropy functional according to (a) and
(b) above.

Cheeger energy in (X, d,m). The L2-approach can also be settled in a metric
measure space (X, d,m), by introducing a weak notion of “modulus of the gradient”

and of Sobolev space W 1,2
m (X, d), inspired by Cheeger [5]. The Cheeger energy

is defined by

(6) Ch(u) :=
1

2
inf

{

lim inf
h→∞

∫

|∇uh|2 dm : uh ∈ Lip(X),

∫

X

|uh − u|2 dm → 0

}

,

where for a Lipschitz function u : X → R we set

|∇u|(x) := lim sup
y→x

|u(y)− u(x)|
d(x, y)

.

It is not difficult to prove that Ch : L2
m
(X) → [0,∞] is a convex (but no more

quadratic, in general) and lower semicontinuous functional, whose proper domain

{u ∈ L2
m
(X) : Ch(u) <∞} provides a natural definition for the space W 1,2

m (X, d).
When Ch(u) <∞, the Cheeger energy admits the integral representation

(7) Ch(u) =
1

2

∫

X

|∇u|2w dm,
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where |∇u|w denotes the relaxed gradient of u, a quantity that satisfies various
calculus properties similar to the classical ones for |∇u|g in a smooth Riemannian
setting; it also turns out to be extremely useful to estimate the derivative of u
along suitable collections of absolutely continuous curves in X .

The (possibily nonlinear) Laplace operator ∆m,d can be defined in a dense
subset of L2

m
(X) as the minimal selection of the subdifferential of Ch; it generates

a unique flow (see e.g. [4]) Ht : L
2
m
(X) →W 1,2

m (X, d) such that ut := Ht(u0) satisfy
the Cauchy problem for the evolution equation

(8) ∂tu−∆m,du = 0, lim
t↓0

ut = u0 in L2
m
(X).

Ht is a contraction w.r.t. any Lp
m(X)-norm and it is order and mass preserving: in

particular,

u0 ≥ 0,

∫

X

u0 dm = 1 ⇒ ut ≥ 0,

∫

X

ut dm = 1 for every t ≥ 0.

Theorem [2]. If ρ0 = u0m ∈ P(X) with u0 ∈ L2
m
(X) and

∫

X
d2(x, x0) dρ0 < ∞,

the curve ρt = utm is a curve of maximal slope for the Entropy functional in P(X)
if and only if ut = Htu0 is the L2-gradient flow of the Cheeger energy solving (8).
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[1] L. Ambrosio, N. Gigli, and G. Savaré. Gradient flows in metric spaces and in the space
of probability measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel,
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Metric measure spaces with Riemannian Ricci curvature bounded
from below

Nicola Gigli

(joint work with Luigi Ambrosio, Giuseppe Savaré)

Two observations are the basis for the results presented in this talk.

• The curvature dimension condition CD(K,N), in the original version of
Sturm ([6]) and Lott-Villani ([5]) does not exclude from the analysis Finsler
geometries. For instance, it is possible to check that (Rd, ‖ · ‖,Ld), where
‖ · ‖ is any norm, is always a CD(0, d) space (see the last theorem in [7]
for a proof of this fact).

• A Finsler manifold cannot arise as limit of Riemannian manifolds with
Ricci curvature uniformly bounded from below and dimension uniformly
bounded from above, unless it is Riemannian (as a consequence of the
analysis made by Cheeger and Colding in [2], [3], [4]).

It is therefore natural to ask whether there exists an abstract definition of Ricci
curvature bound which is still stable w.r.t. measured Gromov-Hausdorff conver-
gence (like the CD(K,N) one) and rules out Finsler geometries.
In this talk I present a proposal ([1]) in this direction for the particular case of no
dimensionality constraint, i.e. N = ∞. Up to technicalities, this new notion is a
reinforcement of the standard CD(K,∞) condition with the requirement that the
heat flow is linear. The motivation for such proposal comes from the well known
fact that the Laplacian on a Finsler manifold is linear if and only if the manifold
is Riemannian. What is a priori non obvious, is the fact that this condition is
stable w.r.t. mGH convergence: such stability is achieved by looking at the heat
flow as gradient flow of the relative entropy in the Wasserstein space, and then
using the Γ-convergence of the entropies along sequences of spaces which are mGH
converging to a limit space.
We called such spaces, spaces with Riemannian Ricci curvature bounded from
below by K.
This strengthening of the CD(K,∞) condition carries some new properties of the
spaces, in particular there is:

• exponential contractivity of the Wasserstein distance W2 along two heat
flows,

• full compatibility with the theory of Dirichlet forms,
• existence of a Brownian motion with continuous sample paths,
• validity of the Bakry-Emery curvature condition,
• in case the measure is doubling and supports a local Poincaré inequality:
Lipschitz continuity of the heat kernel.
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On the Hopf conjectures with symmetry

Lee Kennard

The study of Riemannian manifolds with positive sectional curvature is old, yet
there exist few known examples. Beyond spheres and projective spaces, all known
simply connected examples have dimension at most 24 (see [4]) .

Moreover, there exist few topological obstructions to a closed manifold admit-
ting a positively curved metric. In fact, there are no known obstructions to positive
curvature for simply connected spaces that are not already obstructions to nonneg-
ative curvature. One well-known conjectured obstruction was stated by Hopf: In
even dimensions, a closed Riemannian manifold with positive sectional curvature
has positive Euler characteristic. The conjecture is true in dimensions 2 and 4 by
the the theorems of Gauss-Bonnet or Bonnet-Myers. It is open in general.

Progress in the study of positive curvature has been made in the last two decades
by restricting attention to metrics with a large isometry group. See [3, 1] for
surveys. Our first result falls into this category:

Theorem 1: Let Mn be a closed Riemannian manifold with pos-
itive sectional curvature and an effective, isometric T r-action. If
n ≡ 0 mod 4 and r ≥ 2 log2(n), then χ(M) > 0.

Another well-known conjecture of Hopf is that S2×S2 admits no metric of pos-
itive sectional curvature. More generally, one might conjecture that no symmetric
space of rank greater than one admits a positively curved metric. We provide
evidence for this conjecture in the presence of symmetry:

Theorem 2: Suppose Mn has the rational cohomology ring of a
compact, simply connected Riemannian symmetric space N . As-
sume M admits a metric with positive sectional curvature invari-
ant under a r-torus action. If r ≥ 2 log2(n)+8, then N is a product
of Grassmannians.

Moreover, at most one factor in the product is not a sphere,
and the only candidates for that factor are CPm, HPm, or the
rank l Grassmannian SO(l +m)/SO(l)× SO(m) with l ∈ {2, 3}.

A key tool is Wilking’s connectedness theorem (see [2]), which has proven to
be fundamental in the study of positively curved manifolds with symmetry. The
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theorem relates the cohomology of a closed, positively curved manifold with that
of a totally geodesic submanifold. An important consequence of the theorem is a
certain periodicity in cohomology. By using the action of the Steenrod algebra on
cohomology, we refine this periodicity. Specifically, we prove:

Theorem 3: Let Nn be a closed, simply connected, positively
curved manifold that contains a pair of totally geodesic, trans-
versely intersecting submanifolds of codimensions k1 ≤ k2. If
2k1 + 2k2 ≤ n, then the rational cohomology rings of N , N1,
N2, and N1 ∩N2 are gcd(4, k1)-periodic.

In particular, if n 6≡ 2 mod 4, then N has the rational cohomol-
ogy ring of Sn, CPn/2, HPn/4, or S3 ×HP (n−3)/4.

For a closed, simply connected manifold Nn and a coefficient ring R, we say
that H∗(N ;R) is k-periodic if there exists x ∈ Hk(N ;R) such that the maps
Hi(N ;R) → Hi+k(N ;R) induced by multiplication by x are surjective for 0 ≤ i <
n− k and injective for 0 < i ≤ n− k.

The main step in the proof of Theorem 3 is the following topological result:

Theorem 4: If Mn is a closed, orientable manifold such that
H∗(M ;Z) is k-periodic with 3k ≤ n, then H∗(M ;Q) is gcd(4, k)-
periodic.

We conclude this report by addressing an open question related to this work,
namely, whether Theorem 1 holds in all even dimensions. This is related to the
question of whether a closed, simply connected n-manifold can have 4-periodic
rational cohomology with nonvanishing odd Betti numbers. For n ≡ 0 mod 4,
Poincaré duality implies no such space exists. However, for n = 6, the space
(S2 ×S4)#(S3 × S3) is an example, and further examples are obtained by adding
additional S3×S3 components. For n ≡ 2 mod 4 and n ≥ 10, however, the author
does not know whether such a space exists. If one could prove that there is no
such space, then one would have a proof of Theorem 1 in all even dimensions.
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Elliptic genera and positive sectional curvature

Nicolas Weisskopf

In the 1960s Lichnerowicz [3] showed that the index of the Dirac operator, the

Â–genus, vanishes on a closed Riemannian Spin manifold admitting a metric of
positive scalar curvature. In this short talk we discussed the behaviour of the
elliptic genus in the presence of positive sectional curvature.

For a compact, oriented 4k-dim. smooth manifold M the elliptic genus φ(M) is a
modular function over the group Γ0(2) = {A ∈ SL(2,Z)|A ≡ ( ∗ ∗0 ∗ ) mod 2}, which
expands in one of the cusps as

φ(M) = sign(M,
∞
⊗

n=1

ΛqnTCM ⊗
∞
⊗

n=1

SqnTCM)

= sign(M) + sign(M,TCM) · q + . . . ∈ Z[[q]].

This power series of indices of twisted signature operators can be best thought of
as the equivariant signature of the free loop space LM with respect to the natural
S1–action. The main property of the elliptic genus is that it transforms in the
other cusp of Γ0(2) as the following power series

φ0(M) = q−k/2 · Â(M,

∞
⊗

n=2m+1>0

Λ−qnTCM ⊗
∞
⊗

n=2m>0

SqnTCM)

= q−k/2 · (Â(M)− Â(M,TCM) · q ± . . .) ∈ q−k/2Q[[q]].

If M is Spin, each coefficient of this power series can be interpreted as the index
of a twisted Dirac operator. In this case, the elliptic genus reveals a beautiful
identity between the Spin and signature geometry of a manifold.

Suppose now that the manifold admits a metric of positive sectional curvature.
Then the elliptic genus seems to feature further remarkable properties. Recently,
Dessai [1] raised the following question.

Question ([1]). Let (M, g) be a closed Riemannian Spin manifold with sec(M) > 0.
Is the elliptic genus constant as a modular function, i.e. φ(M) = sign(M)?

Since the Â–genus is a coefficient of the elliptic genus, a positive answer to this
question would generalize the Lichnerowicz theorem and more important, exhibit
new obstructions to positive sectional curvature. We now give some evidence that
indicate a positive answer.

Theorem ([2]). Let M be a Spin homogeneous space. Then φ(M) = sign(M).

In particular, the quaternionic projective spaces HPn and the spheres Sn have
constant elliptic genus. Note that this theorem does not use any curvature as-
sumption at all. However, many of the positively curved manifolds known happen
to be homogeneous spaces. Another piece of evidence is provided by the following
classification result.
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Theorem ([4]). Let (Mn, g) be a simply–connected Riemannian manifold with
n ≥ 10 and sec(M) > 0. Suppose that a d-dim. torus T d acts effectively and
isometrically on M with d ≥ n

4 + 1. Then M is either homeomorphic to Sn or

HPn/4 or homotopy equivalent to CPn/2.

The elliptic genus of the standard complex projective spaces CPn is not constant.
Nevertheless, they can be ruled out, since they are not Spin for dimension divisible
by 4. Finally, we mention the following result, which uses a smaller symmetry rank.

Theorem ([1]). Let (Mn, g) be a closed Riemannian Spin manifold with n >
12r − 4 and sec(M) > 0. Suppose that a 2r-dim. torus T 2r acts effectively and
isometrically on M . Then the first (r + 1) coefficients of φ0(M) vanish.

In particular, the elliptic genus vanishes on a 12–dim. positively curved Spin
manifold admitting an effective and isometric T 2–action.

We concluded this talk by pointing out that the question raised above is wrong, if
one weakens the curvature assumption to positive Ricci curvature. One can then
find complete intersections, which possess a positive Ricci curvature metric, but
whose elliptic genus is not constant.
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Almost nonnegative curvature operator on certain principal bundles

Martin Herrmann

In my talk I presented a criterion for a certain family of metrics on principal
bundles to give almost nonnegative curvature operator.

A compact manifold M is said to admit almost nonnegative curvature operator
if there is a family (gn)n∈N of Riemannian metrics onM such that (M, gn) Gromov-
Hausdorff converges to a point and (M, gn) admits a uniform lower bound for (the
eigenvalues of) the curvature operator, or, equivalently, if for every ε > 0 there is
a Riemannian metric g on M such that

R̂(M,g)diam(M, g)2 > −ε.
The inequality is to be understood as an inequality for the eigenvalues of R̂(M,g)

in p for every p ∈M .
In [2] J.-P. Bourguignon and H. Karcher proved pinching estimates for the

curvature operator in terms of bounds on the sectional curvature. From these
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one easily deduces that almost flat manifolds admit almost nonnegative curvature
operator, in fact they admit almost flat curvature operator. Other examples can
be constructed using a theorem of D. Sebastian mentioned below. For example,
the Witten manifolds carry metrics of almost nonnegative curvature operator.

A special case of a result by P. H. Bérard in [1] is, that manifolds M admitting
almost nonnegative curvature operator have their total betti number bounded
above by 2dim(M), which has been conjectured for almost nonnegatively curved
manifolds by M. Gromov.

On a principal bundle π : P →M over a compact manifold M with a compact
Lie group G as fibre we can construct metrics as follows: Let gM be a Riemannian
metric on M , b a biinvariant metric on G and γ a connection form on P . Then,
for every t > 0, we can define the metric

gt(X,Y ) = gM (π∗X, π∗Y ) + t2b(γ(X), γ(Y )),

for which the fibers are totally geodesic. Fukaya and Yamaguchi used these metrics
in [3] to show that a fiber bundle with a compact Lie group as structure group,
invariantly nonnegatively curved fibre and almost nonnegatively curved base space
has metrics of almost nonnegative sectional curvature.

Computing the curvature operator in an orthonormal basis adapted to the de-
composition of the tangent space into horizontal and vertical vectors and using a
simple lemma from linear algebra one gets the following result:

Proposition. Let Ω denote the curvature form of γ.

(1) Let (M, gM ) have nonnegative curvature operator. Then (P, gt) has almost
nonnegative curvature operator for t→ 0 if and only if Im(Ω) ⊂ [g, g]⊤.

(2) Let M admit almost nonnegative curvature operator. If Im(Ω) ⊂ [g, g]⊤,
then P admits almost nonnegative curvature operator.

From this proposition one can easily deduce the following corollary.

Corollary. Let G be semisimple. Then (P, gt) has almost nonnegative curvature
operator for t → 0 if and only if (P, gt) is locally isometric to the Riemannian
product (M, gM )× (G, t2b).

One also obtains the theorem previously proven by D. Sebastian

Theorem (D. Sebastian, [4]). Let P be a principal bundle with an abelian Lie
group as fiber and a compact base space admitting almost nonnegative curvature
operator. Then P admits almost nonnegative curvature operator.
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Low dimensional Singular Riemannian Foliations in spheres

Marco Radeschi

A partition F of a complete Riemannian manifold M by connected immersed
submanifolds (the leaves) is called a Riemannian Foliation if it satisfies condition
(1) and (2) below:

(1) F is a singular foliation, i.e. for each leaf L and each v ∈ TL with foot
point p, there is a smooth vector field X with X(p) = v that is tangent at
each point to the corresponding leaf.

(2) F is transnormal, i.e., every geodesic perpendicular to one leaf is perpen-
dicular to every leaf it meets.

One does not ask for the leaves to have all the same dimension. If the dimension
of the leaves is constant, that we talk about a Regular Riemannian Foliation.
Otherwise, the foliation is a Singular Riemannian Foliation (SRF for short). In
either case, one defines the dimension of F to be the maximal dimension of the
leaves. A typical example of a SRF is the partition of a Riemannian manifold
into the orbits of an isometric action. Any such foliation is called homogeneous.
Another example is the partition into the fibers of a Riemannian submersion π :
M → B.

Given a Riemannian foliation (M,F), and a point p ∈ M , there is a process
of linearizing the folitation F around p. This process gives rise to a SRF Fp on
TpM , which is called infinitesimal foliation at p, and such a foliation is completely
determined by its restriction to the unit sphere of the normal space ν1pL ⊆ νpL ⊆
TpM . Therefore the study of Fp is reduced to the study of a SRF on a round
sphere (ν1pL,Fp|ν1

pL
).

What’s known about Riemannian foliations in spheres depends radically on
whether all the foliation is regular or singular. In the regular case, a series of works
by Haefliger [5], Ghys [2] and Browder [4] shows that the dimension of the leaves is
1, 3, 7. Moreover, Gromoll and Grove proved in [1] that any foliation of dimension
1 and 3 is homogeneous, i.e. it comes from a group action. If the foliation has
dimension 7, then the sphere needs to be 15-dimensional, and Wilking [3] proved
that the only such foliation that comes from a Riemannian submersion is the Hopf
fibration S7 → S15 → S8, and it’s conjectured that no other 7-dimensional regular
foliations exist. This would complete the classification of Riegular Riemannian
Foliations in spheres.

In the singular case very little is known. First of all, there is a way to compose
two SRF’s F1, F2 on (possibly different) spheres, obtaining a new foliation F1 ⋆
F2 in the spherical join of the two original spheres. One says that a foliation
is irreducible if it cannot be decomposed in this way. The case of irreducible
foliations of codimension 1, is equivalent to the problem of classifying irreducible
isoparametric hypersurfaces in sphere. This problem has long been studied, and
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the classification is almost complete. It’s worth mentioning that this case contains
non homogeneous foliations; together with the Hopf fibration mentioned above,
these are all the non homogeneous irreducible foliations known in round spheres.

Our main results classifies low dimensional SRF’s in spheres, generalizing the
result of Grove and Gromoll [1]

Theorem 1 (-). Any SRF (Sn,F) with dimF ≤ 3 is homogeneous.

Toward the proof of this result, a first step was to understand the low dimen-
sional stratification of SRF’s in spheres.

The r-dimensional stratum of a foliation F is the collection of all the leaves
of dimension r, and it’s denoted Σr. It was already proved by Molino that any
component of a stratum is a (possibly noncomplete) submanifold.

Theorem 2. Let (Sn,F) be a SRF. Then:

(1) Σ0 = Sh is totally geodesic in Sn. Moreover (Sn,F) splits as (Sh,F0) ⋆
(Sn−h−1,F1) where F0 consists of points, and F1 does not contain any
0-dimensional leaves.

(2) If Σ0 = ∅, then Σ1 = ∪iS
ni , where each component Sni is a totally geodesic

sphere, and d(pi, pj) = π/2 for any pi ∈ Sni , pj ∈ Snj , for i 6= j.
(3) For any r, any component of Σr is a minimal submanifold.

The theorem above takes immediately care of 1-dimensional and two dimen-
sional foliations. In fact, for one dimensional foliations the only singular leaves are
o-dimensional, and by the theorem above (Sn,F) = (Sh,F0) ⋆ (S

n−h−1,F1). The
foliation F1 has now only 1-dimensional leaves, and by the result of Grove and
Gromoll it is homogeneous, with group R. Since F0 is trivially homogeneous, and
the join of homogeneous foliations is again homogeneous, it follows that F itself
is homogeneous.

For 2-dimensional foliations, again one has the splitting (Sn,F) = (Sh,F0) ⋆
(Sn−h−1,F1), where F0 has only 0-dimensional leaves, and the only singular leaves
in F1 are 1-dimensional. Applying point 2 in the theorem above, one shows that F1

splits further as (Sk2 ,F2) ⋆ (S
k3 ,F3). Now F2, F3 have to be both 1-dimensional,

and therefore homogeneous with group R. Once again, F1 = F2 ⋆ F3 is homoge-
neous as well, with group R2. Finally, the original F = F0 ⋆ F1 is homogeneous
with group R2.

It remains to consider 3-dimensional foliations. Here another important tool
is the presence of tensors, namely the shape operator Sx : TpL → TpL and the
O’Neill tensor Ax : νpL→ TpL, where x ∈ νpL . These are tensors defined on the
regular part of F , i.e. the union of leaves of maximal dimension, and are related
in the following way:

(∇v
xA)xy = 2SxAxy

(∇v
xS)xu = S2

xu+Rv(u, x)x− 3AxA
∗
xu

Another important tool, is the following theorem of Grove and Gromoll, that
gives condiitons for homogeneity of a SRF in a sphere, given the existence of a
special class of vector fields:
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Theorem 3 (Homogeneity Theorem, [1]). Let (Sn,F) be a SRF in a round sphere.
Then F is homogeneous if there is a regular leaf L0, and a subsheaf E ∈ X(L0)
such that the following conditions hold:

a) E is a locally constant sheaf of Lie algebras, and it’s finite dimensional.
b) The elements of E span TpL0, for all p ∈ L0,
c) If V,W ∈ E, then 〈V,W 〉 is constant,
d) For every basic vector field X,Y and V ∈ E, SXV ∈ E, AXY ∈ E.

The proof of Theorem 1 in the 3-dimensional case starts by considering several
cases separately, depending on the possible ranks of the O’Neill tensor. In each
case we find the vector fields of E , by first understanding the singular stratification
of F , and then reducing the problem to linear algebra, using the S tensor and A
tensor above.
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Polynomial Invariants of Riemannian Manifolds

Gregor Weingart

In the talk I wanted to sketch a research project on polynomial invariants of
Riemannian manifolds I have started some time ago following a suggestion of
Ch. Bär. Every SO(Rm )–invariant polynomial homogeneous of degree k on the
space Kr so(Rm ) of algebraic curvature tensors in dimension m gives rise to an
invariant of oriented Riemannian manifolds of dimension m via integration

[ SymkKr so(Rm ) ]SO(Rm ) −→ R, p 7−→
∫

M

p(Rg ) volg

where Rg ∈ Γ(Kr so(TM, g) ) is the Riemannian curvature tensor and volg the
oriented volume form for the given Riemannian metric g on M . In general the
algebra of invariant polynomials on Kr so(Rm ) is rather complicated as illustrated
by the following table showing the dimension of the space of invariant polynomials
of degree k = 0, 1, . . . , 8 in dimensions m = 2, 3, . . . , 12:
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2 3 4 5 6 7 8 9 10 11 12
0 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
2 1 2 4 3 3 3 3 3 3 3 3
3 1 3 9 7 8 8 8 8 8 8 8
4 1 4 19 20 24 25 28 26 26 26 26
5 1 5 39 51 83 84 101 89 90 90 90
6 1 7 82 150 361 359 509 403 409 403 412
7 1 8 151 431 1697 1761 3125 2194 2407 2240 2281
8 1 10 291 1318 8719 10552 24236 15775 20030 16343 17124

Looking at the dimensions given in the table above it is interesting to observe that
the dimensions of the spaces [ SymkKr so(Rm ) ]SO(Rm ) stabilize with k ≥ 0 fixed
for m > 2k, and the resulting algebra of stably invariant polynomials is definitely
a much nicer object of study:

A•( so ) :=
←−

lim
m

[ Sym•Kr so(Rm ) ]SO(Rm )

Needless to say the most important examples of polynomial invariants of Riemann-
ian manifolds arise from the theory of characteristic classes in topology. Specifically
all Pontryagin numbers of a Riemannian manifold M of dimension m divisible by
4 arise from invariant polynomials of degree m

2 on the space of algebraic curva-
ture tensors. Instead of being stably invariant it appears as if these polynomials
account exactly for the drop from the last unstable to the stable dimension for
even polynomial degrees in the table above. Contrary to the intuition however
the Euler characteristic of an oriented Riemannian manifold M of dimension m
divisible by 2 is a polynomial invariant arising from a stably invariant polynomial
of degree m

2 on the space of algebraic curvature tensors.

Other stably invariant polynomials on the space of algebraic curvature tensors arise
from the moments of the sectional curvature. Considering the sectional curvature
as a random variable defined on the Grassmannian Gr2TM of 2–planes in TM we
may define its k–th moment for k ∈ N0 by

EM [ xk ] :=
1

Vol(Gr2TM )

∫

Gr2TM

Sec( X ∧ Y )k volFS(X ∧ Y ),

where FS denotes the Riemannian metric on Gr2TM which makes the projection
to M a Riemannian submersion with the Fubini–Study metric in the fibers. Using
a couple of integration tricks these moments can be integrated over the fibers in
order to write them as polynomial invariants of Riemannian manifolds arising from
stably invariant polynomials homogeneous of degree k. The main result reads

EM [xk ] =
1

VolM

∫

M

(−∆)k

[m + 2k − 2]2k

∣

∣

∣

∣

0

(

X 7−→ exp
(

∑

µ> 0

1

2µ
tr[Rµ

·,XX ]
)

)

,

where for given X ∈ TxM the notation Rµ
·,XX refers to the Jacobi endomorphism

on TxM in the direction of X raised to the µ–th power, ∆ denotes the metric
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Laplace operator acting on the resulting formal power series in X ∈ TxM and
[z]r = z(z − 1) . . . (z − r + 1) the falling factorial polynomial.

On a Riemannian symmetric space M of rank 1 the Jacobi endomorphism
R·,XX is independent of the direction X so that the above formula can be used
in fact to calculate the full probabilty density of the sectional curvature on these
spaces. Normalizing the Riemannian metric to have sectional curvature in the
interval [1, 4], the final result reads for all f ∈ C∞(R):

ECPn [ f ] =
1

6

(

n − 3
2

n − 2

)
∫ 4

1

f(s)
(4− s

3

)n− 2 (s− 1

3

)− 1
2

ds

EHPn [ f ] =
3

6

(

2n − 3
2

2n − 3

)
∫ 4

1

f(s)
(4− s

3

)2n− 3 (s− 1

3

)+ 1
2

ds

EOP 2 [ f ] =
7

6

(13
2

3

)
∫ 4

1

f(s)
(4− s

3

)3 (s− 1

3

)+ 5
2

ds

Interestingly these probability measures converge to the Dirac measure in 1 for
dimension n → ∞. It should be noted that the calculation of moments can
be used in principle to calculate the pinching constant of a Riemannian metric
without ever having to calculate a single sectional curvature.

The main idea of the presented research project is to describe the algebra A•(so) of
stably invariant polynomials on the space of algebraic curvature tensors by means
of a suitable graph algebra similar to the graph algebra defining the Rozansky–
Witten invariants of hyperkähler and quaternionic Kähler manifolds. The ade-
quate graph algebra uses trivalent graphs with edges colored red and black such
that at every vertex there exists exactly one red flag. A particular merit of this
graph algebra description of stably invariant polynomials on the space of alge-
braic curvature tensors is that it makes the dependencies between stably invariant
polynomials on Einstein manifolds completely explicit.

Reporter: Nicolas Weisskopf
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