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Abstract. This workshop aimed to bring together an international group
of historians of mathematics to reflect upon the role played by tacit knowl-
edge in doing mathematics at various times and places. The existence of
tacit knowledge in contemporary mathematics is familiar to anyone who has
ever been given an idea of how a particular proof or theory “works” by a
verbal analogy or diagrammatic explanation that one would never consider
publishing. Something of it is felt by every student of mathematics, when
the process of learning mathematics often amounts to training the right re-
flexes. In more advanced contexts, the tacit understanding that a particular
technique, instrument or approach is “the one to use” in a given circum-
stance gives another familiar instance. Tacit knowledge, a term introduced

by the philosopher M. Polanyi, contrasts with the explicit knowledge that in
almost all historical mathematical cultures is associated with mathematical
text. The workshop invited a use of the categories of tacit and explicit knowl-
edge to achieve a better knowledge of how mathematical creation proceeds,
and also of how cultural habits play a tacit role in mathematical production.
The meeting intended to offer the possibility of significant innovation and
enrichment of historical method, as well as new and compelling insight into
the process of creating mathematics in different times and places. The meet-
ing was intended to afford the opportunity for a presentation of selected case
studies by leading experts and new scholars. In retrospect, as we hope these
abstracts show, the results promise to be of significant interest not only to
historians, but to the mathematical community more broadly.
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Introduction by the Organisers

The aim of this workshop was to bring together an international group of historians
of mathematics to reflect upon the role played by tacit, as opposed to explicit
knowledge in doing mathematics at various times and places. Methodological
discussions on the use of this concept alternated with specific case studies from
the history of mathematics. The aim was to allow a better understanding of
mathematical practices in given contexts. The theme impinges on the transmission
of existing mathematics as well on the creation of new theories and results.

The existence of tacit knowledge in contemporary mathematics is familiar to
anyone who has ever been given an idea of how a particular proof or theory “works”
by a verbal analogy or diagrammatic explanation that one would never consider
publishing. Something of it is felt by every student of mathematics, when the
process of learning mathematics often amounts to training the right reflexes. In
more advanced contexts, the tacit understanding that a particular book or paper
or approach is “the one to use” in a given circumstance gives another familiar
instance. The theme was specifically chosen for this meeting on the history of
mathematics in view of its inspirational and unifying potential, and in the ways
that it promised to shed light on methods for understanding mathematical texts
and practices of the past. Originally, our plan was to look at cases that range from
the most ancient history of mathematics to current developments. We include here
the original list of examples, and the reader can compare this to the actual papers,
which achieved a comparable breadth while highlighting rather different features:

• The difference between algorithmic mathematics (like in ancient Mesopo-
tamia or medieval China) and proof-oriented mathematics in the Euclidean
tradition and the intermediate stages, like Chinese two-column algorithmic
texts which are proof-driven but not in the Euclidean style are all too often
analyzed without taking into account the parts of the practice that remain
tacit and are not spelled out in the text, contributing thus to give a biased
image of that difference.

• Tacit knowledge is present in various ways throughout the mathematical
exchanges of the seventeenth century. Correspondence by letters included
knowledge on how to write a letter, without spelling out the rules of letter
writing. In cases where these tacit codes were not applied, it is interesting
to give an interpretation of this step aside. More generally, tacit rules
of scientific exchange dictated what was to be made explicit or public in
a mathematical proof, and which parts were not. On the mathematical
level, curves were identified by a catalogue of properties, which was never
explicitly listed in its entirety. For instance, as soon as a curve was found
to have the property that its subtangent is the double of the abscissa, it
was identified with a parabola.

• A good deal of the development of mathematics in the nineteenth and
twentieth centuries can be viewed as a process of making the practice of
mathematics increasingly explicit, thereby reducing the amount of tacit
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knowledge and thus opening up a wide space of rational discussion and
achievements. However, this tendency to greater technical explicitness,
which is evident in the typical manuscripts posted by mathematicians on
ArXiv every day, may induce historians of mathematics to neglect the per-
sistence of tacit knowledge in the most recent mathematics. The identifi-
cation of such tacit elements seems capable of affording significant insights
into the development of mathematics today.

• Similarly, several large scale mathematical enterprises of the last 100 years
like Bourbaki’s Éléments de mathématique or – in a different manner –
computer-based mathematical research, like the more recent projects to-
wards automated theorem proving (ATP), appear at first as signposts of a
massive pushing back of tacit knowledge. Looking more closely, however,
at details like the occasional warning signs in the margins of Bourbaki’s
volumes, or at problems related with the user interface, one sees that these
undertakings carry in fact their own heavy collection of tacit mathematical
practice.

• Developments in the history of mathematics are often loosely described as
moving from approximate, incompletely understood treatments, to fully
explicit, formal statements and their rigorous proofs. (See for instance
Breger’s contribution to [1].) Paying attention to the kind of tacit knowl-
edge which is mobilized before and after such a development often provides
a much more satisfactory analysis of the historical process than the mere
confrontation of precise versus imprecise methods. A case in point is the
rewriting of Algebraic Geometry in the first half of the twentieth cen-
tury. In a 1926 letter to Hermann Weyl, Salomon Lefschetz significantly
described the Italian school of Algebraic Geometry, not as lacking rigor,
but as requiring “a terrible entrâınement ”. Later attempts, by Francesco
Severi and others, to defend their classical Algebraic Geometry against
growing criticism would invariably insist on the fact that all those tech-
nical assumptions or arguments which the modern algebraists could not
find in the Italian papers where indeed tacitly assumed, and well-known
to all geometers raised in the Italian school. The question whether the
category of tacit knowledge may render such arguments historically con-
vincing appears quite difficult, and can only be decided by very detailed
case studies.

• In contemporary mathematics, blogs and Wikis – the most famous prob-
ably being Terence Tao’s – currently provide an extended form of oral
culture in which less formal, formerly tacit approaches are written down
and opened to a broad mathematical public according to shifting and vari-
able rules.

The term “tacit knowing” or “tacit knowledge” which we explored here in its
bearing on the history of mathematics, comes from a philosophical context, but
has been mobilized before for the history of science. Michael Polanyi introduced
“tacit knowing”, or “tacit knowledge” in order to describe abilities which cannot
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be fully described or explained (see [4]). In the history of science, the concept
has been mobilized in the study of the craft aspects of experimental science from
the seventeenth century to the present day. The philosophical theory of tacit
knowledge has been much discussed over the years for instance also in the context
of mathematical education and curricula, which is not the purpose of the workshop
proposed here. More recently, the sociologist Harry Collins reassessed this notion
in [2], in particular distinguishing several types of tacit knowledge.

The theory of tacit knowledge marks a counterpoint to the “ideal of wholly
explicit knowledge” which took shape through the scientific revolution of the sev-
enteenth century. Among the different interpretations which have been given of
the concept of “tacit knowledge”, from a conscious under-articulation or deliber-
ate secrecy to the strong thesis that there are specific kinds of knowledge that
cannot in principle be fully articulated – the standard example being here riding a
bike – the application to the history of mathematics will focus on the weak sense:
tacit knowledge is what mathematicians selectively conceal, avoid articulating or
under-articulate, consciously or not. This does include the possible concealment
of information by mathematicians competing with others, as well as the case of
descriptions which are left incomplete because their authors assume, or know by
experience, that their readers share a certain knowledge with them. Tacit knowl-
edge is then built on experience or action, and cannot be fully described by rules
or words. It concerns any type of knowledge or skill used as subsidiary to the
performance and control of a mathematical task. The notion of tacit knowledge
could be applied to the history of mathematics, as suggested by Breger ten years
ago who used the greater level of abstraction created by the ongoing development
of mathematics to detect tacit elements in earlier texts. This is a challenging thesis
but obviously history of mathematics should not be reduced to just re-reading old
texts through the spectacles of more modern mathematical achievements.

At this point, more recent methods in the history of mathematics come to the
rescue: following a tradition that can be traced back to Ludwig Wittgenstein and
other authors of the 1930s and 1940s, the second half of the twentieth century has
seen authors such as Imre Lakatos, Paul Feyerabend, and Hans-Jörg Rheinberger
placing the detailed analysis of scientific practice at the heart of history of science.
This goes hand in hand with the realization that tacit scientific knowing is acquired
by the individual scientist through a social context or network whose members
share a common know-how. Although unstated know-how tends to be difficult to
identify in a single mathematical text, shared tacit knowledge or know-how is more
accessible, often by way of comparison with other local mathematical cultures or
broader networks. It also tells a lot about mathematical (and strategic) practices
in a specified time period.

In the case of mathematics, Epple has adapted Rheinberger’s approach to the
history of mathematics in his book [3] on the history of knot theory. The notions
of epistemic objects and epistemic techniques are his key concepts to describe the
ways of the active researchers to handle the complex web of established theories
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ready for use, formal and informal operational skills to deal with new phenomena,
and often vague general ideas about the kind of mathematical object under focus.

Furthermore, the mathematical tools made use of in specific contexts or sites
are in most cases abstract techniques or objects, but may also be material devices,
from the measuring rod and compass to the analog integrator and computer. In
the Renaissance and early modern periods, the design and use of such instruments
was a core feature of mathematical practice, and the tacit knowledge involved in
acquiring the techniques of use or design was considerable. Yet such knowledge has
left historical evidence: Albrecht Dürer, most famously, tried to describe explicitly
what perpective artists were actually doing, including the gestures transmitted
through long workshop traditions. One aim of the conference will be to assess the
degree of continuity between these older traditions and those in evidence in more
recent mathematical practice.

Our main objective for the conference proposed here was thus to use the peculiar
bias of the distinction between tacit and explicit knowledge in order to re-invigorate
discussions about how the analysis of social networks on the one hand and of the
research practice of mathematicians on the other come together to afford a close-
up understanding of the historical process which we call mathematics. Last but
not least we hoped it would allow a better understanding of how mathematical
practices depend on larger cultural habits, or are embedded in larger cultural
contexts, including language, writing cultures, literary and rhetorical devices, and
craft knowledge.

The abstracts below show that the chosen theme has proved inspiring for most
of the speakers, whom it enabled to highlight aspects of the production and trans-
mission of mathematics which have often been neglected. The use of instruments,
which may imply a lot of bodily skills which can scarcely be transmitted through
words, is typically an example of such an understudied aspect of mathematics.
The practice of skills was also one of the starting points of Michael Polanyi in
his 1958 Personal Knowledge, as Jeanne Peiffer recalled in her short introduction
to the workshop. Before describing the tacit component of The Art of Knowing,
Polanyi suggests to grasp “the nature of the scientist’s personal participation by
examining the structure of skills” ([4, 49]and as his clue for this investigation, he
takes what he calls the well-known fact “that the aim of a skilful performance
is achieved by the observance of a set of rules which are not known as such to
the person following them” (ibid.). For Polanyi, an art, a skill, which cannot be
specified in detail – think at the famous example of riding a bike – cannot be
transmitted by prescription, since no such prescription exists. It can be passed
on only by example from master to apprentice. It follows that an art which has
fallen into disuse for the period of a generation is altogether lost. And here ques-
tions for the historian come in, mostly methodological questions. How can we, as
historians, recover not specified, not explicated skills, arts or knowledge ? Besides
methodological reflections, a whole range of case studies have been presented by
the participants of the workshop which have shown the various forms of tacitness.
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Norbert Schappacher in his introduction briefly reminded the audience of Michael
Polanyi’s record:
(a) As a researcher, in particular as director of the chemical-kinetics research group
in Fritz Haber’s Kaiser-Wilhelm-Institute for physical chemistry and electrochem-
istry in Berlin-Dahlem starting in 1923; see [5], esp. chap. 2 and 3; cf. Polanyi’s
ranking among the leading scientists of the Kaiser-Wilhelm-Gesellschaft at the
time in [6], vol. 2, p. 1254.
(b) As a thinker on economic theory, fighting the rather marxist tendencies of his
brother Karl. Hachtmann in [5], vol. 1, pp. 31-32, points to text of Polanyi’s from
as early as 1930, on the return of investment into the sciences (Rentabilität der
Wissenschaften) which kind of anticipated, in the concrete context of the Kaiser-
Wilhelm-Institutes [KWIs] menaced by spending cuts after the big economic crisis,
Pierre Bourdieu’s later theory of the exchangeability of actual, cultural, symbolic,
and social capital.
(c) Of the later unfolding of Polanyi’s ideas of personal later tacit knowledge,
driven by a desire (probably partly inspired by Ludwik Fleck) to balance Popper’s
so-called Logic of scientific discovery by more genuine descriptions of scientific
practice, and by a more Gestalt-theoretic approach of scientific work, and its part
in human culture at large.

More to the point of the subject of this meeting, i.e., the history of mathematics,
Polanyi’s letter to Lakatos of August 14, 1961 (from the Archives of the London
School of Economics; thanks to H.J. Dahms for sharing it with us) was quoted,
written in response to reading a draft of Lakatos’ Proofs and Refutations.There
one reads in particular : “If you are interested to find out as I am, how it can
be that these procedures of acquiring what we call knowledge, do in fact lead to
something that is knowledge, though it is, and must remain, impossible to define
these procedures, or set up criteria of their success, without appealing to powers
which are defined by no rules, then one feels that to speak of conjectures and
refutations etc. as answering my question, is to beg it.”

References

[1] Herbert BREGER, Emily GROSHOLZ (eds.), The Growth of Mathematical Knowledge.
Dordrecht 2000.

[2] Harry M. COLLINS, textitTacit and Explicit Knowledge. Chicago 2010.
[3] Moritz EPPLE, Die Entstehung der Knotentheorie. Kontexte und Konstruktionen einer

modernen mathematischen Theorie. Braunschweig 1999.
[4] Michael POLANYI, Personal knowledge. Towards a post-critical philosophy. London 1969.
[5] Mary-Jo NYE, Michael Polanyi and his Generation. Origins of the social construction of

science. Chicago & London 2011.
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Abstracts

How tacit is tacit knowledge? Or: Looking for sources to approach
tacit knowledge

Karine Chemla

This talk was conceived in conversation with the book by Harry Collins, Tacit
and explicit knowledge, The University of Chicago Press, 2010. In particular, I
followed him in discussing tacit knowledge in relation to, or in contrast with,
explicit knowledge. When Harry Collins lists the disciplines that in his view have
“take[n] tacit knowledge to be part of their concern”, he recurrently does not
include history in his list. My question was thus to understand whether this was
contingent or whether there was a deeper problem there. In my view, the main
problem historians face with the issue of tacit knowledge is a methodological one,
related to sources. Whether one considers tacit knowledge with respect to the
practice or with respect to the subject matter–facets that need to be addressed
separately and in relation to each other–, sources are a thorny issue. In a first part
of the talk, I indicated how some reasonings by historians depend on assumptions
regarding tacit knowledge that are not made explicit and that require justification.

On the one hand, historians have to resist the temptation to derive, from the
fact that we have no sources, the conclusion that we are dealing with tacit knowl-
edge. To avoid this problem, one may be tempted to adopt the following strategy:
concentrate on one given text and examine what is left tacit in the writing of
the text. This could theoretically be done for two types of tacit knowledge: the
knowledge that actors choose to keep tacit as opposed to that which is explicit in
a given text (local level: to keep knowledge tacit at this level may derive from dif-
ferent types of motivations: making a text clear, establishing social distinction,...);
the knowledge that is never made explicit, except incidentally, as a collective phe-
nomenon (global level, linked to the professional culture in which one operates).
However, to approach tacit knowledge in this way, by focusing on ‘a text’ requires
determining what a text is, its extension, and this operation proves to be quite
a tricky issue, as I explained by a choice of examples. As a result, the corpus
of knowledge deemed tacit may be rather unstable, depending on the focus the
historian chooses and the decisions taken with respect to what constitutes a text.

On the other hand, historians have to resist to refer to knowledge as tacit in
the absence of any information on the oral dimensions that went along the use of
the documents that are their sources. In other words, the act of communication
needs to be taken into account fully in order to determine which knowledge may be
deemed tacit in a given context. To avoid the difficulties attached to this question
in relation to ancient history, the example given to illustrate this problem is a proof
in Samuel’s Introduction à la théorie algébrique des nombres (second edition, 1971).
The same inscription, it is argued, does not make knowledge tacit, or rely on tacit
knowledge, in the same way, whether it is inserted in the page of a book or written
at the blackboard in relation to oral discourse. The pair oral/written must thus
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be considered in relation to the pair tacit/explicit, even though the relationship
between the two is far from obvious and the documents on the oral dimensions of
a given practice are difficult to find.

All these problems, I suggest, derive from the fact that in the first part of the
talk, “tacit” was mainly a historian’s category. I thus turn, in my second part, to a
case study in which we can observe “tacit knowledge” as an actor’s category. I do so
by commenting the article by Lei Hsiang-Lin, “How Did Chinese Medicine Become
Experiential? The Political Epistemology of Jingyan”, Positions, 10:2 (2002), pp.
333-364. This article recounts struggles between practitioners of Chinese medicine
and Western-style physicians in China in the 1910s and 1920s. It brings to light
how the tacit knowledge attached to the practice of Chinese medicine became the
topic of an explicit discourse in the context of these struggles, although it had
never been considered before. Moreover, the article shows how actors attached
this dimension to the mode of transmission of Chinese medicine, learning for an
important lapse of time from a master. This remark designates the types of modes
of transmission in a given context as an indicator of the amount and nature of tacit
knowledge transmitted. More importantly, the case study shows that one can take
the discourses about tacit and explicit in a historical perspective and wonder what
are the motivations that lead to important changes in these discourses, similar
to the changes discussed above. Lei Hsiang-Lin brings to light how actors from
both sides correlated the value attached to a practice of science that made things
explicit with knowledge coming from the “West”. This fact highlights that these
values tacit/explicit were and still are loaded politically for the actors. The remark
suggests that it would be highly interesting to examine the history of the use of
the values of tacit and explicit in the history of the historiography of mathematics
since the 19th century and the political dimensions attached to this use, and this,
until today!

In conclusion, probably the circumstances in which different professional cul-
tures are brought in contact with each other are quite favorable for the production
of sources in which knowledge tacit in each of them are made more explicit.

Tacit knowledge and mathematical instruments in early modern
Europe

Samuel Gessner

It is not certain whether tacit knowledge (TK) is a useful concept to historically
understand the role of instruments in the evolution of mathematics and math-
ematical culture. In this context, are there historical facts, which require TK
as a descriptive or explanatory category, and which would remain otherwise un-
explained? Can we more plausibly make sense of what happened historically if
we take into account TK as a form of knowledge? Material and visual culture,
like mathematical instruments, are mighty testimonies for manifest skill and/or
knowledge, which does not, however, travel with them in explicit form. Although
objects and images are silent on their own, they can be used to infer some of
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the knowledge that lay at their base, but this becomes possible only when they
are being related to a cultural framework and their context. For the persons who
manufactured the objects or designed the images this knowledge may have been
explicit or tacit at the time. In any case, objects only seldom come with a textual
explanation (although with instruments this might have been more frequent than
with other objects like furniture or sculptures). Very grossly, in order to probe
the fertility of the concept TK, I will here take as a starting point some materi-
ally existing instruments and, by looking at their design, try and infer part of the
subjacent (mathematical) knowledge. We will discover that such an inference is
indirect insofar it rests always upon some hypotheses about the procedures used
to design the instruments. Then I will look at writings that treat such kinds of
instruments and observe what type of knowledge is made explicit in these texts,
and what type of knowledge remains unarticulated.

When we talk about instruments, where does TK come in? To examine this
question let’s distinguish different phases or modes in the “cultural life” of an
instrument:

i) idea, conception, development
ii) manufacture, execution of the geometrical construction
iii) description in treatises and other writings
iv) use, handling

To go quickly through these stages I’m using the case study of the Regiomon-
tanus type universal dial, a rectilinear universal sundial first published by Re-
giomontanus in 1474 [1], in German usually called “Uhrtäfelchen”. It consists of
a rectangular plate and a plumb line equiped with a sliding bead. The plate has a
latitude scale that allows to precisely position the origin of the thread (according
to latitude and the sun’s position in the zodiac, i.e. date), eleven parallel hour lines
and an additional zodiac scale to adjust the bead on the thread. This dial allows
one, among other operations, to determine the time in equal hours by taking the
height of the sun when the latitude and the date is known.

i) Regiomontanus remains silent about how he constructed the instrument, and
also about whether or how he invented it. Theoretically he could have derived the
device from his knowledge of the “sphere” (the geometrical doctrine of the cosmos),
based on the assumptions of circular and uniform motion. Unmentioned go, as
usual in gnomonics, a series of useful approximations in that the earth is assumed
spherical but negligible in size in comparison with the orb of the sun, the annual
motion of which is neglected in a day’s course, and the refraction by the atmo-
sphere, although mentioned in Sacrobosco, is ignored. Moreover, the construction
involved among other geometrical constructions the socalled “manachus” from
gnomonics, referred to in book IX Vitruvius’ De architectura. This knowledge,
the “sphere” and the “manachus”, forms a part of century-old doctrines so that
it had become part of the “forma mentis” to scholars of the 15th century. While
it is possible today to reconstitute the necessary reasoning that leads from these
assumptions to the configuration of the dial, it is difficult to tell, only based on Re-
giomontanus’Kalendarium, how the author went about conceiving the instrument.
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One could of course measure and check the accuracy of the construction, e.g. the
value used for the obliquity of the ecliptic, and so on. But it becomes above all
necessary to look at the contemporary context, in particular gnomonic traditions
that apparently have existed. In particular Regiomontanus could have derived his
dial, as King [2] suggested, inspired by the knowledge of several similar kinds of
instruments, some called Organum Ptolomaei and the quite popular Navicula de
Venetiis in the form of a ship. Several instruments and manuscript descriptions
from the 15th c. survive in at least two locations: England (about 15 mss. and
several instruments) and Vienna. It is not impossible that Regiomontanus simply
collated his version of the dial from one Peurbach’s manuscripts [4].

ii) Now let’s turn to TK in the workshop, the place where artisans work different
materials to manufacture more solid, longer lasting, and sometimes also more
precise instruments than those of paper. Craft relies on manual skills, and there
seems to be a large part of TK involved in these manual procedures, the way
to handle all kinds of tools, and the order of working procedures. However, I
want to be concerned here with the portion of mathematical knowledge only, and
foremost knowledge about geometrical construction procedures that goes into such
manufacture and materializing.

We find the “Uhrtäfelchen” produced on a nice brass quadrant in deposit at the
Museum of History of Science of the University of Lisbon (inv. nr. 1162). Accord-
ing to the signature on the instrument, it was made at the famous workshop of
Arsenius, at Louvain, 1573, one hundred years after Regiomontanus’ publication.
During this century, plenty had been written on this kind of instruments in man-
uscript and print. This specimen in particular can be shown to be quite directly
inspired by books authored by Oronce Finé as it conspicuously combines several
instruments presented in the 4th part of the Protomathesis treating various dials
and quadrants. Finé is explicit about the construction of the scales, but he does
not give any proof, or even justification for it [5].

The device of the three-segment brachiolum. There is one minor feature here I
want to mention, which has less to do with knowledge of gnomonics than with
plain geometry. It is the design of the brachiolum that allows one to position the
origin of the thread to any point of the latitude/zodiac grid. In some print copies,
the Regiomontanus “Uhrtäfelchen” has a brachiolum of two parts. It is clear that
a maker has to figure out that, when the first segment of the arm is longer than
the sum of the further segments, the range of the extremity of the brachiolum
is a ring. It has to be placed in such a way that the whole latitude scale stays
within its reach. Arsenius attached the brachiolum above the scale, this makes
it mechanically possible to point to a position very near the upper edge, which
would not be so easy had he followed the recommendations by Finé who sets the
attachment directly at the level of the highest latitude.

A tacit error of design. While looking at this upper edge, on the Arsenius instru-
ment, we realize that there is a problem: the latitude on the numbered scale is
given as 61◦30′. But this uppermost zodiac scale will indicate 12 o’clock in the
situation where the sun just showing up at the horizon at winter solstice. This is
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something that happens only at the northern polar circle, which is not 61◦30′ but
about 66◦30′. What has happened? There are several possible reasons for such an
error, but one might be that Finé didn’t spell out that the upper edge represents
the latitude of the polar circle.

iii) Writings about instruments constitute an important chapter in this story,
as text is the medium of the “explicit”. What part of knowledge was selected to
be explained and what part has there remained tacit? The literature concerned
with mathematical instruments of all kinds (astronomical, geodetical, nautical, ar-
tisanal, cosmographical, architectural, military etc.) is very rich and also heteroge-
neous. If we look beyond outright treatises, we find separate chapters in books on
other topics, lecture notes, private correspondence, advertising leaflets, and more.
For instance, the exposition of the universal dial becomes part of a lecture on the
“Sphere” at the Jesuit college of Lisbon in 1621, as is apparent from surviving
notes [3]. Different kinds of authors wrote for various audiences: mathematicians
write about instruments, and apply the Euclidian methods to proving construc-
tion and modes of use (Aunpekh of Peurbach, Nunes, Commandino, Benedetti).
Self-taught mathematicians like Finé, Tartaglia, and others provide the bulk of
the typical instrument writings in the form of De fabrica et usu treatises. From
the 16th c. onwards more instrument makers are known to be active, at least
they intervene more self-consciously on the scene and quite often publish booklets
to explain and advertise their production, or their projects. What is left tacit
and what is made explicit in these writings seems to be a function of all these
parameters: author, intended audience, context, genre of text.

iv) If the instruments of the past were actually used, why and for which pur-
poses represents a huge question mark. Use has left traces on certain instruments,
but the particulars of their use, the gestures, the skill and the knowledge implied
were of very volatile nature. This becomes partly evident when we read the texts
concerned with the “use” of the instruments. By “Usus” of an instrument the
literature usually refers to a series of problems and the corresponding procedures
to solve them. When an instrument like Arsenius’ 1573 quadrant came to some-
one’s hand, she would discover, e.g. that there are the scales of a “shadow square”
just from the label “Puncta vmbrȩ rectȩ”, and “Puncta vmbrȩ versȩ” marked
along a circular scale, each semi-quadrant being divided into 12 unequal parts,
subdivided into 120. The knowledge about how to use such a shadow square was
widely known, as the feature traditionally appeared on the back of astrolabes or
on quadrants. Problems are solved by working out the similar triangles formed
small scale on the instrument (by the engraved lines and a plumb line or alidade),
and large scale (formed by “visual rays” or sun rays, the horizon), then, given
two sides of the small triangle and one of the large scale triangle, by computing
the forth proportional. The literature usually lists problems to measure distances,
heights and widths. Now, in the case of this particular version we do not have
the traditional square, but a projection of the equal divisions of the square onto a
circular arc, so that “evidently” the corresponding angles are conserved. There is
TK both in the recognition that the divisions of the familiar shadow square can
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easily be projected onto another line without altering the usual way of solving the
problems. And the knowledge of how to handle the instrument for solving these
problems is also widely tacit.

*

In conclusion, we consider that instrument manufacturing and instrument liter-
ature can be considered as interlinked traditions where new instruments and new
writings would always be inspired by preexisting instruments and writings. In this
process, where a passage from manufacturing tradition to textual tradition and
vice-versa is implied, choices need to be made about what to turn explicit, and
what to leave tacit (implicit). By finding an explicit form for part of the notions
these are then exposed to scrutiny, and this will often transform the knowledge
about an object (instrument), or involved concepts, or even a whole underlying
theory. On the other hand, the universal dial and the shadow square we saw may
be cases where knowledge becomes less explicit, which can result in a kind of decay
of the object.
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Looping the Loop: Mathematicians and Bicycle Theory at the Turn of
the Twentieth Century

David Aubin

If mathematical theories purporting to account for human actions are so notori-
ously deficient, it may be because they fail to capture much of the tacit knowledge
that such actions necessarily entail. The most famous example of this in the liter-
ature no doubt is bicycle riding. This example was provided by Michael Polanyi
himself at the time he introduced his ideas about the role of “personal knowledge”
in science—which later became the catchier “tacit knowledge”—and has since as-
sumed an iconic status among sociologists of science and technology. “If I know
how to ride a bicycle,” Polanyi famously wrote, “this does not mean that I can
tell how I manage to keep my balance on a bicycle” [10, p. 4]. Repeated over and
over again, this banal observation has become the centerpiece example of tacit
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knowledge. The success of this image certainly owes to the direct way in which it
appealed to anyone’s experience. For most people who know how to ride a bike,
just the idea of trying to make explicit everything that is involved in managing
this art is enough to convey the complexity of any attempt at discussing the role
of tacit knowledge in human activities.

However, for several scientists and mathematicians at the end of the 19th cen-
tury and at the beginning of the 20th century, the mathematical theory of the
bicycle was hardly perceived as lying outside the realm of their capacities. As I
shall discuss there even was a prize offered in 1898 to the author of the best so-
lution to the bicycle stability problem by the Paris Academy of Sciences in Paris.
This in fact gave rise to a number of publications on the topic.

Then, in March 2011, a team of scientists from the United States and—where
else?—the Netherlands published an article in the prestigious journal Science pur-
porting to disprove assumptions about bicycle self-stability that had been held for
140 years [8]. This seemed striking enough that an earlier paper by the same team
[9] had been reported about in the press. It was once thought wheels acted as
a gyroscope to keep the bike upright. But, according to these new studies, the
secret was that there “is no one secret.” As many as 17 different parameters were
crucial, from the radius and mass of the wheels to the position of the centre of
the mass of the bicycle, to the angle of the steering axis. “That is why it has
taken 120 years to get it right. We have not found anything simpler,” some told
The Daily Telegraph. The team showed that articles written more than a century
earlier by Carvallo and Whipple were on the right track, though they attributed
credit for cracking the problem to German engineer E. Dhring, who published his
meticulous study in 1955.

In my view, four groups of questions arise when we consider the relationship
between bike riding and tacit knowledge :

(1) How did bike riding become the paradigmatic example of tacit knowledge?
(2) What is the place assigned to mathematical knowledge in discussions about

bike riding as tacit knowledge? Does this have a history? Did mathemati-
cal theories of the bicycle have an impact on bike riding as tacit knowledge?

(3) What type of knowledge about bike riding, tacit or not, was important in
formulating a mathematical theories of the bicycle? What other types of
tacit knowledge, if any, entered the formulation of mathematical theory of
the bicycle

(4) What does a consideration of tacit knowledge teach us about the role of
mathematics in mechanics at the turn of the 20th century?

As can readily be seen, my intent is to make more explicit the tacit knowledge
mathematicians mobilized for providing accounts of engines such as the bicycle.
For doing do, I thus wish to use to use Polyani’s theory of tacit knowledge to revisit
the mathematical theories that may have inspired him. In other word, I would
like to “loop the loop.” Now, that’s when the story has become really fascinating
to me, because this expression—“looping the loop”—indeed arose in the domain
of cycling. It originally was the name given to a stunt that consisted in riding a
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bicycle down a very long ramp and around a looping slide at considerable speed
so as to stick to the ramp by the centrifugal force. It was extremely popular in all
western countries in 1903–1904.

To explore some of the issues raised by this topic, I first examine the relationship
between discourse about tacit knowledge and mathematics in the case of the stunt,
using in particular an article published by the mathematician Carlo Bourlet [4].
This allows me to show that mathematics comes as a way to explicate the rider’s
tacit knowledge and deny him of almost all the skills that attracted the public.
Like in his previous studies about the velodrome, Bourlet focuses instead on the
explicable knowledge of the ramp builder.

Second, I focus on the way in which cycling was understood as early as the
late 1860s as something that could not be reduced to verbal or mathematical de-
scriptions. Cycling was “an art,” explained its early theoretician Louis de Baudry
de Saunier, because it relied on the rider’s “natural gifts of skillfulness and cool–
bloodedness and because no precise mathematical rule will ever be able to rule
over the exercise” [1, p. 5]. The tension between cycling as an art and the math-
ematical account of the act of balancing a bicycle is present in many account of
bicyle practice. Bicycle stability is often—though not always—attributed to the
rider’s constant counterbalancing the fall. For this a mathematical formula was
provided for example by the British engineer Archibald Sharpe: “a body of mass

W lbs., moving in a circle of radius r, with speed v, has a radial acceleration, v2

r
;

and must be acted on by a radial force Wv2

gr
lbs.” [11, p. 203]. This is seen to

resurface almost word for word in Polanyi’s writings [10, p. 6–7].
To further analyze the role played by mathematical thinking in Polanyi’s discus-

sion of bicycle riding, categories of tacit knowledge introduced by Harry Collins are
useful. Collins distinguishes relational, somatic–limit, and collective tacit knowl-
edge (or, RTK, STK, and CTK) [7]. I argue that Polanyi says three things about
the mathematical theory of bike riding: (1) we know how to ride a bike with-
out any knowledge of a mathematical theory, that is, STK is acquired without
explicating RTK; (2) a mathematical theory of bike riding will be of no help to
learn how to ride an actual bicycle, or explicated RTK does not help in acquiring
STK; and (3) any mathematical theory, including the mathematical theory of the
bicycle, relied on tacit knowledge that will never be entirely eliminated, i.e., the
act of explicating RTK itself relies on tacit knowledge.

Polyani however failed to account for the simple fact that bicycles are self–
stable. At sufficient speed, they do not require the rider adjust constantly the
handle bar to keep his balance. In other words, there are many situation where a
rider’s tacit knowledge consist in no more than refraining from doing anything that
might upset his bike’s self–stability. The most valuable skill, then, lies perhaps
not in riders, but in bike designers who are able—or not—of producing a highly
stable engine. Of course, this skill may not be entirely tacit knowledge, and if it
is, this seemed merely to be RTK.

This perspective is the third angle I want to adopt to study the relationship
between tacit knowledge and mathematical theories in the context of bike riding.
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From this perspective, one may understand why bicycle self–stability might be
interesting to pose as a mathematical problem, as the Academy of Sciences did
in 1898. Looking at the several detailed contributions submitted at the time,
one encounters one of those fascinating examples of a problem studied from a
great variety of mathematical perspectives. Boussinesq produced a classic study
of mechanical equilibrium [5]; Bourlet extracted a mathematical memoir from his
longer and more complete studies [3]; Carvallo introduced Lagrange multipliers to
deal with the hoop and the bicycle [6].

To approach more systematically this set of publications from the point of view
of tacit knowledge would be interesting. What to draw? How to chose coordinates,
parameters and variables? How to derive differential equations of motion? What
approximation to make in order to ease the solution of the problem? How to solve
differential equations, analytically, numerically, graphically; when to use what?
How to draw practical conclusions from the mathematical analysis? All of these
questions needed to be answered in deriving a theory of the bicycle and, for most,
there were no explicit rules telling the theorist how to do it. Once again, however,
this may mostly lie in the realm of RTK.

As far as bicycle theories are concerned, one may consider whether being a
cyclist oneself played a role. I would like to suggest that it may have. As a student
of the École normale supérieure, Bourlet had caused quite a sensation in showing
up to the Sorbonne in 1888, wearing shorts and riding his machine. His publication
relied on a rather striking array of sources characterized by its eclecticism [2].
Besides the specialized treatises, a disparate group of periodicals were mentioned.
They included scientific journals like the CRAS (article by Marey and Bouny),
the semi–popular scientific press (articles by Guye, Hospitalier and Jacquot in
La Nature, by Gérard Lavergne in La Revue scientifique); the technical press like
the Revue d’artillerie and the Revue mensuelle du Touring-Club de France; and
the specialized cyclist press (La Bicyclette, Le Cycliste, Vélo-sport). Many of the
authors were barely identified by initials or by pseudonyms: The mysterious ”Man
of the Mountain” figured prominently among Bourlet’s sources. Here at last, I see,
CTK playing a great part in producing a mathematical theory of the bicycle.

From this limited study, I would like to draw the following preliminary conclu-
sions:

• Bike riding become an classic example of tacit knowledge (in part) due to
the fact there were unintelligible mathematical theories about it!

• Mathematical studies of the bicycle were helpful in transforming STK into
RTK (or explicit knowledge).

• They relied quite a bit on mathematical explicit and relational tacit knowl-
edge (RTK), perhaps a little on the practice of cycling (STK), but also in
important ways on collective tacit knowledge (CTK) .

• Expanding our scope to other countries, the various approaches toward
stability problems in mechanics that seemed to be present here foreshad-
owed research styles in the 20th century (French mathematical, German
physical and British engineering approaches).
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Explicit versus Tacit knowledge in scientific computing in Berlin
(1870–1933)

Ulf Hashagen

It is a well known fact that Michel Polanyi regarded methods of measurement
and data analysis as the key examples of tacit knowledge being largely resistant to
verbalization and unequivocal codification [4, 5]. Whereas many studies on 18th
and 19th century experiments and experimental methods have been published dur-
ing the last decades, the general history of data analysis in the sciences was so
far restricted to studies on the historical development of probability theory and
statistics [3]. This lecture aimed at giving a “longue durée” survey of the devel-
opment of scientific computing in astronomical research in Berlin in the German
Kaiserreich in order to test if the concept of tacit knowledge can help to write a
history of a scientific institution being preoccupied with data analysis.

The scientific institution to be considered here is the Astronomische Rechen-
Institut (Astronomical Computing Institute) in Berlin founded by the influential
astronomerWilhelm Foerster (1832–1921) in 1873/74 in order to publish the astro-
nomical almanac Berliner Astronomisches Jahrbuch—an annual publication de-
scribing the positions of the planets and stars during a year. Besides, by the found-
ing of an Seminar for Scientific Computing at the Friedrich-Wilhelms-University
in Berlin affiliated to the Astronomische Rechen-Institut Foerster made an effort
to institutionalize scientific computing as a discipline at a German university in or-
der to introduce students of mathematics and the exact sciences to the theory and
practice of scientific computation. Whereas Foerster failed to institutionalize sci-
entific computing as a new scientific “cross-discipline”—the seminar’s disciplinary
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influence remained limited to astronomy and it proved not be possible to con-
tend against the methodological ideal of pure mathematics in German universities
and to overcome the disciplinary boundaries between mathematics, physics and
astronomy—the Astronomische Rechen-Institut proved to be a successful innova-
tion for German astronomy [2].

During the next decades the institute strengthened its institutional basis un-
der the direction of a director (1874-1895 Friedrich Tietjen, 1896-1909 Julius
Bauschinger, 1909-1922 Fritz Cohn) who was at the same time professor of theoret-
ical and computational astronomy at the Friedrich-Wilhelms-University in Berlin.
In 1900 more than half a dozen astronomers were employed as astronomical com-
puters in order to compute the ephemerides of the astronomical objects. While the
available sources give some hints that besides the forms of explicit knowledge on the
determination of orbits of planets and asteroids (being published by the members
of the Astronomische Rechen-Institut (e.g. [1])) many forms of tacit knowledge
were used in this monotonous scientific work of data analysis, it proved unfortu-
nately extremely hard to get deeper insight in this forms of knowledge, since no
sources on the daily computational workload of the computers in the Astronomis-
che Rechen-Institut and of the computations of the students in the Seminar for
Scientific Computing are available. This must have something to do with the fact
that the daily computational work of the astronomers was not seen as their real
scientific work—therefore most of the computers worked on other astronomical
problems after the end of the office hours in the Astronomische Rechen-Institut
and used this work for their self-definition as scientists.

However, the research of historians of physics on 18th and 19th century experi-
ments and experimental methods may be used as guideline for further research in
the future. The historiographic methods of replication of historical experiments
developed in history physics during the last decades [6], could probably applied
successfully to the history of scientific computation and of data analysis in the
sciences.
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Guessing an algorithm beyond numbers displayed on a clay tablet: a
sample for Old Babylonian period

Christine Proust

In this paper, I discussed a mathematical cuneiform text which seems, at first
sight, to reflect an almost entirely tacit knowledge, as it doesn’t contain a single
word, but only the graphemes for 1 and 10. The image of the tablet is available
online ([1], number P54479). In the same time, as this text was first understood
and interpreted by Abraham Sachs (1947), I also discussed this later paper. I
examined both the tablet CBS 1215 and Sachs’ paper in order to show:

• How a lot of information may be conveyed by other means than words
• How modern interpretations of such a text may inform us more about the
tacit knowledge of the modern observers than about the ancient methods.

Most of the arguments I develop here will be found in a chapter of the forthcoming
book on mathematical proof edited by Karine Chemla ([3]).

Tablet CBS 1215 comes from illegal excavations, and thus its provenience is
unknown. However, the paleography, the type of the tablet and the content of
the text indicate that the document dates from the Old Babylonian period (early
second millennium, OB in the following), and comes from southern Mesopotamia.
The text is made of 3 columns on the obverse, and 3 columns on the reverse. As
was usual at that time, the columns run from left to right on the obverse of the
tablet, and from right to left on the reverse. The text is divided into 21 boxes.
The entries in the boxes are: 2.5; 4.10, the double of 2.5 in sexagesimal place value
notation (see below); 8.20, the double of 4.10, and so on until 2.5 × 220. In each
box, the text ends with the same number with which it started.

The sexagesimal place value notation (SPVN) is a numerical system attested,
in the Old Babylonian period, almost only in mathematical texts. The 59 “digits”
of the numeration are noted by means of the repetition of the graphemes 1 and 10
as many times as necessary. The numbers over 60 are sequences of digits where a
sign in a given place represent sixty times the same sign in the preceding place (on
its right). No mark in the notation indicates the place of the absolute unit, that is
to say, a number noted with three wedges may represent 3, 3/60, or 3× 60, and so
on. The notation is floating. The SPVN was taught to the young scribes during
the first stage of their education in the OB scribal schools. Notions taught at
the mathematical elementary level constitute a knowledge shared by the educated
scribes of the time, and could be qualified as a kind of “tacit knowledge”. This
background included metrological systems, SPVN, and numerical tables, that is,
a set of elementary results: reciprocals, multiplications, square roots, cubic roots.
The reciprocal table, which was probably memorized by the educated scribes,
is of special interest for what follows. This table provides the reciprocal of a
standard list of regular numbers (regular numbers are numbers which admit a
finite reciprocal in base 60). This list includes the following pairs: (2, 30); (3, 20);
(4, 15); (5, 12); (6, 10); (8, 7.30); (9, 6.40); (10, 6); (12, 5); (15, 4); (16, 3.45);
(18, 3.20); (20, 3); (24, 2.30); (25, 2.24); (27, 2.13.20); (30, 2); (32, 1.52.30); (36,
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1.40); (40, 1.30); (45, 1.20); (48, 1.15); (50, 1.12); (54, 1.6.40); (1.4, 56.15); (1.21,
44.26.40).

The interpretation offered by Sachs ([4]) allowed historians to understand the
tablet CBS 1215, which had remained mysterious until 1947. Sachs discovered the
keys to the text of CBS 1215, as well as many parallel texts. In his article, after
recalling some basic mathematical tools used by the ancient scribes, namely the
SPVN and the reciprocal table, Sachs presents the general method for computation
of reciprocals ([4], §12): “Let c denote the regular number whose reciprocal one
wishes to find. Then choose two numbers a and b, such their sum is c and such
a is a number which is found in the standard table of reciprocals.” Thus, the
reciprocal can be found by the formula:

(1) c = a+ b = a− (1 + ba)

Then Sachs states that, “The boxed identity [the formula (1) above] is the key
to the generally accepted Old-Babylonian procedure for finding the reciprocal of a
regular number c which is not contained in the standard table of reciprocal.” But
from where comes this “generally accepted Old-Babylonian procedure”? In fact,
Sachs’ description of the procedure is based on the tablet VAT 6505, published by
Neugebauer in 1935 ([2], vol. I, p. 270; [1], P25921). Indeed, VAT 6505 contains
the only known worded text referring to the procedure for finding a reciprocal. The
provenance of VAT 6505 is unknown. It dates probably form the OB period. It is
now kept in Berlin. The text of VAT 6505 was originally composed of 12 sections,
as attested in the colophon, 5 of which are preserved at least partially. The text is
very systematic and repetitive, thus the reconstruction of the 7 damaged sections
is possible. If we compare the seven first sections of the two tablets, we find in
VAT 6505 the same numbers as in CBS 1215, in the same order. However, the
Berlin tablet contains words, while the Philadelphia tablet does not. It appears
that VAT 6505 provides explanations which seem to be absent from CBS 1215, as
shown below in Table 1.

Figure 1. Table 1: comparison of section 7 of VAT 6505 and CBS 1215



152 Oberwolfach Report 04/2012

After presenting what he called “the Technique” for reciprocal computation,
Sachs “applied” it to VAT6505 as an “example”. But in fact, one can easily guess
that the opposite happened: first, the worded text VAT 6505 was interpreted;
second, “the generally accepted Old-Babylonian procedure” was shaped as formu-
lated in [4] §12. Indeed, this text does correspond well to the Sachs formula. Then,
Sachs “applied” the “Technique” to CBS 1215. His interpretation is displayed in a
table where the columns are headed by the elements of his formula ([4], 238-240).
The rows related to #7 and #20 are reproduced below in Table 2.

Figure 2. Table 2: “the technique” applied by Sachs to #7 and
#20 of CBS 1215 ([4], 238-240).

When observing this table, we note that something does not fit the cuneiform
text: after ’placing the semicolon arbitrarily” ([4], 227) Sachs makes an impressive
use of zeros. The text of CBS 1215, however, does not use such marks. The
numbers of CBS are written in floating notation, as is usual in the cuneiform
texts.

Let us examine again CBS 1215 #7.

Figure 3. Table 3: interpretation of CBS 1215 #7

No addition occurs in this computation, unlike in Sachs’ formula. The cal-
culation is based on the factorization of the number whose reciprocal is sought.
The regular factors appear as “trailing part” of the numbers. The numbers are
arranged on the clay tablet in such a way that the factors of the sought reciprocal
appear one after the other in the right sub-column. At the end of the factorization
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process, one has only to multiply the numbers placed in the right hand sub-column
(see for example section #20 of CBS 1215).

To conclude, a worded text such as VAT 6505, is not more informative than a
strictly numerical text such as CBS 1215. The information may be conveyed by
media other than words. In CBS 1215, the disposition of the numbers provides
explanation of the calculations, as well as a powerful tool in order to perform the
algorithm.

Sachs based his interpretation on the idea that the numbers was decomposed
into sums, although there is no sum in CBS 1215 and in the other known parallel
sources. This idea was suggested to him by the worded text VAT 6505, considered
as more explicative. The alleged presence of an addition in the calculation, as
well as the use of an algebraic formula to describe the procedure, led Sachs to
determine the order of magnitude of the numbers, and thus to use a lot of “zeros”
(see Table 2). But the analysis of CBS 1215 shows that the calculation is based
only on multiplications and reciprocals, which does not require any determination
of the orders of magnitude of the numbers on which these operations act. This
floating calculation confers simplicity and power to the computation.
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Euclid’s II.5: Pure Geometry, Geometrical Algebra and Tacit
Knowledge

Leo Corry

The “geometrical algebra” interpretation of Greek mathematics is a most peculiar
instance of a historiographical approach that gives preeminence to “tacit knowl-
edge”, though in a sense of the term which substantially differs from any of those
explicitly listed in the prospectus of the present workshop. Here the explicit histo-
riographical claim is that Greek geometers had a full-fledged and well elaborated
system of algebra thought, but that this algebra was systematically left out of the
texts. Hence, in this interpretation, Greek mathematics was in its outer, explicit
embodiment “geometry” but it was “algebra” in its tacit, underlying essence.

My talk considers some long-term historical developments related to the idea
that the geometrical results embodied in the works of Euclid’s Elements can be
interpreted algebraically. More specifically, I approach this idea by focusing on



154 Oberwolfach Report 04/2012

a single result of the Elements, Proposition II.5. By analyzing selected texts
produced in changing historical contexts, one can see that, while symbolic ma-
nipulation and other mathematical ideas that we typically associate with algebra
were incorporated in various ways to variant versions of the proof of II.5 from
as early as the Greek commentators of Euclid, none of these additions or their
combination did ever imply a definite change of orientation that all subsequent
authors felt compelled to follow. At various times and up until the nineteenth
century, one can still find mathematicians who preferred, for different reasons and
in changing circumstances, to move back and forth from a purely geometrical to
a more algebraically-oriented approach to Book II of the Elements, and particu-
larly to II.5. Thus, while (following Sabetai Unguru) I reject the main thesis of
the “geometrical algebra” interpretation, I will try to indicate how the changing
versions of the proof variously adopted and discarded arithmetic, algebraic and
proto-algebraic elements. In some cases these elements appeared explicitly and in
some other cases they appeared tacitly.

In a written version of this talk I have analyzed a long list of relevant math-
ematicians who have presented interesting versions of the theorem. I start with
the ancient world by looking at the work of Heron of Alexandria. Then I move
to the Islamic world and consider works by Al-Khowarizmi, Thabit ibn-Qurra and
Al-Nayrizi. In the late Middle Ages I examine the works of Gersonides and Bar-
laam. Then I move to the European Renaissance, where I focus on the works of
Ghaligai, Clavius, Tacquet, Bonasoni and Hérigone. Next is the British Versions
of the theorem in the 16th and 17th Century, looking at the works of Recorde
and Billingsley, Harriot and Oughtred, Wallis and Barrow. This is followed by an
analysis of Euclid in Europe during the Late 18th and Early 19th Centuries, which
is analyzed via the French Textbooks of Legendre, Peyrard, and Lacroix and some
Italian Textbooks of the 19th Century. Finally, at the turn of the 20th century
I consider those Historians of Mathematics who were involved with the Geomet-
rical Algebra interpretation: Tannery, Heiberg, Zeuthen and Heath. Against the
background of all the previously analyzed texts one can more easily see how the
works of these historians emerged from a consideration not just of the original text
of Euclid, but of that text together with all other versions that accompanied its
development throughout history.

Explicitly tacit knowledge in Diophantus

Alain Bernard and Jean Christianidis

As far as the general theme of the workshop is concerned, we took our point
of departure from Collins’ fundamental remark that ‘tacit’ knowledge is only tacit
because it is compared to explicit or potentially explicit knowledge, so that the
tension between the two is really the important point ([5],7). Moreover, we decided
to follow Collins’ method, which basically consists in classifying type of explicit
as well as tacit knowledge: so that, as far as Diophantus is concerned, we try
to propose our own classification of kinds of tension between explicit and tacit
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knowledge. Finally, we took up K. Chemla’s important remark, that explicit vs.
tacit knowledge is not only a category of modern sociologists, but that it might
be considered as a category of the actors themselves hence the title of our talk,
which insists on this aspect that we find plainly relevant for Diophantus.

Our talk and our final classification was based on a recently published paper [3]
in which we proposed a new analytical framework for the analysis of Diophantus’s
Arithmetica I-III. This work is itself based on a suggestion contained in the first
lines of a paper published by one of us [4], namely that the interpretation of
Diophantus’s project would gain from being interpreted in the light of ancient
rhetorical concepts and practice (like invention, heuresis). Finally, we are now
working on a third paper, in which a critical comparison between the structure of
Diophantus’s Arithmetica, and ancient ‘preparatory exercises’ (progymnasmata)
will be proposed. The talk helped us to clarify the argument of this paper.

Diophantus’s Arithmetica was originally composed of a long introduction and
thirteen books of arithmetical problems with their solutions, the unfolding of each
solution following a relatively standard scheme. In the works mentioned above,
we took into account only the three first books of problems, which are extant in
Greek. Our first remark, around which we organized our presentation, is that the
tension between tacit vs. explicit knowledge is actually present in both, let alone
because some aspects left implicit in the introduction are made clear within the
problems. We therefore proposed some remarks on the two parts (I = introduction,
P = problems)

Concerning the introduction, we insisted on [I.1] the very first lines ([1] Arithm.
2.3-13), often neglected by historians although they contain heavy allusions to key
concepts of ancient rhetoric, like the notion of invention (heuresis, lat. inventio),
which is itself related to the notion of problem (problêma on which see [3], 5-12),
the notion of progressive familiarity with the subject matter or the explicit parallel
between the desire of the learner and the model provided by a master. We do
believe that these hints at ancient rhetorical culture, which might be considered
a first kind of (explicitly) tacit knowledge, should be taken into account for an
understanding of the coherency of Diophantus’s project as a whole.

[I.2] Furthermore, the bulk of Diophantus’s introduction insists on the fact that
“[arithmetical problems] are solved (lyetai) if you follow the way (hodos) that I
will show” ([1], 4.10-11). What is first explained, within the introduction, are the
elements of the ‘machinery’ that makes it possible to follow the way indicated. In a
nutshell, the elements of this machinery are exposed in a specific order within the
introduction: (a) About the numbers in the statement ([1], 2.18-4.10); (b) about
the ‘numbers’ or ‘species’, which are the elements of the so-called “arithmetical
theory” ([1], 4.12-6.21); (c) about the operations on the latter; and (d) about the
equation and the operations on it. Concerning (b), we insist that there is here a
new kind of explicitly tacit knowledge: for the ‘arithmetical theory’ is explicitly
introduced as something already known to the reader: Diophantus refers to the
‘arithmetical theory’ by using the verb “it is approved”, edokimasthê, in the past
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tense; moreover, only an “operational outline” of this theory is recalled in the
introduction.

[I.3] Finally, the introduction ends up with an important statement, again often
neglected by historians, that makes the transition with the problems ([1], 14.25-
16.7). The statement is expressed in a very allusive language and comes back to
the notion of progressivity of the problems (associated to the underlying learning)
and to the notion of ‘way’, about which it then becomes clear that it is partly
bestowed on the working out and examination of the problems themselves. We do
believe that what is (here) tacitly at stake is the establishment of the correspon-
dence between numbers in the statements and species of the ‘arithmetical theory’:
learning how to build it is done through the problems and only there, and even
the fact that it is done in a progressive and semi-systematic way is here always
alluded to.

Concerning the series of problems contained in Arithmetica I-III, we insisted on
the following observations: [P.1] the treatment uniformly follows a standard scheme
that can be summarized in the following steps: (a) enunciation or statement of
the problem; (b) transfer of the statement within the terms of the ‘arithmetical
theory’; (c) outcome of the transfer, as an equation; (d) solution of the equation;
and (e) finding out the numerical values of the sought numbers called for. The
‘generality’ of the scheme is understood both from the fact that it corresponds, for
its main part (a-d) to what is exposed in the introduction and from the fact that
it is used in a repeated manner, even if some steps (mainly c-e) becomes more and
more allusive as soon as progresses into the problems.

[P.2] Furthermore, what appears crucial is the step (b), for which we introduced
in [3] 26-31 the notion of ‘method of invention’, meaning any repeated way, by
which any correspondence between a number indicated in the statement, and an
aggregate of species, is established. The basic result of our 2012 paper [3] is that
these methods, once inventoried, are few in number (about 11) and that they are
used in order of growing complexity all along the three first books of Arithmetica.
Although these are not made explicit, in the sense that they are not named, in
Diophantus, there are still made recognizable by stylistic or semantic ‘marks’ that
can be identified within the text, so that we have again, here, a tension between
tacit- and explicitness.

[P.3] We finally focused on one specific method of invention, the method of
simulation [3] 46-53, which is each time bestowed on the clever use of familiar
algorithms or procedures that we call ‘simulators’. Although these simulators are
explicitly stated within the solution, their provenance is rarely justified: it all
happens as if the reader was meant to have a kind of ‘procedural culture’ enabling
him to invent solutions from this tacit knowledge. Therefore we have here, again,
a new kind of tension between tacit and explicit knowledge.

To conclude: from this provisory exploration, we see that there exists in Dio-
phantus various forms of tension between explicit and tacit knowledge–our list is
only a first attempt and could be easily developed by underlying more aspects of
this sophisticated work. Meanwhile, the two most important of them, as far our
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current research is concerned, are the allusions to rhetorical culture (that we are
now trying to make explicit in the work in progress on Diophantus and ancient
progymnasmata) and the systematic resort to a kind of variegated ‘procedural cul-
ture’ that is also a kind of fundamental background to Diophantus’s project (about
which we also plan a new paper). We believe, indeed, that more exploration of
these two backgrounds, either separately or in isolation from each other, is still
needed and might open the way to a convincing contextualization of Diophantus’s
work, that is still lacking.
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Understanding a Mediæval Algorithm: a Few Examples in Arab and
Latin Geometrical Traditions of Measurement

Marc Moyon

Taking into account written texts from Arab and Latin traditions of the geometry
of measurement1, our main purpose is to describe several elements of algorithms
in order to analyze how part of their explicitness and tacitness could help the
historian of mathematics to understand computations.

After the introduction where the context is briefly exposed, we will focus on
two different classical examples of the geometry of measurement. The first one
is a series of problems on rectangles where additive relations on area, length and
width are given, and it is necessary to find both length and width. The second
problem is a sharing of land between heirs.

Introduction.

(1) How can we understand algorithms in mediæval texts which are often, at
first sight, obscure for a present-day reader? (2) Are we able to describe elements
which guarantee the correctness of those algorithms? And especially, how can the
author, and later on readers and finally historians, of these kinds of algorithms,

1The geometry of measurement is called in Arabic classifications of sciences (from the ninth
century) and in geometrical texts themselves : cilm al-misāh. a or s. inā

cat at-taksīr. In the Latin
world, from the 12th century, this kind of texts belongs to the corpus of Practica geometriæ.
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be sure that the given solution, following the algorithm step by step, answers the
problem?

Here, the notion of transparency of an algorithm proposed by K. Chemla2 could
appear as a key concept. Unfortunately, reading algorithms given in mediæval
texts of measurement, almost all, if not all, are not transparent. Indeed, each
step gives us the number established by computation but it does not make the
meaning of the computations and of the magnitudes explicit. We are in presence
of tacit knowledge, at least in formulation. But, what kind of tacit knowledge is it
exactly? Is it, for example, a tacit formulation wanted by the authors themselves
to transfer their knowledge as clearly as possible or something else?

Thus, several other fundamental questions can be formulated by historians of
mathematics: 1) How can we understand and interpret numbers in algorithms?
2) How and in how far are we legitimate to reconstruct steps in algorithms which
seem lacking? and last but not least, 3) What kind of proof of the correctness of
the algorithm could we establish?

These three questions strictly depend on what is tacit and explicit in mathe-
matical texts. In most cases, only the mathematical tradition (here the geometry
of measurement) and our knowledge of the cultural context (here, Islamic mathe-
matics and its appropriation by Latin Europe) can help us to overcome difficulties.
That is we want to show here.

Series of Problems: Let A + αw + βL and L − w be given, with α, β ∈
{−2,−1, 0, 1, 2}. L,w ? (If A area, L length and w width of a rectangle)

We focus on two main texts dealing with this kind of problem. The first one is
the Risāla f̄i t-taksīr written by Ibn cAbdūn from the tenth century3. The second
one is the Liber mensurationum which is an Arab-Latin translation probably made
in the twelfth century by Gherardo Cremona in Toledo. The author is only known
by part of his name : Abū Bakr which is not sufficient to identify him4.

These two texts are “texts of procedures”, that is to say: they are exclusively
composed of series of problems all structured on statement and algorithm of res-
olution. Geometrical or arithmetical proof does not complete the text.

This type of problem is interesting for several reasons, and in particular because
the ’tacitness’ can be specified at different levels5. The first level is about the

2“The text of the algorithm mentions the evolution of the values computed, while also pro-
gressively providing a geometrical interpretation of the result for each step. Therefore, finally,
the ‘meaning’ of the algorithm’s result will be determined. The correctness of the procedure is
established only if the meaning of the result corresponds to the magnitude sought” [1], p.260

3This text is only known from one manuscript kept in the French National Library. It is
interesting to add that, as far as we know, this copy comes from the Umarian Library of Segou
(Mali) [4].

4We know this text thanks to, at least, 5 copies held in Paris (for 3 of them) and in Cambridge
and Dresden [6].

5In order to respect the editorial lines of this Report, we cannot illustrate our example by the
text. So, we restrict our purpose to the main ideas inviting to read several other works.
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numbers used in the computations. Then, in order to understand the algorithm,
we have to know precisely what magnitude each numerical value represents tacitly.
It is a necessary condition to write a mathematical analysis authorizing us to
formulate tacit steps. Thus, the fundamental question is to know the reason why
the author didn’t write some steps: it may be of his own volition or the text we
know can be corrupted.

The second level is naturally linked to the previous one, it is about the cor-
rectness of algorithms. We have to render the tacit explicit, in particular giving
a geometrical interpretation of the numerical problem[5]. Here, we must note the
historical evidence with the De arte mensurandi completed by Johannis of Muris
(14th c.). Finally, I would like to add that the alternative algorithm using Algebra
given by Abū Bakr could be considered as a proof of correctness6.

The last level of tacitness we would like to announce is linked to the organiza-
tion of the series of problems. First of all, each problem is tacitly written to be
taken in a general way, e.g. “each time that you have this kind of problem, do...
”. This point is reinforced by the following one. Indeed, we think that authors
organize their series of problems in order to elaborate a pseudo-theory with all
possible cases7.

Sharing land between heirs: a socio-cultural problem borrowed by au-
thors of mathematics. A case study in the geometrical text of Ibn T. āhir
al-Baghdād̄i([9], p.372–373).8

The structure of this problem is really different from the previous ones. It com-
posed of a statement, a general algorithm, an example, a generalization with tacit
conditions, computations and a proof by verification. Even if the algorithm given
is totally explicit (no step seems to be tacit), it appears totally obscure and its
reading is not sufficient to understand and generalize it. Indeed, several types of
tacit knowledge appear necessary. We will give three major features. First of all,
the type of sharing is determined a priori. In this case, the diagram helps us to
understand the sharing. Secondly, the number of heirs is not the number of shares.
But the last number is given by Islamic law which is not exposed in the math-
ematical text. Here, we are in a case where ’tacit’ is explicitly mentioned with
special emphasis on social and religious knowledge. It remains, for us (present-day
readers), obscure due to the lack of explanations. Last but not least, Ibn T. ahir
presents a general algorithm. Each step is detailed and even executed for the read-
ers to know exactly what computations to do. Each of them is explained by the
general procedure, nevertheless the author doesn’t indicate why this algorithm is
correct. In particular, the author works on the number but not on the magnitudes
they represent. The proof he writes is also restricted to checking if the shares
are equal. The correctness of the algorithm remains a tacit data in this context:

6Abū Bakr will be followed by Fibonacci (13th c.) and then Johannis of Muris (14th c.) [8].
7See, for example, problems #23, #24 and #25 in the text of Ibn cAbdūn [3].
8This problem can be read in an English version in [7], p.535–536
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everything is done as if the reader knows for sure that this algorithm is correct.

Conclusion
Reading the geometrical texts from the corpus of misāh.a, I cannot agree with
Polanyi’s definition of ‘Tacit Knowledge’ quoted by the sociologist Collins in the
first pages of his Tacit and Explicit Knowledge[2], e.g. knowledge that cannot be
made explicit, that cannot be expressed in words, sentences, numbers or formulas.

Indeed, in this paper, the examples mentioned show that a part of the work of
the historian of mathematics, is precisely to make the tacit explicit. However the
‘tacit knowledge’ should be defined.Indeed, in the case of our survey, knowledge is
always transmitted from person to person by books even if we can not ignore the
eventual apprenticeship but we can control or modelize it several centuries later.

We should not forget either that the authors write their texts in order to be
read by their contemporaries who share habitus, common education and so on.
These authors cannot guess that their texts will circulate in other regions (like
the epistle of Ibn cAbdūn written in Andalus and found in a sub-Saharan library).
They cannot guess either that it will be chosen to be translated in order to be
used in another linguistic tradition (in the case of the book of Abū Bakr) or to
be borrowed (directly or indirectly) as an obvious source by posterior mathemati-
cians to produce their own text (Johannis of Muris and Fibonacci with the Liber
Mensurationum). Thus, historian has only a selection of texts which is the result
of an historical and social process. In this case, tacit knowledge is ‘tacit’ only
keeping in mind that the sources that we have are incomplete. The local and oral
traditions cannot be the only answer to characterize or elucidate this ‘tacit’ as it
is often made.
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Tacit versus explicit knowledge in history of mathematics: the case of
Girolamo Cardano

Veronica Gavagna

Girolamo Cardano, Niccolò Tartaglia, Ludovico Ferrari and Rafael Bombelli
– the so-called Italian Algebraic School of the Renaissance – were the heirs of
the abbacus tradition, which flourished in Italy mainly from the 14th up to the
16th century. It is difficult evaluating in detail the features of this heritage, first
of all because the abbacus mathematics, transmitted essentially by manuscripts,
is still largely unresearched (with some geographical exceptions). And so, some
techniques, concepts and results which appear novelties at first sight, at a deeper
analysis become aspects of a form of tacit knowledge, shared by practical mathe-
maticians. The concept of number developed in the abbacus milieu, for example,
deeply influenced the algebraist of the Renaissance. Cardano clearly explained
this concept at the very beginning of his Practica arithmetice (1539) [1]: the only
true number is the natural one, but positive fractions and radicals are to be con-
sidered numbers “by analogy”, because defining elementary operations in each set
of ’numbers’ is allowed. When Cardano found square roots of negative numbers
(radices sophisticae) in the solution formula of the third degree equation (the so-
called “irreducible case”, Ars magna 1545), he was not worried about foundational
questions, but he asked himself if they behaved “by analogy” like numbers. The
first step to be carried out was to establish whether they were positive or nega-
tive quantities. Although he realized that the quantities could not be considered
negative or positive, but were “a third sort of thing”, Cardano tried to give them
a sign, even attempting to formulate a new rule of signs appropriate to his own
needs. After noting the failure of this approach, Cardano tried to find a solution
formula that did not contain roots of negative numbers, but his efforts were not re-
warded. In his Algebra (1572), Bombelli, who shared the same concept of number
as Cardano, reconsidered the problem of the sign of expressions having the form
b
√
−1 and introduced the new signs – rather than imaginary numbers – “more

than minus” (più di meno) and “less than minus” (meno di meno), for which he
established appropriate rules of multiplication. On this basis, Bombelli founded
an arithmetic of Cardano’s sophistical quantities allowing him to make sense of the
irreducible case of cubic equations and, in the special cases where it was easy to

extract the linked cubic roots 3

√

a± b
√
−1, also allowing him to solve such equa-

tions, obtaining the real roots. Furthermore the engineer Bombelli, differently
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from Cardano, deeply influenced by “Euclidean education”, did not hesitate to
provide a geometrical proof of the existence of real roots in the irreducible case,
because he accepted the use of sliding squares instead of ruler and compass or,
in other words, he accepted the idea of determining a point in an approximate
way. In his Ars magna, Cardano showed the Euclidean representation of the so-
lution formula by decomposition of a cube into other cubes and parallelepipeds,
but this decomposition was possible only when the third degree equation had a
non-negative discriminant. In his De regula aliza (1570), Cardano showed that
the solution of a irreducible equation could be represented as an intersection of a
parabola and a hyperbola, but he bitterly concluded that, although simple from
the geometrical point of view, the construction was difficult to translate into arith-
metical terms. Moreover, he added, without any real justification, that he did not
find the construction fully satisfactory, probably – I suppose – because of the im-
possibility of using only ruler and compass. Cardano seemed to refuse abbacus
heritage with respect to geometrical approach. When he and his pupil Ferrari, in
the context of the famous challenge Tartaglia vs Ferrari, proved all the Elements
using a straightedge and a fixed opening compass instead of a variable opening
compass (and slightly changing the Third Postulate), he decided to publish this
(relevant) result in the philosophical work De utilitate, thinking it was interesting
from the purely mathematical point of view, but not really useful, even if a fixed
opening compass was an instrument commonly used by craftsmen. While Cardano
remained firmly connected to the Euclidean spirit, mathematicians like Bombelli
and Tartaglia, got instruments and techniques by practical geometry. Tartaglia,
for example, devoted the Fifth Part of his General Trattato (1560) to “geometers,
draftsmen, perspectives, architects, engineers and mathematicians” and the aim
of this treatise is just using ruler and fixed opening compass to prove Euclidean
propositions. Moreover, Tartaglia, who translated the Elements into vernacular
Italian (1543), was often guided in his translation by tacit knowledge based on
practical experience: a comparative study of the General Trattato and the Ele-
ments is necessary to definitively describe this influence. On the other side, this
case study shows that the relationship between the Renaissance Italian algebraists
and their mathematical milieu, both tacit and explicit, is an issue to explore in
order to deeply understand some of the main development of mathematics in 17th
century.
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The arithmetization of proportionality as tacit knowledge in early
modern mathematics

Antoni Malet

To be precise in which sense the term ‘arithmetization’ is used here, we bring in
Euler’s understanding of ratios in his Elements of algebra (Vollständige Anleitung
zur Algebra, 1770), the first chapter of which introduces quantities, all expressed in
numbers, as determined by the ratio between the given magnitude and the chosen
unit. Therefore, the notion of ratio is first taken for granted and used without
explanation. In subsequent chapters, ‘geometrical ratio’ is defined as what answers
to the question, How many times is A greater than B? The quotient of A divided
by B expresses the ratio (A:B). Two ratios are equal when their quotients are
equal.

Euclid’s definitions of ratio and proportionality met with widespread criticism
in early modern mathematics. They were already misunderstood and subject to
major mistranslations within the medieval Euclid. It is nonetheless to be stressed
that medieval mistaken translations were corrected by Tartaglia, and right trans-
lations of Euclid’s definitions appear in all the 16th-century ‘canonical’ editions
of the Elements, including Commandino, Clavius and the English translation of
Billingsley and Dee. My contribution aims to map the changing status of Eu-
clid’s definitions and the ways in a tacit arithmetization of ratios contributed to
transform this notion. My talk presents evidence of the criticism some influen-
tial authors, such as Galileo and Wallis, and authors of influential 17th-century
textbooks, such as A. Tacquet and Milliet Dechales, I. Pardies, A. Arnauld, B.
Lamy, and C.-R. Reyneau, addressed against Euclid’s definitions. Then, it an-
alyzes their alternative definitions taking its cue from the critique Isaac Barrow
levelled against some of them in 1666 (published in 1683). Finally, it discusses in
terms of collective tacit knowledge the success of their anti-Euclidean views over
against Barrow’s mathematically more cogent ones.

To quote an example, Tacquet (on the authority of his teacher, Gregory of Saint
Vincent) claims that Euclid’s definition of equality of ratios does not explain the
‘nature’ (sic) of equal ratios, but only provides a property the two ratios have in
common. He suggests that he and his readers already know what makes two ratios
equal – this is why it must be proved that the equimultiple property is found in
equal ratios (in Tacquet’s tacit sense) and only in them – something which, says
Tacquet, neither Euclid nor any of his followers did. Alternatively, adds Tacquet,
we can take Euclid’s definition as a new way of construing equality between ratios
(different to the tacit understanding). From now on ‘two ratios are equal’ only
means that the equimultiples of their antecedents and consequents behave in the
manner required by Euclid. Tacquet defines ratio as the way in which antecedents
contain or are contained by consequents, and the equality of ratios consists in that
their antecedents equally contain or are contained by their consequents. This line
of thought is shown to be present in Dechales, Arnauld, Lamy and Reyneau. It
is taken to an extreme by Wallis, who claims in 1657 that in any ratio (A:B),
the quotient A/B determines the number of times the antecedent A contain the
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consequent B. He defined the equality of ratios by means of the equality of their
quotients.

Barrow never took the assumption that all magnitudes are measured or nu-
merically expressed seriously. He stressed that magnitudes can only be compared
one to another geometrically, for what they are. If the measure of magnitudes is
defined in terms of the ratio between any given magnitude and the chosen unit;
therefore it requires the notion of equal ratios. If measured magnitudes are used
to define the equality of ratios, the argument is circular. Barrow points out that
for general magnitudes the quotient A/B is only defined as the magnitude C such
that (A:B) = (C:1). Therefore, we are in full circle, since the definition of quotient
requires the definition of equality of ratios.

Barrow dismissed the idea that general ratios could be characterized or identified
with numerical quantities of some kind, because of the impossibility of determining
which quantities correspond to irrational ratios. Barrow was willing to use the
notion of ratio to define mathematical objects such as roots in general (and others),
but he claimed Euclid’s Elements did not allow the use of proportional means, or
roots, to define ratios, because it entails circular thinking also. Barrow’s position
has a peculiar anti-philosophical slant: The disagreements among mathematicians
about the definition of ratio is a consequence of putting too much emphasis on
the definition of words. Criticizing Euclid’s definition by the likes of Tacquet
and Dechales, Barrow assimilates to the philosopher’s infatuation with the perfect
definition of general, abstract notions. He claims that ratios have no essential
nature other than what can be deduced from Euclid’s mathematical definition
of equality. Facing a choice between sound mathematics and tacit knowledge
“embodied in the alleged intelligibility of ‘customary names’ (sic)” Barrow prefers
Euclid’s difficult but mathematically sound definition over definitions apparently
more intelligible but mathematically untenable.

It seems weird that Barrow’s criticism was ignored. It was not answered at
the time, and subsequent mathematicians (including Roberval, Simpson, Heath)
upheld Barrow’s views, as we do now. In what sense may it be said that Barrow’s
(that is, Euclid’s) understanding of ratio and equality of ratios was overwhelmed by
the rise of tacit knowledge about the arithmetical nature of continuous magnitudes
and ratios? Notice that Barrow warns his readers that it is logically impossible
to express quantities numerically, if the notions of ratio and equality of ratios are
not available. He also makes the point that it is logically impossible to express
ratios by their quotients, if the numerical expression of the terms of ratios is not
available. Yet Barrow was an isolated figure and his views were neglected. The
knowledge that made Barrow’s views marginal can be assimilated to collective tacit
knowledge (in Harry Collins’s terms) in two senses. First, it was not transmitted
by ‘strings’ of mathematical deductions and formal proofs. Different authors used
different idioms and different formulations for the new notions of ratio and equal-
ity of ratios. Secondly, the strength of the new notions is social. It comes from
(almost) everybody taking them up. Faced with the limitations of Euclid’s no-
tions and the impossibility of cogently applying Euclid’s propositions to new, not
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yet fully mathematically formulated notions, (almost) every mathematical author
sidestepped Euclid and took up the new notions. Euclid’s and Barrow’s were no
longer pertinent not because they were wrong, but because they were no longer in
tune with social practice.

References

[1] Arnauld, A. Nouveaux Elemens de Geometrie. Paris, 1667.
[2] Barrow, I. Lectiones Mathematicae XXIII. London, 1683.
[3] Dechales, Claude-Francois Milliet, 1621-1678. Euclidis Elementorum libri octo. : Ad facil-

iorem captum accommodati. Lyon, 1660.
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Our Knowledge of Standard Models: A Case of Tacit Knowledge?

Felix Mühlhölzer

Many formalized theories, typically first-order theories, have nonstandard mod-
els, but precisely how do we distinguish between standard and nonstandard mod-
els, and especially how do we single out the standard ones which, as we are often
prone to say, we actually “have in mind” and actually intend to “refer to”? And
if one says, for example in the case of arithmetic, that one knows what one means
by “natural number”, and if one understands this as knowledge about the stan-
dard model, can it be explicit knowledge or might it be inevitably tacit? This
sort of problem has bothered many people (Skolem, Bernays, Dummett, Putnam,
Manin. . . ) but I think that it is deeply muddled because in its usual formulations
the distinction between “reference” and “interpretation” is blurred. The quite
common talk about an “intuition” that one has about the standard models, an
intuition that goes beyond what model theory can afford, is confused because it
belongs to the domain of used signs within which the notion of “reference” has
its place, and it does not involve the notions of “interpretation” and “model”
as they occur in model theory, which concern only signs that are considered as
purely mathematical entities and are not used. Our alleged “intuition” of stan-
dard models belongs to the realm of used signs, and it concerns reference and not
interpretation. That is, it has nothing specific to do with models in the model
theoretic sense.1

1This contrast between used and non-used signs is elaborated in my papers “Wittgenstein
and Metamathematics”, forthcoming in: Wittgenstein: Zu Philosophie und Mathematik, ed.
Pirmin Stekeler-Weithofer, Verlag Felix Meiner; and “On Live and Dead Signs in Mathematics”,
forthcoming in: Formalism and Beyond. On the Nature of Mathematical Discourse, eds. Michael
Detlefsen and Godehard Link, ontos Verlag.
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The impression that our knowledge of standard models might be a case of tacit
knowledge, and maybe even a particularly deep one, is beset by the confusion just
explained. The knowledge of standard models and of the difference between them
and the nonstandard ones is a purely mathematical one and does not raise any
specific problems that go beyond problems concerning mathematical knowledge in
general. And our alleged intuition of standard models has nothing specific to do
with models in the model theoretic sense. To think otherwise is simply a delusion.

What is the connection between the realm of the used signs of our mathematical
practice and the realm of the not used signs that model theory is about? It consists
in the transformation of the used signs into the petrified formulae considered in
model theory. Precisely the specific way in which this petrification occurs in
model theory gives rise to the nonstandard models. This fact is not altered by
Tennenbaum’s Theorem which, in the case of Peano arithmetic, singles out the
standard models as precisely those in which addition is recursive. This singling
out is not based on the connection between practice and model theory but on
maneuvers belonging to model theory that are disconnected from the practice.
So Tennenbaum’s Theorem cannot help to ‘solve’ our problem of singling out the
standard models.2 This remains a pseudo-problem which has not to be solved but
to be dissolved.

The idea that the knowledge expressed by the exclamation, “But I know what
I mean by ‘natural number’ !” might be able to single out the standard models of
arithmetic is confused, but there remains the exclamation itself and the specific
sort of knowledge that is thereby meant. This knowledge can now be investigated
without the further thought that it has anything to do with model theory. It seems
to be knowledge that we have with respect to our mathematical competence, and
might not this be inevitably tacit? I think that also this idea is confused, but the
investigation of it must be postponed to another occasion.

Hilbert’s Formalism: Intuition and Experience

Volker Peckhaus

David Hilbert first presented his formalism in his Grundlagen der Geometrie of
1899 ([1]), where he proposed an axiomatic system for Euclidean Geometry. He
regarded mathematics as a mental construction accessible with the help of a sign
system designating the elements of this construction. Basic objects are “thought
things” (entia rationis), according to I. Kant, empty concepts with no reference to
reality. The relations between these thought things are defined implicitly by the
axioms of geometry. These axioms differ from the traditional ones. Traditional
axioms are propositions which cannot be proved, but for which proofs are not
necessary because of their evidence. In Hilbert’s approach, there is, however, no
appeal to evidence or any extra-mathematical reality. His axioms are justified
by meta-axiomatic investigations of independence, completeness, and consistency.

2That such a solution might be possible is argued for in: Halbach, Volker/Horsten, Leon:
“Computational Structuralism”, Philosophia Mathematica 13 (2005) 174-186.
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For Hilbert, the consistency of a concept within an axiomatic system guarantees
its existence. Existence of an object is therefore simply given by its possibility.
Consistency proofs for axiomatic systems became the main task of research in
foundations. They were usually given by presenting an arithmetical model (relative
consistency proofs). Consistency proofs for arithmetic (via logic) and for logic
itself (via a direct consistency proof) produced problems. In the 1920s this led
to a concentration on the notion of proof (Proof Theory). In his later work,
Hilbert distinguished between formal mathematics, i.e., mathematics propper, and
contentual mathematics (inhaltliche Mathematik), i.e., proof theory. The main
problem dealt with in Proof Theory was, how to deal with infinity using only
finite proof methods. For this purpose he invented ideal elements, i.e., concepts
accepted in formal mathematics for which a finite proof had not yet been found.
Ideal elements are taken as if they were proved with finite means (cf., e. g., [4],
[6]). Hilbert’s formal mathematics is therefore conservative in the sense that it
provided a reconstruction of given mathematics.

In this approach, mathematics is regarded as a man-made rational science,
therefore it presupposes rationality. This is expressed by Hilbert with an extra-
mathematical “axiom of reasoning”, or “axiom of the existence of an intelligence”,
called “the ‘a priori’ of the philosopher”: “I have the ability to imagine things and
signify them by simple signs a, b, . . . , X , Y , . . . in such a completely characteristic
way that I can always recognize them unambiguously; my reasoning operates with
these things in this designation in a certain way according to certain laws, and I am
able to recognize these laws by self-observation and describe them completely”([2],
p. 219).

Given this characterization of Hilbert’s formalism, there seems to be no room
for tacit knowledge. Even the transcendental, extra-mathematical precondition,
the demand for rationality, is formulated explicitly. In formal mathematics the
mathematician operates with signs on the paper designating mathematical con-
cepts according to rules justified in Proof Theory. Everything is perfectly explicit.

But Hilbert also distinguished between working with an axiomatic system and
establishing or finding an axiomatic system. This distinction is connected to what
he called the two tasks of mathematics: the progressive task of creating, developing
systems of relations, and investigating their logical consequences, and the regressive
task of giving theories found by experience a firmer structure and a foundation
which is as simple as possible. Within the regressive task, the preconditions are
investigated, distinguishing everywhere between assumptions and logical inferences
([3], p. 18). The last is topic in Hilbert’s lecture courses where he reflects on
mathematical practice. Setting up an axiomatic system (axiomatic method) is
the place of tacit knowledge in Hilbert’s view of mathematics. It is the creative
part of the axiomatic enterprize. Axiomatization serves to make explicit implicitly
given assumptions and convictions. In this task, criteria are accepted which are
excluded from formal mathematics. The selection of the axioms is based, e.g., on
interest, and the intuition of the experienced mathematician, who sometimes works
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unconsciously, evaluating some candidates for axioms on the base of a “certain
triviality” adhering to them.

The question is, whether Michael Polanyi’s theory of tacit knowledge can deal
with Hilbert’s axiomatic method as a method to make the implicit explicit. Polanyi
considers tacit knowledge “by starting from the fact that we can know more than
we can tell”([8], p. 4), but he does not even give a definition of knowledge. So
he confuses (scientific) knowledge, belief, faith, assumptions, opinions, even skills.
Everything is knowledge, albeit most of it tacit/personal knowledge. His alter-
native to the standard scientific paradigm of objectivity is the “acknowledgement
of a beauty that exhilarates and a profundity that entrances us” ([7], p. 15) and
“recognizing rationality in nature” ([7], p. 13). He does not consider a concept
of objectivity regarded as intersubjectivity which, on the one hand, would avoid
the problems connected to exaggerated notions of objectivity, but which is, on the
other hand, the minimal condition or a scientific discourse avoiding the solipsism
of personal beliefs. This notion would furthermore keep mathematics off meta-
physical spheres. Polanyi claims: “A mathematical theory can be constructed
only by relying on prior tacit knowing and can function as a theory only within
an act of tacit knowing, which consists in our attending from it to the previously
established experience on which it bears. Thus the ideal of a comprehensive math-
ematical theory of experience which would eliminate all tacit knowing is proved to
be self-contradictory and logically unsound” ([8], p. 21). Polanyi correctly hints at
the mutual relationship between tacit knowledge and a theory formulated accord-
ing to criteria of rigidity and objectivity. But he makes by no means clear why it
should be self-contradictory and logically unsound to evaluate a theory as such,
not with respect to the context of its creation.

Polanyi throughout conflates the psychology of scientific practice with philoso-
phy of science. He obviously ignores the distinction between genesis and validity
due to Rudolf Hermann Lotze (1817–1881). Lotze’s distinction comes close to
similar differentiations between quid iuris and quid facti questions (Kant, Popper)
or between the context of discovery and the context of justification (Reichenbach).

In concluding: Polanyi’s theory of tacit knowledge is question begging: There
is no claim of full objectivity as stated in the advent of his theory. This is a result
of modern epistemology, in particular of the critical approach to human reason as
proposed by Kant. So there is no need for a “Post-Critical Philosophy” (subtitle of
Polanyi’s Personal Knowledge). Polanyi gives up or ignores useful distinctions like
the ones between art and science, genesis and validity, or the notion of objectivity
as intersubjectivity. Having accepted these distinctions would have prevented him
from some of his far-reaching conclusions. Formalist Hilbert was already beyond
this point. With his distinction between progressive and regressive tasks in math-
ematics, he had the tools at hand to avoid Polanyi’s naivete. In progressive formal
mathematics the standards of rigidity and uncompromising objectivity (in the
sense of intersubjectivity) hold. The regressive side is the domain of mathematical
creativity, above all governed by tacit knowledge.
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Polanyi writes: “I pointed out how everywhere the mind follows its own self-
set standards, and I gave my tacit or explicit endorsement to this manner of
establishing the truth. Such an endorsement is an action of the same kind as
that which it accredits and is to be classed therefore as a consciously a-critical
statement. This invitation to dogmatism may appear shocking: yet it is but
the corollary to the greatly increased critical powers of man” ([7], p. 268). This
invitation to dogmatism is an invitation to go back to dark medieval times. Who
is this mind that sets its own standards? If some sort of abstract agent is meant,
we are thrown back to a naive metaphysical realism, unworthy of today’s state of
reflection on science. If this mind has a bearer, it is by no mean clear, that this
bearer is unable to learn and change his convictions due to better insights. But
then no dogmatism is needed. With these overcasted speculations Polanyi does
his theory of tacit knowledge no good service.
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On making mathematical inferences explicit: Pasch’s reflections on
logic

Dirk Schlimm

The geometer Moritz Pasch (1843–1930) is famous for his pioneering work in ax-
iomatics: In his Vorlesungen über Neuere Geometrie (1882) [3] he gave the first
axiomatic presentation of projective geometry, the first axiomatization of the be-
tweenness relation, the first formulation of ‘Pasch’s axiom’. This work was highly
influential for the development of the contemporary view of mathematics and it
was a direct influence to Peano and Hilbert. In addition, Pasch also developed
an empirical epistemology for geometry and analysis, and in the course of this
work also he became more and more interested in the logical inferences that are
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licensed in mathematics [8]. This talk discusses Pasch’s attempts to contribute to
a ‘renewal of logic’ [5, p. 232] and discusses his motivations as well as the possible
reasons for why this project led to a dead end.

From early on Pasch distinguished what was later called the ‘context of discov-
ery’ from the ‘context of justification’, and he insisted that mathematical proofs
are only justified if they are presented as logical deductions from explicitly stated
assumptions. Moreover, Pasch’s reflections were always guided by the goal of be-
ing relevant to mathematical practice and he often took his own axiomatic work
as the starting point of his methodological considerations. Instead of identify-
ing some basic building blocks for formal languages (e. g., connectives, quantifiers,
predicate symbols) as Frege did, Pasch’s starting point were inferences as they
actually occur in mathematical texts. In his analysis, he identified three basic
kinds of inferences: the premise and conclusion are synonymous, the conclusion
presents only a part of the content of the premise, and the conclusion contains
the content of more than one premises [4, p. 5]. According to Pasch, such basic
inference steps could not be analyzed further, and so he concluded that our abil-
ity to decide in a finite amount of time whether we are presented with a genuine
basic inference step or not is a fundamental prerequisite for understanding math-
ematical proofs [5]. This ability remains necessary also when the propositions of a
proof are formalized, where Pasch understood formalization, as replacing ‘material
words’ [Stoffwörter] by meaningless symbols. The inferences then depend only on
the ‘joins’ [Fügemittel], which we would characterize as the logical components of
propositions. An example that Pasch discusses in [6] is the inference from ‘If two
points are endpoints of a straight segment, then they are not endpoints of another
straight segment’ to ‘If two points are endpoints of a straight segment, then there
is no other straight segment of which the points are endpoints’. Given that Pasch
identifies ‘two’, ‘point’, ‘endpoint’, ‘straight’, and ‘segment’ as the material words
in these statements, the formalized versions of these two are ‘If α βs are εs of a
γ δ, then they are not εs of another γ δ’ and ‘If α βs are εs of a γ δ, then there is
no other γ δ for which the βs are εs’. Thus, even in the case of a formal inference
(in Pasch’s understanding) the fundamental requirement of decidability remains:
‘It must be presupposed that the reader is able to decide any such question [i e.,
whether a proposition follows from another] on the basis of one’s understanding
of the joins’ [6, p. 253]. In the end, Pasch thought that a distinction between
the content and the guise [Einkleidung ] (this terminology was also used in [1]) of
propositions might yield a promising approach and he hoped that ‘the indicated
path will lead to the main features of a logic that does justice to the accomplish-
ments of mathematics’ [5, p. 232]. However, how we could determine whether
propositions have the same content was not addressed by Pasch and he did not
develop these ideas further.

Approaches that begin with primitive building blocks to model actual phe-
nomena are sometimes referred to as synthetic, while those that start with the
phenomena are called analytic [7, p. 529]. Using this terminology, we can char-
acterize Pasch’s approach to logic as an analytic one, Frege’s as synthetic. Both
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approaches have their well-known problems, namely to find a systematic basis and
the fit with actual phenomena. Pasch focused on mathematical practice and con-
tentful reasoning, which left hims struggling with what we now call the surface
structure of language and ultimately led to unsurmountable problems, like those
of identity of propositions and sameness of content. Because of this, and despite
the fact that Pasch knew some of Frege’s, Peano’s, and Hilbert’s work, he failed
(or refused) to latch on to the development of modern logic. By looking sympa-
thetically at such failed attempts we get a better understanding of the conceptual
difficulties that were involved in arriving at the modern conception of logic.
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Tacit vs Explicit Images of Mathematical Logic: the reflexions of the
School of Peano

Erika Luciano

Since the end of the 19th century, the Peano School presents itself and is presented
as a group of scholars whose aim was to make their own scientific works as explicit
as possible. In fact, according to Peano, all the hypotheses and deductive steps,
even the most banal, must always be made explicit both in publications and in
teaching practices. Moreover, the ideography was constructed in such a way that
the meaning attached to the symbols was completely and unambiguously clarified.
At the level of history as well, each definition and proposition was to be accompa-
nied by an explicit account of its origin and development.
In actual fact, however, this historiographical depiction is less precise than might
be supposed. In fact, in spite of the intentions declared, there are frequent cases
of ‘missing’- that is tacitly used - propositions in the works of the Peano School.
Besides, the contrast between tacit and explicit regards the very adoption of the
symbols, because some of Peano’s collaborators confine the ideography to the pri-
vate sphere of their research, masking its use in publications. As regards the
historical aspects as well, that which is explicit in the Peanian written production
is comprised of only a set of notes which includes bibliographical references and
transcriptions of extracts from sources. What is implicit concerns all the rest, that
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is 1) the majority of primary and secondary literature used and 2) if there exists a
non-naive historiographical conception underlying the compilation of these notes.
Further, as regards this kind of extra-mathematical elements, it is necessary to
bear in mind that a stereotyping of roles within the Peano School becomes evi-
dent fairly early on. According to it, G. Vailati was ‘the philosopher’, G. Vacca
‘the historian’, M. Pieri ‘the geometer’, and so on. This makes it even more diffi-
cult to distinguish the tacit from the explicit dimension, because some of Peano’s
collaborators were prone to remain silent about certain components of their own
research, leaving to their colleagues, who were considered the ‘specialists’ in one
area or another, the task of explaining them.
In light of this overall picture, first of all we determine how, in the particular
case-study of the Peanian logical-foundational studies, the terms of the tension
tacit vs explicit are to be specified, taking into consideration the fact that, with
this expression, we allude to a very composite body of knowledge, constructed by
a community of scholars.
As far as the side of explicit is concerned, the problem consists in choosing a
printed work that is, or can be considered as, representative of the activities car-
ried out by the School of Peano. Among the possible alternatives 1 we have chosen
the three last editions of the Formulaire de Mathématiques (1901, 1902-03, 1908)
to represent the explicit side of the dichotomy because

• this is the only work that, at least along a general line, can be considered
representative of the School of Peano as a whole; 2

• this is the work for which we possess the majority of the unpublished
sources, which makes it possible to identify some of the tacit aspects of
the mathematics produced in the Peano School;

• both inside and outside the School, this treatise was indicated as the
summa of the research of Peano and his collaborators.

Instead, we have chosen to entrust the opposite side of the tension, that is the
tacit aspect, to the oral dimension that surrounds the editing of the Formulaire.
In fact, the close relationships that mature between the members of a working
group are based upon everyday contact which is essentially oral in nature and lead

1They include, for example, the journals Rivista di Matematica (1891-1906), Schola et Vita
(1925-1939) and some works by individual members of the Peano’s School, such as the inaugural
lecture given by Pieri in Catania, Uno sguardo al nuovo indirizzo logico-matematico delle scienze
deduttive (Annuario R. Univ. Catania, 1906-07, p. 21-82), or the article by A. Padoa, Logica
matematica e matematica elementare (Atti II Congresso Associazione Mathesis, Livorno, 1902,
p. 186-200), called ‘the manifesto of the Italian logicians’.

2In effect, according to U. Cassina, the Peano School comprised some forty researchers, but
only a part of those took part in editing the Formulaire. These are the ones that we indicate
as the ‘first generation’ of Peano’s students, including G. Vailati, G. Vacca, C. Burali-Forti, A.
Padoa, M. Pieri, the second generation being constituted, with few exceptions, by the Peano’s
interlinguistic collaborators and by the group of his female students who worked with him during
the last years of his life. Further, some students of this first generation provided just very marginal
additions to the Formulaire; others stopped the collaboration after the first edition, other ones
after the third or the fourth.
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inevitably to the creation and the socialization of a massive amount of tacit math-
ematical knowledge. Further, these oral testimonies, and in particular the con-
versations which many of Peano students remember vividly, can be reconstructed
today thanks to the correspondences among Peano, Vacca, Vailati, Pieri, Padoa
and Burali-Forti, the manuscripts conserved in the Peano-Vacca Archive in Turin
and the volumes of the Formulaire with Peano and Vacca’s autograph notes.
Once our dichotomy is fixed in terms of orality vs publication in the last three edi-
tions of the Formulaire, the mathematics produced in the Peano School becomes
a collection of tacit elements. Thus we discover that remaining altogether implicit
are the proofs of the Cantor-Bernstein theorem devised by Vacca with the help of
Vailati and Burali-Forti, and the systems of postulates of arithmetic proposed by
Vacca and Pieri. Examples of this same tenor could be listed by the dozen.
It is also possible to discern a criterion, obviously tacit, used by Peano to deter-
mine, from among the proposals submitted to him, what to promote to the level
of publication in the Formulaire. The tacit dimension is in fact more evident with
regard to meta-theoretical problems such as the criteria for choosing the primitive
concepts and propositions; the consistence and independence of the axioms; the
ways of schematizing language between the opposing poles of natural language
and ideographical symbolism; the sensitivity with regard to adherence to physical
or psychological reality of mathematical concepts, as opposed to their abstract
and formalist connotations, etc. The divergences regarding these questions - or
at least the differences in opinion among Peano’s collaborators - are remarkable.
In the absence of an agreement, Peano seem usually choose to gloss over such
reflections in the Formulaire, to the point of rendering the positions of individuals
indistinguishable, or even leaving them entirely implicit, omitting reference to the
literature that lay behind them, which also differed notably from student to stu-
dent.3

In light of this context, we illustrate in the second part of the talk:

• an example of a result by Padoa (his method for proving the independence
of the arithmetical postulates), which was promoted in its essence to the
explicit degree, after having circulated for a very brief time in tacit form;

• an example of a critical comment, by Vailati, about the chapter Logique
of the Formulaire, which remained tacit in its entirety forever, in spite of
attempts to render it explicit in the two last editions of the treatise;

• an example of a contribution by Pieri and Padoa (an hypothetical-deductive
system for the Euclidean geometry based on two primitive concepts), which
remained tacit almost completely and almost forever, even though it had

3There was a circulation of volumes and articles that were shared by Peano’s entourage. Not
by chance, the same publications by L. Couturat, E. Huntington, B. Russell, among the few to
be cited in the Formulaire, are present in the personal libraries of Peano, Vacca and Vailati.
Flanking this, however, was a set of readings (G. Frege, D. Hilbert, F. Brentano, A. Naville, . . . )
recommended by the individual members of the School, appreciated by some but not all of the
colleagues. In a few cases this second type of references was noted by Peano in his marginalia
and even more rarely it reached the level of explicit quotations in the Formulaire.
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arrived ‘a step away’ from being made explicit in the fourth edition of the
Formulaire.

Taking into account these examples, the question arises whether Burali-Forti,
Padoa, Vacca and Vailati’s allusions to Peano’s ‘bad tendencies’ towards his collab-
orators are true or not. According to our analysis, it appears plausible to maintain
that Peano was led to render and maintain explicit in the Formulaire all and only
those results (his own as well as others) that entered into the spirit of the treatise
as he conceived it and that he held to be best from the scientific or didactic point
of view, inviting the individual contributors themselves to make explicit, through
articles, the contributions that had not found a place in the treatise. Faced with
proposals for substantial modifications, Peano could become quite cutting. The
fact that the dissemination of the views with respect to meta-mathematical prob-
lems is prevalently entrusted to the tacit dimension is further ascribable to the
cultural context, which made it politically opportune to emphasize some impli-
cations while downplaying others, and which drove the School of Peano to make
explicit only what was widely shared, in the attempt to consolidate the image of
a cohesive group of researchers.
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Tacit Knowledge in Mathematics: Definition, Types, Examples

Herbert Breger

Tacit knowledge in mathematics is defined to be knowledge that is essential for the
understanding of a mathematical theory although it cannot be deduced from the
axioms resp. the presuppositions which were generally accepted at that time[1][2][3].
Three arguments were given in order to show that there is tacit knowledge in this
sense. Firstly, a computer to which the axioms of a particular theory are given
cannot produce a textbook of that theory. Secondly, experts use undefined words
like beautiful, natural, deep, profound, exotic, elegant in order to express state-
ments about the importance of a notion or a proof or on the structure of a theory.
This is knowledge on the meta level. Thirdly, it is well-known in mathematical
education that understanding a proof line by line does not necessarily imply to
understand the proof as a whole.

In the second part of the talk a number of types of situations in which tacit
knowledge occurs were discussed. There is a tacit knowledge of axiomatisation
(illustrated with the examples of Eilenberg and Steenrod’s axiomatisation of alge-
braic topology and Klein and Lie’s considerations of groups as well as Eilenberg and
Mac Lane’s introduction of natural transformations). Historians are well aware of
the problems of hindsight which originate from seeing a theory in the past with
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“modern eyes”; the theories of Barrow, Leibniz and Newton on tangents and ar-
eas were compared for that purpose. Finally notation, definitions, know how for
problem solving, procedures becoming objects and the decisions about the trivial
were discussed.
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The use of the word “implicit” in the works of Carnot and Poncelet

Philippe Nabonnand

In this paper, we discuss a tentative by Lazare Carnot and Jean-Victor Poncelet
to introduce the categories of explicit and implicit in mathematics at the beginning
of 19th century. The background is an epistemology of generality (valorization of
general problem, of general proof, of general results, of general theorems. . . 1).
During the first half of 19th century, Carnot, Poncelet and many others agreed to
give pure geometry the status of unsurpassable rigor. They also agreed to consider
that this way to tackle problems of geometry lacked generality. Comparison with
analytic geometry was often cruel and justified the reproach against pure geometry
in linking proofs too exclusively with the consideration of a particular figure. Ini-
tially, they concluded that the power of analytic geometry was linked with the use
of formulas without worrying about the sign or even the existence of the element.
Carnot and Poncelet proposed, in their own way, to generalize the framework of
the pure geometry by providing proof methods that allow overcoming the precept
that a geometrical proof is relative to a particular figure.

Carnot and Poncelet had two different objectives. The former supported a pro-
gram of reform of mathematics. For Carnot, there were only absolute quantities
and the most important step was to rid mathematics of nonsense that are signed
(negative or positive) and imaginary quantities. He criticized both methods of
analysis and geometry and proposed procedures which didn’t use positive, nega-
tive or imaginary quantities. All operations must be effective. The latter had a
program of improvement of pure geometry. His aim was to propose procedures in
pure geometry as powerful as those used in analysis and analytic geometry. With
the intention to justify the procedures he proposed, his strategy was to argue that
they have a common ground with those of analysis and analytic geometry. In
Poncelet’s opinion, this ground was not explicit but tacitly used in analysis2.

1See [Chemla 1998], [Nabonnand 2001].
2There are many occurrences of the word “tacit” in articles where Poncelet justifies his point

of view.
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I will follow how Poncelet and Carnot, each with their different ways, used the
argument of generality and introduced the notion of implicit. I will focus essentially
on the development of this line of argument in two of Carnot’s treatises, De la
corrélation des figures de géométrie and Géométrie de position and in Poncelet’s
articles preparatory to the Traité des propriétés projectives des figures.

Carnot and the rejection of signed and imaginary quantities. In his two
treatises, the objective of Carnot was to implement geometric methods in which the
introduction of the sign ”−“ or consideration of elements that become imaginary
reduce to operations that Carnot described as “executable”. He didn’t reject
the use of signs like + or − or even complex signs, but he demanded that in
the last instance, we can reduce to executable operations. The starting point of
Carnot’s argument was the observation that considerations of position, though
attached to a figure, may be subject to change of signs when they are applied
to other figures. These figures, obtained by changing continuously the relative
positions of elements of the initial figure are called corrélative. The idea is that
by expressing relevant properties of figures by formulas and by specifying how
changes of positions affect these formulas, position relations may be subject to a
general treatment. Carnot distinguishes explicit formulas, that are immediately
applicable to the studied system, from implicit ones that cannot be applied to the
studied system without having to undergo some changes of signs. The figure or
the system to which properties are related to decide if the formulas are explicit
or implicit is called primitive system, the other figures or systems which can be
obtained from a primitive system, “c’est-à-dire tous ceux qu’on peut considérer
comme les différens états d’un même système variable qui se transforme par degrés
insensibles,” are called correlative. These notions are relative.

Carnot’s problem was to systematize the link between correlations of figures
and the passage of implicit formulas to explicit formulas. Carnot’s argument came
in two stages: first, justifying a correct use of negative and imaginary quantities
in algebra and geometry without giving them any status and thus avoiding the
mistakes that we necessarily arrive when “we think with absurd quantities.” Then,
in giving his method of correlation systems in a general framework and arguing that
the methods he proposed fall within this general method, Carnot highlighted, on
one hand, the pointlessness of granting any ontological status to these quantities,
and, on other hand, he ensured the soundness of his views in geometry. Carnot
showed that his method of correlation systems already operated in related fields
of geometry and that in fact it is a general epistemological process.

The method recommended by Carnot may be summarized as follows: he refers
the problem to a particular figure and draws up a tableau that represents all
relevant properties of this figure, then taking this figure as standard of comparison,
he proposes to extend this description to correlative figures, “d’y rapporter par
des tableaux additionnels [appelés tableaux de corrélation], toutes celles dont la
construction est essentiellement la même.”
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Poncelet and the principle of continuity. Poncelet had devoted a great part
of his work to establish general procedures in pure geometry; for Poncelet, gener-
ality was inherent in the object under study, justifying the project to look for gen-
eral methods in pure geometry. At the same time, noticing that generality comes
within the notion of figured magnitude (grandeur figurée) (which is opposite to
that of absolute magnitude), Poncelet claimed that pure geometry must change
its object of study. It is should no longer study absolute properties of particular
figures; the geometers have to take an interest in the general properties of figured
magnitude. Poncelet proposed two complementary ways: 1) focus on projective
properties of figures and 2) admit a principle of preservation of properties of figures
(or principle of continuity). As we are here interested by Poncelet’s views about
explicit/implicit, we will stress the principle of continuity. To analyze Poncelet’s
arguments, we will follow a paper, dated 1818, Considérations philosophiques et
techniques sur le principe de continuité dans les lois géométriques, in which he
attempts to defend the admission in pure geometry of a principle of continuity.
If Poncelet took much of the terminology introduced by Carnot and the idea of
studying the change of sign within the correlation of figures, he did not follow him
in his denial of status to negative or imaginary quantities [Poncelet 1815]. Be-
yond the relevance of his critiques of Carnot’s discussion, it is important to note
that for Poncelet, persuading his readers of the merits of the use of negative and
imaginary quantities in analysis and analytic geometry was a necessity. Indeed,
from Poncelet’s view, the law of signs in geometry is dependent on a principle of
continuity whose principal justification was its tacit use in analysis. The compar-
ison between the methods of analytic geometry and pure geometry lead him to
conclude that the essential difference between them was that the former used a
principle of continuity which is expressed as:
“Graphic properties found for the original figure remain without changes other
than those moving parts, for all correlative figures that can be supposed to come
from the first. [...] Metric properties found for the original figure remain appli-
cable without changes other than those change of signs, for all correlative figures
that can be supposed to come from the first.” (Poncelet 1818, p. 318)
The adoption of this principle was the principal reason why “la Géométrie des
modernes semble l’emporter de beaucoup sur celles des Anciens.” Why was this
principle first accepted without question in analytic geometry? According to Pon-
celet, the answer was to look at the formalism of the equations and “at the habit
[...] to extend the meaning and application of a same formula or equation for all
states of the system to which it relates regardless the relative positions of system
components or even of their existence.” In fact, the representation by purely lit-
eral equations allows abandoning the explicit reasoning, i.e. reasoning in which one
never loses the object of view and which is in immediate relation to a particular
figure. The admission of the principle of continuity allows the practice of implicit
reasoning. At the end of reasoning, if the negative or imaginary factors disappear
in the statement of the final result, the result is considered as real and applicable.
Poncelet proposed to follow the same program in the exposition of pure geometry.
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Its objective was to determine the consequences of adopting the principle of conti-
nuity in pure geometry, to identify new forms of demonstrations that follow, and
thus to justify and a notion of implicit reasoning in pure geometry. The idea of
Poncelet was that geometrical properties that apply to a particular configuration
will (except for changes in signs that correspond to changes in position) continue
to apply to correlative figures (that is, all real and absolute states of the same sys-
tem that is transformed by imperceptible degrees.). Then, it is sufficient to prove
the property by an explicit reasoning by considering a figure where all objects and
relations are real to get its validity for all correlative figures. With the principle
of continuity, it is possible to extend a property to all correlative figures, provided
that if this principle gives a conclusion “about the permanence of relations, it does
not decide on the nature and absolute existence of objects and variables that are
concerned by these relations.” When these objects disappear, these relations are
far from becoming absurd or insignificant because their non-applicability expresses
a certain position of the actual system. The principle of continuity establishes the
validity of some relations beyond the reality or unreality of certain objects, the
generality of the reasoning is so ensured because we are not directly involved with
a particular figure, and because we can consider the set of formulas associated
with a figure.
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Linear Groups in Galois Fields: A Case Study of Tacit Circulation of
Explicit Knowledge

Frédéric Brechenmacher

This paper aims at stressing some aspects of my works on the history of algebra
in the 19th and 20th century, which are related to the the tacit vs the explicit in
the ways some groups of texts hold together.1 These aspects raise issues as to the
historian’s choices of a corpus of reference and of a scale of analysis. They also
address the more general problem of articulating the individual and collective di-
mensions of mathematics. Indeed, although the category “algebra” points to some
collective organizations of knowledge, this category took on changing identities in
different times and spaces. Until the 1930s, ”algebra” was especially not usually
referring to an object-oriented discipline.[7] In France, for instance, algebra was,
on the one hand, traditionally considered in the teaching of mathematics as an
“elementary,” or “intermediary,” discipline encompassed by ”the higher point of
view” of analysis. On the other hand, algebra was also pointing to some proce-
dures that made a ”common link” between researches in the various branches of
the mathematical sciences. What was explicitly identified as “algebraic” therefore
often pointed to some implicit circulations between various theories. This situa-
tion makes it customary to study carefully the ways texts were referring one to
another, thereby constituting some shared algebraic cultures.
I shall introduce this paper by making explicit how such issues came up in my
research work, before focusing on a case study on “linear groups in Galois fields”
at the turn of the 20th century. Although the latter designation may seem to
make explicit some collective interests for a theory revolving around a specific ob-
ject, i.e. Gln(Fpn) (p a prime number), we shall see that this designation actually
supported the implicit reference to a specific algebraic culture that had developed
over the course of the 19th century.

1. Introduction : the “versus”

Throughout the whole of 1874, Jordan and Kronecker were quarrelling over
the organization of the theory of bilinear forms.[2] The controversy started with
a public quarrel of priority over two theorems before turning into a private corre-
spondence. The epistolary communication was mostly devoted to making explicit
some tacit relations between some texts of Weierstrass, Christoffel, and Kronecker.
After Jordan had made himself familiar with this collective of texts, the quarrel
eventually went public once again. These successive episodes highlight that even
though the ”theory of bilinear forms” may have been considered at first sight as
the explicit reference to a collective of mathematical methods and notions, it was
through some tacit intertextual relations that this theory was making sense. More-
over, the tacit dimension of the theory was recognized by the actors themselves:

1An extended version of this paper is available at http://hal.archives-
ouvertes.fr/aut/Frederic+Brechenmacher. Ce travail a bénéficié d’une aide de l’Agence

Nationale de la Recherche : projet CaaFÉ (ANR-10-JCJC 0101)
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both Jordan and Kronecker agreed that it was no more than a ”slight fault” to
fail to grasp the relevant underlying intertextual relations, which had thus to be
made explicit through some direct communication.

2. The tacit vs the explicit in building some networks of texts

The 1874 controversy highlights the problem of the selection of the corpuses
in which a given text is making sense, i.e., the identification of some networks of
texts. But such networks cannot be identified as webs of quotations.[8] Not only do
practices of quotations vary in times and spaces but intertextual relations may also
be implicit. My approach to this problem consists in choosing a point of reference
from which a first corpus is built by following systematically the explicit traces
of intertextual relations. A close reading of the texts of this corpus then gives
access to some more implicit forms of references. For instance, in the case of the
1874 controversy, both protagonists were referring to the “equation to the secular
inequalities in planetary theory.”[2] Such an explicit reference implicitly pointed
to a network of texts that had been published over the course of the 19th century
in various theoretical frameworks. The 1874 controversy opposed two attempts to
turn this traditional algebraic culture into an object-oriented theory, which Jordan
aimed to root on group theory while Kronecker laid the emphasis on the theory of
quadratic forms.

3. Linear groups in Galois fields

In the framework of a collective research project,2 a database of intertextual
references has been worked out for all the texts published in algebra in France from
1870 to 1914.3 One of the subgroups of this corpus gives rise to a coherent network
of texts which involved mainly French and American authors from 1893 to 1907.4

Let us characterize further this network by looking at its main shared references.
These were, on the one hand, some French papers published in the 1860s, and, on
the other hand, Moore’s introduction of the abstract notion of Galois field in 1893
in addition to Dickson’s 1901 monograph on Linear groups with an exposition of
the Galois field theory. We shall see that the two times and spaces involved here
point to a shared algebraic culture that can neither be identified to a discipline
nor to any simple national or institutional dimension.

4. On nations and disciplines

Moore’s 1893 “abstract” notion of Galois field has been assumed to highlight
the influence of ”trendsetting German mathematics” on the emergence of both the
“Chicago algebraic research school”[11] and the “American mathematical research

2CaaFé : Circulations of algebraic and arithmetic practices and knowledge (1870-1945) :
France, Europe, U.S.A ; http://caafe.math.cnrs.fr

3The corpus has been selected by using the classification of the Jahrbuch. On Thamous
database of intertextual references, see http://thamous.univ-rennes1.fr/presentation.php

4On the one hand, Jordan, Borel and Drach, Le Vavasseur, de Séguier, Autonne, etc. On the
other hand, Moore, Dickson, Schottenfels, Wedderburn, Bussey, Brger, Miller, Manning, etc.
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community.”[9] Here two kinds of categories have been used for making explicit
some collective dimensions of mathematics, i.e., on the one hand, some national,
or more local, collectives of mathematicians (the U.S.A., Germany, Chicago) and,
on the other hand, some mathematical disciplines (abstract algebra). But even
though the roles played by German universities in the training of many Ameri-
can mathematicians have been well documented, the influence of this institutional
framework on mathematics has been assumed quite implicitly. Here two difficulties
arise. First, the role attributed to “abstract algebra” reflects the tacit assumption
that the communication of some local tacit knowledge should require direct con-
tact. Second, both disciplines and nations are actors categories, which even though
they were much involved in public discourses at the time,[12] cannot usually be
directly transposed to the collective dimensions of mathematical developments.[5]
Recall that Moore’s 1893 paper was read at the congress that followed the World
Columbian exposition in Chicago. The world fair was the occasion of much display
of national grandeur. The German delegation especially presented an exhibit of
the German universities in which Klein was delivering a series of lectures. Klein
was also the glorious guest of the congress while Moore was both the host of the
congress and one of its main organizers. The latter’s concluding lecture was a
tribute to Klein’s Icosahedron. It indeed aimed at generalizing to a “new dou-
bly infinite system of simple groups,” i.e., PSL2(Fpn), what was then designated
as the three “Galois groups,” i.e., PSl2(Fp), p = 5, 7, 11, involved in the modu-
lar equations that had been investigated by Galois, Hermite, and Klein.[9] The
generalization consisted in having the analytic form of unimodular binary linear
fractional substitutions ax+b

cx+d
operate on a finite “field” of letters indexed by Galois

number theoretic imaginaries.
The nature of the relevant collective dimensions nevertheless change if one shifts
the scale of analysis from institutions to texts. As we shall see, even though he had
aimed at celebrating the emergence of some abstract researches in the U.S.A. in
the framework of the Göttingen tradition, Moore actually collided to the implicit
collective dimension that was underlying the use of the analytic representation of
substitutions on number theoretic imaginaries.[4]
In 1893, Moore initially appealed to Klein-Fricke’s 1890 short presentation of Ga-
lois imaginaries but had not yet studied the references to Galois, Serret, Mathieu,
Jordan, or Gierster which he cited from Klein-Fricke’s texbook. On the one hand,
what Moore designated as a Galois field corresponded to Cauchy’s approach to
higher congruences,[8] as developed later by Serret. On the other hand, Moore’s
”abstract finite field” was actually close to Galois’s approach. Moore’s remark
that “every finite field is in fact abstractly considered a Galois field” thus echoed
the connection between two perspectives on number theoretic imaginaries, as it
had already been displayed in textbooks such as Serret’s in 1866.
But even more dramatically, Moore’s system of simple groups had actually already
been introduced by Mathieu in 1861. As a result, before the publication of the
proceedings of the congress in 1896, Moore and his student Dickson struggled to
access the tacit collective dimension of some texts published in France in the 1860s,
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especially by appealing to Jordan’s 1870 Traité des substitutions et des équations
algébriques. This appropriation resulted in the publication of a train of papers
on “Jordan’s linear groups in Galois fields.” Moore’s 1893 paper thus eventually
resulted in the circulation of some works that were foreign to Klein’s legacy. This
situation highlights the difficult problem of identifying the scales at which various
forms of collective dimensions play a relevant role, especially in respect to the
articulation of the collective dimensions of texts with the ones of actors, such as
disciplines or nations.

5. The analytic representation of substitutions

Let us now characterize more precisely the collective dimension to which Moore
collided to in 1893. Given a substitution S operating on m letters ai, the prob-
lem of the analytic representation consists in finding an analytic function φ such
that S(ai) = φ(i). Hermite’s 1863 solution to this problem for the cases m = 5, 7
would especially influence Dickson’s 1896 thesis. But the analytic representa-
tion also requires an indexing of the letters. As had been shown by Galois, if
m = pn, the indices can be considered as the ”imaginary solutions” of the con-
gruence xpn − x ≡ 0(modp) that generalized the indexations given by the roots of
Gauss’s cyclotomic equations. Moreover, the use of such analytic forms went with
some specific procedures. The procedure of reduction of “linear” substitutions
(i, ai + b) into combinations of cycles (i, i + 1) and (i, gi) had especially played
a key role in Galois’s characterization of solvable irreducible equations of prime
degree, which roots are permuted by substitutions of ”a linear form” (xi, xai+b).[4]
In modern parlance, Galois’s theorem and its proofs boil down to showing that
the linear group is the maximal group in which an elementary abelian group (the
cyclic group F ∗

p in the case n = 1) is a normal subgroup. It was in attempting
to generalize this theorem to equations of degree pn that Galois introduced the
number theoretic imaginaries.
Later on, in the 1860s, Jordan investigated further general linear groups as ”orig-
inating” from the problem of finding the analytic form of the maximal group in
which F ∗

pn is a normal subgroup. He laid the emphasis on the procedures of re-
ductions of the analytic representations of linear substitutions. Jordan’s canonical
form theorem especially gave a generalization to n variables of the reduction of
(i, ai + b) into (i, i + 1) and (i, gi). For Jordan, such reductions were the very
”essence of the question” because they were supporting links between various
branches of mathematics such as number theory, the theory of equations, crys-
tallography, mechanics, analysis situs, differential equations, etc.[6] Jordan’s 1870
Traité played a key role in the development of a specific algebraic culture based on
the reduction of the analytic representation of n-ary linear substitutions. This cul-
ture can not only be be traced in France in the works of authors such as Poincaré,
Picard, Autonne, Cartan, Séguier, etc., but it also circulated in the U.S.A. after
Dickson’s 1896 thesis.[6]
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6. Conclusion

The network of texts that revolved around “Jordan’s linear groups in Galois
field” at the turn of the 20th century had underlying it a specific algebraic culture
based on procedures of reductions of the analytic forms of substitutions. It was
because they shared this culture that some French and American authors were
able to interact with each others. Communication was nevertheless partial and
was actually mostly limited to some shared practices, such as the use of Jordan’s
canonical form. A telling example is the new formulation that was given repeatedly
and independently to Jordan’s “origin” of the linear group as the theorem stating
that the group of automorphisms of an elementary abelian group F ∗

pn is Gl(Fpn)
(Burnside, Moore, Levavasseur, Miller, Dickson Séguier).
We have seen that the systematic investigation of explicit traces of intertextual
relations also sheds light on some more implicit collective forms of references, such
as the one that lied beneath expressions such as “linear groups in Galois fields.”
This situation highlights the crucial role played by some networks of texts in the
shaping of some algebraic cultures at a time when “algebra” was not yet referring
to an object-oriented discipline.
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sur l’utilisation des congruences en France de 1801 – 1850, Thèse de doctorat, Université
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[4] F. Brechenmacher, Self-portraits with évariste Galois (and the shadow of Camille Jordan),
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Explicit and tacit knowledge in the teaching of mathematics in the
19th century

Caroline Ehrhardt

The theory that the kind of research one does has to do with the kind of training
one has received has been widely exploited by scholars working on research schools.
Yet the way in which this process actually takes place has not been so extensively
studied. In fact, it is just as though because it is being labeled tacit a priori,
the process of acquiring craft skills and their values, in schools and universities,
remains almost invisible to historians [Olesko 1991; Warwick 2004]. To what point
can we say that something that appears as tacit in research practices was actually
made explicit during the training, or, in other words, how exactly specific ways
or learning mathematics could be associated to knowledge or skills that would
become tacit while doing research? In this paper, I will explore this issues taking
examples from the learning and teaching of mathematics in the first half of the
19th century in France.

1. Explicit and tacit knowledge in the learning of mathematics for

the French competitive exams.

From the beginning of the 19th century onwards, the French preparatory classes
were organized to train students for scientific competitive exam of engineer schools,
and in particular for the Ecole polytechnique [Belhoste 2003]. The knowledge
the students had to master was published in official programs, and explained in
textbooks that were widely used: the explicit knowledge shared by students was
arithmetics, some algebra, elementary geometry, a little of analytical geometry,
some statics and the solution of triangles. However, the official program did not
say anything about the way by which this knowledge had to be acquired: what
were the methods of work of students? What were the mathematical practices
that were encouraged to master? What was the hierarchy between the themes,
the criteria of evaluation etc.?

1.1. Memorization and calculation as techniques for solving geometrical
problems. The 19th century was a period of development of publications spe-
cialized in education and, in particular, it was the time when the first “annals”
where published. One of them, Ritts Manual des aspirants à lEcole polytechnique
[Ritt 1839], tells us about what was expected from the students: Ritts aim was
to make explicit what remained implicit in the programs and could help the stu-
dents to pass the exam. First, Ritt recommended that the students should know
perfectly the art of calculation. Second, students should know by heart a large
range of issues that they could find in textbooks, that is to say questions about the
lessons they had attended to. Moreover, all the themes that were mentioned in the
programs did not play the same role in the students training: the more difficult
questions (that would differentiate between the ones who would pass the exam
and the others) were mostly about analytical geometry. To solve them, one had to
choose from a range of techniques and tools the ones that would be useful in that
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particular case. This is why it was useful to have memorized several methods and
proofs. To solve the problems quickly, it was needed to master calculation. Hence,
these habits of calculation and memorization had an “operatory” dimension, and
an important skill that students had to acquire was how to combine them in order
to solve problems. Moreover, this context created an implicit hierarchy between
the items of the program: some deserved a lot of attention, while others, like
numerical and algebraic computations were only tools.

Sufficiency and good “writing style” as skills that distinguishes the bet-
ter students. The reports about the concours général, another competitive exam
that played a very important social role, also make explicit some other implicit
skills that it was important for students to master. First, the students were not
only asked to solve the proposed problem. They had to solve it thanks to sev-
eral methods. In the case of geometry, it was by analysis and synthesis. In the
case of numerical algebra, it was by different methods that provided different ap-
proximations. Second, the way to write the proofs and to expose the results was
an important criterion of evaluation. For instance, Legendre justified his choice
of subject in 1812 underlying that the “question is different enough from analo-
gous ones so that his solution, well presented, justifies that students has acquired
knowledge to a sufficient level to obtain the prize”. Conversely, in 1819, the com-
mission didn’t attribute the first prize because “even the better exam paper was
lacking of this elegance one has the right to call for the exam paper which wins
the prize”. The same features can be found in the competitive exam for the Ecole
preparatoire, which would become the Ecole normale suprieure in 1830 [Ehrhardt,
2008]. Even if the criteria of evaluation had not been explicitly given by the ex-
aminers, one can see if one compares all the exam papers of the year 1829, that
the examiners emphasized the writing qualities of the candidates. For instance,
they remarked that the solution proposed in one of the exam paper is “rigorous
and very elegant” and regret, conversely, that some calculation are “badly run”
or “not very elegant”. Hence, the evaluation is not made only about the correct-
ness of proofs and calculation, but also about tacit values about what is a good
proof. Moreover, the students who received the best assessment were those who
wrote the longer answers, going beyond what was necessary to the question. For
instance, in 1829, the assignment only required the candidates to expose a method
to obtain the superior and inferior limit of the roots of an equation, but those
who gave only one method were at the bottom of the grading scale. Hence, there
was a tacit rule – which candidates knew and practiced– that consisted in telling
the largest number of things they could about the topic they were asked about.
Hence, the sufficiency of what the candidates wrote was an important, although
implicit, criterion of the quality of their exam paper.

1.2. What to teach? Tacit knowledge in the teaching of mathematics.
One can see how the practices and values favored by competitive exams were
effectively transmitted to students by looking to the work of the teachers of math-
ematics, which is described in the Ministry inquiry about the Ecoles centrales
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(1799). As far as the contents are concerned, all the teachers mostly used the
same materials: books by Bézout, Lacaille, Bossut, then Lacroix. The regularity
in the answers shows that there was a shared tacit knowledge of what they had to
do. First, an important feature was to make the students practice mathematics by
themselves, but also to learn and memorize several methods and to apply them to
problems. Second, they didn’t teach everything that was in the books, and often
chose contents that could be applied, from a general point of view or depending
on the local context. Hence, already in the last years of the 18th century, the
teachers did know the king of abilities they had to train their students to, and it
appears that these abilities are exactly the same as the ones that were considered
as the “good ones” by the examiners, which we have seen in the first part.

2. From learning to research: the case of algebra

The official program of the preparatory classes (classes préparatoires) didn’t
include the part of mathematics that was probably the more fundamental tool
for mathematical research at the time, namely differential and integral calculus.
Moreover, the textbooks that were widely used at that time, like the ones by
Lacroix by instance, focused on theorems and proofs, and compiled problems that
would train students to solve a large range of mathematical questions. Hence,
the explicit knowledge learnt in preparatory classes was clearly not sufficient to
practice the kind of mathematical research that was done within the Academy of
science, namely analysis. However, analysis was as much a theoretical knowledge
based on calculus as a specific way to practice mathematics, which consisted in
decomposing the problems in more elementary questions. The ideological program
of the Ecoles centrales, at the very end of the 18th century, was precisely aimed at
reaching this point: “Focusing on the methods which are the more convenient for
the elements of Algebra and which often encompasses the seeds of the others, you
will train your pupils to understand the latter as soon as they would be right in
front of them, and you will make the analytical language uniform in all his scope”.
Hence, this secondary level training allowed the students to acquire practices of
working and reasoning, ways to make mathematics and to think about it that
could influence every mathematical activity that these students could make after
their training, including mathematical research.

Let’s take the example of Algebra to illustrate this point [Ehrhardt, 2010;
Ehrhardt 2012]. The two textbooks of Algebra by Lacroix [Lacroix an VIII;
Lacroix an XIII], which were the more widely used at the time, allow us to know
more precisely what the students learnt. In complement of the theoretical parts
related to algebraic calculation and on the theory of polynoms, Lacroix paid a
lot of attention to the solution of equations as a concrete and practical problem.
For the students, it was not enough to know the purely theoretical results: what
they really had to know was how to calculate an approximate value of the roots
of a given equation, either while looking for the better approximation, either for
the one who was the easier to obtain. So, this apprenticeship of algebra was a
practice of calculation oriented toward practical solution to problems. Besides, in
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this specific case, there is a strong correlation between the ways of doing algebra
that were emphasized in the textbooks and what was asked to students during
the exams. Actually, while giving two solutions instead of one, the students of the
Ecole préparatoire showed that they were able to improve the numerical calcula-
tion and to make their solution more efficient in practice. In the same way, Ritt’s
book shows that algebra was not a topic studied for itself, but only to provide
methods of calculation to solve other kinds of problems.

Coming now to the Academy of science, one can see that the main reference
about Algebra at the beginning of the 19th century was Lagrange’s treatise [La-
grange 1797]. This book was held up as an example in many papers sent to the
Academy dealing with equations for the years 1795-1835, and it is very often the
only reference given in the reports about them written by the academicians. In
fact, Lagrange’s research had generated the two main implicit strands of research
on equations at the beginning of the nineteenth century. First, solving an equa-
tion algebraically meant finding an explicit formula or an algorithm that may
enable mathematicians to express the roots in a finite form from the coefficients;
if progress happened, it could come only from simpler methods. Second, the aim
pursued through the theory of equations was above all practical; the method was
only valuable if it ended by an approximate value of the roots – even if it had to
cross the borders of algebra and use analytical tools for that. Applicability was
much more important than methodological purity or the cleverness of the argu-
ment. And this is exactly what Lacroix stressed in his textbooks. So, from that
point of view, the training in algebra, which consisted in knowing several processes
that would provide a given approximation in a certain number of steps, and to
apply them with a calculation without mistake, was transmitted in mathematical
practice of research. Moreover, these tacit values about equation solving can be
found in the assessment practices of the Academy. In fact, the association of the
problem of solving equations and the practice of effective calculation of numerical
solutions can be considered as a value, namely that it was “the good way” to deal
with such a question. The efficiency and the cleverness of the calculation processes
are always underlined in the reports, and are a criterion to assess the papers. For
instance, in 1813, Legendre wrote that Budan’s method was valuable because it
could make the transformations of equations easier, avoiding doing some multi-
plications over the coefficients. On the contrary, in 1820, Cauchy criticized the
memoir sent by Salvaget because the method he developed was more complicated
than the ones already known.

3. Conclusion: Relative autonomy of teaching and research

Tacit knowledge in scientific activities is often defined as something that comes
from apprenticeship, and that cant be written in textbooks, for instance. What
does it add to take the learning of mathematics as a point of departure for inves-
tigation? The answer could be that tacit knowledge appears here not necessarily
as tacit as it first seemed. In fact, focusing on teaching, one can find actors who
are not mathematicians for most of them, but who do express what specifically
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comes from teaching, the kind of habits, know-how that characterize apprentice-
ship. Hence, what is tacit or explicit partly depends on the kind of sources and
actors we are looking at. Second, in the examples emphasized here, training and
research were deeply coherent: in such cases, the (implicit) hypothesis according
to which tacit knowledge would come from teaching seems to work. One could
ask, however, whether it is a general characteristic of tacit knowledge or not. And
in fact it seems to me that it almost and above all depends of the structure of the
mathematical field at the time one is looking at.

Actually, in the first half of the 19th century, the whole system of preparatory
classes was oriented toward the Ecole polytechnique. Moreover, the only way
to gain scientific recognition was to have his research approved by the Academy.
But since most academicians were polytechnicians, there was only one way to
train scientific scholars, and that was the way that leaded to “the right way” to
practice mathematics. Moreover, the mathematicians of the Academy played a
very important role in the educational system. Poisson, and then Poinsot, were
also working in the Ministry of Public instruction. There were academicians who
wrote the subject for the Concours general. They also evaluated the students for
the exams at the university. Some of them also evaluated the math teachers, as
they were also inspectors. For instance, Lacroix was not only an academician in
the eyes of math teachers. We learn from his correspondence that he was also
a kind of model for them. Conversely, the group of mathematic teachers was
still in the making at the time. Until the 1830 and there has not been a unique
way of training for teachers. Some of them were coming from the Ecole normale,
which was closed from 1822 to 1826, and then from the Ecole préparatoire, but
most of them were coming from elsewhere. On the same way, not all of them had
passed the “agregation” that would become progressively the only competitive
exam in France for becoming teacher in high schools. On the same way, journals
like Gergonne’s Annales de mathématiques pures et appliquées, of the Journal
of the Ecole polytechnique, or the Correspondance mathématique et physique by
Quetelet were partly addressed to teachers and students, but their authors were
also quite often famous mathematicians.

In fact, all these features show that the relative autonomy of teaching in prepara-
tory classes and mathematical research was quite weak at the time, and that is
certainly one reason why tacit knowledge has many ways to be transmitted and
to circulate from the one to the other and conversely.
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An example in which Tacit Knowledge was transformed into an
important concept in the mathematical theory of perspective

Kirsti Andersen

In the early fourteenth century Italian painters started to experiment with cre-
ating depth in their pictures of architectural compositions. One of their means was
to draw some lines, that in the three dimensional space are parallel and orthogonal
to the picture plane, as converging lines in their images. Gradually it became a
rule of thumb that all lines that are orthogonal to the picture plane are depicted
as having a common convergence point.

In the first half of the fifteenth century perspective was introduced as a math-
ematical discipline, thereafter some theorists attempted to explain and prove the
correctness of various methods of constructing perspective images. In doing so,
they often tacitly assumed the practitioners’ rule of thumb.

The real breakthrough in the mathematical theory of perspective took place
with a work published by Guidobaldo del Monte in 1600. He had struggled for a
dozen years to get to the bottom of the question of why perspective constructions
function and found the solution by introducing the general concept of a vanishing
point. Lines orthogonal to the picture plane have as their vanishing point the
practitioners’ convergence point.

Explicit versus Tacit knowledge in creating ’modern’ analysis in the
19th century

Umberto Bottazzini

What is ‘tacit’ knowledge? In his The Tacit Dimension, Polanyi avoided to give a
definition, but referred to it “by starting from the fact that we can know more than
we can tell”([1], p. 4). Does Polanyi’s concept of tacit knowledge help in better
understanding the historical development of mathematics? Or, in other words, is
it a helpful tool to the researcher in the history of mathematics? How does tacit
knowledge relate to explicit knowledge as far as mathematics is concerned? Trying
to answer these questions in the talk I have considered the case-study of continuity
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in the emergence of ‘modern’ analysis – as Cauchy called it – beginning by consid-
ering Euler’s 1748 definition of a continuous function. It is interesting to remark
that in doing it Euler referred to a somehow prior (and tacitly assumed) knowl-
edge of what the word “continuous” means. Indeed, in vol. 2 of his Introductio in
analysin infinitorum (1748) having observed that “curved lines can be described
by the continuous [my emphasis] mechanical motion of a point, which presents the
entire curved line to the eye at one time”, Euler stated that “a continuous curved
line is so defined, that it is expressed by a single definite function of x.”[my empha-
sis] ([4], vol. 2 p. 4). Accordingly, if different parts of the curved line are expressed
by different functions of x Euler called curved lines of this kind “discontinuous” or
“mixed and irregular”. Following Euler, the 18th-century mathematicians “tac-
itly” assumed his concept of continuity of functions. So did e.g. D’Alembert in
his 1747 paper on vibrating strings, and explicitly repeated in his 1752 paper on
the same subject by stating that the solution of the string equation is given by a
unique analytic expression [i.e. is continuous in Euler’s terms]. “In all the other
cases – D’Alembert went on – the problem cannot be solved even by my method
it might surpass the capacity of known analysis.” ([3], p. 358) On the other hand,
Euler (1755) replied that the initial shape can be given by any polygonal figure
given by possible “discontinuous” curves. “The various parts of the curve are
therefore not connected with each other by any law of continuity, and it is only by
the description that they are joined together [...] it is impossible that all this curve
should be included in any equation.” ([5], p. 250) Euler considered what nowadays
are called ‘weak’ solutions of the functional equation y = 1

2f(t + x) + 1
2f(t − x)

which can be (in modern terms) piecewise smooth. According to Euler, “the con-
sideration of those functions (not subject to any law of continuity) opens to us an
entirely new field of analysis”. In spite of this, apparently Euler’s discovery did not
produce any shift in the mathematicians’ “tacit knowledge” of what a continuous
function was. The “law of continuity”, which Euler was referring to, still justified
Fourier’s 1807 claim that an infinite series of continuous (trigonometric) functions
like y = cosu − 1

3 cos 3u + 1
5 cos 5u − 1

7 cos 7u + . . . for an increasing number of
terms tends more and more to approximate a (continuous) line in the (u, y)-plane
which is composed of parallel straight lines and perpendicular straight lines (which
are themselves part of the line). A similar observation, Fourier added, applies to
the series y = sinu − 1

2 sin 2u + 1
3 sin 3u − . . . ([6], pp. 159–160). In his Cours

danalyse (1821) Cauchy reformulated Fourier’s claim as a (celebrated) theorem
stating that the sum of a convergent series of continuous functions is continuous
(in his own sense). Even though Lagrange in his Théorie des fonctions analytiques
(1797) had implicitly referred to a ‘local’ notion of continuity as opposed to the
‘global’ (ie. Eulerian) one, it was only in Cauchy’s Cours danalyse that the former
concept of continuity replaced the latter one: “The function f(x) is continuous
with respect to x within the given limits [my emphasis] if, within these limits, an
infinitely small increase of the variable always produces an infinitely small increase
of the function itself” (([2], p. 43) Abel’s well known remark that Cauchy’s theo-
rem admits ‘exceptions’, and the subsequent correction made by Cauchy in 1853,
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raise an interesting point with respect to the issue ‘tacit’ vs explicit knowledge. In
fact, Abel’s example of ‘exception’ was nothing else than Fourier’s second series
mentioned above. Apparently, Abel considered it as an ‘exception’ to Cauchy’s
theorem precisely on the basis of Cauchy’s definition of continuity (and conver-
gence). And ‘tacitly’, ie. without mentioning Abel at all, Cauchy reformulated his
theorem. In the talk I have also illustrated the ‘tacit’ use of the term ‘continuous
function’ made by Cauchy when referring to functions of a complex variable, as he
did for instance when stating his integral theorem (1825) and his integral formula
(1831). Actually, the phrases “finite and continuous” were to be used repeatedly
by Cauchy to refer to a class of appropriate complex functions that he was unable
to characterize more precisely until the late 1840s i.e. until he made explicit the
‘tacit’ knowledge involved (and in doing it he discovered that the ‘right’ concept
involved was analyticity instead of continuity). Summing up, the case-study of
continuity shows that Polanyi’s notion of ‘tacit knowledge’ may be useful to gain
a better understanding of the historical development even though this does not
provide any evidence to support his conclusion that “the ideal of a comprehen-
sive mathematical theory of experience which would eliminate all tacit knowing is
proved to be self-contradictory and logically unsound.” ([1], p. 21)
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Different points of view on the reception of Poincaré’s methods

Tatiana Roque

Today Poincaré is known as the founder of the theory of dynamical systems.
The revolutionary aspect ascribed in retrospect to his “new methods” has often
been regarded on the basis of an evolution spanning more than a century, which
is divided into different stages, with major discontinuities. Thus, following a first
legacy of works produced in the United States after 1913 by Birkhoff, the Soviet
Union school of Andronov emerged, succeeded by Lefschetz during the Second
World War; then, the works of Peixoto and Smale appear in the 1950s and 1960s.
Several interpretations of these discontinuities have been proposed. Most of them
ended up by entailing some consideration of the roles played by the formalist
debates of the turn of the century, or about the higher importance accorded to
quantum mechanics over the classical problems of celestial mechanics.
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I propose here some new viewpoints on the reception of Poincaré’s methods. In
the first place the discussions about the definitions of stability in celestial mechan-
ics after Poincaré, especially in the works of Lyapunov, Levi-Civita and Birkhoff,
are analyzed. In these works the qualitative criterion is gradually made explicit.
Secondly, I study the ways whereby astronomers regarded the innovations intro-
duced by each scientist in his own times. Such an approach allows us to consider
Birkhoff’s interest in Poincaré’s works within the broader context of the reception
of Poincaré’s methods in the United States. I particularly look into the case of the
analysis of neighborhoods of periodic solutions by means of the method of analytic
continuation. This type of analysis has often been regarded as an extension of the
rigor of Cauchy’s analytic methods to the field of celestial mechanics. Following
the methodology of Goldstein, Brechenmacher and others, it is possible to iden-
tify a network of texts using the method of periodic solutions in theoretical and
practical astronomy in the turn of the century. By looking more closely into these
works, I treat the question of reception from a new perspective.

Astronomers were interested in the power of new methods to furnish alternative
ways for the practice of astronomy and also frameworks to discuss the legitimacy
of these practices. But the discussion about the kind of rigor put forward by the
method of periodic solutions involves more than the theoretical conception ex-
pressed by the epistemological problem of stability (equivalent to the convergence
of series). The direct character of this method enables another kind of research
concerning practical determination of orbits and comparison with observations.
It is thus possible to propose a refinement of the initial question: what could it
mean to appeal to the rigor of modern mathematical methods in the astronomical
context of the time? Series developments were seen as inexact but, above all, the
calculations demanded by successive approximations started to be considered too
massive and tedious.

The nineteenth-century observatory was a place where the quantitative spirit
was valued most highly. Astronomy was the science where one has most frequently
the occasion to carry out long and complicated computations, and the hierarchical
place one occupied within the observatory was determined by ones mathematical
knowledge. But the hypothesis here is that at the turn of the century there were
different levels of disciplinarization of work in observatory mathematics. Besides
a practical computational mathematics (devoted to the construction of tables),
there was room for a more theoretical computational mathematics (with the aim of
numerical determination of orbits). There was not only a division of work between
computers and those who had to find coherence in the data and give them a more
general sense. From inside the avalanche of numbers some astronomers started to
realize that they needed more “exact”, or direct methods – and periodic solutions
turned out to be one of these methods – that were not so far from practical
astronomical issues: numerical construction of particular solutions, determination
of perturbed motions, comparison with observations.

My project also includes the investigation of the possible birth of a new com-
munity of astronomers, with increased mathematical demands. New methods, like
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the ones introduced by Poincaré, were seen as capable of rescuing the astronomers
who were drowned in oceans of calculations. This case study can help to determine
the specific character of Poincaré’s position in relation to the ensemble of French,
English and American astronomers. The development of this position between
years 1896 and 1905 also illuminates the reception of the works of Poincaré in U.S.
universities and observatories.

To grasp the singularity of this works is an opportunity to understand, in the
same time, the singularity of a milieu: the one of astronomy and celestial mechanics
in the turn of the century. Poincaré can be seen perhaps as the last product of a
culture that would almost immediately change the values attached to calculations
and to a disciplinarized work with numbers. In this way we could start to give a
meaning to the word “qualitative” when associated with his works.
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“The soul of the fact” – Poincaré and proof

Jeremy Gray

For Poincaré, the uninteresting part of proof was rigour, the interesting part is
the role a proof plays in understanding a piece of mathematics. As he put it in
L’Avenir, in 1908 (see [8]) : “Rigour is not everything – but without it there is
nothing.” Nonetheless, he cared about rigour, as his correspondence with Fuchs
in 1880 demonstrated, as did his attention to uniform convergence, and his work
on asymptotic series

He had reluctant criticisms of rigour. Proofs, he argued in (L’Avenir), can be
too large, and well-chosen terms, such as ‘uniform convergence’ would encapsulate
progress and prevent rigorous proofs from becoming almost incomprehensibly too
long. Likewise, calculation should be an irreducible minimum, and never blind.
Furthermore, proofs can be wrong in kind – e.g. in potential theory, where they
do not mimic the actual processes involved. More-or-less intuitive proofs based on
an appeal to Dirichlet’s principle are without value for the mathematician, he said
in 1905 [1] but are of the right sort to satisfy a physicist because they leave the
mechanism of the phenomena apparent. More rigorous arguments for the existence
of solutions depended on convergence arguments but this convergence was usually
too slow, and the approximations involved too complicated for such approaches to
yield effective numerical procedures.

And in any case, rigour is not enough. He observed in 1905, see [6], reprinted in
Science et méthode, that Hilbert had exposed the formal character of reasoning in
geometry, and remarked that even if the same was done for arithmetic and analysis,
mathematics could not be reduced to an empty form without mutilating it and
the origin of the axioms would still have to be investigated, however conventional
they were taken to be. In L’Avenir he remarked that logical correctness is not all.
“A lengthy calculation that has led to a striking result is not satisfying until we



Explicit Versus Tacit Knowledge in Mathematics 195

understand why at least the characteristic features of the result could have been
predicted.” And because it is not order per se, but only unexpected order that has
a value, the mechanical pursuit of mathematics would be worthless, ““A machine
can take hold of the bare facts, but the soul of the fact will always escape it”.

So the problem for Poincaré was: How to proceed? Isolated facts had no appeal
for him, but a class of facts held together by analogy brings us into the presence of
a law, and as he continued in L’Avenir, “The importance of a fact is measured by
the return it gives – that is, by the amount of thought it enables us to economise”
(after Mach). He argued that the elegance of a good proof reflects an underlying
harmony that in turn introduces order and unity and “enables us to obtain a clear
comprehension of the whole as well as its parts. But that is also precisely what
causes it to give a large return.” The aesthetic response to mathematics was
regarded by Poincaré as a sign of its efficacy, and this pair of ideas then shaped
the rest of his address.

Flashes of insight, on the other hand, although convincing at the time, can
mislead. As he put it in his address to the Parisian Society of Psychologists in
1908 (see his [10]), “The unconscious provides points of departure for calculations
that must be made consciously, but operates by chance. And one must be careful,
for the unconscious presents these ideas with a feeling of certainty even when, on
rational analysis, they prove to be worthless.”

There was, however, an in-built activity of the mind that was capable of provid-
ing knowledge, and that was our ability to reason by recurrence, and this allows
for the growth of knowledge. And, he implied in his [4] in 1902, “Who doubts
arithmetic?” (Perhaps no-one in 1900, when he made these remarks at the Paris
ICM.)

Importantly, Poincaré argued (at the ICM in 1897, [2]) that mathematics and
physics are inseparable. Mathematics, he said, is not a mere provider of formulae
for physics. Indeed “The first reason why the physicist cannot give up mathematics
is: it provides him with the only language he can speak.” On the other hand, “The
only natural object of mathematical thought is the integer [. . . ] It is the external
world that has imposed the continuum upon us, which we would have invented
without doubt, but we have been forced to invent. Without it there would be no
infinitesimal analysis all of mathematical science would reduce to arithmetic or to
the theory of groups.”

Poincaré repeatedly stressed the conventional element in mechanics – the equal-
ity of action and reaction, the definition of force, . . . . These claims, he said, are
not increasingly well confirmed experimental results – they have been elevated to
the status of conventions.

It is interesting to see how much of Poincaré’s views make him a sceptic à la
Wittgenstein, Kripke, and Kusch. He was a sceptic about physics, for he agreed
that we rely on the testimony of experts and on a shared communication with
others “No discourse – no objectivity” he said in 1902 (see [5]). He argued that we
speak a shared family of languages, natural, scientific, mathematical which work
because of a shared set of conventions, and we have ideas about what we would
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do if our statements conflict or communication failed. None of this involves know-
ing about meanings or have particular mental states. Conventionalism is surely
much more akin to a language game, and if scepticism is criticised for imply-
ing relativism, and if it is relativism to permit faultless disagreement, Poincaré’s
geometric conventionalism is relativist.

But Poincaré was not a sceptic about pure mathematics. He believed that we
know what reasoning by recurrence is in an almost Kantian fashion. But recall that
for Poincaré mathematics and physics are inseparable, and his deepest commit-
ment was to discovery in mathematics. Now, no serious philosophy of mathematics
can ignore or mistreat the role of discovery: without it there would be no math-
ematics! As Poincaré said, even “the next generation of leading mathematicians
will need intuition, for if it is by logic that one proves, it is by intuition that one
invents” in the first volume of Enseignement mathématique (see [3]).

In conclusion: For Poincaré, a good proof in mathematics was enabling; it was
a new and valid use of the terms it involves; it rested on general ideas capable
of wider application (by analogy); it showed that some things are the case; it
explained why some things are the case; and in physics it dealt in relations that
would survive changing beliefs or practices about objects.
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l’enseignement, Enseignement mathématique, 157–162. In Oeuvres 11, 129–133.
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The role of diagrams in contemporary mathematics

Jessica Carter

The talk consists of three parts. The first introduces the topic of visualisation in
mathematics. The second and the main part of the talk shows how visualisation
plays a role in contemporary mathematics, in particular how diagrams serve as
generators of both concepts and proofs and how, sometimes, some kind of mental
imagination is needed in order to see that something is the case. Finally addressing
the question: ‘Why is visualisation so fruitful for mathematics?’ I offer a couple
of suggestions about what is achieved by diagrams.

Throughout history diagrams have played a significant role in mathematics.
Analysis was long founded on geometry. Most notably diagrams were an integral
part of Greek mathematics. Indeed [4] argues that for the Greeks, ’diagram’ is
a metonym for proposition. During the 19th century, however, diagrams - or
pictures - became discredited. Analysis moved towards an arithmetic foundation.
Concepts of function, continuity and differentiability were developed so that it
became possible to form the geometrically unintuitive “continuous, but nowhere
differentiable, function”. Even in geometry, diagrams were disapproved of, here in
the famous words of Pasch:

For the appeal to a figure is, in general, not at all necessary. It
does facilitate essentially the grasp of the relations stated in the
theorem and the constructions applied in the proof. Moreover, it
is a fruitful tool to discover such relationships and constructions.
However, if one is not afraid of the sacrifice of time and effort
involved, then one can omit the figure in the proof of any theorem;
indeed, the theorem is only truly demonstrated if the proof is
completely independent of the figure. ([5], 43)1

Note that Pasch does not dismiss the use of diagrams as such. He stresses that
use of diagrams is a fruitful tool for for discovery, and that they display relations.
These are major points of the present paper.

I further note that attitudes towards proofs range from the view that a diagram
“has no proper place in a proof as such” (Tennant) to a much more relaxed view
towards proofs as such, here expressed by Vaughan Jones: “Proofs are indispens-
able, but I would say they are necessary but not sufficient for mathematical truth,
at least truth as perceived by the individual”([3], p. 208).

The main focus of the talk is on what role diagrams play in (generation of)
proofs. It is not discussed whether diagrams can be used to obtain rigorous proofs.
I argue, opposing the view that diagrams play no role in proofs, that in practice
they do. I do this by showing an example from contemporary mathematics, more
precisely from Free probability theory, where diagrams were used to find certain
results.

1Translation from Mancosu, P. et. al. 2005. Visualisation, Explanation and Reasoning styles
in Mathematics. Springer, p. 14.
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The actual example concerns determining the value of the following expression.2

E ◦ Trn[B∗

1Bπ(1) · . . . B∗

pBπ(p)].

In this expression the B’s are so called Gaussian Random Matrices (GRM’s),
i.e., they are matrices whose entries are complex valued Gaussian distributed ran-
dom variables. The focus is on the indices, the π(i). π denotes a permutation on
the set {1, 2, . . . p}. It is the case that the value of the above expression depends on
properties of this permutation. These properties are found by representing these
permutations by certain diagrams as pictured in Figure 1.
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Figure 1. The picture on the left is a representation of the per-
mutation π, (12)(34). The picture on the right shows a permu-
tation that is obtained from π, which is also used to obtain the
value of the expression.

I show:

(1) That diagrams like these inspire definitions and proof strategies.
(2) That sometimes they work as mental frameworks or images in parts of

proofs.

I also note that there are two types of visualisation at play, namely where
visualisation is taken as representations that can be written down on paper, and
as a sort of mental picture which helps us to see that something is the case. (The
details can be found in [1].)

The theme of the workshop is tacit knowledge. I briefly explain how the topic
of the talk relates to this theme. The proposal “invites a use of tacit and explicit
knowledge to achieve a better knowledge of how mathematical creation pro-
ceeds and also how cultural habits play a tacit role in mathematics production”.

The results presented here demonstrate how certain tools - diagrams - are used
to obtain results in mathematics. These diagrams are completely removed from
the articles presenting the results. So they are tacit in the sense that they could

2The mathematical details can be found in [2].
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be made explicit, but for some reason it is not valued among mathematicians to
present them in articles. When giving talks, however, diagrams may be shown.
This particular case study also shows that there is a gap between how results
are found and the way that they are supposed to be (re)presented: As text and
linearly. What is tacit - perhaps in a deeper sense - is the question concerning the
fruitfulness of visual tools in mathematics. A full explanation of this fact has not
yet been provided. In the final part I point to some aspects of what is achieved
by using diagrams. First I note that some diagrams shown display relations. So
they are actually diagrams in the sense that Peirce uses the term in his semiotics.
Diagrams are precisely icons (i.e., signs that represent by virtue of likeness) that
represent relations. In other cases visual tools show constructions. Many examples
can be found in Euclid’s Elements. I also point to an example from the case study
presented here that pictures a construction.

Finally concluding about what is achieved by diagrams or visualisation, I note
that they display relations (that may not be visible from the textual representation
of the problem), they afford multiple interpretations (which is not wanted by
symbolic representation), and, as shown in the case study, they can be used as
tools for experimentation.
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Weyl and the kleinean tradition

Christophe Eckes

Die Idee der Riemannschen Fläche (first edition 1913) is generally considered as
the first rigorous and systematic presentation of Riemann’s ideas in complex analy-
sis. This monograph derives from a lecture course given by Weyl as a Privatdozent
at the university of Göttingen during the winter-semester 1911-1912. In the first
part of this book, Weyl builds up Riemann surfaces by using a generalization of
Weierstrass’ analytic continuation: he combines Riemann’s viewpoint and Weier-
strass’ viewpoint in complex analysis. Then, he defines abstractly the concept of
a bi-dimensional topological manifold by using a list of axioms (§ 4) [1], p. 17-18).
In fact, he simplifies a first definition of a topological surface given by Hilbert in a
supplement to the Grundlagen der Geometrie[2], p. 234-235. Furthermore, Weyl
shows that a Riemann surface is a one-dimensional complex analytic manifold (§



200 Oberwolfach Report 04/2012

7, [1], p. 36). In the second part, he proves anew the Dirichlet’s principle1 which is
located at the core of Riemann’s Dissertation (1851). In accordance with Hilbert’s
prescriptions, Weyl proves the uniformization theorem by using this principle ([1]
§ 19, p. 141-148).

A “modern” demand for rigour. In the preface of his monograph, Weyl seems
to reject categorically intuition and geometric representations in complex analysis
because they lead to mistakes and confusions ([1], p. III). Weyl employs the cate-
gory of modernity to qualify a so-called “demand for rigour”. Moreover, he claims
that intuitive representations must be systematically replaced by set-theoretically
exact proofs. According to him, set theory satisfies all the modern requirements
for rigour. In order to clarify this point, let us recall that Zermelo is a professor
at Göttingen until 1910. His “Untersuchungen über die Grundlagen der Mengen-
lehre” contain a first “rigorous” axiomatization of set theory2. It seems that
Weyl is fully convinced by Zermelo’s work on set theory ([5], p. 93-95, 109-113).
Moreover, he believes that the continuity property can be fully deduced from set-
theoretical considerations.

To sum up, we may think that Weyl’s monograph on Riemann surfaces consists
in making intuitive representations more explicit in analysis situs and in complex
analysis. To this end, he refers simultaneously to axiomatic method — in a hilber-
tian vein — and to set theory — in accordance with Zermelo’s last achievements.
However, he does not consider the “modern demand for rigour” as an end in
itself. Moreover he expresses scepticism about a so-called “formalist” conception
of mathematical knowledge ([1], p. VI). Where does this scepticism come from?
How to explain the apparent contradiction between a “ modern demand for rigour
” and a (counter-modern) criticism of formalism?

Klein’s legacy. In fact, Weyl’s argument against formalism reminds us of Klein’s
conclusive remarks in his famous address delivered at Göttingen in 1895 and en-
titled “Über Arithmetisierung der Mathematik”([6], p. 232-241). More precisely,
we would like to underline the importance of Klein’s legacy in Weyl’s work at
three levels. (1) A mathematical level : Klein (1882)[7] and Weyl share obviously
the idea following which Riemann surfaces are located at the foundation of func-
tion theory. (2) An epistemological level : logic and intuition are complementary
in the development of mathematics. On the one hand, logical rigour is necessary
in order to avoid all the mistakes generated by a näıv intuition, on the other a
refined intuition is required in the construction of mathematical knowledge. (3)
A pedagogical level : intuitive representations must play a central role in a basic
course (cf. Weyl’s introductory course in complex analysis[8].

For instance, at the end of his Habilitation lecture, Weyl paraphrases Klein’s
metaphor:

The science of mathematics may be compared to a tree thrusting its roots
deeper and deeper into the earth and freely spreading out its shady branches

1A first rigorous proof of this principle is given by Hilbert in his article [3], p. 184-188.
2[4], p. 261-281.
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to the air. Are we to consider the roots or the branches as its essential part?
Botanists tell us that the question is badly framed, and that the life of the
organism depends on the mutual action of its different parts.[9]

This image is employed by Klein in order to illustrate the complementarity between
intuition and logic in the construction of mathematical knowledge. Moreover, in
“Über Arithmetisierung der Mathematik” and in his “Lectures in mathemat-
ics” in Chicago (1893), Klein defines a series of guidelines in the teaching of
mathematics. In particular, he claims that intuition is absolutely necessary in an
introductory course:

Two classes at least of mathematical lectures must be based on intuition ; the
elementary lectures which actually introduce the beginner to higher mathe-
matics (...) and the lectures which are intended for those whose work is largely
done by intuitive methods, namely, natural scientists and engineers.(Ibid., p.
248.)

The modern demand for rigour can only be satisfied in more advanced courses.
Accordingly, in his elementary course in complex analysis (1910-1911), Weyl refers
to physical and geometric representations before introducing and defining math-
ematical concepts. This intuitive approach reminds us of Klein’s lecture course
on algebraic functions of a complex variable[10]. On the other hand, in his more
advanced course devoted to Riemann surfaces (1911-1912), Weyl’s reasoning is
more abstract. For instance he considers systematically the concepts of a topolog-
ical surface, of a Riemann surface, etc., independently from their realizations and
he defines them axiomatically. The organization of these two courses shows that
Weyl satisfies Klein’s requirements in his teaching practice: the intuitive approach
comes before the “logical element” which must be introduced progressively.

Let us recall that in 1909-1910 Klein organizes a seminar entitled “Mathematik
und Psychologie” at Göttingen. This seminar is devoted to epistemological and
pedagogical issues in mathematics. During the second session (3. november 1909),
Weyl makes a review on “L’enquête sur la méthode de travail des mathématiciens”
(L’enseignement mathématique 1905-1908)([11], p. 6). “L’enquête” is a wide
survey based on a questionnaire mainly addressed to European mathematicians.
One of its goals is to describe the psychological roots of mathematical knowledge.
Weyl sums up the results of “l’enquête” in his review. His involvement in Klein’s
seminar shows that he is close to Klein during the period 1908-1913.

To sum up, Weyl’s monograph on Riemann surfaces is generally considered as
the first modern and rigorous presentation of Riemann’s geometric ideas in function
theory. Under this assumption, it is just characterized by one fact : making
Riemann’s and Klein’s intuitive approach more explicit by using a generalization
of Weierstrass’ analytic continuation, Hilbert’s axiomatic method and Zermelo’s
rigorous presentation of set theory. This standpoint must be relativized because
it doesn’t take into account the fact that Weyl’s monograph derives from a lecture
course. Accordingly, this book must be analyzed in function of Weyl’s teaching
practice which is deeply influenced by Klein. Moreover, in his Habilitation lecture,
Weyl alludes simultaneously to Klein’s “Arithmetisierung der Mathematik” and
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to Hilbert’s Grundlagen der Geometrie without articulating these to references.
This under-articulation characterizes a tacit knowledge in Weyl’s early work at an
epistemological level.

Klein and the unity of mathematics.
In 1930, Weyl becomes professor at Göttingen after Hilbert’s retirement. Shortly

before, Weyl gives a famous address on the occasion of the inauguration of the
Mathematics Institute at Göttingen (3. December 1929) ([12]). This talk is merely
an homage to Klein. Weyl aims at describing Klein’s contributions in pure math-
ematics and his underlying conception of the unity of mathematics. According
to Weyl, Klein’s work in (pure) mathematics is mainly characterized by the com-
bination between separated “disciplines”, distinct theories and different methods.
Moreover Klein’s way of unifying mathematics is based on two ingredients : (1)
intuition and (2) group theory.

Weyl claims for instance that “Das Hauptorgan von Kleins mathematischer
Methodik war das intuitive, die Zusammenhänge erschauende Verstehen”(Ibid.,
p. 294). We can find exactly the same assumption in Weyl’s late writings on
constructive and axiomatic procedures in mathematics.3 The group concept plays
a central role in Klein’s Erlanger Programm (1872) and also in his Vorlesungen
über das Ikosaeder (1884). Weyl underlines this fact in his homage to Klein:
“ Die Gruppe blieb seit jener Zeit der beherrschende Gesichtspunkt von Kleins
mathematischen Schaffen ” ([12], p.294). In fact, Weyl does not comment neutrally
Klein’s work in pure mathematics. He implicitly refers to an epistemic value
concerning the fruitfulness of a research. A mathematical production is all the
more fruitful since it implies several new connections between separate domains.
This tacit knowledge guides Weyl in his practice of mathematics. Accordingly,
when Weyl claims for instance that Noether is an “algebraist”, his judgement
is a little bit pejorative. In other words, Weyl continues a kleinean tradition,
which consists in producing mathematics by combining very different domains.
Moreover, it becomes a criterium in order to evaluate productions due to other
mathematicians.

More precisely, Klein’s work is characterized by a series of links between group
theory and Riemann’s geometric ideas in analysis situs and in complex analysis.

”Verbindung von Galois und Riemann” hieß die Parole. — Durch diese Ten-
denz, die Schleusen zu öffnen, welche die Kanäle des mathematischen Denkens
fast hermetisch gegeneinander abschlossen, hat Klein sicherlich auf die nach-
folgende Mathematikergeneration nachhaltig gewirkt.(Ibid., p. 294)

Weyl belongs to this “nachfolgende Mathematikergeneration”. He continues this
project in very different ways during all his scientific career. For instance, he

3[13], p. 15: “The chief organ of Klein’s own productivity was this intuitive perception of
interconnections and relations between separate fields (...) In the time of Klein’s productivity
(which had passed when I entered the University of Göttingen in 1904) the intuitive realization
of inner connections between various domains had been the most characteristic feature of his
achievements. Typical is his book on the Icosahedron in which geometry, algebra, function- and
group-theory blend in polyphonic harmony”.



Explicit Versus Tacit Knowledge in Mathematics 203

develops group-theoretical methods in the theory of covering surfaces (1913-1916).
Moreover, the theory of linear Lie groups and their algebras plays a central role
in the resolution of Weyl’s problem of space (1921-1923), i.e. the characterization
of the so-called “infinitesimally pythagorean manifolds” (differentiable manifolds
with a metric structure defined by a non-degenerate quadratic form). Conversely,
in his article on Lie groups (1925-1926), Weyl uses Riemann’s “geometric ideas” in
analysis situs to prove the complete reducibility theorem (for complex semi-simple
Lie groups). On this occasion, he generalizes the theory of covering surfaces to Lie
groups.

conclusion : a short synthesis of Klein’s legacy. At the end of his Habil-
itation lecture (1910), Weyl alludes to Klein’s viewpoint following which refined
intuition and logic are complementary in mathematics. At the same time, Weyl
criticizes a formalist conception of mathematical knowledge. Moreover, his in-
troductory course in complex analysis (1910-1911) satisfies the prescriptions for-
mulated by Klein in the teaching of mathematics. More generally, during all is
scientific career, Weyl is impressed by Klein’s way of unifying mathematics and
he continues Klein’s project which consists in relating Riemann’s geometric ideas
to group theory. Klein’s underlying conception of the unity of mathematics is all
the more important in order to analyze Weyl’s contributions in mathematics and
his epistemological viewpoint on mathematical sciences.
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Fermat’s Last Theorem and the Logicians

Emily R. Grosholz

Reasoning in mathematics often generates internally differentiated texts because
thinking requires us to carry out two distinct (though rationally related) tasks in
tandem. Analysis requires us to engage in the abstract, more discursive project
of theorizing, what Leibniz called analysis or the search for conditions of intelli-
gibility (of problematic objects) or solvability (of objective problems). Reference
requires more practical, concretely realized strategies for achieving the clear and
public indication of what we are talking about. In a standard logic textbook, the
universe of discourse is the set of individuals invoked by the general statements in
a discourse; they are simply available. And predicates and relations are treated as
if they were ordered sets of such individuals. In real mathematics, however, the
discovery, identification, classification and epistemic stability of objects is prob-
lematic; objects themselves are enigmatic. It takes hard work to establish certain
items (and not others) as canonical, and to exhibit their importance. Thus ref-
erence is not straightforward. Moreover, neither is analysis; the search for useful
predicates and relations, for procedures which may be generalized into methods,
and for problems that may engender families of problems, is just as difficult as the
identification of overarching principles, and just as necessary for the organization
of mathematical knowledge. We investigate things and problems in mathematics
because we understand some of the issues they raise but not others; they exist at
the boundary of the known and unknown.

Fermat’s Last Theorem (1630) states that the equation xn + yn = zn, where xyz
not equal 0, has no integer solutions when n is greater than or equal to 3. Fermat,
Euler, Dirichlet, Legendre and Lamé made early contributions to the problem;
Sophie Germaine and Ernst Eduard Kummer produced more general, and gener-
alizable, results in the 19th century, relating the theorem to what would become
class field theory in the 20th century. The striking feature of Wiles’ proof, to peo-
ple who are not number theorists, is that it does not seem to be about integers!
This is because the proof hinges on a problem reduction: the truth of Fermat’s
Last Theorem is implied by the truth of the Taniyama-Shimura conjecture: every
elliptic curve over Q is modular. This identification is important because then its
L-function has an analytic continuation on the whole complex plane, which makes
Wiles’ proof the first great result of the Langland’s Program, and a harbinger of
further results. Wiles’ proof is not only about the integers and rational numbers;
it is also about much more ‘abstract’ and indeed somewhat ambiguous objects, el-
liptic curves and modular forms. Moreover, the culmination of Wiles’ proof, where
analysis has invoked cohomology and the machinery of deformation theory, also
involves quite a bit of down-to-earth number-crunching. The two tasks of reference
and analysis within this proof generate mutually disparate discourses which are
themselves internally heterogeneous; for the proof to go through, all these elements
must be brought into rational relation by various strategies of integration.
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A notable feature of Andrew Wiles’ proof of Fermat’s Last Theorem is that
it invokes cohomology theory (inter alia) and thus Grothendieck’s notion of suc-
cessive universes, which, from the point of view of set theory, become very large;
and yet the detail of the proof stays on relatively low levels of that vast hierarchy.
This bothers logicians, who find Grothendieck’s theoretical setting logically extrav-
agant. Colin McLarty offers foundations for the cohomology employed in Wiles’
proof at the level of finite order arithmetic; he uses Mac Lane set theory, which has
the proof theoretic strength of finite order arithmetic, and Mac Lane type theory, a
conservative extension of the latter. Angus Macintyre is re-working aspects of the
proof (bounding specific uses of induction and comprehension) to bring it within
a conservative n-th order extension of Peano Arithmetic. Meanwhile, the signifi-
cant re-working and extension of the proof by number theorists [8], and two recent
articles by Mark Kisin [10][11] proceeds independently of logic, in the sense that
number theorists don’t seem particularly concerned about the logical complexity
of their methods. On the one hand, we see number theorists choosing powerful
methods that usefully organize their investigations into relations among numbers,
and make crucial computations visible and possible. On the other hand, we see
logicians analyzing the discourse of the number theorists, with the aim of reducing
its logical complexity. Should number theorists care whether their abstract struc-
tures entail the existence of a series of strongly inaccessible cardinals? Will the
activity of logicians produce useful results for number theorists, or is it enough
if they answer questions of interest to other logicians, such as whether in fact
Fermat’s Last Theorem lies beyond the expressive strength of Peano Arithmetic
(and thus might be a historical and not merely artificially constructed example of
a Gödel sentence)?

As I have argued above, mathematical discourse must carry out two distinct
tasks in tandem, analysis and reference. In the case of number theory, the referents
are integers and rational numbers in one sense and additionally, in a broader sense
given the problem reduction at the heart of Wiles’ proof, modular forms and
elliptic curves. For logic, the referents are propositions and sets (and perhaps
also formal proofs), or, if we include the broader range of category theory as part
of logic, categories (and perhaps also functors and toposes). Thus what is an
aspect of analysis for the number theorist is an aspect of reference for the logician.
Moreover, techniques of calculation that preoccupy the number theorist remain
tacit for the logician because they directly involve numbers, and considerations of
logical complexity that concern the logician remain tacit for the number theorist
because they are not conditions of solvability for problems about numbers. This
disparity is inescapable, but it is also positive for the advance of mathematics. For
when what remains tacit in one domain must be articulated in another in order
to bring the domains into rational relation, novel strategies of integration must be
devised.
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