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Introduction by the Organisers

The workshop Thermodynamic Formalism, Geometry and Stochastics, organised
by Bernd Otto Stratmann (Bremen), Mariusz Urbański (Denton, Texas) and Anna
Zdunik (Warsaw), was held January 1st – January 7th, 2012. This meeting was
well attended with 17 participants with broad geographic representation from al-
most all continents. Every participant gave a 45 minutes presentation and addi-
tionally, there was a round table discussion about thermodynamic formalism as
well as an Open Problem Session to which almost every participant contributed.
The workshop was a splendid blend of researchers with various different back-
grounds in thermodynamic formalism, conformal dynamics, probability theory,
stochastics and fractal geometry. These areas are central in the theory of dy-
namical systems. They have their origins in the pioneering work of Ruelle, Sinai,
Bowen, Dobroushin and others, who from the late sixties until the mid seventies
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adapted key methods from statistical physics, in particular the theory of gas lat-
tices, to the context of continuous dynamical systems on compact metric spaces. It
was also during this period that important concepts such as topological pressure,
the variational principle, equilibrium states and Gibbs states made their decisive
breakthrough.
The first areas in which the principles of thermodynamic formalism have suc-
cessfully been applied include Axiom A diffeomorphisms and smooth expanding
endomorphisms of Riemannian manifolds and the foundations for these important
applications were laid by Bowen and Ruelle. Since then, thermodynamic formal-
ism has flourished in many different directions and found fruitful applications in
various fields in Pure and Applied Mathematics. The recent book Conformal Frac-
tals: Ergodic Theory Methods by Przytycki and Urbański, which both were present
at the workshop, provides a systematic account of the current state of the art.
In conformal dynamics and fractal geometry, the relevance of thermodynamic for-
malism became apparent through groundbreaking work of Rufus Bowen, which
established a relationship between the Hausdorff dimension of the limit set of
a quasi-Fuchsian group and the unique zero of the associated pressure function.
This was expressed in one formula, now called Bowen’s formula. Shortly after
the appearance of this formula, it became clear that Bowen’s approach is also
applicable in many other situations, most notably in the study of Julia sets of
conformal expanding maps. Also, thermodynamic formalism has been employed
in differential geometry to derive deep new insights into the nature of geodesic
flows on compact Riemannian manifolds with negative curvature. In number the-
ory, prominent applications of thermodynamic formalism were given in the realm
of continued fractions and the Gauss map. This has been done, for instance, in a
series of papers by D. Mayer and also via the theory of conformal graph directed
Markov systems with an infinite set of edges, whose general theory has been de-
veloped by Mauldin and Urbański. A further generalisation of the latter theory to
the case in which additionally the set of vertices is infinite has been obtained in
joint work by Stratmann and Urbański. Moreover, a closely related multifractal
analysis of the Gauss map and the Farey map has been obtained in a series of pa-
pers by Kesseböhmer and Stratmann. The graph directed approach to continued
fractions has also led to various important theorems about real numbers whose
continued fraction expansions have entries restricted to some fixed infinite subset
of positive integers.
Besides the above-mentioned applications of thermodynamic formalism in the
study of limit sets of Kleinian groups, thermodynamic formalism has also had
great impact in the rigorous exploration of fractal phenomena of Julia sets of ra-
tional functions on the Riemann sphere. For the most classical of these maps,
namely those which are expanding on their Julia sets, the results for conformal
expanding repellers can be applied directly. Moreover, the case of parabolic ratio-
nal maps has been almost completely dealt with in a cycle of classical papers by
Denker and Urbański. The non-recurrent case has been extensively discussed by
Urbański, whereas the important class of Collet-Eckmann maps has been explored
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thoroughly by Graczyk and Smirnov, as well as by Rivera-Letelier and Przytycki.
The work of Denker and Urbański has also been significant in the comprehen-
sive further development of the theory of equilibrium states for Hölder continuous
potential functions, which also served as one of the main motivations for the im-
portant work of Haydn, as well as for the very recent research of Urbański and
Zdunik concerning fine inducing.
There are numerous further areas where thermodynamic formalism has turned out
to be an indispensable tool. For instance, thermodynamic formalism has always
been fruitfully inspired by multifractal formalism, which is part of fractal geometry
and a special case of thermodynamic formalism. Moreover, in finer studies of par-
abolic phenomena, recent work by Thaler and Zweimüller, using thermodynamic
formalism, has shed new and surprising light on Darling-Kac type theorems. Simi-
larly, recent work of Melbourne significantly clarifies statistical properties of these
parabolic maps. Another large area where thermodynamic formalism has been
applied to, is the field of random dynamical systems. Here, the work of Rugh has
to be mentioned, which is based on pioneering research by Kifer, Bogenschütz and
Gundlach. However, this area is far from being complete. For instance, Simmons
works on random iterates of general rational functions and Hölder continuous po-
tentials, and V. Mayer, Skorulski and Urbański are currently working on random
parabolic Cantor sets as well as random transcendental meromorphic functions.
Also, thermodynamic formalism for transcendental entire and meromorphic func-
tions has flourished since the seminal work of Barański, which in turn has been
intensively developed further by Kotus, V. Mayer, Urbański and Zdunik.
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Abstracts

Stochastics and thermodynamics for equilibrium measures of
holomorphic endomorphisms of complex projective spaces

Anna Zdunik

(joint work with M. Szostakiewicz and M. Urbański)

Fix an integer k ≥ 1. Let f : Pk → Pk be a holomorphic endomorphism of degree
d ≥ 2 of the complex projective space Pk. Denote by J = J(f) the Julia set of the
map f : Pk → Pk, i. e. the topological support of the measure of maximal entropy.
The map f : Pk → Pk is called regular if its exceptional set E = E(f) does not
intersect the Julia set J = J(f). Recall that the exceptional set E = E(f) is a
proper algebraic, totally invariant subset contained in the critical set, such that,
given a ∈ P

k, the sequence of point measures d−kn(fn)∗δa is equally distributed on
the preimages of the point a converges to the measure of maximal entropy if and
only if a /∈ E. For k = 1 the set E(f) is either empty, of cardinality 2 (z 7→ z±d), or
of cardinality 1 (polynomials). Obviously, for k = 1 the set E(f) never intersects
J(f), so in dimension 1, every map is regular. In dimension k > 1, we take this as
an additional assumption, although we do not know any example of a holomorphic
map f : Pk → Pk for which the intersection E(f)∩J(f) is nonempty. Moreover, it
is known that the set E(f) is empty for a generic holomorphic map f : Pk → Pk.

Let φ : J(f) → R be a continuous function, in the sequel frequently referred
to as a potential. By P (φ) we denote the (classical) topological pressure of the
potential φ with respect to the dynamical system f : J(f) → J(f). If µ is a Borel
probability f -invariant measure on J(f), we denote by hµ(f) its Kolmogorov–
Sinai metric entropy. The relation between pressure and entropy is given by the
following celebrated Variational Principle.

P (ϕ) = sup

{
hµ(f) +

∫
ϕdµ

}
,

where the supremum is taken over all Borel probability f -invariant measures µ,
or equivalently, over all Borel probability f -invariant ergodic measures µ. The
measures µ for which

hµ(f) +

∫
φdµ = P (φ)

are called equilibrium states for the potential φ. The main theorem obtained in a
previous joint work with M.Urbański is the following.

Theorem 1. For every regular holomorphic endomorphism f : Pk → Pk of a
complex projective space P

k, k ≥ 1, there exists a positive number κf > 0 such
that if φ : J(f) → R is a Hölder continuous function with sup(φ) − inf(φ) < κf
(we then say that φ has a pressure gap), then φ admits a unique equilibrium state
µφ on J . This equilibrium state is equivalent to a fixed point of the normalized
dual Perron-Frobenius operator. In addition the dynamical system (f, µφ) is K-
mixing, whence ergodic. In the case when the Julia set J does not intersect any
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periodic irreducible algebraic variety contained in the critical set of f , we have that
κf = log d.

The main object of study in our next paper (joint work with Michal Szostakiewicz
and Mariusz Urbański) was the dynamical system (f, µφ). We show that this sys-
tem has exponential decay of correlations of Hölder continuous observables as well
as the Central Limit Theorem and the Law of Iterated Logarithm for the class of
these variables that, in addition, satisfy a natural co-boundary condition. We also
show real analyticity of the topological pressure function.

More precisely, we have

Theorem 2. For the dynamical system (f, µφ) the following hold.

(1) For every α ≤ 1, every α–Hölder continuous function g : J(f) → R and
every bounded measurable function ψ : J(f) → R, we have that

∣∣∣∣
∫
ψ ◦ fn · gdµφ −

∫
gdµφ

∫
ψdµφ

∣∣∣∣ = O(θn)

for some 0 < θ < 1 depending on α.
(2) The Central Limit Theorem holds for every Hölder continuous function

g : J(f) → R that is not cohomologous to a constant in L2(µφ), i.e. for
which there is no square integrable function η for which g = const+η◦f−η.
Precisely this means that there exists σ > 0 such that

1√
n

n−1∑

j=0

g ◦ f j → N (0, σ)

in distribution.
(3) The Law of Iterated Logarithm holds for every Hölder continuous function

g : J(f) → R that is not cohomologous to a constant in L2(µφ). This
means that there exists a real positive constant Ag such that such that µφ

almost everywhere

lim sup
n→∞

Sng − n
∫
gdµ√

n log log n
= Ag.

Theorem 3. The topological pressure function

t 7→ P (tφ) ∈ R

is real–analytic is real–analytic throughout the open set of all parameters t for
which the potentials tφ have a pressure gap.
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Bowens formula for meromorphic functions

Krzysztof Barański

The thermodynamical formalism has provided a number of useful tools to study
the geometry and ergodic properties of conformal repellers in the Julia set J(f) of
a rational map f on the Riemann sphere. In this setting a conformal repeller is a
compact set X ⊂ J(f), such that f(X) ⊂ X and |(fk)′|X > 1 for some k > 0. In
particular, the celebrated Bowen formula asserts that the Hausdorff dimension of
a conformal repeller X (e.g. the Julia set for a hyperbolic rational map) is equal
to the unique zero of the pressure function t 7→ P (f |X , t), where

P (f |X , t) = lim
n→∞

1

n
ln

∑

w∈f−n(z)∩X

|(fn)′(w)|−t

for z ∈ X is the topological pressure of f |X for the potential ϕ = −t ln |f ′|.
In recent years, there have been more and more attempts to generalise the

results of the thermodynamical formalism theory to the case of transcendental
meromorphic maps. However, this encounters some difficulties, due to lack of
compactness, infinite degree of the map and more complicated geometry.

A transcendental meromorphic map f is hyperbolic, if the closure (in C) of
the post-singular set P(f), i.e. the union of forward trajectories of the singular
(critical and asymptotic) values of f is disjoint from J(f) ∪ {∞}.

In [1], K. Barański developed some elements of the thermodynamical formalism
(in particular Bowen’s formula) for certain hyperbolic meromorphic maps of the
form f(z) = h(exp(az)), where a ∈ C and h is a rational function, in particu-
lar for the hyperbolic maps from the tangent family λ tan(z), λ ∈ C. In [8, 9],
M. Urbański and A. Zdunik created the thermodynamical formalism theory for
hyperbolic maps in the exponential family f(z) = λ exp(z), λ ∈ C. In particular,
they discovered that the unique zero of the pressure function is equal not to the
Hausdorff dimension of the Julia set J(f) (which is equal to 2 for all parameters
λ), but to the Hausdorff dimension of the radial Julia set Jr(f). The set Jr(f)
is, by definition, the set of z ∈ J(f) for which there exists r = r(z) > 0 and a
sequence nj → ∞, such that a holomorphic branch of f−nj sending fnj(z) to z
is well-defined on the disc in the spherical metric, centred at fnj(z) of radius r.
In [3, 4], V. Mayer and M. Urbański developed the thermodynamical formalism
theory for hyperbolic transcendental meromorphic maps of finite order with the
so-called balanced derivative growth condition. Also in this case the unique zero
of the pressure function is equal to the Hausdorff dimension of Jr(f). Among ex-
amples of maps satisfying the balanced derivative growth condition are hyperbolic
functions of the form f(z) = P (exp(Q(z)), where P,Q are polynomials.

In this work we show that Bowen’s formula in its new form is actually satisfied
for all transcendental meromorphic maps in the class S and for a wide class of
maps from the class B. What is more, our proof works for non-hyperbolic maps
as well. Recall that the class S (resp. B) consists of transcendental meromorphic
maps for which the set of singular values is finite (resp. bounded).

We obtained the following two results.
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Theorem 1. For every transcendental entire or meromorphic map f in the class
S and every t > 0 the topological pressure

P (f, t) = P (f, t, z) = lim
n→∞

1

n
ln

∑

w∈f−n(z)

|(fn)∗(w)|−t

(where ∗ denotes the derivative with respect to the spherical metric) exists (possibly
equal to +∞) and is independent of z ∈ C up to an exceptional set of Hausdorff
dimension zero (consisting of points quickly approximated by the forward orbits of
singular values of f). We have

P (f, t) = Phyp(f, t),

where Phyp(f, t) is the supremum of the pressures P (f |X , t) over all transitive
isolated conformal repellers X ⊂ J(f). The function t 7→ P (f, t) is non-increasing
and convex when it is finite and satisfies P (f, 2) ≤ 0. The following version of
Bowen’s formula holds:

dimH Jr(f) = dimhyp J(f) = δ(f),

where δ(f) = inf{t > 0 : P (t) ≤ 0}.
A conformal repeller X is called transitive if for all non-empty sets U and V ,

both open in X , we have fn(U) ∩ V 6= ∅ for some n ≥ 0. X is called isolated if
there exists a neighbourhood W of X such that for every z ∈ W \X there exists
n > 0 with fn(z) /∈ W . The hyperbolic dimension of the Julia set J(f) (denoted
dimhyp) is defined as the supremum of the Hausdorff dimensions (denoted dimH)
of all conformal repellers contained in J(f).

Theorem 2. For every non-exceptional transcendental entire or meromorphic
map f in the class B, such that J(f)\P(f) 6= ∅ (in particular, for every hyperbolic
map in B) and every t > 0 the topological pressure

P (f, t) = P (f, t, z) = lim
n→∞

1

n
ln

∑

w∈f−n(z)

|(fn)∗(w)|−t

exists (possibly equal to +∞) and is independent of z ∈ J(f) \ P(f), which is an
open dense subset of J(f). We have

P (f, t) = Phyp(f, t).

The function t 7→ P (f, t) is non-increasing and convex when it is finite and satisfies
P (f, 2) ≤ 0. Bowen’s formula holds:

dimH Jr(f) = dimhyp J(f) = δ(f).

If, additionally, f is hyperbolic, then P (f, t) > 0 for every 0 < t < δ(f) and
P (f, t) < 0 for every t > δ(f).

We call f called non-exceptional if there are no (Picard) exceptional values a
of f such that a ∈ J(f) and f has a non-logarithmic singularity over a.
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We were inspired by the papers by F. Przytycki, J. Rivera Letelier and S. Smirnov
[5, 6], where the authors developed the theory of pressure for arbitrary (not neces-
sarily hyperbolic) rational maps. Another source of inspiration was the paper [7]
by G. Stallard containing ideas which are very close to the notion of the pressure
for hyperbolic transcendental meromorphic maps in the class B.
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[5] F. Przytycki, Conical limit set and Poincaré exponent for iterations of rational functions,

Trans. Amer. Math. Soc. 351 (1999), 2081-2099.
[6] F. Przytycki, J. Rivera Letelier and S. Smirnov, Equality of pressures for rational functions,

Ergodic Theory Dynam. Systems 24 (2004), 891–914.
[7] G. M. Stallard, The Hausdorff dimension of Julia sets of hyperbolic meromorphic functions,

Math. Proc. Camb. Phil. Soc. 127 (1999), 271–288.
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Stability and bifurcation in random complex dynamics

Hiroki Sumi

Since nature has many random terms, it is natural and important to investigate
random dynamical systems. Many physicists are investigating “noise-induced phe-
nomena” (new phenomena caused by noise and randomness). Regarding the dy-

namics of a rational map h with deg(h) ≥ 2 on the Riemann sphere Ĉ, we always

have the chaotic part in Ĉ. However, we show that in the (i.i.d.) random

dynamics of polynomials on Ĉ, generically, (1) the chaos of the averaged
system disappears, due to the automatic cooperation of many kinds of maps in
the system (cooperation principle), and (2) the limit states are stable under
perturbations of the system.

Moreover, we investigate the bifurcation of 1-parameter families of random
complex dynamical systems.

Definition 1. (1) We denote by Ĉ := C∪ {∞} the Riemann sphere and denote by

d the spherical distance on Ĉ. (2) We set

Rat := {h : Ĉ → Ĉ | h is a non-const. rational map}
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endowed with the distance η defined by η(f, g) := supz∈Ĉ
d(f(z), g(z)). We set

Rat+ := {h ∈ Rat | deg(h) ≥ 2}. (3) We set

P := {h : Ĉ → Ĉ | h is a polynomial map, deg(h) ≥ 2}
endowed with the relative topology from Rat. (4) For a metric space X , we denote
by M1(X) the space of all Borel probability measures on X . From now on, we

take a τ ∈ M1(Rat) and we consider the (i.i.d.) random dynamics on Ĉ such
that at every step we choose a map h ∈ Rat according to τ. This determines a
time-discrete Markov process with time-homogeneous transition probabilities on
the phase space Ĉ such that for each x ∈ Ĉ and for each Borel measurable subset

A of Ĉ, the transition probability p(x,A) from x to A is defined as p(x,A) =
τ({h ∈ Rat | h(x) ∈ A}). (5) Note that Rat and P are semigroups where the
semigroup operation is functional composition. A subsemigroup of Rat is called a

rational semigroup. (6) For a rational semigroup G, we set F (G) := {z ∈ Ĉ |
∃ nbd U of z s.t. G is equicontinuous on U}. This F (G) is called the Fatou set

of G. Moreover, we set J(G) := Ĉ \F (G). This J(G) is called the Julia set of G.
(7) (Key) For a rational semigroup G, we set Jker(G) :=

⋂
h∈G h

−1(J(G)). This
is called the kernel Julia set of G.

Remark: Let τ ∈ M1(P) be such that supp τ is compact. If there exists an
f0 ∈ P and a non-empty open subset U of C s.t. {f0 + c | c ∈ U} ⊂ supp τ ,
then Jker(Gτ ) = ∅, where Gτ denotes the rational semigroup generated by supp τ.
Thus, for most τ ∈ M1(P) with compact support, Jker(Gτ ) = ∅.
Theorem 1 (Cooperation Principle and Disappearance of Chaos). Let
τ ∈ M1(Rat) be such that supp τ is compact. Let Gτ be the rational semigroup
generated by supp τ. Suppose Jker(Gτ ) = ∅ and J(Gτ ) 6= ∅. (note: if there exists an
h ∈ supp τ with deg(h) ≥ 2, then J(Gτ ) 6= ∅.) Then, we have all of the following
(1)(2)(3).

(1) We say that a non-empty compact subset K of Ĉ is a minimal set of

Gτ in Ĉ if K is minimal in {L ⊂ Ĉ | ∅ 6= L is compact, ∀h ∈ Gτ , h(L) ⊂
L} with respect to the inclusion. Moreover, we set Min(Gτ , Ĉ) := {L |
L is a minimal set of Gτ in Ĉ}. Then, 1 ≤ ♯Min(Gτ , Ĉ) <∞.

(2) For each z ∈ Ĉ, there exists a Borel subset Az of (Rat)N with (Π∞
j=1τ)(Az)

= 1 such that for each γ = (γ1, γ2, . . .) ∈ Az, the following (a)and (b) hold.
(a) There exists a δ = δ(z, γ) > 0 such that diamγn · · · γ1(B(z, δ)) → 0 as
n→ ∞. (b) d(γn, · · · γ1(z),

⋃
L∈Min(Gτ ,Ĉ)

L) → 0 as n→ ∞.

(3) We set C(Ĉ) := {ϕ : Ĉ → C | ϕ is conti.} endowed with the sup. norm

‖ · ‖∞. Let Mτ : C(Ĉ) → C(Ĉ) be the operator defined by Mτ (ϕ)(z) :=∫
Rat ϕ(h(z)) dτ(h), ∀ϕ ∈ C(Ĉ), ∀z ∈ Ĉ. Let Uτ be the space of all fi-

nite linear combinations of unitary eigenvectors of Mτ : C(Ĉ) → C(Ĉ),
where an eigenvector is said to be unitary if the absolute value of the
corresponding eigenvalue is 1. Then, 1 ≤ dimC Uτ <∞ and

C(Ĉ) = Uτ ⊕ {ϕ ∈ C(Ĉ) |Mn
τ (ϕ) → 0 as n→ ∞}.
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Moreover, each ϕ ∈ Uτ is locally constant on F (Gτ ) and is Hölder contin-

uous on Ĉ.

Remark 2. Theorem 1 describes new phenomena which cannot hold in the
usual iteration dynamics of a single h ∈ Rat with deg(h) ≥ 2.

Definition 2. Let τ ∈ M1(Rat) be such that supp τ is compact. We say that τ is
mean stable if there exist non-empty open subsets U, V of F (Gτ ) and a number
n ∈ N such that all of the following (1)(2)(3) hold. (1) V ⊂ U ⊂ F (Gτ ). (2) For

all γ = (γ1, γ2, . . .) ∈ (supp τ)N, (γn ◦ · · · ◦ γ1)(U) ⊂ V. (3) For all z ∈ Ĉ, there
exists an h ∈ Gτ such that h(z) ∈ U.

Definition 3. Let Y be a closed subset of Rat. Let M1,c(Y) := {τ ∈ M1(Y) |
supp τ is compact}. Let O be the topology in M1,c(Y) such that τn → τ in
(M1,c(Y),O) if and only if (1)

∫
ϕdτn →

∫
ϕdτ for each bounded continuous

function ϕ : Y → R, and (2) supp τn → supp τ with respect to the Hausdorff
metric in the space of all non-empty compact subsets of Y.
Theorem 3 (Density of Mean Stable Systems). The set {τ ∈ M1,c(P) |
τ is mean stable} is open and dense in (M1,c(P),O).

Theorem 4 (Stability). Suppose τ ∈ M1,c(Rat) is mean stable and J(Gτ ) 6= ∅.
Then there exists a neighborhood Ω of τ in (M1,c(Rat),O) such that all of the
following (1)(2)(3) hold. (1) For each ν ∈ Ω, ν is mean stable, Jker(Gν) = ∅ and
J(Gν) 6= ∅ (thus Theorem A for ν holds). (2) The map ν 7→ Uν is continuous on

Ω. (3) The map ν 7→ ♯Min(Gν , Ĉ) is constant on Ω.

Theorem 5 (Bifurcation). For each t ∈ [0, 1], let µt be an element of M1,c(Rat+).
Suppose that all of the following (1)–(4) hold. (1) t 7→ µt ∈ (M1,c(Rat+),O) is
continuous on [0, 1]. (2) If t1, t2 ∈ [0, 1] and t1 < t2, then suppµt1 ⊂ int(suppµt2)
with respect to the topology of Rat+. (3) int(suppµ0) 6= ∅ and F (Gµ1

) 6= ∅. (4)

♯(Min(Gµ0
, Ĉ)) 6= ♯(Min(Gµ1

, Ĉ)).
Let B := {t ∈ [0, 1] | µt is not mean stable}. Then, we have all of the following

(a)(b)(c)(d).

(a) For each t ∈ [0, 1], we have Jker(Gµt
) = ∅ and J(Gµt

) 6= ∅, and all
statements in Theorem A (with τ = µt) hold.

(b) 1 ≤ ♯(B ∩ [0, 1)) ≤ ♯Min(Gµ0
, Ĉ) − ♯Min(Gµ1

, Ĉ) <∞.

(c) For each t ∈ [0, 1] \ B and for each L ∈ Min(Gµt
, Ĉ), L ⊂ F (Gµt

) and L
is an “attractor” in a neighborhood of L for Gµt

.

(d) For each t ∈ B, there exists an L ∈ Min(Gµt
, Ĉ) such that either (a)

L∩J(Gµt
) 6= ∅ or (b) L ⊂ F (Gµt

) and L meets a Siegel disc or a Hermann
ring of some element of Gµt

.

Summary and Remarks: (1) Regarding the random dynamics of polynomials,
generically, the chaos of the averaged system disappears and the limit states
are stable under perturbations of the system. (2) In order to prove the above
result, we need the classification of minimal sets. (3) We can investigate the
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bifurcation of the 1-parameter family of random complex dynamical systems. (4)
There exist a lot of examples of τ ∈ M1,c(P) such that Jker(Gτ ) = ∅ (thus the chaos
disappears) but τ is not mean stable. At such a τ , a kind of bifurcation occurs.
(5) There exists an example of means stable τ ∈ M1,c(P) with ♯ supp τ <∞ such
that there exists a ϕ ∈ Uτ whose Hölder exponent is strictly less than 1 (“Devil’s
Coliseum”, which is the function of probability of tending to ∞. To prove this
result, we use ergodic theory and potential theory). Therefore, even if the chaos
disappears in the “C0” sense, the chaos may remain in the “C1” sense (or in
the space of Hölder continuous functions with some exponent α0 < 1). Thus, in
random dynamics, we have a kind of gradation between non-chaos and choas. It
is interesting to investigate the pointwise Hölder exponent of the above ϕ. The
above ϕ is a continuous function on Ĉ which varies precisely on the Julia set
J(Gτ ), which is a thin fractal set. Thus it is important to estimate the Hausdorf
dimension dimH(J(Gτ )) of J(Gτ ). By using the thermodynamical formalisms, we
can show that dimH(J(Gτ )) is equal to the zero of the pressure function, under
certain conditions. Also, in order to investigate the pointwise Hölder exponent of
this function ϕ in detail, we can sometimes apply the thermodynamical formalisms.
We are very interested in studying the poitwise-Hölder-exponent spectrum of this
function ϕ ∈ Uτ .
References: (The content of this talk is included in the following list of references).
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Thermodynamical formalism for a modified shift map

Steven Muir

(joint work with M. Urbański)

In a nutshell, our project was to introduce a transfer operator and use it to prove
some theorems of a classical thermodynamical formalism flavor in a novel setting:
the “alphabet” E is a compact metric space equipped with an apriori probability
measure ν and an endomorphism T and the dynamical action S is defined on the
product space EN by the rule (x1, x2, x3, . . . ) 7→ (T (x2), x3, . . . ). The greatest
novelty is found in the variational principle, where a term must be added to the
entropy to reflect the transformation of the first coordinate by T after shifting.
Our motivation is that this system, in its full generality, cannot be treated by the
existing methods of either rigorous statistical mechanics of lattice gases (where
only the true shift action is used, see [3] or [7]) or dynamical systems theory
(where the apriori measure is always implicitly taken to be the counting measure).

Now we shall provide precise definitions and statements of results. Let (E, d0)
be a compact metric space equipped “apriori” with a Borel probability measure
ν : B(E) → [0, 1]. Let T : E → E continuously and surjectively with the additional
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“not-too-contracting-at-short-range” property that there exist constants κ > 0 and
δ > 0 for which d0(a, b) < δ implies d0(T (a), T (b)) ≥ κ d0(a, b). If κ > 1 then this
property is called distance expanding, but distance expanding isn’t required for
any of our present theorems. From these assumptions it follows that T is a local
homeomorphism. Therefore T preserves the Borel sets of E in both directions.
Further assume that T is quasi-invariant with respect to ν in both directions, i.e.
ν ◦T−1 << ν and ν ◦T << ν. Unless T injects the function ν ◦T is not additive
on the whole B(E) (though it is subadditive). So the statement ν ◦ T << ν must
be understood to mean that if ν(B) = 0 then ν(T (B)) = 0, too. This implies the
Radon-Nikodym derivative dν◦T

dν can be defined at every point of E by restricting
T to a local set on which it is a homeomorphism and therefore ν ◦ T is a true
measure. Then integration against the “global measure” ν ◦ T can be defined via
the density.

In the language of shift spaces, E serves as the alphabet or state space and the
product space X = EN serves as the (full) shift space or configuration space. For
any 0 < q < 1 the distance function d = 1−q

q

∑∞
k=1 q

k d0 ◦ (πk × πk), wherein πk is

the kth coordinate projection, makes X into a compact metric space (where the
constant 1−q

q guarantees diam(X) = diam(E)) and the product measure νN makes

X into a Borel probability space. Our aim is to apply ideas of thermodynamical for-
malism to produce an invariant measure with good stochastic properties for the tit-
ular modified shift map S : X → X defined by S(x1, x2, x3, . . . ) = (T (x2), x3, . . . ).
It is continuous under the metric d by the continuity of T under the metric d0,
but in the cases where (E, d0) contains a proper limit point the map S cannot be
expansive, much less distance expanding.

If φ : X → R continuously then the transfer operator associated to φ is the
bounded linear operator mapping C(X) → C(X) by the rule

Lf(x) =

∫

a∈E

∑

b∈T−1(x1)

feφ(abx2x3 . . . ) dν(a).

We call a function weighting a transfer operator a potential function and a function
the transfer operator acts on an observable function.

For continuous potentials φ we use a standard kind of subadditivity argument
to show that the pressure p(φ) = limn→∞

1
n logLn11(x) exists independently of x

and then we use the Schauder-Tichonov fixed point theorem to show that there is
a Borel probability measure γ on X for which L

∗γ = ep(φ)γ.
Whenever f : (X, d) → (X ′, d′) is a map between metric spaces we use the

modulus of continuity notation m(f, t) = sup{d′(f(x), f(y)) : d(x, y) ≤ t}. and
say f satisfies Dini’s condition if

∑∞
n=0m(f, qn) <∞ (which is either true for all

0 < q < 1 or false for all 0 < q < 1).
For φ satisfying Dini’s condition we let L0 = e−p(φ)

L we show equicontinuity

and uniform boundedness of the sequence of functions { 1
n

∑n−1
m=0 L

m
0 11}n≥1. By the

Arzela-Ascoli theorem this sequence has a uniform limit point ρ. This function
ρ is bounded away from 0 and is a fixed point of the operator L0. Moreover the
weighted measure ργ is invariant under the modified shift S.
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We define a Gibbs measure for φ ∈ C(X) as a Borel probability measure µ on
X for which there exist constants c1, c2 > 0 such that for every n ≥ 1, every set
A ∈ B(En) with νn(A) > 0, and every point x ∈ X

1

c1cn2
≤ µ([A])

Ln11[A](x)
≤ c1
cn2
.

Note that νn(A) = 0 if and only if Ln11[A](x) = 0, so there is no danger of dividing

by 0 in this definition. We check that any Gibbs measure µ has projections µ◦π−1
1...n

equivalent to the apriore product measure νn.
We also see that if a Gibbs measure exists the the constant c2 in the definition

must be = ep(φ), so that satisfying the estimates c−1
1 ≤

(
L
n
0 11[A](x)

)−1
µ([A]) ≤ c1

provides an equivalent, but cleaner looking definition of a Gibbs measure.
We show that the measure γ introduced above is a Gibbs measure for φ, and

the normalized measure 1
ργ(11)ργ is an S invariant Gibbs measure for φ.

Using the martingale convergence theorem applied to sequences of Radon-
Nikodym derivatives relative to finer and finer σ-algebras (as in [2] Theorem 35.7)
we show that an S invariant Gibbs measure is totally ergodic. Because all Gibbs
measures for a given potential are boundedly equivalent, this implies that a po-
tential φ that satisfies Dini’s condition has a unique S-invariant Gibbs measure η
as described above.

Now we turn to a description of equilibrium measures and our variational prin-
ciple. For an S invariant Borel probability measure µ let

H(µ ◦ π−1
1...n|νn) = µ

(
− log

(
dµ ◦ π−1

1...n

dνn

)
◦ π1...n

)

if the nth projection of µ is absolutely continuous with respect to νn, and −∞,
otherwise. Basic entropy theory (see [7], section III.4) states that

h(µ|νN) ≡ lim
n→∞

1

n
H(µ ◦ π−1

1...n|νn) ∈ [−∞, 0]

exists. At this point the thermodynamical formalism for the modified shift diverges
from the usual formulation. We add a term involving the transfer of ν under T
and call it the modified entropy:

hS(µ|νN) ≡ h(µ|νN) +

∫

E

log
dν ◦ T
dν

dµ ◦ π−1
2 .

This entropy could be positive or negative, though we assume it to be < +∞.
Define the modified Gibbs free energy for φ as Gφ(µ) ≡ µ(φ) + hS(µ|νN). If Gφ

attains its supremum at some measure µ, then we call µ an equilibrium measure
for φ. Our variational principle can be stated as follows:

For all continuous φ : X → R the number p(φ) is an upper bound on Gφ, and
if φ : X → R satisfies Dini’s condition then p(φ) = supGφ and the S-invariant
Gibbs state η for φ is an equilibrium state for φ. Moreover, if φ satisfies Dini’s
condition then η is the unique equilibrium measure for φ.
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We show that this equilibrium measure varies continuously with the apriori
measure ν, where measures are treated with the weak topology. The pressure p(φ)
also varies continuously with ν.

The last set of results requires the stronger modulus of continuity requirement
that φ be Hölder continuous. Under this assumption we derive probability laws for
the stochastic process {f ◦ Sn}n≥1 on the probability space (X,B(X), η), where
f is any other Hölder continuous “observable” function. For stochastic laws the
operator L1 = 1

ρL0ρ is useful. The method is to show that if φ is Hölder continuous

then L1 acts with the Romanian or two-norm inequality on the Banach subspace of
Hölder continuous functions of any order less than or equal to the order of φ. This
is the main conditon needed to invoke the famous Ionescu Tulcea - Marinescu
theorem (of [5]) that provides a decomposition of L1 into Q + P where P is a
projection orthogonal to Q and (using the fact that it’s spectral radius is < 1) the
norm of Qn shrinks to 0 exponentially fast with n. Along the way we also see that
L
n
1 (f) → η(f) exponentially fast as n→ ∞.
After that we can quickly obtain that there is an exponential decay of cor-

relations (under η) for any two Hölder observables f and g as they are right-
composed with iterates of S whose difference goes to infinity. From this we can
appeal to Gordin’s old result (of [4]) to see that the central limit theorem holds
for {f ◦ Sn}n≥1. Finally, in the cases where T is injective (and hence by the open
mapping theorem a homeomorphism), we appeal to Philipps and Stout ([1], c.f.
[6]) to conclude that the law of the iterated logarithm applies as well.
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complètement continues. Ann. of Math. (2) 52, 140-147 (1950)
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Geometric pressure for complex rational maps and multimodal maps
of the interval

Feliks Przytycki

(joint work with J. Rivera-Letelier)

We present some results obtained in a paper which will soon be submitted for
publication. The aim is to transfer certain results from the theory of iterations of
rational functions on the Riemann sphere ([6], [7], [8], [9]) to maps of the interval.
In this transfer some parts are harder to prove than in the complex setting, since
unlike in the complex setting, these maps need not be open (at turning critical
points and at the end points).

In the recent, remarkable paper [2] the authors allow only a small interval for
parameter t, which denotes the inverse of temperature, and assume additionally a
weak growth of the absolute value of the derivatives of iterates at critical values. In
our paper the latter assumption is not needed and our results on the analyticity
of the geometric pressure as a function of the temperature and the equilibria
hold for the whole interval of possible temperatures between the freezing and the
condensation point.

Definition 1. We call a C2 map f : I 7→ I, for I = [0, 1] the unit interval,
multimodal if it is has only a finite number of non-flat critical points.

Consider an arbitrary forward f -invariant compact subset K of I, such that
f |K is topologically transitive, the topological entropy htop(f |K) is positive, K
is weakly isolated that is there exists ǫ > 0 such that for every f -periodic orbit
O(p), if it is in B(K, ǫ) then it is in K, and else f satisfies Darboux property
on K. The latter means that for every interval T ⊂ I there exists an interval
T ′ ⊂ I (open, with one end, or with both ends) such that f(T ∩K) = T ′ ∩ f(K),
compare [5]. Seemingly such maps satisfy Hölder bounded distortion condition,
that is there exist C,α > 0 such that for every intervals T, S ⊂ I intersecting K
such that there is n > 0 for which fn maps diffeomorphically T onto S and T is
short enough, for the interval S′ ⊂ S twice shorter with the same center and any
x, y ∈ S′ for g := (f |T )−n it holds |g′(x)/g′(y) − 1| ≤ C|x − y|α. (This condition
holds with α = 1 for f having negative Schwarzian derivative; for smooth maps see
e.g. [1]). We call such sets K, basic sets. Basic sets in the spectral decomposition,
[4, Section 3.4], are examples.

Let M(f,K) be the set of all probability measures supported on K that are
invariant by f . For µ ∈M(f,K) we denote by hµ(f) the measure theoretic entropy
of µ, and by χµ(f) =

∫
log |f ′|dµ the Lyapunov exponent of µ.

For every real number t we define the pressure of f |K for the potential −t log |f ′|
(called also geometric pressure), see [10], by

(1) P (K, t) = sup {hµ(f) − tχµ(f) | µ ∈M(f,K)} .
For each t ∈ R we have P (K, t) < +∞ since χµ(f) ≥ 0 for each µ ∈ M(K, f).
Sometimes we call P (K, t) variational geometric pressure and denote it by Pvar(K, t).
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A measure µ is called an equilibrium state of f on K for the potential −t log |f ′|,
if the supremum in (1) is attained at µ.

Define the numbers,

χinf(f,K) = inf {χµ(f) | µ ∈M(K, f)} ,
χsup(f,K) = sup {χµ(f) | µ ∈M(K, f)} ,

t− = inf{t ∈ R | P (t) > −tχsup(f)}, t+ = sup{t ∈ R | P (t) > −tχinf(f)}.
We have:

• t− < 0 < t+;
• for all t ∈ R \ (t−, t+) we have P (K, t) = max{−tχsup(f),−tχinf(f)};
• for all t ∈ (t−, t+) we have P (K, t) > max{−tχinf(f),−tχsup(f)}.

Theorem 1. Let f : I → I be a C2 multimodal interval map and let K be its
basic subset containing no parabolic periodic orbits. Then the following properties
hold.

Analyticity of the pressure function: The pressure function t 7→ P (K, f)
is real analytic on (t−, t+), and linear with slope −χsup(f) (resp. −χinf(f))
on (−∞, t−) (resp. [t+,+∞)).

Conformal measure: There is a unique (t, P (K, t))-conformal probability
measure µ(K,t) positive on open sets in K. Moreover, this measure is
non-atomic, ergodic, and is supported on the conical limit set Kcon(f).

Equilibrium states: For each t ∈ (t−, t+) there is a unique equilibrium
state of f for the potential −t log |f ′|. Furthermore, this measure is abso-
lutely continuous with respect to µ(K,t), with density bounded away from
0, ergodic and mixing and satisfies the CLT for Lipschitz gauge functions,
provided f |K is topologically mixing.

Note that without the topological transitivity assumption, the assertion con-
cerning the analyticity of t 7→ P (K, t) can be false (see [3]).

The item Conformal measure needs some definitions:

Kcon(f) := {x ∈ K | (∃r > 0, nj → ∞, rj → 0) (∀j) fnj maps

K − diffeomorphically B(x, rj) onto B(fnj (x), r)}.
K-diffeomorphically means f s(B(x, rj)) do capture neither critical points nor end
points of K for s = 0, ..., nj − 1. The term (t, P (K, t))-conformal means that for
every Borel set E ⊂ K on which f is injective µ(f(E)) = exp(P (K, t))

∫
E
|f ′|tdµ.

A point x ∈ K is called an end point of K if it is an end point of a maximal
K-interval on which f is strictly monotone. K-interval means a set of the form
L ∩K, where L is an interval.

Denote the set of all critical points and end points in K by S(f,K). The

idea of the proof is to find a nice couple of open sets (V, V̂ ), that is unions of

(V c, V̂ c), where V̂ c containing the closure of V c, each V c contains exactly one
point c ∈ S(f,K), V ⊃ S(f,K) and all V c are pairwise disjoint, and to consider
the induced map F (x) := fm(x)(x), where m(x) is the first time for which x ∈ V
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returns to V such that fm(x) on the component f−m(x)(V̂ ) containing x is a K-

diffeomorphism onto a component of V̂ . (The number m(x) need not be the first
return time !). Then one finds conformal and F -invariant measures for F on K(F ),
the limit set of the graph-directed Markov system F−1, and spreads them to K.
To make this formally correct one extends f to a neighbourhood of K in the real
line if K contains 0 or 1.

Similarly to the complex case ([9], [10]) one can define and prove the following
equalities of pressures

Theorem 2. PPer(K, t) = Ptree(K, t) = Phyp(K, t) = Pvarhyp(K, t) = Pvar(K, t) =
Pconf(K, t).

Remarks. In the complex case the first equality needs additional assumptions.
Ptree(K, t) = Ptree(K, t, z) for z safe (approached by fn(Crit(f)) not faster than
subexponentially) and expanding. In the complex case the ‘expanding’ assumption
(i.e. belonging to a hyperbolic subset) can be skipped. The last equality holds for
t− < t < t+.
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On thermodynamic formalism for group extensions

Manuel Stadlbauer

In this talk, we study aspects of thermodynamic formalism for extensions of topo-
logical Markov chains by discrete groups. In the context of topological Markov
chains, the dynamical system

T : X ×G→ X ×G, (x, g) 7→ (θ(x), gψ(x))
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is referred to as a group extension, where θ : Σ+
A → Σ+

A is a topologically mixing,

topological Markov chain, G a discrete group G and ψ : Σ+
A → G a locally constant

map. We now aim to relate amenability of G with equality of the Gurevič pressures
of θ and T with respect to a given weakly Hölder continuous potential ϕ : Σ+

A → R

(or its canonical lift, respectively).
The motivation for the analysis of a possible change of pressure under group

extensions stems from the attempt to relate two classical results from probability
theory and geometry. The probabilistic result was obtained by Kesten in [5] and
characterises amenability in terms of the spectral radius of the Markov operator
associated to a symmetric random walk, that is a group G is amenable if and only
if the spectral radius of the operator acting on ℓ2(G) is equal to 1. The following
counterpart in geometry was discovered by Brooks ([2]) using a completely different
method. Assume that Γ is a Kleinian group acting on hyperbolic space Hn+1

with exponent of convergence δ(G) bigger than n/2 and that N ⊳ Γ is a normal
subgroup. Then the bottoms of the spectra of the Laplacians on H/Γ and H/N are
equal if and only if Γ/N is amenable. Or equivalently, using the characterisation
of the bottom of the spectrum in terms of the exponents of convergence, Γ/N is
amenable if and only if δ(Γ) = δ(N). More recently, these results were partially
improved. Roblin ([8]) used conformal densities to prove that amenability implies
δ(Γ) = δ(N) if Γ is of divergence type and Sharp obtained in [9] the same statement
for convex-cocompact Schottky groups using Grigorchuk’s results on the co-growth
of shortest representations (see [4]) applied to the Cayley graph of G.

In order to extend these results to group extensions, it is then necessary to
introduce the following natural notion of symmetry for T . That is, we assume
that ψ is constant on cylinders of length 1 and that there exists an involution κ
acting on the alphabet A such that ψ([a]) = ψ([κa])−1. This involution then can
be extended to finite words, leading to the notion of a weakly symmetric potential
by requiring that there exists a sequence (Dn) with limn→∞Dn/n = 0 such that

sup
x∈[w],y∈[κw]

∣∣∣
∑n−1

j=0

(
ϕ ◦ θj(x) − ϕ ◦ θj(y)

)∣∣∣ ≤ Dn,

for all w ∈ Wn with Wn referring to the words of length n. Note that this
notion of symmetry is a natural object since applications of group extensions to
random walks or geodesic flows always share this property. A random walk can be
recovered by assuming that ΣA is a symmetric full shift equipped with a locally
constant, summable symmetric potential whereas the relation to the geodesic flow
is obtained through a group extension of the coding map associated with the
covered manifold (as, e.g., in [6]). Note that weak symmetry also allows to treat
systems with some parabolicity without an additional inducing process. The main
results in [10] relate pressures and amenability as follows.

Theorem 1. Assume that PG(θ) <∞ and T is transitive and weakly symmetric.
Then PG(θ) = PG(T ) if G is amenable.
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Theorem 2. Assume that ϕ is a Hölder continuous and summable potential and
ΣA has the big images and preimages property. Then G is amenable if PG(θ) =
PG(T ).

It is worth noting that also the proofs and not only the assumptions of the
theorems above reveal a strong asymmetry. The proof of the first theorem relies
on a straightforward application of Kesten’s theorem by associating a symmetric
random walk to T . Furthermore, the construction of this random walk is suffi-
ciently stable to only require that the potential satisfies a weak bounded distortion
property as defined above.

The proof of the second theorem then is more involved and relies on a careful
analysis of the action of the Ruelle operator on the embedding of ℓ2(G) into a
certain subspace of C(ΣA ×G). Namely, if the spectral radius is equal to 1, then
it is possible to prove that the embedded space contains almost eigenfunctions for
the eigenvalue 1, even though this space is not invariant under the operator. The
result then essentially follows from an argument of Day (see [3]) using uniform
rotundity.

These two theorems have the following immediate implications. Assume that
G := {g±1

1 , g±1
2 , . . .} is an at most countable set of generators of G and P is a

symmetric probability measure on G. Then Kesten’s theorem follows by applying
the theorems to the full shift with alphabet G and ϕ|[g] := logP (g). Furthermore,
the results on co-growth of groups by Grigorchuk and Cohen (see [4]) can be
recovered by considering the case |G| < ∞, ϕ = 0 and the subshift of finite type
where the only forbidden transitions are gg−1, for all g ∈ G.

Also note that both theorems can be rewritten in terms of Gibbs-Markov maps
as implicitly introduced in [1]. So assume that (ΣA, θ, µ) is a topologically mixing
Gibbs-Markov map with big images and preimages and that (X,T ) is a topologi-
cally transitive G-extension. It then follows from Theorem 2 that G is amenable
if

(1) lim sup
n→∞

1

n
log

(
µ({x ∈ ΣA : ψ(x) ◦ · · · ◦ ψ(θn−1(x)) = id}

)
= 0.

If in addition the potential dµ/dµ◦θ is weakly symmetric, then Theorem 1 implies
that condition (1) is equivalent to amenability. Note that this might also be seen
as an extension of Kesten’s result to random walks on groups with stationary
increments.

Furthermore, there is an application to hyperbolic geometry through the coding
of the geodesic flow for an essentially free Kleinian group Γ (see [11]). Note that
this class of groups contains all geometrically finite Fuchsian groups and could be
described in higher dimensions as Schottky-type groups with parabolic elements
of arbitrary rank. Then, for a normal subgroup N ⊳ Γ, we have δ(N) = δ(Γ) if
and only if Γ/N is amenable (see [10]).
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Regularity and irregularity of fiber dimensions in non-autonomous
dynamics

Volker Mayer

(joint work with B. Skorulski and M. Urbański)

This talk concerns non-autonomous dynamics of rational functions, and, in par-
ticular, the variation of the fractal dimensions of the Julia set under perturbation
of a non-autonomous hyperbolic maps.

The deterministic hyperbolic case is completely understood by now. Indeed
in 1979, R. Bowen [1] showed that the Hausdorff dimension of the Julia set can
be expressed by the zero of a pressure function. There are generalizations of
this formula to various contexts and we also establish a corresponding formula in
the non-autonomous case. D. Ruelle [2] completed the deterministic picture in
establishing real analytic dependence of the dimension for hyperbolic Julia sets.
This fact has been generalized recently by H. Rugh [3] to random repellers.

Let F =
{
fτ ; τ ∈ Λ0

}
be a family of rational functions depending analytically

on a parameter τ ∈ Λ0, Λ0 being some open subset of Cd, d ≥ 1. We investigate
the dynamics of functions

fλn
◦ fλn−1

◦ ... ◦ fλ1
, n ≥ 1 .

Hence the dynamics and the corresponding Julia sets Jλ depend on the arbitrary
choice of λ = (λ1, λ2, ..) ∈ Λ = ΛN

0 . Such a dynamical system is called non-
autonomous. In our work we first provide an if and only if condition for holomor-
phic stability of non-autonomous maps. As a corollary we get Hölder continuity
of the dimensions for hyperbolic non-autonomous Julia sets.

Theorem 1. Suppose Λ is equipped with the sup-topology ‖.‖∞ and suppose that
η ∈ Λ is a hyperbolic (in fact stable) parameter. Then λ 7→ Jλ is continuous and

λ 7→ Hdim(Jλ) and λ 7→ Pdim(Jλ)
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are Hölder continuous in some neighborhood of η with Hölder exponent

α = α(λ) → 1 if λ→ η .

But, contrary to the deterministic and random case, the dimension functions
are not smooth. Indeed, inspecting a particular family greater in detail, we show
that the dimension functions are not differentiable at any point.

Theorem 2. Consider the quadratic family F =
{
fτ (z) = τ

2 (z2−1)+1 , τ ∈ Λ0

}

where Λ0 = {|τ | > 40} and let Λ = ΛN
0 be equipped with the sup-topology. Then

Λ = Λhyp and the functions

λ 7→ Hdim(Jλ) and λ 7→ Pdim(Jλ)

are not differentiable at any point η ∈ Λ.

The following result completes the picture of the rather intriguing properties of
the finer fractal structure of the Julia sets related to this particular family.

Theorem 3. There exist an open and dense set Ω ⊂ Λ for the sup-topology such
that

Hdim(Jλ) < Pdim(Jλ) for every λ ∈ Ω .
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The Schottky-Klein function and Fenchel double crosses

Mark Pollicott

Let Ci, C
′
i for i = 1, · · · , d be finite sets of disjoint circles in C with disjoint

interiors. Let gi : Ĉ → Ĉ be the Möbius transform which maps the interior Ci

to the exterior of C′
i. The associated Schottky group Γ = 〈g1, · · · , gd〉 is the free

group they generate. We denote by F the Fundamental region in the complex

plane exterior to all of the circles. We can then write Ĉ = ∪d
ggF .

Definition 1. The Schotty-Klein prime function is given by

w(z, ξ) := (z − ξ)
∏

g∈Γ0

R(gz, gξ, ξ, z)

where

R(gz, gξ, ξ, z) =
(gz − ξ)(gξ − z)

(gz − z)(gξ − ξ)
. (1.1)

are cross ratios and z, ξ ∈ F whenever it converges, where the product is restricted
to those elements of the Schottky group generated by g1, · · · , gk, excluding the
identity and taking only an element or its inverse (but not both).
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The function is a classical object, although interest was recently revived due to
its application to generalizations of the classical Chrstoffel-Schwarz theorem.

A basic problem to address is whether the product defining w(z, ξ) actually
converges. In particular, convergence of the series (to a non-zero value) easily
follows providing these converge to 1 quickly enough. For example, if we denote

M(x) := Card

{
g ∈ Γ : |R(gz, gξ, ξ, z)| 6∈

[
1 +

1

x2
, 1 − 1

x2

]}

then convergence of w(z, ξ) would follow easily follow from

d := lim sup
x→+∞

logM(x)

log x
< 1 (1.2)

The problem of convergence was discussed by Baker in his 1897 book “Abelian
functions”, Schottky in an 1887 article and the famous book of Fricke and Klein.
Heuristically, there is convergence if the circles are not too close together. It
is more convenient to formulate this in modern parlance in terms of the limit set
Λ = Λ(Γ) (i.e., accumulation points of {g0 : g ∈ Γ}). In particular, we can identify
d = dimH(Λ), the Hausdorff dimension of Λ.

The following result is neither surprising nor difficult to prove.

Theorem 1. The product converges whenever the dimension d of the limit set is
strictly smaller than 1.

However, we have the following more delicate result.

Theorem 2. There exists C > 0 such that

M(T ) ∼ CT d as T → +∞.

(i.e., limT→+∞
M(T )
Td = C).

This can be nicely interpreted in terms of the geometry of hyperbolic three
manifolds in terms of the distance between a geodesic in hyperbolic space and its
images under the Schottky group, as we will now explain.

1. The hyperbolic circle problem and counting double crosses

We begin with a classical result.

1.1. Classical circle problem. Let Γ = 〈g1, · · · , gd〉 be a Schottky group. We
let

H
3 = {z + jt : z = x+ iy ∈ C, t > 0}

denote the upper half-space with metric ds2 = (dx2 + dy2 + dt2)/t2. The group Γ
acts on H3 by linear fractional transformations.

Definition 2. Let p0 ∈ H3. We denote N0(T ) = Card{g ∈ Γ : d(gp0, p0) ≤ T } for
T > 0.

We recall the hyperbolic circle problem for the orbit of the reference point
p0 ∈ H3.
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Theorem 3 (Hyperbolic circle problem). There exists C > 0 such that

N0(T ) ∼ CeδT as T → +∞.

We would next like to consider instead the orbits of geodesics rather than of
points.

1.2. Counting double crosses. We can consider a geodesic γ in H3 with end
points z1 = γ(−∞) and z2 = γ(+∞) in C. Given g ∈ Γ we can consider the
image gγ, which is again a geodesic, this time with endpoints z3 = gγ(−∞) and
z4 = gγ(+∞). We denote the distance between γ and gγ by

d(γ, gγ) = inf
t1,t2∈R

d(γ(t1), gγ(t2)).

Definition 3. We denote N(T ) = Card{g ∈ Γ : d(γ, gγ) ≤ T } for T > 0.

We have the following analogue of the previous theorem.

Theorem 4 (Hyperbolic cross problem). There exists C > 0 such that N(T ) ∼
CedT as T → +∞.

1.3. Cross ratios and double crosses. Following Fenchel and Ahlfors, the con-
nection between the cross ratio and the geometry is the following.

Lemma 5. |R(z1, z2, z3, z4)| = tanh(d(γ, gγ))

This gives rise to Theorem 4 as a corollary:

Corollary 6 (Theorem 4). There exists C > 0 such that

M(T ) ∼ CT d

as T → +∞.

2. Idea of the proof of Theorem 4

As usual, the points in the limit set can be coded by infinite sequences of
generators (xn)∞n=0 in s shift space. Following an approach of Lalley, we can
augment the symbol space (of generators) with an extra symbol 0 to get a one
sided subshift of finite type σ : Σ → Σ. Moreover, we can associate a Hölder
continuous function r : Σ → R such that the natural complex function

η(s) =
∑

g∈Γ

e−sd(γ,gγ),

which converges for Re(s) > d, can written as

η(s) =

∞∑

n=0

Ln
sr1(0̇),

where Lsr : Cα(Σ) → Cα(Σ) is the usual transfer operator defined by

Lsrw(x) =
∑

σy=x

e−sr(y)w(y), for w ∈ Cα(Σ).
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The usual spectral properties of the operators Lsr show that η(s) has a simple pole
at s = d and an analytic extension to a neighbourhood of {s ∈ C : Re(s) = d}\{d}.
The asymptotic result follows by standard tauberian methods.

A variation of Bowen’s Formula for (non-necessarily irreducible) graph
directed Markov systems

Mario Roy

The last 25 years have been a period of extensive study for finite conformal iterated
function systems (abbreviated to CIFSs). Over the last 15 years, Mauldin and
Urbański have, in addition to making new discoveries, generalized many results
to infinite CIFSs (see [2] and [3], for instance) and later extended the theory to
finite and infinite conformal graph directed Markov systems (CGDMSs) (see [4]).
In their work, they investigated all CGDMSs that are finitely irreducible, that is,
whose irreducibility can be witnessed by a finite set of words. Recently, Ghenciu
and Mauldin [1] have studied systems that are irreducible, though not finitely
irreducible (see also [5] for earlier results). In particular, they showed that the
Bowen formula that Mauldin and Urbański derived for finitely irreducible systems
does extend to all irreducible systems. They also proved that this formula holds for
all finite systems, irreducible and non-irreducible alike. However, there are some
simple, infinite systems that do not obey Bowen’s formula. Accordingly, Ghenciu
and Mauldin raised questions that remained open until now (see [1], page 22). Let
me reformulate the main one and add one:

(1) Does Bowen’s formula hold for some “large” classes of non-irreducible
systems?

(2) Is there a variation of Bowen’s formula whose scope encompasses an even
broader class of systems?

The aim of this talk is to answer those questions, and propose a variation of
Bowen’s formula (for a more complete exposé, see [6]). This variation boils down
to the natural idea of replacing the pressure function of the entire system by the
supremum of the pressure functions of its strongly connected components. This
variation applies to a large collection of non-irreducible systems and is shown to
coincide with the original Bowen formula which holds for all irreducible systems.
More precisely, our variation holds for all CGDMSs whose strongly connected
components form chains that each have a maximal element (maximal in terms of
a natural partial ordering of the strongly connected components) and which do
not admit infinite words consisting only of isolated edges. These CGDMSs form
a wide class which not only comprises all irreducible CGDMSs (which consist
of a single strongly connected component without isolated edges), but also all
conformal graph directed systems (CGDSs).

We further show that the original version of Bowen’s formula does not hold for
some classes of non-irreducible systems, including some CGDMSs whose strongly
connected components are IFSs. By investigating more carefully the pressure func-
tion, we show that the isolated edges of some non-irreducible systems may create
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disruption on their own. Indeed, though they have no impact on the Hausdorff
dimension of the limit set, they may catapult the pressure of the system to infinity
for some parameter values. For this reason, the classical Bowen formula sometimes
does not hold. We present a simple example of the occurrence of such a situation.
Given that the system in question has infinitely many isolated edges, one might be
tempted to believe that finitely many isolated edges cannot create such a problem.
In a subsequent example, we show that even the association of a unique isolated
edge with a strongly connected component which is not finitely irreducible can
propel the pressure to infinity for some parameters and make the classical Bowen
formula break apart.
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Distance expanding random maps, thermodynamical formalism, Gibbs
measures, and fractal geometry

Mariusz Urbański

In this monograph we develop the thermodynamical formalism for measurable ex-
panding random mappings. This theory is then applied in the context of conformal
expanding random mappings where we deal with the fractal geometry of fibers.

Distance expanding maps have been introduced for the first time in Ruelle’s
monograph “Thermodynamic Formalism”. A systematic account of the dynam-
ics of such maps, including the thermodynamical formalism and the multifractal
analysis, can be found in the book by Prztycki and Urban̈ski. One of the main
features of this class of maps is that their definition does not require any differ-
entiability or smoothness condition. Distance expanding maps comprise symbol
systems and expanding maps of smooth manifolds but go far beyond. This is also
a characteristic feature of our approach.

We first define measurable expanding random maps. The randomness is mod-
eled by an invertible ergodic transformation θ of a probability space (X,B,m).
We investigate the dynamics of compositions

T n
x = Tθn−1(x) ◦ ... ◦ Tx , n ≥ 1,
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where the Tx : Jx → Jθ(x) (x ∈ X) is a distance expanding mapping. These maps
are only supposed to be measurably expanding in the sense that their expanding
constant is measurable and a.e. γx > 1 or

∫
log γx dm(x) > 0.

In so general setting we build the thermodynamical formalism for arbitrary
Hölder continuous potentials ϕx. We show, in particular, the existence, uniqueness
and ergodicity of a family of Gibbs measures {νx}x∈X . Following ideas of Kifer,
these measures are first produced in a pointwise manner and then we carefully
check their measurability. Often in the literature all fibres are contained in one
and the same compact metric space and symbolic dynamics plays a prominet role.
Our approach does not require the fibres to be contained in one metric space
neither we need any Markov partitions or, even auxiliary, symbol dynamics.

Our results contain those Bogenschütz, Gundlach and Kiefer on related topics.
Throughout the entire monograph where it is possible we avoid, in hypotheses,

absolute constants. Our feeling is that in the context of random systems all (or at
least as many as possible) absolute constants appearing in deterministic systems
should become measurable functions. With this respect the thermodynamical for-
malism developed in here represents also, up to our knowledge, new achievements
in the theory of random symbol dynamics or smooth expanding random maps
acting on Riemannian manifolds.

Unlike recent trends aiming to employ the method of Hilbert metric our ap-
proach to the thermodynamical formalism stems primarily from the classical method
presented by Bowen and Kifer. Developing it in the context of random dynamical
systems we demonstrate that it works well and does not lead to too complicated
(at least to our taste) technicalities. The measurability issue mentioned above
results from convergence of the Perron-Frobenius operators. We show that this
convergence is exponential, which implies exponential decay of correlations. These
results precede investigations of a pressure function x 7→ Px(φ) which satisfies the
property

νθ(x)(Tx(A)) = ePx(φ)

∫

A

e−φxdνx

where A is any measurable set such that Tx|A is injective. The integral, against the
measure m on the base X , of this function is a central parameter EP (ϕ) of random
systems called the expected pressure. If the potential φ depends analytically on
parameters, we show that the expected pressure also behaves real analytically. We
would like to mention that, contrary to the deterministic case, the spectral gap
methods do not work in the random setting. Our proof utilizes the concept of
complex cones introduced by Rugh, and this is the only place, where we use the
projective metric.

We then apply the above results mainly to investigate fractal properties of fibers
of conformal random systems. They include Hausdorff dimension, Hausdorff and
packing measures, as well as multifractal analysis. First, we establish a version
of Bowen’s formula (obtained in a somewhat different context by Bogenschütz)
showing that the Hausdorff dimension of almost every fiber Jx is equal to h, the
only zero of the expected pressure EP (φt), where φt = −t log |f ′| and t ∈ R. Then
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we analyze the behavior of h–dimensional Hausdorff and packing measures. It
turned out that the random dynamical systems split into two categories. Systems
from the first category, rather exceptional, behave like deterministic systems. We
call them, therefore, quasi-deterministic. For them the Hausdorff and packing
measures are finite and positive. Other systems, called essentially random, are
rather generic. For them the h–dimensional Hausdorff measure vanishes while the
h-packing measure is infinite. This, in particular, refutes the conjecture stated
by Bogenschütz and Ochs that the h–dimensional Hausdorff measure of fibers is
always positive and finite. In fact, the distinction between the quasi-deterministic
and the essentially random systems is determined by the behavior of the Birkhoff
sums

Pn
x (φ) = Pθn−1(x)(φ) + ...+ Px(φ)

of the pressure function for potential φh = −h log |f ′|. If these sums stay bounded
then we are in the quasi-deterministic case. On the other hand, if these sums are
neither bounded below nor above, the system is called essentially random. The
behavior of Pn

x , being random variables defined on X , the base map for our skew
product map, is often governed by stochastic theorems such as the law of the
iterated logarithm whenever it holds. This is the case for our primary examples,
namely conformal DG-systems and classical conformal random systems. We are
then in position to state that the quasi-deterministic systems correspond to rather
exceptional case where the asymptotic variance σ2 = 0. Otherwise the system is
essential.

The fact that Hausdorff measures in the Hausdorff dimension vanish has fur-
ther striking geometric consequences. Namely, almost all fibers of an essential
conformal random system are not bi-Lipschitz equivalent to any fiber of any quasi-
deterministic or deterministic conformal expanding system. In consequence almost
every fiber of an essentially random system is not a geometric circle nor even a
piecewise analytic curve. We then show that these results do hold for many explicit
random dynamical systems, such as conformal DG-systems, classical conformal
random systems, and, perhaps most importantly, Brück and Büger polynomial
systems. As a consequence of the techniques we have developed, we positively
answer the questions of Brück and Büger of whether the Hausdorff dimension of
almost all naturally defined random Julia set is strictly larger than 1. We also
show that in this same setting the Hausdorff dimension of almost all Julia sets is
strictly less than 2.

Concerning the multifractal spectrum of Gibbs measures on fibers, we show
that the multifractal formalism is valid, i.e. the multifractal spectrum is Legendre
conjugated to a temperature function. As usual, the temperature function is
implicitly given in terms of the expected pressure. Here, the most important,
although perhaps not most strikingly visible, issue is to make sure that there
exists a set Xma of full measure in the base such that the multifractal formalism
works for all x ∈ Xma.

If the system is in addition uniformly expanding then we provide real analyticity
of the pressure function. This part is based on work by Rugh’s work and it is the
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only place where we work with the Hilbert metric. As a consequence and via
Legendre transformation we obtain real analyticity of the multifractal spectrum.

Hyperbolic dynamics on folded saddle sets

Eugen Mihailescu

We are concerned with the case when f is a smooth endomorphism on a manifold
M , having a basic set with overlaps Λ ⊂ M . We shall assume also that the
endomorphism f is hyperbolic on Λ; however in this non-invertible case the unstable
directions depend on full backwards trajectories x̂ ∈ Λ̂ ([14], [15], [4]). The map
f is not assumed expanding on Λ. Through a given point x from Λ there may
pass many (even uncountably many) local unstable manifolds corresponding to

different prehistories of x in the natural extension Λ̂; these unstable manifolds
may intersect also outside Λ. In general in this non-invertible case we do not have
a Markov partition on Λ.

The non-invertible case has different techniques and phenomena than the dif-
feomorphism or the expanding cases (see [1], [11], [6] and the references there). For
instance in this case the stable dimension does not vary continuously on perturba-
tion. There are many examples of interesting and/or unexpected dynamical be-
haviour for endomorphisms, for instance: examples of perturbations of linear toral
endomorphisms, for which the unstable manifolds through a given point depend
on prehistories (Przytycki, [14]); horseshoes with overlaps (Bothe, [1]); hyperbolic
non-expanding fractal repellers with overlaps (Mihailescu,[5]); skew products with
overlaps, having in fibers Cantor sets of points with uncountably many unstable
directions associated to them (Mihailescu, [4]); examples from higher dimensional
complex dynamics, etc.

For equilibrium measures on folded basic sets we have the following approx-
imation with discrete measures supported on those n-preimages remaining in Λ
(notice that Λ is not totally invariant):

Theorem 1 ([8]). Let f : M → M be a smooth map (say C2) on a Riemannian
manifold M , so that f is hyperbolic on a saddle basic set Λ; assume also that the
critical set Cf of f does not intersect Λ. Let φ be a Hölder continous potential on
Λ and µφ the equilibrium measure of φ on Λ. Then ∀g ∈ C(Λ,R),

∫

Λ

| < 1

n

∑

y∈f−n(x)∩Λ

eSnφ(y)

∑
z∈f−n(x)∩Λ

eSnφ(z)
·
n−1∑

i=0

δfiy − µφ, g > |dµφ(x) −→
n→∞

0.

Let now Λ be a connected hyperbolic repeller for a smooth endomorphism
f : M → M defined on a Riemannian manifold M , and assume f has no critical
points in Λ. Let V be a neighbourhood of Λ in M and for any z ∈ V define the
measures

µz
n :=

1

n

∑

y∈f−n(z)∩V

1

d(f(y)) . . . d(fn(y))

n∑

i=1

δfiy,
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where d(y) is the number of f -preimages belonging to V of a point y ∈ V . Then we
proved in [5] that there exists an f -invariant measure µ− on Λ, a neighbourhood
V of Λ and a borelian set A ⊂ V with m(V \ A) = 0 (where m is the Lebesgue
measure on M) and a subsequence nk → ∞ s.t for any z ∈ A, µz

nk
→

k→∞
µ−. The

measure µ− is called the inverse SRB measure of the non-invertible hyperbolic
repeller. We showed that µ− is the equilibrium measure of the stable potential
Φs(x) := log |detDfs(x)|, x ∈ Λ, with respect to f . The difficulty is that f is
non-invertible, hence µ− is not simply the SRB measure for the inverse f−1 (the
inverse does not even exist). We proved that µ− is the unique f -invariant measure
µ satisfying an inverse Pesin entropy formula; if f is d-to-1 on Λ we have:

hµ−(f) = log d−
∑

i,λi(µ−)<0

λi(µ
−)mi(µ

−).

Theorem 2 (Mihailescu, arxiv.org 2011). Let f be a hyperbolic toral endomor-
phism on Tm,m ≥ 2 given by an integer-valued matrix A without zero eigenvalues,
and let g be a C1 perturbation of f . Consider µ−

g the inverse SRB measure of g

and µ+
g the (usual forward) SRB measure. Then the entropy production eg(µ−

g ) of

µ−
g and the entropy production eg(µ+

g ) satisfy the following:

a) eg(µ−
g ) ≤ 0 and Fg(µ−

g ) = log d. Moreover eg(µ+
g ) ≥ 0.

b) eg(µ−
g ) = 0 if and only if |detDg| is cohomologous to a constant on T

m.

One can find a measurable partition ξ of Λ, subordinated to the stable mani-
folds W s and can define the lower pointwise stable dimension of µ as δs(µ, x, ξ) :=

lim inf
r→0

logµξ
x(B(x,r))
log r , where {µξ

x}x is the system of conditional measures of µ asso-

ciated to ξ. Similarly define δ
s
(µ, x, ξ).

Theorem 3 ([7]). Let f : M →M be a smooth endomorphism which is hyperbolic
on a saddle basic set Λ and conformal on its stable manifolds. Assume f is d-to-1
on Λ and let Φs(y) := log |Dfs(y)|, y ∈ Λ, δs the stable dimension of Λ, and µs the
equilibrium measure of δsΦs. Then the conditional measures µs

s,A of µs associated

to ξ are geometric probabilities, i.e for (µs)ξ-a.a πξ(A) of Λ/ξ there is a constant
CA > 0 such that

C−1
A ρδ

s ≤ µs
s,A(B(y, ρ)) ≤ CAρ

δs , y ∈ A ∩ Λ, 0 < ρ <
r(A)

2
.

In particular the lower and upper pointwise stable dimensions of µφ are equal a.e
to δs.

For automorphisms Ornstein proved a famous result, namely that two invertible
Bernoulli shifts on Lebesgue spaces are isomorphic if and only if they have the same
measure theoretic entropy. However, as Parry and Walters showed, for measure-
preserving endomorphisms f : (X,B, µ) → (X,B, µ), the entropy hµ(f) alone
does not determine the conjugacy class (see [13]). So the problem of coding for
endomorphisms of Lebesgue spaces (in particular for 1-sided Bernoulli shifts) is
subtle and there are no exhaustive classifications (see also [2] and [3]). If fA is a
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linear toral endomorphism given by a hyperbolic matrix A with |det(A)| > 1, then
Katznelson showed that its natural extension is 2-sided Bernoulli. However, this
does not mean that (Tm, fA,m) is 1-sided Bernoulli.

Theorem 4 ([10]). Let fA be a toral endomorphism on Tm,m ≥ 2, given by
the integer-valued matrix A, all of whose eigenvalues are strictly larger than 1
in absolute value. Then the endomorphism fA on the torus T

m, when equipped
with its Lebesgue (Haar) measure µm, is isomorphic to a uniform model 1-sided
Bernoulli shift.

We now consider the general case of equilibrium measures of endomorphisms
on folded fractals.

Theorem 5 ([9]). Let f be a smooth hyperbolic endomorphism on a connected
basic set Λ; also, let φ be a Hölder continuous potential on Λ and µφ the unique
equilibrium measure of φ. If (Λ, f, µφ) is 1-sided Bernoulli, then: a) either f is
distance-expanding on Λ; or b) the stable dimension of µφ is zero, i.e HDs(µφ, x) =
0 for µφ-a.e x ∈ Λ.

Theorem 6 ([9]). a) Let f be hyperbolic on the saddle set Λ such that Cf∩Λ = ∅. If
the system (Λ, f, µ0) given by the measure of maximal entropy is 1-sided Bernoulli,
then f is distance expanding on Λ.

b) Assume f is an expanding endomorphism on Λ. If µφ is the equilibrium
measure of the Hölder potential φ and if (Λ, f, µφ) is 1-sided Bernoulli, then µφ =
µ0, where µ0 is the unique measure of maximal entropy for f on Λ.

The family of skew products with variable overlaps of Cantor sets in fibers
given in [4] consists of maps which are hyperbolic (see also [12]) and strongly
non-invertible on their respective basic sets, and on the other hand they are not
constant-to-one; one can apply the above results for them too.

There also exist relations between the stable dimension and the geometry of the
fractal Λ.

Theorem 7 ([11]). Let f : M →M be a smooth endomorphism which is hyperbolic
on a basic set Λ with Cf ∩Λ = ∅ and which is conformal on local stable manifolds.
Assume that d is the maximum possible value of the preimage counting function
d(·) on Λ, and that ∃x ∈ Λ with δs(x) := HD(W s

r (x) ∩ Λ) = td = 0. Then it
follows that d(·) ≡ d on Λ and δs(y) = 0, y ∈ Λ.

Theorem 8 ([6]). In the setting of of the previous theorem, if d is the maximum
possible value of d(·) on Λ and if δs = td = 0, then there exist finitely many global
unstable manifolds that contain Λ, and f |Λ is expanding. In particular if Λ is
connected, then there exists one global unstable manifold containing Λ.
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A Fréchet law and an Erdős-Philipp law for maximal cuspidal windings

Marc Kesseböhmer

(joint work with J. Jaerisch and B. O. Stratmann)

The talk presented recent results obtained in [6], stated in Theorem 1–3 below.
In this paper we establish a Fréchet law and an Erdős-Philipp law for maximal
cuspidal windings of the geodesic flow on H/G, for a finitely generated, essentially
free Fuchsian groupG acting on the upper half-space model (H, d) of 2-dimensional
hyperbolic space. Recall that to each ξ in the radial limit set Lr(G) of G one can
associate an infinite word expansion in the symmetric set G0 of generators of G.
Namely, with F referring to the Dirichlet fundamental domain of G at i ∈ H, the
images of F under G tesselate H and each side of each of the tiles is uniquely
labeled by an element of G0. The hyperbolic ray sξ from i towards ξ ∈ Lr(G) has
to traverse infinitely many of these tiles, and the infinite word expansion associated
with ξ is then obtained by progressively recording, starting at i, the generators
of the sides at which sξ exits the tiles. In this way we derive an infinite reduced
word on the alphabet G0. We then form blocks as follows. Each hyperbolic
generator in this word has block length 1. Further, if there is a block in which
the same parabolic generator appears n times and if there is no larger block of
this parabolic generator containing that block, then this block is of length n. This
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allows us to define the process (Xk) by setting Xk to be equal to the length of the
k-th block. By construction, such a block of length n corresponds to the event
that the projection of sξ onto H/G spirals precisely n − 1 times around a cusp
of H/G. The main results of this paper will establish asymptotic estimates and
strong distributional convergence for the process (Yn), given by

Yn := max
k=1,...,n

Xk.

Theorem 1. Fréchet law for maximal cuspidal windings. For each essen-
tially free, finitely generated Fuchsian group G with parabolic elements and with
exponent of convergence δ = δ(G), the following holds. For every s > 0 and
for each probability measure ν absolutely continuous with respect to the Patterson
measure mδ of G, we have that

lim
n→∞

ν
({
Y 2δ−1
n /n ≤ s

})
= exp (−κ (G) /s) .

Here, the constant κ (G) is explicitly given by

κ(G) : =
∑

γ∈Γ0

(
Φ (pγ)w−δ

γ

)2
/((2δ − 1) µδ ({X1 = 1})),

where Γ0 refers to the set of parabolic generators of G, pγ to the parabolic fixed
point and wγ to the width of the cusp associated with γ ∈ Γ0, µδ to the unique
measure absolutely continuous with respect to mδ which is invariant under the
Bowen-Series map, and Φ : L(G) → R to a version of the Radon-Nikodym deriva-

tive dµδ/dmδ given by Φ (ξ) :=
∫
χL(G) (ξ, η) |ξ − η|−2δ dmδ(η), where

L(G) := {(ξ, η) : ξ, η ∈ L(G), ξ 6= η and there exists t ∈ R such that ℓξ,η(t) ∈ F}
and F denotes a Dirichlet fundamental region for G at i and ℓξ,η denotes the
geodesic connecting ξ and η. Let us remark that the above constant κ(G) is strictly
positive, since by a result of Beardon [1] we have that if G has parabolic elements,
then δ(G) > 1/2. Also, note that our Fréchet law (cf. [3]) gives an answer to a
question asked by Pollicott in [9], where he shows that a result by Galambos [4, 5]
can be rephrased in terms of the modular group (see also [2]). The reader might
like to recall that this result of Galambos states that for all s > 0 and for each
probability measure ν absolutely continuous with respect to the Lebesgue measure
on (0, 1), we have that limn→∞ ν ({(maxk=1,...,n ak)/n ≤ s}) = exp (−1/(s log 2)) .
Here, ak(x) refers to the k-th entry in the regular continued fraction expansion of
x ∈ (0, 1). Let us remark that a straightforward adaptation of our proof of our
Fréchet law gives an alternative proof of this result of Galambos.

We will also give some interesting applications of our Fréchet law. These include
the following Erdős-Philipp law, whose first assertion extends a result of Philipp in
[8, Theorem 1], who showed that for Lebesgue almost every x ∈ (0, 1) we have that
lim infn→∞ maxk=1,...,n ak(x)(log logn)/n = 1/ log 2. This settled a conjecture by
Erdős (see [8]), who had previously conjectured that the above Limes inferior is
equal to 1. Also, note that the second assertion of our Erdős-Philipp law extends
[8, Corollary to Theorem 3].
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Theorem 2. Erdős-Philipp law for maximal cuspidal windings. For G as
above, we have mδ almost everywhere that

lim inf
n→∞

Y 2δ−1
n (log logn)/n = κ (G) .

Moreover, for each sequence (ℓn) of positive reals we have mδ almost everywhere
that

lim sup
n→∞

Yn/ℓn ∈ {0,∞} .

The Erdős-Philipp law has some further interesting consequences. Namely, it
permits the derivation of the following Khintchine-type results, where ξt denotes
the unique point on the hyperbolic ray from i ∈ H towards an element ξ ∈ Lr (G)
such that d (i, ξt) = t, for t ≥ 0.

Theorem 3. Khintchine type laws. For G as above, we have for mδ almost
every ξ ∈ Lr (G) that

lim
n→∞

log Yn (ξ)

logn
=

1

2δ − 1
and lim

T→∞
max
0≤t≤T

d (ξt, G (i))

logT
=

1

2δ − 1
.

Note that in here the second assertion represents a significant strengthening
of the result that lim supt→∞ d (ξt, G (i)) / log t = (2δ − 1)−1 for mδ almost ev-
erywhere ξ, which was obtained in [11] for arbitrary geometrically finite Kleinian
groups with parabolic elements, generalising work of Sullivan for cofinite Kleinian
groups [10]. Let us point out that in this result the Limes superior cannot be
replaced by a Limes inferior. Also, let us remark that the first statement in the
above corollary is closely related to the well-known result by Khintchine for con-
tinued fractions ([7]), which asserts that Lebesgue almost everywhere, we have
that lim supn→∞ log an/ logn = 1. In fact, by an elemetary observation, it im-
mediately follows from our Corollary that for essentially free, finitely generated
Fuchsian groups with parabolic elements we have mδ almost everywhere that
lim supn→∞ logXn/ logn = (2δ − 1)−1. Again, let us remark that in here the
Limes superior can not be replaced by a Limes inferior.

Further, we point out that the above mentioned results by Galambos and
Philipp exclusively concern the Gauss system, for which the limit set is the whole
unit interval [0, 1]. In contrast to this, the conformal dynamical systems which we
consider in this paper have limit sets which are of fractal nature. Hence, one of
the novelties of our analysis is that we obtain strong distributional convergence
and asymptotic estimates for processes which are defined on conformal attractors
with parabolic elements and of Hausdorff dimension strictly less than 1.
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Random iterations of rational functions

David Simmons

It is a theorem of Denker and Urbański that if T is a rational map of degree at

least two and if φ : Ĉ → R is Hölder continuous and satisfies the “thermodynamic
expanding” condition P (T, φ) > sup(φ), then there exists exactly one equilibrium

state µ for T and φ, and furthermore (Ĉ, T, µ) is metrically exact. In [5] I extended
these results to a random setting, considering what I called a random holomorphic

action on Ĉ. Pressure and entropy are as defined by T. Bogenschütz in his paper
[2] which proves a variational principle for random dynamical systems.

Definition 1. A (measurable) random dynamical system consists of

• A probability space (Ω,P) [i.e. P is a probability measure on the measur-
able space Ω]

• An ergodic invertible measure-preserving transformation θ : Ω → Ω
• A measurable space X

• A measurable transformation T : X → X

• A measurable map π : X → Ω such that the diagram commutes, i.e.
π ◦ T = θ ◦ π.

Definition 2. A random holomorphic action on the Riemann sphere Ĉ consists of

• A probability space (Ω,P)
• An ergodic invertible measure-preserving transformation θ : Ω → Ω
• A Borel measurable map T : Ω → R, where R is the set of all rational

functions (holomorphic endomorphisms of Ĉ), endowed with the compact-
open topology [This map will usually be denoted in subscript i.e. Tω :=
T (ω)]
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The triple (Ω,P, θ) is called the base system and the map T is called the action
on X .

If (Ω,P, θ, T ) is a random holomorphic action on X , we construct a random
dynamical system in a natural way as a skew-product:

X := Ω ×X

T(ω, x) := (θ(ω), Tω(x))

π(ω, x) := π1(ω, x) = ω

The sextuple (Ω,P, θ,X,T, π) is a random dynamical system since π ◦T = θ◦π.
It is called the random dynamical system associated with (Ω,P, θ, T ).

For shorthand we write

T n
ω (x) := π2(Tn(ω, x)) = Tθn−1(ω) ◦ . . . ◦ Tω(x)

so that T n
ω ∈ R. (The map T n

ω is called a pseudo-iterate.)
The concepts of metric entropy and topological pressure can be defined for a ran-

dom dynamical system associated with a random holomorphic action (Ω,P, θ, T ).
A variational principle holds in this contexts, yielding a concept of an equilibrium
state. Such notions are discussed in [2].

In studying random holomorphic actions, my main result was a generalization
of the following theorem:

Theorem 1 ([3]). Suppose that T is a complex rational map of degree at least two

and suppose that φ : Ĉ → R is Hölder continuous and satisfies

(1) P (φ) > sup(φ).

Then there is a unique equilibrium state for (T, φ).

Gromov [4] proved that htop(T ) = ln(deg(T )) for rational functions. Thus (1)
follows from the easy to check condition

sup(φ) − inf(φ) < ln(deg(T )).

For the remainder of this abstract, fix a random holomorphic action (Ω,P, θ, T )

on Ĉ and a random potential function φ : Ω → C(Ĉ,R). Assume that the set

{deg(Tω) : ω ∈ Ω}

is bounded and does not contain 0 or 1. Also assume that the integrability condi-
tion ∫

ln sup
x∈Ĉ

(‖T ′
ω(x)‖s)dP(ω) <∞

is satisfied. (Here ‖T ′
ω(x)‖s is the derivative of Tω at x with respect to the spherical

metric.) In particular, this assumption is satisfied if T (Ω) is relatively compact.
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For each ω ∈ Ω and n ∈ N, we define the Perron-Frobenius operator Ln
ω :

C(Ĉ,R) → C(Ĉ,R) via the equation

Ln
ω[f ](p) :=

∑

x∈(Tn
ω )−1(p)

exp




n−1∑

j=0

φθj(ω)(T
j
ω(x))


 f(x).

(The sum is counted with multiplicity.)

Theorem 2 ([5]). Fix α > 0. Suppose that the integrability condition
∫

‖φω‖αdP(ω) <∞

holds, and suppose that for each ω ∈ Ω, there exists λω > 0 so that Lω[1] = λω1.
Then there exists a unique equilibrium state of (X,T, φ) over (Ω,P, θ). Also,

Pφ,P(T|θ) =

∫
ln(λω)dP(ω).

Corollary 3. There exists a unique measure of maximal relative entropy of (X,T)
over (Ω,P, θ). Futhermore

htop,P(T|θ) := P0,P(T|θ) =

∫
ln(deg(Tω))dP(ω),

generalizing the deterministic equation htop(T ) = ln(deg(T )) [4].

Proof. If φ = 0, then Lω[1] = deg(Tω)1. �

Theorem 4 ([5]). Fix α > 0 and 0 ≤ τ < 1. For every rational function T0
of degree at least two, there exists a neighborhood B of T0 in the compact-open
topology such that the following holds:

If (Ω,P, θ, T ) is a random holomorphic action on Ĉ with T (Ω) ⊆ B, if φ : Ω →
C(Ĉ,R) is a random potential function, and if:

sup
ω∈Ω

‖φω‖α <∞

sup(eφω) ≤ τ inf(Lω[1]) ∀ω ∈ Ω,

then there exists a unique equilibrium state of (X,T, φ) over (Ω,P, θ).

Note that the assumption

(2) sup(eφω) ≤ τ inf(Lω[1]) ∀ω ∈ Ω

follows from the stronger and easily verifiable bound

(3) sup(φω) − inf(φω) ≤ ln(τ) + ln deg(Tω) ∀ω ∈ Ω.

Recall that the Denker-Urbański theorem assumed

(4) P (φ) > sup(φ)

which also follows from (3). This in a sense justifies substituting (2) for (4).
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Hausdorff Dimension of radial Julia sets of meromorphic functions

Bart lomiej Skorulski

(joint work with M. Urbański)

Complex dynamics is a field originated in the works of Pierre Fatou and Gaston
Julia. Of course, the problem of linearization for a fixed point was studied before
(Böttcher, Koenings and others) and definitely it was an inspiration for the idea of
creating this separate branch of mathematics, but numerous and extensive works of
Fatou and Julia were the place where complex dynamics was born and maturated.
The field became wildly known and popular when about three decades ago first
computer images of Mandelbrot set and Julia sets appeared. Complex dynamics
got an interest of many researches who started to investigate a variety of interesting
and exiting topics in this field. One of them is the geometry of Julia sets and
one of the ways to describe and analyze the complex nature of this object is its
Hausdorff dimension. Here we study the behavior of this dimension under analytic
perturbations.

Probably the first result indicating how the Hausdorff dimension of Julia sets
changes under analytic perturbations is the result of Ruelle in [11]. The main
technique Ruelle used was thermodynamic formalism. We refer the reader to the
books of Zinsmister [15] and Przytycki & Urbański [9] for a modern exposition
of thermodynamic formalism and contemporary approach to the problem of real
analyticity of Hausdorff dimension.

The problem of real analyticity of the Hausdorff dimension was further studied
for many families of rational and meromorphic functions (see e.g. [14], [13], [12],
[6], [1] and [7]). Here we continue this line of investigation.

Therefore, let f : C → Ĉ be a meromorphic function. The Fatou set of f consists
of all points z ∈ C that admit an open neighborhood Uz such that all the forward
iterates fn, n ≥ 0, of f are well-defined on Uz and the family of maps {fn|Uz

:
Uz → C}∞n=0 is normal. The Julia set J (f) is then defined as the complement of
the Fatou set of f in C. By sing(f−1) we denote the set of singularities of f−1.

We define the postsingular set of f : C → Ĉ as P(f) =
⋃∞

n=0 f
n(singf−1).

The primary object of our study in this paper, the radial Julia set Jr(f) of f
is defined as Jr(f) := {z ∈ J (f) : ω(z) \ P(f) 6= ∅}.
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Our two main theorems are the following Theorem 1 and Theorem 2. In these
theorems we establish real–analyticity of Hausdorff dimension of radial Julia sets
under weakest, up to our knowledge, conditions.

Theorem 1. Let f : C → Ĉ be a nicely strongly regular tame meromorphic
function. Let Λ ⊂ Cd be an open set and let {fλ}λ∈Λ be an analytic family of
meromorphic functions such that

(1) fλ0
= f for some λ0 ∈ Λ,

(2) there exists an holomorphic motion H : Λ × Jλ0
→ C such that each Hλ

is a topological conjugacy between fλ0
and fλ on Jλ0

.

Then the map λ 7→ HD(Jλ) is real–analytic on some neighborhood of λ0.

Theorem 2. Suppose that f : C → Ĉ is a dynamically regular meromorphic func-
tion of divergence type which belongs to class S. If Λ ⊆ C is an open set, {fλ}λ∈Λ

is an analytic family mermorphic functions and fλ0
= f for some λ0 ∈ Λ, then

the function Λ ∋ λ 7→ HD(Jr(fλ)) is real–analytic in some open neighborhood of
λ0 contained in Λ.

One of our two main techniques employed in the proofs of these theorems is
the, recently emerging, concept of nice sets. These sets were introduced and ex-
tensively studied by Przytycki and Rivera-Letelier ([10], [8]) in the context of
Collet-Eckmann rational mappings. A general construction of nice sets for tran-
scendental functions can be found in [2]. Here we use them to construct appropriate
conformal iterated function systems and then to apply the developed machinery of
graph directed Markov systems from [4] and [5]. While doing this, as an actually
auxiliary step, we obtain new, up to our knowledge, results about real analyticity
of the Hausdorff dimension of limits sets of (infinite) conformal graph directed
Markov systems. The following Theorem 3 and Theorem 4 in particular extend
those from [12] and [1]. The number b(Sλ) refers here to the Bowen’s parameter
of the system Sλ.

Theorem 3. If {Sλ}λ∈Λ is a weakly regularly analytic family of finitely primitive
conformal graph directed Markov systems, then the function Λ ∋ λ 7→ b(Sλ) ∈ R

is real–analytic on some neighborhood of every strongly regular parameter λ0 ∈ Λ.
In addition, if the Bowen’s parameter is equal to the Hausdorff dimension of the
limit set, we thus automatically get real analyticity of Hausdorff dimension.

Theorem 4. If Λ ⊆ C
d is an open set and {Sλ}λ∈Λ is an analytic family of finitely

primitive conformal graph directed Markov systems such that Sλ0
is strongly regular

for some λ0 ∈ Λ and there exists a holomorphic motion H : Λ × Ĉ → Ĉ such that

ϕλ
e (H(λ, z)) = H(λ, ϕλ0

e (z))

for all λ ∈ Λ and all z ∈ Jλ0
, then the Bowen’s parameter function Λ ∋ λ→ b(Sλ)

is real–analytic on some sufficiently small neighborhood of λ0.

Note that although we assume in the latter theorem seemingly more, namely the
existence of an appropriate holomorphic motion, however, on the other hand, we



118 Oberwolfach Report 03/2012

merely assume here analyticity of the family of graph directed Markov systems,
which is much weaker than weakly regular analyticity required in Theorem 3.
Staying in the realm of abstract Conformal Graph Directed Markov Systems we
are able to provide a very mild sufficient condition, called periodical separation,
which entails the existence of a suitable holomorphic motion. Theorem 4 gets then
very weak hypotheses indeed. This is however not quite the end of the story about
directed Markov systems. The point is that those systems constructed in the proof
of Theorem 1 are not known to satisfy the Open Set Condition. To remedy this
we invoke the theory of conformal Walters expanding maps developed in in [3].

Having Conformal Iterated Function Systems produced with the help of nice
sets, we were also able to show, as a straightforward consequence of the theory of
Conformal Graph Directed Markov Systems, that the canonical Hausdorff measure
restricted to the radial Julia set of a tame meromorphic function is σ-finite.
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A Central Limit Theorem for certain infinite measure preserving
transformations

Roland Zweimüller

(joint work with D. Kocheim)

The study of ergodic and probabilistic properties of dynamical systems with an
infinite invariant measure has recently led to a number of interesting results which
generalize classical theorems for null-recurrent Markov chains to the weakly de-
pendent processes generated by certain types of infinite measure preserving trans-
formations. In the present talk I report on some ongoing joint work with David
Kocheim. Very similar results have been obtained (independently and by different
methods) under the supervision of Sebastien Gouezel. As the results have not yet
reached a final optimized form, I refrain from formulating a general statement,
and focus on a specific example instead.

The best-known conservative (i.e. recurrent) infinite measure preserving system
is the (shift-space representation of) the simple symmetric random walk (ξn)n≥0

on Z, where ξ0 := 0 and ξn :=
∑n

k=1 ηk with (ηk)k≥1 i.i.d. and Pr[ηk = ±1] = 1/2.

Letting Sn(A) :=
∑n−1

k=0 1A(ξk) denote the occupation times of some finite set
A ⊆ Z of states, the following distributional limit theorem is well known,

(1) n− 1

2Sn(A) =⇒ |N| ,
where N is a Gaussian random variable. A refinement has been given by Dobrushin
[5], who showed that for sets A,B of the same cardinality,

(2) n− 1

4 (Sn(A) − Sn(B)) =⇒ N1 · |N2|
1

2

with independent Gaussian variables N1 and N2. For more general random-walk
results of this type we refer to [3].

Limit theorems for occupation times of null-recurrent Markov processes gener-
alizing (1) are often referred to as Darling-Kac type results, cf. [4]. Corresponding
statements have been given for certain classes of infinite-measure preserving dy-
namical systems, see [1], [2] or [6] for two different approaches. For a simple explicit
example, consider Boole’s transformation T : R → R given by Tx := x− 1

x , which
preserves Lebesgue measure λ and is conservative ergodic. Here the occupation

times Sn(A) :=
∑n−1

j=0 1A ◦ T j of any Borel set A of finite measure again satisfy

(1), where the Sn(A) are regarded as random variables on (R,BR, P ) where P is
any probability measure with P ≪ λ.

While Darling-Kac results turn out to hold under fairly weak conditions, gen-
eralizing (2) to dynamical systems requires stronger assumptions. We were able
to do so for conservative ergodic measure preserving maps T on an infinite mea-
sure space (X,A, µ) which possess reference sets Y of finite measure for which
the return map TY is Gibbs-Markov, and such that the return-time function ϕ
has a regularly varying tail of index 1

2 . Moreover, the Markovian subsystem ob-

tained by restricting TY to
⋂

m≥0T
−m
Y {ϕ ≤ L} should again be irreducible (for L

large enough). Then (2) holds for A,B ⊆ Y of equal measure. More generally,



120 Oberwolfach Report 03/2012

f = 1A − 1B may be replaced by any sufficiently regular (Lipschitz) function f
with

∫
fdµ = 0 which is supported on Y . Specifically, for Boole’s transformation

(2) holds whenever A,B are bounded Borel sets with 0 < λ(A) = λ(B) < ∞.
Analogous results apply when the return-time tail is regularly varying of some
different order α ∈ (0, 1), in which case the conclusion becomes

(3) n−α
2 (Sn(A) − Sn(B)) =⇒ N ·M1/2

α

with independent variables N and Mα, where Mα has a Mittag-Leffler law of
index α (that is, Mα = G−α

α in distribution, where Gα is a positive α-stable
variable).

The main point of our proof is to establish some asymptotic independence of

the processes (
∑m−1

j=0 ϕ◦T j
Y )m≥0 and (

∑m−1
j=0 f ◦T j

Y )m≥0 generated by the induced

system. Here, a key observation is that the return-time sums
∑m−1

j=0 ϕ◦T j
Y can be

well approximated (in measure) by finitely many order statistics. We then establish

a conditional CLT for (
∑m−1

j=0 f ◦ T j
Y )m≥0 with the conditioning events given in

terms of order statistics. This is carried out by analyzing Fourier perturbations of
the transfer operator of TY .
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Journal d’Analyse Mathématique 103 (2007), 93-131.

Measures on the Julia set

Christophe Dupont

We deal with the dynamics of holomorphic maps on projective spaces. Let us
focus on a result of Zdunik [13] concerning rational maps acting on the Riemann
sphere.

Theorem 1. Let f be a rational map acting on the Riemann sphere CP1 and let µ
be its maximal entropy measure. Then dimH J = dimH µ if and only if f belongs
to the family of maps {z±d,Tchebichev,Lattès}.

In the statement, J denotes the support of µ (which coincides with the Julia set
of f) and dimH µ stands for the infimum of the Hausdorff dimension of Borel sets
of positive µ-measure. Zdunik’s theorem then asserts that, for a generic rational
map, the topological support of µ is strictly larger than the Borel support of µ. A
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related result was proved by Mayer [11], who characterized the same set of maps
in terms of the absolute continuity of µ with respect to conformal measures.

The proof of the above theorem relies on the conformal property of rational
maps. Precisely, the idea is to construct for any generic map an ergodic measure
ν which lies between µ and J . The arguments use Mañé’s formula [10] about the
dimension of ergodic measures with positive entropy and involve the pressure of
the derivative of f . An important tool is also the Central Limit Theorem for the
singular observable log |f ′| which was established for rational maps by Przytycki,
Urbański and Zdunik in the previous article [12].

The aim of the talk is to introduce recent results concerning the higher dimen-
sional case, i.e. for holomorphic self maps of projective space CPk. We refer to
the book of Dinh and Sibony [7] for an introduction to the dynamical properties of
such mappings. The following result provides the Lattès part of Zdunik’s theorem.

Theorem 2. Let f be a holomorphic self map of CPk and let µ be its maximal
entropy measure. Then dimH µ = 2k if and only if f is Lattès.

That follows from the combination of Berteloot-Dupont [2], Berteloot-Loeb [3],
Dinh-Dupont [5] and Dupont [8]. Lattès maps also appear in the problem of
commuting endomorphisms, solved by Dinh-Sibony [6]. One of the difficulties is
the lack of conformality: the k Lyapunov exponents of µ, which are positive by
Briend-Duval [4], are central in the arguments. In particular we had to develop a
theory of normal form for inverse branches which, in some sense, plays the role of
Koebe distortion theorem.

We shall also discuss the following result of [9].

Theorem 3. Let f be a holomorphic self map of CP2 and let µ be its maximal
entropy measure. Then

dimH µ ≥ log d

λ1
+

log d

λ2
,

where d is the algebraic degree of f and λ1, λ2 are the Lyapunov exponents of µ.

That provides half of the expected Mañé’s formula in higher dimension, which
was conjectured by Binder and de Marco in [1]. The proof consists in studying the
distribution of inverse branches in the projective plane: the main tools are normal
forms for inverse branches and elements of complex geometry. That bound is
actually true for ergodic measures with large entropy (between log d and log d2),
hence it may be of interest for a possible extension of Zdunik’s approach to CP2.
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From Farey and Gauss to modern times, and variations of the theme

Bernd Otto Stratmann

(joint work with M. Kesseböhmer)

The talk consisted of two parts. In the first part we discussed recent results for
the Farey map, which are analogs of the famous Gauss problem for the Gauss
map. In the second part we reported on recent results on the differentiability of
Minkowski’s question mark function, which generalises a classical result by Salem
and which make use of our previously obtained thermodynamical analysis of the
Farey map.

In the first part of the talk we first recalled that for the Gauss map G :
[0, 1] → [0, 1], given by G : x 7→ 1/x mod (1), Gauss pointed out in a letter to
Laplace in 1812 (see [1]) that for the Lebesgue measure λ on [0, 1] one has, for
each x ∈ (0, 1] and for n tending to infinity,

λ(G−n((x, 1))) ∼ ν((x, 1)) (= − log2((1 + x)/2)) ,

where ν refers to the Gauss measure (which is invariant under G, that is, we have
that ν(G−1(A)) = ν(A), for all A ⊂ (0, 1] Borel measurable) and where cn ∼ dn
means that limn→∞ cn/dn = 1.

Recently, we addressed and answered an analogous question for the Farey map
F : [0, 1] → [0, 1], which is given by

F (x) :=

{
x/(1 − x) for x ∈ [0, 1/2]
(1 − x)/x for x ∈ (1/2, 1] ,

More precisely, for arbitrary x ∈ (0, 1], we investigated the asymptotic behaviour
of λ(F−n((x, 1))). The answer to this question is given in the following theorem,
where µ refers to the (infinite) F -invariant measure absolutely continuous with
respect to λ.
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Theorem 1. (see [4]) For n tending to infinity, we have

λ(F−n((x, 1))) ∼ µ((x, 1))

logn

(
= − log x

logn

)
.

The talk gave a sketch of the proof in the special situation x = 1/2, which turns
out to be of independent number theoretical interest. In this special situation one
immediately verifies that, for each n ∈ N,

F−(n−1)((1/2, 1)) = {[a1, a2, . . .] ∈ [0, 1] :

k∑

i=1

ai = n for some k ∈ N} (=: Cn) ,

where [a1, a2, . . .] refers to the regular continued fraction expansion of an element
from (0, 1]. Using this observation, we then used and extended infinite ergodic
theory and obtained the following theorem.

Theorem 2. (see [4]) For n tending to infinity, we have

λ(Cn) ∼ 1

log2 n
.

Hence, we in particular have that

(a)

n∑

k=1

λ (Ck) ∼ n/ log2 n;

(b) lim
n→∞

λ(Cn) = 0.

Also, more recently, we additionally obtained the following generalisation of these
results. Here, δx denotes the Dirac distribution at x and ∗ lim the weak limit of
measures. Also, all appearing fractions are assumed to be reduced.

Theorem 3. (see [5]) For each rational number v/w ∈ (0, 1] we have that

∗ lim
n→∞


log(nvw)

∑

p/q∈F−n{v/w}

q−2 δp/q


 = λ.

Moreover, most recently, variations of the techniques which led to these results gave
rise to the following estimate on the growth rate of the Poincaré series associated
with a Kleinian groupG with parabolic elements and with exponent of convergence
δ. Here, d denotes hyperbolic metric of the hyperbolic space H, rmax to the
maximal possible rank of the parabolic elements of G and |g| to the word length
of an element g ∈ G.

Theorem 4. (see [6]) For a finitely generated, essentially free Kleinian group G
with parabolic element we have, for each z, w ∈ H,

∑

g∈G,|g|≤n

e−δd(z,g(w)) ≍





n2δ−rmax for δ < (rmax + 1)/2
n/ log n for δ = (rmax + 1)/2
n for δ > (rmax + 1)/2.
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In the second part of the talk we first recalled that Minkowski’s question
mark function Q : [0, 1] → [0, 1] is given for all x = [a1, a2, . . .] by

Q(x) :=
∑

k∈N

(−1)k+1 21−
∑k

i=1
ai .

It is well known that Q is equal to the distribution function of the measure of
maximal entropy µtop for the Farey system ([0, 1], F ), and that, by a result of
Salem (see [7]), the derivative Q′ of Q is equal to zero λ-almost everywhere. In
order to sketch the proof of our generalisation of this result of Salem, we first
recalled the outcome of our previously obtained thermodynamical analysis of the
Farey map from [2]. We then proceeded by explaining how this analysis can be
used to obtain the following complete picture for the derivative of Q.

Theorem 5. (see [3]) The unit interval can be written as the disjoint union of the
three sets

Λ0 := {x : Q′(x) = 0}, Λ∞ := {x : Q′(x) = ∞},
and

Λ∼ := {x : Q′(x) does not exist and Q′(x) 6= ∞}.
Moreover, for the Hausdorff dimensions dimH of these sets we have that

7/8 ≈ dimH(µtop) < dimH(Λ∼) = dimH (Λ∞) = dimH (L(htop)) < dimH (Λ0) = 1,

where L(htop) refers to the level set of the multifractal decomposition of the Farey
map F at the topological entropy htop = log 2, and dimH(µtop) denotes the Haus-
dorff dimension of the measure of maximal entropy of the Farey system ([0, 1], F ).
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[4] M. Kesseböhmer, B. O. Stratmann, On the Lebesgue measure of sum-level sets for continued
fractions, (preprint in arXiv:0901.1787); Discrete and Continuous Dynamical Systems 14
(2011).
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Open Problems

During the workshop there has been a round table discussion about thermody-
namic formalism which all participants attended as well as an Open Problem Ses-
sion to which almost every participant contributed. In the following we state some
of the problems which were given by the participants during this session.

Problem 1. (by Eugen Mihailescu)
In Entropy production and folding of the phase space in chaotic dynamics (arXiv:11
04.2342) the author obtained the following result. Consider the hyperbolic toral
endomorphism on T

2 given by f(x, y) = (2x+2y, 2x+3y) (mod 1) and its smooth
perturbation g(x, y) = (2x + 2y + ǫsin2πy, 2x + 3y + 2ǫsin2πy) (mod 1). Then
the inverse SRB measure of g has negative entropy production, while the SRB
measure of g has positive entropy production, that is, eg(µ−

g ) < 0 and eg(µ+
g ) > 0.

This shows that there exist examples for which the inverse SRB measure has
negative entropy production. The problem is to find other folded fractals Λ, which
are hyperbolic for non-invertible maps f , and families of f -invariant measures µ
on Λ such that the entropy production of µ is negative (or positive).

Problem 2. (by Mariusz Urbański)
Let Eeven be the set of all irrational numbers in the interval [0; 1] whose continued
fraction expansion entries are all even and let h denote its Hausdorff dimension. It
was proven in D. Mauldin and the author in Conformal iterated function systems
with applications to the geometry of continued fractions (Transactions of A.M.S.
351 (1999), 4995-5025) that the h-dimensional Hausdorff measure of Eeven van-
ishes while its h-dimensional packing measure Ph is positive and finite. It was
proven by D. Mauldin and the author in Graph Directed Markov Systems: Ge-
ometry and Dynamics of Limit Sets (Cambridge University Press, 2003) that the
Gauss map G restricted to Eeven admits a unique probability G-invariant measure
µ equivalent to Ph. It was also shown there, that the Radon-Nikodym derivative
dµ/dPh has a (unique) real-analytic extension to the whole interval [0; 1]. The
problem is to find a closed explicit formula for this derivative, or else to show that
such a formula does not exist.

Problem 3. (by Hiroki Sumi)
Phenomena which are caused by noise or randomness are called noise-induced phe-
nomena. In fact, by (numerical) experiments, many physicists have investigated
noise-induced phenomena. As explained in the author’s talk, the author has shown
that regarding the i.i.d. random dynamics of complex polynomials on the Riemann
sphere, generically, “noise-induced order” really occurs. However, there are many
noise-induced phenomena which have been found by numerical observations but
for which no rigorous proofs have been given so far. Therefore, the following is a
very important problem:
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Give mathematically complete proofs for various noise-induced phenomena which
are observed by (numerical) experiments.

Note that nature has many random terms and many physicists are interested
in describing nature by using random dynamical systems. These noise-induced
phenomena are very important in physics and, quite certainly, they also give rise
to many interesting problems in mathematics.

Problem 4. (by Manuel Stadlbauer)
Recall that the quadratic family is defined by

Tλ : [0, 1] → [0, 1], x 7→ λx(1 − x), for λ ∈ [1, 4].

By the celebrated results of Benedicks and Carleson in On iterations of 1 − ax2

on (−1, 1) (Ann. of Math. (2), 122 (1), 1985, 1–25), Tλ admits an invariant
probability measure for almost all λ ∈ (1, 4]. Hence, it seems to be plausible
that the following question has a positive answer. Assume that P is a probability
measure on [1, 4] which is absolutely continuous to Lebesgue measure, and that
(Λi) is a sequence of independent random variables such that Λ1 is distributed
according to P . Is it then true that the random dynamical system given by

(x, (λ1, λ2, . . .)) 7→ (Tλ1
(x), (λ2, λ3, . . .))

admits a random invariant measure which is absolutely continuous with respect to
Lebesgue? Moreover, is there a random decay of correlation, that is, is the system
relatively exact? So far, it is known only that there are positive answers to these
questions if the support of the distribution is contained in small neighbourhoods
of hyperbolic parameters (see, e.g. V. Baladi and M. Viana, Strong stochastic sta-

bility and rate of mixing for unimodal maps, Ann. Sci. Éc. Norm. Supér., 1996).

Problem 5. (by Stephen Muir)
Consider a classical lattice gas space with countably infinitely many states, that

is, a multidimensional shift NZ
d

. An interaction potential is a family Φ of bounded

functions ΦΛ : NZ
d → R, indexed by finite subsets Λ ⊂ Zd, where each ΦΛ depends

only on the coordinates within Λ. We assume them to be translation invariant.
Letting T λ be the translation of the site λ ∈ Zd to the origin 0 ∈ Zd, this means
we assume that ΦΛ ◦ T λ = ΦΛ+λ for every λ ∈ Zd and every finite subset Λ ⊂ Zd.
Let us define the following two Banach spaces

B :=





Φ :
∑

Λ∋0
|Λ|<∞

|Λ|−1‖ΦΛ‖∞ <∞




,S :=





Φ :
∑

Λ∋0
|Λ|<∞

‖ΦΛ‖∞ <∞




.

The local energy function associated to an interaction Φ is given by

AΦ :=
∑

Λ∋0,|Λ|<∞,and

lex.ord.(0∈Λ)=
⌈

|Λ|
2

⌉
ΦΛ,
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where “lex.ord.” refers to the lexicographic order on Z
d. Using an idea sketched

by Ruelle in his book Thermodynamic Formalism, it is easy to show that AB :=

{AΦ : Φ ∈ B} = UC
(
NZ

d

,R
)
. On the other hand, an exact description of AS :=

{AΦ : Φ ∈ S} appears to be unknown. The following partial result is proved in
the author’s thesis of (University of North Texas, 2011):

For f : NZ
d → R let δn(f) := sup{|f(x) − f(y)| : πΛn

(x) = πΛn
(y)}, where Λn is

the d-dimensional cube of sites λ ∈ Zd for which max{|λi| : 1 ≤ i ≤ d} < n. Then
let

Rd :=



f : NZ

d → R |
∑

n≥1

ndδn(f) <∞



 .

In Chapter 7 of the author’s thesis it was shown that Rd ⊆ AS ⊆ Rd−1. However,
it is unknown whether there is an equality in this sequence of containments or
whether both inclusions are strict. If both inclusions are strict, one should try to
characterise the image of the small space of interactions in terms of the modulus
of continuity of the local energy function.

Note that an immediate motivation to solve this problem is that if the upper
inclusion were shown to be strict, then the variational principle of the author’s
thesis would apply to a larger class of models (those with local energies in Rd−1)
than any existing treatments by interactions, (see e.g. H.O.Georgii, Gibbs Mea-
sures and Phase Transitions) which require Φ ∈ S for the construction of Gibbs
measures.
Problem 6. (by Anna Zdunik)
Let f : C → C be given by fλ(z) := λ exp(z). It was proved in my joint work with
Mariusz Urbański, that if fλ is hyperbolic (or equivalently, if the singular value
0 is attracted by an attractive periodic orbit), then we have for the Hausdorff
dimension dimH of the radial Julia set Jr(fλ) that

1 < dimH(Jr(fλ)) < 2.

This raises the following two questions.

Question 1: What is the supremum of the values dimH(Jr(fλ)), where λ varies
over all possible hyperbolic parameters?

Question 2: Is the function (0, 1/e) ∋ λ 7→ dimH(Jr(fλ)) increasing?

Reporter: Bernd Otto Stratmann
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