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Introduction by the Organisers

This meeting was well attended by more than 50 participants with broad ge-
ographic representation from five continents. The participants were statisticians,
applied probabilists, financial mathematicians, econometricians, and economists.
They represented rather different aspects of quantitative risk management

Through the last four years, the financial markets have been turbulent with
frequent swings of unexpected magnitude. The recent financial crisis, paired with
a wide economic downturn, is being analyzed by scientists, financial analysts, busi-
ness leaders, and politicians. Among these persons with rather different opinions
and interests there is agreement about the following fact: one reason for the crisis
was bad risk management at the levels of the individual financial institutions and
supervisory authorities.

In March 2008, when we held the first Oberwolfach Meeting on the Mathematics

and Statistics of Quantitative Risk Management, the crisis had already evolved.
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However, the dramatic collapse of the international financial system which hap-
pened shortly afterwards was hardly predictable. Since then, governments and fi-
nancial institutions have been aiming at more stability and security in the national
and international financial systems. A drastic improvement of the risk manage-
ment of banks and insurance companies is definitely called for as well as a reform
of those agencies which shall supervise individual institutions. Indeed regulators
(FSA London, ECB Frankfurt, OCC Washington) are now organizing meetings
with titles such as ”An academic view on capital adequacy” and ”Exploring sta-
tistical issues in financial risk modeling and banking regulation.” Mathematicians
are explicitly asked for their opinion.

In the last four years, various publications have blamed mathematicians and
statisticians for unrealistic models and unreliable statistical procedures in risk
management. In the Oberwolfach Report 15/2008 we mentioned the following: A
natural topic of the workshop was the recent worldwide crisis of credit portfolios.

In the past, mathematical models have been designed to avoid the present situa-

tion and they are implemented in the framework of the Basel II accord. But they

obviously have not been used successfully. Both formal and informal reasons for

the present situation were discussed. Although it would be inappropriate to blame

a mathematical model for its failure, there is evidence that various models are too

simplistic and do not incorporate market information sufficiently fast. Further, it

appears that the statistical analysis of the data was not conducted with sufficient

care.

At the 2008 Oberwolfach meeting on quantitative risk management we have
reported about the high complexity of sophisticated mathematical and statistical
methods needed for risk management. We mentioned areas of research such as
the theory of high-dimensional data structures, rare event simulation, the theory
of risk measures, multivariate and non-linear time series analysis, extreme event
modeling and extreme value statistics, optimization, and linear, quadratic and
convex programming. These are distinct areas with highly specialized experts
who rarely communicate on a day-to-day basis. However, the present financial
crisis indicates that specialists from different areas must collaborate to overcome
the deficiencies of the models of quantitative risk management and their statistical
implementation.

The theoretical results in quantitative risk management have immediate practi-
cal consequences for the financial and insurance industries as well as for supervisory
authorities: they allow one to design mathematically tractable, practically relevant
and statistically estimable risk measures.

Risks in insurance and finance are described by mathematical and stochastic
models such as partial differential equations and stochastic differential equations
describing the evolution of prices of risky assets (such as stock, composite stock in-
dices, interest rates, foreign exchange rates, commodities) or difference equations
describing the evolution of financial returns. The Handbook of Financial Time

Series (Springer 2009), edited by R.A. Davis and T. Mikosch provides a com-
prehensive description of the state of the art in the area of financial time series
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analysis. Applications of these discrete and continuous time series models require
advanced simulation and numerical methods and statistics plays a vital role in
model building, from estimation to validation and model refinement. The models
often depend on unknown parameters (possibly infinite dimensional) which have
to be estimated from historical data.

Due to their complexity, problems of quantitative risk management require
cross-disciplinary solutions. They involve functional analysts who design and an-
alyze risk measures, probabilists who model with stochastic differential equations
and time series, applied probabilists who solve the simulation problems, numerical
analysts who deal with high-dimensional integration and optimization problems,
and statisticians who fit stochastic models to the data and predict future values
of risky assets.

Among the challenging problems that were discussed at the meeting are the
following:

• Statistical methods; dependence measures/high dimensional/co-
pulae/extremal dependence (Patton, Reiss, Segers, Rüschendorf, Nesle-
hova, Nolan, Bücher, Stoev): Risk problems are often high-dimensional:
a portfolio typically consists of several hundred assets. For example, the
number of historical observations is often smaller than the number of pa-
rameters in the model. There is a growing statistics literature dealing with
large-dimensional data and these modern techniques need to be adapted
to problems in risk management. A number of modeling strategies were
proposed for modeling dependence, from high-dimensional copula mod-
els to nonparametric and parametric inference procedures. While high-
dimensional problems in this field remain a big challenge, there are now
some serious attempts at dealing with these issues.

• Financial time series modeling (Teräsvirtä, Klüppelberg, Sørensen,
Leucht, Davidson, Wintenberger, Nguyen, Kabluchko): Risks are depen-
dent across the assets and through time. A key problem is the sensitivity
of a particular modeling paradigm to model miss-specification of multi-
variate models. Robustness to parameter estimation does not quite fit the
bill, since, for example, parameters coming from a particular copula (aris-
ing from a multivariate distribution) may be completely meaningless if the
true model does not involve such quantities. Emphasizing this aspect of
sensitivity to model miss-specification encompasses a number of the issues
that were addressed at this workshop.

• Pricing and hedging under nonstandard conditions (Ruf, Becherer,
Protter, Lindskog, Hernández-Hernández, Zhou): Many of the recent ad-
vances in financial mathematics study properties of models under nonstan-
dard assumptions. These include, robust hedging under model uncertainty,
expanding filtrations with applications to insider trading, hedging of op-
tions on exploding exchange rates, and optimal stopping when probability
is distorted.
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• Foundational issues (Rogers, Filipović, Teichmann): There was much
discussion on the interaction between firms, banks, and households, and
other topics such as term structure of interbank risks.

• Insurance and reinsurance in a financial environment (Barrieu,
Blanchet, Albrecher, Steffensen): In this group of talks, classical insur-
ance problems were embedded in a financial environment. Topics included
generalized ruin concepts for a portfolio of insurance contracts, reinsur-
ance and securitization of insurance risks in the presence of regulatory
constraints, continuous time recursive utility, and modeling and simula-
tion of stochastic risk networks.

• High frequency/volatility modeling (Tauchen, Todorov, Podolskij,
Fasen): One of the topics that has attracted a great deal of attention is
high-frequency modeling and estimation. New estimation procedures for
the volatility density were proposed and new models were developed that
pay closer attention to the interplay between jumps and extreme events.
Refinements of techniques for high frequency data include Edgeworth ex-
pansions for functionals of continuous diffusion processes and limit theory
for multivariate high-frequency data.

• Algorithmic trading (Cont, Hult, Yam): With advances of super high-
speed trading, there has been increasing interest in the mathematical mod-
eling of order-books. Even though at this point in time, the models are
still in their infancy, a number of modeling scenarios were discussed. Su-
per high-speed trading was a principal topic of discussion with the Visiting
Committee consisting of political and business leaders. During this discus-
sion, researchers expressed concern about the necessity of moving towards
a super high-speed trading market and that there could be a number of un-
intended and uncontrollable consequences. Certainly, this is an issue that
requires more collaboration between politicians, regulators, the banking
industry, and of course, mathematicians. Other topics of discussion in-
cluded an analysis of the flash crash and the use of game theory.

We summarize the main results of the workshop.

• Theory and statistical practice of quantitative risk management bear a
multitude of challenging, partly contradictory problems which need to be
discussed by mathematicians and statisticians in a rigorous way. The
workshop aimed at emphasizing major problems in this area.

• The workshop brought together leading researchers from different disci-
plines to discuss successes, failures and limitations of present technology
in quantitative risk management. Ultimately, the workshop facilitated
communities and collaboration across disciplinary boundaries.

• The workshop aimed at setting the stage for future statistical and math-
ematical research in the area of quantitative risk management.
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Abstracts

A Relaxed Ruin Condition in Insurance

Hansjörg Albrecher

(joint work with H. Gerber and M. Wüthrich)

In this talk we introduce a generalized ruin concept for a portfolio of insurance
contracts in collective risk theory, which can be interpreted as a smoothing of the
classical criterion. Concretely, a level-dependent Poisson process is started at the
beginning of every excursion of the surplus process below zero, and the portfolio is
declared bankrupt at the first event of this Poisson process with negative surplus.
It is shown that this formulation can lead to quite tractable calculations for bank-
ruptcy probabilities, bankruptcy deficits, discounted dividend payments according
to barrier strategies and related quantities. It also turns out that some classical
identities in risk theory have similarly simple analogues in this more general setup.
Finally it is discussed in some detail on how one can interpret the necessary safety
loading contained in insurance premiums in the light of the current insurance regu-
latory framework, in particular in a cost-of-capital approach, considering the roles
and objectives of policyholders, investors and regulators.

Reinsurance and Securitisation of Insurance Risk: the Impact of
Regulatory Constraints

Pauline Barrieu

(joint work with Henri Loubergé)

The convergence of the insurance industry with capital markets has become ever
more important over recent years (see, for instance, the papers by Cummins and
coauthors [6], [7], [8] or [9] or the recent handbook by Barrieu and Albertini [1]).
Such convergence has taken many forms. And of the many convergence attempts,
some have been more successful than others. The first academic reference to the
use of capital markets in order to transfer insurance risk was in a paper by Goshay
and Sandor [12]. The authors considered the feasibility of an organized market, and
how this could complement the reinsurance industry in catastrophic risk manage-
ment. In practice, whilst some attempts have been made to develop an insurance
future and option market, the results have, so far, been rather disappointing. In
parallel to these attempts, however, the Insurance-Linked Securities (ILS) market
has been growing rapidly over the last 15 years. There are many different mo-
tivations for ILS, including risk transfer, capital strain relief, boosting of profits,
speed of settlement, and duration. Different motives mean different solutions and
structures, as the variety of instruments on the ILS market illustrate.

Among the key challenges faced by the insurance industry, the management of
longevity risk, i.e. the risk that the trend of longevity improvements significantly
changes in the future, is certainly one of the most important. Ever more capital
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has to be accumulated to face this long-term risk, and new regulations in Europe,
together with the recent financial crisis only amplify this phenomenon. Under the
Solvency II rules, put forward by the European Commission, the more stringent
capital requirements that have been introduced for banks should also be applied to
insurance company operations (see Eling et al. [10]; Harrington [13]; and Geneva
Association [11]). Moreover, in addition to this risk of observing a significant
change in the longevity trend, the insurance sector is facing some basis risk, as
the evolution of the policyholders mortality is usually different from that of the
national population, due to selection effects. These selection effects have different
impacts on different insurance companies’ portfolios, as mortality levels and speeds
of decrease and increase are very heterogeneous in the insurance industry. This
makes it hard for insurance companies to rely on national, or even industry, indices,
in order to manage their own longevity risk. Hence, it has become more and
more important for insurance companies and pension funds to find a suitable and
efficient way to deal with this risk. Recently, various risk mitigation techniques
have been attempted. Reinsurance and capital market solutions, in particular,
have received an accrued interest (see for instance Blake and Burrows [2] and
Blake et al. [3]). Even if no Insurance-Linked Securitisation (ILS) related to
longevity risk has yet been completed, the development of this market for other
insurance risks has been experiencing a continuous growth for several years, mainly
encouraged by changes in the regulatory environment and the need for additional
capital from the insurance industry. Today, longevity risk securitisation lies at the
heart of many discussions, and is widely seen as a potentiality for the future.

The classical and standard framework of risk sharing in the insurance industry,
as studied, for instance, by Karl Borch ([4] and [5]), involves two types of agents:
primary insurers and a pool of reinsurers. The risk is shared among different
agents of the same type, but with both differing sizes and utility functions. The
possible financial consequences of some risks, such as large-scale catastrophes or
dramatic changes in longevity trends, however, make this sharing process difficult
to conduct within a reinsurance pool. In this case, capital markets may improve
the risk-sharing process. Indeed, non-diversifiable risks for the insurance industry
may be seen as a source of diversification for financial investors, such as a new
asset class, enhancing the overall diversification of traditional investment portfo-
lios, particularly in case of low correlations with overall market risk. Even if the
correlation is not necessarily low, which may be the case for changes in longevity,
the non-diversifiable insurance risks may be shared by a larger population of finan-
cial investors, instead of being assumed by reinsurers only. In the first section of
the paper, we focus on some insurance risks (for instance, longevity and mortality
risks), and, from a general point of view, study the optimal strategy of risk-sharing
and risk-transfer between three representative agents (an insurer, a reinsurer and
an investor), taking into account pricing principles in insurance and finance within
a unified framework. Comments on an optimal securitisation process and, in par-
ticular, on the design of an appropriate alternative risk transfer are made. In the
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second section, we focus on the impact of the regulation upon risk transfer, by dif-
ferentiating reinsurance and securitisation in terms of their impact upon reserves.
More precisely, we will study the bias introduced by the regulatory framework,
and the subsequent impact upon the aforementioned risk transfer techniques.
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On Robust Hedging under Model Uncertainty

Dirk Becherer

In the (over-)idealized model world of a complete Black-Scholes financial market,
any financial risk can always be eliminated completely by dynamic hedging. If we
drop this unrealistic assumption, then a bank holding some risky position X has
to realize that it may face some inevitable residual risk that cannot be “hedged
away”, whatever hedging strategy were to be applied. Nonetheless, the firm may
still dynamically hedge its risk the best that is can, minimzing the risk even if the
minimum may well be greater than zero.

Assume the bank uses some good dynamic coherent risk measure which may
be interpreted as a monetary capital requirement imposed by regulation. Such

can be represented by the maximum of conditional expectations EQ
t [X ] over an

m-stable family of equivalent valuation-measures Q (generalized scenarios). The
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simplest parametrization of this family may be by radial or elliptical constraints on
the Girsanov kernels of the measures Q, which gives rise to no-good-deal bounds
as being bounds on (conditional) expected growth rates. It is natural to define
the hedging strategy as minimizer of the risk measure of the outstanding position
after (partial) hedging. We show that the good-deal valuation bounds then arise
as the market-consistent transformation of the risk measure and how they and
the hedging strategy depend on the market price of risk, and thereby on precise
knowledge about the objective probability measure P .

Under model uncertainty, we do not have such precise knowledge about the
unique real-world probability measure {P}. Instead we do only know that it
should lie in some confidence region {P ν : ν ∈ V } of possible probabilities. Pa-
rameterizing that region as before by constraints on Grisanov kernels, we show
that in general there is a duality gap and the robust hedging strategy under model
uncertainty is not arising from a saddle point. Despite there being a worst case
probability scenario ν̄ ∈ V which maximizes the good deal bounds, the respective
model-specific hedging strategy would not ensure a supermartingale property for
hedging errors uniformly over all scenario valuation measures to be considered. A
robust hedging strategy which ensures such property uniformly under uncertainty
is different in general since it must not rely on knowledge that is not available
to us under model uncertainty. Instead, it robust hedging corresponds to a ro-
bust risk measure that in general may be even higher than the one corresponding
to the worst-case scenario ν̄. If uncertainty however is big enough in relation to
the growth bounds for no-good-deals, we show that there is a saddle point and
that the robust hedging strategy is the risk minimzing strategy under the valua-
tion measure from the saddlepoint and does not involve a speculative component
anymore.

All risk measures appearing and the respective hedging strategies can be de-
scribed and analyzed conveniently on a Wiener space by using the classical theory
of backward stochastic differential equations with Lipschitz generators.

Modeling and Efficient Rare Event Simulation of Systemic Risk in
Insurance-Reinsurance Networks

Jose Blanchet

(joint work with Yixi Shi)

In this paper we develop efficient simulation methodology for risk assessment in
the context of multiple insurance and / or financial entities with correlated expo-
sures to each others risks and to systematic market factors. We also introduce a
modeling framework for insurance / reinsurance networks that evolves according
to equilibrium settlements at the time of default of companies. These settlements
are computed as the solution of an associated linear program at each time period.
Our types of models are closely related to and, in fact, inspired by network models
that have been analyzed in the literature in recent years, for example [5], [6], [1],
[8] and [9], to name a few.
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Our interest lies in efficiently computing the conditional expected amount of the
losses in the entire system, given the failure of a selected set of market participants.
We say a market or system dislocation occurs when a specific group of participants
fails. Using our results and simulation procedures we aim at characterizing the
features that dictate a significant change in the nature of the system’s exposures
given market dislocation. For instance, if a specific set of market participants is not
sufficiently capitalized to fulfill their obligations, what is the most likely reason
for such a situation, a systemic shock in the market or a sequence of specific
idiosyncratic events pertaining to the specific set of participants?

Because of the various levels of dependence present in our model, and the struc-
ture of rare-events of interest (involving several companies defaulting) it turns out
that the design of efficient simulation procedures for rare events in our setting
typically involves more than one jump, whereas most of the rare-event simulation
literature dealing with heavy tailed models involves single-jump events (see [7],
[4], and [3]). The challenge in this situation lies in the fact that we are condition-
ing on rare events (involving several market participants) whose occurrence could
most likely be caused by several large jumps. Also, given the integer programming
formulation that we provide in one of our main results in the paper, obtaining the
large deviations behavior involves dealing with a combinatorial problem.

Our goal is to provide a simulation framework that can be rigorously shown
to achieve strong optimality properties (in terms of designing estimators with
bounded coefficient of variation uniformly as the event of interest becomes more
and more rare, see [2]), and yet it is simple to implement in practice. Our contri-
butions can therefore be summarized as follows:

a) We propose a dynamic network model that allows to deal with counter-
party default risks with a particular aim of capturing cascading losses at
the time of company defaults by means of the solution of a linear pro-

gramming problem that can be interpreted in terms of an equilibrium.
The formulation allows to define the evolution of reserve processes in the
network throughout time.

b) The linear programming formulation and therefore the associated equilib-
rium of settlements at the time of default recognizes: 1) the correlations
among the risk factors, which are assumed to follow a linear factor model,
2) the contractual obligations among the companies, which are assumed to
follow popular contracts in the insurance industry (such as stop-loss and
retrocession), and 3) the interconnectedness of the network.

c) Our model allows to obtain asymptotic results and a description of the
asymptotic most likely way in which the default of a specific group of
participants can occur. This description indicated is fleshed out explicitly,
by means of an integer programming problem (a Knapsack problem with
multiple knapsacks). Such a description emphasizes the impact of the
interactions between the severity of the exogenous claims, their dependence
structure, and the interconnectedness of the companies on the systemic
risk landscape of the entire network under consideration.
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d) We propose a class of strongly efficient estimators for computing the ex-
pected loss of the network at the time of dislocation conditioning on the
event that a specific set of market participants fails to meet their obliga-
tions. In addition, these estimators allow to compute associated condi-
tional distributions of the network exposures given the dislocation caused
by a set of specific players. The estimation of these conditional distribu-
tions is performed with a computational cost (as measured by the number
of simulation replications) that remains bounded even if the dislocation
event of interest becomes more and more rare.

This is the first paper to the best of our knowledge that constructs provably ef-
ficient estimators in the setting of heavy-tailed risk networks. We have formulated
our results in terms of regularly varying distributions for simplicity. Deriving log-
arithmic asymptotics with basically the same qualitative conclusions under other
types of tail distributions is straightforward. Our asymptotic results are obtained
with the intention of gaining qualitative insight in the form of approximations
that are correct up to a constant in the regularly varying setting. The role of the
simulation algorithms, then, is to endow these asymptotic approximations with a
computational device that allows one to efficiently obtain quantitatively accurate
results.

Now, as the connections in the network increase, one must account for all pos-
sibilities in which failure can occur. We have aimed at laying out a program to
obtain estimators that have uniform relative error, for a fixed network architecture,
as the probability of a failure event becomes more and more rare. At the same
time, we have settled for estimators that are relatively easy to implement with
the indicated performance guarantee. When the networks have more connections,
the relative variance (even though uniformly bounded as rare events of interest
become more and more rare) could grow. The question of designing rare-event
simulation algorithms in which both uniformity in the size of the network and the
underlying large deviations parameter are ensured is certainly important but too
open-ended at this point. We plan to investigate this avenue in future research.

We envision that our model and our computational approach, based on efficient
simulation, can serve as a prototype for the analysis of other types of risk networks.
The philosophy behind this paper is that in the presence of network risk models,
the settlements and the evolution of the associated risk reserve processes should
obey equilibrium constraints that dictate the cascading effect when default occurs.
These constraints can effectively be modeled in terms of linear programs, which,
coupled with a linear factor heavy-tailed model, allow to describe qualitatively the
most likely way in which simultaneous defaults occur. Efficient simulation, in the
form of provably efficient Monte Carlo estimators, should then be used to make
more precise quantitative statements.

References

[1] H. Amini, R. Cont, and A. Minca. Stress testing the resilience of financial networks. Inter-
national Journal of Theoretical and Applied Finance, 14, 2011.



The Mathematics and Statistics of Quantitative Risk Management 365

[2] S. Asmussen and P. Glynn. Stochastic Simulation: Algorithms and Analysis. Springer-
Verlag, New York, NY, USA, 2008.

[3] J. Blanchet and C. Li. Efficient rare-event simulation of compound sums. ACM Transactions
in Modeling and Computer Simulations, 21:1–10, 2011.

[4] J. Blanchet and J. C. Liu. State-dependent importance sampling for regularly varying ran-
dom walks. Adv. in Appl. Probab., 40:1104–1128, 2008.

[5] R. Cont and A. Moussa. Too interconnected to fail: contagion and systemic risk in financial
networks. Financial Engineering Report 2009-04, Columbia University, 2009.

[6] R. Cont, A. Moussa, and Edson Bastos e Santos. The brazilian financial system: network
structure and systemic risk analysis. Working Paper, 2010.

[7] P. Dupuis and H. Wang. Subsolutions of an Isaacs equation and efficient schemes of impor-
tance sampling. Mathematics of Operations Research, 32:723–757, 2007.

[8] L. Eisenberg and T. Noe. Systemic risks in financial systems. Management Science, 47:236–
249, 2001.

[9] L. C. G. Rogers and L. A. M. Veraat. Failure and rescue in an interbank network. Working
Paper, 2011.

Multiplier Bootstrap of Tail Copulas

Axel Bücher

In the problem of estimating the lower and upper tail copula we propose two boot-
strap procedures for approximating the distribution of the corresponding empirical
tail copulas. The first method uses a multiplier bootstrap of the empirical tail cop-
ula process and requires estimation of the partial derivatives of the tail copula.
The second method avoids this estimation problem and uses multipliers in the two-
dimensional empirical distribution function and in the estimates of the marginal
distributions. For both multiplier bootstrap procedures we prove consistency.

For these investigations we demonstrate that the common assumption of the ex-
istence of continuous partial derivatives in the the literature on tail copula estima-
tion is so restrictive, such that the tail copula corresponding to tail independence
is the only tail copula with this property. We solve this problem and prove weak
convergence of the empirical tail copula process under nonrestrictive smoothness
assumptions which are satisfied for many commonly used models.

Modeling Endogenous Risk

Rama Cont

(joint work with Lakshithe Wagalath)

The traditional approach to statistical modeling in finance models markets risks
as ”exogenous’ stochastic processes, whose dynamics is unaffected -or marginally
affected- by trading strategies of market participants. This picture fits well with
fragmented markets where many small participants act more or less independently,
leading to a random outcome in price behavior, but does not describe the type
of extreme market fluctuations and systemic risk which results from large capital
flows generated by a few institutional investors, as witnessed in the recent cri-
sis. We argue that such endogenous risks may be modeled mathematically and
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that taking them into account challenges the traditional perspectives on quanti-
tative risk management and estimation of risk parameters such as volatility and
correlation.
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Modelling Extreme Rainfall in Space and Time

Anthony Davison

(joint work with Raphaël Huser)

This talk will describe the space-time modelling of extreme hourly rainfall based on
max-stable processes fitted to data at a number of spatial locations. The ingredi-
ents are large amounts of data, random set modelling and max-stable processes fit-
ted using composite threshold likelihoods. Though essentially a conceptual model,
the approach seems to work surprisingly well.

Limit Theory for High Frequency Sampled MCARMA Models

Vicky Fasen

This talk is based on the papers Fasen [4, 5]. Multivariate continuous-time ARMA
(MCARMA) processes V = (V(t))t≥0 are the continuous-time versions of the well
known multivariate ARMA processes in discrete time having short memory. They
are important for stochastic modelling in many areas of application as, e.g., signal
processing and control, econometrics, high-frequency financial econometrics, and
financial mathematics. Starting at least with Doob in 1944, Gaussian CARMA
processes under the name Gaussian processes with rational spectral density ap-
peared, where the driving force is a Brownian motion. To obtain more realistic
marginal distributions and dynamics Brockwell (cf. [1, 2]) analyzed Lévy driven
CARMA models, which were extended by Marquardt and Stelzer [6] to the mul-
tivariate setting; see [3] for an overview and a comprehensive list of references.

Lévy processes are defined to have independent and stationary increments, and
are characterized by their Lévy-Khintchine representation. An Rm-valued Lévy
process (L(t))t≥0 has the Lévy-Khintchine representation E(eiΘ

′
L(t)) = exp(−tΨ(Θ))

for Θ ∈ Rm, where Θ′ is the transpose of Θ and

Ψ(Θ) = −iγ′LΘ+
1

2
Θ′ΣL Θ+

∫

Rm

(
1− eix

′Θ + ix′Θ1{‖x‖2≤1}

)
νL(dx)

with γL ∈ Rm, ΣL a positive semi-definite matrix in Rm×m and νL a measure on
(Rm,B(Rm)), called the Lévy measure, which satisfies

∫
Rm min{‖x‖2, 1} νL(dx) <

∞ and νL({0m}) = 0. The triplet (γL,ΣL, νL) is called characteristic triplet, be-
cause it characterizes completely the distribution of the Lévy process. A two-sided
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Lévy process (L(t))t∈R is then a composition of two independent and identically
distributed Lévy processes (L(1)(t))t≥0 and (L(2)(t))t≥0 in

L(t) =

{
L(1)(t) for t ≥ 0,

L(2)(−t−) for t < 0.

We refer to the excellent monograph of Sato [8] for more details on Lévy processes.
Then the MCARMA(p, q) model can be interpreted as the solution to the p-th-

order d-dimensional stochastic differential equation

P(D)V(t) = Q(D)DL(t) for t ∈ R,

where D is the differential operator,

P(z) := Id×dz
p +P1z

p−1 + . . .+Pp−1z +Pp(1)

with P1, . . . ,Pp ∈Md×d(R) is the auto-regressive polynomial and

Q(z) := Q0z
q +Q1z

q−1 + . . .+Qq−1z +Qq(2)

with Q0, . . . ,Qq ∈ Md×m(R) is the moving-average polynomial. Since a Lévy
process is not differentiable, this definition can not be used, however, it can be
interpreted to be equivalent to the following.

Definition 1. Let (L(t))t∈R be an Rm-valued Lévy process and let the polynomials

P(z),Q(z) be defined as in (1) and (2) with p, q ∈ N0, q < p, and Q0 6= 0d×m.

Moreover, define

Λ = −




0d×d Id×d 0d×d · · · 0d×d

0d×d 0d×d Id×d
. . .

...
...

. . .
. . . 0d×d

0d×d · · · · · · 0d×d Id×d

−Pp −Pp−1 · · · · · · −P1




∈Mpd×pd(R),

E = (Id×d,0d×d, . . . ,0d×d) ∈Md×pd(R) and B = (B′
1 · · ·B′

p)
′ ∈Mpd×m(R) with

B1 := . . . := Bp−q−1 := 0d×m and

Bp−j := −
p−j−1∑

i=1

PiBp−j−i +Qq−j for j = 0, . . . , q.

Assume N (P) = {z ∈ C : det(P(z)) = 0} ⊆ (−∞, 0) + iR. Furthermore, the Lévy

measure νL of L satisfies
∫

‖x‖>1

log ‖x‖ νL(dx) <∞.

Then the Rd-valued causal MCARMA(p, q) process (V(t))t∈R is defined by the

state-space equation

V(t) = EZ(t) for t ∈ R,(3)
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where

Z(t) =

∫ t

−∞

e−Λ(t−s)B dL1(s) for t ∈ R(4)

is the unique solution to the pd-dimensional stochastic differential equation dZ(t) =
−ΛZ(t) dt + B dL(t). The function f(t) = Ee−ΛtB1(0,∞)(t) for t ∈ R is called

kernel function.

This definition of a MCARMA(p, q) process is well-defined; see Marquardt and
Stelzer [6]. In particular, the MCARMA(1, 0) process and Z in (4) are multivariate
Ornstein-Uhlenbeck processes. Moreover, Lemma 3.8 of Marquardt and Stelzer [6]
says that the set N (P) is equal to the set of eigenvalues of −Λ, which means that
for a MCARMA(p, q) process the eigenvalues of Λ have strictly positive real parts.
The class of MCARMA processes is huge.

Before we can present the main results, we recall the definition of multivariate
regular variation.

Definition 2. A random vector U ∈ Rm is multivariate regularly varying with

index −α < 0 if and only if there exists a non-zero Radon measure µ on (R
m \

{0m},B(Rm \ {0m})) with µ(R
m \ Rm) = 0 and a sequence (an)n∈N of positive

numbers increasing to ∞ such that

nP(a−1
n U ∈ ·) v

=⇒ µ(·) as n→ ∞ on B(Rm \ {0m}).
The limit measure µ is homogenous of order −α, i.e., µ(uB) = u−αµ(B) for u > 0,
B ∈ B(Rm\{0m}). We write U ∈ R−α(an, µ).

If the representation of the limit measure µ or the norming sequence (an)n∈N

does not matter we also write R−α(an) and R−α, respectively. For further in-
formation regarding multivariate regular variation of random vectors we refer to
Resnick [7].

Definition 3. Let U be an Rm-valued random vector, α ∈ (0, 2], (an)n∈N be an

increasing sequence of positive constants tending to ∞, µ be a Radon measure on

(R
m \{0m},B(Rm \{0m})) with µ(Rm \Rm) = 0 and Σ ∈Mm×m(R) be a positive

semi-definite matrix. We write U ∈ DA(α, an,Σ, µ) if either

(a) α < 2, Σ = 0m×m, µ is non-zero and U ∈ R−α(an, µ), or
(b) α = 2, an = n1/2, µ = 0 and E‖U‖2 <∞ with E(UU′) = Σ.

The main results are the following.

Theorem 1. Let (V(t))t∈R be an Rd-valued causal MCARMA(p, q) process as

given in Definition 1 driven by the R
m-valued Lévy process (L(t))t∈R with L(1) ∈

DA(α, an, µ,Σ) and E(L(1)) = 0m if α > 1. If α = 1 we assume additionally that

L(1) is symmetric.

(a) Let (S(t))t≥0 be an Rm-valued α-stable Lévy process with characteristic triplet

(
∫
‖x‖≤1

xµ(dx),Σ, µ) if α ∈ (0, 1] and (−
∫
‖x‖>1

xµ(dx),Σ, µ) if α > 1. Sup-

pose the sequence of positive constants (hn)n∈N satisfies hn ↓ 0 as n → ∞ and
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limn→∞ nhn = ∞. Then as n→ ∞,

hna
−1
nhn

n∑

k=1

V(khn) =⇒
(∫ ∞

0

f(s) ds

)
S(1).

(b) Let h > 0 and let (Sf ,h(t))t≥0 be an Rd-valued α-stable Lévy process with char-

acteristic triplet (
∫
‖x‖≤1

xµf ,h(dx),Σf ,h, µf ,h) if α ∈ (0, 1] and

(−
∫
‖x‖>1 xµf ,h(dx),Σf ,h, µf ,h) if α > 1, where

µf ,h(B) =

∫ h

0

∫

Rm

1B

(
∞∑

k=0

f(kh+ s)x

)
µ(dx)ds for B ∈ B(Rd\{0d}),(5)

Σf ,h =

∫ h

0

(
∞∑

k=0

f(kh+ s)

)
Σ

(
∞∑

k=0

f(kh+ s)

)′

ds.(6)

Suppose E‖L(1)‖r <∞ for some r > 2 if α = 2. Then as n→ ∞,

a−1
n

n∑

k=1

V(kh) =⇒ Sf ,h(1).

Theorem 2. Let (V(t))t≥0 be an Rd-valued MCARMA(p, q) process as given in

Definition 1 driven by the Rm-valued Lévy process (L(t))t∈R with

L(1) ∈ DA(α, an, µ,Σ).
(a) Let (S(t))t≥0 be an Rm-valued α-stable Lévy process with characteristic triplet

(0m,Σ, µ). Suppose the sequence of positive constants (hn)n∈N satisfies hn ↓ 0 as

n→ ∞ and limn→∞ nhn = ∞. Then as n→ ∞,

hna
−2
nhn

n∑

k=1

V(khn)V(khn)
′ =⇒

∫ ∞

0

f(s)[S,S]1f(s)
′ ds,

which is equal to E(V(0)V(0)′) if α = 2. In particular, this means for a one-

dimensional CARMA process (V (t))t≥0 with f = f , L = L and S = S that as

n→ ∞,

hna
−2
nhn

n∑

k=1

V (khn)
2 =⇒

(∫ ∞

0

f(s)2 ds

)
[S, S]1.

(b) Let h > 0 and let (Sf ,h(t))t≥0 be an Rd-valued α-stable Lévy process with

characteristic triplet (0d,Σf ,h, µf ,h) where µf ,h and Σf ,h are given as in (5) and

(6), respectively. Then as n→ ∞,

a−2
n

n∑

k=1

V(kk)V(kh)′ =⇒ [Sf ,h,Sf ,h]1,

which is equal to Σf ,h if α = 2.

Thus, if E‖L(1)‖2 <∞, the sample autocovariance is a consistent estimator.



370 Oberwolfach Report 07/2012

References
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The Term Structure of Interbank Risk

Damir Filipović

(joint work with Anders Trolle)

We use the term structure of spreads between rates on interest rate swaps indexed
to LIBOR and overnight indexed swaps to infer a term structure of interbank risk.
Using a dynamic affine term structure model, we decompose the term structure of
interbank risk into default and non-default components. The default component
is modeled by assuming the credit quality of a individual borrowing bank in the
LIBOR panel may deteriorate from the one of the continually refreshed LIBOR
panel over the duration of the loan. This is similar to the approach used in [1].
We then posit a multiplicative residual factor to capture the component of the
interest rate swap spread that is not due to default risk. An multivariate affine
factor specification yields closed form expressions for LIBOR, interest rate swap,
overnight indexed swap, and credit default rates. We estimate the model by quasi
maximum likelihood in conjunction with unscented Kalman filtering.

We find that, on average, from August 2007 to January 2011, the fraction of
total interbank risk due to default risk increases with maturity. At the short end
of the term structure, the non-default component is important in the first half
of the sample period and is correlated with various measures of funding liquidity
and market liquidity. Further out the term structure, the default component
is the dominant driver of interbank risk throughout the sample period. These
results hold true in both the USD and EUR markets and are robust to different
model parameterizations and measures of interbank default risk. The analysis has
implications for monetary and regulatory policy as well as for pricing, hedging,
and risk-management in the interest rate swap market.

The talk is based on the joint paper [2] with Anders Trolle.
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Dual Formulation of the Robust Efficient Hedging Problem

Daniel Hernández-Hernández

(joint work with Erick Treviño-Aguilar)

1. The hedging problem

Let W := {Wt}0≤t≤T be a two dimensional Brownian motion defined in the
canonical Wiener space ν = (Ω,F ,F = {Ft}t∈[0,T ], R). W has componentsW 1 and

W 2. The filtration F is the augmented filtration generated byW . The discounted1

price process of a risky asset X1 in a financial market has dynamics

dX1 = X1b(X2)dt+X1σ(X2)dW 1(1)

dX2 = g(X2)dt+ αdW 1 + βdW 2.(2)

The positive constants α and β satisfy α+ β = 1. The coefficients of this system
satisfy the
Assumption A
The functions b, σ and g together with the corresponding derivatives are bounded.
Moreover σ0 := infx∈R σ(x) > 0.

The process X2 represents an exogenous source of risk driving the price process
X1. The market represented by X1 is free of arbitrage opportunities in the sense
that the family of equivalent martingale measures:

M := {P ∼ R | X1 is a local martingale under P}
is non empty. In the next definition a class of random variables which are going
to represent discounted payoffs of European options is introduced.

Definition 1. A non negative random variable Ĥ represents the discounted payoff

of a European option if it is FT -measurable and the cost of superhedging πsup(Ĥ)
is finite:

πsup(Ĥ) := sup
P∈M

EP [Ĥ ] <∞.

We fix a European option Ĥ = H(X1) satisfying Definition 1. The payoff
function H : [0,∞) → R+ is continuous. In the next definition we introduce
admissible hedging strategies.

1For simplicity we are taking an interest rate r = 0.
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Definition 2. An admissible hedging strategy is a pair (c, ξ) where c ∈ R+ is a

non negative constant and ξ := {ξt}0≤t≤T is a F-predictable process such that the

stochastic integral

V
ξ
t :=

∫ t

0

ξsdX
1
s

is well defined for all t ∈ [0, T ] and the corresponding value process

V c,ξ := c+ V
ξ
t

is R-a.s. non negative for all t ∈ [0, T ].

In this case, we say that the stochastic process ξ is c-admisible and the family

of such processes is denoted by Adc.

We now specify the robust loss functional L(·). The loss function l satisfies the
Assumption B
The function l : R+ → R+ is continuously differentiable, strictly convex and
strictly increasing. Moreover, l(0) = l′(0) = 0 and

lim
x→∞

l′(x) = ∞.

We now specify the penalty function γ. We fix a continuous coercive2 function
h : R2 → R+ with h(0) = 0. Given Q≪ R, there exists a process η such that

ZQ :=
dQ

dR
= ET (η ·W ), Q− a.s.

due to Lemma 3. We penalize Q by

(3) γ(Q) := EQ

[∫ T

0

h(ηs)ds

]
.

Remark 1. We define a convex risk measure ρ in L∞(R) by

ρ(X) = sup
Q≪R

{EQ[−X ]− γ(Q)} .

The function γ is the minimal penalty function of ρ. Moreover, ρ is continuous

from below

Hereon L(·) will denote the robust loss functional with penalization (3). Given
a nonegative bounded random variable X , it is defined as

L(X) = sup
Q≪R

{EQ[l(X)− γ(Q)}

Definition 3. Let c be a constant satisfying 0 ≤ c ≤ πsup(H). The value of the
partial hedging problem at cost c for the European option H with respect to the
loss functional L(·) is defined by

EH(c) := inf
ξ∈Adc

L((H − V
c,ξ
T )+).

2h(η) ≥ k ‖η‖2 + c.
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A c-admissible strategy ξ∗ ∈ Adc is optimal if it attains the value EH(c) in the

following sense

EH(c) = L((H − V
c,ξ∗

T )+).

2. Density of probability measures

Definition 4. A probability measure P is a localized martingale measure if X1

is a P -local martingale and P is locally equivalent to R. We denote this class by

Mloc. Note that a martingale measure P ∈ M is a localized martingale measure.

The next lemmas hold true in the canonical Wiener space.

Lemma 2. Let P ∈ Mloc be a localized martingale measure. Then, there exists a

F-progressively measurable process η3 such that
∫ ·

0

(η3t )
2dt <∞, R− a.s. locally

and the local martingale

(4) ZP
t := Et(−θ(X2) ·W 1 − η3 ·W 2), for all t ∈ [0, T ],

is locally the density process of P with respect to R. Here θ(x) := b(x)
σ(x) is the Sharp

ratio.

The next lemma explicitly describes the dynamics of absolutely continuous
probability measures.

Lemma 3. Let Q ≪ R be an absolutely continuous probability measure. Then,

there exist F-progressively measurable processes ηi for i = 1, 2 such that
∫ T

0

(ηit)
2dt <∞, Q− a.s.

and the local martingale

(5) Z
Q
t := Et(η1 ·W 1 + η2 ·W 2),

is a continuous version of the density process of Q with respect to R.

3. The stochastic control problem associated to the dual function

DH

Instead of constructing the optimal strategy ξ∗ from the mixed problem of Defi-
nition 3, we are going to start from the dual representation of the next proposition.

Proposition 4. The value function EH can be represented as

(6) EH(c) = sup
λ>0

{DH(λ)− λc} ,

where DH : (0,∞) → R is the concave function defined by

DH(λ) := sup
h∈D

sup
Q≪R

{
EQ

[
u

(
Ĥ, λ

h

ZQ

)]
− γ(Q)

}
.
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The convex family D is a closed subset of L0(R) and “extends” the family of
martingale measures. The conjugate function u of l is defined by

u(h, λ) := inf
0≤v≤h

{
l((h− v)+) + λv

}
.

Let us introduce some notation. Let x = (x1, x2, x3) be a vector in R3, which
typically will represent the starting point of a controlled process X. The vector
η = (η1, η2, η3) will denote the three components of a control process valuated in
R3. We are going to set

η := (η1, η2),

so that, by a slight abuse of notation, η = (η, η3). Given a probability measure
Q≪ R we denote by ZQ the density in FT .

The goal in this section is to study the value function

(7) V (t, x) := ess supη∈At
J(t, x; η),

with cost functional

(8) J(t, x; η) := EQ

[
u
(
H(X1

T ), X
3
T

)
| Ft

]
− γt(Q).

Here the t-penalty function γt(Q) is given by

γt(Q) =

{
EQ[

∫ T

t
h(ηs)ds | Ft], if Q≪ R

+∞, in other case

Algorithmic Trading with Markov Chains

Henrik Hult

An order book consists of a list of all buy and sell offers, represented by price
and quantity, available to a market agent. The order book changes rapidly, within
fractions of a second, due to new orders being entered into the book. The vol-
ume at a certain price level may increase due to limit orders, i.e. orders to buy
or sell placed at the end of the queue, or decrease because of market orders or
cancellations.

In this talk a high-dimensional Markov chain is used to represent the state
and evolution of the entire order book. The design and evaluation of optimal
algorithmic strategies for buying and selling is studied within the theory of Markov
decision processes. General conditions are provided that guarantee the existence of
optimal strategies. Moreover, a value-iteration algorithm is presented that enables
finding optimal strategies numerically.

As an illustration a simple version of the Markov chain model is calibrated to
high-frequency observations of the order book in a foreign exchange market. In
this model, using an optimally designed strategy for buying one unit provides a
significant improvement, in terms of the expected buy price, over a naive buy-one-
unit strategy.
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Extremes of Independent Gaussian Processes

Zakhar Kabluchko

Let X1, X2, . . . be independent stationary Gaussian processes on R
d. Consider

the pointwise maximum Mn(t) = max{X1(t), . . . , Xn(t)}. We discuss necessary
and sufficient conditions under which the maximum Mn converges, as n → ∞
and after suitable normalization procedures, to a non-trivial limiting max-stable
process. The class of limiting processes is described in terms of their Poisson
process representations.

Modelling Energy Markets: Spot Prices, Futures and Risk Premiums

Claudia Klüppelberg

(joint work with Fred E. Benth and Gernot Müller and Linda Vos)

We present a new model for the electricity spot price dynamics, which is able to
capture seasonality, low-frequency dynamics and the extreme spikes in the mar-
ket; for details see [1]. The work continues [2, 5, 6]. Background on the electricity
market can be found in [3]. Instead of the usual purely deterministic trend, we
introduce a Lévy process for the low-frequency dynamics, and model the large
fluctuations by a non-Gaussian α-stable CARMA process, which is able to cap-
ture the extreme behavior of electricity spot prices. For background on CARMA
processes we refer to [5], and for α-stable processes in general to [8].

This means we assume the spot price dynamics

S(t) = Λ(t) + Z(t) + Y (t), t ≥ 0,

where Λ is a deterministic trend/seasonality function and Z is a Lévy process
with zero mean. The process Z models the low-frequency non-stationary dynamics
of the spot, and can together with Λ be interpreted as the long-term factor for
the spot price evolution. The process Y accounts for the stationary short-term
variations. We will assume that Y and Z are independent processes.

We propose a statistical method to calibrate the suggested spot and futures
model to real data. The calibration is done using spot and futures data together,
where we applied futures prices in the far end of the market to filter out the
non-stationary factor in the spot. Besides standard parameter estimation, an
estimation procedure is suggested, where we fit the non-stationary trend using
futures data with long time until delivery. Our data suggest that futures curves
and spot prices are driven by a common stochastic trend, and it turns out that
this is very well described by a normal inverse Gaussian Lévy process. After
having removed deterministic trend and seasonality as well as the slow-frequency
dynamics Lévy process, we fit an α-stable CARMA(2,1) model, which perfectly
describes the high peaks in the spot price (cf. [4, 6]). With a robust L1-filter we
find the states of the CARMA process. Our model leads to realistic predictions of
the futures prices. The estimation also involves the empirical and theoretical risk
premiums which – as a by-product – are also estimated.
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We apply the Esscher transform to produce a parametric class of market prices
of risk for the non-stationary term. The α-stable Lévy process driving the CARMA-
factor is transformed into a tempered stable process in the risk neutral setting;
cf. [7]. The spot price dynamics and the chosen class of risk neutral probabilities
allow for analytic pricing of the futures. A crucial insight in the futures price
dynamics is that the stationary CARMA effect from the spot price is vanishing for
contracts far from delivery, where prices essentially behave like the non-stationary
long-term factor.

We apply this procedure to data from the German electricity exchange EEX,
where we split the empirical analysis into base load prices (24 hours 7 days a week)
and peak load prices (only weekdays from 8:00 to 20:00). Moreover, in order to
gain full insight into the risk premium structure in this market, we study both
peak load and base load futures contracts with delivery over one month. The
base load futures are settled against the hourly spot price over the whole delivery
period, while the peak load contracts only deliver against the spot price in the
peak hours on working days. Our model and estimation technique seem to work
well in both situations.

Figure 1. German EEX daily spot (base load) data together
with futures prices.

The calibration is done using spot and futures data together, where we applied
futures prices in the far end of the market to filter out the non-stationary factor
in the spot. We choose a threshold for what is sufficiently “far out” on the futures
curve by minimizing the error in matching the theoretical risk premium to the
empirical. In this minimization over thresholds, we need to re-estimate the whole
model until the minimum is attained.

We find that the base load futures contracts have a risk premium which is
close to linearly decaying with time to delivery. The risk premium is essentially
governed by the long term factor. There is evidence of a positive premium in the
short end of the futures curve. For peak load contracts, which are much more
sensitive to spikes, the positive premium in the short end is far most distinct, but
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also here the premium decays close to linearly in the long end of the market. These
observations are in line other theoretical and empirical studies of risk premia in
electricity markets, which argue that the risk premia in power markets are driven
by hedging needs.
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Bootstrap-Aided Hypothesis Tests for Time Series

Anne Leucht

We establish two consistent L2-type tests for time series data. Besides a test for
symmetry, a test for the parametric class of the marginal distribution based on
the empirical characteristic function is considered. In particular, the second one
is of special interest in financial mathematics since distributions of financial time
series often have a complicated density or cumulative distribution function while
their characteristic function is simple. Examples include NIG and VG distribu-
tions. Our test statistics can be approximated by degenerate V -statistics. Their
asymptotics are then derived invoking recent results of [1].

The limit distributions of the test statistics have a complicated form and depend
on unknown parameters and the underlying dependence structure in a complicated
way. Therefore, (asymptotic) critical values of the tests cannot be derived directly.
We propose certain bootstrap methods to overcome these difficulties.
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A Model for the Conditional Density Process

Filip Lindskog

(joint work with Henrik Hult and Johan Nykvist)

Given a set of option contracts with the same maturity, we consider the modeling
of the simultaneous evolution of the prices over time such that the corresponding
forward price processes are martingales. The model considered is a model for
the evolution over time of the density of the future value on which the options
are written, conditional on the flow of information on the market. At any given
point, the conditional density process evaluated at that point is constructed to be
a martingale and the price processes are defined as expected payoffs with respect
to the conditional density process.

The conditional density process is set up to have the following properties:

• Recalibration of the model is unlikely - the future realized prices are pos-
sible for the model to produce.

• The model allows for exact and straightforward calibration to the initial
option prices.

• The model gives the price processes characteristic properties of option
price data.

• The filtration representing the flow of information on the market equals
the filtration generated by the price processes.

Beyond Simplified Pair-Copula Constructions

Johanna Nešlehová

(joint work with Elif F. Acar and Christian Genest)

Pair-copula constructions (PCCs) offer great flexibility in modeling multivariate
dependence. For inference purposes, however, conditional pair copulas are often
assumed to depend on the conditioning variables only indirectly. The authors show
here that this assumption can be misleading. To assess its validity in trivariate
PCCs, they propose a visual tool based on a local likelihood estimator of the
conditional copula parameter which does not rely on the simplifying assumption.
They establish the consistency of the estimator and assess its performance in finite
samples via Monte Carlo simulations. They also provide a real data application.

Inference about Tail Measures: Where Does the Tail Begin?

Tilo Nguyen

(joint work with Gennady Samorodnitsky)

The quality of estimation of tail parameters, such as tail index in the univariate
case, or the spectral measure in the multivariate case, depends crucially on the part
of the sample included in the estimation. A simple approach involving sequential
statistical testing is proposed in order to choose this part of the sample. We
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establish consistency of the Hill estimator when used in conjunction with the
proposed method, as well describe its asymptotic fluctuations.

Functions Associated with Multivariate Stable Laws

John Nolan

The lack of explicit formulas for distribution functions and densities for stable
distributions make them difficult to use in practice. We describe a family of
functions that are used to express these and other quantities for univariate and
multivariate stable laws. The special case of elliptically contoured stable laws is
computationally accessible for high dimensions. For the general multivariate stable
case, we describe Zolotarev integrals and programs to compute these functions for
moderate dimensions.

Modelling Dependence in High Dimensions with Factor Copulas

Andrew J. Patton

(joint work with Dong Hwan Oh)

This paper presents new models for the dependence structure, or copula, of eco-
nomic variables, and asymptotic results for new simulation-based estimators of
these models. The proposed models are based on a factor structure for the copula
and are particularly attractive for high dimensional applications, involving fifty or
more variables. Estimation of this class of models is complicated by the lack of a
closed-form likelihood, but estimation via a simulation-based method using rank
statistics is simple, and we provide asymptotic results that show the consistency
and asymptotic normality of such estimators. We analyze the finite-sample behav-
ior of these estimators in an extensive simulation study. We apply the model to a
group of 100 daily stock returns and find evidence of statistically significant tail
dependence, and that the dependence between these assets is stronger in crashes
than booms.

Edgeworth Expansion for Functionals of Continuous Diffusion
Processes

Mark Podolskij

(joint work with Nakahiro Yoshida)

In this talk we present new results on the second order Edgeworth expansion for
high frequency functionals of continuous diffusion processes. We derive asymp-
totic expansions for weighted functionals of the Brownian motion and for power
variation of diffusion processes.

Let us consider an Itô semimartingale of the form

Xt = X0 +

∫ t

0

bsdWs +

∫ t

0

asds,
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where b is a volatility process, a is a drift process and W is a Brownian mo-
tion, defined on (Ω,F , (Ft)t≥0,P). A typical (and most useful) example of a high
frequency statistics is the realised volatility RVn defined as

RVn =

[1/∆n]∑

i=1

|∆n
i X |2, ∆n

i X = Xi∆n
−X(i−1)∆n

.

It is well known that the convergence RVn
P−→ 〈X〉 =

∫ 1

0 b
2
sds holds as ∆n → 0,

and we obtain a stable central limit theorem

∆−1/2
n

(
RVn − 〈X〉

)
st−→MN

(
0, 2

∫ 1

0

b4sds
)
,

where MN(0, V 2) denotes a mixed normal distribution with conditional variance
V 2. The latter result can be transformed into a feasible central limit theorem via

∆
−1/2
n

(
RVn − 〈X〉

)

√
2
3∆

−1
n
∑[1/∆n]

i=1 |∆n
i X |4

d−→ N(0, 1).

The main aim of our talk is derive a second order Edgeworth expansion associated
with mixed normal limits and with the associated studentized statistics. For this
purpose we consider the quantity

Zn =Mn + rnNn,

where rn → 0 (typically rn = ∆
1/2
n ) and Nn = OP(1). The basic idea is to

embed the main part Mn into a martingale framework. We assume that there
exist continuous martingales (Mn

t )t∈[0,1], (Mt)t∈[0,1] with M
n
0 =M0 = 0 such that

Mn =Mn
1 , M =M1,

Cn
t = 〈Mn〉t, Ct = 〈M〉t,

Cn = 〈Mn〉1 P−→ C = 〈M〉1,

Mt =MN(0, Ct), M =MN(0, C).

We consider another sequence of random variables Fn with Fn
P−→ F . Typically

Fn serves as a consistent estimator of the random variance C (i.e. F = C). We
set

Ĉn = r−1
n (Cn − C),

F̂n = r−1
n (Fn − F ).

The main assumption for the validity of the Edgeworth expansion is

(⋆) (Mn
t , Nn, Ĉn, F̂n)

st−→ (Mt, N, Ĉ, F̂ ).
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In order to compute the asymptotic expansion of the density of Zn we need to

introduce two random symbols σ and σ. First, we define the functions C̃(z), F̃ (z)

and Ñ(z) via

C̃(z) = E[Ĉ|M = z],

F̃ (z) = E[F̂ |M = z],

Ñ(z) = E[N |M = z].

The random symbol σ is given by

σ(z, iu, iv) =
(iu)2

2
C̃(z) + iuÑ(z) + ivF̃ (z).

The second random symbol σ is more involved. For any continuous martingale H ,
we denote by E(H)t the exponential martingale associated with H , i.e.

E(H)t = exp
(
Ht −

1

2
〈H〉t

)
= 1 +

∫ t

0

E(H)sdHs.

Next, we define the random variable

Φn(u, v) = E

[
exp

(
− u2

2
C + ivF

)(
E(iuMn)1 − 1

)]
, (u, v) ∈ R

2.

Let α = (α1, α2) ∈ N2 denote a multi-index and |α| = α1 + α2. We write

∂α = i−|α|dα, dα = dα1

x1
dα2

x2
,

where dkf denotes the kth derivative of a function f . We assume that Φα(u, v) :=
limn→∞ r−1

n ∂αΦn(u, v) (if it exists) admits the representation

Φα(u, v) = ∂αE

[
exp

(
− u2

2
C + ivF

)
· σ(iu, iv)

]
,

where the random symbol σ(iu, iv) has the form

σ(iu, iv) =
∑

j

cj (iu)mj(iv)nj (finite sum)

We remark that the random symbol σ = σ + σ is a polynomial in (iu, iv) and it
admits the representation

σ(iu, iv) =
∑

j

c̃j(z) (iu)
mj (iv)nj (finite sum)

Now, the approximative density of (Zn, Fn) is defined as

pn(z, x) = E[φ(z; 0, C)]pF (x) + rn
∑

j

(−dz)
mj (−dx)

nj

(
E [c̃j(z)φ(z; 0, C)|F = x] pF (x)

)
,

where pF denotes the density of F and φ(·; 0, C) denotes the density of N(0, C).
The main result is given as follows.
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Theorem 1. For any function h : R2 → R we set

∆n(h) =

∣∣∣∣E[h(Zn, Fn)]−
∫
h(z, x)pn(z, x)dzdx

∣∣∣∣ .

Let

Λ(K, γ) = {h : R2 → R| h is measurable and |h(z, x)| ≤ K(|z|+ |x|)γ}
for some K, γ > 0. Then, under assumption (⋆) and certain integrability condi-

tions, we have that

sup
h∈Λ(K,γ)

∆n(h) = o(rn).

As an illustration we present an application of the theorem to realised volatility
RVn.

A Systematic Approach to the Expansion of Filtrations, Inspired by
Applications to Insider Trading

Philip Protter

(joint work with Younes Kchia)

We study progressive filtration expansions with càdlàg processes. Using results
from the weak convergence of σ-fields theory, we first establish a semimartingale
convergence theorem. Then we apply it to the framework of a filtration expansion
with a process setting. In so doing, we give sufficient conditions for a semimartin-
gale of the base filtration to remain a semimartingale in the expanded filtration.
Detailed studies of examples are given. We also show how this might hep to
understand mathematically the effects of insider trading.

Covariation Estimation: Unexpected Effects due to Noise

Markus Reiss

(joint work with Markus Bibinger)

We consider the problem of estimating the multivariate covariation (or covolatility)
matrix based on high-frequency observations under microstructure noise. Based on
a fundamental Gaussian model, we discuss first efficiency of estimators for the inte-
grated and spot volatility in the scalar case, using asymptotic Le Cam equivalence
with a Gaussian shift model. We then discuss specific features in the multivariate
setting, in particular allowing for asynchronous observations. Employing again
asymptotic equivalence concepts, we show that asynchronicity is (asymptotically)
not an issue under non-vanishing microstructure noise. Moreover, we discuss the
surprising result that multivariate observations can even improve on estimators
for the univariate volatility. This is in contrast to to the classical i.i.d. situation
and is fundamentally due to non-commutative Fisher information matrices along
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different frequency scales. The estimation procedure is explicitly constructed us-
ing spectral covolatility estimators with local weights, applying a local likelihood
ansatz.
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Firms, Banks and Households

Leonard Chris G. Rogers

This paper sets up and analyses a continuous-time equilibrium model with firms,
households and a bank. The model allows us to study the inter-relation of pro-
duction, consumption, levels of working, interest rates, debt, inflation and wage
levels.

Hedging Options On Exploding Exchange Rates

Johannes Ruf

(joint work with Peter Carr and Travis Fisher)

Recently strict local martingales have been used to model exchange rates. In such
models, put-call parity does not hold if one assumes minimal superreplicating costs
as contingent claim prices. I will illustrate how put-call parity can be restored by
changing the definition of a contingent claim price. More precisely, I will discuss
a change of numeraire technique when the underlying is only a local martingale.
Then, the new measure is not necessarily equivalent to the old measure. If one
now defines the price of a contingent claim as the minimal superreplicating costs
under both measures, then put-call parity holds. I will discuss properties of this
new pricing operator.

Risk bounds, worst case dependence, and optimal claims and contracts

Ludger Rüschendorf

Main subject of the talk is the description of the influence of stochastic dependence
on risk functionals. The first part is concerned with some new developments on
bounds for the distribution function of the joint portfolio or equivalently for the
value at risk (joint work with Giovanni Puccetti). The second part is dealing with
the question of generalizing comonotonicity (i.e. worst case dependence structure)
to the higher dimensional case. In the third part dependence bounds are applied
to the construction of optimal claims and (re-)insurance contracts.
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Nonparametric Estimation of Pair-Copula Constructions with the
Empirical Pair-Copula

Johan Segers

(joint work with I. Hobæk Haff)

A pair-copula construction is a decomposition of a multivariate copula into a
structured system, called regular vine, of bivariate copulae or pair-copulae. The
standard practice is to model these pair-copulae parametrically, which comes at
the cost of a large model risk, with errors propagating throughout the vine struc-
ture. The empirical pair-copula proposed in the paper provides a nonparametric
alternative still achieving the parametric convergence rate. It can be used as a
basis for inference on dependence measures, for selecting and pruning the vine
structure, and for hypothesis tests concerning the form of the pair-copulae.

Martingale Estimating Functions for Diffusions with Jumps

Michael Sørensen

A diffusion with jumps is a stochastic process given by a stochastic differential
equation driven not only by a Wiener process, but also by another stochastic
mechanism that causes the process to make jumps. This other mechanism can be
a Lévy process, or more generally, a random measure on a suitable space. When
the data are continuous time observations, likelihood inference for diffusions with
jumps has long been well understood; see e.g. Sørensen (1991). However, for dis-
crete time observations the likelihood function is not explicitly known and usually
extremely difficult to calculate numerically. Therefore alternatives like estimating
functions are even more useful for jump diffusions than for classical diffusions. We
present a highly flexible class of diffusions with jumps for which explicit optimal
martingale estimating functions of the type introduced by Kessler and Sørensen
(1999) are available. These are based on eigenfunctions of the generator of the
diffusion. The class of Pearson diffusions, investigated in Forman and Sørensen
(2008), has the property that the generator maps polynomials into polynomials.
Therfore it is easy to find polynomial eigenfunctions. Here we generalize these
ideas and consider a class of diffusions with jumps for which the generator has
the same property using ideas from Zhou (2003). The generator of a diffusion
with jumps is a differential-integral operator. However, it turns out that a sim-
ple condition on the compensator of the jump measure is enough to ensure that
the generator maps polynomials into polynomials, and hence that explicit optimal
martingale estimating functions can be found. We illustrate the general theory by
several concrete examples.

References

[1] Forman, J. L. and Sørensen, M. The Pearson diffusions: A class of statistically tractable
diffusion processes, Scandinavian Journal of Statistics, 35 (2008), 438 - 465.

[2] Kessler, M. and Sørensen, M. Estimating equations based on eigenfunctions for a discretely
observed diffusion process, Bernoulli, 5 (1999), 299 - 314.



The Mathematics and Statistics of Quantitative Risk Management 385

[3] Sørensen, M. Likelihood methods for diffusions with jumps, In Prabhu, N.U. and Basawa,
I.V. (eds.): Statistical Inference in Stochastic Processes, Marcel Dekker, New York, (1991),
67 - 105.
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On the Theory of Continuous-Time Recursive Utility

Mogens Steffensen

We establish a connection between continuous-time recursive utility and the notion
of consistency studied, in particular, in connection with the non-linear objective
mean-variance. We propose a time-global optimization problem and show that the
optimal time-consistent solution to this time-global problem is closely related to
the standard recursive utility solution which is defined via differential equations.
The two approaches are, to some extent, equivalent. Standard continuous-time
recursive utility was developed for Brownain markets, and a generalization is com-
plicated. Our approach contributes with insight in the notion of recursive utility
and lightens up a relatively simple path that potentially gives access to results for
general Markovian markets.

Decomposability for Stable Processes

Stilian A. Stoev

We characterize all possible independent symmetric α-stable (SαS) components
of a non–Gaussian SαS process, 0 < α < 2. In particular, we characterize the
independent stationary SαS components of a stationary SαS process. One simple
consequence of our characterization is that all stationary components of the SαS
moving average processes are trivial. We obtain parallel characterization results
for the components of max-stable processes by using the notion of association.

Inverting Realized Laplace Transforms

George Tauchen

(joint work with Viktor Todorov)

We develop a nonparametric estimator of the stochastic volatility density of a
discretely-observed Ito semimartingale in the setting of an increasing time span and
finer mesh of the observation grid. There are two steps. The first is aggregating the
high-frequency increments into the realized Laplace transform, which is a robust
nonparametric estimate of the underlying volatility Laplace transform. The second
step is using a regularized kernel to invert the realized Laplace transform. The two
steps are relatively quick and easy to compute, so the nonparametric estimator
is practicable. We derive bounds for the mean squared error of the estimator.
The regularity conditions are sufficiently general to cover empirically important
cases such as level jumps and possible dependencies between volatility moves and
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either diffusive or jump moves in the semimartingale. Monte Carlo work indicates
that the nonparametric estimator is reliable and reasonably accurate in realistic
estimation contexts. An empirical application to 5-minute data for three large-
cap stocks, 1997-2010, reveals the importance of big short-term volatility spikes
in generating high levels of stock price variability over and above that induced by
price jumps. The application also shows how to trace out the dynamic response
of the volatility density to both positive and negative jumps in the stock price.

Finite-Dimensional Realizations for the CNKK-Volatility Surface
Model

Josef Teichmann

We show that parametrizations of volatility surfaces (and even more involved mul-
tivariate objects) by time-dependent Lévy processes (as proposed by Carmona-
Nadtochiy-Kallsen-Kröhner) or even semimartingales lead to quite tractable arbi-
trage-free term structure problems, i.e. the drift condition can be easily under-
stood and implemented and is comparable to the HJM-drift condition. For the
purposes of risk management arbitrage free term structure models, which due to
their simple structure allow for statistical estimation, are of particular importance,
since usually term structure problems involve highly dependent assets, where mis-
specifications of drifts quickly lead to misspecifications of risk. In this talk we
follow another direction of research: we introduce the corresponding term struc-
ture SPDE and an appropriate state Hilbert space. In this context we can then
ask whether the corresponding term structure SPDE allows for (regular) finite di-
mensional realization, which necessarily leads to models driven by an affine factor
process. This is another confirmation that affine processes play a particular role
in mathematical finance. The analysis is based on a careful geometric analysis of
the term structure equations by methods from foliation theory.

Conditional Correlation Models of Autoregressive Conditional
Heteroskedasticity with Nonstationary GARCH Equations

Timo Teräsvirta

(joint work with Cristina Amado)

In this paper we investigate the effects of careful modelling the long-run dynamics
of the volatilities of stock market returns on the conditional correlation struc-
ture. To this end we allow the individual unconditional variances in Conditional
Correlation GARCH models to change smoothly over time by incorporating a non-
stationary component in the variance equations. In our case this means that the
covariance matrix of the errors, or returns if we assume the conditional mean to
be identically equal to a null vector, contains a deterministic time-varying com-
ponent. To the best of our knowledge, the only comparable study in which the
covariance matrix of the errors contains a smoothly evolving deterministic compo-
nent is Hafner and Linton (2010).
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The modelling technique to determine the parametric structure of this time-
varying component is based on a sequence of specification Lagrange multiplier-type
tests derived in Amado and Teräsvirta (2011). The variance equations combine the
long-run and the short-run dynamic behaviour of the volatilities. The structure of
the conditional correlation matrix is assumed to be either time independent or to
vary over time.

We discuss the specification and estimation of the individual GARCH equations
before turning to the (empirical) question of whether or not careful specification
of the GARCH equation changes correlation estimates compared to the case in
which standard GARCH or asymmetric (GJR-) GARCH equations are used to
characterize heteroskedasticity in the return series.

We apply our model to pairs of seven daily stock returns belonging to the S&P
500 composite index and traded at the New York Stock Exchange. The results
suggest that accounting for deterministic changes in the unconditional variances
considerably improves the fit of the multivariate Conditional Correlation GARCH
models to the data. The effect of careful specification of the variance equations on
the estimated correlations is variable: in some cases rather small, in others more
discernible. As a by-product, we generalize news impact surfaces to the situation
in which both the GARCH equations and the conditional correlations contain a
deterministic component that is a function of time.
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Parametric Inference, Testing and Dynamic State Recovery from
Option Panels with Fixed Time Span

Viktor Todorov

(joint work with Torben G. Andersen and Nicola Fusari)

We develop a new parametric estimation procedure for option panels observed
with error. Our inference techniques exploit asymptotic approximations under the
assumption of an ever increasing set of observed option prices in the moneyness-
maturity (cross-sectional) dimension, but with a fixed time span. The framework
allows for considerable heterogeneity over time in the quality of the information
inherent in the option data. We develop consistent estimators of the parameter
vector as well as the dynamic realization of the state vector that governs the option
price dynamics. We show that the estimators converge stably to a mixed-Gaussian
law and provide feasible estimators for the limiting covariance matrix. We also
provide feasible semiparametric tests for the option price dynamics based on the
distance between the diffusive (stochastic) volatility state extracted from the op-
tions and the one obtained nonparametrically from high-frequency return data for
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the underlying asset. In addition, we construct formal tests for the fit of the option
pricing model for a specific region of the volatility surface over a given time period
as well as for the stability of the risk-neutral dynamics, or parameter vector, over
time. In an empirical application to S&P 500 index options we extend the double-
jump stochastic volatility model of [1], popular in option pricing applications, to
allow for time-varying risk premia of extreme events, i.e., jumps, as well as a more
flexible relation between the risk premia and the level of risk. We show that both
extensions provide a significantly improved characterization, both statistically and
economically, of observed option prices and their covariation with the underlying
asset price.
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Precise Large Deviations for Dependent Regularly Varying Sequences

Olivier Wintenberger

(joint work with Thomas Mikosch)

The aim of this talk is to present precise large deviation probabilities for sequences
of dependent and heavy-tailed random variables. To make the notion of heavy
tails precise, we assume that the stationary sequence (Xt) has regularly varying
finite-dimensional distributions. A particular consequence is that the distribution
of a generic variable X of this sequence has regularly varying tails. This means
that there exist α > 0, p, q ≥ 0 with p + q = 1 and a slowly varying function L

such that

P(X > x)

P(|X | > x)
∼ p

L(x)

xα
and

P(X ≤ −x)
P(|X | > x)

∼ q
L(x)

xα
, x→ ∞.(1)

The latter condition is often referred to as a tail balance condition.

In the case of an iid sequence satisfying (1) one can derive precise asymptotic
bounds for the tails of the random walk (Sn) with step sequence (Xt) given by

S0 = 0 and Sn = X1 + · · ·+Xn , n ≥ 1 .

We recall a classical result which can be found in the papers of A.V. and S.V.
Nagaev [7, 8] and Cline and Hsing [3]. x

Theorem 1. Assume that (Xi) is an iid sequence with a regularly varying distri-

bution in the sense of (1). Then the following relations hold for α > 1 and suitable

sequences bn ↑ ∞:

lim
n→∞

sup
x≥bn

∣∣∣∣
P(Sn − ESn > x)

nP(|X | > x)
− p

∣∣∣∣ = 0(2)
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and

lim
n→∞

sup
x≥bn

∣∣∣∣
P(Sn − ESn ≤ −x)

nP(|X | > x)
− q

∣∣∣∣ = 0 .(3)

If α > 2 one can choose bn =
√
an logn, where a > α − 2, and for α ∈ (1, 2],

bn = nδ+1/α for any δ > 0. For α ≤ 1, (2) and (3) remain valid with ESn replaced

by 0 and one can choose bn = nδ+1/α for any δ > 0.

As a matter of fact, precise large deviation principles can be derived for iid
heavy-tailed sequences more general than regularly varying ones, e.g. for the
general class of random walks (Sn) with subexponential steps; see e.g. Cline and
Hsing [3]. Theorem 1 serves as a benchmark result for the purposes of this paper.

In this talk we extend Theorem 1 to suitable regularly varying stationary se-
quences (Xt). For linear processes Xt =

∑∞
j=0 ψjZt−j , t ∈ Z, under suitable

assumptions on the sequence of real numbers (ψj) (ensuring the existence of the in-
finite series) and assuming regular variation of the iid innovations (Zt) was proved
in Mikosch and Samorodnitsky [6]. The limiting constants p and q in (2) and (3),
respectively, had to be replaced by quantities depending on p, q and the sequence
(ψj). The region (bn,∞), where the large deviation principle holds, remains the
same as for an iid regularly varying sequence. Similar results were obtained in
Konstantinides and Mikosch [5] for solutions to the stochastic recurrence equation
Xt = AtXt−1 + Bt, t ∈ Z, with iid ((At, Bt))t∈Z with a generic element (A,B),
A,B ≥ 0 a.s., B regularly varying with index α > 0 and EAα < 1. For the
same type of stochastic recurrence equation with B not necessarily positive, Bu-
raczewski et al. [2] proved precise large deviation principles. The main difference
to [5] is the assumption that (Xt) is regularly varying with some positive index α
while (At, Bt) has moments of order α + δ for some positive δ. It is shown in [2]
that the relation

lim sup
n→∞

sup
x≥bn

P(Sn > x)

nP(|X | > x)
<∞

holds for suitable sequences bn → ∞ such that b−1
n Sn

P→ 0. Again, the sequences
(bn) are close to those in Theorem 1. However, uniform relations of type (2) and
(3) are not true in the unbounded regions (bn,∞) but in bounded regions (bn, cn)
such that bn → ∞ and cn = e sn for sn → ∞ and sn = o(n).

In this talk we approach the problem of precise large deviations from a more
general point of view. The following inequality is crucial for proving the results of
this paper, see also Jakubowski [4]: for every k ≥ 2, some constant b+,

∣∣∣ P(Sn > x)

nP(|X | > x)
− b+

∣∣∣

≤
∣∣∣P(Sn > x)− n (P(Sk+1 > x)− P(Sk > x))

nP(|X | > x)

∣∣∣

+
∣∣∣P(Sk+1 > x)− P(Sk > x)

P(|X | > x)
− b+

∣∣∣ .(4)
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Regular variation of (Xt) ensures that the second quantity in (4) is negligible, by
first letting x → ∞ and then k → ∞. The first expression in (4) provides a link
between the asymptotics of the tail P(Sn > x) for increasing values of n, x ≥ bn
and the regularly varying tails P(Sk > x) and P(Sk+1 > x) for every fixed k. Thus
the tail asymptotics of P(Sn > x) are derived from the known tail asymptotics for
finite sums, again by first letting n→ ∞ and then k → ∞.

Under regular variation and anti-clustering conditions we show precise large
deviation principles of the following type:

lim
n→∞

sup
x∈Λn

∣∣∣ P(Sn > x)

nP(|X | > x)
− b+

∣∣∣ = 0 ,(5)

for some non-negative constant b+ and a sequence of sets Λn ⊂ (0,∞) such that
bn = inf Λn → ∞. We apply the large deviation principle (5) to a variety of
important regularly varying time series models, including the stochastic volatility
model, solutions to stochastic recurrence equations and Markov chains. These
are examples of rather different dependence structures, showing that the large
deviation principle does not depend on a particular mixing condition or on the
Markov property.

However, we give special emphasis to Markov chains satisfying a polynomial
drift condition, exploiting a sophisticated exponential bound for partial sums of
Markov chains due to Bertail and Clémencon [1]. It yields an intuitive interpre-
tation of relation (5) in terms of the regeneration property of (Xt)t=1,...,n. Given
an atom A of the chain, one can split the chain into a random number NA(n)
of iid random cycles. Denoting the block sum of the Xt’s over the ith cycle by
SA,i, it will be shown that the iid SA,i’s inherit regular variation from X , and

then we can apply the classical result of Theorem 1 to P

(∑NA(n)−1
i=1 SA,i > x

)
. If

b+ > 0 the tails PA(SA,1 > x) and P(|X | > x) are equivalent. There is a major
difference between an iid sequence and a dependent Markov chain (Xt): if the first
generation time τA is larger than n, it has significant influence on the region Λn,
where (5) holds. It turns out that one has for any x ≥ bn,

P(Sn > x)

nP(|X | > x)
∼ b+ +

P(Sn > x, τA > n)

nP(|X | > x)
,

and the second term is in general not negligible, leading to the fact that (5) may
only be valid in a bounded region (bn, cn). Thus we found an explanation for
the same observation we experienced in the case of a Markov chain given by a
stochastic recurrence equation; see the discussion above.
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Linear Quadratic Mean Field Games

Phillip Yam

(joint work with A. Bensoussan, K. C. J. Sung and S. P. Yung)

As an organic combination of mean field theory in statistical physics and (non-zero
sum) stochastic differential games, Mean Field Games (MFGs) has become a very
popular research topic in the fields ranging from physical and social sciences to
engineering applications, see for example the earlier studies by Huang, Caines and
Malhamé (2003), and that by Lasry and Lions (2006a, b and 2007). In this paper,
we introduce a study of a general class of mean field games in the linear quadratic
framework. We adopt the adjoint equation approach to investigate the existence
and uniqueness of equilibrium strategies of these Linear-Quadratic Mean Field
Games (LQMFGs). Due to the linearity of the adjoint equations, the optimal mean
field term satisfies a forward-backward ordinary differential equation. For the one
dimensional case, we show that the equilibrium strategy always exists uniquely.
For dimension greater than one, by choosing a suitable norm and then applying
the Banach Fixed Point Theorem, a sufficient condition for the unique existence
of the equilibrium strategy is provided, which is independent of the coefficients of
controls and is always satisfied whenever those of the mean-field term are vanished
(and therefore including the classical Linear Quadratic Stochastic Control (LQSC)
problems as special cases).
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[10] Huang, M., Malhamé, R.P., Caines, P.E. (2006). Large population stochastic dynamic
games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle.
Communications in Information and Systems, 6 (3), 221-252.

[11] Jin, H. and Zhou, X. Y. (2008). Behavioral portfolio selection in continuous time. Mathe-
matical Finance, 18 (2008), pp. 385-426.

[12] Kunita, H. and Seko, S.(2004). Game call option and their exercise regions. Technical report,
Nanzan Academic Society, Mathematical Sciences and Information Engineering.

[13] Lasry, J. M., Lions, P. L. (2007). Mean field games. Japanese Journal of Mathematics 2(1),
229-260.

[14] Yong, J., Zhou, X. Y. (1999). Stochastic Control: Hamiltonian Systems and HJB Equations,
Springer, New York.

Optimal Stopping when Probability is Distorted

Xunyu Zhou

We formulate an optimal stopping problem for a geometric Brownian motion where
the probability scale is distorted by a general nonlinear function. The problem is
inherently time inconsistent due to the Choquet integration involved. We de-
velop a new approach, based on a reformulation of the problem where one op-
timally chooses the probability distribution or quantile function of the stopped
state. An optimal stopping time can then be recovered from the obtained dis-
tribution/quantile function, either in a straightforward way for several important
cases or in general via the Skorokhod embedding. This approach enables us to
solve the problem in a fairly general manner with different shapes of the payoff
and probability distortion functions. We also discuss economical interpretations of
the results. In particular, we justify several liquidation strategies widely adopted
in stock trading, including those of “buy and hold”, “cut loss or take profit”, “cut
loss and let profit run”, and “sell on a percentage of historical high”.

Reporter: Thomas Mikosch



The Mathematics and Statistics of Quantitative Risk Management 393

Participants

Prof. Dr. Hansjörg Albrecher

Institut de Sciences Actuarielles
Universite de Lausanne
Quartier UNIL-Dorigny
Batiment Extranef
CH-1015 Lausanne

Prof. Dr. Soeren Asmussen

Department of Mathematical Sciences
University of Aarhus
Building 530
Ny Munkegade
DK-8000 Aarhus C

Prof. Dr. Pauline Barrieu

Department of Statistics
London School of Economics
Houghton Street
GB-London WC2A 2AE

Dr. Dirk Becherer

Institut für Mathematik
Humboldt-Universität zu Berlin
Unter den Linden 6
10099 Berlin

Prof. Dr. Jose Blanchet

Dept. of Industrial Engineering and
Operations Research, Columbia Univ.
Seeley W., Mudd Building
500 West 120th Street
New York , NY 10027
USA

Dr. Axel Bücher
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