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Abstract. Boundary value problems and spectral geometry is an attractive
and rapidly developing area in modern mathematical analysis. The inter-
action of PDE methods with concepts from operator theory and differential
geometry is particularly challenging and leads directly to new insights and
applications in various branches of pure and applied mathematics, e.g., anal-
ysis on manifolds, global analysis and mathematical physics. Some recent
contributions in the field of boundary value problems and spectral geometry
concern, e.g., construction of isospectral manifolds with boundary, eigenvalue
and resonance distribution for large energies, multidimensional inverse spec-
tral problems, singular perturbations, new regularity techniques, Dirichlet-
to-Neumann maps and Titchmarsh-Weyl functions.

Mathematics Subject Classification (2000): Primary 35P05; Secondary 47A10, 58J32.

Introduction by the Organisers

The basic aim of the mini-workshop is to bring together a special selection of
world leading experts from different areas, as, e.g., spectral theory, differential
geometry, analysis of PDEs, mathematical imaging, to join the efforts in studying
several problems arising in the modern mathematical physics.

In various situations one deals with the spectral or scattering analysis of com-
plex objects which are built together from elementary pieces interacting with each
other through the boundary. The elementary pieces may have rather simple prop-
erties and admit an explicit description, and the properties of the total system
come mostly from the global geometry or the interaction conditions. The situa-
tion can be modeled in many ways, for example, there is a considerable progress
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in understanding the properties of systems composed from one-dimensional pieces
(differential operators on metric graphs), both the direct and the inverse spectral
theory are in active development. A more difficult problem is to study differential
operators on coupled domains or manifolds. It is known that domains of some spe-
cial geometries can be approximated by metric graphs and hence one is interested
in the question if the same research philosophy can be transferred from metric
graphs to more complicated coupled objects. Even a partial progress in this direc-
tion needs combining various techniques like spectral analysis of operator pencils,
trace and embedding theorems, pseudodifferential operators, differential geometry
and many others. During the last years there were several attempts to fill the gap,
in particular, by developing operator-theoretical tools suitable for studying rather
general boundary value problems for PDEs.

Nowadays many of the new trends in the field of boundary value problems
and spectral geometry develop rapidly and independently into different directions
of modern analysis. A special feature of the mini-workshop is to combine the
expertise of colleagues from these different areas and to focus on the following
topics:

• Boundary value problems with low regularity (rough domains, singular
spaces, mixed boundary value problems);
• Decomposition techniques for composed domains and understanding the
relation between local and global properties;
• Operator-theoretical tools like abstract boundary triples in spectral geom-
etry,
• Spectral analysis via Dirichlet-to-Neumann maps and Titchmarsh-Weyl
functions.
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Abstracts

Spectral Properties of the Dirchlet-to-Neumann Operator

Wolfgang Arendt

(joint work with Rafe Mazzeo)

We compare the spectra of the Dirichlet-to-Neumann operator, the Dirichlet Lapla-
cian, and the Robin Laplacian. This will allow us to reprove an interesting spectral
inequality due to Friedlander [5] (see Eq. (1) below). This interesting inequality
between the (k + 1)th Neumann and the kth Dirichlet eigenvalue holds in the
Euclidean case.

For manifolds the inequality corresponds to geometric properties which are not
yet well understood and somehow surprising. Some interesting results are proved
by Mazzeo [6] who shows, for example, that Friedlander’s inequalities hold on any
symmetric space of noncompact type. Here we show that in each compact Rie-
mannian manifold there exists a (large) Lipschitz domain on which the inequality
fails, and there exists a (small) domain on which it is valid.

The construction of the Dirichlet-to-Neumann operator itself is interesting too.
The operator depends on a real parameter λ. If λ is not a Dirichlet eigenvalue,
then form methods can be used for the construction. If λ is a Dirichlet eigenvalue
then one is in a less conventional situtation and the Dirichlet-to-Neumann operator
is a multi-valued self-adjoint operator. Our point in the talk is a description of the
Robin eigenvalue branches (depending on a parameter) whose inverses describe
the Dirichlet-to-Neumann eigenvalues. This makes the proof of Friedlander’s in-
equality

(1) λNk+1 < λDk

very transparent and intuitive (and more general than Friedlander’s original result
[5] where at least C1-boundary is needed). Here λDk denotes the kth Dirichlet and
λNk denotes the kth Neumann eigenvalue. Another short and elegant (but maybe
less intuitive proof) is given by Filonov [4], which holds even if Ω has merely
continuous boundary.

We also investigate when the semigroup generated by the Dirichlet-to-Neumann
operator is positive and irreducible. This surprizing fact is true whenever Ω is
connected even if the boundary is not connected. This reflects the fact that the
Dirichlet-to-Neumann operator is non-local. The talk is based on joint work with
Rafe Mazzeo [1, 2]. It is remarkable that the Dirichlet-to-Neumann operator can
also be defined on arbitrary domains without any regularity assumption on the
boundary [3].
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Minimal and spectral partitions

Virginie Bonnaillie-Noël

Let Ω be a bounded and regular connected domain in R2. Let k ≥ 1 be an
integer andD = (Di)

k
i=1 be a k-partition withDi open, regular, connected, disjoint

and satisfying

Int(∪ki=1Di) = Ω.

Let Dk be the set of such k-partitions. The eigenvalues of the Dirichlet-Laplacian
−∆ are denoted by λ1(Di) < λ2(Di) ≤ . . . ≤ λn(Di). We are interested in the
properties of the ’minimal’ k-partitions of Ω. These partitions are minimal in the
sense that they minimize the maximum over i = 1, . . . , k of the lowest eigenvalues
of the Dirichlet-Laplacian in Di. Thus we define

Lk(Ω) = inf{max{λ1(D1), . . . , λ1(Dk)},D = (Di)
k
i=1 ∈ Dk}.

We say that a k-partition D = (Di)
k
i=1 is minimal if it satisfies

Λ(D) = Lk(Ω) with Λ(D) := max{λ1(D1), . . . , λ1(Dk)}.
It is well known that for any k, there exists a regular minimal k-partition, see [5].
We are interested in determining some of them. In particular, we would like to
determine in which cases this minimal partition is actually the family of the nodal
domains of a given eigenfunction of the Dirichlet-Laplacian in Ω. In the case of
2-partitions, the answer is very simple because a variational characterization of
the second eigenvalue of the Dirichlet-Laplacian in Ω shows that a minimal 2-
partition is always a nodal partition corresponding to the second eigenvalue and
we have L2(Ω) = λ2(Ω). So the interesting questions start with k = 3. Although
general properties of these minimal partitions have been proved by B. Helffer, T.
Hoffmann-Ostenhof and S. Terracini, there are very few theoretical results (except
for thin domains) for obtaining an explicit determination of minimal partitions.
First, we present some results about symmetric minimal 3-partition (see [3]) and
then use the Dirichlet-Laplacian on the double covering to propose some new
candidates (see [2]).

If the minimal 3-partition for the square has a symmetry axis, wa reduce its
determinations to the study of a family of mixed Dirichlet-Neumann problems with
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Λ(D0) ≃ 66.581124 Λ(D1) ≃ 66.581124

Figure 1. Symmetric candidates for the square.

mixed points on the symmetry axis and find the “best” candidate. By topological
arguments, there are three types:




−∆ϕ = λϕ in Ω+

∂nϕ = 0 on [X0, B]
ϕ = 0 elsewhere





−∆ϕ = λϕ in Ω+

∂nϕ = 0 on [A,X0] ∪ [X1, b]
ϕ = 0 elsewhere





−∆ϕ = λϕ in Ω+

∂nϕ = 0 on [X0, X1]
ϕ = 0 elsewhere,

where Ω+ denotes the half-square [−1, 1] × [0, 1], A = (−1, 0), B = (1, 0) and
the points X0, X1 are free on the axis y = 0. With these three configurations,
we obtain just one candidate given in Figure 1. Using the diagonal symmetry
axis, we obtain, by the same way, a unique candidate with the same energy (cf.
Figure 1). We observe that the critical point is at the center of the square. Using
the Aharonov-Bohm operator (see [2]), we can prove that the mixed Dirichlet-
Neumann problems on the half-domains Ω+ and Ωd = {(x, y) ∈ Ω, x ≥ −y} are
isospectral when the mixed point is at the middle of the symmetry axis. Then
we have a new tool to detect some non-symmetric partitions by computing the
spectrum of the Aharonov-Bohm operator, or, equivalently the anti-symmetric
spectrum of the Dirichlet-Laplacian on the double covering of Ω\ {(0, 0)}. By this
way, we can construct a continuous family of 3-partitions with the same energy
and generating by the partitions given in Figure 1. The aim is now to prove that
these candidates are indeed minimal.
We can do the same analysis for any geometries like a disk, ellipses, rectangles,
angular sectors. Numerical simulations are presented in [4].
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Index calculations for Dirac operators and spectral theory

Jochen Brüning

(joint work with Werner Ballmann, Gilles Carron)

Introduction. We consider Dirac operators on complete noncompact Riemannian
manifolds; for the purpose of this talk, we will assume that we are given a complete
manifoldM with pinched negative curvature and finite volume which has only one
end, and a Dirac operator defined on the smooth sections of a Dirac bundle overM ,
cf. [4]. This operator is essentially self-adjoint in the relevant L2 -space, but may
produce a nonzero index after restriction to the eigenspaces of an involution that
anticommutes with D. We describe here some techniques originating in spectral
theoretic considerations which are decisive in carrying out the index calculation.
One of the main difficulties arises from the fact that Fredholmness may not be
available for the Dirac operators in question. Using an operator model derived
from the cylindrical case which was thorouhgly studied in [1], we explain how to
overcome this obstacle.
The extended operator. Consider the cylindrical operator

(1) D = γ(
d

dt
+A),

acting in H := L2(R+, H) where H is a separable Hilbert space, A is a self-adjoint
operator in H with compactly imbedded domain HA, and γ is an antiinvolution
anticommuting with A, such that D is symmetric with domain C1

c (R+, H). It is
easy to see that the maximal operator Dmax is an isomorphism from its domain
onto H iff kerA = 0. If kerA 6= 0, then we meet the problem that the map

(2) C⊕ L2(R+) ∋ (x, τ) 7→ x+

∫ t

0

τ(s)ds

does not land in L2(R+). Writing τ = Dmaxσ, x = σ(0), the obvious norm on the
image of Dmax becomes

(3) ||σ||2W := ||σ(0)||2H + ||Dmaxσ||2L2 ,

which is weaker than the graph norm of Dmax. Thus, if we denote by W the
closure of imDmax under the W -norm then Dmax extends to W by continuity; this
extension we denote by Dext. Now Dext has closed image in H, imDext = imDmax,
and its kernel equals the constant functions with values in kerA, hence it is a
Fredholm operator with kernel not contained in H; the elements of the kernel are
the extended solutions introduced in [1].

This model can be extended to the geometric situation described above by
replacing A with At, an operator family with common domain HA but with a
t-dependent equivalent Hilbert metric; the corresponding family of Hilbert spaces
will be denoted by (Ht)t≥0. A serious technical difficulty arises from the fact that
the family At will be only Lipschitz in general, which is dealt with in [3]; for the
purpose of this exposition we will assume it to be C1. More serious is the fact
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that the W -norm is not a norm any more in general; we call D non-parabolic at
infinity if this is the case.
The spectral gap. The geometric assumptions imply that

(4) ||A′
tσ|| ≤ C(||σ|| + ||Atσ||),

hence non-parabolicity would follow from the existence of a sufficiently large spec-
tral gap around 0, for all At. This can be weakened to the condition

(5) specAt ⊂ {µ ∈ R : |µ| ≤ λ or |µ| ≥ Λ}, t ≥ 0, λ≪ Λ,

by introducing suitable weights modifying the Hilbert norm of H. To prove (5),
we need a geometric tool: our assumptions allow to introduce a flat connection
on the Dirac bundle, restricted to the end of the manifold under consideration.
Its constant sections then will span a subspace of H which induces, by restriction
to Ht, an invariant subspace of each At, with eigenvalues uniformly bounded in
t. On the orthogonal complement of these spaces, we use an argument involving
the holonomy of the flat connection and [2, Theorem 5] to show that the smallest
eigenvalue of At tends to infinity with t on the complementary space. This shows
that D is non-parabolic at infinity and, hence, that the extended operator Dext

exists and is a Fredholm operator.
The index calculation. To compute the index of D+

ext, after reduction by an
anticommuting involution, we now translate the above arguments in t, by cutting
the end at t0 and introducing complementary boundary conditions at t0, such
that the index becomes the sum of the indices of the interior and the exterior
problem. The interior index is computed by the formula of [1] while the exterior
index is localized at t0; in the resulting formula, we take the limit as t0 → ∞.
Under some additional assumptions which imply that At splits orthogonally into
the low energy and the high energy part, At = Ale

t ⊕Ahe
t we arrive at the following

index formula, where we denote by ωD+ the Atiyah-Singer local integrand and by
η(B) the eta-invariant of a discrete operator B (this invariant exists for all Dirac
operators, cf. [1]):

(6) indD+
ext =

∫

M

ωD+ +
1

2

(
η(Ale,+

0 ) + dimkerAle,+
0 + lim

t→∞
η(Ahe,+

t )
)
.

This general result applies in particular to locally symmetric spaces of Q-rank 1.
E.g. for cofinite quotients of complex hyperbolic space and the signature operator,
we arrive at formulas which are more transparent and somewhat more accessible
than the known computations; full details will appear soon.
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Geometric properties of point-interaction Hamiltonians ground state

Pavel Exner

In this talk I am going to present several results on relations between the prin-
cipal eigenvalue of various “atractive” point-interaction Hamiltonians and the un-
derlying geometry. The first question concerns polymer rings, that is, point inter-
actions on a loop with an upper bound to distance to the neighbours; following
the papers [1, 2] it is shown that the ground-state energy is minimized by a regular
polygon; we also mention the continuous analogue to this problem solved in [3].

Then we will consider a point interaction in a region Ω ⊂ Rd, d = 2, 3, and
derive a condition under which the eigenvalue increases as the interaction site
moves [4]. Finally, we will discuss behaviour of the principle eigenvalue w.r.t.
increasing distances between the interaction sites both in Rd, d = 1, 2, 3, and on
quantum graphs [5].
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Curvature and spectrum for graphs

Matthias Keller

Classically discreteness of spectrum for Schrödinger operators can result from
the potential or from the geometry. The case of a Schrödinger operator H = ∆+v
on Rd with a non-negative potential v was considered by Friedrichs in 1934, [Fr].
He showed that if v tends uniformly to ∞ in every direction, then H has purely
discrete spectrum. A complete characterization for the phenomena of discreteness
of the spectrum due to a unbounded potential was given by Mazya/Shubin in 2005
[MS]. See also Lenz/Stollmann/Wingert [LSW] for a corresponding result in the
context of Dirichlet forms. On the other hand, Donnelly/Li [DL] showed in 1979
that if the sectional curvatures of a complete, simply connected, negatively curved
Riemannian manifold tend uniformly to −∞, then the Laplace Beltrami operator
has purely discrete spectrum.

Our first aim is to give a discrete analogue of the Donnelly/Li theorem in the
framework of graphs. Secondly, we aim for a unified treatment of decreasing
curvature and increasing potential.
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Let G = (V,E) be an infinite, simple, connected, locally finite graph. For a
finitely supported function u : V → R, let the quadratic form Q be given by

Q(u) =
∑

{x,y}∈E

(
u(x)− u(y)

)2
.

There are two natural choices of a measure on V . One is constantly 1 and the
other one is the vertex degree function deg. So, firstly the positive selfadjoint
operator ∆ associated to the completion of Q in ℓ2(V ) acts as

∆u(x) =
∑

x∼y

(
u(x)− u(y)

)

on D(∆) = {u ∈ ℓ2(V ) | ∆u ∈ ℓ2(V )}. It is not hard to see that ∆ is bounded
iff the vertex degree function is bounded. Secondly, taking the completion of Q in

ℓ2(V, deg) yields the bounded positive selfadjoint operator ∆̃ acting as

∆̃u(x) =
1

deg(x)

∑

x∼y

(
u(x)− u(y)

)

which satisfies 0 ≤ ∆̃ ≤ 2.
The Cheeger constant αU for U ⊆ V is defined as

αU := inf
W⊆U finite

|∂EW |
vol(W )

,

where ∂EW := {{x, y} ∈ E | x ∈ W, y ∈ V \W} and vol(W ) =
∑

x∈W deg(x).
Clearly, 0 ≤ αU < 1 and αU ≤ αU ′ for U ′ ⊆ U ⊆ V . We define following [Fu]

α∞ := lim
K⊂V finite

αV \K ,

where the limit is taking along the net of finite subsets of V . In [Fu], Fujiwara
proved the following remarkable theorem:

Theorem 1 (Fujiwara ’96). The essential spectrum of ∆̃ is {1} iff α∞ = 1.

The key ingredient of the proof are the Cheeger estimates 1 −
√
1− α2

U ≤
∆̃U ≤ min{1 +

√
1− α2

U , αU}, U ⊆ V due to Mohar, Dodziuk/Karp and Dodz-
iuk/Kendall. This estimate implies that α∞ = 1 is equivalent to compactness of

the operator P = ∆̃− I.
Since ∆̃ is a bounded infinite dimensional operator it cannot have purely discrete

spectrum. Thus, in order to get a better analogy to the theorem of Donnelly/Li,
one has to consider the operator ∆ in the case of unbounded vertex degree. In
[K1] such a theorem is proven. To this end, let

d∞ := lim
K⊂V finite

min
x∈V \K

deg(x).

Theorem 2 (K. ’10). Let α∞ > 0. Then the essential spectrum of ∆ is empty iff
d∞ =∞.
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The proof uses an estimate on the bottom of the spectrum of ∆ by the minimum

of the vertex degree times the bottom of the spectrum of ∆̃. Since such an estimate
holds on all complements of finite sets one gets an estimate for the bottoms of the
essential spectra.

The theorem gives an analogue to the Donnelly/Li theorem as α∞ > 0 can
be understood as a negative curvature assumption and d∞ =∞ as the curvature
tending to −∞. In the framework of planar tessellations the analogue is even
clearer.

Assume G is a planar tessellation which is embedded into a topological surface
S ∼= R2. Let the set of faces F be given by the closures of the connected com-
ponents of S \⋃E. The face degree deg(f), f ∈ F , is defined as the number of
vertices contained in f . The curvature κ : V → R is given by

κ(x) := 1− deg(x)

2
+

∑

f∈F, x∈f

1

deg(f)
,

which can be understood as an angle defect. Let

κ∞ := lim
K⊂V finite

sup
x∈V \K

κ(x).

Theorem 3 (K. ’10). Let G be a planar tessellation. Then, the essential spectrum
of ∆ is empty iff κ∞ = −∞. Moreover, κ∞ = −∞ implies that the essential

spectrum of ∆̃ is equal to {1}.

The proof given in [K1] uses that κ∞ = −∞ iff d∞ =∞ and a Cheeger estimate
of the form α∞ ≥ 1 − 6/ infx deg(x). More subtle estimates using curvature can
be found in [K1, K2, KP].

Finally, to consider Schrödinger operators H = ∆+ v with v : V → [0,∞), let

γ∞ := lim
K⊂V finite

inf
W⊆V \Kfinite

|∂EW |+ v(W )

vol(W )
,

where v(W ) =
∑

x∈W v(x),

g∞ := lim
K⊂V finite

inf
x∈V \K

(deg+v)(x).

and if G is a planar tessellation

k∞ := lim
K⊂V finite

inf
x∈V \K

(−κ+ v)(x).

Our second aim was to give a unified treatment of the relation of uniform growth
of curvature and the potential and discreteness of H . From [KL] we can deduce

Theorem 4 (K./Lenz ’10). (1) Let γ∞ > 0. Then, the essential spectrum of H
is empty iff g∞ =∞.
(2) Let G be a planar tessellation. Then, the essential spectrum of H is empty iff
k∞ =∞.
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Inverse Spectral Problems and Extrapolation of Stationary Stochastic

Processes from a Finite Time Interval

Heinz Langer

Let X = (Xt)t∈R be a second order weakly continuous and weakly stationary
stochastic process on the probability space (Ω,A, P ) with EXt = 0, t ∈ R, and
covariance function

(1) f(t− s) := EXtXs = (Xt, Xs)L2(Ω,A,P ), s, t ∈ R.

According to Bochner’s theorem there exists a bounded measure σ on R, such that

(2) f(t) =

∫

R

eiλt dσ(λ), t ∈ R.

We consider the following extrapolation problem. Suppose that a > 0 and that the
process X has been observed for −a ≤ t ≤ a, find the best mean square prediction
for Xs, s /∈ [−a, a]. In analytical terms, find the orthogonal projection of

Xs ∈ H(X) := c.l.s. {Xt : t ∈ R} ⊂ L2(Ω,A, P )
onto the subspace

H(X ; a) := c.l.s. {Xt : t ∈ [−a, a]} ⊂ H(X).

Here we assume that

(3) H(X) 6= H(X ; a).

For a real valued process X this problem was solved by M.G. Krein using his
spectral theory of a string (see [2]). The corresponding problem with observation
during the infinite past t ≤ 0 was solved in the 1940-ies by A.N. Kolmogorov for
discrete time and by M.G. Krein for continuous time (see, e.g. [4]).
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The relation

(Xt, Xs)L2(Ω,A,P ) = EXtXs = f(t− s) =
∫

R

eiλt eiλs dσ(λ)

implies the following isomorphisms:

H(X) ∋ Xt ←→ ei·t ∈ L2(σ),

H(X ; a) = c.l.s. {Xt : |t| ≤ a} ←→ c.l.s.
{
ei·t : |t| ≤ a

}
=: L2(σ; a).

Therefore the above problem can be formulated as follows: Given a measure σ
on R and a > 0, such that L2(σ; a) 6= L2(σ). Find the orthogonal projection of
ei·s ∈ L2(σ) onto L2(σ; a), or, more generally, find the orthogonal projection from
L2(σ) onto L2(σ; a).

The assumption (3) means for the positive definite function f from (1) that
the restriction f

∣∣
[−2a,2a]

, which is a positive definite function on [−a, a], has infin-
itely many positive definite continuations f̃ to R. According to a result of M.G.
Krein these continuations can be described as follows: There exists a 2× 2–matrix
function W (a; z), such that the relation

−i
∫ ∞

0

e−itz f̃(t) dt =
w11(a; z)ω(z) + w12(a; z)

w21(a; z)ω(z) + w22(a; z)
, z ∈ C−,

establishes a bijective correspondence between all such positive definite continua-

tions f̃ and all ω ∈ N∪{∞}; here N is the set of all Nevanlinna functions (these
are the complex valued functions which are holomorphic in the upper half plane
C+ and map C+ into C+ ∪ R), and the functions wij(a; ·), i, j = 1, 2, are entire
functions of exponential type a.

A canonical systems of differential equations is a system of the form

(4) −Jy′(ξ) = zH(ξ)y(ξ), 0 ≤ ξ <∞, J =

(
0 −1
1 0

)
,

where

H(ξ) =

(
h11(ξ) h12(ξ)
h12(ξ) h22(ξ)

)
, 0 ≤ ξ <∞,

is a real symmetric locally summable matrix function on [0,∞) of positive type
(e ∈ C2,

∫∞

0 (H(ξ)e, e) dξ = 0 =⇒ e = 0) which is trace normed (trH(ξ) = 1, 0 ≤
ξ <∞). With (4) the matrix differential equation

dV (ξ, z)

dξ
J = zV (ξ, z)H(ξ), 0 ≤ ξ <∞, V (0, z) = I2.

is considered. The elements vij(ξ, z) of the matrix function V (ξ, z) =
(
vij(ξ, z)

)2
i,j=1

are entire functions of z of exponential type a =
∫ ξ

0

√
detH(η) dη. With (4) the

Hilbert space

L2H(0,∞) =

{
u =

(
u1(ξ)
u2(ξ)

)
:

∫ ∞

0

(
H(ξ)u(ξ),u(ξ)

)
2
dξ <∞

}
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and the Fourier transformation:

(5) F(u)(z) :=
∫ ∞

0

(
v21(ξ, z) v22(ξ, z)

)
H(ξ)u(ξ) dξ

are associated. The measure σ on R is a spectral measure of the canonical system

if
∫
R

dσ(λ)

1 + λ2
<∞ and u 7→ F(u) is an isometry from L2H onto L2(σ):

∫ ∞

0

(
H(ξ)u(ξ),u(ξ)

)
2
dξ =

∫

R

|F(u)(λ)|2dσ(λ).

According to a theorem of L. deBranges [1] each measure σ with
∫
R

dσ(λ)

1 + λ2
< ∞

is the spectral measure of a uniquely determined canonical system on [0,∞).
Now let σ be the measure from (2). It can be shown that for the canonical

system with spectral measure σ the Fourier transformation establishes also an
isomorphism between L2(σ; a) and L2H(0, La), where

La := min

{
L :

∫ L

0

√
det Ĥ(ξ) dξ = a

}
.

Clearly, the orthogonal projection in L2H(0,∞) onto L2H(0, La) is multiplication by
the characteristic function χ[0,La]. Thus, the orthogonal projection Pa in L2(σ)

onto L2(σ; a) is given by

Pa F = F
(
χ[0,La]F−1(F )

)
, F ∈ L2(σ),

where F−1 denotes the inverse to the Fourier transformation (5):

F−1(F )(ξ) =

∫

R

F (λ)

(
v21(ξ, λ)
v22(ξ, λ))

)
dσ(λ) ∈ L2H , F ∈ L2(σ).

These results go back to unpublished joint work of M.G. Krein with the author
in the 1980-ies, comp. [3].
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A differential operator with an interior singularity

Matthias Langer

(joint work with B. Malcolm Brown, Heinz Langer)

We consider two Sturm–Liouville equations that contain an interior singularity,
namely an equation in impedance form,

(1) −
(

1

|x− 1|α y
′(x)

)′

= λ
1

|x− 1|α y(x),

and a Bessel-type equation,

(2) −v′′(x) + α

2

(α
2
+ 1

) v(x)

(x− 1)2
= λv(x),

both on an interval [0, a] with a > 1 and where α is some positive constant. The
equation in (1) with α = 2 arose in connection with an extension problem of the
positive definite function f(t) = 1− |t| in [13]. Equation (2) is obtained from (1)
by applying the Liouville transform y(x) = |x− 1|α/2v(x).

Equations with a weaker singularity than in (2), e.g.

(3) −v′′(x) + 1

x
v(x) = λv(x)

on an interval that contains 0 as an interior point have been studied by many
authors; see, e.g. [2, 3, 4, 9, 10, 11]. In this case the equation is in limit circle
case from both sides at 0, and regularized boundary values can be used to describe
self-adjoint operators connected with (3).

If α < 1, then equation (1) is regular at 1 and equation (2) is singular at 1
but still in limit circle case from both sides. Therefore self-adjoint operators can
be obtained using similar ideas as were used for (3). However, if α ≥ 1, then
both equations (1) and (2) are in limit point case from both sides at 1, and hence
classical Hilbert space theory yields only self-adjoint operators that are a direct
sum of operators associated with the differential expression on [0, 1) and (1, a],
respectively.

Initially, some physicists and later some mathematicians studied abstract con-
structions for equations like in (1) and (2) that involve operators in a Pontryagin
space extension of a given Hilbert space; see, e.g. [14, 5, 7, 6] (a Pontryagin space
is a direct sum of a Hilbert space and a finite-dimensional anti-Hilbert space so
that the space has an indefinite inner product). In most cases these models have
been applied to situations where the singularity is at an endpoint of the interval;
see, e.g. [8] for the Bessel equation. Equations with a singular potential like 1/x2

has also been viewed as supersingular perturbations; see, e.g. [1, 12].
The main aim is to construct a Pontryagin space and self-adjoint operators that

are more naturally associated with the differential equations (1) and (2). When
α < 1, then for equation (1) one works in the weighted space L2([0, a], |x−1|−αdx)
where the weight is the coefficient on the right-hand side of (1). For α ≥ 1 we
replace the measure |x − 1|−αdx by a distribution µα that is connected with a
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regularization of |x− 1|−α, namely (for simplicity, we restrict ourselves to the case
when 1 < α < 3)

〈µα, f〉 := a0f(1) +

∫ a

0

(
f(x)− f(1)− (x− 1)f ′(1)

) dx

|x− 1|α , f ∈ C2([0, a]),

where a0 ∈ R. We can use this distribution to define an inner product

[f, g] := 〈µα, f g〉
for f, g ∈ C2([0, a]). It turns out that this inner product is indefinite, and one
can complete C2([0, a]) to a Pontryagin space with one negative square, which is
isomorphic to L2(0, a)⊕ C2. In this space we construct a boundary triple, which
is used to describe self-adjoint operators with boundary conditions at 0 and a and
interface conditions at 1. For α = 2 these operators act like

u 7→ −u′′(x) + 2
u(x)

(x− 1)2
− 2

u′(1)

x− 1

in the L2 component of the representation in L2(0, a)⊕C2. Corresponding Weyl–
Titchmarsh functions belong to the class N1 of generalized Nevanlinna functions
with one negative square.
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Geometry and spectral theory of discrete Dirichlet spaces

Daniel Lenz

Spectral and probabilistic properties of Laplacians and their semigroups are
intimately related to the geometry of the underlying space. The theory of Dirichlet
spaces provides a convenient framework to corresponding investigations. Here, a
Dirichlet space is a locally compact metric measure space together with a regular
Dirichlet form. This Dirichlet form gives rise to a Laplacian and its semigroup.
The characteristic property of a Dirichlet form is that this semigroup is Markovian.

Two most prominent examples of Dirichlet spaces are Riemannian manifolds
(RM) together with the Dirichlet form induced by the Laplace-Beltrami operator
and discrete spaces (DS) together with a graph structure and the canonical Dirich-
let form and the associated graph Laplacian. In fact, (RM) is the typical example
of a local Dirichlet space and (DS) is a typical example of a non-local Dirichlet
space.

Starting with seminal work of Sturm [14] substantial parts of global spectral
geometry of manifolds were extended to all local Dirichlet spaces. Here, we restrict
ourselves to mentioning the following results:

• Volume growth criteria for stochastic completeness [14]. This gives a gen-
eralization to local Dirichlet spaces of results of Grigor’yan’ [5, 6] for man-
ifolds. These results show that the threshold between for stochastic com-
pleteness lies along some superexponential volume growth.
• Upper bounds for the the infimum of the spectrum in terms of volume
growth [14]. These bounds show in particular that the infimum of the
spectrum is at zero if the volume is sub exponentially growing. This is re-
lated to ’Brooks Theorem’ [3] for manifolds, which deals with the infimum
of the essential spectrum.

A key ingredient of corresponding considerations is the intrinsic metric. In fact,
a crucial insight of [14] is that this metric belongs locally to the form domain and
satisfies a suitable estimate (if it generates the topology). This is then used to
construct suitable cut-off functions.

We note in passing that similar cut-off functions can also be used in the study of
spectral theory via generalized eigenfunctions. In fact, recent results for strongly
local form provide an ’expansion in generalized eigenfunctions’ [1], a ’Shnol The-
orem’ [2] and an ’Allegretto-Piepenbrink Theorem’ [12].



Mini-Workshop: Boundary Value Problems and Spectral Geometry 61

It is natural to expect that similar results should hold for discrete Dirichlet
spaces as well. Quite surprisingly this turns out to be wrong in general: Wo-
jciechowski [15] gives examples, dubed ’antitrees’, of stochastically incomplete
graphs, whose volume growth is polynomially bounded (when measured with re-
spect to the natural graph metric). These examples were then also shown to
have a spectral gap at zero by Keller/Lenz/Wojciechowski [11]. As, by the results
discussed above, polynomial volume growth bounds imply both stochastic com-
pleteness and non-existence of a spectral gap for strongly local forms these results
provide major discrepancies between local and discrete Dirichlet spaces.

In the final analysis these discrepancies rely on structural geometric differences
between local and non-local situations. As a result of them and due to a general
interest in non-local situation there has been a lot of recent interest in (DS) and
its geometry .

In this context, a general concept of intrinsic metric for arbitrary regular Dirich-
let forms is proposed by Frank/Lenz/Wingert in [4]. This work provides a Rade-
macher type theorem as well as application to spectral theory via generalized
eigenfunctions. It also shows that in the local situation the intrinsic metric men-
tioned above is canonical in a suitable sense whereas in the non-local situation
there is no canonical intrinsic metric. It does not contain applications to stochas-
tic completeness but has influenced such studies by Huang [9].

For Dirichlet forms consisting only of a jump part, a somewhat more general
class of intrinsic type metrics, called adapted metrics, was featured in the investi-
gations of Masamune/Uemura [13]. This work provides volume growth criteria for
stochastic completeness. A rather refined version of such a result generalizing also
corresponding results of [9] is given by Grigor’yan/Huang/Masamune in [7]. This
work partly reduces the discrepancy between manifolds and graphs in terms of
volume growth criteria for stochastic completeness by giving a threshold (in terms
of the natural graph distance). It also provides an sufficient exponential volume
growth criterion for stochastic completeness in terms of adapted metrics. It is not
known whether this criterion is optimal.

As for the disparity concerning spectral gaps there are no results available so
far.
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Schrödinger operators with δ and δ
′-potentials supported on

hypersurfaces

Vladimir Lotoreichik

(joint work with Jussi Behrndt and Matthias Langer)

Preliminaries. We study self-adjoint realizations of the Schrödinger differential
expression −∆+ V in the Hilbert space L2(Rn) with certain coupling (transmis-
sion) boundary conditions on a compact C∞-smooth closed hypersurface. In order
to keep the abstract relatively short we present the essence of our results in the
case V ≡ 0.

Let us define a compact C∞-smooth closed hypersurface Σ which separates the
Euclidean space Rn, n ≥ 2, into an (interior) bounded domain Ωi and an (exterior)
unbounded domain Ωe. Further we denote by dimΣ (= n − 1) the Euclidean
dimension of Σ. We agree to denote by −∆D,i, −∆N,i the self-adjoint Dirichlet
and Neumann Laplacians on the interior domain, and we denote by −∆D,e, −∆N,e

the self-adjoint Dirichlet and Neumann Laplacians on the exterior domain. The
coupled Laplacians

−∆D,i,e := (−∆D,i)⊕ (−∆D,e) and −∆N,i,e := (−∆N,i)⊕ (−∆N,e)

and the free Laplacian −∆free are self-adjoint in L2(Rn). From physical point
of view the hypersurface Σ is absolutely transparent in the case of the operator
−∆free and absolutely non-transparent in the case of the operators −∆D,i,e and
−∆N,i,e.

Recall that a compact operator T belongs to the classSp,∞ if its singular values

satisfy sk(T ) = O(k−1/p) as k →∞.
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δ-interactions supported on hypersurfaces. In papers on mathematical physics
one finds sometimes the differential expression −∆+αδΣ(·), where δΣ is the delta-
distribution supported on Σ and α : Σ → R is a real-valued bounded function
defined on Σ. Behind this expression it used to presume the operator defined via
closed semi-bounded quadratic form

qδ,α[u] :=
∥∥∇u

∥∥2
L2(Rn;Cn)

−
∫

Σ

α
∣∣u|Σ

∣∣2, dom qδ,α := H1(Rn).

This operator is called the Schrödinger operator with δ-interaction supported on
Σ.

The quadratic form method has been used in various papers for the definition of
Schrödinger operators with δ-interactions supported on curves and hypersurfaces.
We refer the reader to Brasche, Exner, Kuperin and Seba [BEKS94] and the review
paper [E08] for more details and further references. The motivation to study these
operators comes from physics. Such operators describe semi-transparency in optics
and interaction of a charged particle with a charged hypersurface in quantum
mechanics.

The quadratic form definition is quite natural when dealing with non-smooth
Σ while in the case of a smooth hypersurface we suggest the explicit definition of
the Schrödinger operator with δ-interactions via action and domain. Within the
space

H
3/2
∆ (Rn \ Σ) :=

{
f = fi ⊕ fe ∈ H3/2(Ωi)⊕H3/2(Ωe) : ∆f ∈ L2(Rn)

}

we define the Laplace operator −∆δ,α on the domain

dom (−∆δ,α) :=
{
f = fi ⊕ fe ∈ H3/2

∆ (Rn \ Σ): fi|Σ=fe|Σ=:f |Σ
∂νefe|Σ+∂νi

fi|Σ=αf |Σ

}
,

where fi|Σ, fe|Σ are the traces of f = fi ⊕ fe from both sides of Σ and ∂νifi|Σ,
∂νefe|Σ are the traces of normal derivative of f from both sides of Σ with normals
pointing outwards Ωi and Ωe, respectively. In words: the domain of the operator
−∆δ,α consists of functions which are continuous on Σ, but their normal derivative
has a jump which is connected with the usual trace via function α. The machinery
based on quasi boundary triples [BL07, BLL12-1] allows to prove that for any real-
valued α ∈ L∞(Σ) the operator −∆δ,α is self-adjoint in the Hilbert space L2(Rn).
It comes out after some calculations that the operator −∆δ,α and the operator
corresponding to the form qδ,α coincide.

It is known that σess(−∆δ,α) = R+ an ♯ σd(−∆δ,α) <∞. The proof of finiteness
of negative spectra given in [BEKS94] is quite involved. As we show this question
can be simply reduced to an old result by Birman [B62].

As proved in [G84, G84a], for all m ∈ N one has

(1) (−∆free − λ)−m − (−∆N,i,e − λ)−m ∈ S dim Σ
2m ,∞

and this estimate is sharp. A natural question arises to obtain estimates like (1)
for the pairs {−∆free,−∆δ,α} and {−∆N,i,e,−∆δ,α}. We found out that for all
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m ∈ N

(−∆δ,α − λ)−m − (−∆free − λ)−m ∈ S dimΣ
2m+1

,∞,

(−∆δ,α − λ)−m − (−∆N,i,e − λ)−m ∈ S dimΣ
2m ,∞.

(2)

In some sense the operator −∆δ,α is closer to the free Laplacian than to the
decoupled Neumann Laplacian. In particular, as a consequence of these results
wave operatorsW±(−∆δ,α,−∆free} exist and are complete in all space dimensions.

Replacing the differential expression−∆ by −∆+V one needs to tackle smooth-
ness of the potential V carefully. Certain smoothness of V in the neighborhood of
Σ must be assumed. The higher powers of resolvents we consider – the stronger
assumptions on the smoothness of V we have to impose.

δ′-interactions supported on hypersurfaces. Development of a framework
for treatment of Schrödinger operators with δ′-interactions supported on hyper-
surfaces has been posed by Pavel Exner as a non-solved task in [E08]. As we
show one can define for a boundedly invertible function β : Σ→ R the Schrödinger
operator with δ′-interactions via closed semi-bounded quadratic form

qδ′,β[u] :=
∥∥∇u

∥∥
L2(Rn;Cn)

−
∫

Σ

β−1
∣∣ue|Σ − ui|Σ

∣∣2,

dom qδ′,β := H1(Ωi)⊕H1(Ωe).

Another possibility is to define the Laplace operator −∆δ′,β on the domain

dom (−∆δ′,β) :=
{
f = fi ⊕ fe ∈ H3/2

∆ (Rn \ Σ): fe|Σ−fi|Σ=β∂νefe|Σ
∂νefe|Σ+∂νi

fi|Σ=0

}
,

In words: the domain of the operator −∆δ′,β consists of functions which have
continuous normal derivative on Σ, but their traces from both sides of Σ are
different and the jump of the trace is connected with the normal derivative via
function β. The operator −∆δ′,β is self-adjoint in L2(Rn). To see this we employ
our quasi boundary triples machinery. It comes out after some calculations that the
self-adjoint operator −∆δ′,β coincides with the self-adjoint operator corresponding
to the form qδ′,β.

Spectral theory of Schrödinger operators with δ′-potentials supported on hy-
persurfaces is weakly developed until now. Some particular results in the case
of Σ being a sphere are known [AGS87, S88], where separation of variables is
the main tool of analysis. We show that as in the δ-case the essential spec-
trum is σess(−∆δ′,β) = R+ and the discrete spectrum satisfies ♯ σd(−∆δ′,β) <∞.
Next question is to obtain estimates like (2) for the pairs {−∆free,−∆δ′,β} and
{−∆N,i,e,−∆δ′,β}. We found out that for all m ∈ N

(−∆δ′,β − λ)−m − (−∆free − λ)−m ∈ S dimΣ
2m ,∞,

(−∆δ′,β − λ)−m − (−∆N,i,e − λ)−m ∈ S dim Σ
2m+1

,∞.
(3)

In some sense the operator −∆δ′,β is closer to the decoupled Neumann Laplacian
than to the free Laplacian. In particular, as a consequence of these results wave
operators W±(−∆δ′,β,−∆free} exist and are complete in all space dimensions.
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Replacing the differential expression −∆ by −∆+ V one needs again to tackle
smoothness of the potential V . Certain smoothness of V in the neighborhood of
Σ must be assumed, but what is interesting that one can assume less smoothness
of V for the same estimates than in the case of δ-interactions.
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Gap opening and split band edges in couples waveguides

Konstantin Pankrashkin

(joint work with Denis Borisov)

The presence of a band spectrum is a common feature of periodic operators.
If, for example, H is the Schrödinger operator on a periodic domain of Rd and is
invariant with respect to the shifts by linearly independent vectors aj , j = 1, . . . , d,
then the spectrum of H is the union of the ranges of the band functions (−π, π]d ∋
θ ≡ (θ1, . . . , θd) 7→ Ek(θ) ∈ R, where Ek(θ) are the energy values E for which there
exists a non-trivial solution ψ to the eigenvalue problem Hψ = Eψ satisfying the
Bloch quasiperiodicity condition ψ(x + aj) = eiθjψ(x), j = 1, . . . , d, and these
values are taken for each θ in the non-decreasing order, Ek(θ) ≤ Ek+1(θ); the
parameter θ is usually referred to as the quasimomentum.
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Figure 1. Waveguides Π+ = R×(0, π) and Π− = R×(−d, 0) cou-
pled by a periodic system of windows. The parts of the boundary
with the Dirichlet (respectively, Neumann) boundary conditions
are indicated by the symbol D (respectively, N)

If for some j one has αj := maxEj < minEj+1 =: βj , then the open interval
(αj , βj) is called a gap of the operator H . The existence of the gaps is one of the
central questions e.g. in the theory of photon crystals [3]. One is also interested in
the values of θ for which the above extremal values αj and βj are realized. In the
most studied case, the one-dimensional periodic Schrödinger operator, these values
can only be attained at θ = 0 or θ = ±π, while this is not necessarily true for more
complicated situations. The papers [1, 2] discussed these questions and provided
a number of respective examples using certain combinatorial constructions. Our
aim was to provide a rather general mechanism of gap opening at arbitrary values
of the quasimomentum in systems with one-dimensional periodicity. As a model
example we use the Laplacian in the domain consisting of two strips of width
d+ = π and d− := d coupled by a 2h-periodic system of windows of width 2ε.
At the exterior boundary we impose the Dirichlet boundary conditions, while the
Neumann boundary conditions are imposed at the rest of the interior boundary,
see figure 1.

Theorem 1. Assume

h >
π√
2

and
π√(2π
h

)2

+ 1

< d < π,

then there exists θ0 ∈ (0, π) such that the Laplacian in the above domain has, for
ε small enough, a gap whose ends are attained by the respective band functions in
a O(1/ ln ε)-neighborhood of θ0.

A more detailed analysis is possible, which allows one to control the gap open-
ing for some other combinations of the parameters. Note that, due to the real-
valuedness of the operators involved, attaining a gap edge at a certain value of θ
automatically implies attaining the same extremal value at the value −θ, hence
the respective band function appears to have multiple global extrema; in the ap-
plications, this situation is usually called split band edge in the physics literature.
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Boundary pairs and Dirichlet-to-Neumann operators

Olaf Post

In this talk I presented a concept for defining the Dirichlet-to-Neumann (DtN)
operator in a purely funcional-analytic framework starting with a closed form
d ≥ 0 in a Hilbert space H and a boundary operator Γ: H1 = dom d → G into
another Hilbert space. We say that (Γ,G) is a boundary pair associated with d if
H1,D := kerΓ and G1/2 := ranΓ are dense in H and G, respectively.

The main example is a manifold X with compact boundary Y = ∂X (possibly
with certain singularties) in whichH = L2(X), H1 = H

1(X), G = L2(Y ) and Γu :=
u|Y . It is now easy to see that (Γ,G) is a boundary pair with G1/2 = H

1/2(∂Y ).
Going back to the abstract setting, one can define the Neumann operator ∆N

as the operator associated with the closed quadratic form d, and the Dirichlet
operator ∆D as the operator associated with d|ker Γ. Moreover, for z ∈ C \ σ(∆D)
we define the (weak) solution of the Dirichlet problem (∆ − z)h = 0, Γh = ϕ in
the sense that h ∈ H1 is the unique element such that

d(h, f)− z〈h, f〉 = 0

for all f ∈ kerΓ. We denote this element by S(z)ϕ := h and call S(z) : G1/2 → H1

the Dirichlet solution operator (in the above example, it is actually the Poisson
operator).

The DtN operator is now defined via the sesquilinear form lz by

lz(ϕ, ψ) := (d− z)(S(z)ϕ, g)
for g ∈ H1 with Γg = ψ (this definition is actually well-defined). The associated
operator in the above manifold example turns out to be the usual DtN operator
Λ(z), i.e., if ϕ ∈ H

1/2(∂X) is smooth enough and if h is the solution of the Dirichlet
problem then

lz(ϕ, ψ) = 〈Λ(z)ϕ, ψ〉 = 〈Γ′h, ψ〉,
where Γ′h = ∂nh|∂X denotes the (outer) normal derivative at the boundary. Under
the stronger assumption that S(z) extends to a bounded operator G → H we can
show that lz is sectorial and Λ(z) is the associated (closed) sectorial operator.
We call such a boundary pair elliptic regular since in the manifold example, this
condition turns out to be related to an elliptic estimate.
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A main result is that for elliptic regular boundary pairs, we have a spectral
relation of the form

λ ∈ σ(∆N) ⇔ 0 ∈ σ(Λ(λ))
provided λ ∈ C \ σ(∆D). One can apply this (weak) setting to “boundaries” Y
like a hexagonal lattice embedded in X = R2, and also to a Zaremba problem
(a mixed Dirichlet and Neumann problem, where Y is only a (smooth) subset of
∂X . Our work is closely related to other abstract concepts such as quasi-boundary
triples [Ar00, AtE08, BBB11, BGP08, BGW09, BL07, DM91, G11, PcR09]. De-
tails of the above ideas will be given in [P11].
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Spectral properties of selfadjoint Schrödinger operators and

Dirichlet-to-Neumann maps

Jonathan Rohleder

(joint work with Jussi Behrndt)

The Titchmarsh–Weyl coefficient plays an important role in the spectral theory
of ordinary differential operators. If V : (0,∞)→ R is a bounded function and λ
does not belong to the spectrum of the selfadjoint Schrödinger operator

TDf = −f ′′ + V f, domTD =
{
f ∈ H2(0,∞) : f(0) = 0

}

in L2(0,∞), the initial value problem

−f ′′ + V f = λf, f(0) = f0
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has a unique solution fλ in L2(0,∞) for all f0 ∈ C, and the Titchmarsh–Weyl
coefficient is given by the complex number m(λ) which satisfies

m(λ)f0 = f ′
λ(0).(1)

The mapping λ 7→ m(λ) is known to be holomorphic, and, moreover, to be a

Nevanlinna function, that is, m(·) satisfies m(λ) = m(λ) and ℑm(λ)
ℑλ ≥ 0 for all

λ ∈ C\R. It is well known that the spectrum of the operator TD can be recovered
from the limits of m(·) towards the real line. For example, λ0 is an eigenvalue of
TD which is isolated in σ(TD) if and only if λ0 is a pole of m(·), and λ0 belongs
to the continuous spectrum of TD if and only if m(·) is not holomorphic at λ0 and
limν→0 νm(λ0 + iν) = 0 holds; see, e.g., [2, 5].

Let us consider an open, connected set Ω ⊂ Rn, n ≥ 2, having a compact
Lipschitz boundary, and a bounded function V : Ω→ R. Then the operator

ADu = −∆u+ V u, domAD =
{
u ∈ H1(Ω) : ∆u ∈ L2(Ω), u|∂Ω = 0

}

is selfadjoint in L2(Ω); here u|∂Ω denotes the trace of a function u in the Sobolev
space H1(Ω) at the boundary ∂Ω of Ω. The spectrum σ(AD) of AD is bounded
from below by the infimum of V and accumulates to +∞. If Ω is bounded,
σ(AD) is purely discrete, that is, it consists of isolated eigenvalues having finite
multiplicities; for further details see [3]. For each λ ∈ C \ σ(AD) the boundary
value problem

−∆u+ V u = λu, u|∂Ω = u0

has a unique solution uλ in H1(Ω) for each u0 in the Sobolev space H1/2(∂Ω).
Thus the Dirichlet-to-Neumann map

M(λ)u0 = ∂νuλ|∂Ω
is well-defined, where ∂νuλ|∂Ω denotes the derivative of uλ with respect to the
outer unit normal at ∂Ω; this derivative has to be understood in a weak sense as
an element of the Sobolev space H−1/2(∂Ω); cf. [4].

It turns out thatM(λ) is a bounded operator from H1/2(∂Ω) to H−1/2(∂Ω) for
each λ ∈ C\σ(AD), and that the function −M(·) is an operator-valued Nevanlinna
function; in particular,M(·) is holomorphic. In view of (1), M(λ) can be regarded
as a generalization of the Titchmarsh–Weyl coefficient. It is our aim to demon-
strate that, as in the case of a one-dimensional Schrödinger operator discussed
above, the whole spectrum of AD can be characterized by means of the limits of
the function M(·). Let us first consider the case that Ω is bounded. Then σ(AD)
is purely discrete and the following result holds, see [1] for a proof.

Theorem 1. Let Ω be bounded. Then λ0 ∈ σ(AD) if and only if λ0 is a pole of
M(·). In this case,

Γλ0
: ker(AD − λ0)→ ranRes (M,λ0), u 7→ ∂νu|∂Ω

is an isomorphism between the corresponding eigenspace and the range of the resid-
ual of M(·) at λ0.
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If Ω is unbounded, a similar result can be proved. We present a statement
which characterizes all eigenvalues of AD and the corresponding eigenspaces.

Theorem 2. A point λ0 is an eigenvalue of AD if and only if the nontangential
limit limλ→̂λ0

(λ− λ0)M(λ) is nontrivial. In this case the mapping

Γλ0
: ker(AD − λ0)→ H−1/2(∂Ω), u 7→ ∂νu|∂Ω

is injective and the identity

cl ranΓλ0
= cl

{
lim

λ→̂λ0

(λ− λ0)M(λ)u0 : u0 ∈ H1/2(∂Ω)

}

holds, where cl denotes the closure in H−1/2(∂Ω).

An article which contains a proof of Theorem 2 is in preparation. It will also
contain characterizations of the absolutely continuous and singular continuous
spectrum of AD. Moreover, it will be shown that even knowledge of the Dirichlet-
to-Neumann map on some open, nonempty subset of ∂Ω suffices to recover the
spectrum of AD; cf. [1]. Also selfadjoint operators subject to Robin boundary
conditions as well as more general elliptic differential expressions of order two
with variable second order coefficients will be treated.
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[5] H. Weyl: Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen
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Computations of Eigenvalues and Spectral Determinants on

hyperbolic surfaces

Alexander Strohmaier

(joint work with Ville Uski)

Let (M, g) be an oriented closed Riemannian manifold and Γ a piecewise smooth
compact co-dimension one hypersurface in M such that M\Γ is the interior of a

manifold M̃ with corners. Smooth functions f on M̃ in general have a discontinuity
along Γ as left and right boundary values may differ. Let us denote by Df the
difference of the left and right boundary values and by Dnf the difference of left
and right normal derivatives along Γ. Thus, Df and Dnf are well defined L∞

functions on Γ. Let now ∆ be the Laplace operator acting on functions on M .
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Then ∆ has compact resolvent as an unbounded operator in L2(M) and therefore
its spectrum consists of countably many eigenvalues λi with∞ as the only possible
accumulation point.

We have proved the following theorem (see [1]).

Theorem 1. There exists a constant CM,Γ such that the following holds. Suppose

g ∈ C∞(M̃) is a smooth function such that (∆−λ)g = h as a function on M̃ and
suppose

ǫ = CM,Γ

(
‖Dng‖2H−3/2(Γ) + ‖Dng‖2H−1/2(Γ)

)1/2

< 1.

Then there exists an eigenvalue λj such that

|λ− λj | ≤ (1 + λ)
ǫ

1− ǫ + ‖h‖L2(M̃)

1

1− ǫ .

The constant depends only on the geometry of M and Γ and on the way the
Sobolev Norms are defined on Γ and it can be explicitly computed in concrete
situations. This estimate allows to prove eigenvalue inclusions rigorously by taking
g as a polynomial spline that is an approximate solution to the eigenvalue equation.
We give an explicit value for CM,Γ for the case when M is a hyperbolic surface
and Γ consists of geodesic segments.

If M is a genus g > 1 hyperbolic surface we can use a pants decomposition to
decompose M as a union of truncated hyperbolic cylinders glued along geodesic
segments. In this case we proved for a certain basis of functions on these cylin-
ders that eigenfunctions can be approximated quantitively by linear combinations
of basis functions with exponential rate of convergence in the number of basis
functions.

Both estimates together allow the construction of m× k matrices B0
λ, Bλ and

Cλ with the following properties.

(1) The distance of λ to the spectrum can be bounded from above in terms of
the first singular value σ1(B

0
λ) of B

0
λ and its singular vector.

(2) The smallest relative singular value σ1(Bλ,Cλ) is bounded from above by

c1(k, λ) + c2(λ)dist(spec(∆), λ),

where c1(k, λ) and c2(λ) are explicitly computable constants and c1 is
exponentially decaying in k.

Whereas the first property allows to prove that an eigenvalue is in a certain interval,
the second property allows to determine intervals in which there are no eigenvalues.
Both estimates together can be used to find all eigenvalues in a specified interval.

As a proof of concept we implemented our method in Fortran and in Math-
ematica. This resulted in programs that allow to compute eigenvalues rather
accurately for a surface of genus g with given Fenchel-Nielsen coordinates. The
surface in genus 2 maximizing the order of the symmetry group is the so-called
Bolza surface. A Mathematica program was used to compute the first eigenvalues
of the Bolza surface with extremely high accuracy. We conjecture that the first
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eigenvalue in the Teichmüller space of genus 2 is maximized by the Bolza surface.
Its value is roughly

λ1 ≈ 3.838887258842199518586622450435464597081915

where all digits correct. The rigorous bound of our method allows us to prove an
eigenvalue inclusion here. Our conjecture was numerically verified in large regions
of Teichmüller space

The list of eigenvalues with error bounds together with the Selberg trace formula
allows us to compute the spectral determinant as well as the Casimir energy (and
values of the spectral Zeta function) quite accurately and with error bounds.

Again for the Bolza surface we obtained

detζ(∆) ≈ 4.72273280444557, ζ∆(−1/2) ≈ −0.65000636917383,
Our data suggests that the spectral determinant attains its global maximum at

the Bolza surface.
Our method is the first that permits the computation of spectral determinants

of the hyperbolic metric with good accuracy. This is important as the Polyakov
formula then allows to compute the spectral determinant for all two dimensional
manifolds. Our Fortran code that computes eigenvalues of hyperbolic surfaces
will be available under the GPLv3 on our websites as a service to the community.
Details about the algorithm can be found in our paper [1].
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Spectral inclusions for operators with spectral gaps

Christiane Tretter

Analytical information about the spectra and resolvents of non-selfadjoint opera-
tors is of great importance for numerical analysis and applications. However, even
for perturbations of selfadjoint operators there are only a few classical results. The
most well-known ones may be found in the monograph of T. Kato; they concern
bounded perturbations of selfadjoint operators and relatively bounded perturba-
tions of semi-bounded selfadjoint operators.

Theorem A [1, Theorems V.4.10/11] Let T be a selfadjoint operator in a Hilbert
space H and S a linear operator in H.

i) If S is bounded, then dist
(
σ(T ), σ(T + S)

)
≤ ‖S‖.

ii) If T is semi-bounded, T ≥ γ, and S is T -bounded with T -bound < 1, i.e.
D(T ) ⊂ D(S) and

(1) ‖Sx‖ ≤ a′‖x‖+ b′‖Tx‖, x ∈ D(T ),
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with constants a′, b′ ≥ 0 and b′ < 1, then T + S is semi-bounded with

T ≥ γ −max

{
a′

1− b′ , a
′ + b′|γ|

}
.

A maybe less well-known perturbation result on relatively compact perturba-
tions of selfadjoint operators may be found in the monograph by I.C. Gohberg and
M.G. Krĕın.
Theorem B [2, Lemma V.10.1] Let T be a selfadjoint operator in a Hilbert space
H and S a T -compact operator in H, i.e. D(T ) ⊂ D(S) and S(T−λ)−1 is compact
for one (hence all) λ ∈ ρ(T ). Then for every ε > 0 there is rε > 0 so that

σ(T + S) ⊂ Krε(0) ∪ Σε ∪ (−Σε)

where Krε(0) is the closed ball of radius rε around 0 and Σε := {z ∈ C : |arg z| ≤ ε}
is a symmetric sector around the real axis of opening 2ε.

In this talk we generalize the above results to relatively bounded perturbations
of selfadjoint operators which do not need to be semi-bounded, and we study the
behaviour of spectral gaps. To this end, we use another characterization of relative
boundedness equivalent to (1):

(2) ‖Sx‖2 ≤ a2‖x‖2 + b2‖Tx‖2, x ∈ D(T ),

with constants a, b ≥ 0; moreover, the T -bound of S, defined as the infimum of
all b′ ≥ 0 such that there is a′ ≥ 0 with (1), can equivalently be defined as the
infimum of all b ≥ 0 such that there is a ≥ 0 with (2).

Theorem 1. Let T be a selfadjoint operator in a Hilbert space H and S a T -
bounded operator in H with T -bound < 1 and a, b ≥ 0, b < 1 as in (2). Then

σ(T + S) ⊂
{
z ∈ C : |Im z|2 ≤ a2 + b2|Re z|2

1− b2
}
.

This means that the spectrum of the perturbed operator is bounded by two hyper-
bolas, symmetric to the real axis and with asymptotes |Im z| = ± arcsin b |Re z|.

If S is bounded, we can choose a = ‖S‖, b = 0 and the hyperbolas degenerate
into lines; then the above spectral inclusion coincides with the classical result by
Kato (see Theorem A i)). If S is T -compact, it is T -bounded with T -bound 0 (note
thatH is reflexive and T is closed); then the above spectral inclusion can be applied
for every b = ε > 0 and yields the result by Gohberg/Krein (see Theorem B).
Theorem 2. Let T be a selfadjoint operator in a Hilbert space H with spectral
gap, σ(T ) ∩ (−β, β) = ∅ with β > 0, and let S be a T -bounded operator in H with
T -bound < 1 and a, b ≥ 0, b < 1 as in (2). If µβ := a + b|β| < β, then the
spectrum of T + S also splits into two parts,

σ(T + S) ∩
{
z ∈ C : −β + µβ < Re z < β − µβ

}
= ∅.

An analogous result holds for spectral gaps (α, β) that are not symmetric with
respect to the origin. However, it should be noted that the relative boundedness
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constants in (1) or (2) are not shift-invariant; if T − µ is considered instead of T ,
then a′ has to be replaced by a′ + b′|µ|. In this case, if

(3) µα + µβ < β − α,
then

σ(T + S) ∩
{
z ∈ C : α+ µα < Re z < β − µβ

}
= ∅.

This shifted version of the stability theorem for spectral gaps can also be used to
formulate conditions under which infinitely many spectral gaps do not close.
Theorem 3. Let T be a selfadjoint operator in a Hilbert space H with infinitely
many spectral gaps, σ(T ) ∩ (αn, βn) = ∅, αn → ∞, and let S be a T -bounded
operator in H with T -bound < 1. If there exist an, bn ≥ 0, bn < 1 as in (2) so that

(4) lim sup
n→∞

2(an + bnαn)

(1− bn)(βn − αn)
< 1,

then T + S still has infinitely many spectral gaps.
If the T -bound of S is not 0, a necessary condition for (4) is that the gap widths

βn−αn diverge exponentially; if the T -bound is 0, polynomial divergence suffices.
All the above results are accompanied by resolvent estimates for the non-self-

adjoint perturbed operator T + S. Similar results are proved for perturbations
of sectorial or bisectorial operators as well as for gaps in the essential spectrum.
Applications include Dirac operatos with complex potentials, unbounded Jacobi
operators, and two-channel Hamiltonians; for details and further references see [3].
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