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Abstract. The main purpose of this workshop was to foster interaction be-
tween researchers in the fields of analysis and probability with the aim of
joining forces to understand difficult problems from physics rigorously. 52
researchers of all age groups and from many parts of Europe and overseas at-
tended. The talks and discussions evolved around five topics on the interface
between analysis and probability. The main goal of the workshop, the sys-
tematic encouragement of intense discussions between the two communities,
was achieved to a high extent.
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Introduction by the Organisers

Developments in the last few years have shown that hard problems from physics
can be tackled by combining tools from analysis and probability. The main goal of
this workshop was therefore to bring together researchers working on selected top-
ics on the interface between analysis and probability and to encourage intensive
discussions between them. The topics chosen evolve around a rigorous under-
standing of complex physical systems, some of which contain random inputs. The
participants were mostly well-known researchers in either field with a profound
interest in the other, but also a number of younger scientists at the beginning of
their career attended. The particular mixture of people encouraged a high degree
of interaction.

The workshop was a continuation of an Oberwolfach workshop held in December
2008. The general aim and spirit of the two workshops were similar, but the
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concrete topics of the two workshops had only a limited overlap, and apart from
the organisers just seven researchers attended both workshops.

The schedule of the workshop was as follows. Each of the five days was devoted
to one of the topics (1) Optimal transport, (2) Discrete-to-continuum transitions
in systems out of equilibrium, (3) Diffusion and mass transport in inhomogeneous
media, (4) Surfaces and interface evolutions, (5) Phase transitions in many-body
systems. In the morning, a 60-minutes talk with survey character was delivered
by a senior scientist, followed by two to five research talks of 40 minutes each. One
further session was devoted to nine 5-minute talks by young scientists. In this way,
almost all younger participants had the opportunity to present their work. Every
talk was followed by a discussion and a number of questions from the audience.

The main goal of the workshop was remarkably well achieved. Evidence for
this were intense cross-community discussions and an unusually high number of
questions and remarks after every talk coming equally from representatives of both
fields. The interaction between researchers in analysis and probability was much
more intense than in the 2008 workshop. This may be due to the choice of the
topics and of the participants, but we believe it mainly reflects the success of
this workshop series (and other recent events) in closing the gap between the two
research communities.

We now turn to a short description of the main contributions of the workshop.
The first day was opened with a survey by Felix Otto on the interaction between
gradient flows and hydrodynamic limits. Then Giuseppe Savaré gave an overview
of the recent developments in metric-measure theory, and its connection to heat
flows and entropy gradient flows. Yann Brenier presented a remarkable derivation
of a one-dimensional compressible Navier-Stokes equation from a system of random
walkers that is replaced in ordered sequence at every time step. Max von Renesse
discussed stochastic analysis on the Wasserstein space and the Wasserstein diffu-
sion. Marco di Francesco presented an extension of the Wasserstein gradient flow
theory to a class of partial differential equation with singular potential. Finally
Wilfrid Gangbo described recent developments in the theory of Vlasov systems.

On the second day Frank den Hollander presented recent results on the be-
haviour of a random copolymer near an interface between two immiscible solvents,
showing variational characterizations of the phase diagram. Jean-Dominique Deu-
schel demonstrated a method to construct Markov chains approximating a given
diffusion process with non-symmetric diffusion coefficients. Gero Friesecke pre-
sented a novel application of optimal transport theory in the context of density
functional theory. Lorenzo Bertini explained how to extend the Donsker-Varadhan
large deviation principle for the empirical measure by considering also the empiri-
cal flow of a Markov process. Pierre Mathieu described a remarkable scaling limit
for a random walk in a trap environment, and Greg Pavliotis presented a deter-
ministic coupled system consisting of a classical particle in contact with a heat
bath, where the heat bath is modelled as a wave equation.

The third day started with Errico Presutti highlighting some aspects of two
types of phase transitions for classical many-body systems with potentials of
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Lennard-Jones type: solid-gas and fluid-gas. He put some emphasis on low-
temperature aspects and connected up with optimality results derived at zero
temperature. An approximate description of the first type of transitions at coupled
low temperature and low density, using a large-deviation ansatz, was presented by
Sabine Jansen. Daniel Ueltschi considered probability measures on the set of par-
titions, which are motivated by the study of the interacting Bose gas, but have
many more interesting applications in statistical physics.

The fourth day was opened by Claudio Landim, who presented and compared
the hydrodynamics of three interesting classes of random particle dynamics with
exclusion and explained the differences in the structure of the dynamics and how
they are reflected in the nature of the limiting differential equation. Then Cristian
Giardinà described the concept of duality and an example application, in which
the duality permits the exact solution of a class of interacting diffusions. Tony
Lelièvre explained two methods to use coarse-graining in metastable systems for
the efficient calculation of averages. This was followed by our session for young
researchers, before Dirk Blömker addressed the question of stabilization of sto-
chastic partial differential equations by additive noise, with applications to the
Swift-Hohenberg equation and a Burgers’ equation.

On the final day Andrey Piatnitski explained homogenization for certain types
of parabolic operators with subdiffusive, diffusive and superdiffuse rescaling of
the time variable. Aaron Yip presented a crystal growth model, in particular
the peculiarities at the interface of the arising optimal shape, the Wulff shape.
Antal Jarai gave a survey of the Markovian dynamics of sandpile models and
analysed minimal recurrent configurations on unboundedly growing graphs. Omar
Lakkis described an approach to error estimates in stochastic partial differential
equations in L∞- and Lp-norms, with applications to the Allen-Cahn equation
with additive noise. Finally, Karsten Matthies used a collision tree approach to
derive a simplified Boltzmann equation from a system of deterministic particles
with random positions and annihilation dynamics.
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Abstracts

Heat flows, Dirichlet forms and gradient estimates in Metric Measure

Spaces

Giuseppe Savaré

(joint work with Luigi Ambrosio and Nicola Gigli)

Let (X, d) be a length, complete, and separable metric space endowed with a
measure m ∈ P2(X) (the space of Borel probability measures with finite quadratic
moment) with dense support. The Wasserstein distance in P2(X) is defined by

(1) W 2
2 (µ, ν) := min

∫
d2(x, y) dπ(x, y) for every µ, ν ∈ P2(X),

where the minimum is taken among all the couplings π ∈ P2(X × X) having
marginals µ and ν. Entm : P2(X) → [0,+∞] denotes the Entropy functional

(2) Entm(ρ) :=

∫

X

u logu dm if ρ = um ≪ m, Entm(ρ) = +∞ if ρ 6≪ m.

The metric-measure space (X, d,m) has Ricci curvature bounded from below by
K ∈ R according to Sturm [14] and Lott-Villani [8] (LSV-spaces), if every
couple µ0, µ1 ∈ D(Entm) = {ρ : Entm(ρ) < ∞} can be connected by a minimal
geodesic curve s 7→ µs ∈ D(Entm), s ∈ [0, 1], such that for every s, t ∈ [0, 1]

W2(µs, µt) = |s− t|W2(µ0, µ1),(3a)

Entm(µs) ≤ (1− s)Entm(µ0) + sEntm(µ1)−
K

2
s(1− s)W 2

2 (µ0, µ1).(3b)

If (3b) holds along any geodesics in P2(X) connecting µ0 to µ1 we say that
(X, d,m) satisfies the strong CD(K,∞)-condition.

When (X, d) is a complete Riemannian manifold with metric tensor g, the
above condition is equivalent [15] to the pointwise lower bound Ricg ≥ K I. In
this framework, let ut := Htu be the flow solving the Heat equation in X × (0,∞)

(4) ∂tu−∆u = 0, lim
t↓0

ut = u ∈ L2
m
(X),

associated to the Laplace-Beltrami operator ∆. At the level of probability mea-
sures, the corresponding flow Ht : ρ ∈ P2(X) 7→ ρt ∈ P2(X), i.e. Htρ = (Htu)m if
ρ = um, satisfies the contraction estimate [1, 7, 16]

(5) W2(Htρ,Htσ) ≤ e−KtW2(ρ, σ) for every ρ, σ ∈ P2(X),

and the Evolution variational inequality (EVI, in short)

(6)
d

dt

1

2
W 2

2 (ρt, σ) + Entm(ρt) +
1

2
e−2KtW 2

2 (ρt, σ) ≤ Entm(σ) ∀σ ∈ D(Entm).

This deep connection between the Heat flow, the Entropy, and the Wasserstein
distance have been discovered by Otto [12] in the Euclidean setting and further
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studied by many authors, see e.g. [1, 16]. In particular [11, 13, 10] exploited the
link of (3b), (5) and (6) with the Bochner inequality

(7)
1

2
∆|∇u|2g − 〈∇u,∆g∇u〉g = |∇∇u|2g +Ricg(∇u,∇u) ≥ K|∇u|2g.

It is also well known that (7) lies at the core of the Bakry-Emery Γ-calculus for
the Dirichlet forms [5] and it is equivalent to the pointwise gradient estimate

(8)
∣∣∇Htu

∣∣2 ≤ e−2KtHt

(
|∇u|2

)
.

In general metric-measure spaces the Heat flow Ht can be defined as the L2
m
(X)-

gradient flow of the Cheeger energy [6, 2] Ch : L2
m
(X) → [0,∞]

(9) Ch(u) :=
1

2
inf

{
lim inf
h→∞

∫
|∇uh|2 dm : uh ∈ Lip(X),

∫

X

|uh − u|2 dm → 0

}
,

where for a Lipschitz function u : X → R we set |∇u|(x) := lim supy→x
|u(y)−u(x)|

d(x,y) .

Since Ch is a convex (but no more quadratic, in general) and lower semicontinuous
functional, the (possibily nonlinear) Laplace operator ∆ : D(∆) ⊂ L2

m
(X) →

L2
m
(X) can be defined as the minimal selection of the subdifferential of Ch and it

generates a unique flow (see e.g. [4]) Ht : L2
m
(X) → D(∆) such that ut := Ht u

satisfy the Cauchy problem (4). Notice that

(10) Ht ⇔ ∆ is linear ⇔ Ch is quadratic.

It should be clear that the LSV-notion of lower Ricci curvature bound is too weak,
if one hopes to extend all these properties and relationships to a more general
class of metric measure spaces: in fact LSV-spaces include arbitrary Banach and
Finsler spaces, in which the Heat equation is generally nonlinear [9]. In [3] we
introduce a more restrictive intrinsic notion to lower Ricci bound that rules out
Finsler geometries and still enjoys nice stability, tensorization and locality features.

Definition (RCD(K,∞)-spaces [3]). (X, d,m) has Riemannian Ricci curvature
bounded from below by K ∈ R if for every ρ ∈ P2(X) there exists a locally Lipschitz
curve ρt = Htρ ∈ P2(X), t ≥ 0, satisfying (6) with limt↓0 ρt = ρ.

Theorem 1 (Equivalent formulations [3]). (X, d,m) is a RCD(K,∞)-space if and
only if one of the following two conditions hold:

(RCD1) The Heat flow Ht is linear in L
2
m
(X) (or, equivalently, Ch is quadratic,

according to (10)) and (X, d,m) is a strong CD(K,∞)-space.
(RCD2) The Heat flow Ht is linear and satisfies the contraction property (5).

Theorem 2 (Heat flow, Dirichlet form, Brownian motion [3]). If ρ = um ∈ P2(X)
with u ∈ L2

m
(X), then Htρ = (Htu)m.

Lipschitz regularization and pointwise estimates: the Heat flow satisfies the
strong Feller regularization property Ht(L

∞
m
(X)) ⊂ Lip(X) for t > 0 and

the pointwise gradient estimate

(11)
∣∣∇(Htu)

∣∣2 ≤ e−2KtHt

(
|∇u|2

)
for every u ∈ Lip(X).
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Dirichlet form and distance: Ch is a strongly local Dirichlet form admitting Γ-
calculus and d coincides with the Lipschitz distance induced by Ch.

Markov process: there exists a unique (in law) Markov process {Xt}t≥0 with
continuous sample paths in [0,∞) and transition probabilities Ht δx, i.e.

(12) P
(
Xs+t ∈ A|Xs = x

)
= (Htδx) (A) for every s, t ≥ 0, A Borel.

Theorem 3 (Structural properties [3]).

Stability: if (Xn, dn,mn) are RCD(K,∞)-spaces converging to (X, d,m) in the
measured-Gromov-Hausdroff sense as n ↑ ∞, then (X, d,m) is RCD(K,∞).

Tensorization: if (Xi, di,mi), are RCD(K,∞) then also (X1 ×X2, d,m1 ⊗m2)
is RCD(K,∞) where d2((x1, x2), (y1, y2)) := d21(x1, y1) + d22(x2, y2).

Locality: let {Xi}i∈I be a finite or countable cover of X made of closed sets with

m(Xi) > 0, m(∂Xi) = 0. If X is nonbranching then (X, d,m) is RCD(K,∞)
iff each (Xi, d,mi) is RCD(K,∞), where mi := m

−1(Xi)m Xi.
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[5] D. Bakry. Functional inequalities for Markov semigroups. Probability measures on groups:
recent directions and trends, Tata Inst. Fund. Res., Mumbai, 91–147, 2006.

[6] J. Cheeger. Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct.
Anal., 9(3):428–517, 1999.

[7] M. Erbar. The Heat equation on manifolds as a gradient flow in the Wasserstein space.
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Integration of a 1D compressible Navier-Stokes model by random

walks with delayed elastic collisions

Yann Brenier

Deriving the Navier-Stokes equation of compressible gases from simple systems
of interacting particles with noise, without going back to the Maxwell-Boltzmann
kinetic theory, seems a natural goal. This can be achieved in the elementary
and not really physical following situation: we consider only one space variable,
we neglect the temperature equation, we assume that both the pressure and the
viscosity depend linearly on the density. More precisely, we consider the CNSE
(compressible NS equations):

∂t(ρv) + ∂x(ρv
2 + λǫρ)) = ǫ∂x(ρ∂xv),

∂tρ+ ∂x(ρv) = 0,
(1)

where λ, ǫ are positive constants. The corresponding system of particles can be
described as follows. Given a uniform time step h > 0, we consider K particles of
unit mass on the real line with positions Xn,k at time t = nh, ordered in increasing
order for k = 1, · · ·K. We introduce an auxiliary variable Zn,k. At each time step,
we first move each particle to the new position

X̂n+1,k = (1 + hλ)Xn,k + hZn,k +
√
2ǫhNn,k(2)

where Nn,k is a given sequence of independent random numbers, with expectation
0 and unit variance. After this step, which includes a random walk, the positions
of particles are (in general) no longer in increasing order. Then, we sort them in
increasing order an obtain the updated positions Xn+1,k. Finally, we update the
Zn,k by setting

Zn+1,k = (1− λh)Zn,k − hλ2Xn,k.(3)

[Observe that the sorting step can be interpreted in terms of elastic collisions
’with delay”. It is well known that 1D elastic collisions of particles of same mass
are ineffective since they just amount to exchanging labels. Indeed, 1D colliding
particle just exchange their velocities after an elastic collision. However, if two
colliding particles wait for the next time step (k + 1)h before exchanging their
velocities (”delayed elastic collisions), the effect will be equivalent to the sorting
of positions in increasing order.]
Our convergence analysis is done without stochastic analysis, by substituting (−1)k

for the random number Nn,k. This choice introduces enough ”mixing”, thanks to
the reordering step. In addition, we consider the case of 1-space periodic solutions
of the CNSE, which requires a little of care for the reordering step, but largely
simplifies the PDE part of the proof.
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The proof starts with a “material” formulation of the CNSE. We denote by X(t, a)
the “material” positions of the fluid parcels, so that

∂tX(t, a) = v(t,X(t, a)), ∂aX(t, a)ρ(t,X(t, a)) = 1.

Next, we introduce

(4) Z(t, a) = −λX(t, a) + ∂tX(t, a) + ∂a(1/∂aX(t, a))

and get for Z, after elementary calculations (using our special choice of pressure
and viscosity), an elementary ODE:

(5) ∂tZ + λ(Z + λX) = 0.

So, we get an evolution set of equations for (X,Z) where the only non-trivial part
corresponds to the non-linear scalar evolution operator

(6) ∂tX(t, a) + ∂a(1/∂aX(t, a))

which is nothing but the “material” version of the plain heat operator acting on
the density ρ

∂tρ− ∂2xxρ(7)

Then the consistency of the discrete model of particles becomes rather clear as a
space-time discretization of the “material” version of the CNSE, where (Xn,k, Zn,k)
approximates (X(t, a), Z(t, a)): the random walk simulates the heat part of the
equations, while the reordering step enforces the constraint ∂aX(t, a) ≥ 0 at the
discrete level.
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Nonlocal interaction PDEs, gradient flows and optimal transport

Marco Di Francesco

(joint work with José A. Carrillo, A. Figalli, T. Laurent, D. Slepçev)

We consider a class of partial differential equations of the form

(1) ∂tµ = div(µ∇W ∗ µ),
posed on the whole space Rd with arbitrary dimension d. In the equation (1),
µ ∈ P2(R

d) the space of probability measure with finite second moment. The
interaction potential W is even, continuous, radial W (x) = w′(|x|), locally attrac-

tive at x = 0 i. e. w′(r) > 0 on r ∈ (0, r0), and λ-convex i. e. W (x)+λ |x|2

2 convex
for some λ ∈ R.
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The model (1) is the continuum counterpart of the interactingN -particle system

(2) Ẋi(t) = −
N∑

j 6=i, j=1

mj∇W (Xi(t)−Xj(t)), i = 1, . . . , N,

which finds several applications in statistical physics [6], population biology [8],
material sciences [5], and sociology [9]. A slightly different version of those models
incorporates linear or nonlinear diffusion effects, see [6].

A typical situation occurring in some of the above mentioned context is the
total collapse of the measure µ in a finite time, i. e. µ(t) = δxc

for t ≥ t∗ with t∗

depending on the initial condition and xc being the center of mass of the system
(preserved in time). Such situation is reminiscent of what happens in chemotaxis
modeling, see [7]. Such property can be easily proved for finite particles (2) as
follows: let I ∈ {1, . . . , N} be such that XI(t) is the particle with largest distance
to xc, assume w. l. o. g. xc = 0 (I can vary in time, but it has only a finite number
of jumps, since particles stick together when they collide). A direct computation
shows that the quantity |XI(t)| decreases in time (it is immediate if we assume
the ratio w′(r)/r is decreasing, otherwise this requires some more work, see [2]),
and it collapses to zero at time

t∗ =

∫ XI(0)

0

1

w′(r)
dr.

In particular, if a non-Osgood type condition is assumed for W , namely that the
ratio 1/w′(r) be integrable at r = 0, then t∗ < +∞. It can be easily proven
that t∗ only depends on the radius of the support of the empirical measure µ =∑N

j=1mjδXj
at time t = 0. In particular, t∗ does not depend on N .

In the proposed work, a general existence and uniqueness theory for (1) is pre-
sented, which allows (for the first time) to include potentials with pointy singularity
at the origin. Such theory is an extension of the Wasserstein gradient flow theory
developed in [1]. As a further improvement of such theory, we can also include
potentials with quadratic repulsive growth at infinity. The main technical point
needed to perform this task is the rigorous characterization of the velocity field
v(x) =

∫
Rd ∇W (x − y)dµ(y) in the continuity equation (1). Clearly, when the

measure µ concentrates, v is not well defined in case of pointy potentials W , i.
e. ∇W discontinuous at x = 0. Such difficulty reflects the technical issue in the
theory [1] to define the subdifferential of the interaction energy functional

(3) W [µ] =
1

2

∫∫

R2d

W (x− y)dµ(x)dµ(y), µ ∈ P2(R
d).

We propose the formula

∂0W [µ](x) =

∫

x 6=y

∇W (x − y)dµ(y)

for the minimal subdifferential (i. e. element of the subdifferential with minimal
L2(dµ)-norm) of W on µ. We then exploit the λ-convexity assumption to prove
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existence and uniqueness of gradient flow solutions to (1) in the sense of [1] with
the property

(4) dW (µ1(t), µ2(t)) ≤ eλtdW (µ1(0), µ2(0)),

for two solutions µ1 and µ2. Here dW denotes the 2-Wasserstein distance.
The main advantage of our approach is that it allows to include singular mea-

sures in our theory. It was in fact known in [3] that L1 ∩L∞ solutions to (1) blow
up in finite time, but it was not clear how to continue solutions after blow up.

As a very simple application of our theory, we can prove that the total col-
lapse property stated above for particles can be easily proven for all compactly
supported measure solutions in P2. We use an atomization technique due to [4],
which consists in approximating an initial measure µ0 with a finite set of particles

µN
0 =

∑N
j=1mjδXj

such that dW (µ0, µ
N
0 ) is arbitrarily small. Then, the stability

property (4) gives

dW (µ(t), µN (t)) ≤ eλtdW (µ0, µ
N
0 ),

and on substituting t = t∗, with t∗ being the time of total collapse of µN to a delta,
we get that the solution µ(t) to (1) with initial condition µ0 becomes a single delta
at xc in finite time.

References
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Particle dynamics with interactions on the real line

Wilfrid Gangbo

(joint work with Yann Brenier, Giuseppe Savaré, and Michael Westdickenberg)

In a joint work with Adrian Tudorascu, we extended the weak KAM theory
to infinite dimensional systems such as the Vlasov system. Let W ∈ C2(Rd)
be periodic such that W ≤ W (0) and let µ0 an initial probability measure on
R

d × R
d. The Vlasov system we consider consists in finding a path t → µt on the

set P2(R
d×Rd) of probability measures of bounded second moments, distributional

solution of

(1) ∂tµ+∇x · (pµ) = ∇p · (µ∇W ∗ ̺).
Here, ̺ is the spatial marginal of the probability measure µ. We showed that
given ̺0 ∈ P2(R

d) and c ∈ Rd we can choose u0 : Rd → Rd square integrable with
respect to ̺0 such that the solution of (1) starting at

µ0 = ̺0(dx)δp−u0(x)(dp)

satisfies ∫

Rd×Rd

∣∣∣
x

t
+ c

∣∣∣
2

µt(dx, dp) ≤
C√
t
.

Thus,

lim
t→∞

∫

Rd×Rd

∣∣∣
x

t
+ c

∣∣∣
2

µt(dx, dp) = 0.

In fact, with A. Tudorascu, we showed existence of a path t → ̺t ∈ P2(R
d) and

ut : R
d → Rd square integrable with respect to ̺t, such that

µt = ̺t(dx)δp−ut(x)(dp).

As a consequence the pair (̺, u) is a distributional solution of

(2) ∂t̺+∇x · (̺u) = 0, ∂t(̺u) +∇x(̺u⊗ u) = −̺∇W ∗ ̺.
This naturally raises the following question: given ̺0 ∈ P2(R

d) and u0 : Rd →
R

d square integrable with respect to ̺0, can we find t→ (̺t, ut) starting at (̺0, u0)
and satisfying (2). When d = 1, in a joint work with Y. Brenier, G. Savaré and M.
Westdickenberg, we developed a theory which answers the question in the general
case

(3) ∂t̺+ ∂x(̺u) = 0, ∂t(̺u) + ∂x(̺u
2) = ̺f̺.

In (3) the expression −W ′ ∗ ̺ has been replaced by a more general expression f̺,
such that f̺ is a Borel function defined ̺–almost everywhere. We explained how
(3) can be described by a differential inclusion on the space of transport maps.
We proved a stability result for solutions of this system and its connection with
sticky-particle systems.
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Variational description of random polymers

Frank den Hollander

(joint work with Erwin Bolthausen and Alex Opoku)

We consider a random copolymer near a selective interface separating two sol-
vents. The configurations of the copolymer are directed paths that can make i.i.d.
excursions of finite length above and below the interface. The excursion length dis-
tribution is assumed to have a tail that is logarithmically equivalent to a power law
with exponent α ≥ 1. The monomers carry i.i.d. real-valued types whose distribu-
tion is assumed to have zero mean, unit variance, and a finite moment generating
function. The interaction Hamiltonian rewards matches and penalizes mismatches
of the monomer types and the solvents, and depends on two parameters: the in-
teraction strength β ≥ 0 and the interaction bias h ≥ 0. We are interested in the
behavior of the copolymer in the limit as its length tends to infinity.

The quenched free energy per monomer (β, h) 7→ gque(β, h) has a phase tran-
sition along a quenched critical curve β 7→ hquec (β) separating a localized phase,
where the copolymer stays close to the interface, from a delocalized phase, where
the copolymer wanders away from the interface. We derive variational formu-
las for both these quantities. We compare these variational formulas with their
analogues for the annealed free energy per monomer (β, h) 7→ gann(β, h) and the
annealed critical curve β 7→ hannc (β), both of which are explicitly computable.
This comparison leads to:

(1) A proof that gque(β, h) < gann(β, h) for all α ≥ 1 and (β, h) in the annealed
localized phase.

(2) A proof that hannc (β/α) < hquec (β) < hannc (β) for all α > 1 and β > 0.
(3) A proof that lim infβ↓0 h

que
c (β)/β ≥ Kc with Kc = (1 + α)/2α for α ≥ 2

and Kc ∈ [B(α)/α, (1 + α)/2α] for 1 < α < 2 with B(α) > 1.
(4) An estimate of the total number of times the copolymer visits the interface

in the interior of the quenched delocalized phase.
(5) An identification of the asymptotic frequency at which the copolymer visits

the interface in the quenched localized phase.

The copolymer model has been studied extensively in the literature. The goal of
the present work is to open up a window with a variational view and to settle a
number of long-standing open problems.
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Markov chain approximation to non-symmetric diffusions with

bounded coefficients

Jean-Dominique Deuschel

(joint work with Takashi Kumagai)

We consider a diffusion operator in divergence form

LF (x) =
d∑

i,j=1

∂xi

(
ai,j(x)∂xj

F (x)
)

which is uniformly elliptic and bounded: the coefficients aij are real measurable
functions such that

|aij(x)| ≤ C1,
∑

i,j

ai,j(x)ξiξj ≥ ǫ
∑

i

ξ2i .

The corresponding (non symmetric) Dirichlet form is then given by

E(F,G) =
∑

ij

∫

Rd

∂xi
F (x)aij(x)∂xj

G(x) dx.

It is well known that non-negative solutions to the calorific (parabolic) equation
satisfy the scale-invariant parabolic Harnack principle, in particular the associated
heat kernel have some Hölder regularity with both upper and lower Gaussian
bounds.

The aim of this paper is to construct the associated diffusion process by an
approximation with finite range random walks on the rescaled lattice Sn = 1

nZ
d.

In case of a symmetric diffusion matrix

aij = aji

[SZ] give an explicit construction based on a discrete analogy of the Nash-Moser-De
Giorgi theory for symmetric uniformly irreducible walks. In particular they derive
the Hölder regularity for the corresponding heat kernels. Further results allowing
unbounded jump ranges converging to symmetric processes with both diffusions
and jumps have been obtained in [BK] and [BKU]. However such estimates for
non-symmetric Markov chains were still unknown.

Our first objective is to identify the class of non-symmetric walks satisfying a
scale invariant parabolic Harnack inequality as the class of Markov chains with
bounded cycle decompositions. In this class of processes on Sn, the (rescaled)
Dirichlet form is given by

En(F,G) =
∑

γn∈Γn

n2−dEγn
(F,G)

where

Eγn
(F,G) =

∑

xi∈γn

(
F (xi)− F (xi+1)

)(
G(xi)−G(x0)

)
.
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Here γn = (x0, x1, ..., xℓ = x0) is a collection of oriented cycles of length ℓ(γn) =
ℓ ≥ 2 and αn(γn) > 0 are the weights of the cycles. When the length of the cycles
is at most two, we have a symmetric chain.

We make the following assumptions: bounded weight, bounded cycle length
and bounded range:

αn(γn) ≤M1, ℓ(γn) ≤M2, range(γn) ≡ max
xi

|xi − xi+1| ≤
M3

n
.

Also we assume that the chain is uniformly irreducible, i.e. the corresponding time

discrete chain {X(n)
k , k = 0, 1, ...} satisfies, for each x ∈ Sn and unit vector ei there

exist k = k(x,±ei) ≤ N with

P (X
(n)
k = x± ei/n|X(n)

0 = x) ≥ δ.

Our first result then shows that the scale-invariant parabolic Harnack principle
holds, and we thus get gaussian heat kernel estimates for with Hölder continuity.

In particular tightness follows from these estimates and the next question we
address deals with convergence issue: find conditions which guarantee the con-
vergence of the heat kernels of the Markov chains to the heat kernel of the non-
symmetric diffusion process. It is well known, that convergence of the correspond-
ing Dirichlet forms:

lim
n→∞

En(F,G) = E(F,G) =
∑

ij

∫
∂xi

F (x)aij(x)∂xj
G(x) dx, F,G ∈ C1(Rd),

does not suffice.
Instead we rewrite the Dirichlet form of the Markov chain as

En(F,G) = n−d
∑

x,y∈Sn

d∑

i,j=1

∇i
nF (x)b

n
i,j(x, y)∇i

nG(y)

for adequate coefficients bnij(x, y), where ∇i
nF (x) = n

(
F (x+ ei/n)− F (x)

)
is the

discrete partial derivative and we set

anij(x) =
∑

y

bnij(x, y).

Then local convergence of an to a in L1(Rd):

lim
n→∞

∫

K

|anij(x)− aij(x)|dx = 0, ∀K compact set of R
d

imply convergence of the heat kernels and weak convergence of the Markov chain
to the diffusion process.

Finally we return to the original question: for given bounded uniformly elliptic
matrix aij how to construct the Markov chain converging to the diffusion process.
In view of the above, all we need is to find the corresponding bounded cycle
decomposition such that the coefficient of the discretized Dirichlet form converges
locally in L1(Rd).
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Our construction is very explicit and could easily be numerically implemented.
We use a simple two scale analysis, with piecewise constant approximation of the
diffusion matrix at mesoscopic scale n−1/2. Next we deal with the symmetric ã(x)
and the antisymmetric â(x) part of the matrix a(x).

For the antisymmetric part we create for each i 6= j with âi,j(x) > 0 rotational
cycles γij(x) to nearest neighbors of length 8L passing through the corners

x, x− 2L(ei/n), x− 2L(ei/n)− 2L(ej/n), x− 2L(ej/n)

with weight

αn(γij(x)) =
âij(x)

2L
.

For the symmetric part, we first bring the matrix in diagonalized form,

∑

i,j

ãi,j(x)ξiξj =

d∑

i=1

λi(x)
(
Vi(x) · ξ

)2

and then introduce the cycles of length two

γi(x) = (x, x + Vi(x)/n, x)

with weight

αn(γi(x)) = λi(x)

We use the Feshbach map in order to bring the matrix in diagonalized form without
having to compute the eigenvalues and eigenvectors of the matrix ã(x).
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Density functional theory and optimal transportation with Coulomb

cost

Gero Friesecke

(joint work with Codina Cotar and Claudia Klüppelberg)

We recently discovered that in a natural scaling limit, the celebrated Hohenberg-
Kohn density functional from electronic structure theory reduces to an optimal
transport problem. Our work thereby links density functional theory (DFT), which
is a quantum mechanical theory of electrons and constitutes a large and very active
research area in physics and chemistry, for the first time to optimal transportation
theory, which has recently become a very active area in mathematics.
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Informal connection Quantum mechanics – DFT – Optimal transport.

The chemical behaviour of atoms and molecules is described accurately, at least in
principle, by quantum mechanics. Quantum mechanics for the electrons in a mol-
ecule boils down to a partial differential equation for a function Ψ ∈ L2(R3N ,C),
where N is the number of electrons and where, for simplicity, we ignore spin. The
Born formula says that |Ψ(x1, .., xN )|2 is the joint probability density of positions
x1, .., xN ∈ R3. To simulate chemical behaviour, approximations are needed. This
is because of a ‘curse of dimension’ phenomenon: Discretizing R by 10 gridpoints
means that R

3N has 103N gridpoints. E.g., CO2 has 22 electrons, giving rise to
an unfeasible 1066 gridpoints.

DFT [PY95] is the standard approximation to quantum mechanics in simulations
with more than a dozen or so electrons, and was introduced by Hohenberg, Kohn
and Sham in the 1960s. It approximates quantum mechanics via a closed eq. for
the marginal density

ρ1(x1) =

∫
|Ψ(x1, .., xN )|2dx2 · · · dxN .

All one-point marginals are equal, since |Ψ|2 is symmetric in the xi, by the Pauli
principle.

The full Schrödinger equation can be reformulated as hierarchy of eq’s: for ρ1 in
terms of the pair density ρ2(x1, x2) =

∫
|Ψ(x1, .., xN )|2dx3 · · · dxN , for ρ2 in terms

of ρ3, etc. DFT models, i.e. closed eq’s for ρ1, can be viewed as semi-empirical
models of the pair density ρ2 in terms of its marginal ρ1. Mathematicians may not
be familiar with DFT, but its inventor Walter Kohn received the 1998 Nobel Prize
in Chemistry, and DFT is routinely used in physics, chemistry, materials science
and molecular biology to predict binding energies and molecular geometries.

There are many different DFT models. The simplest is based on a statistical inde-
pendence (or mean field) assumption, ρ2 = ρ1 ⊗ ρ1, and goes back to Thomas and
Fermi in 1927. Early modern DFT computations used the local density approxi-
mation, in which correlations are modelled via electron gas theory. More accurate
functionals were developed, among others, by Becke, Lee, Yang, Parr, Perdew,
Wang, Burke, and Ernzerhof. While the accuracy of the best functionals (com-
pared to more exact quantum mechanical computations or experimental data) is
impressive in many situations, designing functionals with further improved accu-
racy continues to be the goal of a great deal of research in physics and chemistry.
Mathematically, the best DFT models used in practice have no rigorous connection
to full quantum mechanics, and an accompanying lack of systematic improvability.

Informally, the connection quantum mechanics – DFT – optimal transport is as
follows [CFK11]. For N = 2 electrons, and in the semiclassical limit ~ → 0, the
following closure relation between single-particle density and pair density becomes
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exact:

ρ2 = solution of an optimal transport problem with

Coulomb cost and equal marginals ρ1.

The optimal transport problem is:

(1) min
γ∈P(R6)

∫

R6

1

|x− y|dγ(x, y) s/to right and left marginal ρ1,

where P(Rd) denotes the probability measures on R
d. Note that while ρ1 and ρ2

depend on ~ and on the molecule-dependent external potential v appearing in the
full quantum mechanical equation for the electronic wave function Ψ, the closure
relation is universal.

Mathematically, the cost function in the above OT problem has two novel features,
cost decreases with distance, and has a singularity on diagonal. On the other hand,
there is one simplifying feature, namely equal marginals.

The above closure relation can be generalized to an arbitrary number of particles;
one obtains a many-marginal optimal transport problem [CFK12].

Using methods from OT theory, especially of [GM96], one can show that the
solution to problem (1) is unique, and given by an optimal map, ρ2(x, y) =
ρ1(x)δT (x)(y) (i.e., the Kantorovich problem is equivalent to the corresponding
Monge problem).

Rigorous connection Quantum mechanics – DFT – OT. The ‘exact’ (non-
relativistic, Born-Oppenheimer) quantum mechanical ground state energy of a
molecule is given by

(2) E0 = inf
Ψ∈AN

E[Ψ]

where, ignoring spin for simplicity, AN consists of the functions in the Sobolev
space H1(R3N ) which are antisymmetric in the coordinates x1, .., xN ∈ R3 and
satisfy ||Ψ||L2 = 1, and E[Ψ] = T [Ψ] + Vee[Ψ] + Vne[Ψ] with

T =
~2

2

∫

R3N

|∇Ψ|2, Vne =
∫

R3N

∑

i

v(xi)|Ψ|2, Vee =
∫

R3N

∑

i<j

1

|xi − xj |
|Ψ|2

(kinetic energy, electron-nuclei interaction energy, and electron repulsion energy;
~ is Planck’s constant and v : R3 → R is a molecule-specific external potential).
As noticed by Hohenberg and Kohn, the non-universal part of the energy only
depends on the single-particle density ρΨ1 =: ρΨ:

Vne[Ψ] =

∫ ∑

i

v(xi)|Ψ(x1, .., xN )|2 = N

∫

R3

v(x) ρΨ(x) dx.
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One can therefore partition the minimization in (2) into a double minimization,
first over Ψ subject to fixed ρ, then over ρ:

E0 = inf
Ψ

(
T [Ψ] + Vee[Ψ] +N

∫
v(r) ρΨ(r) dr

)

= inf
ρ

inf
Ψ 7→ρ

(
T [Ψ] + Vee[Ψ]

)

︸ ︷︷ ︸
=:FHK [ρ]

+N

∫
v(r) ρ(r) dr.

The functional FHK is known after its inventors as the Hohenberg-Kohn functional;
the above constrained-search definition of it is due to M.Levy. The domain of FHK

consists of the image RN of the set AN under the map Ψ 7→ ρΨ. Our “closure
relation” can now be rigorously stated as follows:

Theorem 1. For N = 2, and all ρ ∈ RN ,

lim
~→0

FHK [ρ] = EOT [ρ],

where EOT [ρ] is the optimal cost of (1) as a function of the marginal ρ.

The difficulty in proving this is a regularity issue. Any wavefunction Ψ whose
square is the optimal plan γ of the limiting OT problem is far from having finite
kinetic energy (it is not even in L2), and can therefore not be used as a trial
function in the variational definition of FHK . But smoothing the optimal plan
γ destroys the marginal constraint. We therefore developed a novel technique to
restore the marginal constraint after smoothing while at the same time keeping
the cost under control.

Exactly soluble examples. To get a basic feeling of the behaviour of the OT
problem (1), let us look at some exactly integrable examples. For these, the
Coulombic form of the cost is not essential, one needs that c = c(|x − y|) is posi-
tive, decreasing with distance, and, crucially, convex in the distance. Rigorously
deriving the formulae below relies on the methods of [MC99]. Shortly after giving
the talk, I learned that the formulae in examples 2) and 3) are known, on grounds
of physical intuition and formal arguments, in the physics literature [Se99, SGS07].
Recall that the optimal measure is of the “Monge” form γ(x, y) =) = ρ1(x)δT (x)(y).

1) ρ1=uniform measure on [0,1]. Then T (x) = x + 1/2 for x < 1/2, and x − 1/2
for x > 1/2. That is to say, T rigidly switches the two halves of the interval.

2) ρ1 ∈ L1(R), positive. With a denoting the median of ρ1, for x < a we have

∫ x

−∞

ρ1 =

∫ T (x)

a

ρ1,

and similarly for x > a. Thus T maps the interval left of the median to the
interval right of the median, while re-stretching it appropriately so as to satisfy
the constraint that T pushes forward ρ1|{x<a} to ρ1|{x>a}.
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3) ρ1 ∈ L1(Rd), positive, radially symmetric. Then for r > 0, e ∈ Sd−1

T (re) = −t(r)e

with t(r) determined by
∫ r

−∞
|Sd−1

s |ρ1(s) ds =
∫ t(r)

0
|Sd−1

s |ρ1(s) ds. This means, in
particular, that T maps lines through the origin to themselves, and points on such
a line to points on the opposite side of the origin.

The plot shows the optimal map T restricted to a line through the origin, for
ρ1(x) = const e−|x|, x ∈ R3.
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Scaling limits of trap models, K-processes and aging

Pierre Mathieu

In [3], we introduced K-processes as scaling limits for the following model of
random walk with traps, originally studied by Bouchaud in [1] as a toy model
for spin glasses. Let S be a finite set and consider the Markov chain which, when
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sitting at site x, waits for an exponentially distributed time of mean τ(x) and then
jumps to another point in S chosen with uniform probability.

It turns out that, when the rates (τ(x) ; x ∈ S) are chosen at random according
to an i.i.d. law with a power tail, then this (properly rescaled) trap model converges
to a scaling limit, as the cardinality of S tends to infinity.

More generally, K-processes are Markov processes on the one point compactifi-
cation of N with a single instantaneous state (the ‘infinity’). Besides appearing as
scaling limits of random walks as above, they can also be directly constructed, ei-
ther in analytic terms through their Dirichlet forms or by probabilistic means, via
Poisson processes. We also gave a characterization of K-processes through their
entrance laws. In words, a K-process is characterized by its holding time when
sitting at some point in N and its sojourn time at ‘infinity’, plus the property that,
when starting at ‘infinity’, it enters any finite set with a uniform law. Of course,
in order to fulfill this last requirement, starting from ‘infinity’, a K-process must
almost surely perform an infinite number of jumps before any positive time. (It is
a Markov process of the fourth kind in P. Lévy’s classification.)

The results in [3] have later been extended to the dynamics of the Random
Energy Model in [4] and K-processes were also used in [6] to describe scaling
limits of sequences of random walks on a large torus.

We recently revisited scaling limits of trap models ‘à la Bouchaud’ in [7] with
two objectives. We introduce a non homogeneous version of K-processes (when
the entrance law is not uniform anymore) which is related to the scaling limit of
trap models in which the probability to jump to a point x ∈ S is not uniform
anymore but proportional to τ(x)a, for some asymmetry parameter a > 0.

The second result in [7] is a new description of the way the limiting K-process
jumps when starting from infinity. This description takes the form of a second
scaling limit, as time tends to 0, where the limiting process can be expressed in
terms of jumps of subordinators. As a consequence we recover the asymptotics of
correlation functions of trap models - the so called ‘aging’ results - similar to those
proved in [2] and [5] by a different method.
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Markovian Approximation of Open Classical Systems

Grigorios A. Pavliotis

We consider the dynamics of a classical particle in one dimension coupled to a heat
bath which is at equilibrium at temperature β−1. The full dynamics of the coupled
particle/heat bath model is assumed to be Hamiltonian. The heat bath is modeled
through a linear wave equation with initial conditions distributed according to the
appropriate Gibbs measure. The Hamiltonian of the full dynamics is [KHM97]

(1) H(p, q, π, φ) =
p2

2
+ V (q) +

1

2

∫

R

(
|π|2 + |∂xϕ|2

)
dx+

∫

R

ϕ(x)ρ(x − q) dx.

Under the assumption that the potential V (q) is confining, we can approximate
the coupling term with (dipole approximation)

(2) HI(q, ϕ) ≈ q

∫

R

∂xϕ(x)ρ(x) dx.

The equations of motion for (1) with the coupling (2) are

q̇ = p, ṗ = −V ′(q)−
∫

R

∂xϕ(x)ρ(x) dx,(3a)

∂tϕ = π, ∂tπ = ∂2xϕ+ q∂xρ.(3b)

We will use the notation φ = (ϕ, π) and

(4) A =

(
0 1
∂2x 0

)
,

and HE will denote the Hilbert space equipped with the energy norm

(5) 〈φ1, ψ2〉 =
∫

R

(
∂xφ1(x)∂xφ2(x) + π1(x)π2(x)

)
dx

where the overbar denotes the complex conjugate. Furthermore, it is convenient
to introduce the notation α = (α1(x), 0) ∈ HE with ∂xα1(x) = ρ(x). We can
formally write the Gibbs measure with which the initial conditions of the wave
equation are distributed in the form

(6) “µβ(dφ) =
1

Z
e−

β
2 ‖φ‖2

HEΠx∈R dφ.
′′

We solve equations (3b) and substitute into (3) to obtain the Generalized

Langevin Equation (GLE) [JP98]

(7) q̈ = −V ′
eff
(q)−

∫ t

0

γ(t− s)q̇(s) ds+ F (t),

where

(8) Veff(q) = V (q)− 1

2
λ2q2, λ = ‖ρ‖L2,
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and

(9) γ(t) =
〈
e−Atα, α

〉
.

Furthermore, the forcing term F (t) is a mean zero (assuming that q(0) = 0)
stationary Gaussian stochastic process given by

(10) F (t) =
〈
φ(0), e−Atα

〉
.

Since the initial conditions of the heat bath are distributed according to a Gaussian
Gibbs measure, φ(0) is a Gaussian random field and we can prove the fluctuation-
dissipation theorem

(11) E(F (t)F (s)) = β−1γ(t− s).

The GLE (7) together with the fluctuation-dissipation theorem is equivalent to
the Hamiltonian dynamics (1) with the coupling (2) and random initial conditions
for the heat bath variables. The ergodic properties of this system were studied
in [JP98].

It was noticed in [EPRB99] that the dynamics (7) can be described by a Mar-
kovian system in an extended phase space for particular choices of the coupling
function ρ(x); in particular those for which their Fourier transform is a rational

function of the form 1/|p(k)|2 with p(k) =
∑M

m=1 cm(−ik)m a polynomial with
real coefficients and roots in the upper half plane. Under this assumption of
such a Markovian heat bath, exponentially fast convergence to equilibrium was
proved for chains of oscillators coupled to two Markovian heat baths at different
temperatures [EPRB99, EH00].

We consider finite dimensional Markovian approximations of the GLE (7). The
most general Markovian approximation of (7) is [Kup04]

q̇m(t) = pm(t), qm(0) = q(0),(12a)

ṗm(t) = −∂qV (qm(t)) + 〈λ, z(t)〉, pm(0) = p(0),(12b)

ż(t) = −pm(t)λ− Âz(t) + GẆ (t), z(0) ∼ N (0, I),(12c)

where z : R+ 7→ Rm, λ ∈ Rm, Â, G ∈ Rm×m. The fluctuation-dissipation theo-
rem (11) takes the form

GGT = β−1(Â+ ÂT ).

The autocorrelation function γm(t) is

γm(t) = 〈e−Âtλ, λ〉,
which is similar to (9) but in the above equation Â is the generator of a con-
traction semigroup. Under the assumption ‖γm(t) − γ(t)‖L2 → 0 we have that
E|qm(t) − q(t)|2 + E|pm(t) − p(t)|2 → 0 over f inite time intervals. Furthermore,
under appropriate assumptions on A, λ the Markovian dynamics is well defined
for m = +∞.

For a confining potential V the dynamics (12) with invariant distribution

ρβ(q, p, z) =
1

Z
e−β(H(q,p)+ 1

2‖z‖
2)
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whereH(p, q) = 1
2p

2+V (q). In particular, the invariant distribution is independent
of A and λ.

Consider furthermore the rescaled dynamics

q̇(t) = p(t), q(0) = q(0), ṗ(t) = −∂qV (q(t)) +
1

ǫ
〈λ, z(t)〉, p(0) = p(0),

ż(t) = −1

ǫ
p(t)λ− 1

ǫ2
A z(t) +

1

ǫ
GẆ (t), z(0) ∼ N (0, I).

Then {q, p} converge weakly [OP11] to the solution of the Langevin equation

(13) q̇ = p, ṗ = −∂qV (q)− γp+
√
2γβ−1Ẇ ,

where the friction coefficient γ is given by

γ = 〈λ, (AT )−1λ〉.
Consider (12) with λ = (λ1, λ2, . . . , λm) and A diagonal with Aii = αi > 0. The
generator of the dynamics (12) is

L = p · ∇q −∇qV (q) · ∇p +
m∑

j=1

λjzj(t) · ∇p

+
m∑

j=1

(
−λjp · ∇zj − αjzj · ∇zj + αjβ

−1∆zj

)
.

The operator −L considered in the function space L2(R2+m, e−β(H(p,q)+ 1
2‖z‖

2))
is hypoelliptic and hypocoercive [Vil09]. Using the theory of hypocoercivity we
can prove exponentially fast convergence to equilibrium in relative entropy [OP11].
Furthermore, a homogenization theorem can be proved for the case where V (·) is
periodic. Finally, the spectrum of the generator L can be computed explicitly
when V (·) is quadratic [OPPS12].
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Some examples of phase transitions

Errico Presutti

I will restrict to “phase transitions of first order with order parameter the [mass]
density”. This simply means that there is a “forbidden interval” of densities, say
(ρ′, ρ′′), so that if we put a mass ρ|Λ| of fluid in a region Λ (|Λ| its volume) with
ρ ∈ (ρ′, ρ′′), (“canonical constraint”), then the fluid separates into a part with
density ρ′ and another one with density ρ′′. It does not exist an equilibrium state
with homogeneous density ρ. Thus if we “move in Λ” we go from one phase (with
density ρ′) to another phase (with density ρ′′) and we see a “phase transition”.

The notion is quantified in statistical mechanics as follows. Denoting by µβ,Λ,N

the canonical Gibbs measure in the torus Λ at inverse temperature β and with N
particles, we shall say that at the inverse temperature β there is a phase transition
with forbidden density interval (ρ′, ρ′′) if given any ρ ∈ (ρ′, ρ′′), for any ǫ > 0:

(1) lim inf
R→∞

lim inf
|Λ|→∞,N/|Λ|→ρ

µβ,Λ,N

[
q :

∫

Λ

1d[ρR(q,r),{ρ′,ρ′′}]>ǫdr < ǫ|Λ|
]
= 1

where q = (q1, .., qN ) ∈ ΛN ; ρR(q, r) is the empirical density of q at r on scale R,
namely

(2) ρR(q, r) =

∑N
i=1 1|qi−r|≤R

|BR|
|BR| the volume of the sphere of radius R; finally d[a,A] is the distance of a from
A.

One of the main goals of statistical mechanics is to prove that for realistic
interactions the Gibbs measure has indeed phase transitions in agreement with
the phase diagrams exhibited by physical fluids with phase coexistence curves
between gas and solid, gas and liquid and liquid and solid. Unfortunately not
many progresses have been obtained so far and I shall briefly describe here some
of the main results.

The 0 temperature case has been studied by F. Theil, [4], and G. Friesecke
et al., [5], proving that for a system of point particles in R

2 with Lennard-Jones
interactions there is a forbidden interval (0, ρc), ρc > 0. Ground states with density
ρ ∈ (0, ρc) are approximated in a torus Λ by the restriction to a subregion Λ′ of Λ
of a triangular lattice configuration with density ρc and no particles in Λ \ Λ′.

The extension to positive temperatures T is still open (no matter how small is
T ) but there is a well established theory for lattice gases, namely when particles
are confined to the lattice Zd and at each site there can be at most one particle, see
for instance Sinai, [3]. The results are obtained by a classification of all possible
deviations from the ground states and proving that with large probability they
are small and rare. In the continuum the excitations have a much more complex
structure and the techniques developed in the lattice fail.

There are instead results for particles in the continuum regarding the liquid-
vapour transition, where instead of perturbing the ground states we perturb the
mean field solutions. The theory goes back to Kac and Lebowitz-Penrose, see [2]
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and references therein, whose aim was to derive the van der Waals theory in a
statistical mechanics context. The hamiltonian in the Kac theory can be written
as:

(3) Hγ(q) =

∫

Rd

e
(
ργ−1(q, r)

)
dr

where in the original paper by Kac, the energy density is e(s) = −s2/2 and the
particles are hard spheres with finite radius. γ > 0 is called the Kac scaling
parameter and the main result was a proof that the free energy density in the
limit γ → 0 has a flat part at low temperatures indicative of a phase transition.
However in the limit γ → 0 the hamiltonianHγ(q) is not well defined and this phase
transition cannot be attributed to a legitimate system of interacting particles.

The difficulties come from the presence of the hard core constraint. Lebowitz,
Mazel and Presutti, [1], have circumvented the problem by studying a model
without hard cores and where the energy density is e(s) = −s2/2 + s4/4!. They
have the following theorem.

Theorem 1. For any d ≥ 2 there are 0 < βc < β0 and γβ > 0, β ∈ (βc, β0) so
that for any β ∈ (βc, β0) and γ < γβ there is a forbidden interval ρ′β,γ , ρ

′′
β,γ).
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Cluster size distributions at low temperature and low density

Sabine Jansen

(joint work with Wolfgang König and Bernd Metzger)

Motivated by geometric approaches to the problem of phase transitions, we inves-
tigate the cluster size distributions for a system of particles in continous configura-
tion space. The pair potential is attractive and particles are distributed according
to a classical Gibbs measure (canonical ensemble). Clusters correspond to groups
of particles close in configuration space.
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More precisely, consider a system of N particles in a box Λ = [0, L]d ⊂ R
d. The

vector of particle positions is x = (x1, . . . , xN ) ∈ ΛN . Particles interact via a pair
interaction potential v : [0,∞) → R ∪ {∞}, the total energy is

U(x1, . . . , xN ) =
∑

1≤j<k≤N

v(|xj − xk|).

The basic assumptions on the pair potential are the following:

• There is a rhc ≥ 0 such that v(r) = ∞ for r < rhc and v(r) < ∞ for
r > rhc. At r = rhc, the potential may be finite or infinite.

• The potential is stable: for suitable B > 0 and all N ∈ N and x ∈ (Rd)N ,
U(x1, . . . , xN ) ≥ −BN .

• The potential has a finite range, i.e., v has a compact support.
• v has an attractive “tail”: let b := sup suppv, then there is a δ > 0 such
that v(r) < 0 for all r ∈ (b− δ, b).

• v is continuous in [rhc,∞) ∩ (0,∞).

For a given inverse temperature β > 0, let Pβ,Λ,N be the canonical Gibbs measure
on ΛN . Fix R > b, with b the potential range. Draw a line between particles
xj , xk if they have mutual distance ≤ R. In this way each configuration splits
into connected components; we call a connected component with k particles a k-
cluster. Let Nk(x) be the number of k-clusters and ρk,Λ(x) := Nk(x)/|Λ|. We are
interested in the distribution of the vector (ρk,Λ(x))k∈N under the Gibbs measure
Pβ,Λ,N(dx), in the thermodynamic limit N, |Λ| → ∞, at fixed β and fixed density
ρ = N/|Λ|.
Theorem 1 (Large deviation principle [4]). Fix β > 0, 0 < ρ < ρcp, with ρcp the
so-called close-packing density. There is a function

f(β, ρ, ·) : R
N

+ → R ∪ {∞}, (ρk)k∈N 7→ f
(
β, ρ, (ρk)

)

with support contained in
∑∞

k=1 kρk ≤ ρ, such that

1

N !

∫

ΛN

e−βU(x)
1

(
(ρk,Λ(x)) ≈ (ρk)

)
dx ≈ exp

(
−β|Λ|f(β, ρ, (ρk))

)
,

i.e.,
(
ρk,Λ(x)

)
k∈N

fulfills a LDP with scale |Λ| and rate function

Jβ,ρ({ρk}) := β
[
f
(
β, ρ, (ρk)

)
− f(β, ρ)

]
.

The rate function is good (lower semicontinuous, compact level sets) and convex.
(Product topology on RN

+.)

Every limiting distribution of the cluster size distribution (ρk,Λ(x))k∈N will be
supported on the set of minimizers of f(β, ρ, ·). In order to exploit this, we need
some information on the rate function.

A first theoretical result is a variational representation of f(β, ρ, (ρk)) as an in-
fimum over shift-invariant point processes. The minimization is under constraints
referring to the prescribed density and cluster size distribution; the functional that
is minimized is akin to the one from the Gibbs variational principle.
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This variational representation allows us to transfer statements on f(β, ρ, ·) to
infinite volume Gibbs measures. For example, f(β, ρ, ·) has a minimizer (ρk) such
that

∑∞
k=1 kρk < ρ if and only if there is a shift-invariant Gibbs measure with

density ρ and with a cluster with an infinite number of particles.
Of more practical use, however, are explicit bounds of the rate function: the

distribution of (ρk,Λ) is well-approximated by a measure coming from random
partitions with multiplicative weights, known in physics as an ideal mixture. This
approximating measure satisfies a large deviations principle with a rate function
of the form

f ideal
(
β, ρ, (ρk)

)
:=

∞∑

k=1

kρkf
cl
k (β) + (ρ−

∞∑

k=1

kρk)f
cl
∞(β) + β−1

∞∑

k=1

ρk(log ρk − 1).

The cluster free energies f cl
k (β) are defined in terms of partition functions with a

connectivity constraint, and f cl
∞(β) = lim f cl

k (β). At low temperature, under suit-
able assumptions on the potential, they behave approximately like ground state en-
ergies, kf cl

k (β) = Ek+O(β
−1 log β). The mixing entropy term β−1

∑
k ρk(log ρk−

1) is of the order O(β−1ρ). Therefore, at low temperature and low density, f ideal

can be further approximated by the functional

g
(
β, ρ, (ρk)

)
:=

∞∑

k=1

ρk
(
Ek + β−1 log ρ) + (ρ−

∞∑

k=1

kρk)e∞,

(here e∞ = limk Ek/k), already encountered in [1].

Theorem 2 (Bounds for the rate function [4]). Under suitable assumptions on
v (Hölder continuity, bounds on the minimal and maximal interparticle distance
in ground states), there are C, β0, ρ0 > 0 such that for all β ≥ β0, ρ ≤ ρ0,∑∞

k=1 kρk ≤ ρ:
∣∣f
(
β, ρ, (ρk)

)
− g

(
β, ρ, (ρk)

)∣∣ ≤ Cρβ−1 log β.

Similar bounds are available for the differences between the minimizers and
minima of f(β, ρ, ·) and g(β, ρ, ·). Since the functional g(β, ρ, ·) is linear and easily
analyzed, one can deduce a number of statements on the limiting cluster size distri-
butions; in particular, one can prove that in the limit β → ∞, ρ = exp(−βν) → 0,
ν > 0 fixed, particles tend to gather in clusters of a given ν-dependent size.

The bounds can be improved by comparing with the full ideal mixture f ideal

instead of the simplified functional g [3].

Thus we have, at low density and low temperature, an approximate formula
for the free energyf(β, ρ) (the minimum of f(β, ρ, ·)). On the other hand, there
are exact expressions for the free energy and pressure in terms of power series,
the Mayer and virial series. The relation between the two approaches can be
understood by looking at the low-temperature behavior of the classical expansions.

Theorem 3 (Low temperature behavior of the Mayer coefficients [2]).
Let p(β, µ) := supρ(ρµ − f(β, ρ)) (the pressure) and bk(β) the coefficients of the
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Mayer expansion βp(β, µ) =
∑∞

k=1 bk(β) exp(βkµ). Then

∀k ∈ N : bk(β) = exp
(
−β(1 + o(1))Ek

)
as β → ∞.

This theorem, in combination with bounds on the free energy, also allows us to
deduce a number of new statements on the Mayer and virial expansions, including
a soft physical interpretation of the radii of convergence: the radius of the pressure-
activity increase corresponds to a fast increase from exponentially small to finite
density, and the radius of the pressure-density series corresponds to a cross-over
from monatomic to polyatomic gas.

Finally, the combination of the previously described results also yields a theorem
on where to look for a low density, low temperature gas-solid phase transition:

Theorem 4 (Where to look for a gas-solid phase transition [2]). Suppose that
there is a phase transition at ρsat(β) as ρ is varied at fixed β. Suppose also that
ρsat(β) → 0 as β → ∞. Then the corresponding chemical potential must satisfy

µsat(β) = e∞ +O(β−1 log β).

The theorem is consistent with the Lee-Yang theorem for lattice gases and with
the continuum Widom-Rowlinson model.
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Random partitions in statistical mechanics

Daniel Ueltschi

(joint work with Nicholas M. Ercolani and Sabine Jansen)

We describe a model of spatial random partitions that provides a coupling between
several different systems: the ideal Bose gas; the zero-range process; particle clus-
tering in classical systems; and spatial permutations. It can be summarised as a
“chain of Chinese restaurants”.

Random partitions and Chinese restaurant process. Let λ = (λ1, . . . , λk)
denote an integer partition, i.e. a sequence of integers that satisfies λ1 ≥ λ2 ≥
· · · ≥ 1 and

∑
i λi = n. Let rj(λ) be the number of elements equal to j. The

relevant probability is

νn(λ) =
1

hn

∏

j≥1

1

rj(λ)!

(θj
j

)rj(λ)

.
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When θj ≡ 1, we actually have the uniform measure on random permutations
(more precisely, the marginal of this measure with respect to cycle lengths). It is
also the invariant measure of the Chinese restaurant process, where n customers
enter one-by-one, each customer choosing either a spot to the right of a seated
customer, or a new table (all with equal probability). It is well-known that, as
n→ ∞, we have

(λ1

n ,
λ2

n , . . . ) → PD(1),

i.e. a random sequence distributed according to Poisson-Dirichlet.

Introducing space. Let X be the space, here a finite or countable set. We
assume that we have a Chinese restaurant at each x ∈ X . Let n = (nx)x∈X

denote the total occupation at each site x. We consider now the probability

PX,n(n) =
1

Z(X,n)

∏

x∈X

g(x)nxhnx
.

Here, the function g(x) plays the rôle of an external potential, and hn is any
function of n only (but it will soon be equal to the normalisation of νn).

A special case is the ideal Bose gas with n bosons in domain [0, L]d, where
X = 1

LZ
d is the Fourier space, and

P(n) =
1

Z

∏

k∈ 1
L
Zd

e−4πβ‖k‖2nk .

Another special case is the invariant measure of the zero-range process, where a
particle at x moves to a random neighbour with rate g̃(nx). In this case, g(x) ≡ 1
and hn =

∏n
i=1

1
g̃(i) .

Under some conditions, these systems display Bose-Einstein condensation: at
high density, the typical n has one nx of order n.

General measure. Let λ = (λx)x∈X denote a sequence of integer partitions
indexed by the sites x ∈ X , that satisfies

∑
x,i λx,i = n. Our probability measure

is

PX,n(λ) =
1

Z(X,n)

∏

x∈X

∏

j≥1

(
g(x)j

θj
j

)rj(λx)

rj(λx)!
.

This is the invariant measure of a chain of Chinese restaurants where customers
exit restaurants only to enter a new one, with a suitable rate of departures and
a size-biased choice of a table. One easily checks that the marginal on n is the
probability above. Also, the conditional measure

PX,n(λ|n) =
∏

x∈X

νnx
(λx)

takes a simple form. Results for PX,n(n) and for νn can be combined to yield
results for PX,n(λ).
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Marginal on r. Let r = (rj)j≥1, where rj =
∑

x rj(λx). The marginal probabil-
ity is

PX,n(r) =
1

Z(X,n)

∏

j≥1

1

rj !

(θj
j

∑

x∈X

g(x)j
)rj

.

A special case is particle clustering [3]. In this case, there is no external poten-
tial, g(x) ≡ 1, and the parameter θj is related to the integral of the Gibbs factor
over j − 1 particles that form a “cluster” around the origin.

Another example is the model of spatial permutations, where the state of the
system consists of n positions x1, . . . , xn in a finite box, and a permutation σ of n
elements. The probability density is given by

1

Z

n∏

i=1

e−ξ(xi−xσ(i) dx1 . . .dxn.

With ρ the particle density, the weights are given by

θj =
1
ρ( e

−ξ )∗j(0).

Under some conditions, there is a critical density above which macroscopic cycles
have the Poisson-Dirichlet distribution [2].

Size of the largest component. We restrict now to the case g(x) ≡ 1. Let M
be the random variable that represents the size of the largest component,

M = max
x,i

λx,i.

First, we have a law of large numbers.

Theorem 1.
M

n
→ max

(
0, 1−

∑

j≥1

θj

)
.

It is not hard to prove a large deviation principle for finite elements, which
reveals that 1 − ∑

θj represents the fraction of indices in infinite components.
This shows that a single macroscopic element may occur, in contrast to the case
of spatial permutations. The absence of external potential, g(x) ≡ 1, plays an
important rôle indeed. If the weights depend on a parameter, there is a phase
transition when

∑
θj becomes less than 1.

We can characterise the size of the largest component for certain specific forms
of the parameters (θj)j≥1.

Theorem 2. We suppose that
∑
θj < 1.

• Case θj = Cj−α, 1 < α < 2. We have

M =
(
1−

∑
θj

)
n+ (1 + o(1))C1/αn1/αY,

where Y is α-stable law.
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• Case θj = Cj−α, α ≥ 2, or θj = C e−jα , 0 < α < 1
2 . We have

M =
(
1−

∑
θj

)
n+ (1 + o(1))

√
n
∑

jθj Y.

Here, Y is equal to a standard normal random variable.
• Case θj = C e−jα , 1

2 ≤ α < 1. We have

M =
(
1−

∑
θj

)
n−O(nα) + (1 + o(1))

√
n
∑

jθj Y,

with Y a standard normal random variable. The term O(nα) is related to
the Cramér series.

The proof of this theorem involves (i) explicit expressions for the probability
of M in terms of ratios of partition functions; (ii) partition functions are given
by local limit theorems of suitable i.i.d. random variables, following [1]; (iii) local
limit theorems proposed in particular by Nagaev [4].

Acknowledgments: I am grateful to the Mathematisches Forschungsinstitut Ober-
wolfach and to the organizers of the meeting “Interplay of Analysis and Probability
in Physics” for allowing me to spend a pleasant and fruitful week there.
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Exactly solvable models of heat conduction

Cristian Giardinà

(joint work with Jorge Kurchan, Frank Redig and Kyamars Vafayi)

We review a class of interacting diffusions which have recently been introduced
to model transport of heat in a systems in contact with two reservoirs (C. Gia-
rdinà, J. Kurchan, F. Redig, Duality and exact correlations for a model of heat
conduction, J. Math. Phys. 48, 033301 (2007)). The models can be exactly
solved by means of a dual stochastic process made of interacting particles which
are absorbed at the boundaries. The construction of the dual process is related
to the underlying structure of SU(1, 1) algebra. The class of interacting diffusions
includes as a special case the KMP model.
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Brownian Energy Process. We start with the Brownian Momentum Process
introduced in [3]. For a set Σm = {1, . . . ,m} with m ∈ N and for a graph
G = (V,E) with vertex set V and edges set E, we consider the real variables
{xi,α}i∈V,α∈Σm

and the generator

(1) LBMP (m) =
∑

(i,j)∈E

m∑

α,β=1

(
xi,α

∂

∂xj,β
− xj,β

∂

∂xi,α

)2

.

The random variables xi,α(t), evolving with the above generator, represent m
momenta per site at time t, and, in the course of evolution, kinetic energy is
exchanged between any two momenta in neighboring (i.e. connected by an edge)
sites. The energies on each site

zi(t) =
1

2

m∑

α=1

x2i,α(t)

evolve with the generator

(2) LBEP (m) =
∑

(i,j)∈E

zizj

(
∂

∂zi
− ∂

∂zj

)2

− m

2
(zi − zj)

(
∂

∂zi
− ∂

∂zj

)
.

This is the Brownian Energy Process, BEP(m). The model (2) can actually be
defined for a real number m ∈ R (i.e. m does not need to be an integer). It is
easy to check that the BEP(m) model has stationary measures given by product
measures with marginals Gamma distributions with shape parameter m/2 and
scale parameter 1/λ, i.e. the marginal stationary density at site i is

(3) fλ(zi) =
λ

m
2

Γ
(
m
2

)z
m
2 −1
i e−λzi .

In particular, for m = 2 one has products of Exponential distributions with pa-
rameter λ.

Symmetric Inclusion process. The Symmetric Inclusion Process, SIP(m), is
an interacting particle systems defined by the generator
(4)

(LSIP (m)f)(ξ) =
∑

(i,j)∈E

ξi

(
ξj +

m

2

)
[f(ξi,j)− f(ξ)]+ ξj

(
ξi +

m

2

)
[f(ξj,i)− f(ξ)] .

Here {ξi}i∈V are integer variables counting the number of particles at every site
i of the graph. Given the configuration ξ = (ξ1, . . . , ξ|V |), we denote by ξi,j the
configuration obtained from ξ by removing one particle at i and placing it at j.

One can easily check that product measures with marginals given by Negative
Binomials, i.e. with marginal probability mass function at site i given by (0 ≤ p ≤
1)

(5) νp(ξi) = (1− p)
m
2
Γ(m2 + ξi)

Γ(m2 )

pξi

ξi!
,
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are reversible, and therefore stationary, measures of the SIP(m) process. In par-
ticular, for m = 2 one has marginal Geometric distributions with parameter 1−p.

Duality. Let {X(t)}t≥0 and {Y (t)}t≥0 be two stochastic processes. We say that
they are dual with duality function D(·, ·) if the following relation hold for all
(x, y) and all times t

(6) Ex(D(X(t), y)) = Ey(D(x, Y (t))) .

On the left-hand side we have expectation with respect to the X(t) process ini-
tialized at x, while on the right-hand side we have expectation with respect to the
Y (t) process initialized at y.
Theorem: The process {z(t)}t≥0 with generator LBEP (m) and the process {ξ(t)}t≥0

with generator LSIP (m) are dual, with duality functions

(7) D(z, ξ) =
∏

i∈V

zξii
Γ(m2 )

Γ(m2 + ξi)

Proof: Duality is a consequence of the fact that the generator of the BEP(m)
process and the generator of the SIP(m) process correspond to the same abstract
operator L(m) in two different representations. The abstract operator is given by
the ferromagnetic quantum spin chain on the graph G, with spins satisfying the
SU(1, 1) algebra. Namely,

(8) L(m) =
∑

(i,j)∈E

(
K+

(m),iK−
(m),j +K−

(m),iK+
(m),j − 2Ko

(m),iKo
(m),j +

m2

8

)

where the spins
{
K+

(m),i,K−
(m),i,Ko

(m),i

}

i∈V
satisfy the SU(1, 1) commutation re-

lations:

(9) [Ko
(m),i,K±

(m),j ] = ±δi,jK±
(m),i [K−

(m),i,K+
(m),j ] = 2δi,jKo

(m),i

The SU(1, 1) algebra admit the following two families (labelled by m) of infinite
dimensional representations:

(10)





K+
(m),i = zi

K−
(m),i = zi ∂

2
zi +

m
2 ∂zi

K0
(m),i = zi ∂zi +

m
4





K+
(m),i|ξi〉 =

(
ξi +

m
2

)
|ξi + 1〉

K−
(m),i|ξi〉 = ξi|ξi − 1〉

Ko
(m),i|ξi〉 = (ξi +m) |ξi〉

The BEP(m) generator is obtained when writing the abstract operator (8) in the
representation with second order differential operators; the SIP(m) generator is
obtained when writing the abstract operator (8) in the representation with infinite
dimensional matrices. The duality functions (7) are found by imposing on each
site that the action of the two representations on D(zi, ξi) is the same.
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Applications and perspectives. As an application, the BEP(1) process was
considered in [3] as a model of heat conduction: a chain with N sites was coupled
to two heat reservoirs (modeled by Ornstein-Uhlenbeck process) at different tem-
peratures. The dual process is then a SIP(1) process with absorbing boundaries.
A general expression for the energy moments in the stationary state was obtained
and solved for the energy covariance. Correlations functions were proved to be
positive in general in [5]. In [4] it was shown that if one start from a chain with
m = 2 and consider an instantaneous thermalization limit of the BEP (2) model,
then the KMP model [1] is recovered.

Among the open problem we mention: i) the construction of duality between
an asymmetric version of inclusion process ASIPq(m) and brownian energy pro-
cess ABEPq(m). Following the scheme developed in [4] this should involve the
deformed quantum group SUq(1, 1); ii) a full ergodic theory of SIP/BEP model;
iii) the explicit solution for the stationary measure for models with reservoirs, akin
to the exclusion process.
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Mathematical analysis of probabilistic numerical algorithms used in

molecular dynamics

Tony Lelièvre

Computational statistical physics is about computing averages. Averages may be
with respect to some statistical ensembles, which are prescribed by the physical
context (for example, with respect to the canonical measure if the number of
particles, the configuration space and the temperature are fixed, see (2) below).
More complicated observables involve averages over trajectories, and this is the
focus of this communication. The aim of this short note is to emphasize the
crucial role played by coarse-graining in many efficient numerical techniques, and
the importance of metastability to support the coarse-graining procedure.

To be more specific, let us consider the overdamped Langevin dynamics:

(1) dXt = −∇V (Xt) dt+
√
2β−1dWt

where Xt ∈ R3N denotes the positions of N particles (think of a very large N),
V : R3N → R is a given potential, which to a set of positions x ∈ R3N associates
its energy V (x), and β−1 = kBT is a constant proportional to the temperature.
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This dynamics is prototypical of those considered in molecular dynamics. The
difficulty when simulating (1) is that the typical timestep which is required to get
a stable discretization is of the order of 10−15s, while the typical timescale over
which interesting changes of conformations (namely macroscopically interesting
modifications of the configurations Xt) are observed is of the order of 10−6s (and
even more in some cases). A natural question is then: how to get an equivalent
dynamics, which could be obtained much more quickly than by a naive discretiza-
tion of (1) ? One point we would like to emphasize here is that one really wants
to get correct trajectories. This is not the same question as getting, for example, a
sampling of the stationary measure for (1), which is indeed the canonical measure

(2) µ(dx) = Z−1 exp(−βV (x)) dx,

or a dynamics which would have only the correct evolution for the time marginals
(namely the law of Xt at time t).

At this point, a natural idea is to try to reduce the dimension of the original
problem, by only looking at some coarse-grained information, which would hope-
fully varies on a timescale which is much larger than 10−15s. Two ideas can be
found in the literature. One may consider a function ξ defined on R3N and with
value in a continuous low-dimensional space, think for simplicity of the case of an
angle in a molecule, in which case ξ : R3N → T (where T is the one-dimensional
torus). Another approach is to consider a function S : R3N → N with value in
a discrete space which should be seen as a mapping from positions in R3N to a
state number in N, these states constituting a partition of R3N . In both cases,
the question is the following: is it possible to design (through a coarse-graining
procedure) a good effective dynamics for (ξ(Xt))t≥0, respectively for (S(Xt))t≥0 ?
And, as mathematicians, we would even like to quantify the error introduced by
the coarse-graining procedure. These coarse-graining techniques can then be used
numerically to build efficient numerical techniques to integrate the dynamics (1)
over macroscopically relevant timescales, and thus to circumvent the problems
raised by metastability.

The take-home message of this note is that this is possible, and this requires
to measure, in some sense, “the metastability of Xt along ξ, respectively along
S” (this is what is behind the assumptions (H1) and (H2) below). Let us make
this more precise. For the first case (coarse-graining to a continuous state space
dynamics), it is very natural to design an effective dynamics as follows (this can
be seen as the so-called Mori-Zwanzig projection operator formalism). In a first
step, by Itô’s calculus, a non-closed dynamics on ξ(Xt) can be written, namely:

dξ(Xt) =
(
−∇V · ∇ξ + β−1∆ξ

)
(Xt) dt+

√
2β−1|∇ξ|(Xt)

∇ξ
|∇ξ| (Xt) · dWt.

Then, one way to close the system is to introduce conditional expectations for the
drift and the diffusion:

dzt = b(zt) dt+
√
2β−1σ(zt) dBt



Interplay of Analysis and Probability in Physics 319

where Bt is a one-dimensional Brownian motion (one may think of dBt =
∇ξ
|∇ξ| (Xt)·

dWt),

b(z) = Eµ

(
−∇V · ∇ξ + β−1∆ξ(X) | ξ(X) = z

)

and

σ2(z) = Eµ

(
|∇ξ|2(X) | ξ(X) = z

)
.

What can then be shown is the following. If (H1) the Logarithmic Sobolev In-
equality constant (or the Poincaré Inequality constant) of the conditional measures
µ(·|ξ(x) = z) are large, then the trajectories (zt)t≥0 are close to the trajectories
(ξ(Xt))t≥0. This can be shown on time-marginals, with error-estimates which are
uniform in time [2] or through trajectorial estimates over finite time intervals,
see [3]. We refer to these works for clearly formulated statements, with a complete
set of assumptions. These assumptions (and in particular (H1)) are at the heart of
many efficient numerical methods which have been proposed to circumvent some
difficulties related to metastability for the computations of canonical averages and
in particular free energy differences, see [5, 4].

For the second case, the idea is the following. For any trajectory (Xt)t≥0 en-
tering a new state, there are two possible situations: either the trajectory remains
in the state for a very long time (let us call it τcorr, following the notation of Art
Voter [6]), or the trajectory leaves this new state before the time τcorr. What
we have shown in [1] is that, in the first situation (and if τcorr is well chosen),
the process is close to the quasi-stationary distribution associated to the current
state, and therefore, conditionally to this state, the time it remains to go out is
exponentially distributed, and independent of the exit point (and thus independent
of the next visited state). These are the two fundamental properties required to
build a discrete state space and continuous in time Markov process, in terms of
state-to-state dynamics. It thus becomes clear that in this context, it is possible
to build a coarse-grained Markovian dynamics if: (H2) the typical time it takes
to leave a state is much larger than the time needed to reach the quasi-stationary
distribution. This assumption is again at the heart of efficient numerical methods
to generate very efficiently the dynamics (S(Xt))t≥0, and in particular the parallel
replica algorithm, see [6]. We refer to [1] for a mathematical analysis and precise
statements.

In both cases, the assumptions (H1) and (H2) can be seen as some mathematical
formalizations of what is called metastability. Moreover, they can be used to quan-
tify the degree of metastability of the process, typically in terms of Logarithmic
Sobolev or Poincaré inequality constants, or spectral gaps of some Fokker-Planck
operators. Designing efficient numerical techniques to estimate these constants
would be a great step towards important improvements of currently used algo-
rithms, and it is the subject of active research.
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Non-exit probability from a time-dependent region of a random walk

among random conductances

Tilman Wolff

(joint work with Wolfgang König)

Random walk in random environment (RWRE) includes some of the most popular
models in statistical physics and probability theory, contributing a lot towards the
understanding of various phenomena such as mass transport or heat distribution in
randommedia. The subfield of random walk among random conductances (RWRC)
or, as many authors prefer to call it, random conductance model (RCM), accounts
for random spatial inhomogeneities in the diffusive dynamics, which seems in many
respects more realistic than homogeneous diffusion modeled by a simple random
walk. A considerable amount of research conducted on this topic has focused
on deriving quenched invariance principles for the random walk, thus putting an
emphasis on the asymptotic behaviour of the end point of the random walk. In
contrast to that, the focus of our recent study has been the behaviour of local times,
which means taking a closer look at the whole path of the walk. This talk addresses
the simpler question of non-exit times from a region in the lattice growing with
time.
Consider the lattice Zd and assign to any edge (x, y) connecting two neighbouring
sites x ∼ y a random weight ωx,y, subject to the symmetry condition ωx,y = ωy,x.
Denote by N the canonical base of Zd, i.e., the set of neighbors of the origin
with nonnegative entries. We assume that (ωx,x+e)x∈Zd,e∈N is a family of positive
i.i.d. random variables and abbreviate ω(x, e) = ωx,x+e. We intend to study
the continuous-time random walk (Xt)t∈[0,∞) in Zd generated by the randomized

Laplacian ∆ω that acts on l2(Zd) as

∆ωf(x) :=
∑

y∈Zd : y∼x

ωx,y(f(y)− f(x)), x ∈ Z
d.

We focus on the annealed long-time behaviour of the random walk under the
following assumptions on the lower tails of the conductance distribution. For any
x ∼ y ∈ Zd,

essinf{ωx,y} = 0
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and there exist positive parameters η and D such that, for any x ∼ y ∈ Z
d,

logProb(ωx,y ≤ ε) ∼ −Dε−η as εց 0.

Here, Prob refers to the probability with respect to ω. Let us write 〈·〉 for the
expectation with respect to ω and Eω

0 for the expectation with respect to the
random walk starting at the origin. With B ⊂ Rd some finite, convex and open
set containing the origin and αt some sufficiently regular scaling function with

1 ≪ αt ≪ t
1

d+2 , the asymptotic behaviour of the annealed non-exit probabilities

pt(B) = 〈Eω
0 (X[0,t] ⊂ B)〉 and

Pt(B) = 〈Eω
0 (X[0,t] ⊂ αtB)〉

is determined by certain variational problems the solvability of which depends on
the parameter η. Consider

χd(B) = inf
{ ∑

e∈N ,z∈B∩Zd

|f(z + e)− f(z)| 2η
1+η :(1)

f ∈ l2(Zd), suppf ⊂ B, ‖f‖2 = 1
}
.

and

(2) χc(B) = inf
{ ∑

e∈N

∫

B

|∂ef(y)|
2η

1+η dy : f ∈ H1
0 (B), ‖f‖2 = 1

}
.

By dint of discrete and continuous Sobolev inequalities and other compactness
criteria, we have

i) χd(B) > 0.
ii) χc(B) > 0 if η ≥ d/2.
iii) χc(B) = 0 and χd(R

d) > 0 if η < d/2.

In [3], it was shown as a corollary to the main result that

log pt(B) ∼ −Kη,D t
η

η+1χd(B)(3)

where Kη,D =
(
1+1/η

)
(Dη)1/(1+η). This behaviour is due to a combined “effort”

of the conductances and the random walk to stay in the finite region. More
precisely, the main contribution to the non-exit probability comes from the time-
dependent event

{βtω(z, e) ≈ ϕ(z, e) for all z ∈ B ∩ Z
d, e ∈ N}

with a well-balanced scale βt and an optimally chosen function ϕ : B ∩ Zd ×
N → (0,∞). Restricted to this event, the annealed non-exit probability decays
exponentially with scale tβ−1

t by the Donsker-Varadhan-Gärtner Large Deviations
principle (compare [1],[2]). The optimal scale βt is found by balancing this scale
with the probabilistic cost of the untypical conductance behaviour and the optimal
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rate arises when choosing ϕ in an optimal way. By the same approach, one could
on a heuristic level argue that

logPt(B) ∼ −Kη,D t
η

1+ηα
d−2η
1+η

t χc(B).

However, in the case η < d/2 which corresponds to a strong tendency of the
conductances to attain very small values, we have χc(B) = 0. Here, sequences
of functions approximating the infimum in (2) have the tendency to mount up
at the origin. As the minimisers of (2), if they exist, admit an interpretation as
typical rescaled occupation time profiles of the random walk, this gives rise to the
underlying picture of the random walk refusing to spread over the area αtB due to
the high probabilistic cost of having small conductances on that whole area. On the
contrary, the random walk stays in a much smaller region (corresponding to huge
peaks of the rescaled occupation time profile at the origin), which is supported
by the relatively low probabilistic cost of having small conductances in just that
small region. These considerations lead us to the conjecture that

(4) logPt(B) ∼
{
−Kη,D t

η
1+η α

d−2η
1+η

t χc(B) if η ≥ d/2,

−Kη,D t
η

1+η χd(R
d) if η < d/2.
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Thermalization of rate-independent processes by entropic

regularization

Timothy Sullivan

(joint work with Marisol Koslowski, Florian Theil and Michael Ortiz)

Many evolutionary problems of interest take the form of a gradient descent :
a trajectory that is the steepest descent in a space Q of an energy functional E
with respect to some dissipation functional Ψ. The state space Q is, in general,
a metric space that may lack any linear or differentiable structure [1]. Typically,
the dissipation potential Ψ is assumed to have superlinear growth at infinity; if
instead Ψ is homogeneous of degree 1, then the resulting evolutionary system is
rate-independent (or quasi-static) in the sense that the solution operator com-
mutes with strictly increasing reparametrizations of time. Rate-independent pro-
cesses model hysteretic phenomena such as plasticity and phase transformations
in elastic solids, electromagnetism, dry friction on surfaces, and pinning problems
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in superconductivity; such models are limiting models in the limit of vanishing
inertia, relaxation times, and thermal effects [5].

We consider a model for the influence of a heat bath upon a rate-independent
evolution that takes values in a (finite-dimensional, smooth) Riemannian manifold
(Q, g) over an interval of time [0, T ]. The energetic potential is E : [0, T ]×Q → R;
the dissipation potential is Ψ: [0, T ] × TQ → [0,+∞) and is is assumed to be
continuous, convex, non-degenerate and homogeneous of degree 1 on each tangent
space — i.e. Ψ defines a time-dependent Finsler metric on Q.

Given h > 0 and discrete times (ti := ih)
T/h
i=0 , the incremental variational for-

mulation of the rate-independent problem is to find states (zi)
T/h
i=0 ⊆ Q such that

each zi+1 minimizes

(1) W (zi, zi+1) := E(ti+1, zi+1)− E(ti, zi) + hΨ
(
Logzizi+1

/
h
)
,

where Logz denotes the inverse of the exponential map Expz from TzQ into Q.
The continuous-time rate-independent process z : [0, T ] → Q is the limit as h→ 0
of the interpolants of the solutions to (1), and is the Ψ-gradient descent in E:

DΨ(t, z(t), ż(t)) ∋ −DE(t, z(t)).

We posit a Markov chain model for the effect of a heat bath working with con-
stant power θ > 0 (i.e. the heat bath supplies energy proportional to θh over each
subinterval [ti, ti+1]): we consider the Q-valued Markov chain Zh with transition
probabilities having density

(2) ρ(zi+1|zi) ∝ exp
(
−W (zi, zi+1)

/
θh

)

with respect to the Riemannian volume measure dVol(Q,g). This density has the
variational characterization that it minimizes

∫

Q

(
W (zi, ·)ρ(·|zi) + θh ρ(·|zi) log ρ(·|zi)

)
dVol(Q,g),

and so the Markov chain model can be seen as a competition between the energetic
considerations (1) of the original gradient descent and entropic considerations. The
natural objective is to identify the continuous-time limit process of Zh as h→ 0.

If Ψ is homogeneous of degree 2, then the scheme (2) corresponds to the addition
of Itō noise to generate a stochastic gradient descent in E as in [4]. Our main
result is that when Ψ is homogeneous of degree one, although Zh is a stochastic
process with non-trivial distribution for each h > 0, the limit process as h → 0 is
a deterministic rate-dependent process. Furthermore, the limit process is, up to
sign, a gradient descent in E with respect to a new, nonlinear, dissipation potential

Ψ̃ : [0, T ]× TQ → [0,+∞).

More precisely, let Ψ̃ denote the Cramer transform of Ψ, defined by

Ψ̃⋆(t, x, ℓ) := log

∫

TxQ

exp
(
− (〈ℓ, v〉+Ψ(t, x, v))

)
dv for ℓ ∈ T∗

xQ,(3)

Ψ̃(t, x, v) := sup
{
〈ℓ, v〉 − Ψ̃⋆(t, x, ℓ)

∣∣ ℓ ∈ T∗
xQ

}
for v ∈ TxQ.(4)
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Figure 1. Comparison of the dissipation potential Ψ := | · | on
R and its Cramer transform Ψ̃ as defined by (3)–(4), and their

(sub-)derivatives. In this case, Ψ̃⋆(ℓ) = − log(1 − ℓ2); DΨ̃ can be

calculated using the relation ℓ ∈ DΨ̃(x) ⇐⇒ x ∈ DΨ̃⋆(ℓ).

The Cramer transform Ψ̃ is a strict convexification and smoothing-out of Ψ. It
exhibits quadratic behaviour near the origin (slow evolutionary rates) and linear
growth at infinity (fast evolutionary rates); see Figure 1.

The limit process of Zh as h→ 0 is the solution y : [0, T ] → Q of

(5) DΨ̃
(
t, y(t),−ẏ(t)/θ

)
= DE(t, y(t)),

and, under suitable conditions, Zh converges to y in probability as h→ 0, i.e.

(6) lim
h→0

P

[
sup

t∈[0,T ]

d(Q,g)

(
Zh(t), y(t)

)
≥ δ

]
= 0 for every δ > 0.

The intuition behind this result is that, to a first approximation,

E
[
LogziZ

h
i+1

∣∣Zh
i = zi] ≈ −θhDΨ̃⋆

(
ti, zi,DE(ti, zi)

)
,

V
[
LogziZ

h
i+1

∣∣Zh
i = zi] ≈ (θh)2 D2Ψ̃⋆

(
ti, zi,DE(ti, zi)

)
,

and so the variance is expected to be negligible in the limit as h→ 0, leaving only
the mean flow (5). The principal condition necessary to ensure the convergence (6)

is that the curvature of (Q, g) and the vector field f(t, x) := −DΨ̃⋆
(
t, x,DE(t, x)

)

be such that geodesics starting at (t, x) and (t, x′) near to the trajectory of y with
initial velocities given by f(t, x) and f(t, x′) do not diverge too quickly. When
Q = Rn with its usual metric, this corresponds to the requirement that f be a
monotone vector field [7], at least near the trajectory of y.

As shown in [6], this result predicts rheological power laws such as the Andrade
creep law for soft metals. Andrade [2, 3] observed that soft metals exposed to
constant subcritical applied stress at room temperature exhibited strain ∼ t1/3 for
short time, and ∼ t in long time. Under the assumption of linear strain hardening
and constant applied load — i.e. the dissipation potential Ψ(t, x, v) = x|v| on
Q = (0,+∞) and energetic potential E(t, x) = −ℓx with |ℓ| < 1 — Andrade’s law
appears naturally, since in this setting solutions to (5) do indeed grow ∼ t1/3.
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This example justifies posing the problem on a manifold with state-dependent
dissipation functional instead of the simpler setting of Rn with a state-independent
dissipation functional: the Andrade creep law would not be obtained in the simpler
setting. Furthermore, some rate-independent problems on Rn have a dissipation
functional Ψ that is 0 or +∞ in some directions; restricting attention to a sub-
manifold of Rn on which Ψ is well-behaved can circumvent these difficulties.

It would be of interest to extend the above results to evolutions in spaces without
a locally linear, smooth, or finite-dimensional structure, as in [1].
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On the speed of Random Walks among Random Conductances

Michele Salvi

(joint work with Noam Berger)

Random Walks among Random Conductances (RWRC), also known in the litera-
ture as Random Conductance Model (RCM), is a particular kind of Random Walks
in Random Environment (RWRE). Consider, for simplicity, the grid Zd and the set
Ed of its unoriented edges {x, y}, with x ∼ y ∈ Z

d nearest neighbours. Consider

the measure space Ωd = [0,∞)E
d

. For a given ω ∈ Ωd and z ∈ Z
d we define Pω

z

to be the law of a Markov chain on
(
Zd

)N
with Pω

z (X0 = z) = 1 and

Pω
z (Xn+1 = y|Xn = x) =

ω(x, y)∑
w∼x ω(x,w)

, ∀x, y ∈ Z
d, x ∼ y,

where ω(x, y) is the value of ω on the bond {x, y}, called its conductance.
The community is currently putting a lot of effort in proving functional-central-

limit kind of statements, that is the convergence to some diffusion of the space-time
rescaled process, or other fine properties of the walk in the case of random ergodic
conductances. Taking one step back, we focused on the incomplete picture of the
problem of the Law of Large Numbers.
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Call limn→∞
Xn

n the limiting speed, or just speed, of the process. For an event
A, the annealed law is P(A) =

∫
ω∈Ωd

Pω
0 (A) dQ(ω), where Q ∈ M1(Ωd) is the

given law from which we sample our conductances.
It is well known that the cases of conductances i.i.d. or bounded from above

have almost surely zero annealed speed. Let now Q ∈ M1(Ω2) be invariant and
ergodic w.r.t. the group of spatial shifts in Z

2. Our question is: are there sufficient
conditions on the moment of the conductances for the speed to be equal to zero?

It turns out that if the expectation EQ[logα ω(x, y)] is finite for some α > 1,
then the random walk has almost surely speed zero. This can be easily proven via
the classical Varopulos-Carne heat kernel estimates (see, e.g. [2]).

This condition is sharp in the following sense: we can provide examples of
RWRC for which the limiting speed is non-zero and EQ[logα ω(x, y)] < ∞ for α
arbitraily close to 1 from below. Exploiting the construction of a random spanning
tree provided in the article [1], we show in fact examples for which the resulting
process does not have any speed, meaning that Xn/n does not admit limit almost
surely. Modifying the aforementioned construction, we can finally provide envi-
ronment laws which guarantee the RWRC to have almost surely positive speed.

This results can be also generalized to higher dimentions.
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Random walks in random environment on a strip

Jan Nagel

(joint work with Nina Gantert)

For a random walk in random environment (RWRE) in dimension higher than
one, there is no known characterisation of recurrence or transience. We consider
this question in the case of a random walk on the strip Z × {1, . . . ,m}. In this
case, Bolthausen and Goldsheid [1] found criteria for recurrence and transience in
term of Lyapunov exponents. We are interested in explicit criteria in the situation
where the transition probabilities in horizontal direction are random and i.i.d. for
different columns and transition probabilities in vertical direction are fixed. This
model can be interpreted as a combination of m different one-dimensional RWRE.
We investigate the question whether recurrence depends on the probability γ of
vertical movements.
Even in this particular case, the random walk shows an interesting behaviour: we
may have that all random walks restricted to a single row are transient to +∞,
but for any γ ∈ (0, 1), the random walk on the strip is transient to −∞.
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Wasserstein gradient flows from large deviations of thermodynamic

limits

Vaios Laschos

(joint work with Manh Hong Duong and Michiel Renger)

We are concerned with the Fokker-Planck equation ∂ρ
∂t = ∆ρ + ∇ · (ρ∇Ψ), for

subquadratic potentials Ψ and t ∈ [o, τ ]. We study the equation as the hydrody-
namic limit of a stochastic particle system and try to highlight a link with the
Wasserstein gradient flow of the free energy F(ρ) =

∫
Rd(Ψ(x) + log ρ(x))ρ(x)dx.

For “good” initial data ρ0, we describe the curves for which the rate functional

(1) J̃τ (ρ(·)) =
1

4τ

∫ 1

0

∥∥∥∥
∂ρt
∂t

− τ(∆ρt +∇ · (ρt∇Ψ))

∥∥∥∥
2

−1,ρt

dt

that characterizes the large deviations from the hydrodynamic limit, has a finite
value. For these curves, we rewrite the above functional in a way that the free
energy and its gradient appear explicitly

J̃τ (ρ(·)) =
1

4τ

∫ 1

0

∥∥∥∥
∂ρt
∂t

∥∥∥∥
2

−1,ρt

dt+
τ

4

∫ 1

0

‖∇F(ρ)‖2−1,ρt
dt+

1

2
F(ρ1)−

1

2
F(ρ0).

Next we use this formulation via the contraction principle to prove that the time
discreet rate functional

Jτ (ρ|ρ0) = inf
{
H(γ|ρ0 ⊗ pτ ) : γ ∈ Π(ρ0, ρ)

}

is asymptotically equivalent in the Γ-convergence sense to the functional derived
from the Wasserstein gradient discretization scheme

1

2
F(ρ)− 1

2
F(ρ0) +

1

4τ
W 2

2 (ρ0, ρ).

This extends the results in [2, 1, 3] to all probability measures in the real line with
finite second moment.
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Gradient flows driven by a non-smooth repulsive interaction potential

Giovanni Bonaschi

(joint work with Giuseppe Savaré)

The description of a great variety of phenomena, from crowd dynamics to chemo-
taxis, is achieved via the following non-local interaction equation

∂µ

∂t
= ∇ · (µ(∇W ∗ µ)) x ∈ R

d , t > 0.

We search for weak measure solutions, and it has been shown in [1] that the
equation can be nicely restated as a Wasserstein Gradient Flow of the interaction
functional below:

W [µ] =
1

2

∫

Rd

∫

Rd

W (x− y)dµ(x)dµ(y).

The existence and uniqueness of a gradient flow solution requires certain hypothesis
on the interaction potential W (see [1, 2]): W (x) = W (−x), W ∈ C1(Rd \ {0}),
W has at most a quadratic growth at infinity and, of crucial importance, W is
λ-convex (i.e. ∃λ < 0 s.t. W (x)− λ|x|2 is convex).
We study the problem when the λ-convexity is lost (other works exploring the
same direction are [3, 4, 5, 6, 7, 8]), more precisely we ask for a weaker condition:

∃λ, λ′ < 0 such that W (x) − λ′|x|2 − λ|x| is convex.
In fact we allow the potential to present a concave cusp in the origin. With this
choice we can represent a strong repulsive behaviour at short distances. We can
decompose a general W satisfying our weaker hypothesis in a sum: W̄ − c|x| with
W̄ with all the regularity needed and with c constant. Because of this we limit
our analysis to the case W = |x| without loss of generality (the constant is equal
to one for simplicity). Following the idea of [2] we analyze the ODE system that
give us trial solution in case of concentrated mass and in the 1d case we can use
the monotone rearrangement.
The analysis of the ODE system show us that a solution exist for the starting
equation, but there are infinite of them. The idea is that the gradient flow formu-
lation can be a way to make a selection in the set of all the solutions. We prove
existence and uniqueness of solution for the 1d problem. Simple examples show
that the gradient flow solution select a diffusive evolution. It means, thinking at
the time reversal, that after the aggregation of solutions there is a loss of informa-
tion, it is impossible to determine the starting probability density that generated
the aggregation, only one is selected among all the other. An explicit formula has
been obtained for a general potential and it turns out that a Dirac delta cannot
remain a Dirac delta at every time t > 0.
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Stabilization due to additive noise

Dirk Blömker

Stabilization due to noise is a well-known phenomenon, and there are numerous
publications over the last decades. But most examples are for multiplicative noise
only. Stabilization can arise somewhat artificially by adding Itô-noise, due to the
Itô-Stratonovich correction, as only multiplicative Stratonovich-noise is neutral for
the linear stability. In other cases stabilization arises due to averaging over stable
and unstable directions. A celebrated example is Kapiza’s problem of the inverted
pendulum [13]. This averaging is also effective in case of deterministic rotation of
the system [10]. But there are very few examples due to additive noise. Very nice
is the blow-up through a small tube [15].

We consider two very simple examples of stochastic partial differential equa-
tions (SPDEs) close to bifurcation. Using the natural separation of time scales,
one derives effective stochastic differential equations (SDEs) for the amplitudes
of the dominating pattern. Due to averaging, the noise not acting directly on
the dominant pattern may appear as a stabilizing deterministic correction to the
SDEs.

Swift-Hohenberg equation. In a series of papers [11, 12], it was numerically
and formally (using a center-manifold argument) justified that additive noise is
capable of removing patterns in the one-dimensional Swift-Hohenberg equation.
See also [9]. The Swift-Hohenberg equation is an SPDE given by

(SH) ∂tu = −(1 + ∂2x)
2u+ νǫ2u− u3 + σǫ∂tβ

subject to periodic boundary conditions on [0, 2π] and β being a real-valued Brow-
nian motion. The constants σ and ν measure the noise strength and the distance
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from bifurcation, respectively. The eigenfunctions of the differential operator are
sin(kx) and cos(kx), k ∈ Z. The kernel span{sin, cos} is the space of the dominant
pattern. Using the Ansatz

u(t, x) = ǫA(ǫ2t)eix + c.c.+ ǫσZ(t) +O(ǫ2) ,

with a fast Ornstein-Uhlenbeck (OU) process Z(t) =
∫ t

0 e
−(t−τ)dβ(τ) and complex-

valued amplitude A, we obtain the following amplitude equation [6]:

(A) ∂TA = (ν − 3
2σ

2)A− 3A|A|2 .
It is interesting that the amplitude equation for the dominant behavior is deter-
ministic, and noise leads to a stabilizing deterministic correction. For a precise
statement and proof of the approximation result see [6], which treats a more general
situation. Numerical approximation [9] shows that any moment of the uniform in
space and time error grows logarithmically with the time-interval, while moments
of the error for a fixed time seem to stay small for very long times.

Averaging with error bounds. In formal calculations for the derivation of the
amplitude equation, the additional constant terms arise from square of noise in
3Aσ2(ǫ∂T β̃)

2, where β̃(T ) = ǫβ(T ǫ−2) is a rescaled Brownian motion on the slow
time-scale T = ǫ2t. In the proofs, using the mild formulation (i.e., variation of
constants), we consider the fast OU-process

Z(T ǫ−2) = Zǫ(T ) = ǫ−1

∫ T

0

e−(T−s)ǫ−2

dβ̃(s) ≈ ǫ∂T β̃(T ) .

Crucial for the derivation of averaging with explicit error bounds is the following
Lemma based on Itô’s formula:
Lemma [4, 7] Let X be a stochastic process with bounded initial condition and

differentials, i.e. dX = O(ǫ−r)dt+O(ǫ−r)dβ̃ and X(0) = O(ǫ−r) for some r > 0.
Then ∫ T

0

X(s)Zǫ(s)
2ds = 1

2

∫ T

0

X(s)ds+O(ǫ1−2r) .

Similar results hold true for other even powers of Zǫ. For odd powers we have
∫ T

0

X(s)Zǫ(s)ds = O(ǫ1−r) ,

∫ T

0

X(s)Zǫ(s)
3ds = O(ǫ1−3r) , · · ·

Note that X = O(fǫ), if for all p > 1 and T > 0 there is a C > 0 such that

E sup
s∈[0,T ]

|X(s)|p ≤ Cfǫ
p .

Burgers type equation. Stabilization effects were observed numerically in [1, 14]
for an equation of the following type;

(B) ∂tu = −(1 + ∂2x)u+ νǫ2u+ 1
2∂xu

2 + σǫ∂tβ sin(2·)
subject to Dirichlet boundary conditions on [0, π] with dominant space span{sin}.
The highly degenerate noise acts only on the 2nd mode by β. Consider:

u(t, x) = ǫa(ǫ2t) sin(x) + ǫσZ(t) sin(2x) +O(ǫ2)
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with fast OU-process Z(t) =
∫ t

0 e
−3(t−τ)dβ(τ). This is rigorously justified by a-

priori estimates. In [4] we obtain the following amplitude equation:

(A2) da = (ν − σ2

88 )a dT − 1
12a

3dT + σ
6a ◦ dβ̃

in Stratonovich sense, with rescaled Brownian motion β̃(T ) = ǫβ(ǫ−2T ). Obvi-
ously, 0 is stabilized for ν ∈ (0, σ2/88). For a precise statement of the approxima-
tion result and its proof in a significantly generalized situation see [4]. Numerical
justification in [9] verified the validity of the approximation for large times and
moderate or even large ǫ.

Outlook – Open problems. We comment on a series of related results, gener-
alizations and open problems. Interesting questions in regularity and scaling arise
for example for Levy noise [5].

Averaging of martingals of the type
∫ T

0 XZq
ǫ dβ is necessary for (B) with high-

dimensional noise or for higher order corrections for (SH). The averaging is well
known, but for error estimates in [4] we are based on Levy’s characterization
theorem, restricting the result to one-dimensional dominant modes.

Modulated patterns arise if the underlying domain is large or unbounded. Here
we need to approximate by a modulated wave of the type A(ǫ2t, ǫx)eix+c.c., where
A solves a SPDE of Ginzburg-Landau type. See [4, 8]. The truly unbounded space
with space-time white noise is still open. Solutions seem to be both spatially
unbounded and not sufficiently regular for the tools available.

The results presented are limited to long transient time-scales. For the approx-
imation of long-time behavior in terms of invariant measures for (SH) see [2].

References

[1] D. Blömker. Stabilization due to additive noise. in “Infinite Dimensional Random Dynamical
Systems and Their Applications.” Eds.: Franco Flandoli, Peter E. Kloeden, Andrew Stuart,
Oberwolfachreports, 5(4):2815–2874, (2008).

[2] D. Blömker, M. Hairer. Multiscale expansion of invariant measures for SPDEs. Commun.
Math. Phys. 251(3)515–555, (2004).

[3] D. Blömker, M. Hairer, G. A. Pavliotis. Modulation equations: Stochastic bifurcation in
large domains. Commun. Math. Physics. 258(2):479–512, (2005).

[4] D. Blömker, M. Hairer, G. A. Pavliotis. Multiscale analysis for stochastic partial differential
equations with quadratic nonlinearities. Nonlinearity, 20:1–25, (2007).

[5] D. Blömker, E. Hausenblas. Swift Hohenberg with Levy-noise. In Preperation, (2012).
[6] D. Blömker, W. W. Mohammed. Amplitude equations for SPDEs with cubic nonlinearities.

To appear in Stochastics.
[7] D. Blömker, W. W. Mohammed. Amplitude equations for SPDEs with quadratic nonlinear-

ities. Electron. J. Probab. 14, 2527–2550, (2009).

[8] D. Blömker, W. W. Mohammed. Modulation equation for stochastic Swift-Hohenberg equa-
tion. Preprint, (2011)

[9] Blömker, D.; Mohammed, W. W.; Nolde, C.; Wöhrl, F. Numerical study of amplitude
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Homogenization of random parabolic operators. Diffusion

approximation

Andrey L. Piatnitski

(joint work with Marina Kleptsyna and Alexandre Popier)

The talk focuses on homogenization problem for divergence form second order
parabolic operators whose coefficients are rapidly oscillating functions of both
spatial and temporal variables. The corresponding Cauchy problem takes the
form

(1)

∂uε

∂t
= div

(
a
(x
ε
,
t

εα

)
∇uε)), (x, t) ∈ R

d × (0, T )

uε(x, 0) = g(x), uε
∣∣
∂G

= 0,

with g(x) ∈ L2(Rd). We assume that the coefficients of a(z, s) are periodic func-
tions of spatial variables while their dependence of time is random stationary er-
godic, α > 0. Moreover, the matrix a(z, s) is real symmetric, uniformly bounded
and positive definite.

It was proved in [1], [2] that the solutions of the original problem converges
almost surely to a deterministic limit, the limit function being a solution of ho-
mogenized equation with constant coefficients:

(2)
∂u0

∂t
= div(aeff∇u0), u0(x, 0) = g(x),

The question of interest is the asymptotic behaviour of the normalized difference
of the original and homogenized solutions.

It turns out that the limits behaviour of the said normalize difference depends
crucially on whether α < 2, or α = 2, or α > 2. In the talk we mostly dwell on
the the self-similar case α = 2.

In order to formulate the diffusion approximation result we need an auxiliary
function, so-called corrector.

Lemma (see [3]). The equation

∂sχ(z, s) = divz
(
a(z, s)[∇zχ(z, s) + I]

)

has a stationary in s and periodic in z solution. The solution is unique up to an
additive (random) constant.
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We now consider the expressions

V ε :=
uε − u0

ε
− χ

(x
ε
,
t

ε2

)
∇u0.

We also introduce the strong mixing coefficient. First we define the following
σ-algebras:

F≤t = σ{a(·, s) : s ≤ t}

F≥t = σ{a(·, s) : s ≥ t}

Definition (Strong mixing coefficient).

β(r) = sup
A∈F≤0,

B∈F≥r

|P(A ∩B)− P(A)P(B)|.

Our main result is

Theorem 1. Let α = 2, and suppose g ∈ C1(Rd). Assume, moreover, that the
function β(r) decays fast enough so that

∫ ∞

0

√
β(r) dr <∞.

Then the normalized difference

V ε(x, t) =
1

ε

{
uε(x, t) − u0(x, t)− εχ

(x
ε
,
t

ε2

)
∇u0(x, t)

}

converges in law in L2((0, T ) × Rd) to a solution of the following SPDE with
constant coefficients:

dV = [aeff
∂2

∂x2
V + µ

∂3

∂x3
u0] dt+ Λ

∂2

∂x2
u0 dWt, V (0) = 0.

The tensors µ = µijk and Λ = Λkl
ij can be found in terms of solutions of appropriate

auxiliary cell problems.
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Dynamics of Crystal Growth with Corner Regularization

Nung Kwan Yip

(joint work with Fang Wan)

We investigate a dynamic model of a two dimensional crystal growth described
by a forward-backward parabolic equation. The ill-posed region of the equation is
handled by incorporating the motion of corners on the surface. We analyze a fourth
order regularized version of this equation and show that the dynamical behavior of
the regularized corner can be described by a travelling wave solution. The speed
of the wave is found by rigorous asymptotic analysis. The interaction between
multiple corners and the behavior of wrinkled surfaces (described by pulsating
waves) are also investigated by asymptotic analysis and numerical simulation.

Introduction. The crystal growth problem, in its simplest form originates from
the following anisotropic isoperimetric problem:

(1) min

{
E(∂Ω) :=

∫

∂Ω

γ(θ) ds with Area(Ω) = 1

}

where γ : S1 −→ R+ is the surface energy integrand, θ is the angle of the outward
normal n̂ to ∂Ω and s is the arc-length parameter. (Note that in two dimensions,
the crystal surface ∂Ω is a curve.) The solution is given by the classical Wulff
construction:

W =
{
x : x · θ̂ ≤ γ(θ), for all θ

}
(θ̂ is the unit vector in the direction of θ).

Formation of corners and facets in the Wulff shape are due to the extreme anisotropy
and cusps in the γ-plot. See [1, 4] for an explanation of the relevant concepts.

The Wulff shape can also be described analytically by the following Euler-
Lagrange equation:

(2) (γ(θ) + γ′′(θ))κ = µ
(
κ =

∂θ

∂s

)
,

where κ is the curvature and µ is the Lagrange multiplier for the area constraint
in (1). Denoting Γ(θ) = γ(θ) + γ′′(θ), corner arises when the surface normal n̂
tries to avoid the unstable directions related to the range of angles on which Γ is
negative. Another interpretation is in terms of the Frank diagram: θ −→ 1

γ(θ) .

It can be shown that the Frank diagram is convex at θ if and only if Γ(θ) is
positive. The limiting directions θ+c and θ−c of the two sides of a corner can be
calculated explicitly by looking at the places where the Maxwell line touches the
Frank diagram. Essentially, directions in the range (θ−c , θ

+
c ) do not appear due to

their non-energy minimizing property.
In terms of dynamics, we consider the negative L2-gradient flow of the energy

E, leading to the following anisotropic motion by mean curvature:

(3) Vn = Γ(θ)κ (Vn is the normal velocity).

Due to the combined presence of the positivity and negativity of Γ, the above
motion law is a forward-backward parabolic equation. A method to handle this is
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again to introduce corners whose locations now can evolve in time. See [2] and [6]
for a precise description and analysis of this approach using classical and viscosity
solution methods. The goal of this work is to understand dynamics (3) in the
presence of corners from the point of view of singular perturbations.

Corner Regularization. The work [8] considers the following regularized version
of the energy E in (1):

(4) Eǫ(∂Ω) :=

∫

∂Ω

γ(θ) +
1

2
ǫ2κ2(θ) ds.

Then the Euler-Lagrange equation (2) is modified to

(5) Γ(θ)κ− ǫ2
(
∂2κ

∂s2
+

1

2
κ3

)
= µ.

The above model also appears in [7, 3, 5]. The corner in the non-regularized
version is smoothened at length-scale ǫ. The above equation can be solved quite
explicitly. The limiting corner angles θ±c can also be recovered from the solution
procedure.

The regularized version of the motion law (3) now becomes:

(6) Vn = Γ(θ)κ− ǫ2
(
κss +

1

2
κ3

)
.

For the ease of understanding and analysis, we consider the following small slope
approximation of the above equation using a graph representation of ∂Ω:

(7) ut = Γ̃(ux)uxx − ǫ2
(
uxxxx +

1

2
u3xx

) (
where Γ̃(α) = Γ

(
tan−1 α+

π

2

))
.

In order to understand the convergence of the solution of (7) to that of (3), we are
lead to the analysis of travelling and pulsating waves which are mathematically
interesting in their own rights.

The description of these objects are most conveniently formulated in terms of
the slope variable v = ux, leading to the following equation:

(8) vt =

(
Γ̃(v)vx − ǫ2

(
vxxx +

1

2
v3xx

))

x

.

For travelling wave, we look for solutions of the form: v(x, t) = V (x+ct). Then
the function V solves

(9) cVx =

[
Γ̃(V )Vx − ǫ2

(
Vxxx +

1

2
V 3
x

)]

x

with V −→ θ±c “and” Vx −→ m± as x −→ ±∞. Integrating (9) leads to the wave
speed c given by:

(10) c =

[
Γ̃(V )Vx − ǫ2

(
Vxxx + 1

2V
3
x

)]∞
−∞[

V
]∞
−∞

−→ǫ→0
Γ̃(θ+c )m+ − Γ̃(θ−c )m−

θ+c − θ−c
.
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The existence of travelling waves and the above statement on the wave speed
are proved rigorously using implicit function theorem, matching the stationary
solution of (5) to the far-field conditions.

In order to analyze the situation when some initial slope lies within the range
(θ−c , θ

+
c ), we are lead to the study of the evolution of corrugated curves or “wrin-

kles”. With the regularized dynamics (7), these lead to pulsating waves — space
time periodic solutions. The interesting quantities to capture are the internal
structure of the wrinkles and the propagation speed of the boundary between the
wrinkled and non-wrinkled regions. These are analyzed asymptotically. The re-
sults are confirmed by numerical simulations.

The two figures illustrate some simulation results for the travelling and pulsating
waves. (The functions plotted are the slope variables v = ux.)
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Figure 1. Time sequence comparison between the dynamics of
the Reduced (3) and the Original (7) Models.
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Minimal configurations and sandpile measures

Antal A. Járai

(joint work with Nicolás Werning)

Abelian sandpile model. Let G = (V ∪ {s}, E) be a finite, connected multi-
graph. For example, if V ⊂ Zd, we can form the wired graph GV by identifying all
vertices in Zd \ V to a single vertex s. A sandpile on G is a collection of particles
on the vertices in V , specified by a map η : V → {0, 1, 2, . . .}. If η(x) ≥ deg(x), we
say that x is allowed to topple, meaning that x sends one particle along each edge
incident with x. Thus when x topples, the configuration η is updated as follows:

η(x) −→ η(x)− deg(x);

η(y) −→ η(y) + axy, y ∈ V, y 6= x,
(1)

where axy is the number of edges between x and y. Note that particles “arriving
at s” are lost. We say that η is stable, if no vertex can topple, i.e. η(x) < deg(x)
for all x ∈ V . Dhar [5] proved that any sandpile can be stabilized by carrying out
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all possible topplings in some order until a stable configuration is reached, and the
final stable configuration does not depend on the order of topplings chosen. The
name “Abelian” is referring to this property.

We define a Markov chain on the collection of stable sandpiles as follows. At
each time step, we add one particle at a uniformly random vertex in V , and
stablize. There is a unique stationary distribution νG that is uniform on the
collection RG of recurrent states [5]. See the surveys [15] and [7] for further
background.

Criticality. Sandpile models were introduced by Bak, Tang and Wiesenfeld as
a toy example for self-organized criticality [2]. The Abelian sandpile is critical,
in the sense known from lattice models of statistical physics (such as percolation
and the Ising model): spatial correlations decay slowly, and various observables
are conjectured to follow a power law distribution. For example, Majumdar and
Dhar [12] proved that for all d ≥ 2 we have

(2) lim
V ↑Zd

{νV [η(x) = 0, η(y) = 0]− νV [η(x) = 0]νV [η(y) = 0]} ∼ c|x− y|−2d,

as |x − y| → ∞. A fascinating property of the model is that criticality appears
here without having to set a parameter to a critical value [2], [5]. Some aspects of
the 2D scaling limit are known rigorously; see [11], [6]

The burning bijection. Dhar’s Burning Test [5] gives a simple algorithm that
checks if a given stable sandpile is recurrent or not. Using this, Majumdar and
Dhar [13] constructed a bijection between RG and spanning trees of G. Note that
under the bijection, νG is mapped onto the Uniform Spanning Tree measure, that
we denote by µG. The burning bijection has been very useful in applying results
about uniform spanning trees to the sandpile model; see [1], [10] and [8].

Minimal configurations. The proof of (2) is based on a determinantal formula
that is valid more generally. Given W ⊂ V and η ∈ RV , we denote by ηW the
restriction of η to the subset W . We say that a configuration ξ in W is minimal,
if there exists η ∈ RV such that ηW = ξ, but η − δx 6∈ RV for any such η and
any x ∈ W . (Here δx is the configuration with a single particle at x and no other
particles.) Majumdar and Dhar [12] gave a method for writing the probability
νV [η : ηW = ξ] as a determinant. If V ⊂ Zd, the entries of the determinant, in
the limit V ↑ Zd, are given in terms of the simple random walk potential kernel
(if d = 2), or the simple random walk Green function (if d ≥ 3).

Results. Based on the transfer-current theorem of Burton and Pemantle [4], an
alternative determinantal formula can be given for minimal configurations. This
has the advantage, that the limit of an infinite graph can be taken easily, since the
limiting wired current exists by monotonicity [3].

Theorem 1. Let G = (V ∪ {s}, E) be a finite multigraph, and let ξ be minimal
on W ⊂ V . There exists a subset E of the set of edges touching W such that

νG[η : ηW = ξ] = det(KG(e, f))e,f∈E .
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Here KG(e, f) = δ(e, f)− YG(e, f), with YG denoting the transfer-current matrix
and δ the identity matrix.

The above investigations led us to the following result on the thermodynamic
limit of the Abelian sandpile model on very general graphs. Let G = (V,E) be
a locally finite, infinite graph, and V1 ⊂ V2 ⊂ · · · ⊂ V a sequence of finite sets
such that ∪∞

n=1Vn = V . Let Gn denote the wired graph obtained from Vn. It is
well-known that the uniform spanning tree measure µGn

converges weakly to a
limit µ, called the Wired Uniform Spanning Forest measure on G, and this limit
is independent of the sequence (Vn) [14], [3]. We say that an infinite tree has one
end, if any two infinite paths in the tree have a finite symmetric difference.

Theorem 2. Suppose that the each component of the Wired Uniform Spanning
Forest on G has a single end almost surely. The measures νGn

weakly converge to
a limit ν, that is independent of the sequence (Vn).

We note that the assumption on one end cannot be omitted: Jarai and Lyons
give a class of quasi one-dimensional graphs where there are exactly two extremal
weak limits [9]. Earlier results on the thermodynamic limit of the Abelian sandpile
model were based on giving a sort of extension of the bijection to the infinite graph,
and assumed much more about the structure of the graph; see [1], [8].
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Strong approximation rates in the maximum-norm for noisy

reaction–diffusion equations

Omar Lakkis

(joint work with Giorgos T. Kossioris and Marco Romito)

Introduction. Finite element methods for stochastic partial differential equations
(meaning those of evolution type) have been the subject of a boom in the literature
since the seminal paper of Allen, Novosel and Zhang (1998) [1, 2, 8, 9, 11, 7, 6].

We summarize here, to the best of our knowledge, a first derivation of maximum-
norm (and other Lp norms) in space-time and strong in probability error estimates
for the spatially discrete finite element approximation of reaction–diffusion (RD),
semilinear parabolic, SPDE’s with additive noise. Although we focus on the sto-
chastic Allen–Cahn (SAC) equation, the techniques we present can be transported
to a wider class of RD SPDE’s. We have studied the SAC equation in [4] and this
summary describes improved and novel error estimates of those therein. The full
results will appear in a forthcoming paper [5].

Stochastic Allen–Cahn equation. Let D = (−1, 1), T > 0, the solution of
the stochastic Allen–Cahn equation in one-dimension is a (random) function u :
D × [0, T ] → R satisfy the following

(1)

∂tu(x, t)− ∂xxu(x, t) + fǫ(u(x, t)) = ǫγ∂xtW (x, t)

where fǫ(ξ) :=
1

ǫ2
(ξ3 − ξ) for ξ ∈ R

with initial and boundary values

(2) u(x, 0) = u0(x) and ∂xu(x, t)|x=±1 = 0.

Here ǫ > 0 is a “small” parameter, γ ≥ −1/2, ∂xtW denotes white noise which we
view, following [10], as a random measure on D × (0, T ) such that

∫

A

∂xtW (dx, d t) ∈ N(0, |A|)(3)

A ∩B = ∅ ⇒
∫

A

∂xtW and

∫

B

∂xtW independent.(4)
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An existing and unique solution u of (1) is studied in [3], in the mild sense, as a
process that statisfies

u(x, t) =

∫

D

Gt(x, y)u0(y) d y + ǫγz(x, t)

+

∫ t

0

∫

D

Gt−s(x, y)fǫ(u(y, s)) d y d s

where z(x, t) :=

∫ t

0

∫

D

Gt−s(x, y)∂ysW (d y, d s),

(5)

where G indicates the (Neumann boundary value) heat kernel and z satisfies

(6) ∂tz − ∂xxz = ∂xtW, z(0, x) = 0, for x ∈ D ∂xz(t,±1) = 0.

Regularized approximation. To introduce a numerical solution, we first reg-
ularize (1) by replacing ∂xtW therein with an approximate white noise [4, for
details] that is a random piecewise constant function on a cartesian decomposition
in rectangles Dm × In of size σ × ρ of the space-time domain D × (0, T )

(7) ∂xtW̄ (x, t) =
1√
σρ

N∑

n=1

M∑

m=1

ηnm1Dm
(x)1In(t) where ηnm ∈ N(0, 1) .

The regularized solution is defined as the function ū solving the random PDE

(8) ∂tū(x, t) − ∂xxū(x, t) + fǫ(ū(x, t)) = ǫγ∂xtW̄ (x, t) for (x, t) ∈ D × (0, T )

and the same initial and boundary values as for u in (2).

Galerkin finite-element solution. The semidiscrete (in space) finite element
approximation is defined as the random function U : (0, T ) → V, for an appropriate
Galerkin finite element space V of meshsize h, as

(9)

∫

D

∂tU(t)Φ +

∫

D

∂xU(t)∂xΦ+

∫

D

fǫ(U(t))Φ =

∫

D

∂xtW (t)Φ.

This is an SDE with values in V.

Error estimates: a roadmap. As noted in [1], a natural way to obtain an error
estimate, with rates, for the error u− U , in a norm ‖ · ‖, say, is to decompose the
job into two steps:

(1) Bound ‖u−ū‖: the error between the exact solution of (1) and the approx-
imate solution of (8), with respect to the regularization parameters σ and
ρ. This step requires a combination of PDE techniques with probabilistic
arguments.

(2) Bound ‖ū−U‖: the error between the regularized solution and its numer-
ical approximation. This step draws from “classical” numerical analysis
and the main ingredients to obtain error rates are the approximation power
of V as well as the regularity of ū. This regularity must be quantified, via
upper bounds, that are the finest possible with respect to σ and ρ.
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In [1] and other cited works, the norm that is used is E‖u − U‖L2(D×(0,T )). Here
we work with a more general norm E‖u − U‖Lp(D×(0,T )), with p ∈ [2,∞]. The
motivation for this is that in the Allen–Cahn problem it is curcial to track the
interface and the L2 norm is too weak to quantify anything useful about an inter-
face. The Sobolev H1 (semi) norm is too strong, and no convergence is expected
in that norm, so L∞ appears to be the best compromise.

Exact-to-regularized strong convergence theorem. Let u and ū be sto-
chastic processes solutions on a time interval [0, T ] to (1) and (8), respectively.
Then for every p ≥ 2 and every κ > 0, there is C1 depending only on p, T, ǫ, κ such
that

(10) E
[
‖u− ū‖pL∞((0,T )×D)

]
≤ C1T

ǫ2
e

6p

ǫ6
T (ρ1/2 + σ)

p
2 (1−κ),

The proof of this result rests on the decomposition of the type

(11) u = v + ǫγz, ū = v̄ + ǫγ z̄ with z defined by (6),

z̄ being a similar process but with ∂xtW replaced by ∂xtW̄ and careful bounds of
both z and the stochastically shifted solution v.

Regularity estimates theorem. For every p ∈ [2,∞) and κ > 0 there is a
constant C2 > 0, depending on p, ǫ only, and C3 depending on p, ǫ, κ only such
that

(12)

E[‖∂tū‖pLp((0,T )×D)] ∨ E[‖∂xxū‖pLp((0,T )×D)] ≤ C3

[
ρ−

3
4 p + ρ−

p
2 σ− p

2

]
,

E sup
[0,T ]

‖∂xxū‖Lp(D) ≤ C4

[
ρ−

3
4−κ + ρ−

1
2−κσ− 1

2

]

It is worth noting that the right hand side in these regularity estimates explodes
as ρ, σ → 0. This is to be expected as otherwise, ū → u in spaces where u does
not exist. What is important about this result, is the rates in ρ and σ at which
the norms explode.

Regularized-to-numerical error estimates theorem. For each µ > 0 there
exists a C5 which depends on µ and is a linear combination of the (semi)norms of
ū appearing in (12) times an exponential in ǫ of the type appearing in (10)

(13) ‖ū(t)− U(t)‖L∞(D) ≤ C5h
2−µ log h log t.

Conclusion. By combining the above results and coupling appropriately h, ρ and
σ, the spatially discrete Galerkin finite element solution U , provided infintely
precise Monte-Carlo approximation in the probability space, is seen to converge
with a rate of h1/2−κ and a constant depending on κ and growing exponentially
with 1/ǫ2.
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Time-evolution of Probability Measures on Collision Trees – a Tool for

Micro-macro Transitions

Karsten Matthies

(joint work with Florian Theil)

Deriving continuum models as a scaling limit of atomistic particle dynamics is a
fundamental problem of mathematical physics. The aim is to prove the validity of
continuum equations like the Boltzmann equation to describe the effective behav-
ior of deterministic many particle dynamics. The first rigorous derivation of the
Boltzmann equation was given by Lanford [2] for short times using the BBGKY
hierarchy, also see [1] and references therein.

Instead of classical hard-sphere dynamics, we use the simplification of ballistic
annihilation, where particles are removed after their first collision. The initial
states are random, i.e. the initial configuration of n particles in the phase space
U ×Rd (with U = Td the unit torus) are drawn independently according to some
density f0 ∈ L1(U×Rd). Then the dynamics are deterministic. As long as they are
intact (β = 1) the centres of the spheres move along straight lines with constant



344 Oberwolfach Report 06/2012

velocity. When the centres of two spheres, which are still intact, come within
distance a, then both spheres are destroyed (β = 0). We are interested in the
behaviour for n→ ∞ for the Boltzmann-Grad scaling

nad−1 = 1.

In this limit the density f solves the nonlinear Boltzmann equation

(1) ∂tf + v · ∇uf = −Q−[f, f ],

such that for all open sets A ⊂ U×Rd and any given time, the number of particles
in A divided by the total number of particles converges to

∫
A f(u, v, t) du dv. Here

Q− ≥ 0 is the collision operator accounting for the losses. Particles with velocities
v and v′ collide at position u with a given probability depending on v and v′ and
impact parameter ν ∈ Sd−1. In the density there is a loss at (u, v) and (u, v′).
The loss-operator has the form

Q−[f, f ](u, v) =

∫

Rd

∫

Sd−1

f(u, v′) f(u, v) [(v − v′) · ν]+ dν dv′.

In the full hard-sphere dynamics, there is another term Q+ accounting for particles
with changed velocity after a collision, which can be seen as an immediate creation
of new particles at different points in phase space after the removal of particles in
a collision.

In [4], we develop a novel approach for the scaling limit using probability mea-
sures on collision trees way both for empiric probabilities due to the many particle
flow as well as for the idealized behaviour suggested by the Boltzmann equation.
In [3] we analyzed the situation of spatially homogeneous initial data with f0 in-
dependent of u, such that the corresponding version of (1) does not include the
transport term v · ∇uf . In the homogeneous case it was possible to give explicit
expressions for the time-dependent probabilities.

We consider collision trees as marked trees MT where each node of a tree Φ
has collision time s, initial velocity v and collision parameter ν as a label.

The idealized probability measures Pt are introduced via the Kolmogorov equa-
tion

(2)

{
∂Pt

∂t = Qt[Pt, Pt, µt[Pt]],
P0 = f0

where the collision rate µt[P ] ∈M(MT ) (the space of unsigned Radon measures)
is defined by

µt[P ](Φ) =

∫

Sd−1

dν

∫

MT

dP (Ψ) δ(u− u(Ψ) + t(v − v(Ψ))) [(v − v(Ψ)) · ν]+,

and Qt[P, P
′, µ] is given by

Qt[P, P
′, µ](Φ) = P (Φ̄t)Lt[P

′
t ](Φ),

Lt[P
′, µ](Φ) = δ(t− τ(Φ))P ′(Φ′

t) [(v − v′) · νt]+ − µ(Φ),

with the convention at a collision at a time t, the previous tree is denoted by Φ̄t and
the colliding tree with Φ′

t with v = v(Φ), v′ = v(Φ′
t) etc. Note that the operator Lt
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extracts subtrees which collide with the root particle. Using semigroup methods,
it is possible to show that (2) is well-posed for suitable f0.

A similar Kolmogorov equation can be also derived for the empirical probability
measures P̂ a

t as long as certain rare events like recollisions and resonance effects
can be excluded. A comparison of these two equations then leads to lima→0 ‖P a

t −
P̂t‖L1(MT ) = 0. This is enough to deduce the main result:

The density of the unscattered particles converges to a solution of the Boltz-
mann equation in the sense that for all ε > 0 and all open A ⊂ U × Rd uniformly
for t in a compact set

lim
a→0

Proba

(∣∣∣∣
1

n
#
{
i
∣∣∣ (ui(t), vi(t)) ∈ A, β

(a)
i (t) = 1

}
−

∫

A

dft(u, v)

∣∣∣∣ > ε

)
= 0,

where ft( · , · ) = f( · , · , t) is the unique mild solution of (1). Furthermore, there
exists a sequence ak → 0 and corresponding particle numbers nk, such that with
probability 1,

1

nk

n∑

i=1

β
(ak)
i (t) δ( · − (ui(t), vi(t)))

∗
⇀ ft

weak-∗ in M(U × Rd) as k → ∞, with δ denoting the Dirac distribution.
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