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Introduction by the Organisers

The workshop Recent Developments in the Numerics of Nonlinear Hyperbolic Con-
servation Laws and their Use in Science and Engineering, organised by Rainer
Ansorge (Hamburg), Hester Bijl (Delft), Andreas Meister (Kassel) and Thomas
Sonar (Braunschweig) was held January 15th–January 21st, 2012. This meeting
was well attended with 45 participants with broad geographic representation from
many continents. This workshop was in a sense an experiment. Since modern nu-
merical methods like Discontinuous Galerkin or Spectral Element Finite Difference
methods are based on orthogonal polynomials on simplizes and use modal filters
and many more mathematical devices from different areas of research we decided to
invite renowned researchers from numerical methods for ODEs, image processing,
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approximation theory, and numerical methods for hyperbolic conservation laws.
Although there was some confusion in the beginning since the image processing
people did not know in advance whether they were invited to the right conference
or not these confusions could be washed away. At the end of the workshop we
heard from several researchers that this was indeed an extraordinary successful
workshop in which specialists from so different areas talked with each other for
the first time.

The talks ranged from new Runge-Kutta solvers, new filters in image processing,
Discontinuous Galerkin methods, Spectral Difference methods, Finite Difference
operators, implicit solvers, and finite volume methods to the modeling of shocks,
salt distribution in the baltic sea, a new model of atmospheric flow and its nu-
merics, and many more. Discussions were lively and many different research areas
met for the first time resulting in interesting talks and contacts.

The workshop was a tremendous success and we are looking forward to repeat
this kind of conference in Oberwolfach again in a few years.
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Abstracts

Recent developments in very high order Residual Distribution
Schemes for inviscid and viscous problems.

Rémi Abgrall

(joint work with Mario Ricchiuto, Dante de Santis)

The numerical simulation of compressible flow problems, or more generally
speaking, of partial differential equations (PDEs) of hyperbolic nature, has been
the topic of a huge literature since the seminal work of von Neuman in the 40’s.
Among the “hot” topics of the field has been, since the works of Lax, Wendroff,
Godunov, Mc Cormack, van Leer, Roe, Harten, Yee and Osher, to give a few
names, the development of robust, parameter free and accurate schemes. Among
the most successful methods one may quote the van Leer’s MUSCL method [23]
and modified flux approach of Roe. These techniques are only second order ac-
curate. The accuracy can be improved via the ENO/WENO methods by Harten,
Shu and others.

The emergence of modern parallels computers, another concern has emerged:
what about accuracy and efficiency ? Indeed, it is now important to develop robust
algorithms that scale correctly on parallel architecture. This can be achieved more
or less easily if the stencil of the numerical scheme is as compact as possible.
Good candidates are the schemes relying on finite element technology, such as the
Discontinuous Galerkin methods [10] or the stabilized continuous finite element
methods [14]. In these methods, the numerical stencil is the most possible compact
one.

In these notes, we discuss in some details of another class of numerical schemes,
the so-called Residual Distribution schemes , also denoted by Fluctuation Splitting
schemes. The history of these schemes can be traced back to the work of P.L. Roe
[20] and even his famous 1981 paper [21] where he does not define a finite volume
scheme but a true residual distribution scheme. Indeed, the first RD scheme ever
was probably presented by Ni [15]. The idea was to construct a scheme with the
most compact computational stencil that can ensure second order accuracy. This
scheme had some similarities with the Lax Wendroff one.

If these RD share many similarities with more established schemes such as the
SUPG scheme by Hughes and coworkers [13], the driving idea is (i) to introduce the
upwinding concept, (ii) to manage such that a provable or a practical maximum
principle is achieved without any parameter to tune. In our opinion, (ii) is the
most important feature.

In Roe’s paper and the first RD papers, the main idea was to introduce up-
winding into the numerical formulation of the problems, coupled in a very clever
way, with a technique to reach second order accuracy for steady problem. This
has been presented in a series of papers and VKI reports, see e.g. [11, 22]. Two
schemes had emerged at the time : the N scheme by Roe and the PSI scheme by R.
Struijs, see [22]. The first one is probably the optimal first order strategy for scalar
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problems using triangular meshes, the second one the best second order scheme on
these type of meshes, for steady problems again. When dealing with systems or
non triangular meshes, the situation became more complex, and it appeared that
the upwinding concept had to be relaxed a bit.

Since the early days, many contributions have been given. Among the issues,
two are more difficult because they do not cast a priori naturally in the original RD
framework. An interesting contribution on the approximation of viscous problem is
the work of H. Nishikawa [16]. Last, and up to our knowledge the first contribution
on higher than second order accurate RD scheme is due to Caraeni [9], as well as
early work on unsteady and viscous problem. One of the main differences with the
approach emphasized in this paper is that Caraeni’s schemes are not as compact
as here

This paper presents the authors’ view of what is the current status of RD scheme
for steady problems. In a first part, we present a reinterpretation of standard
finite volume schemes and show on a simple example how maximal accuracy can
be reached with a minimal stencil. In the second part, we present a general
framework to describe what a RD scheme is and provide some examples. Then
we give a very formal variational formulation and some connection with more
established schemes such as the Discontinuous Galerkin schemes or the stabilized
continuous finite element methods. In a second part, we discuss a systematic way
of getting a non oscillatory scheme, without tunable parameter, even in the system
case. Numerical examples are given for illustration. The last section is devoted
to some extensions, in particular the unsteady case and the viscous case. This
sumamrizes [1, 2, 3, 4, 5, 6, 7, 8].
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Fast implicit solvers for unsteady Navier-Stokes: 3D-DG

Philipp Birken

(joint work with Mark Haas, Gregor Gassner, Claus-Dieter Munz)

We consider the computation of unsteady compressible viscous flows. These prob-
lems are particularly stiff, making implicit time integration schemes very inter-
esting. To make implicit methods truly attractive, fast solvers for the appearing
linear or nonlinear equation systems are needed.

One focus in the CFD community for decades has been the design of fast solvers
for steady flows with the result being superfast nonlinear multigrid methods for
the steady Euler equations [7]. Their use is ubiquitious in industry codes and
widespread in academia. By contrast, Newton methods are shunned because they
are supposedly difficult to implement, need a lot of storage and are slow to converge
since the canonical initial guess, namely freestream values, is typically far away
from the steady state.

To transfer an existing multigrid code to unsteady codes, the nonlinear system
is solved using the dual time stepping approach of Jameson [10] that just reuses the
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existing multigrid code. While this comes at almost no additional implementation
cost, it also leads to a significant decrease in convergence speed. The reason for
this is essentially, that unsteady flows are different from steady flows and that a
method for the steady Euler equations is not necessarily a good method for the
unsteady Navier-Stokes equations.

Regarding time integration, typically BDF methods are used for higher order in
time. This is due to the fallacy that they need just one nonlinear equation system,
as opposed to implicit Runge-Kutta methods, which need several per time step
and therefore must be less efficient.

All in all, it must be said that the standard schemes in use do not provide
efficient computations of unsteady viscous compressible flows. We argue that
there are two ways forward:

• First, the redesign of the multigrid methods, since these strongly depend
on the equations and the convergence decrease can be attributed to that.

• Second, the use of preconditioned Jacobian-Free Newton-Krylov (JFNK)
methods [11] inside time adaptive implicit Runge-Kutta methods with an
intelligent choice of all solver tolerances.

For the first approach, consider the linear advection equation with periodic
boundary conditions, discretized in space using a first order upwind finite volume
scheme and using the implicit Euler method in time. For a steady state compu-
tation, the eigenvalues would then be λ(Θ) = −a/∆x(1 − e−iΘ), whereas for an
unsteady computation, we would obtain λ(Θ) = −1 − a∆t/∆x(1 − e−iΘ) with
Θ ∈ [π, π]. This suggests that a multigrid smoother optimized for the eigenvalues
of the first case will not behave very well for the second case. In [2], this point
is elaborated for the case of explicit Runge-Kutta smoothers. An improvement of
up to a factor of two is seen just by reoptimizing the parameters of the smoother.

Regarding the second approach, it has already been shown by Bijl et. al. that
DIRK methods are competitive with BDF schemes at engineering tolerances [1].
Time adaptivity is trivial due to embedded schemes of lower order, leading again
to significant improvements in CPU time, as demonstrated for example in [6] for
a thermal Fluid Structure Interaction problem. To make these schemes truly
efficient, inexact Newton schemes should be used, combined with a JFNK scheme,
resulting in second order convergence for the nonlinear systems [8]. The linear
systems are solved using preconditioned GMRES, where the preconditioner is a
crucial ingredient for efficiency. Note that with the exception of the preconditioner,
this type of schemes is reasonably easy to implement and flexible regarding a
change of discretization or the underlying equation.

Of particular use are preconditioners that work well in parallel. Prime examples
are multigrid schemes, but it turns out that using the FAS multigrid as a nonlinear
preconditioner does not work well [5, 4]. Nevertheless, linear multigrid schemes
as discussed above are good candidates. Another idea is to exploit that we have
a sequence of linear systems. This is done in [3] using the ideas of triangular
preconditioner updates.
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In the context of finite volume schemes, reasonable preconditioners exist and
implicit schemes are used for a large number of applications of unsteady flows.
However, when considering high order methods, the situation becomes different
and explicit schemes become hard to beat. For DG schemes, the major reason
for this is the significantly increased number of unknowns per cell, leading to a
Jacobian consisting of large blocks, which makes the setup and application of
preconditioners extremely costly. For a modal DG scheme, we suggest the ROBO-
SGS preconditioner (reduced offblock order symmetric Gauss-Seidel), a variant of
SGS where the off diagonal blocks are computed only to a reduced order. Using
a polymorphic modal-nodal DG scheme [9], we are able to gain a factor of 10
compared to an explicit scheme.
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Discrete Flux-Corrected Transport and Applications in Image
Processing

Michael Breuß

In the focus of this contribution is a completely discrete approach to construct flux-
corrected transport (FCT) schemes. We show how to use the viscosity form of a
numerical method to derive in a discrete framework such schemes. They differ from
classic FCT of Boris and Book by a systematic compression. Exactly this makes
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them ideal for some applications in image processing like e.g. in mathematical
morphology.

The first work in which this framework has been described in detail is given by
[3]. There, it has been applied to deal with the hyperbolic initial value problems

(1) ut = ±‖∇u‖, u(x, t = 0) = f(x)

These are the constituting (Eikonal-type) equations of dilation and erosion (cor-
responding to ’+’ and ’−’ in (1), respectively) that are the building blocks of
mathematical morphology. The given input image f is usually processed by a
well-engineered chain of dilation/erosion processes. The method has been ex-
tended and analysed in more detail in the context of scalar (grey-value) data [4],
and it has been extended to work with tensor-valued data (for symmetric positive
definite matrices) as well [1, 2].

We also show how to use Markov chain models to construct discrete FCT
schemes for solving hyperbolic conservation laws. The investigation of this ap-
proach to construct such numerical schemes has started with the recent work [5].
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Analysing numerical mixing and dissipation for discretisations of the
advection equation, with applications to ocean modelling

Hans Burchard

1. Introduction

Large and regional scale ocean models based on the primitive equations (hy-
drostatic Reynolds-averaged Navier-Stokes equations) are typically of relatively
coarse spatial resolution, given the often complex bathymetries and coast lines.
Therefore, non-linear terms such as the advection terms in scalar and momentum
equations are often approximated with low accuracy. The purpose of this presen-
tation is therefore to derive the tracer variance decay method as analysis method
for numerical mixing by [1] for a layered model in one spatial dimension including
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varying layer thickness. In a second step, the tracer variance method is extended
towards a velocity variance method, i.e., it is applied to the momentum equation.

2. Dynamic equations

In this simple one-dimensional setting, the following dynamic equations are
to be discretised: An equation for the horizontal momentum u (not shown) an
equation for the scalar tracer, s,

(1) ∂t (sh) + ∂x (hus)− ∂x (Khh∂xs) = 0,

with horizontal diffusivity, Kh, and a dynamic equation for the depth h (not
shown). Integration of (1) with respect to x and application on of periodic bound-

ary conditions shows that the total tracer is conserved: ∂t
∫ L

0
sh dx = 0. Multi-

plying (1) with 2s results in

(2) ∂t
(
s2h

)
+ ∂x

(
hus2

)
− ∂x

(
Khh∂x

(
s2
))

= −2Khh (∂xs)
2
.

3. Discretisation

For demonstration purposes, an explicit first-order upwind discretisation is in-
vestigated for the tracer concentration equation for s, (1), shown here for the
example of non-negative velocity and Kh = 0:

(3)
sn+1
i hn+1

i − sni h
n
i

∆t
+
uni+1/2h

n
i+1/2s

n
i − uni−1/2h

n
i−1/2s

n
i−1

∆x
= 0.

For the velocity equation, a similar method is applied.

4. Numerical mixing

Multiplication of (3) by (sn+1
i + sni ) results after a number of reformulations in

(4)

(
sn+1
i

)2
hn+1
i − (sni )

2
hni

∆t
+
uni+1/2h

n
i+1/2 (s

n
i )

2 − uni−1/2h
n
i−1/2

(
sni−1

)2

∆x
=

−2
∆x

2
uni−i/2h

n
i−1/2

(
1− uni−1/2

∆t

∆x

hni−1/2

hn+1
i

)(
sni − sni−1

∆x

)2

.

The left hand side of (4) is the explicit first order upstream scheme applied to
the square of the tracer. The right hand side of (4) is the numerical violation
of the variance conservation which has been shown in (2) to hold for Kh = 0,
and can be interpreted as the discretisation of the right hand side of (2), with
the difference that here the numerical diffusivity instead of the physical diffusivity
is used. The right hand side of (4) is the numerical variance decay for the first
order upwind scheme and will be denoted as numerical mixing. Since for more
complicated, non-linear advection schemes a closed formulation for the numerical
mixing can in general not be obtained, a modified approach is applied. After the
scalar advection step, an additional advection is carried out for the square of the
tracer, using the identical advection scheme. Since that method conserved the
square of the scalar (because the advection scheme is conservative), the numerical
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Figure 1. Low-resolution reference solution for u, h− h̄ and s at
t = T for the FOU scheme and for the TVD scheme. The initial
conditions for u, h − h̄ and s are indicated as thin black curves.
Middle panels: Numerical and physical mixing for both schemes
at t = T . Lower panels: Numerical and physical dissipation for
both schemes at t = T .

dissipation can be calculated as the difference between the advected square of the
scalar and the square of the advected scalar, divided by the time step, see [1]
for details. Numerical dissipation, i.e., the kinetic energy loss due to momentum
advection, can be calculated in an equivalant way and it not shown here.

5. Example calculations

In the following, results for numerical mixing and dissipation are shown for the
discretisations of the dynamic equations (1) and for u and h under consideration of
the periodic boundary conditions and harmonic initial conditions. The following
parameters are used: L = 100m, T = 10s, g = 10ms−2, h̄ = 10m (average depth),
η0 = 3m (initial amplitude of layer thickness), Ah = 4m2s−1 (horizontal viscosity)
and Kh = 0.2m2s−1. Numerical results for the FOU and TVD (Total Variation
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Diminishing) schemes at t = T are shown in figure 1. As spatial resolution ∆x =
L/100 = 1.0m was chosen and the time step was ∆t = T/500 = 2 · 10−2s. As
expected from (4), Mnum is non-negative for the FOU scheme. In contrast to
the FOU scheme, the results for the TV scheme show much smaller numerical
than physical mixing. The numerical mixing is partially negative which is due
to the non-monotone part of the TVD scheme. Physical mixing is much larger
for the TVD scheme than physical mixing for the FOU scheme, because larger
gradients and thus larger curvature (second derivative of the tracer) is left. The
results for the velocity advection confirm these results (lower panels in figure 1),
although less drastically: numerical dissipation is higher (and non-negative) for
the FOU scheme, and has some negative values for the TVD scheme. And physical
dissipation is slightly higher for the TVD scheme than for the FOU scheme.

6. Conclusions

The implementation of the numerical mixing and dissipation analysis into three-
dimensional ocean models is straight-forward and has been demonstrated for the
numerical mixing analysis by [2]. As argued above, the method is locally not exact
for multi-step or implicit schemes due to the dependence of the discrete advection
term on intermediate results. However, since generally the effect of advection
schemes is local and model dynamics are highly variable, some temporal or spatial
averaging should result in a sufficiently accurate estimate of the numerical mixing.
The same should apply for the numerical dissipation analysis which has not yet
been performed for three-dimensional ocean models.
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Dealing with parasitic behaviour in G-symplectic integrators

John Butcher

(joint work with Yousaf Habib, Adrian Hill)

The aim of this work is to understand the possible role in the long-term inte-
gration of conservative systems by “G-symplectic” methods. Although symplectic
behaviour, or the exact conservation of quadratic invariants, for irreducible meth-
ods of this type, is not possible [2], there is a G-generalization, similar to the
generalization introduced by Dahlquist [3] in the study of non-linear dissipative
methods. Specific issues in this research include the role of time-reversal symmetry
in conservative integration, the elimination of parasitic effects and the construction
and implementation of specific methods of increasingly high orders.
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A Runge-Kutta method (A, bT , c) with the property that M = diag(b)A +
AT diag(b) − bbT = 0 is said to be symplectic or canonical. Such methods con-
serve quadratic invariants and symplectic behaviour. Although genuine multi-
value methods cannot possess an equivalent property, G-symplectic general linear
methods can give excellent results.

We will be considering differential equations of the form y′(x) = f(y(x)), y(x0) =
y0,. where f : X → X and X is an inner-product space. We will often be talking
about a quadratic form Q on X and we will want to ask questions about how
〈yn, Qyn〉 behaves for n = 0, 1, 2, . . . , where yn is a numerical approximation to
the solution after n time steps..

The following identity relating the input yn−1 to step number n, the output yn
and the stage derivatives Fi can be verified:

〈yn, Qyn〉 = 〈yn−1, Qyn−1〉+ 2h
∑

i

bi〈Fi, QYi〉 − h2
∑

ij

mij〈Fi, QFj〉,

where Q is a quadratic form. If 〈y(x), Qy(x)〉 is conserved, then 〈y′(x), Qy(x)〉 = 0
and for a Runge-Kutta method 〈Fi, QYi〉 = 0. Hence, if M = 0, 〈yn, Qyn〉 =
〈yn−1, Qyn−1〉. This means that all quadratic invariants of a problem are conserved
and, furthermore, the method observes symplectic behaviour.

We now generalize from Runge–Kutta methods, with a single input and output,
to general linear methods with multiple inputs and outputs. Let r denote the
number of inputs (and outputs) and s the number of stages. The inputs and

outputs to step n are respectively y
[n−1]
i , y

[n]
i , i = 1, 2, . . . , r. Write the stage

values and stage derivatives as Yi, Fi, i = 1, 2, . . . , s. A particular method in this
family is characterized by a partitioned (s+ r)× (s+ r) matrix

[
A U
B V

]

and the quantities computed in a step satisfy

Yi = h

s∑

j=1

aijFj +

r∑

j=1

uijy
[n−1]
j , i = 1, 2, . . . , s,

y
[n]
i = h

s∑

j=1

bijFj +
r∑

j=1

vijy
[n−1]
j , i = 1, 2, . . . , r.

The matrix M , in the theory of Runge–Kutta methods, generalizes, in the case of
general linear methods, to

M =

[
DA+ ATD −BTGB DU −BTGV

UTD − V TGB G− V TGV

]
,

where D is a positive diagonal matrix. If M = 0, it is found that ‖y[n]‖G =
‖y[n−1]‖G, with a similar result for any quadratic invariant, including the wedge
product occurring in the definition of symplectic methods. We will refer to meth-
ods with this property as being “G-symplectic”. It is natural to ask the question
“Is this a useful property?”
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We will consider how parasitic solutions can destroy computed results, for the
single case V = diag(1,−1). Let −µ denote the (2, 2) element of BU . At the
beginning of step n, suppose the second component of y[n−1], has been corrupted by
(−1)n−1zn−1. This will produce a perturbation in stage number i of approximately
(−1)n−1ui2zn−1. The corresponding perturbation in stage derivative number i

is approximately (−1)n−1 ∂f
∂yui2zn−1. Substitute into the formula for the second

output value and we find, approximately,

(−1)nzn = (−1)n−1
(
− zn−1 +

s∑

i=1

b2iui2
∂f
∂y zn−1

)
= (−1)n

(
1 + hµ∂f

∂y

)
zn−1.

Hence, zn approximately satisfies the differential equation z′ = µ∂f
∂y z. It looks

as though we will be better off if µ = 0.
Method P below was introduced in [1] and has order 4. Alongside it we consider

method N which also has order 4.

Method P:

[
A U

B V

]
=




3+
√
3

6 0 1 3+2
√
3

3

−
√
3
3

3+
√
3

6 1 − 3+2
√
3

3
1
2

1
2 1 0

− 1
2

1
2 0 −1


 .

Method N:

[
A U

B V

]
=




3−
√
3

6 0 1 − 3−2
√
3

3√
3
3

3−
√
3

6 1 3−2
√
3

3
1
2

1
2 1 0

1
2 − 1

2 0 −1


 .

For P, µ = 1 + 2
√
3

3 and for N, µ = 1− 2
√
3

3 .
Numerical tests with the simple pendulum with a large amplitude show a break-

down of the performance afetr a few thousand time step, for both P and N. How-
ever, it is known that the growth factors accumulate over successive steps. Hence,
it should be possible to combine sequences of P and N so that the total of all µ
values is bounded.

The following figure shows the deviation of the Hamiltonian from its initial
value in a calculation based on this cancellation approach over 105 time steps.
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It is also possible to construct methods for which µ = 0. We will present two
methods, of orders 2 and 4, respectively.

p = 2 :




0 0 0 0 1 1

− 1
12

1
4 0 0 1 1

2

− 1
4

5
6

1
4 0 1 − 1

2

− 1
3 1 1

3 0 1 −1

− 1
6

2
3

2
3 − 1

6 1 0

− 1
6

1
3 − 1

3
1
6 0 −1




p = 4 :




0 0 0 0 1 −
√
5

12 − 1
12

− 1
12

1
4 0 0 1 0 − 1

12

− 7
60

7
10

1
4 0 1 0 1

12

− 1
5

7
10

1
2 0 1

√
5

12
1
12

− 1
10

3
5

3
5 − 1

10 1 0 0

− 1
5

6
5 − 6

5
1
5 0 0 1√

5
5 0 0 −

√
5
5 0 −1 0




The deviations of the Hamiltonian from its initial value, for the simple pendulum,
is shown for each of these methods for 107 time steps.

These numerical simulations are encouraging and are reason enough to try to
understand these methods better, both theoretically and in practice.
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Energy-Stable Weighted Essentially Non-Oscillatory Finite-Difference
Schemes

Mark H. Carpenter

Conventional WENO formulations encounter serious challenges at nodes that
are near domain boundaries. To illustrate this, first recall that all high-order
finite-difference formulations use “inward biased” stencils near boundaries that
maintain the accuracy and stability of the interior scheme. Next, note that WENO
schemes invoke stencil biasing mechanics throughout the domain, including nodes
that adjoin the boundaries (e.g., fourth-order WENO schemes test three candidate
stencils at each node). Thus, not only must the boundary closures that are used
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for WENO schemes be 1) inward biased, 2) stable, and 3) accurate, they also must
be stable for any possible combination of candidate stencils that occur anywhere
in the domain. Simultaneously satisfying these constraints is a remote possibility
if left strictly to chance.

Fourth-order boundary closures for the “finite-domain” operator are described
in a recent article by Fisher et al. [2]. These closures and near-wall biasing me-
chanics complement the periodic domain ESWENO finite-difference methodology
reported in Refs. [5] and [1]. The new interior/boundary ESWENO schemes retain
all of the salient features of the original periodic schemes, including: 1) conserva-
tion and L2-energy stability for constant coefficient (linear) hyperbolic systems, 2)
design-order accuracy throughout the domain, including regions near the bound-
aries or near smooth extrema, and 3) full WENO stencil biasing mechanics at all
possible points. The finite-domain ESWENO schemes are constructed by adding
a “special” nonlinear artificial dissipation term to a conventional WENO scheme.
The additional term is design-order accurate for smooth solutions including ex-
trema, and is constructed such that the resulting ESWENO scheme is stable in
the L2-energy norm.

Herein, sixth-order ESWENO schemes are described for the “finite-domain”
problem. The design strategy for the for these schemes is equivalent to that used
to build the periodic domain ESWENO schemes:

• Develop a sixth-order finite-domain target scheme that is stable, conser-
vative, and accurate for smooth flows. This task is accomplished using the
summation-by-parts (SBP) [4, 5] matrix operator framework.

• Recast the target scheme in the “dual grid” framework of the conventional
WENO approach, whereby the solution is stored and advanced at the grid
points, while the interface fluxes that are constructed at the “half points”
ensure conservation. A special set of flux points and interpolants are
required near the boundaries to accomplish this task.

• Develop a finite-domain WENO biasing strategy that allows all stencil
weights to deviate from their target values. Precise control of the the
biasing mechanics ensures design-order accuracy for smooth solutions and
essentially non-oscillatory properties at discontinuities.

• Test the stability of the finite-domain WENO scheme.If it is unstable,
add a design-order artificial dissipation term that ensures an L2-energy
estimate for the combined operator.

1. Numerical Tests

The accuracy and stability characteristics of the new finite-domain ESWENO
framework were tested by using the one-dimensional advection equation and the
quasi-one-dimensional and two-dimensional Euler equations. As a more practical
test, the framework was implemented in a two-dimensional reacting Navier-Stokes
solver and was used to simulate supersonic nonreacting and reacting shear layers.
All simulations were integrated in time or pseudo-time with the same five-step,
fourth-order Runge-Kutta solver.
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The propagation of the isentropic Euler vortex is used to show the efficacy
of the new ESWENO schemes. (An exact solution to the convected vortex can
be found in ref. [2].) The physical domain is a rectangular box containing a
cylindrical hole, and is discretized using a multi-domain ESWENO techniques on
five individual domains. Gridlines are continuous at all domain interfaces, but
their derivatives are not (i.e. C0 connectivity). The exact solution is used on all
boundaries for the physical boundary conditions, imposed weakly using the SAT
penalty method. Reflections from the boundaries are design-order accurate and
are weakly influenced by the choice of the SAT penalty term.

The L2 convergence rates for the ESWENO5-6-5 operator are tabulated in ta-
ble 1. The results show that the linear operators recover the design-order accuracy.
The ESWENO operator asymptotically approach the linear target values as the
resolution improves.

Table 1. L2 error and convergence rates for the ESWENO5-6-5
and linear block-norm central difference operators for the two-
dimensional inviscid vortex.

Linear Block Norm ESWENO5-6-5
Number of Cells L2 Error L2 Rate L2 Error L2 Rate

Resolution L2 Error L2 Rate L∞ Error L∞ Rate
32× 32 3.28-05 - 1.28e-04 -
64× 64 5.89e-07 5.80 2.68e-06 5.58
128× 128 9.81e-09 5.91 4.52e-08 5.89

2. Conclusions

A general strategy is presented in Refs. [1] and [5] for constructing Energy-
Stable Weighted Essentially Non-Oscillatory (ESWENO) finite-difference schemes
on periodic domains. ESWENO schemes up to eighth-order are developed and
proved to be stable in the energy norm for both continuous and discontinuous
solutions of systems of linear hyperbolic equations. Herein, boundary closures are
presented for the sixth-order ESWENO scheme that maintain wherever possible
the WENO stencil biasing properties, while satisfying the summation-by-parts
(SBP) operator convention, thereby ensuring stability in an L2 norm. A novel
set of non-uniform flux interpolation points is necessary near the boundaries to
simultaneously achieve 1) accuracy, 2) the SBP convention, and 3) WENO stencil
biasing mechanics. The novelty lies in the recognition that the discrete set of flux
points x̄ must be consistent with (i.e., derived from) the stability norm P that
is used in the SBP formulation. Using the new flux points x̄, third-order, and
fifth-order boundary closures are developed that achieve stability in a diagonal
and block norm, respectively.

Extensive numerical validation is presented to assess the efficacy of the new
boundary closures. The test problems included 1) the unsteady one-dimensional
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linear wave equation (hyperbolic), 2) steady quasi-one-dimensional nozzle flow
that is simulated by solving the nonlinear Euler equations, 3) unsteady propaga-
tion of a two-dimensional Euler vortex, 4) unsteady convection-diffusion-reaction
of a supersonic hydrogen-air mixing layer that is simulated by solving the two-
dimensional Navier-Stokes equations, and 5) laminar flow around a multi-element
airfoil The global accuracy of the third-order diagonal-norm operators and fifth-
order block-norm operators is shown to be design order; that is, four and six,
respectively, for all test cases. Furthermore, the accuracy of the new ESWENO
operators are shown to be quite close to the linear target operator.
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A Simple Eulerian Finite-Volume Method for Compressible Fluids in
Domains with Moving Boundaries

Alina Chertock

(joint work with Alexander Kurganov)

We are interested in developing a simple, accurate, and robust numerical method
for computing compressible fluids in the domains with moving boundaries. In the
two-dimensional (2-D) case, the governing equations are the compressible Euler
equations:




ρ
ρu
ρv
E




t

+




ρu
ρu2 + p
ρuv

u(E + p)




x

+




ρv
ρuv

ρv2 + p
v(E + p)




y

= 0,

where ρ is the fluid density, u and v are the velocities, E is the total energy, and
p is the pressure. The system is closed using the equation of state (EOS), which,
for ideal gases, reads:

E =
p

γ − 1
+
ρ

2
(u2 + v2), γ = const.

We also introduce the notation c :=
√
γp/ρ for the speed of sound.
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Our goal is to apply Eulerian finite-volume (FV) methods to the problems with
changing geometries. To this end, we place the fluid domain into the computational
domain of a fixed size, which is divided into Cartesian cells. At every time moment,
each cell is marked as either internal, external, or boundary one. The internal
cells are fully occupied by the gas, the external cells are located outside of the
fluid domain and play the role of the so-called ghost cells, while the boundary
cells form a thin layer between the internal and external ones. The boundary cells
have to be introduced since in the case of moving boundaries, the fluid domain
boundary cannot, in general, be forced to coincide with the cell edges. As a
result, the boundary cells are only partially filled with the gas, which is very
inconvenient since within the FV computational framework, numerical solutions
are represented in terms of the cell averages. One of the possible ways to treat
the boundary cells is to split each of them into two smaller cells: the internal
and the external ones. However, this would significantly increase the complexity
of the entire solution algorithm and may lead to very small time steps (see, e.g.,
[1, 3, 4]. We prefer an alternative, simpler approach, in which the averages are
computed over the internal cells only and the data contained in the boundary cells
are not used for the computation of numerical fluxes. We treat the boundary cells
similarly to the way the so-called “mixed” cells have been treated in [2]. Namely,
we only approximate the point values at the edges of these cells, required in the
numerical flux computations. These point values are obtained using the solid wall
extrapolation followed by the interpolation in the phase space (by solving the
Riemann problem between the internal cell averages and the extrapolated ones).
The numerical solution is then evolved in internal cells only using a FV method.

The proposed computational framework is general and may be used in conjunc-
tion with one’s favorite FV method. In this talk, we present the semi-discrete
second-order central-upwind scheme developed in [5, 6, 7]. This Godunov-type
scheme enjoys all major advantages of Riemann-problem-solver-free, non-oscillatory
central schemes and, at the same time, have a certain “built-in” upwind nature.
The robustness of the new approach is illustrated on a number of one- and two-
dimensional numerical examples.
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Discontinuous Galerkin method - a robust solver for compressible flow

Miloslav Feistauer

(joint work with Jan Česenek and Václav Kučera)

In the numerical solution of compressible flow, it is necessary to overcome sev-
eral obstacles. Let us mention the necessity to resolve accurately shock waves,
contact discontinuities and (in viscous flow) boundary layers, wakes and their in-
teraction. All these phenomena are connected with the simulation of high speed
flow with high Mach numbers. However, it appears that the solution of low Mach
number flow is also rather difficult. This is caused by the stiff behaviour of nu-
merical schemes and acoustic phenomena appearing in low Mach number flows
at incompressible limit. In this case, standard finite volume schemes fail. This
led to the development of special finite volume techniques allowing the simulation
of compressible flow at incompressible limit, which are based on modifications of
the Euler or Navier-Stokes equations. However, these techniques could not be
applied simultaneously to the solution of high speed flow. Therefore, further at-
tempts were concentrated on the extension of these methods to the solution of
flows at all speeds. A success in this direction was achieved by several authors.
Main ingredients of these techniques are finite volume schemes applied on stag-
gered grids, combined with multigrid, the use of the pressure-correction, multiple
pressure variables and flux preconditioning.

At the Faculty of Mathematics and Physics of the Charles University in Prague
our group (M. Feistauer, V. Doleǰśı, V. Kučera, M. Vlasák together with sev-
eral PhD and Master students) is concerned with numerical solution of nonlinear
convection-diffusion problems and compressible flow by the discontinuous Galerkin
method (DGFEM), which employs piecewise polynomial approximations without
any requirement on the continuity on interfaces between neighbouring elements.
We found that this technique, equipped with several important ingredients, be-
comes an accurate, efficient and robust method allowing the solution of compress-
ible flow with a wide range of the Mach number and Reynolds number.

Our main goal is to develop an efficient and robust DGFEM for the numerical
simulation of compressible flow in time dependent domains with applications to
fluid-structure interaction (FSI). The interaction of fluid flow with vibrating bod-
ies plays a significant role in many areas of science and technology. We mention,
for example, development of airplanes (vibrations of wings) or turbines (blade
vibrations), some problems from civil engineering (interaction of wind with con-
structions as bridges, TV towers or cooling towers of power stations), car industry
(vibrations of various elements of a carosery), but also in medicine (hemodynamics
or flow in the glottis with vibrating vocal folds). In a number of these examples the
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moving medium is a gas, i.e. compressible flow. For low Mach number flows in-
compressible models are used (as e.g. in [1], [7]), but in some cases compressibility
plays an important role.

The solution of fluid-structure interaction requires the coupling of the solu-
tion of equations describing the fluid flow with equations describing the structural
behaviour. Due to the deformation and/or vibrations of structures, the computa-
tional domain is time dependent. In the numerical simulation of compressible flow
in time dependent domains it is necessary to overcome difficulties caused by the
change of the domain and computaional mesh geometry in time, nonlinear con-
vection dominating over diffusion, which leads to boundary layers and wakes for
large Reynolds numbers and instabilities caused by acoustic effects for low Mach
numbers.

The goal of our research is the numerical simulation of interaction of compress-
ible flow with structures, particularly the flow induced airfoil vibrations or the
flow past an elastic wall vibrating due to the influence of an airflow. We are con-
cerned with the generalization of the methods from [5], [4] and [3] to the solution
of compressible inviscid and viscous flow in time dependent domains. The main
ingredients of the method is the discontinuous Galerkin space semidiscretization of
the Euler and Navier-Stokes equations written in the ALE (arbitrary Lagrangian-
Eulerian) form, semi-implicit time discretization using backward difference formula
or space-time DGFEM, suitable treatment of boundary conditions and the shock
capturing avoiding Gibbs phenomenon manifested by spurious overshoots and un-
dershoots near internal and boundary layers.

The numerical solution of compressible flow is coupled with the solution struc-
ture problem. In the case of the simulation of flow-induced vibrations of an elasti-
cally supported airfoil, the airfoil motion is described by a system of second-order
ordinary differential equations discretized by the Runge-Kutta method. For the
simulation of the interaction of flow with an elastic body, a dynamic elasticity
system is used, which is solved by the conforming finite element method. Special
attention is paid to the construction of the ALE mapping and the realization of
the coupling of the flow and structure problems. Some details of this technique
are described in [5], [6], [2].

Numerical experiments carried out for flow past an oscillating airfoil and in a
channel with moving elastical walls demonstrate the applicability of the developed
method to technically relevant problems and show the accuracy and robustness of
the worked out technique.
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Numerics of the shallow water equations

Jiř́ı Felcman

(joint work with Oto Havle, Libor Kadrnka)

1. Introduction

The shallow water equations (SWE) can be formulated as a two dimensional
hyperbolic system for an unknown vector valued function w

(1)
∂w

∂t
+

2∑

s=1

∂

∂xs
fs(w) = s(w),

with fluxes

f s(w) = (hvs, hv1vs + δs1
1

2
gh2, hv2vs + δs2

1

2
gh2)T

and a source term s(w) = (0,−gh∇z)T. The unknown variables w = w(x, t),
x = (x1, x2), form a vector w ≡ (h, hv)T ≡ (h, hv1, hv2)

T, where h and v denote
the water height and velocity, respectively. The gravity constant g > 0 and a
topography function z = z(x) are given.

A standard finite volume method (FVM) [1], [2] can be applied for finding
the value of the approximate solution wk

i on the finite volume Di at time tk,
w(·, tk)|Di

≈ wk
i = const.:

(2) wk+1
i = wk

i −
τk
|Di|

∑

j∈S(i)

|Γij |H
(
wk

i ,w
k
j ,nij

)
.

Here we adopt the notation and its description from [1, 3] where we dealt with
the finite volume method for the Euler equations written as the hyperbolic system.

Remark The approximation of the source term s(w) is included into the defi-
nition of the numerical flux in relation (2).

In [4] a time marching finite volume method for SWE was proposed and nu-
merically tested for a one-dimensional case. The novelty of that approach lies in
the design of the new numerical flux of Vijayasundaram type, its analysis and
numerical examples. We further extend the proposed approach by enhancing the
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method by mesh adaptation. We consider the finite volume solution of system (1)
as piecewise constant vector-valued functions wk

Dk , k = 0, 1, . . . , defined almost

everywhere in the computational domain Ω so that wk
Dk | ◦

Di

= wk
i for all i ∈ J ,

where
◦
Di is the interior of Di and wk

i are obtained from the finite volume formula
(2).

Once a numerical solution wk
Dk is obtained at the given time level tk on the

finite volume mesh Dk, the vertices of the mesh Dk will be redistributed using
an iteration procedure. At each iteration, the vertices are moved according to a
variational principle. After this iteration loop the new mesh Dk+1 is available and
the finite volume solution wk+1

Dk+1 on the adapted mesh Dk+1 at the time step tk+1

is computed.

2. Adaptive Finite Volume Method

The basic FVM (2) yields for the given mesh D and the piecewise constant

solution wk
D on it the passage to the update wk+1

D without the change of the
mesh:

(3) wk+1
D := FVsol

(
wk

D,D
)
.

The adaptive FVM changes adaptively the computational mesh from Dk to
Dk+1 during the time evolution and computes the new approximation wk+1

Dk+1 on

the adapted mesh Dk+1:

(4) wk+1
Dk+1 := AFVsol

(
wk

Dk ,Dk
)
.

Assignment (4) consists of three steps: 1. Mesh adaptation, 2. Solution recovery
and 3. Finite volume update:

Dk+1 := MeshAdapt
(
wk

Dk ,Dk
)
,(5)

w̃k
Dk+1 := SolRecovery

(
wk

Dk ,Dk,Dk+1
)
,(6)

wk+1
Dk+1 := FV

(
w̃k

Dk+1 ,Dk+1
)
.(7)

In what follows we shall describe these three steps (5) – (7) and explain the used
symbolic notation.

2.1. Mesh Adaptation. In [5] the mesh generation based on the variational prin-
ciple was proposed. Here we present its application for the shallow water equa-
tions. The vertices of the adapted finite volume mesh in the computational domain
Ω ⊂ IR2 are obtained as images of vertices of a uniform mesh in a rectangular do-
main Ωξ using a one-to-one coordinate transformation x : Ωξ ∋ ξ 7−→ x(ξ) ∈ Ω.
Since we are interested in problems with strong gradients and shocks, it is desirable
to refine the mesh in the vicinity of such phenomena. The Winslow’s monitor func-
tion can be adapted for the SWE. The gradient of the depth of water h = h(x, tk)
fixed at time tk is chosen as a significant scalar quantity on which the mesh redis-
tribution at time level tk of the time marching procedure (2) is based. The details
can be found in [6].
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2.2. Solution Recovery. After the adaptive mesh is constructed it is necessary
to recompute the solution wk

Dk on the old mesh Dk to its recovery w̃k
Dk+1 on the

newly adapted mesh Dk+1. According to [5] the geometric mass conservation law
has to be satisfied in this computational step. It reads

(8)
∑

i

|Dk
i |wk

i =
∑

i

|Dk+1
i |w̃k

i ,

where |Di| denotes the two-dimensional measure (area) of the finite volume Di,

w̃
k
i = w̃k

Dk+1 | ◦

Dk+1

i

and the symbol ◦ denotes the interior of Dk+1
i . The perturbation

method from [5] is applied.

2.3. Finite Volume Method. We seek a finite volume scheme, which preserves
a class of stationary solutions:

(9) h(x, t) = H0 − z(x), v(x, t) = 0.

The numerical scheme can be written in a form similar to the standard conservative
finite volume scheme:

(10) wk+1
i = wk

i − τk

|Di|
∑

j∈S(i)

|Γij |Htotal

(
wk

i ,w
k
j , zi, zj ,nij

)

The numerical flux Htotal

(
wk

i ,w
k
j , zi, zj,nij

)
is based on the Vijayasundaram

type numerical flux. However, we add a correction term, which is necessary to
ensure the discrete version of (9). We use the piecewise-constant approximation
of the topography function z. The details can be found in [4].

Recently the higher order version of the proposed algorithm is in progress. It
is based on the higher order reconstruction of the piecewise constant approximate
solution followed by a new slope limiting procedure introduced in [7].
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On one dimensional low Mach number applications

Ingenuin Gasser

(joint work with Maria Bauer, Elisabetta Felaco)

The fluid dynamic applications we have in mind are

• chimneys [FG]
• exhaust tubes [GR]
• solar updraft towers [SS, G]
• energy towers [Z, BG]
• gas pipelines [BGH]
• receivers in parabolic trough power station
• road and railway tunnel fires [GS, G1].

The fluids under consideration are mainly gases or gas mixtures. All the mentioned
applications have the following properties in common:

• The main features of the flows are one dimensional or the application can
be roughly described by one dimensional models.

• The flows are characterised by a low Mach number.
• The temperature variations in the flows cannot be negleted. Some of the
mentioned flows are even buoyancy driven.

The underlying equations are obtained by balancing mass, momentum and en-
ergy. Typically we have inviscid compressible gas dynamic equations. After an
appropriate scaling small parameters can be identified. Here the Mach number
- the relation between fluid and sound velocity - is always small. Typically this
requires increased numerical effort when solving the fully compressible equations.

However we use the smallness of the Mach number to perform an asymptotics
and to further simplify the models. In combination with a possible small Froud
number various asymptotic regimes are possible: small Mach number, Boussinesq,
quasistatic approximations etc. We analyse the resulting asymptotic equations.
Finally we perform numerical simulations in order to validate the models. The
asymptotic models result to recover the main features of the flows and to be
numerically convenient.

In fact, the aim is to obtain simple models which allow fast robust numerical
simulation tools. This is important when applying control or optimisation proce-
dures or when considering applications on networks.

In the talk we focus on two applications: the chimney and the Energy tower.
For both we show the modelling approach and numerical simulations.
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On the Accuracy of High Order Methods for Underresolved
Multi-Scale Problem Simulations

Gregor J. Gassner

(joint work with Andrea D. Beck, David Kopriva, Claus-Dieter Munz)

The term order or order of convergence of a discretization method describes the
behavior of the discretization error with respect to the discretization parameter
h when refining the discretization, i.e. for h → 0. For ’small’ h (well resolved
approximations) the error behaves like O(hr), where r is the order of convergence.
It is common rational that for well resolved approximations of sufficient smooth
problems, discretization methods with larger values of r, i.e. high order meth-
ods, yield better efficiency with respect to computational effort for a given goal
accuracy compared to low order methods. This actual trend towards high order
methods shows itself in recent European project, such as ADIGMA and its follow-
on IDIHOM, where the applicability and performance of high order methods for
industrial computational fluid dynamics (CFD) is investigated and evaluated.

A silent assumption, often not clearly stated in the high order CFD community
is that one needs sufficient smoothness of the underlying problem for high order
discretizations to be efficient. For a multi-scale problem, like most relevant fluid
flow problems (turbulence!), the solution is smooth, but can often only be coarsly
resolved due to the large range of occuring spatial and temporal scales and lim-
ited computer resources. This has the consequence of insufficient grid resolution
induced artificial roughness of the underlying computational problem.

With respect to the discretization parameter, this means that h is ’large’ and
thus the theoretical error behavior considerations for h → 0 are not valid and
not usefull to judge the accuracy of high order methods. Statements about the
superiority of high order methods thus cannot be simpley translated to the un-
derresolved case, which is the common case in partical fluid flow simulations and
furthermore, common in all multi-scale simulations.

As error convergence behavior of a discretization for ’small’ h is not appropriate,
other quality considerations of a discretization method have to be investigated,
such as dispersion and dissipation properties for a large range of scales. In case of
Discontinuous Galerkin (DG) discretizations, it can be shown that the high order
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variants yield superior dispersion and dissipation behavior over a broader range of
scales [1].

Motivated by this observation and the general question of accuracy for high
order methods in coarse resolved multi-scale simulations, the talk presents re-
cent results [2], where the accuracy of high order DG methods for coarse resolved
turbulence simlation is investigated. It was found, that even in the case of under-
resolution, high order approximations yield superior efficiency compared to their
lower order variants due to the better dispersion and dissipation behavior. It was
furthermore found, that a very high order accurate DG discretization (r = 16
in this case) yields even better accuracy than state of the art large eddy simu-
lation (LES) methods for the same number of degrees of freedom (DOF) for the
considered example. The suprise stems from the fact that those methods are par-
ticularly tuned to capture coarse resolved turbulence, whereas the considered high
order method can be directly applied to all sorts of other multi-scale problems.
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IMEX Methods for Hyperbolic Systems with Stiff Relaxation Terms

Willem Hundsdorfer

The numerical solution of hyperbolic systems with relaxation terms

(1) ut = ∇f(u) + 1

ǫ
g(u)

leads to different and conflicting demands on standard implicit or explicit time
integration methods. On the one hand, if ǫ > 0 is small, the relaxation term
becomes very stiff, which calls for an implicit method. On the other, hand, if
the convection term is discretized in space with a scheme based on flux-limiting
or with a WENO scheme, for example, then explicit time stepping becomes more
attractive for that part. This is due to the fact that the nonlinearities introduced
by such spatial discretzations are rather complicated, but also implicit methods
do not offer substantially better monotonicity properties than explicit methods.

These conflicting demands can be met by so-called IMEX time stepping meth-
ods, where explicit and implicit methods are combined. In this talk we will mainly
focus on linear multistep methods. First we will briefly describe the monotonicity
theory for implicit and explicit multistep methods, and then discuss the construc-
tion of suitable IMEX multistep methods.

This review is based on work with Steve Ruuth [4, 5], on the selection of mul-
tistep methods and the construction of IMEX methods, and on more recent work
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with Anna Mozartova and Marc Spijker [2, 3], on monotonicity theory for linear
multistep methods.

Monotonicity and boundedness for linear multistep methods.
Spatial discretization of a conservation law ut = ∇f(u) by finite differences or
finite volumes leads to an ODE system in a vectorspace V

(2) u′(t) = F (u(t))

with initial value u(0) = u0. In the usual applications V = Rm, with m propor-
tional to the number of cells. To solve these resulting ODE systems we consider
numerical approximations un ≈ u(tn), tn = n∆t, by linear multistep methods

(3) un =

k∑

j=1

ajun−j +∆t

k∑

j=0

bjF (un−j)

for n ≥ k. The starting values for this multistep recursion, u0, u1, . . . , uk−1 ∈ V,
are supposed to be given, or computed by a Runge-Kutta method.

For suitable spatial discretizations of the PDE, the resulting ODE system (2)
will satisfy

(4) ‖v + τ0F (v)‖ ≤ ‖v‖ for all v ∈ V

in some suitable norm (e.g. the maximum norm) or semi-norm (e.g. the discrete
total variation semi-norm); see [1], for example. Here, τ0 is determined by the
problem and spatial discretization. ¿From (4) it follows that approximations found
with the forward Euler method satisfy ‖un‖ ≤ ‖u0‖ for n ≥ 1 whenever ∆t ≤ τ0.

For multistep method we can consider the following property under the basic
assumption(4):

(5) ‖un‖ ≤ µ max
1≤j<k

‖uj‖ for all ∆t ≤ γτ0 and n ≥ 1 .

If this holds with µ = 1, the method is said to be monotone or strong stability
preserving (SSP) with stepsize coefficient γ > 0. If it holds with some µ ≥ 1 the
method is called bounded. With the total variation semi-norm, these properties are
known as total variation diminishing (TVD) if µ = 1, and total variation bounded
(TVB) if µ ≥ 1.

It is easily verified that a linear multistep method is monotone with stepsize
coefficient γ > 0 if b0 ≥ 0 and aj ≥ γbj ≥ 0 for 1 ≤ j ≤ m. The monotonicity
property is therefore very easy to verify, but it turns out that most linear multistep
methods of practical importance do not satisfy it, due to the requirement that all
coefficients are nonnegative. It is therefore interesting to look at more relaxed
properties, such as boundedness.

¿From [3] we have the following results. Let ρn = 0 for n < 0, ρ0 = 1, and

ρn =
k∑

j=1

ajρn−j + γ
k∑

j=0

bjρn−j for n ≥ 1 .
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for n ≥ 1. Then, under some technical assumptions, it can be shown that the
essential condition for the boundedness property (5), with µ ≥ 1, is

(6)

k∑

j=0

bjρn−j ≥ 0 for all n ≥ 0 .

Moreover, if this holds then the combination of the linear multistep method and
a Runge-Kutta starting procedure to compute u1, . . . , uk−1 can still be monotone:
‖un‖ ≤ ‖u0‖ (n ≥ 1) whenever ∆t ≤ γτ0.

As an example, the implicit BDF2 method has stepsize coefficient γ = 1
2 for

boundedness and also for monotonicity with implicit Euler start. This γ is of
course not very large; to justify the use of an implicit method a much larger
γ would be required. In fact, for the extrapolated BDF2 method, which is the
explicit counterpart of the implicit method, we have γ = 5

8 for boundedness and
for monotonicity with explicit Euler start.

Also for other implicit methods, the allowable step sizes are not large compared
to explicit methods. Since properties like TVD/TVB, or generalizations to other
semi-norms, are crucial for convergence towards the proper solutions of conserva-
tion laws with shocks, it can be concluded that explicit methods are better suited
than implicit ones for such equations.

IMEX linear multistep methods
Spatial discretization of (1) leads to ODE systems of the form

(7) u′(t) = F (u(t)) +G(u(t)) ,

where F is the discretized convection term and G stand for the stiff relaxation
term. An IMEX linear multistep method for such a system is given by

(8) un =

k∑

j=1

ajun−j +∆t

k∑

j=1

b̂jF (un−j) + ∆t

k∑

j=0

b̂jG(un−j)

for n ≥ k. Here the b̂j (1 ≤ j ≤ k) are the weights of an explicit method and the
bj (0 ≤ j ≤ k) of an implicit method.

Such combinations of implicit and explicit methods were introduced in 1980
by Crouzeix and by Varah. Runge-Kutta combinations of implicit and explicit
methods are also known but for those methods the structure of the local errors
are complicated. For (8) it is known that having order p for both the implicit
and the explicit method, guarantees an order p for the combined IMEX scheme.
Moreover, in contrast to Runge-Kutta combinations, the local errors of the IMEX
linear multistep methods are not affected by the stiffness of the system. Therefore,
the phenomenon of order reduction is avoided.

To construct IMEX linear multistep methods, one can start with a good implicit
method and then find a suitable explicit method. The implicit BDFk methods can
thus be combined with the extrapolated, explicit counterparts, and this yields very
good IMEX schemes.
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An other possibility is to start with an explicit method and combined it with
a suitable implicit method, which should have good stability and damping prop-
erties. Starting from the well-known explicit Adams-Bashforth methods, one can
thus obtain IMEX methods of order k. However, these schemes turn out to be not
very suitable for equations of the type (1), mainly because the monotonicity and
boundedness properties of the Adams-Bashforth methods are not very good.

Much better methods were obtained in [5] by using explicit methods of order k
that have the TVB property with large stepsize coefficients γ > 0. The resulting
IMEX-TVB methods did give good results in the numerical tests in [5].

Compared to the IMEX Runge-Kutta methods, the linear multistep methods (8)
are promising because of the simple structure of the local errors and the favourable
TVD/TVB properties, taking into account the amount of work per step. On the
other hand, the Runge-Kutta methods are self-starting, and good IMEX combi-
nations were obtained in [6].
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Adaptive ADER Methods using Kernel-based Polyharmonic Spline
WENO Reconstruction

Armin Iske

(joint work with Terhemen Aboiyar and Emmanuil H. Georgoulis)

During the last 30 years, finite volume methods (FVM) have gained great popu-
larity as numerical schemes for hyperbolic problems. Classical FVM are typically
of low order (cf. e.g., [9, 10]). High order FVM include essentially non-oscillatory
(ENO) and the more sophisticated weighted essentially non-oscillatory (WENO)
schemes (see, e.g., [1, 5, 7, 10, 15, 16, 24] and references therein) for the discreti-
sation of the space variables. Available high order FVM often combine high order
space discretisations with one-step or multistep time stepping methods, such as to-
tal variation diminishing Runge-Kutta (TVD-RK) methods. However, high order
TVD-RK methods have a reduced region of absolute stability [6]. This essentially
limits the order of TVD-RK time discretisations [11].



244 Oberwolfach Report 05/2012

In the WENO framework, a collection of stencils is first selected in the neigh-
bourhood of each cell (control volume). For each stencil, a high order recovery
function is computed from the stencil’s cell average values. The WENO recon-
struction for the cell is then given by a weighted sum of the stencils’ recovery
functions. The weights are chosen so that unphysical oscillations in regions of low
regularity of the solution (e.g. near sharp fronts and shocks) are avoided. In avail-
able (multivariate) WENO methods, local (multivariate) polynomial interpolation
is used in the reconstruction step. Using multivariate polynomial interpolation
in WENO reconstructions, however, has restrictions. Indeed, when using poly-
nomial interpolation, the size of each stencil is required to match the dimension
of the polynomial ansatz space; this reduces the flexibility in the stencil selec-
tion. This restriction is particularly severe for unstructured meshes, where for
the sake of numerical stability enhanced flexibility in the stencil selection is of
vital importance [1]. A standard remedy to circumvent this restriction is the use
of least-squares approximation in the reconstruction step. Standard least-squares
approximation, however, does usually not minimize the relevant quantities which
are used for the definition of the WENO weights. This is regarded as a major draw-
back of least-squares reconstructions, especially when it comes to approximate the
solution in regions of low regularity. Therefore, the development of stable high
order FVM for hyperbolic problems is still an ongoing challenge.

Recently, ADER methods were introduced in [20, 21], and further developed
in [17, 19, 22], to obtain finite volume schemes of arbitrary high order. In the
concept of ADER, Arbitrary high order DERivatives are used to construct high
order flux evaluations, using generalised Godunov methods. The high order flux
evaluation of the ADER method can be combined with high order finite volume
space discretisations (e.g., WENO reconstructions), leading to an ADER-FVM
of arbitrary high order. ADER schemes have very recently gained considerable
popularity in a wide range of applications from engineering and physics, see e.g., [3,
12, 13, 14, 23].

The application of ADER schemes to nonlinear hyperbolic problems is a subject
of active research. For the multi-dimensional case, ADER schemes on Cartesian
grids can be found in [13, 14, 18]. ADER methods in combination with the dis-
continuous Galerkin method are introduced in [4]. Adaptive ADER methods on
unstructured triangular meshes have recently been developed in [8], giving more
flexible efficient high order ADER schemes. In [8], adaptive ADER methods are
combined with high order polynomial WENO reconstructions.

Mesh adaptivity is particularly important for the computational efficiency of
FVM. Indeed, the presence of lower dimensional locally singular behaviour of the
solutions to hyperbolic problems (e.g., sharp gradients and discontinuities) require
different resolutions in different regions of the computational domain. This can be
accomplished using adaptive methods.

This talk is concerning the development of new stable adaptive FVM on unstruc-
tured meshes of arbitrary high order, both in space and in time, using the ADER
methodology. More specifically, a novel framework for WENO reconstruction is
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proposed, whereby kernel-based interpolation (rather than polynomial interpola-
tion) is utilised in the WENO reconstruction step. Kernel-based interpolation
leads to ansatz spaces of variable dimensions, thereby can be applied to WENO
reconstructions based on stencils of variable sizes, hence enhancing the flexibil-
ity of WENO reconstruction schemes. Our preferred choice of kernels are the
family of the radial polyharmonic splines. Apart from the enhanced flexibility in
the stencil selection, this particular choice has specific advantages concerning the
numerical stability of local interpolation. Moreover, they are easily implemented
in any space dimension. Furthermore, polyharmonic spline reconstruction leads
to natural choices of oscillation indicators, as per required in the WENO recon-
struction step. More specifically, the oscillation indicators are defined through the
natural Sobolev semi-norms associated with the polyharmonic spline interpola-
tion problem. For each stencil, the polyharmonic spline interpolant is the unique
minimiser of the Sobolev semi-norm among all interpolants in the corresponding
Sobolev space. Thus, the polyharmonic spline interpolant is – in that sense –
the least oscillatory interpolant in the Sobolev space, which in turn improves the
stability of the employed WENO reconstruction. This is supported by the numeri-
cal experiments presented in this talk. Moreover, the performance of the proposed
method is illustrated in our previous work [2] by a series of numerical experiments,
including linear advection, Burgers’ equation, Smolarkiewicz’s deformational flow
test, and the five-spot problem.
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Some Reasons this Analyst Wants Better (High Order) Numerical
Solutions

Barbara Lee Keyfitz

In this talk, I give some indication of how mathematicians working on the
analysis of hyperbolic conservation laws can benefit from the results of numerical
simulations of conservation laws.

One current direction of research in conservation laws is the study of multi-
dimensional problems. Here the question is well-posedness. For systems in one
space variable and time, there is now a satisfactory theory in the space BV of
functions of bounded variation [2]. However, a result of Rauch [5], based on a lin-
ear theory due to Brenner [1], indicates that for multidimensional problems there
are obstacles to well-posedness in BV . The lack of a good basis for a theory has
led several groups of mathematicians to look at self-similar problems in two space
variables and time. That is, we reduce a system Ut+F (U)x+G(U)y = 0, U ∈ Rn,

to a system F̃ξ + G̃η = S, where ξ = x/t, η = y/t, F̃ = F − ξU , G̃ = G − ηU
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and S(U) = −2U appears as a source term when the reduced system is written in
conservation form.

Using some simplified model equations, such as the unsteady transonic small
disturbance equation (UTSDE), and also the equations of isentropic compress-
ible inviscid gas dynamics, we have established some analytic results, such as the
existence of a subsonic flow in the neighborhood of the shock reflection point in
transonic regular reflection. However, as is well-known, there is a range of wedge
angles (small) and Mach numbers (close to unity) for which neither regular nor
Mach reflection is mathematically possible. Seeking some insight into this situ-
ation, in 2002 Allen Tesdall and John Hunter, [9], performed careful numerical
simulations on the UTSDE, and discovered a new pattern, which they named
Guderley Mach Reflection after the German aerodynamicist who, fifty years ago,
predicted that a rarefection wave might appear in cases where the amount of vor-
ticity present was not sufficient to resolve a discontinuity. The pattern involves
a series of reflections, each involving a rarefaction and a small supersonic patch.
These results, later replicated in other systems, [11, 12], were a direct motivation
for experiments which confirmed the phenomenon, [6, 7].

Our attempts to analyze this are only beginning. Besides the complication of
a possibly infinite cascade of reflections, we do not yet have a clear understanding
of the interaction of the rarefaction with the sonic line. We have a steady model
that includes some aspects of this interaction, which is distinguished by having
a two-way interaction across the sonic line between the supersonic and subsonic
regions, [4]; and we have done some preliminary analysis on a self-similar model,
[10].

A second interesting question arising in this and other multidimensional steady
or self-similar problems, concerns the formation point of a transonic shock. While
reasonably careful simulations appear to show that the shock forms on the sonic
line itself, refining the calculations often demonstrates that the shock formation
point is inside the supersonic region, [8]. In this talk, I present some examples that
show a shock can actually form on the sonic line, as well as some evidence that
such behavior is non-generic. In addition, one recent example, a shock diffracting
around a screen, [3], appears to exhibit a shock with an exactly sonic formation
point. Like Guderley Mach Reflection, this phenomenon was discovered numeri-
cally, and presents an interesting target for analysis.

The reseach described in this talk was supported in part by the National Science
Foundation and the Department of Energy.
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Sound-proof model equations for atmospheric flows and associated
multiscale time integrators

Rupert Klein

The numerical integration of the compressible flow equations for meteorological
applications is challenging for at least two reasons. First, atmospheric flows are
of low Mach number implying the usual obstacles for numerical integration and,
secondly, they belong to a three-time-scale asymptotic limit regime for advection,
internal gravity waves, and sound, making matters even more delicate. Meteorolo-
gists are interested in following accurately the dynamics of advection and internal
waves while disregarding most of the effects of compressibility. There are very
long wave compressible modes, however, namely the Lamb-waves, which are con-
sidered to be of some relevance and are therefore not to be disregarded entirely in
numerical integrations.

Validity of sound-proof models
In my first presentation I have discussed theoretical arguments based on multiple
scales asymptotics that justify the use of well-known “sound-proof approxima-
tions” for atmospheric motions in this three-time-scale regime, see [1]. These re-
duced models still involve two asymptotically separated time scales, namely those
of advection and internal waves, but suppress sound propagation by nonhomo-
geneous algebraic divergence constraints for the flow velocity. By formal asymp-
totics, I have shown that the solutions of these sound-proof models will stay close
to those of the full compressible flow equations over time scales comparable to the
slow advection time, given properly prepared initial data.
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The main technique in this analysis is spectral expansion of the solution in hor-
izontally propagating harmonic waves with wavelength-dependent vertical struc-
ture. The determination of the vertical structure functions can be reduced to solv-
ing a single effective regular Sturm-Liouville problem in the case of the sound-proof
equations, and to a perturbed Sturm-Liouville problem that is weakly nonlinear in
the eigenvalue for the compressible case. Showing that the structure functions and
eigenvalues of the sound-proof and the weakly compressible cases are asymptoti-
cally close, we find a criterion for the intermediate internal wave time scale that
guarantees asymptotic validity of the sound-proof approximation over advective
times.

The spectral expansion ansatz also gives hints at how to attempt a rigorous
proof of validity of the sound-proof models using the technique of energy estimates
as pioneered by Klainerman and Majda in their seminal papers on the zero Mach
number approximation, [2].

A multiscale time integrator
In my second presentation I have discussed a novel numerical semi-implicit time
integration scheme that relies on multigrid technology to explicitly distinguish the
principally different behavior of long and short wave modes in the atmosphere [3].
While long wave modes may well be compressible (the Lamb waves) and should
thus be transported accurately as acoustic modes, short wave flow components are
effectively incompressible and should therefore follow the abovementioned sound-
proof limiting dynamics. By applying a different time integration scheme to each
level of the multigrid hierarchy, one can construct suitable scale-adaptive integra-
tion schemes that observes these limits automatically.
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A robust numerical method for compressible MHD applied to
astrophysical flow simulations

Christian Klingenberg

(joint work with François Bouchut, Knut Waagan)

The ideal MHD equations are a central model in astrophysics, and their solu-
tion relies upon stable numerical schemes. We present an implementation of a
new method, which possesses excellent stability properties. We have developed
approximate Riemann solvers for ideal MHD equations based on a relaxation ap-
proach in [1, 2]. These lead to entropy consistent solutions with good properties
like guaranteed positive density. We describe the extension to higher order and
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multiple space dimensions. Numerical tests demonstrate that the theoretical sta-
bility properties are valid in practice with negligible compromises to accuracy.
The result is a highly robust scheme with state-of-the-art efficiency. The scheme’s
robustness is due to entropy stability, positivity and properly discretised Powell
terms. The implementation takes the form of a modification of the MHD module
in the FLASH code, an adaptive mesh refinement code. We compare the new
scheme with the standard FLASH implementation for MHD [3, 4]. Results show
comparable accuracy to standard FLASH with the Roe solver, but highly improved
efficiency and stability, particularly for high Mach number flows and low plasma
b. The tests include 1D shock tubes, 2D instabilities and highly supersonic, 3D
turbulence. We consider turbulent flows with RMS sonic Mach numbers up to 10,
typical of gas flows in the interstellar medium. We investigate both strong initial
magnetic fields and magnetic field amplification by the turbulent dynamo from
extremely high plasma b [5].

Usung the FLASH code we present new 3D magnetohydrodynamic simulations
of a supernova-driven, stratified interstellar medium [6, 7]. We examine whether
inclusion of magnetic fields and a greater vertical extent to the simulation domain
produce a gas distribution that better matches the observations. We study the
change of magnetic energy over time in our models, showing that it appears to
reach a steady state after a few hundred megayears, presumably supported by a
turbulent dynamo driven by the supernova explosions.
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Orthogonal polynomials in several variables potentially useful in pde

Tom H. Koornwinder

A system of orthogonal polynomials (OP’s) {pn}∞n=0 on R with respect to a positive
measure µ on R is called classical if there is a second order differential operator L
such that Lpn = λnpn (n = 0, 1, 2, . . .) for certain eigenvalues λn. By a theorem of
Bochner [1] there are three families of classical OP’s (up to an affine transformation
of the argument of the OP):

1. Hermite: pn = Hn, dµ(x) = e−x2

dx on R,
(Lf)(x) = 1

2f
′′(x) − xf ′(x), λn = −n.

2. Laguerre: pn = Lα
n, dµ(x) = xαe−x dx on [0,∞), α > −1,

(Lf)(x) = xf ′′(x) + (α+ 1− x)f ′(x), λn = −n.

3. Jacobi: pn = P
(α,β)
n , dµ(x) = (1− x)α(1 + x)β dx on [−1, 1], α, β > −1,

(Lf)(x) = (1−x2)f ′′(x)+(β−α−(α+β+2)x)f ′(x), λn = −n(n+α+β+1).

Let µ be a positive measure on Rd such that
∫
R
|xα| dµ(x) < ∞ (α ∈ (Z≥0)

d)
and the support of µ has nonempty interior. Let Pn consist of all polynomials p
of degree ≤ n such that

∫
Rd pq dµ = 0 for all polynomials q of degree < n. Then

Pn has the same dimension
(
n+d−1

n

)
as the space of homogeneous polynomials of

degree n in d variables. Furthermore, the spaces Pn (n = 0, 1, 2, . . .) are mutually
orthogonal in L2(µ). We call {Pn}∞n=0 a system of orthogonal polynomials with
respect to the measure µ.

As a refinement of this notion we may choose an orthogonal basis {pα}α1+···+αd=n

for each space Pn, and call the polynomials pα orthogonal polynomials. Of course,
there are many ways to choose such orthogonal bases.

A system {Pn} of orthogonal polynomials in d variables is called classical if
there is a second order pdo L acting on the space of polynomials such that Pn

is an eigenspace of L for a certain eigenvalue λn (n = 0, 1, 2, . . .). As a refine-
ment there may be, apart from L = L1, d − 1 further pdo’s L2, . . . , Ld such
that L1, L2, . . . , Ld commute, are self-adjoint with respect to µ, and have one-

dimensional joint eigenspaces. Then we have OP’s pα with Ljpα = λ
(j)
α pα.

It was shown by Krall & Sheffer [8] and Kwon, Lee & Littlejohn [9] that there
are five families of classical orthogonal polynomials in 2 variables, as follows:

1. dµ(x, y) = e−x2−y2

dx dy on R2, L = 1
2 (∂xx + ∂yy)− x∂x − y∂y, λn = −n.

2. dµ(x, y) = xαyβe−x−y dx dy on [0,∞)× [0,∞), α, β > −1,
L = x∂xx + y∂yy + (1 + α− x)∂x + (1 + α− y)∂y, λn = −n.

3. dµ(x, y) = yβe−x2−y dx dy on R× [0,∞), β > −1,
L = 1

2∂xx + y∂yy − x∂x + (1 + β − y)∂y, λn = −n.
4. dµ(x, y) = xαyβ(1 − x − y)γ dx dy on {(x, y) ∈ R2 | x, y ≥ 0, x + y ≤ 1},
α, β, γ > −1, L = x(1− x)∂xx + y(1− y)∂yy − 2xy∂xy +

(
α+1− (α+ β +

γ + 3)x
)
∂x +

(
β + 1− (α+ β + γ + 3)y

)
∂y, λn = −n(n+ α+ β + γ + 2).
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5. dµ(x, y) = (1− x2 − y2)α dx dy on {(x, y) ∈ R
2 | (x2 + y2 ≤ 1}, α > −1,

L = (1− x2)∂xx + (1− y2)∂yy − 2xy∂xy − (2α+ 3)(x∂x + y∂y),
λn = −n(n+ 2α+ 2).

Orthogonal bases {pn,k}k=0,1,...,n for Pn (n = 0, 1, 2, . . .) in these five cases can
be obtained by Gram-Schmidt orthogonalization of the monomials 1, x, y, x2, xy, y2,
. . . , xn, xn−1y, . . . , xn−kyk, . . . . The resulting polynomials are as follows.

1. pn,k(x, y) = Hn−k(x)Hk(y).

2. pn,k(x, y) = Lα
n−k(x)L

β
k (y).

3. pn,k(x, y) = Hn−k(x)L
β
k (y).

4. pn,k(x, y) = P
(α,β+γ+2k+1)
n−k (1− 2x) (1 − x)kP

(β,γ)
k

(
1− 2y/(1− x)

)
.

5. pn,k(x, y) = P
(α+k+ 1

2
,α+k+ 1

2
)

n−k (x) (1 − x2)k/2P
(α,α)
k

(
y/

√
1− x2

)
.

The expansions in monomials of these polynomials pn,k do not involve all mono-
mials xm−jyj with (m, j) equal or less than (n, k) in the lexicographic ordering.
For classes 1, 2 and 3 pn,k(x, y) only contains monomials xm−jyj withm−j ≤ n−k
and j ≤ k. For classes 4 and 5 pn,k(x, y) only contains monomials xm−jyj with
m ≤ n and j ≤ k. Furthermore, in these five cases there is a second order dif-
ferental operator L2 commuting with L which has the pn,k as eigenfunctions with
eigenvalue only depending on k.

The OP’s pn,k for case 4 (on the triangular region), as explicitly given above,
were introduced by Proriol [10] in 1967. They were mentioned in the survey
paper by Koornwinder [7] in 1975. Their special case α = β = γ = 0 (constant
weight function) was rediscovered by Dubiner [2] in 1991, who was motivated by
applications to finite elements. Dubiner’s paper was much quoted in this context.
For a while, the special functions and finite elements communities were not aware
that they had a joint interest. But in 2000 Hesthaven & Teng [4] referred to
Proriol’s paper, while later Karniadakis & Sherwin in their book [6] had ample
references to papers on special functions. Conversely, in 2001 Dunkl & Xu referred
in their book [3] to Dubiner’s paper.

Another important orthogonal system for case 5 on the disk is as follows.

Rα
m,n(z) := const.

{
P

(α,m−n
n )(2|z|2 − 1)zm−n, m ≥ n,

P
(α,n−m
m )(2|z|2 − 1)zn−m, n ≥ m

((m,n) ∈ (Z≥0)
2, z ∈ C, α > −1).

Then Rα
m,n(z) = const. zmzn + polynomial in z, z of lower degree. and

∫

x2+y2<1

Rα
m,n(x + iy)Rα

k,l(x+ iy) (1− x2 − y2)α dx dy = 0 ((m,n) 6= (k, l)).
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For α = 0 these polynomials are called Zernike polynomials. They were introduced
by Zernike [11] in 1934 for applications in optics and are still much used there.
The polynomials Rα

m,n for general α first occurred in Zernike & Brinkman [12].
For numerical applications it is important that Jacobi polynomials can be ap-

proximated by polynomials which are orthogonal on finitely many equidistant
points. These are the Hahn polynomials Qn(x;α, β,N) (n = 0, 1, . . . , N) satisfy-
ing

N∑

x=0

(QnQm)(x;α, β,N)

(
α+ x

x

)(
β +N − x

N − x

)
= 0 (n 6= m).

The approximation is: limN→∞Qn(Nx;α, β,N) = const. P
(α,β)
n (1− 2x).

From the Hahn polynomials we can build polynomials (Karlin & McGregor [5])

Qn,k(x, y;α, β, γ,N) := Qn−k(x;α, β+γ+2k+1, N−k)
(
N − x

k

)
Qk(y;β, γ,N−x)

which are orthogonal on the set {(x, y) ∈ Z2 | x, y ≥ 0, x + y ≤ N} with respect
to the weights

w(x, y;α, β, γ,N) :=

(
α+ x

x

)(
β + y

y

)(
γ +N − x− y

N − x− y

)
.

They approximate the polynomials of class 4 on the triangle:

lim
N→∞

Qn,k(Nx,Ny;α, β, γ,N) = const. pα,β,γn,k (x, y),

which looks promising for applications.
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Implementation and Efficiency of Discontinuous Galerkin Spectral
Element Methods for Fluid Flow Problems

David A. Kopriva

Discontinuous Galerkin spectral element methods (DGSEMs) are high order meth-
ods with many features to make them attractive for use to compute highly accurate
solutions to fluid flow and wave propagation problems. They are geometrically flex-
ible, like finite element methods, and can be used in arbitrarily complex geometries.
They are designed so that one increases the number of degrees of freedom either
by increasing the order of approximation or by increasing the number of elements.
The result is an approximation that can be both exponentially convergent in the
polynomial order of the approximation and high order in the element size. The
methods have been shown to have exponentially small dissipation and dispersion
errors, which makes them ideal for wave propagation problems. The approxima-
tions are highly localized, making boundary conditions and parallelization easy to
implement. Finally, the DGSEMs are robust, at least when compared to strong
form spectral methods.

Conventional wisdom, however, states that DG spectral element methods are:
(i) Too hard to implement and (ii) Less efficient than other methods, especially
compact finite difference methods. We can show that, as usual, conventional wis-
dom is not necessarily correct. We will describe an efficient and simple to imple-
ment form of the spectral element method, and examine strategies for reducing its
issues with stiffness. We will also compare the approximation with an optimized
compact finite difference method to discuss the issue of relative efficiency.

We solve problems of compressible flow, approximating flows modeled by a
system of conservation laws

(1) ~qt +∇ · ~f = 0,

with fluxes

(2) ~f = ~f i + ~fv

for either inviscid problems modeled by the Euler equations of gas-dynamics or
viscous problems modeled by the compressible Navier-Stokes equations

The development of a DGSEM approximation has the following steps: The
domain of interest is decomposed into multiple elements, which can be arbitrarily
complex. Each element is mapped onto a reference element, on which a strong
form of the equations still applies, namely

q̃t +∇ · f̃ = 0,

where

J~ai = J∇ξi = ~aj × ~ak =
∂ ~X

∂ξj
× ∂ ~X

∂ξk
(i, j, k) cyclic
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J = ~ai · (~aj × ~ak) (i, j, k) cyclic

The approximation imposes three constraints: One approximates the solutions
and fluxes by polynomials in each element q̃ ≈ Q̃ ∈ PN , f̃ ≈ F̃ ∈ PM , uses a weak
form of the equations, ∫

E

(
Q̃t +∇ · f̃

)
φ = 0,

and assumes no continuity on φ ∈ PN between elements. With these approxima-
tions one gets the (weak form) of the DG approximation on the reference element

(3)

∫

E

Q̃tφdξ +

∫

∂E

F̃ ∗ · n̂ξφdS −
∫

E

F̃ · ∇φdξ = 0.

The result is a framework for approximations. One can use Quad/Hex or
Tri/Tet elements with nodal or modal bases. Different polynomials can be used for
that basis. Boundary and interior unknowns can be approximated with different
polynomial orders. The solution and fluxes can be approximated with different
orders. Integrals can be computed exactly or with quadrature. The quadrature
can be exact or inexact. One can apply the approximation to (3) or integrate by
parts again to get a penalty-like approximation.

The “Classical” spectral element approach gives an easy to implement and ef-
fective approximation. We use quadrilateral/ hexahedral elements, which allows
the use of an efficient nodal tensor product basis. The nodal basis allows for simple
application to nonlinear/variable coefficient/general complex geometry problems.
All approximations use the same polynomial order, which simplifies coding. Fi-
nally, we use a Legendre basis with Gauss-type quadrature to approximate the
integrals. The result is an element-wise approximation at each mesh point of the
form

(4)
dQi,j,k

dt
+

3∑

n=1

DξnF̃
n
i,j,k = 0,

where

Dξ1 F̃
1
i,j,k =

[
F̃ ∗(1, ηj, ζk)

ℓi(1)

w
(ξ)
i

− F̃ ∗(−1, ηj, ζk)
ℓi(−1)

w
(ξ)
i

]
+

N∑

m=0

F̃m,j,kD̂
(ξ)
im .

The primary work is therefore to compute the fluxes F̃n
i,j,k from the solution,

evaluation of the Riemann solver, e.g. F̃ ∗(−1, ηj , ζk), a series of dot products, and
a series of matrix-vector products. We see, at least in terms of implementation,
the approximation is an extension (through the matrix-vector product term) of a
standard finite volume scheme.

Finite difference approximations are assumed to be more efficient than (4) for
two reasons. First, because of the matrix-vector product, the work to compute
the spectral approximation is O

(
N2

)
, whereas it is only O (N) for a finite differ-

ence approximation. The second is that the time step restriction on the spectral
approximation is O

(
N−2

)
vs O

(
N−1

)
for finite differences. Formal analysis does
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not describe the whole situation, however. First, computer architectures today
are very efficient at computing matrix-vector multiplication. Second, boundary
approximations for the finite difference approximation are often lower order than
in the interior.

Compact finite difference methods require the solution of a tri-diagonal system -
twice. The first is to compute the derivative. The second is to add a filter. The cost
of the filter must be added because the (centered) schemes cannot be run without
one. As a result, the cost to compute a derivative is not necessarily lower for the
finite difference scheme vs the spectral. The cost per grid point is not necessarily
more expensive, either. Comparing Euler and Navier-Stokes codes, we see that for
the compressible Navier Stokes equations, a spectral element approximation of the
same order can cost only 1/3 that of the compact finite difference scheme. Finally,
because the order of approximation is usually lower at the boundaries, users of
finite difference codes refine the mesh near boundaries, making the problems more
stiff, and negating the time step advantage. The result is that in practice a finite
difference approximation is not necessarily more stiff than the spectral.

High order methods are stiff, nonetheless, and efficient strategies are needed to
speed convergence to steady-state or to take larger time steps when accuracy is
limited by stability, not accuracy, considerations. To start, we compare implicit
vs explicit time integrators. Explicit time integrators are relatively inexpensive,
but one must take large numbers of time steps. Used with a DG spectral approx-
imation, however, they are embarrassingly parallel. We can also use explicit local
time stepping to work hard only on elements where the time steps are severely
limited. On the other hand, implicit schemes for the spectral element methods are
very expensive per step. They are more complicated to program, are much more
memory intensive, and the performance is critically affected by the availability of
good preconditioners.

We compare strategies for the efficient time integration of spectral element ap-
proximations. For steady-state serial computations, at least in two space dimen-
sions, implicit approximations are very effective. However the tradeoff between
memory requirements for the preconditioner and convergence rate is severe. In
three dimensions, memory restricts approximations to relatively low order, and
parallel strategies are the most efficient. The same is true for time dependent
problems. Whereas an explicit computation may take 11K time steps per period
in a wave propagation problem vs 64 with an implicit computation, the expense of
the implicit scheme per time step can result in less than a factor of three in overall
speed up. This difference can be easily erased by parallel and/or local time step
strategies. The result is that it is not given that implicit approximations for high
order spectral approximations of compressible flow problems are the natural way
to make the methods more efficient.
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New Adaptive Artificial Viscosity Method for Hyperbolic Systems of
Conservation Laws

Alexander Kurganov

(joint work with Yu Liu)

We study finite volume Godunov-type schemes for 1-D,

(1) ut + f(u)x = 0,

and 2-D,

(2) ut + f(u)x + g(u)y = 0,

hyperbolic systems of conservation laws. In the above formulae, u ∈ RN is a vector
of conserved quantities and f(u) and g(u) are fluxes.

Godunov-type schemes form a class of projection-evolution methods, in which
at each time step the computed solution is approximated by a global conserva-
tive, sufficiently accurate and non-oscillatory piecewise polynomial reconstruction,
which is evolved in time (from a current time level to the next one) according to
the integral form of (1) (or (2), respectively). The latter is obtained by integrating
the studied system of conservation laws over the space-time control volume of size
∆t×∆x (or ∆t×∆x×∆y, respectively), where ∆t is a small temporal scale and ∆x
and ∆y are small spatial scales. First-order Godunov-type schemes are obtained
using the first-order piecewise constant reconstruction, while their higher-order
extensions hinge on replacement of the first-order reconstruction with a higher-
order one, which consists of either linear, parabolic, cubic or even higher degree
polynomial pieces.

Many of the Godunov-type schemes may be written in a particularly simple
semi-discrete form (method of lines), obtained by integrating (1) ((2)) over grid
cells of size ∆x (∆x × ∆y) and replacing the fluxes at the cell interfaces (flux
integrals along the cell boundaries) by appropriate numerical fluxes. In the 1-D
case, a semi-discrete scheme on a uniform grid with xj := j∆x can be written as
follows. Let xj± 1

2
:= xj±∆x/2 and the computational domain consists of the cells

Ij := [xj− 1
2
, xj+ 1

2
]. Then, the cell averages of u(x, t) over Ij at time t, denoted by

ūj(t) ≈
1

∆x

x
j+1

2∫

x
j− 1

2

u(x, t) dx,

are evolved in time by numerically solving the following system of ODEs:

(3)
d

dt
ūj(t) = −

Hj+ 1
2
(t)−Hj− 1

2
(t)

∆x
,

where Hj+ 1
2
is a numerical flux, obtained using the piecewise polynomial approx-

imation, reconstructed at time t using the available cell averages {ūj(t)}. In our
numerical experiments, we have used the central-upwind fluxes developed in [5, 6]
(for completeness, both the 1-D and 2-D central-upwind fluxes are briefly reviewed



258 Oberwolfach Report 05/2012

in Appendixes A and B). However, we would like to stress that the proposed adap-
tive artificial viscosity method is not tied to any specific numerical flux and can
be implemented with one’s favorite flux, for which the semi-discrete scheme (3) is
linearly stable.

It is well-known that the systems (1) and (2) admit nonsmooth solutions that
may contain shocks, contact discontinuities and rarefaction waves. Therefore,
when such solutions are to be captured, linearly stable methods may develop large
spurious oscillations and even blow up. Thus, a good numerical method must
be nonlinearly stable. Nonlinear stability of Godunov-type schemes is typically
guaranteed by enforcing non-oscillatory nature of the piecewise polynomial re-
construction with the help of nonlinear limiters. However, such limiters may be
very complicated and computationally expensive, especially when a high-order
multidimensional scheme is to be designed (see, e.g., [7] and references therein).
Alternatively, one may use less computationally expensive unlimited reconstruc-
tions, while enforcing nonlinear stability by adding artificial viscosity to the PDE
system in the regions of discontinuities. Obviously, to ensure consistency of the
numerical approximation, this artificial viscosity must vanish as ∆ → 0, where in
the 1-D case, ∆ := max(∆t,∆x) and in the 2-D case, ∆ := max(∆t,∆x,∆y).

The idea of adding artificial viscosity was first proposed in [8] and since then
it was notably adopted in many works. The major difficulty in designing a highly
accurate and robust artificial viscosity method is to make sure that a sufficient
amount of stabilizing diffusion is added wherever it is needed to ensure stability,
while in the rest of the computational domain the diffusion must be either switched
off or small enough not to affect the high accuracy of the scheme there. At the
same time, if the viscosity coefficient is too large in the areas of discontinuity, the
solution will be overly smeared there. Therefore, to achieve overall high resolution,
the viscosity should be added in an adaptive way using a certain indicator, which
should automatically pick rough parts of the computed solution and determine the
(optimal) amount of viscosity needed to be added there.

We propose a new adaptive artificial viscosity method. In our method, the
viscosity coefficients are chosen to be proportional to the size of the weak local
residual, which was originally developed in [3] and then used in [1, 4] as a smooth-
ness indicator for several adaption algorithms. The key point we use here is that
for a convergent numerical method of formal order r, the weak local residual is
proportional to ∆ near (nonlinear) shocks, while it is much smaller (∼ ∆α, α is
close to 2) at (linear) contact waves, and tiny in the smooth parts of the solution
(∼ ∆4). Therefore, the artificial viscosity vanishes as one refines the grid, so that
it is consistent with the original hyperbolic equations. Moreover, the rate at which
the viscosity coefficients decay, allows us to achieve the main goal—to stabilize the
solution at shock regions without oversmearing contact discontinuities or affecting
the high resolution of smooth parts of the computed solution.

The key question one has to address to make the adaptive artificial viscosity
method robust is how to select the coefficients of proportionality in such a way
that the computed solution is non-oscillatory, but its discontinuous parts are well
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resolved, that is, they are not overly smeared. To tune the viscosity coefficients,
we adopt the strategy proposed in [2]: for the problem at hand, the coefficients
are first adjusted on a very coarse mesh and then used for the high-resolution
computation on finer meshes.
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Numerical modeling of some geophysical flows

Mária Lukáčová-Medviďová

(joint work with Michael Dudzinski, Sebastian Noelle, Anna Hundertmark)

Typical difficulties appearing in oceanographical or atmospherical flows applica-
tions are:

• nonlinear interaction of genuinely multidimensional waves
• multiscale phenomena (wave speeds differing by orders of magnitude)
• preservation of important equilibria exactly or at least up to high order of
accuracy

• satisfying entropy inequality.

In general the multidimensional hyperbolic balance laws can be written in the
following way

ut +

d∑

i=1

fi(u)xi
= b(u, x, y),

where u is the vector of conservative variables, fi, i = 1, 2, . . . , d are flux functions,
d denotes the dimension and b(u, x, y) is the source term. Both the solution
as well as the source term might be discontinuous, the later consists usually of
nonconservative products. Typical examples are the shallow water equations with
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the source terms modelling bottom topography and the Coriolis forces, or the
Euler equations with the source term modelling gravitational forces.

Most geophysical phenomena show a very localized behaviour, i.e. we have small
regions with strong interactions in a larger surrounding area with almost steady
solutions. To resolve the interesting structures correctly and efficiently grid adap-
tation is an inevitable tool. In [1] Bollermann, Lukáčová-Medvid’ová and Noelle
extended the multidimensional finite volume evolution Galerkin (FVEG) scheme
to non-uniform, adaptive grids, allowing fine resolutions in the area of interest and
a minimal cell number in steady regions. Another crucial point in solving balance
laws is the treatment of source terms. For correct solutions, it is necessary to
evaluate the source term in such a way that certain steady states are kept numer-
ically. In fact, we have to make sure that the numerical flux and the numerical
source term cancel each other exactly, so that no spurious oscillations occur. This
property is called well-balancing. The adaptive FVEG scheme developed in [1]
preserves important equilibrium states.

Many important properties of the shallow water model rely on the fact that the
water height is positive. Typical problems including the occurrence of dry areas
are the run-up waves at a coast or tsunamis. In order to simulate these types of
problems we have developed in [2] numerical schemes that can handle the moving
shoreline in a stable and efficient way. In fact, we have developed a relatively
simple general approach to ensure the positivity preservation for arbitrary finite
volume schemes.

For modeling of stratified flows at least two (non-mixing) layers of fluids have
to be considered. Such flows arise typically in atmoshperical flows or in oceanog-
raphy. For example at the Strait of Gibraltar the upper layer corresponds to
the lighter Atlantic whereas the lower one to the denser Mediterranean water.
Mathematically, the multi-layer shallow water system belongs to a class of balance
laws in non-conservative form. The non-conservativity of the individual layers
make it nontrivial to give a sense for a weak solution, cf. [4]. Pares et al. devel-
oped the concept of the so-called path-conservative schemes, see, e.g. [10, 11, 3]
and the references therein. In [7] Karni and Abgrall illustrated that the path-
conservative schemes are in general not able to compute a correct solution to the
non-conservative hyperbolic problems, even if the correct path (in phase space)
is known. In [5] we have generalized the FVEG scheme for the non-conservative
hyperbolic systems and applied it for the two-layer shallow water equations with
dry/wet fronts. Our discretization of the source terms is based on the idea that
the total momentum is conservative. This and the well-balancy of the scheme then
determine a suitable numerical quadrature for the source term approximation.
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Another characteristic feature of many geophysical flows is their multiscale be-
haviour with wave speeds differing by orders of magnitude. If explicit time dis-
cretization is used for numerical approximation to a governing system that sup-
ports multiscale waves, the maximum stable time step will be limited by wave
speed of the most rapidly propagating waves. For geophysical flows this means
that the waves that carry the least energy and are of little physical significance
enforce a severe stability constraint. In order to obtain a reasonably efficient nu-
merical model for simulation of geophysical flows (e.g. atmospheric circulation), it
is necessary to circumvent the stability constraint associated with acoustic waves
and put the stability limit into closer agreement with the time step limitations
arising from accuracy considerations. In [6] Hundertmark, Lukáčová-Medvid’ová
and Prill have derived two types of the large time step FVEG scheme; the explicit
as well as fully implicit scheme. The first numerical simulations confirm the ef-
ficiency of the explicit large time step scheme, while the fully implicit approach
yields in some cases more robust scheme. In our recent work we are working in col-
laboration with colleagues from meteorology, cf. [9], on the development of linear
semi-implicit large time step FVEG scheme. The fully nonlinear flux is splitted
into a linear part governing the fast waves and the rest nonlinear part governing
the convective waves. In order to omit the strict stability condition dictated by
fast waves, the linear operator is approximated in time in the implicit way, while
the nonlinear one is approximated in an explicit way. This yields a desired CFL
stability condition depending just on the slow waves.

Finally, we should point out that our numerical solution should satisfy the dis-
crete entropy inequality. On the other hand, it is a well-known fact that numerical
schemes based on a linearization strategy can produce solutions violating the en-
tropy condition. In [8] Lukáčová-Medvid’ová and Tadmor studied theoretically the
entropy stability of a class of finite volume methods (including the FVEG schemes)
for one-dimensional systems of hyperbolic conservation laws. Following Tadmor
[12] we have derived the second-order numerical viscosity which guarantees the en-
tropy stability of the Roe-type FV schemes. Numerical experiments confirm that
the resulting schemes have just the right amount of numerical viscosity: small
enough to retain sharp shock profiles, yet large enough to enforce a correct reso-
lution of sonic rarefactions. In [2] we have also derived a two-dimensional entropy
fix that can be viewed as a multi-dimensional generalization of the Harten and
Hyman entropy correction.
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[5] M. Dudzinski, M. Lukáčová-Medvid’ová: Well-balanced bicharacteristic-based scheme for
multilayer shallow water flows including wet/dry fronts, submitted, 2011.
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Discontinuous Galerkin schemes based on reconstruction and defect
corrections

Claus-Dieter Munz

(joint work with Alexander Filimon, Michael Dumbser, Gregor Gassner)

Discontinuous Galerkin (DG) methods are powerful computational tool for the
solution of systems of conservation laws. A comprehensive description of the de-
velopment of discontinuous Galerkin schemes and their applications can be found,
e.g., in the recent text book by Hesthaven and Warburton [1]. The idea to apply a
reconstruction to the solution of a discontinuous Galerkin scheme was introduced
by Cockburn et al. in [2]. At the final time of the simulation they enhanced the ac-
curacy by a post-processing of the data. However, information which is lost due to
numerical dissipation during time evolution can not be restored by this approach.
In the time dependent case, Dumbser et al. [3] combined the DG finite element
variational formulation and reconstruction in every time step. This approach is
based on an explicit time integration and has since been applied to a wide range of
applications. In this paper, we combine reconstruction the variational formulation
for steady state simulations. The pure post-processing according to [2] can not
guarantee that the improved solution is a steady state. We use in our approach
the improved approximate solution and a corresponding high-order approximation
to estimate the defect or local discretization error of the obtained solution only.
By including the estimated error as an additional term on the right hand side,
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this scheme commutes a corrected solution to higher-order accuracy. The advan-
tage within this approach is that the improved higher order solution is a steady
state. For the correction one only needs the inversion of the basic lower-order DG
scheme, however, it has to be solved several times within an iteration loop which
is often called iterated defect correction, see, e.g., [4].

The main idea of the considered defect correction approach in an abstract form
is the following. We write the problem to be numerically solved as

(1) Lu = 0,

where u denotes the desired solution and L denotes some differential operator, for
example the compressible Navier-Stokes equations. The numerical approximation,
in our case a discontinuous Galerkin scheme based on piecewise polynomials of
degree N , is written as

(2) Lhuh = 0,

where Lh is the approximation of the operator L, uh is the approximate solution
and h denotes a discretization parameter such as the mesh width. Lh is imposed
to be stable and can hopefully be inverted in an efficient way. This method is
called the basic scheme. Beside the basic scheme, a higher-order scheme of order
M + 1, with M > N is available, called the correction scheme and abbreviated as

(3) Shwh = 0,

with the approximate solution wh. We note that this correction scheme will not
be solved for the solution wh, but serves as an error approximation only.

The iterated defect correction approach then has the following structure. The
initial approximate solution is obtained by solving the basic scheme (1):

(4) u
(0)
h = L−1

h r
(0)
h with r

(0)
h := 0.

Next the iteration cycle from level k to k+1 is described, starting from the steady

state solution u
(k)
h and the residual r

(k)
h at the old iteration level k. It consists of

the following steps:

(1) Reconstruction : To estimate the local discretization error, a higher-

order solution w
(k)
h of degreeM > N is reconstructed from the lower-order

solution u
(k)
h of degree N . As usual, the reconstruction operator is based

on the solution in a certain neighborhood of the respective control volume.
(2) Defect Estimation: This reconstruction allows to estimate the local

defect by the higher-order correction scheme (3) as

(5) d
(k+1)
h := Shw

(k)
h .

This defect is used to calculate a new right hand side for the basic scheme:

(6) r
(k+1)
h := r

(k)
h − d

(k+1)
h .
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(3) Correction : Next, the basic solution method is applied to this modified
equation to yield the improved steady state approximate solution

(7) u
(k+1)
h = L−1

h rk+1
h = L−1

h

(
Lhu

(k)
h − d̃

(k+1)
h

)
.

This procedure is iteratively applied until some stopping criterion is achieved. Here

we demand that d̃
(k+1)
h becomes small.

The discontinuous Galerkin scheme allows an approximate solution uh which is
the union of local polynomials defined in each grid cell and may be discontinuous
across grid cell interfaces:

(8) uh(~x, t) := ui(~x, t) =
N∑

l=1

ûi,l(t)φi,l(~x) for ~x ∈ Qi.

Here, Qi is an auxiliary grid cell, the functions φi,l = φi,l(~x) are the basis functions
spanning the space of polynomials of degree N restricted to the cell Qi, whereas
the polynomial coefficients ûi,l(t) are the time dependent degrees of freedom. The
discontinuous Galerkin method is applied to advection diffusion reaction equations.
After the spatial discretization a system of ordinary differential equations in time
has to be solved which consists in every grid cell of N equations being coupled to
the neighbors by the interface fluxes:

(9)
d

dt
ûi = TV

(
ûi, ~φ

)
+ TS

(
ûi, û

+
i ,
~φ
)
+ TR

(
ûi, ~φ

)

where TV , TS, and TR contain the cell volume integrals of the fluxes, the cell
interface integrals of the fluxes and the source terms, respectively. The coupling
to the adjacent grid cells is expressed in TS by û+i which contains the values

from the neighboring cells. The vector ~φ contains the components of all the basis
functions. The correction scheme is now again a DG variational formulation and
reads as

(10)
d

dt
ûi = TV

(
ŵi, ~φ

)
+ TS

(
ŵi, ŵ

+
i ,
~φ
)
+ TR

(
ŵi, ~φ

)

where ŵi denotes the vector of the coefficients of the reconstructed polynomial wi

for the grid cell Qi. The approximate solution wh has the same form as (8), but
is a polynomial of degree M > N . The first N coefficients are the same as for uh,
while the coefficients for the enrichment of the basis are obtained by reconstruction
based on [3]. The cell volume and cell interface integrals as well as the source terms
in (10) are calculated from the reconstructed higher-order accurate solution.

The building blocks for the interated defect corrections are then given by start-

ing vector u
(0)
h which is the steady state solution of the basic scheme with order

of accuracy N + 1, the reconstruction and the defect estimation. The reconstruc-

tion enhances the piecewise polynomial approximation u
(k)
h of degree N to w

(k)
h of

degree M . The defect of this solution is estimated by (10). The estimated local
discretization error is subtracted from the right hand side of the basic scheme,
resulting in the modified equation. Applying the solution procedure of the basic

scheme to this modified equation, the approximate solution u
(k+1)
h is obtained.
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According to a convergence criterion the whole procedure is stopped or repeated
by returning to the first step within the interation procedure.
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Nonlinear and Linear Boundary Conditions for Wave Propagation
Problems

Jan Nordström

We discuss linear and nonlinear boundary conditions for wave propagation prob-
lems. The concepts of well-posedness and stability are discussed by considering a
specific example of boundary treatment occurring in the modelling of earthquakes.
The implications and difficulties are related to events occuring in fully nonlinear
equations. Numerical simulations illustrate the theoretical discussion.

The principles for construction stable and convergent high order finite difference
schemes for linear and nonlinear boundary conditions are discussed in the context
of wave propagation problems in earthquake simulations. The first requirement
for obtaining reliable solutions is well-posedness, see [1],[2]. A typical recipie is:

• Energy method and choice of boundary conditions
• Uniqueness and existence

Once we have a well-posed problem, it is meaningful to construct a numerical
approximation. A recipie for constructing a stable and convergent scheme is:

• Energy method and choice of penalty parameters
• Convergence

For linear problems, the recipie outlined above guarantees that the scheme con-
verges to a reliable solution. However, as we will see, this is not always the case
for nonlinear boundary conditions.

The material is modeled as linear elastic with frictional sliding occuring on
thin internal interfaces. The internal interfaces, or faults, are governed by highly
nonlinear friction laws. The friction laws relate the slip velocities to the tractions
acting on the fault. The elastic wave equations govern the wave propagation
between the faults. Theis will result in a linear problem with nonlinear boundary
conditions (the friction laws). For a readup on these problems see [3],[4]. Finally,
the relation to fully nonlinear problems are shortly discussed and a few examples
are given.
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Efficient Filtering Techniques for Stabilization and Postprocessing of
discontinuous Galerkin solutions to hyperbolic conservation laws

Sigrun Ortleb

(joint work with Andreas Meister, Thomas Sonar)

This talk is concerned with the development of efficient shock capturing strategies
for DG methods on triangular grids solving hyperbolic conservation laws such
as the Euler equations of gas dynamics or the shallow water equations. In this
context, in collaboration with Andreas Meister and Thomas Sonar, a low-cost
damping mechanism based on adaptive modal filtering applied to the Proriol-
Koornwinder-Dubiner basis was invented in [15, 16].

In order to deal with the possible instability of high order methods due to
Gibbs oscillations, different damping strategies have been proposed for the DG
scheme. Often, limiters are applied as in the case of the Runge-Kutta discon-
tinuous Galerkin (RKDG) method developed by Cockburn and Shu in a series
of papers, see the review [3]. There, the polynomial degree N of the limited so-
lution in a given “troubled” cell is reduced to N = 1 and a modified minmod
function is employed to redefine the slope. Modifying the minmod function avoids
an approximation of only first order at smooth extrema. Nevertheless, once the
minmod limiter is enforced in a given cell, the information inherent in the higher
order coefficients is lost. Consequently, so-called moment limiters starting from
the higher order coefficients have been suggested in [1, 12, 22]. However, at discon-
tinuities, also these more sophisticated limiters generally reduce the polynomial
degree to N = 1. A different approach is to use WENO or HWENO reconstruc-
tions in regions marked by a shock sensor, see [18, 23], but these techniques are
computationally expensive. Directly introducing artificial viscosity terms in the
semidiscrete formulation has been considered e.g. in [6, 10, 17]. These terms ad-
ditionally have to be implemented within the DG scheme and in case of explicit
time stepping, the bounds on the admissible time step size are more restrictive
due to these additional stabilizing terms.

Our new damping mechanism is therefore related to ideas originating from the
class of spectral methods. Spectral methods may apply spectral viscosity [21]
in order to stabilize the calculation, introducing diffusion-like terms that depend
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on the spatial resolution and distinguish different frequencies of the numerical
solution. This concept has successfully been applied to large-eddy simulations in
[11]. As suggested in [7], the introduction of spectral viscosity can be carried out
within the spectral filtering framework as a so-called modal filter directly applied
to the expansion coefficients – if the viscosity is formulated by means of the Sturm-
Liouville operator corresponding to the chosen basis. Spectral filtering has broad
applications as a stabilization technique, such as propagation of shock waves [4, 5],
large-eddy simulation [13, 20] and atmospheric modelling [14]. Spectral filtering
on triangular grids has also been considered in [9], where it was used to prevent
aliasing instabilities.

We hence derive a relationship between modal filtering for discontinuous Galer-
kin methods on unstructured triangular grids and the introduction of spectral
viscosity to the scheme where the corresponding high order viscosity term is
based on the Sturm-Liouville operator associated to the Proriol-Koornwinder-
Dubiner(PKD) polynomials. Consequently, the viscosity can be efficiently im-
plemented as a modal filter which is applied to the numerical solution after each
time step of the basic DG scheme. As for each time step only the multiplication
of the coefficients of the approximate solution with a precomputed factor is nec-
essary, this filtering approach has the advantage of a reduced computational cost
compared to moment limiters, (H)WENO reconstruction or the introduction of
regular diffusion. With respect to an increasing polynomial degree N , high order
accuracy of modal filtering applied to the PKD expansions of sufficiently smooth
functions has been proven in [15]. However, with respect to grid refinement, an
adaptive application is necessary.

The aim of modal filtering in general is to stabilize the numerical scheme, but
by construction no effort is made to obtain an oscillation-free approximation. In-
dead, there will still be spurious Gibbs oscillations close to a discontinuity of the
exact entropy solution, that may nevertheless have the potential to contain high
order information. In general, spectral filtering is hence used in combination with
a second protagonist: a postprocessing technique used to reconstruct from the
available information a more accurate and less oscillatory pointwise approxima-
tion. The computational cost of a postprocessing technique has only a small effect
on the overall cost of the scheme, as the postprocessing procedure is only carried
out at output times to visualize an essentially non-oscillatory numerical solution.
Hence, cost optimization is of less importance here.

Reprojection techniques such as the Gegenbauer reconstruction method [8] are
a powerful approach especially in one space dimension and provide sophisticated
means to reconstruct a high order oscillation-free approximation even close to dis-
continuities, but are difficult to apply in higher space dimensions. As an alternative
to these reprojection methods, Sarra [19] studied the application of the so-called
digital total variation (DTV) filter as a possible “black box” postprocessing tool
for spectral methods. The DTV filter was developed by Chan, Osher and Shen [2]
as an image processing technique and is based on the minimization of a penalized
TV energy. It is therefore well-suited for the purpose of removing oscillations –
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which are regarded as noise – while preserving edges, i.e. discontinuities of the
exact solution. In particular, no a-priori edge detection is necessary. In the case of
DG solutions on triangular grids, our results in [15, 16] show that the application
of DTV postprocessing is a very promising approach to reconstruct important in-
formation from the slightly oscillatory approximations. This is especially the case
for a novel adaptive variant of the DTV filter and for DTV graphs based on the
underlying DG triangulation.
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Time discretisation methods for the incompressible Navier-Stokes
equations

Joachim Rang

This paper considers the simulation of time–dependent laminar flows which are
described by the incompressible Navier–Stokes equations. One example is the flow
around a cylinder [15]. Discretisations in space and time as well as a linearisa-
tion for solving the nonlinear problem in each discrete time are required. There
are many possible approaches, see [4] for a comprehensive presentation, and the
quest for optimal methods is still an active field of research. With respect to the
spatial discretisation an inf–sup stable finite element method [3] is used. It has
been demonstrated in a number of numerical studies, e.g. in [15, 7, 6], that the
pair of second order velocity Q2 and first order discontinuous pressure P disc

1 on
quadrilateral and hexahedral meshes is among the best performing finite element
methods.

The topic of the paper is the temporal discretisation of the incompressible
Navier–Stokes equations. By far the most simulations of incompressible flows use
explicit schemes or simple implicit schemes, like the backward Euler scheme, the
Crank–Nicolson scheme or the fractional–step θ–scheme. In this paper we concen-
trate on implicit schemes, which are appropriate for laminar flow simulations and
which avoid the nasty CFL condition. Studies [8] and [9] showed that for obtaining
accurate results at least a second order time–stepping scheme is necessary. For
this reason, only schemes with at least this accuracy will be considered.

The main focus of this paper is on an adaptive time step control. An adaptive
time step control needs some error indicator or estimator on which the determina-
tion of the next time step is based. This error estimator suggests a new time step
size to reach a given accuracy. If the time step size is too small a lot of unnecessary
computational work has to be done. Otherwise, if the time step size is too large,
the results may become too inaccurate.

An adaptive time step control may undoubtedly improve the accuracy and effi-
ciency of incompressible flow simulations substantially. However, with the simple
implicit schemes commonly used, an efficient time step control is hard to achieve.
For this reason simulations with implicit temporal discretisations and adaptive
time step control are rather rare in the literature. In [18] it is proposed to compare
the results of a Crank–Nicolson step and a step of the fractional–step θ–scheme,
which are both of second order. The quality of the time step is estimated on the
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basis of different constants in the error estimates. This approach roughly doubles
the computational efforts compared to using just one of these schemes. A different
approach is considered in [1] where space–time adaptive finite elements are used
and the numerical error is approximated with two numerical solutions obtained
at different times. The predictor–corrector schemes offer another possibility, for
example the Adams–Bashford method combined with the Crank-Nicolson scheme,
see [4].

In [17] space–time adaptivity is used with embedding techniques for the con-
trol of the time step length. This approach is more efficient but it requires the
use of more sophisticated time stepping schemes. This will be performed in this
paper: two classes of diagonally implicit Runge–Kutta methods, for example the
pressure–corrected fractional–step θ–scheme, and linearly implicit Runge–Kutta
methods (Rosenbrock–Wanner methods (ROW-methods)) will be studied. Both
classes of methods allow the computation of a second numerical solution with al-
most the same Runge–Kutta coefficients such that an effective time step control
can be achieved [10, 5]. In the case of DIRK-methods schemes like ESDIRK3
and ESDIRK4 [2] or DIRK34 [14] can be used. Common ROW-methods may be
ROS3P [11], RODASP [16], ROWDAIND2 [12], and ROS34PW2 [13].
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Towards Numerical Simulation of Fluid-Structure-Acoustics
Interaction

Michael Schäfer

(joint work with D. Sternel, M. Kornhaas, F. Flitz, S. Nowak)

Noise generation in urban environments often is caused by turbulent flows or vi-
brating structures. Various possible interactions between flows, structures and
acoustics can result in rather complex multi-physical processes. Thus, the model-
ing and simulation of corresponding effects is quite challenging. Such a simulation
tool should be able to adequately handle flow-acoustics, structure-acoustics and
fluid-structure couplings together with all mutual interactions. In this contribu-
tion we report on an approach towards the fully coupled numerical simulation of
such kind of problems.

Fluid-structure interaction is accomplished by an implicit partitioned approach
based on the in-house flow solver FASTEST, the structural solver FEAP and the
MpCCI coupling interface. A high numerical efficiency is ensured by the proper
involvement of geometrical multigrid methods. It turns out that a global multigrid
approach in which the fluid-structure iteration acts as a smoother shows favorable
convergence properties.

For flow-acoustics coupling we employ a numerical scheme for the simulation of
aerodynamic noise caused by flows at low Mach numbers. To account for sound
propagation the flow solver FASTEST is extended by a fully parallelized high reso-
lution (HR) finite-volume scheme that solves the linearized Euler equations (LEE)
on boundary fitted, block-structured hexahedral meshes. Aeroacoustic sources
are obtained from the unsteady calculated flow field following the basic ideas of
Hardin’s and Pope’s acoustic/viscous splitting technique. In order to speed up
the coupled simulation and to account for the very different length scales of small
turbulence structures and the long-wave acoustics, the acoustic field is computed
on hierarchically coarsened flow grids. Further, different time scales are employed
so that multiple acoustic time steps can be performed within one flow time step.
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One key issue for handling the structure-acoustics is the proper treatment of
moving grids. This is realized via an arbitrary Lagrangian-Eulerian (ALE) formu-
lation.

Results for various test cases are given for verification and validation of the
different approaches. Comparative studies illustrate the accuracy and efficiency
of the methods. Details about the approaches and the results can be found in
Refs. [1, 2, 3, 4].

References

[1] M. Kornhaas. Effiziente numerische Methoden für die Simulation aeroakustischer Probleme
mit kleinen Machzahlen, PhD thesis, TU Darmstadt (2012).
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ENO reconstruction and ENO interpolation are stable

Eitan Tadmor

(joint work with Ulrik S. Fjordholm, Siddhartha Mishra)

The ENO reconstruction procedure was introduced in 1987 by Harten et. al. [9]
in the context of accurate simulations for piecewise smooth solutions of nonlinear
conservation laws. Since then, the ENO procedure and its extensions, [19, 10, 20,
11, 12, 13], have been used with a considerable success in Computational Fluid
Dynamics; we refer to the review article of Shu [21] and the references therein.
Moreover, ENO and its various extensions, in particular, with subcell resolution
scheme (ENO-SR), [10], have been applied to problems in data compression and
image processing in [14, 1, 5, 17, 4, 6, 2, 3] and references therein.

There are only a few rigorous results about the global accuracy of the ENO
procedure. In [2], the authors proved the second-order accuracy of ENO-SR recon-
struction of piecewise-smooth C2 data. Multi-dimensional global accuracy results
for the so-called ENO-EA method were obtained in [3]. Despite the extensive lit-
erature on the construction and implementation of ENO method and its variants
for the last 25 years, we are not aware of any global, mesh independent, stability
results. This brings us to the main result of this paper, stating the stability of the
ENO reconstruction procedure in terms of the following sign property.
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Theorem [The sign property [7, 8]]. At each cell interface, the jump of the re-
constructed ENO pointvalues cannot have an opposite sign to the jump in the un-
derlying cell averages. Thus, even though the reconstructed polynomial may have
large variations within each cell, its jumps at cell interfaces always have the same
sign as the jumps of the cell averages. Moreover, the relative size of these jumps
– after and before reconstruction, is uniformly bounded.

Remark 1.1. We emphasize that the Theorem is valid for any order of ENO
reconstruction and for any mesh size. It is valid for non-uniform meshes and makes
no assumptions on the underlying function, other than that the cell averages must
be well-defined, which is guaranteed if e.g. for L1 data. This is a remarkable
rigidity property of the piecewise-polynomial interpolation.

Remark 1.2. The stability asserted in the Theorem is realized in terms of
the reconstructed pointvalues at cell interfaces. These are precisely the input
for the construction of high-order accurate finite volume schemes for nonlinear
conservation laws (see Shu [21]), and the relation between these values and the
cell averages will be the main point of study in this paper. This approach was
taken in [10], where we use the sign property to construct arbitrarily high-order
accurate entropy stable ENO schemes for systems of conservation laws.

Remark 1.3. The proof of both the sign property depends on the judicious
choice of stencils in the ENO Algorithm, and it may fail for other choices of ENO-
based algorithms. In particular, the popular WENO methods, which are based
on upwind or central weighted ENO stencils, [15, 16, 18], fail to satisfy the sign
property, as can be easily confirmed numerically.

References

[1] S. Amat, F. Arandiga, A. Cohen and R. Donat. Tensor product multiresolution with error
control. Signal. Process., 82, 587-608, 2002.

[2] F. Arandiga, A. Cohen, R. Donat and N. Dyn. Interpolation and approximation of piecewise
smooth functions. SIAM J. Num. Anal., 43 (1), 41-57, 2005.

[3] F. Arandiga, A. Cohen, R. Donat, N. Dyn and B. Matei. Approximation of piecewise
smooth functions and images by edge-adapted (ENO-EA) nonlinear multiresolution tech-
niques. Appl. Comput. Har. Anal., 24, 225-250, 2008.

[4] R . Baraniuk, R. Claypoole, G. M. Davis and W. Sweldens. Nonlinear wavelet transforms
for image coding via lifting. IEEE Trans. Image. Proces., 12, 1449-1459, 2003.

[5] T. Chan and H. M. Zhou. ENO-wavelet transforms for piecewise smooth functions. SIAM.
J. Num. Anal., 40 (4), 1369-1404, 2002.

[6] A. Cohen, N. Dyn and M. Matel. Quasilinear subdivison schemes with applications to ENO

interpolation. Appl. Comput. Har. Anal., 15, 89-116, 2003.
[7] U. S. Fjordholm, S. Mishra and E. Tadmor. Entropy stable ENO scheme. Hyperbolic prob-

lem: Theory, Numerics and Applications., Proc. of HYP2010 - the 13th international con-
ference on Hyperbolic problems held in Beijing, June, 2010, to appear.

[8] U. S. Fjordholm, S. Mishra and E. Tadmor. Eno reconstruction and ENO interpolation are
stable. J. FoCM, to appear, 2012.

[9] A. Harten, B. Engquist, S. Osher and S. R. Chakravarty. Uniformly high order accurate
essentially non-oscillatory schemes. J. Comput. Phys., 71 (2), 1987, 231-303.



274 Oberwolfach Report 05/2012

[10] A. Harten. ENO schemes with subcell resolution. J. Comput. Phys., 83, 148-184, 1989.
[11] A. Harten. Recent developments in shock-capturing schemes. Proc. International Congress

of Mathematicians, Vol. I, II (Kyoto, 1990), 1549-1559, Math. Soc. Japan, Tokyo, 1991.
[12] A. Harten. Multi-resolution analysis for ENO schemes. Algorithmic trends in computational

fluid dynamics (1991), 287-302, Springer, New York, 1993.
[13] A. Harten. Adaptive multiresolution schemes for shock computations. J. Comput. Phys.

115(2), 319-338, 1994.
[14] A. Harten. Multiresolution representation of cell-averaged data: a promotional review. Signal

and image representation in combined spaces, 361-391, Wavelet Anal. Appl., 7, Academic
Press, San Diego, CA, 1998.

[15] G. Jiang and C-W. Shu. Efficient implementation of weighted ENO schemes. J. Comput.
Phys., 126, 1996. 202-226.

[16] D. Levy, G. Puppo and G. Russo.Central WENO schemes for hyperbolic systems of conser-
vation laws. Math. Modelling Numer. Anal. 33, 1999, 547-571.

[17] B. Matei. Méthodes multirésolution non-linéaires- applications au traitement d’image. Ph.
D thesis, University Paris VI, 2002.

[18] J. Qiu and C.-W. Shu. On the construction, comparison, and local characteristic decompo-
sitions for high order central WENO schemes, J. Comput. Phys., 183, 2002, 187-209.

[19] C. W. Shu and S. Osher. Efficient implementation of essentially non-oscillatory schemes -
II, J. Comput. Phys., 83, 1989, 32 - 78.

[20] C. W. Shu. Numerical experiments on the accuracy of ENO and modified ENO schemes. J.
Sci. Comput., 5 (2), 1990, 127-149.

[21] C. W. Shu. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for
hyperbolic conservation laws. ICASE Technical report, NASA, 1997.

Spectral Difference Method using PKD Polynomials

Martina Wirz

(joint work with Thomas Sonar)

Our main idea is to achieve an high order Spectral Difference Method (SDM) on
triangulations as proposed in Wang et. al. [4] based on various basis polynomials,
espacially PKD polynomials [3] which form an orthogonal basis of the triangle
T2 = {(r, s)| − 1 ≤ r, s ≤ 1, r + s ≤ 0} and are defined as

φk(r, s) := gℓm(r, s) := P 0,0
ℓ

(
2(1 + r)

(1− s)
− 1

)
(1 − s)ℓP 2ℓ+1,0

m (s),

where Pα,β
n are Jacobi polynomials defined on [−1, 1]. Furthermore, additional

filtering and enhanced edge detection shall be used to deal with discontinuous
solutions.
The SDM can be seen as a kind of flux reconstruction method where the flux F
is expanded, using certain basis polynomials Φk, as

F(u(x, t)) =

N∑

k=1

F̂k(t)Φk(x)

(where in its original form Lagrange polynomials Φk := Lk were chosen) and
inserted in the underlying conservation law

ut(x, t) +∇ · F(u(x, t)) = 0.
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Application of a coordinate transform ψ to the standard element T2 yields the
discrete update scheme

(1) ut(x) = −
N∑

k=1

F̂k(t) · Jψ∇r,sΦk(ψ
−1(x)).

Here, ∇r,sΦk(ψ
−1(x)) are universal coefficients, and only the Jacobian Jψ has

to be stored for each triangle. To be able to deal with general (non-linear) con-
servation equations or systems, high order modal filters based on the choosen
polynomials are applied to avoid spurious oscillations and yield similar results as
for the Discontinuous Galerkin Method (DGM) used by Meister et al. [1].
Extending the SDM to arbitrary basis polynomials gives rise to two different ap-
proaches to compute the resulting coefficients F̂k(t) in each timestep t, quadrature
on the one hand and interpolation on the other. Since many quadrature point are
needed for the quadrature approach, we use two dimensional Lobatto interpolation
points based on [2] to compute F̂k(t). For both single equations (Advection, Burg-
ers) as well as Euler systems numerical tests and convergence studies are carried
out; an example is given in table 2 where the slight instability of the SDM for
higher orders on triangles is visible. To capture discontinuities using additional
filtering, we apply edge detectors based on the conjugated fourier partial sum and
extend the idea of concentration kernels proposed by Gelb et al. [5], [6], which ac-
celerates the slow convergence of the partial sums, to two dimensions using Móricz
[7] results. Furthermore, we give a first approach how to compute the fourier co-
efficients directly and exact from some given PKD coefficients ûk(t) in a triangle.
In future work, numerical tests with these extensions will be carried out and some
stabilization approaches for the SDM will be presented.
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p # triangles L1-error EOC
1 68 7.969320e-01
1 272 2.386226e-01 1,73972594082076
1 1088 6.354128e-02 1,90896462981423
1 4352 1.621991e-02 1,96992833810494
2 68 1.612112e-01
2 272 2.541214e-02 2,66536219981066
2 1088 3.773871e-03 2,75140085823421
2 4352 5.832253e-04 2,69391989951972
3 68 2.320903e-02
3 272 1.863603e-03 3,6385197647317
3 1088 1.556608e-04 3,58161697606403
3 4352 1.392347e-05 3,48281496799031
4 68 2.327890e-03
4 272 1.025595e-04 4,5044898493104
4 1088 5.428514e-06 4,23975999429687
4 4352 2.869398e-06 0,919809238033143
5 68 2.189395e-04
5 272 5.198862e-06 5,39619259136033
5 1088 1.920169e-07 4,75889066274948
5 4352 6.509167e-07 -
6 68 1.641784e-05
6 272 2.253653e-07 6,18685512473208
6 1088 2.519384e-08 3,1611224606827
6 4352 4.551174e-05 -

Table 2. EOC and L1-error for the advection equation, sine wave
with periodic boundary conditions.
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