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Introduction by the Organisers

The workshop Computability Theory, organized by Klaus Ambos-Spies and Wolf-
gang Merkle (Heidelberg), Steffen Lempp (Madison) and Rodney G. Downey
(Wellington) was held February 5th–February 11th, 2012. This meeting was well
attended, with 53 participants covering a broad geographic representation from
five continents and a nice blend of researchers with various backgrounds in clas-
sical degree theory as well as algorithmic randomness, computable model theory
and reverse mathematics, reaching into theoretical computer science, model the-
ory and algebra, and proof theory, respectively. Several of the talks announced
breakthroughs on long-standing open problems; others provided a great source of
important open problems that will surely drive research for several years to come.
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Abstracts

Generic computability and asymptotic density

Carl Jockusch

(joint work with Rod Downey and Paul Schupp)

Often problems which are computationally difficult in principle can be easily solved
in practice. For example, the simplex algorithm for linear programming has been
shown to require exponential time, but runs very quickly on inputs which arise
in practice. A theoretical model for this is “generic computability,” which was
introduced and studied by Kapovich, Miasnikov, Schupp and Shpilrain in [4] and
applied to decision problems in group theory, among others. Generic computability
was then studied in the context of classical computability theory by Jockusch and
Schupp in [3], and further results in this area were obtained were obtained by
Downey, Jockusch, and Schupp in [2]. Most of the results in this abstract are from
the latter paper.

The basic definitions are as follows. Let ω = {0, 1, . . .}. For A ⊆ ω and n ∈ ω,
let

ρn(A) =
|{k < n : k ∈ A}|

n
be the density of A up to n. The (asymptotic) density ρ(A) of A is defined as
follows:

ρ(A) = lim
n

ρn(A)

provided the limit exists. We say that A is generically computable if there is a
partial computable function ϕ such that ϕ agrees with the characteristic function
of A on its domain, and its domain has density 1. Thus, there is a partial algorithm
for A which never gives an incorrect answer, and answers with density 1. Further,
define the upper density of A (denoted ρ(A)) as lim supn ρn(A), and the lower
density of A (denoted ρ(A)) as lim infn ρn(A).

It is natural to ask whether the concept of generic computability remains un-
changed if the requirement is added that the partial computable function ϕ has a
computable domain. This is equivalent to asking:

(*) Does every c.e. set of density 1 have a computable subset of density 1?
This abstract is centered around this question and its variations.
It was shown in [3] that every c.e. set of upper density 1 has a computable

subset of upper density 1. Further it was shown there that the number 1 can be
replaced by any ∆0

2 real.
For lower density, it was shown that for any c.e. set A and any real number

ǫ > 0, there exists a computable set B ⊆ A such that ρ(B) ≥ ρ(A) − ǫ. Define A

to have effective density 1 if ρn(A) is computably convergent to 1. The method
in the result just mentioned can be used to show that every c.e. set of effective
density 1 has a computable subset of effective density 1. The argument can be
combined with the limit lemma to show that every low c.e. set of density 1 has a
computable subset of density 1.
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In spite of these positive results, it was shown in [3] (Theorem 2.22), that there
is a c.e. set of density 1 with no computable subset of density 1, and thus the
answer to (*) above is “no”. The proof of this is an infinite injury argument, but
is remarkably simple because each requirement has only one opposing requirement,
so the usual technical difficulties do not arise. This result was extended in [2] to
show that there is a c.e. set A of density 1 such that no computable subset of A
has nonzero density.

Once (*) is answered negatively, it is natural to ask about the degrees of the
counterexamples. It is shown in [2] that the degrees of the c.e. sets A which
have density 1 but no computable subsets of density 1 are exactly the nonlow
c.e. degrees. One direction of this was already mentioned above. For the other
direction, it must be shown that every nonlow c.e. set computes a c.e. set which
has density 1 but no computable subset of density 1. This is done by introducing a
new technique called “nonlow permitting” to the proof mentioned in the previous
paragraph.

Call a set B ⊆ ω absolutely undecidable if every partial computable function
which agrees with the characteristic function of B on its domain has domain of
density 0 (or, equivalently, every c.e. subset of B or B has density 0). For exam-
ple, every bi-immune set is absolutely undecidable. Obviously, every absolutely
undecidable set is not generically computable, and it is easily seen that the con-
verse fails. In our talk and in a draft of [2] we raised the question of whether
every nonzero Turing degree contains an absolutely undecidable set. In [2] we
obtained a partial result towards a negative answer by showing that there is a
noncomputable set A such that for every set B ≤T A, either B has a c.e. subset
of positive upper density or B has an infinite c.e. subset. Nonetheless, Laurent
Bienvenu, Adam R. Day, and Rupert Hölzl [1] have recently obtained a positive
answer and in fact have given a fixed total truth-table reduction Φ such that ΦA

is absolutely undecidable whenever A is noncomputable.
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Are random axioms useful?

Laurent Bienvenu

(joint work with Andrei Romashchenko, Alexander Shen, Antoine Taveneaux,
and Stijn Vermeeren)

1. Introduction

The Kolmogorov complexity C (x) of a binary string x is defined as the min-
imal length of a program (without input) that outputs x and terminates. This
definition depends on a programming language, and one should choose one that
makes complexity minimal up to O(1) additive term. Most strings of length n

have complexity close to n. More precisely, the fraction of n-bit strings that have
complexity less than n − c, is at most 2−c. In particular, there exist strings of
arbitrary high complexity. (See [LV08, She00, DH10] for background information
about Kolmogorov complexity and related topics.)

However, as G. Chaitin pointed in [Cha71], the situation changes if we look for
strings of provably high complexity. More precisely, we are looking for strings x

and numbers n such that the statement “C (x) > n” (for these x and n, so it is a
closed statement) is provable in formal (Peano) arithmetic PA. Chaitin noted that
all n that appear in these statements, are less than some constant c. Chaitin’s
argument is a version of the Berry paradox: Assume that for every integer k we
can find some string x such that C (x) > k is provable; let xk be the first string in
the order of enumeration of all proofs; this definition provides a program of size
O(log k) that generates xk, which is impossible for large k since C (xk) > k.1

This leads to a natural idea. Toss a coin n times getting a string x of length n,
and consider the statement C (x) ≥ n − 1000. It is true unless we are extremely
unlucky. The probability of being unlucky is less than 2−1000. In natural sciences
we are accustomed to identify this with impossibility. So we can add this statement
and be sure that it is true; if n is large enough, we get a true non-provable statement
and could use it as a new axiom. We can even repeat this procedure several
times: if the number of iterations m is not astronomically large, 2−1000m is still
astronomically small.

Now the question: Can we obtain a richer theory in this way and get some in-
teresting consequences, still being practically sure that they are true? The answers
are given in Section 2 (using rather simple arguments):

• yes, this is a safe way of enriching our theory (PA), see Theorem 1;
• yes, we can get a stronger theory in this way (Chaitin’s theorem), but
• no, we cannot prove anything interesting in this way, see Theorem 2.

1Another proof of the same result shows that Kolmogorov complexity is actually not very
essential here: By a standard fixed-point argument one can construct a program p (without
input) such that for every program q (without input) the assumption “q is equivalent to p” (i.e.,
q produces the same output as p if p terminates, and q does not terminate if p does not terminate)
is consistent with PA. If p has length k, for every x we may assume without contradiction that
p produces x, so one cannot prove that C (x) > k.



404 Oberwolfach Report 08/2012

2. Probabilistic proofs in Peano arithmetic

2.1. Random axioms: soundness. Let us describe more precisely how we gen-
erate and use random axioms. Assume that some initial “capital” ε is fixed.
Intuitively, ε measures the maximal probability that we agree to consider as “neg-
ligible”.

The basic version: Let n and c be integers such that 2−c < ε. We choose at
random (uniformly) a string x of length n, and add the statement C (x) ≥ n − c

to PA (so it can be used together with usual axioms of PA).2

A slightly extended version: We fix several numbers n1, . . . , nk and c1, . . . , ck
such that 2−c1 + . . .+ 2−ck < ε. Then we choose at random strings x1, . . . , xk of
length n1, . . . , nk, and add all the statements C (xi) ≥ n− ci for i = 1, . . . , k.
Final version: In fact, we can allow even more flexible procedure of adding
random axioms that does not mention Kolmogorov complexity explicitly. Assume
that we already have proved for some number (numeral)N , for some rational δ > 0
and for some property R(x) (an arithmetical formula with one free string variable
x) that the number of strings x of length N such that ¬R(x) does not exceed δ2N

(the statement printed in italics is a closed arithmetical formula). Then we are
allowed to toss a fair coin N times, generating a string r of length N , and add
the formula R(r) as a new axiom. This step can be repeated several times. We
have to pay δ for each operation until the initial capital ε is exhausted; different
operations may have different values of δ. (Our previous examples are special
cases: the formula R(x) says that C (x) ≥ n − c and δ = 2−c.) Note that the
axiom added at some step can be used to prove the cardinality bound at next
steps.3

In this setting we consider proof strategies instead of proofs. Such a proof
strategy is a rooted tree whose internal nodes correspond to random choices made
when a new axiom is added; note that the formula R(x) used in the next step may
depend on the random choice made at the previous step. The sum of “payments”
δ along each path in the tree should not exceed ε. At each leaf of the tree we get
some theory (PA plus the new axioms that are selected on the way from the root
to this leaf). There is a natural probability distribution on leaves. Given a proof
strategy π and a formula ϕ, we consider the probability that ϕ is provable by π.
We do not assume here that a proof strategy is effective in any sense.

The following theorem says that this procedure indeed can be trusted:

Theorem 1 (soundness). Let ϕ be some arithmetical statement. If the probability
to prove ϕ for a proof strategy π with initial capital ε is greater than ε, then ϕ is
true.

2As usual, we should agree on the representation of Kolmogorov complexity function C in
PA. We assume that this representation is chosen in some natural way, so all the standard

properties of Kolmogorov complexity are provable in PA. For example, one can prove in PA

that the programming language used in the definition of C is universal. The correct choice is
especially important when we speak about proof lenghts (Section 3).

3Actually this is not important: we can add previously added axioms as conditions.
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2.2. Random axioms are not useful. As Chaitin’s theorem shows, there are
proof strategies that with high probability lead to some statements that are non-
provable (in PA). However, the situation changes if we want to get some fixed
statement, as the following theorem shows:

Theorem 2 (conservation). Let ϕ be some arithmetical statement. If the proba-
bility to prove ϕ for a proof strategy π with initial capital ε is greater than ε, then
ϕ is provable (in PA without any additional axioms).

Formally, Theorem 2 is a stronger version of Theorem 1, but the message here is
quite different: Theorem 1 is the good news (probabilistic proof strategies are safe)
whereas Theorem 2 is the bad news (probabilistic proof strategies are useless).

3. Polynomial size proofs

The situation changes drastically if we are interested in the length of proofs.
The argument used in Theorem 2 gives an exponentially long “conventional” proof
compared with the original “probabilistic” proof, since we need to combine the
proofs for all terms in the disjunction. (Here the complexity of a probabilistic
proof strategy is measured as the length of proof in the branch where this length is
maximal; note that the total size of the proof strategy tree may be exponentially
larger.) Can we find another construction that transforms probabilistic proof
strategies into standard proofs with only polynomial increase in size? Probably
not; some reason for this is provided by the following Theorem 3.

Theorem 3. Assume that such a polynomially bounded transformation is possible.
Then complexity classes PSPACE and NP coincide.
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Cupping with Random Sets

Adam R. Day

(joint work with Joseph S. Miller)

Posner and Robinson proved that any non-computable set that is Turing below
∅′ can be cupped to ∅′ with a 1-generic set [9]. In 2004, Kučera asked which sets
below ∅′ can be cupped to ∅′ with an incomplete Martin-Löf random [8]. In other
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words, does the Posner-Robinson theorem hold if we replace Baire category with
Lebesgue measure, and if not, for which sets does it fail?

The basic definitions are the following. The prefix-free complexity of a string σ

is denoted by K(σ). A set R is Martin-Löf random if there exists some constant c
such that for all n, K(R ↾ n) > n− c. The definition of a Martin-Löf random set
can be relativized to any oracle A. We call a set A, low for Martin-Löf randomness
if every Martin-Löf random set is also Martin-Löf random relative to A. A set A
is K-trivial if for some constant c, for all n we have that K(A ↾ n) ≤ K(n) + c

(where K(n) is defined to be K(1n)). Hence, a K-trivial set is indistinguishable
from a computable set in terms ofK complexity. (The existence of non-computable
K-trivial sets was first established by Solovay in an unpublished manuscript [2].
Later, Zambella constructed a non-computable K-trivial c.e. set [12].) A set A is
weakly ML-cuppable if A ⊕X ≥T ∅′ for some incomplete Martin-Löf random set
X . A is ML-cuppable if one can choose X <T ∅′.

Kučera conjectured that the weakly ML-cuppable sets might be exactly the sets
that are not K-trivial. Nies showed that there exists a non-computable K-trivial
c.e. set that is not weakly ML-cuppable providing evidence for this conjecture [8].
We prove this conjecture showing that the K-trivial sets are precisely those sets
that cannot be joined above ∅′ with an incomplete random. We also show that all
sets below ∅′ that are not K-trivial, can be joined to ∅′ with a low random.

There are two directions to this proof. The first is that no K-trivial is weakly
ML-cuppable. This direction uses the equivalence of the K-trivial sets and the
low for Martin-Löf randomness sets, a result of Nies [7]. It also builds on work of
Franklin and Ng, and Bienvenu, Hölzl, Miller and Nies. Franklin and Ng character-
ized the incomplete Martin-Löf random sets in terms of tests formed by taking the
difference of two c.e. sets [3]. Recently, Bienvenu, Hölzl, Miller and Nies showed
that the incomplete Martin-Löf random sets are exactly those Martin-Löf random
sets for which a particular density property fails [1]. Our proof combines this den-
sity property with the fact that if A is a K-trivial set and WA is a bounded set
of strings c.e. in A, then there exists a bounded c.e. set of strings W such that
WA ⊆ W . (A set of finite strings S is bounded if

∑

σ∈S 2−|σ| < ∞.) This fact was
first explicitly stated, in an even stronger form, by Simpson [10]. It is also implied
by work of Miller, Kjos-Hanssen and Solomon [4].

The second direction is that every set that is not K-trivial is ML-cuppable.
This proof of this direction is an oracle construction using Π0

1 classes of positive
measure. Given A not K-trivial, we construct an R that is Martin-Löf random
but not Martin-Löf random relative to A. From A⊕R we can determine the stage
at which R leaves the n-th level of the universal Martin-Löf test relative to A.
We construct R so that this stage is greater than the settling time for the first n
bits of ∅′. This construction makes use of a result of Kučera that any Π0

1 class of
positive measure contains a tail of every Martin-Löf random [5].

Slaman and Steel extended the Posner-Robinson theorem to show that any
non-computable set A that is strictly Turing below ∅′ can be cupped to ∅′ with a
1-generic set X such that A and X form a minimal pair [11]. The analogous result
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for A not K-trivial and X Martin-Löf random does not hold. Any Martin-Löf
random computes a diagonally non-computable function. Kučera showed that if
A and B both compute diagonally non-computable functions and are both below
∅′, then A and B do not form a minimal pair [6]. Hence no Martin-Löf random set
below ∅′ forms a minimal pair with any set A below ∅′ that computes a diagonally
non-computable function. However, it is unknown whether the following holds:
for any non-computable set A <T ∅′ that is not K-trivial, there is a Martin-Löf
random R <T ∅′ such that A⊕R ≡T ∅′ and if B ≤T A,R, then B is K-trivial.
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Problems of autostability and spectrum of autostability

Sergey Goncharov

In the study of autostability relative to strong constructivisations we consider the
connection of autostability in almost prime models for complete decidable theo-
ries. It is additional results to my paper [1]. A. I. Maltsev gave start to systematic
investigation of constructive models on the base of numberings or naming of el-
ements of models and start to study algorithmic properties of structures on the
base of classical theory of algorithms.
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Let M be a model with signature σ. If ν is an enumeration of the main set
of model M, then we call the pair (M, ν) a numbered model. Here we take as
value of every constant ai an element ν(i) for each i ∈ N. Let D(M, ν) be the
quantifier-free theory of model Mν , i. e. the set of sentences without quantifier in
signature σN, which are true in model Mν .

The numbered model (M, ν) is constructive if the set D(M, ν) is recursive,
i. e. there exists an algorithm for testing validity for quantifier-free formulas on
elements of this model.

In connection with problem of uniqueness of constructive enumeration for a
given model A. I. Maltsev introduced the notion of recursively stable model. He
noticed that finitely generated algebraic systems are recursively stable.

Let (M, ν) and (M, µ) be two numbered models for the model M.
The numberings ν and µ of model M are recursively equivalent, if there exist

recursive functions f and g such that ν = µf and µ = νg.
We can note that the two constructivizations ν and µ of modelM are recursively

equivalent, if for any subsets X ⊆ Mk, k ≥ 1 the set ν−1(X) is recursive iff the set
µ−1(X) is recursive.

Let Th(M, ν) be the elementary theory of model Mν , i. e. the set of sentences
in signature σN, which are true in model Mν . A numbered model (M, ν) is called
strongly constructive, if the elementary theory Th(M, ν) in signature σN is decid-
able.

Let ∆ be a class of functions such that ∆ is closed relative to superposition and
for any permutation f of N from ∆ the function f−1 from ∆ too.

The constructivizations ν and µ of the model M are ∆-autoequivalent relative
to strong constructivization, if there exist function f from ∆ and automorphism
λ of the model M such that λν = µf .

The model is called ∆-autostable relative to strong constructivization if for every
two strong constructivizations ν1 and ν2 of the model M there exist automorphism
α of model M and function f from ∆ such that αν1 = ν2f .

We proved the main result, that for any n ≥ 5 the existence of Ehrenfeucht the-
ory with n countable models and the prime model of this theory is not autostable
relative to strong constructivizations but some almost prime model of this theory
is strongly constructivizable and autostable relative to strong constructivizations.

But it was proved in [1] that any decidable theory is not ω-stable if for this
theory there exists a prime model in finite enrichment with constants such that
it has a strong constructivization and is autostable relative to strong construc-
tivizations but prime model is decidable and is not autostable relative to strong
constructivizations.

Now we will consider an autostability relative to strong constructivizations in
uncountably categorical theories down.

We proved that there can not exist an uncountably categorical theory with
prime model, which is not autostable relative to strong constructivizations but
with some other model, which is autostable relative to strong constructivizations.
And if some model for uncountably categorical theory is autostable relative to
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strong constructivizations then its prime model will also be autostable relative to
strong constructivizations.

Nevertheless for any n there exists decidable uncountably categorical theory
such that all of its countable models are strongly constructivizable but only first
n are autostable relative to strong constructivizations.

References

[1] S.S.Goncharov, On autostability of almost prime models relative to strong constructiviza-
tions, Russian Math. Surveys. Vol. 65, No. 5.(2010), 901–935.

Theories of Classes of Structures

Asher M. Kach

(joint work with Antonio Montalbán)

The authors started this project trying to answer a question from Ketonen [2]:
Is the first-order theory of the class of countable Boolean algebras with the direct
sum operation decidable? When he posed the question, Ketonen had recently
answered the following question:

Tarski’s Cube Problem: Does there exist a countable Boolean
algebra B such that B ∼= B ⊕ B ⊕ B but B 6∼= B ⊕ B?

Indeed, Ketonen [3] shows that every countable commutative semi-group embeds in
the commutative monoid of countable Boolean algebras, yielding a positive answer
to Tarski’s Cube Problem. In this talk, we discuss the answers to these questions
when posed for other classes of structures: cardinals, vector spaces, equivalence
structures, linear orders, groups, etc., as well as Boolean algebras.

We show that the first-order theory of the class of countable Boolean algebras
with the direct sum operation is far from decidable; it is as complex as it can be.

Theorem 1. The first-order theory of the class of countable Boolean algebras
under the direct sum operation is 1-equivalent to true second-order arithmetic.

For linear orders, we obtain a stronger result. For groups, we obtain a weaker
result (we require the presence of the subgroup relation).

Theorem 2. The class of countable linear orderings with the concatenation oper-
ation is bi-interpretable with second-order arithmetic.

The first-order theory of the class of countable groups under the direct product
operation and the subgroup relation is 1-equivalent to true second-order arithmetic.

To break the pattern, and to contrast with these results, we also give examples
of theories which are decidable. These examples follow from work in Feferman and
Vaught [1].

Corollary (Feferman and Vaught [1]). The theories of the following structures
are decidable under ZFC.

• For any cardinal κ, the class of cardinals below κ under cardinal addition.
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• For any countable field F , the class of countable F -vector spaces under
direct sum.

• The class of countable equivalence structures under disjoint union.
• The class of finitely generated abelian groups under direct sum.

Surprisingly, this type of investigation of the theories of classes of algebraic
structures seems to be in its infancy. Indeed, the only example in the literature the
authors are knowledgeable about is the Ketonen [3] result already mentioned. As
many natural questions remain open, the authors hope to see similar investigations
in the future.
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Π0

1
equivalence structures and their isomorphisms

Valentina Harizanov

(joint work with Douglas Cenzer and Jeffrey B. Remmel)

Equivalence relations play an important role in mathematical logic and many
other areas of mathematics. For example, isomorphism and elementary equiva-
lence, as well as their effective versions such as computable isomorphism or Σ0

n

equivalence, are equivalence relations. Similarly, a number of interesting applica-
tions of equivalence relations arise from the so-called classification problems where
two structures are equivalent if they possess certain invariant properties. Here,
we restrict our attention to countable structures for computable languages. If a
structure is infinite, we can assume that its universe is the set of natural numbers,
ω. Such a structure is computable if its atomic diagram is computable. Thus, an
equivalence structure A = (ω,E) is computable if E is computable.

A computable structure A is ∆0
n categorical if every computable structure that

is isomorphic to A is ∆0
n isomorphic to A. Thus, computable categoricity is the

same as ∆0
1 categoricity. A computable structure A is relatively ∆0

n categorical
if for every B isomorphic to A, there is an isomorphism that is ∆0

α relative to
the atomic diagram of B. Clearly, relatively ∆0

n categorical structures are ∆0
n

categorical. It can be shown that the converse may not be true. The study of
the complexity of isomorphisms between computable equivalence structures was
carried out by Calvert, Cenzer, Harizanov, and Morozov in [1]. Similarly, the
study of equivalence structures within the Ershov difference hierarchy has been
carried out by Cenzer, LaForte, and Remmel in [2].

We will now focus on Π0
1 equivalence structures and their isomorphisms (see

[3]). We say that an equivalence structure A = (ω,E) is Π0
1 (or co-c.e.) if E

is a Π0
1 set. Co-c.e. structures have been studied since the beginning of modern
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computable model theory. For example, in [5], Remmel studied co-c.e. structures
where the underlying operations are computable.

The character of an equivalence structure A is the set

χ(A) = {(k, n) : n, k > 0 and A has at least n equivalence classes of size k}.

We say a character χ(A) is bounded if there is some finite k0 such that for all
(k, n) ∈ χ(A), we have k < k0. By InfA we denote the set of all elements of A
with infinite equivalence classes, and by FinA the set of all elements with finite
equivalence classes.

We proved in [1] that a computable equivalence structure A is computably cat-
egorical if and only if A has either only finitely many finite equivalence classes,
or A has finitely many infinite equivalence classes, bounded character, and ex-
actly one finite k such that there are infinitely many equivalence classes of size k.
We showed that computably categorical equivalence structures are relatively com-
putably categorical. We further proved that a computable equivalence structure
A is relatively ∆0

2 categorical if and only if A has finitely many infinite equivalence
classes or bounded character. We also established that all computable equivalence
structures are relatively ∆0

3 categorical.
We will now establish that even simple Π0

1 equivalence structures do not have to
be ∆0

2 isomorphic to computable structures. First, we state the following positive
result.

Theorem 1. Let A and B be isomorphic Π0
1 equivalence structures such that A

satisfies one of the following conditions:

(i): A has only finitely many finite equivalence classes, or
(ii): A has finitely many infinite equivalence classes and bounded character,

and there is at most one finite k such that A has infinitely many equiva-
lence classes of size k.

Then A and B are ∆0
2 isomorphic.

Theorem 1 does not extend to other Π0
1 equivalence structures isomorphic to

relatively ∆0
2 categorical structures.

Theorem 2. Suppose that B is a computable equivalence structure that is relatively
∆0

2 categorical, but not computably categorical. Then there exists an isomorphic Π0
1

structure A that is not ∆0
2 isomorphic to B and, moreover, A is not ∆0

2 isomorphic
to any Σ0

1 structure.

We note that Theorem 2 does not cover all ∆0
2 categorical equivalence structures

since Kach and Turetsky [4] showed that there exists a computable, ∆0
2 categorical

equivalence structure B, which has infinitely many infinite equivalence classes and
an unbounded character, and has only finitely many equivalence classes of size k

for any finite k. The next result will cover this case.

Theorem 3. Let B be a computable equivalence structure with infinitely many
infinite equivalence classes and with unbounded character such that for each finite
k, there are only finitely many equivalence classes of size k. Then there is a Π0

1
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structure A that is isomorphic to B such that InfA is Π0
2 complete. Furthermore,

if B is ∆0
2 categorical, then A is not ∆0

2 isomorphic to any computable structure.

These results lead to the following general theorem.

Theorem 4. Suppose that B is a computable equivalence structure that is not
computably categorical. Then there is a Π0

1 structure A that is isomorphic to B,
but is not ∆0

2 isomorphic to B.
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Low level nondefinability in the Turing degrees

Richard A. Shore

(joint work with Mingzhong Cai)

A major focus of recent research on the Turing degrees, D, has been definability
and complexity. We discuss a topic that has received almost no attention but
certainly deserves some: nondefinability. Now, outright nondefinability results
would settle the major open question about the degrees by showing that they
are not biinterpretable with second order arithmetic. We propose proving that
sets of degrees, or relations on D, are not definable by simple formulas in terms
of quantifier complexity in various languages possibly stronger than the basic on
with just ≤ (for Turing reducible to).

This work was motivated by the suggestion of Miller and Martin [5] that one
could prove that the sets of hyperimmune (HI) and hyperimmune free (HIF)
degrees are not simply definable. (A degree x ∈ HIF if and only if every f ≤T X

is dominated by a recursive function. The class HI consists of the degrees not
in HIF.) In addition to the basic language (≤), they suggest two extensions
augmenting it by either the jump operator ′ or the relation RE for “recursively
enumerable in.” They also allow parameters c̄ for any specific degrees in all their
languages. They prove that HI is not definable by a quantifier free formula in the
language (≤, c̄) (for any degrees c̄) and conjecture that this is also true for the
language with jump,(≤,′ , c̄). We affirm their conjecture and prove other similar
theorems about these and other sets of, and relations on, degrees.

In particular, we are interested in another complementary pair of sets of de-
grees related to domination properties: the array nonrecursive degrees, ANR, are
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those computing a function not dominated by the modulus function for 0′ and
the complementary class of array recursive degrees, AR. We also suggest that in
place of the relation RE one study REA, “recursively enumerable in and above.”
We note that while REA is clearly definable from RE by a quantifier free formula,
we show that the reverse is not true even by a one quantifier formula (without
parameters). In addition, our intuitions about relativizing the relation RE really
apply to REA and all the examples we know using RE actually only use REA.
Most striking among these is the two quantifier definition in this language (without
parameters) of ANR as {x|(∀y ≥ x)(∃z < y)(y is REA in z} ([1]; [2]). There are
also properties of REA degrees that we exploit in our constructions, in particular
the characterization of such degrees in terms of the modulus lemma.

While some of our results allow parameters, most do not. Including parameters
makes many more classes of degrees easily definable. Classic examples include the
degrees of the productive sets: {x|x ≥ 0

′}; the immune sets: {x|x ≥ 0} and the
functions dominating every recursive function: {x|x′≥ 0′′}. However, unbridled
use of parameters makes everything definable as by Slaman and Woodin, the
biinterpretability conjecture holds for D with parameters (see [7, Corollary 5.6])
and so every relation on D definable in second order arithmetic is definable from
parameters (although their proof does not produce any simple definitions).

The table below summarizes our current results listing classes and relations not
definable by formulas in specific classes in one of the three languages indicated
with or without parameters (c̄).

Class/Relation Not defined by formula in Language
HI Σ0 (≤,′ , c̄)
HI Σ1 (≤, c̄)
HI Σ2 (≤)

ANR Σ0 (≤,′ , c̄)
ANR Σ1 (≤, c̄)
ANR Σ1, Π1 (≤, REA)
ANR Σ2 (≤)
HIF Σ1 (≤, REA, c̄)
HIF Σ2 (≤)
AR Σ1 (≤, REA, c̄)

Jump Σ1 (≤, REA)
RE Σ1, Π1 (≤, REA)

We note the particularly tight instances. ANR is definable by a two quantifier
formula in (≤, REA) but not by any one quantifier one. It is also not definable by
a Σ2 formula in just (≤). The relation y = x′ is definable in (≤, REA) by a Π1

formula (∀z(zREAx → z ≤ y) but not by a Σ1 formula in this language.
All the analyses proceed by first finding an appropriate syntactic normal form.

Typically a second step is to simplify the form by considering degrees in the class
being considered with special properties such as avoiding cones determined by the
parameters, being minimal or perhaps also r.e. in some other degree (or not).
Then one needs to do a construction to show that whatever diagram provided



414 Oberwolfach Report 08/2012

the witnesses that the special degrees are in the class can be duplicated with
corresponding degrees outside it. This then shows that the formula cannot define
the class being considered. The techniques for the two quantifier results with
just ≤ depend on standard initial segment and extension of embedding results
and follow similar ones for other classes in Lerman and Shore [4] and Shore [6].
The ones not involving REA are at the moment mostly ad hoc exploiting various
forcing constructions and special facts.

Most all the results involving REA depend on variations on a basic theorem pro-
viding a decision procedure for one quantifier formulas in the language (≤ , REA).

Definition 1. A partial order ≤ is an REA partial order if it has an additional
binary relation x REA y such that x REA y → x ≥ y and x REA y & x ≥ z ≥
y → x REA z.

Theorem 2. Every finite REA partial order can be embedded in (D,≤, REA).

The proof is a forcing argument which enforces x REA y by explicitly putting
a function l(n, s) limit computing X into both X and Y and a modulus function
m(n) for this computation into X . Of course, enforcing the negative relations is
the combinatorially complicated part of the argument. The entries in the table
above involving REA are now proven by variations on this construction that make
at least some of the degrees realizing a particular diagram be in specific classes. For
example, while the basic construction uses two genericity, more careful arguments
produce superlow degrees and hence ones in both HI and AR. Examples of
simplifying the diagram part of the arguments include, for example for the relation
RE, the existence of a minimal degree r.e. in 0′ but not recursive in it.

Now it is obvious that there are many natural open questions raised by this
work. Perhaps the most obvious ones are to include parameters in the results that
do not now have them and to replace REA by RE. Even adding a parameter for 0
seems a challenging but probably accessible problem using priority arguments in
place of forcing. Controlling the relation RE rather than REA calls for a different
kind of coding and forcing argument (even without parameters). Of course, moving
up to two quantifier sentences for languages stronger than the basic one is an
obvious but seemingly difficult problem. Even with just ≤, the nondefinability of
AR by a Σ2 formula should require some new idea. At the one quantifier level,
the natural questions would include extending the language by adding join and
considering jump as well. Some of these seem quite tractable.

Ted Slaman suggested the degrees A of the arithmetic sets as a good candi-
date for proving a sharp definability result as we already have a fairly low level
definition in the language with just ≤. In fact, by rewriting [3, Theorem 3.3] to
eliminate join, the class of arithmetic degrees is definable by a Σ3 formula in just
≤: A = {x|(∃y ≥ x)(∀z∀w(w ≥ z,y → ∃u(w > u > z))}. On the other hand, the
arguments of [6, Proposition 7.6] also show that A is not definable by either a
Σ2 or Π2 formula and so we have as simple a definition as possible. The same
arguments (in both directions) work for the relation of being arithmetic in. It
too is Σ3(≤) but neither Σ2 nor Π2. Note that as for any countable ideal, A is
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quantifier free (≤, c̄) definable (from an exact pair for the ideal). It is easy to see
that the relation “arithmetic in” is not so definable.

References

[1] M. Cai and R. A. Shore, Domination, forcing, array nonrecursiveness and relative recursive
enumerability, Journal of Symbolic Logic 77 (2012), 33-48

[2] M. Cai, Array nonrecursiveness and relative recursive enumerability, Journal of Symbolic
Logic 77 (2012), 21-32.

[3] C. G. Jockusch jr. and R. A. Shore, Pseudo-jump operators II: transfinite iterations hierarchies
and minimal covers, Journal of Symbolic Logic 49 (1984), 1205-1236

[4] M. Lerman and R. A. Shore, Decidability and invariant classes for degree structures, Trans-
actions of the American Mathematical Society 310 (1988), 669-692

[5] W. Miller and D. A. Martin, The degrees of hyperimmune sets, Z. Math. Grund. Math. 14
(1968), 159-166.

[6] R. A. Shore, Direct and local definitions of the Turing jump, Journal of Mathematical Logic
7 (2007), 229-262.

[7] Slaman, T. A., Global properties of the Turing degrees and the Turing jump in Computational

prospects of infinity. Part I. Tutorials, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singapore
14 (2008) World Sci. Publ., Hackensack, NJ, 83–101.

Balancing Randomness

Dan Turetsky

(joint work with Laurent Bienvenu, Noam Greenberg, Antońın Kučera, and
André Nies)

In [2], Kučera gave an injury-free solution for Post’s problem, by showing that
every ∆0

2 Martin-Löf random set computes a noncomputable c.e. set. In hindsight,
this result initiated a broad research programme, which lies at the intersection of
algorithmic randomness and the study of the computably enumerable (c.e.) Turing
degrees. In general, researchers stud the distribution of the random sets in the
Turing degrees, and in particular how these random degrees fit in with other
classes of degrees which are examined by classical computability theory, prime
among them being the class of c.e. degrees. Since incomplete c.e. sets cannot
compute random sets, the natural question to ask is: which random sets compute
which c.e. sets?

The K-trivial sets are a natural class which arise repeatedly in the study of
algorithmic randomness. For example, they are precisely the sets which cannot
derandomize any Martin-Löf random. Hirschfeldt, Nies and Stephan showed in [1]
that every c.e. set which is computable from an incomplete Martin-Löf random set
is K-trivial. The converse is known as the covering problem, and it remains open.

Kučera and Slaman showed in [3] that there is a low set which computes ev-
ery K-trivial set, although their low set was not Martin-Löf random. A natural
strengthening of the covering problem is then, “Is there a low Martin-Löf random
which computes every K-trivial set?” We answer this question in the negative,
while also providing evidence against the covering problem.
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We obtain our results by examining a new form of randomness, which we are
tentatively calling Oberwolfach randomness.

Definition 1. An Oberwolfach test is a pair (〈Gσ〉σ∈2<ω , α), where α < 1 is a left
c.e. real, and 〈Gσ〉σ∈2<ω is a uniformly Σ0

1 sequence such that λGσ ≤ 2−|σ|.
A real X passes an Oberwolfach test (〈Gσ〉σ∈2<ω , α) if X 6∈

⋂

n Gα↾n .
A real is Oberwolfach random if it passes every Oberwolfach test.

Oberwolfach randomness turns out to be “near” Martin-Löf randomness, in the
sense that a Martin-Löf random real must be fairly powerful as an oracle in order
to avoid being Oberwolfach random.

Theorem 2. If Z is Martin-Löf random but not Oberwolfach random, then Z is
h-JT-hard for any computable order h with

∑

x
1

h(x) < ∞, and hence Z is super-

high.

So Oberwolfach randomness includes a large amount of the incomplete Martin-
Löf randoms. It may in fact contain all of them; we are yet unable to answer this
question. We are, however, able to understand it’s relationship to K-triviality.

Theorem 3. There is a c.e. K-trivial set which is not computable from any
Oberwolfach random.

Putting this together with the previous result, we see that this K-trivial is only
computable from Martin-Löf randoms which are super-high.

Theorem 4. If Z is Martin-Löf random but not Oberwolfach random, then Z

computes every K-trivial set.

So the Oberwolfach randoms are precisely the Martin-Löf randoms which do
not compute every K-trivial set. The covering problem can thus be rephrased as
“Is there an incomplete Oberwolfach random?”
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The Typical Turing Degree

Andrew E. M. Lewis

(joint work with George Barmpalias and Adam Day)

I’ll describe a research project, which is joint work with George Barmpalias and
Adam Day, and which addresses the issue, “what properties are satisfied by the
typical Turing degree?”

The inspiration for this line of research begins essentially with Kolmogorov’s 0-1
law, which states that any (Lebesgue) measurable tailset is either of measure 0 or
1. Since Turing degrees are tailsets, this means that upon considering properties
which may or may not be satisfied by any given Turing degree, we can immediately
conclude that, so long as the satisfying class is measurable, it must either be of
measure 0 or 1. Thus either the typical degree satisfies the property, or else the
typical degree satisfies its negation, and this suggests an obvious line of research.
Initially we might concentrate on definable properties, where by a definable set of
Turing degrees we mean a set which is definable as a subset of the structure in the
language of partial orders. For each such property we can look to establish whether
the typical degree satisfies the property, or whether it satisfies the negation. In
fact we can do a little better than this. If a set is of measure 1, then there is some
level of algorithmic randomness which suffices to ensure membership of the set.
So, once we have established that the typical degree satisfies a certain property,
we may also look to establish the level of randomness required in order to ensure
typicality as far as the given property is concerned.

Lebesgue measure though, is not the only way in which we can gauge typicality.
One may also think in terms of Baire category. For each definable property, we
may ask whether or not the satisfying class is comeager and, just as in the case for
measure, it is possible to talk in terms of a hierarchy which allows us to specify
levels of typicality. The role that was played by randomness in the context of
measure, is now played by genericity. For any given comeager set, we can look
to establish the level of genericity which is required to ensure typicality in this
regard.

During our research, we have isolated the following heuristic principle: if a
property holds for all highly random/generic degrees then it is likely to hold for
all non-zero degrees that are bounded by a highly random/generic degree. Here by
‘highly random/generic’ we mean at least 2-random/generic. Thus, establishing
levels of typicality which suffice to ensure satisfaction of a given property, also gives
a way of producing lower cones and sets of degrees which are downward closed (at
least amongst the non-zero degrees), such that all of the degrees in the set satisfy
the given property.

Over the course of a number of months we have systematically considered var-
ious degree theoretic-properties, starting with the most simple and working our
way on to properties which are more complex. We have developed frameworks
which seem to apply very widely, and which we have used to give a good number
of new results. Our research in this area is written up in two papers, ‘Measure and
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cupping in the Turing degrees’ and ‘The typical Turing degree’. The first of these
papers is joint with George and the second is joint with both George and Adam.

I’ll list some of the new results here, and refer you to the papers for a discussion
which places these results properly in the context of the previous literature.

While it was known that the measure of the degrees which bound a minimal
degree is 0, the level of randomness required was left open as a question in the
Downey, Hirschfeldt book. We answered this by proving:

Theorem 1. Every non-zero degree bounded by a 2-random bounds a 1-generic.

One can then show that this is sharp. It is not too hard to show that there
exist Demuth random degrees which bound minimal degrees. The following result
suffices to show that there are weakly 2-random degrees which bound minimal
degrees (since a 1-random real is weakly 2-random if and only if its degree forms a
minimal pair with 0′, and every generalized high degree bounds a minimal degree).

Theorem 2. Given a Π0
1 class P of positive measure, there is A ∈ P which is

generalized high, and whose degree forms a minimal pair with 0′.

This also gives a rather simple answer to a question of Nies, as to whether all weakly
2-random sets are array computable. We were also able to answer a question of
Jockusch by showing:

Theorem 3. The measure of the degrees which satisfy the cupping property is 0.
In fact, every degree below a 2-random degree has a strong minimal cover.

On the other hand, we can show that no degree below a 2-random degree is a
strong minimal cover. Combined with results by Jockusch, Theorem 3 means that
every 2-random degree and every 2-generic degree form a minimal pair.

Moving on to the join property, we were able to strengthen the result of Jockusch
that every 2-generic degree satisfies join:

Theorem 4. Every 1-generic degree satisfies the join property.

Also, the measure of the degrees which satisfy the join property is 1:

Theorem 5. Every degree bounded by a 2-random degree satisfies the join prop-
erty.

While we have not yet been able to determine whether the meet and comple-
mentation properties are satisfied by all sufficiently random degrees, we have the
following partial result:

Theorem 6. Every non-zero degree bounded by a 2-random is the top of a dia-
mond.

For those those who are interested, a detailed account of the previous literature
is given in ‘The typical Turing degree’, but in case you want to go straight to the
previous literature, some of the most useful references are [9, 11, 10, 1, 3, 4, 5, 6,
7, 8, 2].
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Maximal chains of computable well partial orders

Alberto Marcone

(joint work with Antonio Montalbán and Richard Shore)

The proofs of the results stated in this abstract will appear in [4].
If P is partially ordered by ≤P , C ⊆ P is a chain in P if the restriction of

≤P to C is linear. If P is a well-founded partial order then every chain in P is a
well-order and we define the height of P , ht(P ), to be the supremum of all ordinals
which are order types of chains in P . For x ∈ P , let htP (x) be the supremum of all
ordinals which are order types of chains in P(−∞,x) = { y ∈ P | y <P x }. It is easy
to see that ht(P ) = sup{ htP (x) + 1 | x ∈ P } and that htP (x) = sup{ htP (y) + 1 |
y <P x }.

Definition 1. Let C be a chain in the well-founded partial order P :

• C is maximal if it has order type ht(P );
• C is strongly maximal if, for every α < ht(P ), there exists a (necessarily
unique) x ∈ C with htP (x) = α.

Recall that a well partial order (from now on wpo) is a well-founded partial
order with no infinite antichains.

Wolk proved the following theorem, which appears also in Harzheim’s book ([3,
Theorem 8.1.7]):

Theorem 2 ([10]). Every wpo has a strongly maximal chain.

We can now state precisely the questions we are interested in:
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Question 1. If P is a computable wpo, how complicated must maximal and
strongly maximal chains in P be?

It follows from previous work in [5] that a computable wpo always has a hyper-
arithmetic strongly maximal chain.

Question 2. How complicated must any function taking the wpo P to such a
maximal chain be?

As usual, the computability of P means that both P ⊆ N and ≤P ⊆ N×N are
(Turing) computable sets. In our answers to these questions, we will measure com-
plexity in terms of Turing computability as well as the hyperarithmetic hierarchy
which is built by iterating the Turing jump (halting problem) along computable
well orderings.

Theorem 2 is somewhat similar to the better known result of de Jongh and
Parikh:

Theorem 3 ([2]). Every wpo P has a maximal linear extension, i.e. there exists
a linear extension of P such that every linear extension of P embeds into it. We
call such a linear extension a maximal linear extension.

Montalbán answered the analogues of Questions 1 and 2 for maximal linear
extensions.

Theorem 4 ([6]). Every computable wpo has a computable maximal linear exten-
sion, yet there is no hyperarithmetic way of computing (an index for) a computable
maximal linear extension from (an index for) the computable wpo.

Our first result concerns strongly maximal chains in computable wpos and shows
that they can be of arbitrarily high complexity in the hyperarithmetical hierarchy.

Theorem 5. Let α < ωCK
1 . There exists a computable wpo P such that any

strongly maximal chain in P computes 0(α).

Our second result shows that maximal chains can also be highly noncomputable.
In contrast to Theorem 5, however, we do not show that they must lie arbitrarily
high up in the hyperarithmetic hierarchy.

Theorem 6. Let α < ωCK
1 . There exists a computable wpo P such that 0(α) does

not compute any maximal chain in P .

Theorem 6 cannot be strengthened by constructing a computable wpo P such
that any maximal chain in P computes 0(α). In fact, we show that maximal chains
in wpos can be computed from (Cohen) generic sets (defined e.g. in [7, §IV.3]):

Theorem 7. If P is a computable wpo and G a hyperarithmetically generic set
then C ≤T G for some maximal chain C in P . Furthermore, if P has a maximal
chain of length < ωα+1, then 2 · α-genericity of G suffices.
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Theorem 7 implies that almost every set, in the sense of category, computes
maximal chains, and that every computable wpo has a maximal chain that does
not compute any noncomputable hyperarithmetic set.

Our proof of Theorem 7 is nonuniform, and this cannot be avoided:

Theorem 8. There is no hyperarithmetic procedure which calculates a maximal
chain in every computable wpo.

In fact, suppose f is such that, for every index e for a computable wpo P ,
n 7→ f(e, n) is (the characteristic function of) a maximal chain of P . Then f

computes every hyperarithmetic set.

Our results illustrate several interesting differences between the analysis of com-
plexity in terms of computability strength as done here and axiomatic strength in
the sense of reverse mathematics as is done in [5]. (See [9] for basic background
in reverse mathematics.) From the viewpoint of reverse mathematics, all of the
theorems analyzed computationally here and in [6] are equivalent. Indeed, in [5]
the first and third author showed that Theorem 3 and Theorem 2 (indeed even the
version for maximal chains) for countable wpos are each equivalent (over RCA0)
to the same standard axiom system, ATR0. As we have explained, however, the
computational analysis of these three theorems in the sense of Question 1 are quite
different.

Computable partial orders all have computable maximal linear extensions by
Theorem 4. Computable wpos all have hyperarithmetic maximal and even strongly
maximal chains as is shown by the proof in ATR0 of Theorem 2 in [5]. However,
strongly maximal chains for computable wpos must be of arbitrarily high complex-
ity relative to the hyperarithmetic sets while maximal chains can be computably
incomparable with all noncomputable hyperarithmetic sets. Yet another level of
computational complexity within the theorems axiomatically equivalent to ATR0,
is provided by König’s duality theorem (every bipartite graph G has a matching M

such that there is a cover of G consisting of one vertex from each edge in M). (See
[1] for definitions.) Here [1] and [8] show that this theorem for countable graphs
is equivalent to ATR0. On the other hand, [1, Theorem 4.12] shows that there
is a single computable graph G such that any cover as required by the theorem
already computes every hyperarithmetic set and so this G certainly has no such
hyperarithmetic cover.

The phenomena exhibited by our analysis of the existence of maximal chains
seems to be new.
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Algorithmic Randomness in Ergodic Theory

Henry Towsner

(joint work with Johanna Franklin)

A dynamical system consists of a set of points Ω with a σ-algebra B of subsets
of Ω and a probability measure µ on B, together with a measureable, measure-
preserving function T : Ω → Ω.

One of the first theorems proven about such systems is the Birkhoff Ergodic
Theorem,

Theorem 1 (Birkhoff). For any measurable set A, the average

lim
N→∞

1

N

∑

i<N

χA(T
ix)

converges for almost every x.

The average in this theorem is known as the ergodic average.
From the perspective of algorithmic randomness, it is natural to restrict A to

some countable collection with some type of computability requirement and say
that a point x is random exactly if the average converges for every such set A and
for every transformation T in some class. (Here, and throughout, it is possible to
generalize χA to an L1 function without changing the results.)

T is ergodic exactly if the average almost always converges to µ(A). The case
where T is ergodic has received a fair amount of attention recently, almost com-
pletely resolving the question:

Theorem 2.

(1) If x is Schnorr random, T is computable and ergodic, and A is computably
enumerable with computable measure then the ergodic average of x con-
verges. [1, 6]

(2) If x is not Schnorr random then there is a computable ergodic T and a
computable set A such that the ergodic average of x fails to converge. [6]

(3) If x is Martin-Löf random, T is computable and ergodic, and A is com-
putably enumerable then the ergodic average of x converges. [2, 5]
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(4) If x is not Martin-Löf random then there is a computable ergodic T and a
computably enumerable set A such that the ergodic average of x does not
converge to µ(A). [2]

It appears to be open whether this last result can be improved so that x fails
to converge at all.

The non-ergodic case has not been as well studied. The only previous result we
are aware of is:

Theorem 3 ([8]). If x is Martin-Löf random, T is computable, and A is com-
putably enumerable with computable measure then the ergodic average of x con-
verges.

By using the method of cutting and stacking, a standard method of ergodic
theory for constructing transformations with particular properties (see [4, 7]), we
are able to show the converse:

Theorem 4. If x is not Martin-Löf random then there is a computable T and a
computable set A such that the ergodic average of x fails to converge

We turn to the question of non-ergodic transformations with computably enu-
merable sets. The proof of Theorem 3 depends on the notion of an upcrossing:

Definition 5. Given a set A and bounds α < β, νA(x) is defined to be the
supremum over N such that there exist u1 < v1 < u2 < v2 < · · · < uN < vN such
that for each k ≤ N ,

1

uk

∑

i<uk

χA(T
ix) < α < β <

1

vk

∑

i<vk

χA(T
ix).

Note that νA(x) is infinite if and only if the ergodic average at x fails to converge.
Bishop’s constructivization of the ergodic theorem shows

Theorem 6 ([3]).
∫

νA(x)dµ ≤ µ(A)
1− α

β − α
.

In order to extend this argument to computably enumerable sets, we must
consider the question of how stable the set of points with many upcrossings is
under small changes to A. We introduce a general notion of upcrossing which
leads to a rather weak bound.

Definition 7. Given sets A ⊆ B and bounds α < β, τA,B(x) is defined to be the
supremum over N such that there exist u1 < v1 < u2 < v2 < · · · < uN < vN such
that for each k ≤ N ,

1

uk

∑

i<uk

χA(T
ix) < α < β <

1

vk

∑

i<vk

χB(T
ix).
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Theorem 8. If µ(B \A) < ǫ, there is a set W with µ(W ) < 4ǫ
β−α

such that
∫

Ω\W

τA,B(x)dµ

is finite.

This implies:

Theorem 9. If x is weakly 2-random, T is computable, and A is computably
enumerable then the ergodic average of x converges.

For a potential converse, we do know of any result stronger than Theorem 4
even when A is allowed to be computably enumerable.1
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Proving that Artinian implies Noetherian without proving that
Artinian implies finite length

Chris Conidis

Let R be a commutative ring with identity. Recall from basic graduate algebra
that:

1. R is Noetherian if it satisfies the ascending chain condition on its ideals;
2. R is Artinian if it satisfies the descending chain condition on its ideals; and
3. R is of finite length if there is a uniform bound on the length of any (strictly
increasing/decreasing) chain of ideals in R.

It is well-known that 2. implies 1., but the proofs given in most standard algebra
texts prove this by showing the stronger statement that 2. implies 3. This begs the
question: ”Can one prove that 2. implies 1. without showing that 2. implies 3?

1Since the Oberwolfach conference, a suggestion of Kohlenbach’s appears to have lead to a
uniformization of Theorem 8, which in turns leads us to believe that Theorem 9 can be im-
proved to hold whenever x is Oberwolfach-random, a notion announced by Turetsky at the same
conference.
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We will show that this is indeed the case by showing that, in the context of reverse
mathematics, the former (weaker) statement is equivalent to weak König’s lemma,
while the latter (stronger) statement is equivalent to arithmetic comprehension in
the context of ω-models. Another way to view our main result is that it constructs
an ω-model of RCA (recursive comprehension axiom) in which 2. implies 1., but
2. does not imply 3.

The proof of our main result is based on the fact that annihilators play an
influential role in the theory of Artinian rings. In other words, the main difference
between our new proofs and the standard old proofs is that, instead of considering
general ideals in Artinian rings, we almost always restrict ourselves to ideals that
are annihilators or finite intersections of annihilators.

Copy or diagonalize

Antonio Montalbán

We introduce notions that describe computability aspects of classes of structures.
This definitions are new, but they reflect ideas that have been around for a few
decades.

The first notions are based in the following game. Let K be a nice class of
structures. The game is played by two players, C andD (for copy and diagonalize),
and they alternatively play finite structures C[0],D[0], C[1],D[1], ... such that C[i] ⊆
C[i + 1] and D[i] ⊆ D[i + 1] for all i. Let C =

⋃

i∈ω C[i] and D =
⋃

i∈ω D[i]. If C
and D are both in K, then C wins is C ∼= D and D wins if C 6∼= D. If C 6∈ K, then
D wins, and if C ∈ K but D 6∈ K, then D wins. Finally, we add an extra rule,
that if a player wants to play a finite structure, he has to eventually play a special
symbol ‘�’ to mark that he is done constructing.

We say that K is copyable if C has a winning strategy in this game, and we say
that K is diagonalizable otherwise.

We also define a version of this game where C builds infinitely many structures
Ci and he has to have one of them isomorphic to D; hence D needs to diagonalize
against all Ci simultaneously. Our main theorem is the following

Theorem 1. Let K be Πc
2-axiomatizable with a computable 1-back-and-forth struc-

ture. The following are equivalent:

• K has the low property.
• K′ is listable.
• K′ is ∞-copyable.



426 Oberwolfach Report 08/2012

The D-maximal sets

Peter Cholak

(joint work with Peter Gerdes and Karen Lange)

We discuss the classification of the D-maximal sets.

Definition 1 (The sets disjoint from A). D(A) = {B : ∃W (B ⊆ A∪W and W ∩
A =∗ ∅)} under inclusion. Let ED(A) be E modulo D(A).

Definition 2. A is D-maximal iff ED(A) is the trivial Boolean algebra iff for all
c.e. sets B there is a c.e. set D disjoint from A such that either B ⊂ A ∪ D or
B ∪D ∪ A = ω.

Maximal sets, hemimaximal sets, Herrmann sets and sets with A-special lists
are D-maximal.

We show that there are many more D-maximal sets and classify how they are
generated. In fact the class of D-maximal sets breaks up into infinitely many
orbits. For all but finitely many of these orbits, it is unknown if these orbits
contain complete sets.

Connectedness and the Brouwer Fixed Point Theorem

Vasco Brattka

(joint work with Stéphane le Roux and Arno Pauly)

We study the computational content of the Brouwer Fixed Point Theorem in
the Weihrauch lattice. One of our main results is that for any fixed dimension
the Brouwer Fixed Point Theorem of that dimension is computably equivalent to
connected choice of the Euclidean unit cube of the same dimension. Connected
choice is the operation that finds a point in a non-empty connected closed set given
by negative information. Another main result is that connected choice is complete
for dimension greater or equal to three in the sense that it is computably equivalent
to Weak Kőnig’s Lemma. In contrast to this, the connected choice operations in
dimensions zero, one and two form a strictly increasing sequence of Weihrauch
degrees, where connected choice of dimension one is known to be equivalent to
the Intermediate Value Theorem. Whether connected choice of dimension two is
strictly below connected choice of dimension three or equivalent to it is unknown,
but we conjecture that the reduction is strict. As a side result we also prove that
finding a connectedness component in a closed subset of the Euclidean unit cube
of any dimension greater or equal to one is equivalent to Weak Kőnig’s Lemma. In
order to describe all these results we introduce a representation of closed subsets
of the unit cube by trees of rational complexes.
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The Stable Ramsey’s Theorem for Pairs

Theodore A. Slaman

(joint work with Chong Chi Tat and Yang Yue)

We investigate the properties of Ramsey’s Theorem for Pairs in the context of
subsystems of second order arithmetic.

Definition 1. For X ⊆ ω, let [X ]n denote the size n subsets of X . For n,m > 0
and F : [ω]n → {0, . . . ,m − 1}, H ⊆ ω is homogeneous for F iff F is constant on
[H ]n.

Theorem 2 (Ramsey, 1930, [2]). For all n,m > 0 and all F : [ω]n → {0, . . . ,m−
1}, there is an infinite set H such that H is homogeneous for F .

If we fix n and m, then we represent that instance of Ramsey’s Theorem by
RTn

m.

Definition 3. A model M of second-order arithmetic consists of a structure N

for first-order arithmetic, called the numbers of M, and a collection of subsets of
N, called the reals of M.

Definition 4. RCA0 is the second-order theory formalizing the following.

• P−, the axioms for the nonnegative part of a discretely ordered ring.
• IΣ1, for φ a Σ0

1 predicate, if 0 is a solution to φ and the solutions to φ are
closed under successor, then φ holds of all numbers.

• The reals are closed under join and relative ∆0
1-definability.
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Definition 5. In an ω-model M, N = ω and the reals of M form an ideal in the
Turing degrees.

We can decompose of RT2
2 over RCA0 into the two principles COH and SRT2

2,
defined as follows.

Definition 6. • An infinite set X is cohesive for a family R0, R1, . . . of sets
iff for each i, one of X∩Ri or X∩Ri is finite. COH is the principle stating
that every family of sets has a cohesive set.

• A partition F : [ω]2 → ω is stable iff for all x, limy→∞ F (x, y) exists.

SRT2
2 is the principle RT 2

2 restricted to stable partitions.

These two principles together comprise RT 2
2.

Theorem 7 (Cholak, Jockusch, and Slaman, 2001, [1]). RCA0 ⊢
[

RT 2
2 ⇐⇒

(SRT 2
2 &COH )

]

We settle a question from [1] about whether this decomposition is proper by
showing that SRT 2

2 does not imply RT 2
2.

Theorem 8 (Chong, Slaman, and Yang). There is a model M of RCA0 with the
following properties.

• M |= SRT2
2

• M |= ¬IΣ2

• Every real in M is low in M.

However, we have been unable to determine whether every ω-model of RCA0+
SRT2

2 is also a model of RT 2
2, which we regard as an extremely interesting question.
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Amalgamation constructions and recursive model theory

Uri Andrews

We explore the use of Hrushovski amalgamation constructions to answer problems
of computable model theory. Hrushovski originally created these constructions to
answer a geometric question of model theory from Zilber: Must every strongly
minimal theory have a geometry arising from an algebraic structure? More specif-
ically, Zilber conjectured that every strongly minimal theory is locally modular
or field-like. The Hrushovski construction provides examples of strongly minimal
theories which are neither, and in fact these have inherently combinatorial rather
than algebraic nature.
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There are two natural reasons that one might expect Hrushovski constructions
to lend themselves to yielding computationally interesting examples. Firstly, com-
binatorial structures are easier to use to code recursion theoretic information than
algebraic ones. Secondly, the more structure an object respects, the easier it is to
compute information about the structure. Thus, if a strongly minimal theory also
respects geometric structure, it is more likely to yield to easier computation.

Using Hrushovski amalgamation constructions, we provide examples of strongly
minimal theories answering open questions in computable model theory. In par-
ticular, we show the following theorems:

Theorem 1 (A., [An2]). Let d be any tt-degree ≤ 0ω. Then there exists both
strongly minimal and ℵ0-categorical theories with finite signatures in d all of whose
countable models are recursively presentable.

Theorem 2 (A., [An1][An3]). • There exists strongly minimal theories Tn

with finite signatures so that only the models of dimension 0, 1, . . . n admit
recursive presentations.

• There exists a strongly minimal theory with finite signature so that only
the models of finite dimension admit recursive presentations.

• There exists a strongly minimal theory with finite signature so that only
the saturated model admits a recursive presentation.

• There exists a strongly minimal theory with finite signature so that only
the prime and saturated models admit recursive presentations.

Each of the results in Theorem 2 were achieved by use of a Hrushovski amal-
gamation construction. This naturally leads to the question of whether this is
necessary. In other words, could there be a strongly minimal theory with finite
signature satisfying Zilber’s conjecture with any of these spectra? The follow-
ing presents some results, joint with Alice Medvedev, where we begin to hint at
the answer being ‘no’. We conjecture, in fact, that such spectra are in fact very
limited:

Conjecture 3 (A.-Medvedev, [AnMe]). If T is a strongly minimal theory in a fi-
nite language satisfying the Zilber conjecture, then the collection of recursively pre-
sentable models of T is ∅, {all countable models of T}, or {the prime model of T}.

Some evidence for the conjecture comes from the following:

Theorem 4 (A.-Medvedev, [AnMe]). If T is a disintegrated strongly minimal
theory in a finite language, then the collection of recursively presentable models of
T is ∅, {all countable models of T}, or {the prime model of T}.

As all of the known recursive spectra of theories (before Theorem 2) were con-
structed with disintegrated theories, this shows that some new approach was nec-
essary. The below results, by proving the conjecture for the canonical examples of
theories satisfying the Zilber conjecture, begin to hint that such a new approach
must also be a counterexample to Zilber’s conjecture.
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Theorem 5 (A.-Medvedev, [AnMe]). If T is a locally modular theory in a fi-
nite language which expands a group, then the collection of recursively presentable
models of T is ∅, {all countable models of T}, or {the prime model of T}.

Theorem 6 (Poizat, [Po88]). If T is a field-like theory in a finite language which
expands a field, then every countable model of T admits a recursive (in fact decid-
able) presentation. (In fact, this is a corollary of Poizat’s result that any field-like
strongly minimal expansion of a field is a definitional expansion)

Thus we see that Hrushovski amalgamation constructions can be used as a new
tool to construct interesting examples in recursive model theory, and in fact, we
are beginning to see the necessity of this new approach.
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Mathias generic sets

Damir D. Dzhafarov

(joint work with Peter A. Cholak and Jeffry L. Hirst)

We present some results about generics for computable Mathias forcing, in which
conditions are pairs (D,E) such that D is a finite set, E is an infinite com-
putable set, and maxD < minE, and a condition (D′, E′) extends (D,E) if
D ⊆ D′ ⊆ D ∪ E and E′ ⊆ E. This forcing notion has been a prominent tool
for constructing infinite homogeneous sets for computable colorings of pairs of
integers, as in Seetapun and Slaman [6], Cholak, Jockusch, and Slaman [2], and
Dzhafarov and Jockusch [3]. It has also found applications in algorithmic random-
ness, in Binns, Kjos-Hanssen, Lerman, and Solomon [1].

For n ≥ 3, we call a set G Mathias n-generic if it meets or avoids every Σ0
n

collection of conditions, and weakly n-generic if it meets every dense such collec-
tion. The n-generic sets and weakly n-generic sets in this setting form a strict
hierarchy as in the case of Cohen forcing. Many other results concerning Cohen
generics hold also for Mathias generics, but a number do not. The main point of
distinction is that neither the set of conditions nor the relation of extension are
computable, so many usual techniques do not carry over.

We begin with an analysis of the Mathias forcing relation, which differs from
that of Cohen forcing past Σ0

2 statements.
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Lemma 1. Let (D,E) be a condition and let ϕ(X) be a formula in exactly one
free set variable.

(1) If ϕ is Σ0
0 then the relation (D,E)  ϕ(G) is computable.

(2) If ϕ is Π0
1, Σ

0
1, or Σ0

2, then so is the relation (D,E)  ϕ(G).
(3) For n ≥ 2, if ϕ is Π0

n then the relation of (D,E)  ϕ(G) is Π0
n+1.

(4) For n ≥ 3, if ϕ is Σ0
n then the relation (D,E)  ϕ(G) is Σ0

n+1.

Among other results, this allows us to prove a strengthening of the well-known
fact that every sufficiently Mathias generic is high.

Theorem 2. If G is n-generic then it has GH1 degree, i.e., G′ ≡T (G⊕ ∅′)′.

It follows that no Cohen 1-generic set can compute a Mathias n-generic set,
since for all m ≥ 1, every Cohen m-generic satisfies G(m) ≡T G ⊕ ∅(m), as shown
by Jockusch [4, Lemma 2.6]. We have the following analogue of this result for
Mathias genericity:

Theorem 3. For all n ≥ 2, if G is n-generic then G(n−1) ≡T G′ ⊕ ∅(n).

Jockusch and Posner [5, Corollary 7] showed that every GL2 degree bounds a
Cohen 1-generic degree. Thus, another consequence of Theorem 2 is that every
Mathias n-generic set computes a Cohen 1-generic. This leads to the following
question, which we have so far been unable to answer.

Question 1. Does every Mathias n-generic set compute a Cohen n-generic set?

We conjecture the answer to the question to be no. However, the following
theorem establishes that Mathias n-generics do not require much additional com-
putational power to compute Cohen n-generics. Recall that a set is co-immune if
its complement has no infinite computable subset.

Theorem 4. If G is Mathias n-generic, and A ≤T ∅(n−1) is bi-immune (i.e., A
and A are each co-immune), then G⊕A computes a Cohen n-generic.

Proof. Let C0, C1, . . . be a listing of all Σ0
n subsets of 2<ω, together with fixed

∅(n−1)-computable enumerations. For each i, let Di be the set of all conditions
(D,E) such that D ∩A, viewed as a binary string of length minE, belongs to Ci.
Then Di is a Σ0

n set of conditions, and as such must be met or avoided by G. If
G meets Di then G ∩A, viewed as an element of 2ω, meets Ci. If G avoids Di, we
claim that G ∩ A must avoid Ci. Indeed, suppose G avoids Di via (D,E). Since
A and A are co-immune, they intersect E infinitely often, and so if D ∩ B had
an extension τ in Ci, we could make a finite extension (D′, E′) of (D,E) so that
D′ ∩ A = τ . This extension would belong to Di, a contradiction. �

It follows, for example, that the join of G with any non-computable S ≤T ∅′

computes a Cohen n-generic.
The reason for using co-immune sets above is because the infinite part of a

Mathias condition can be made arbitrarily sparse along any computable domain,
and so any computable set of coding locations can always be removed. Our last
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result shows that this method is, in some sense, the only way of coding information
into Mathias conditions. Hence, the proof of the above theorem cannot be used
also for S = ∅.

Proposition 5. If G is Mathias n-generic and H is Cohen n-generic then H is
not many-one reducible to G.
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Isolation: Motivations and Applications

Guohua Wu

(joint work with Mars Yamaleev)

In this talk, we will describe how the isolation phenomenon can be obtained from
Kaddah’s work in 1993, and then show interactions between isolation and other
structural properties, like nonbounding, cupping, and bubble constructions.

Say that a (n + 1)-c.e. degree d is isolated by an n-c.e. degree c < d, if there
is no (n + 1)-c.e. degree between c and d. The notion of isolation was proposed
by Cooper and Yi in [3] for n = 1 and by LaForte in [6] for n > 1. The isolation
phenomenon has its origins in Kaddah’s thesis (see [5]):

Theorem 1. (Kaddah [5])

(1) Every low c.e. degree c is the infimum of two d.c.e. degrees d and e. (In
case that c is nonbranching in the c.e. degrees, then one of the intervals
(c,d) and (c, e) contains no c.e. degrees, and hence c isolates either d or
e.)

(2) For n ≥ 2, there are two n-c.e. degrees a and b such that they have
infimum d in the n-c.e. degrees, and there also exists an (n + 1)-c.e.
degree x such that d < x < a,b. (Note that there are no n-c.e. degrees
between d and x, so x is isolated by d in the n-c.e. degrees.)

Early work of Ding and Qian (96), LaForte (96), and Arslanov, Lempp and
Shore (96) showed that the isolated d.c.e. degrees and the nonisolated d.c.e. de-
grees are dense in the c.e. degrees. In contrast to this, Salts proved in 2000 that
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the nonisolating degrees are not dense in the c.e. degrees. Ishmukhametov and Wu
proved in 2003 that the isolated d.c.e. degrees can be far away from the associated
isolating c.e. degree, in terms of the high/low hierarchy.

The isolation phenomenon also appears in Arslanov, Kalimullin, Lempp’s recent
work, showing that D3, but not D2, contains 3-bubbles - this provides a proof that
D2 and D3 are not elementarily equivalent.

Theorem 2. (Arslanov, Kalimullin and Lempp [1]) There exist a d.c.e. degree d
and a c.e. degree c, such that 0 < c < d and any d.c.e. degree u ≤ d is comparable
with c.

By Sacks splitting theorem (avoid cones), there is no c.e. degree between c and
d, and hence d is isolated by c.

Our recent work of using isolation provides a strong cupping theorem, which
unifies several well-known results in the d.c.e. degrees, such as Arslanov’s cupping
theorem, Downey’s diamond theorem and Li-Yi’s cupping theorem.

Say that a d.c.e. degree d has almost universal cupping property if it cups
every c.e. degree not below it to 0′. Obviously, the incomplete maximal d.c.e.
degrees constructed by Cooper, et al. in [2] do have this property. However,
constructing a d.c.e. degree with almost universal cupping property is much easier
than constructing an incomplete maximal d.c.e. degree. This enables us to prove
the following theorem:

Theorem 3. (Fang, Liu and Wu [4]) For any nonzero cappable c.e. degree c,
there is a d.c.e. degree d with almost universal cupping property and a c.e. degree
b < d such that b isolates d and that c and b form a minimal pair.

Applying this theorem twice will give a proof of Li-Yi’s cupping theorem: there
exist two incomparable d.c.e. degrees d and e such that any nonzero d.c.e. degree
cups one of them to 0′.
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Properties of limitwise monotonicity spectra of Σ0

2
sets

Iskander Kalimullin

(joint work with M.Kh. Faizrahmanov)

The talk is devoted to limitwise monotonic spectra. Such spectra can be considered
as a partial case of spectra of uniform enumerability of families of computable sets.

Definition. The talk is devoted to measure and category properties of limitwise
monotonicity spectra of Σ0

2 sets. Such spectra can be considered as a partial case
of spectra of uniform enumerability of families of computable sets.

• A countable family F ⊂ 2ω is (uniformly) x-c.e. if F = {WX
f(n) : n ∈ ω}

for some computable function f and X ∈ x.
• The enumeration spectra of a family F is the collection of Turing degrees
defined as

SpE (F) = {x : F is x-c.e.}.

• Given an infinite set S. The set S is x-limitwise monotonic if the family

LM(S) = {ω ↾ m : m ∈ S}

is x-c.e.
• The limitwise monotonicity spectra is the collection SpE (LM(S)).

Note that the limitwise monotonicity spectra of a set S coincides with the degree
spectrum of the abelian p-group

∑

m∈S Zpm .

Theorem. (Kalimullin, Faizrahmanov). If S is uniformly Σ0
2 then

(1) GH1 ⊆ SpE (LM(S));
(2) 2-generic ⊆ SpE (LM(S));
(3) 1-generic ∩∆0

2 ∩ SpE (LM(S)) 6= ∅.
(4) 1-random ⊆ SpE (LM(S) =⇒ 0 ∈ SpE (LM(S));

Theorem. (Kalimullin, Faizrahmanov). There is an S ∈ ∆0
2 such that

SpE (LM(S)) is null.

Corollary. (Greenberg, Montalban, Slaman [1]). There is a structure whose
degree spectrum is co-meager and null.

Moreover, the structure from this corollary can be an abelian p-group in the
form

∑

m∈S Zpm .

The research of both authors is supported by Russian President grants for young
scientists (MK).
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On the number of K-trivial sequences

George Barmpalias

(joint work with Tom Sterkenburg)

Kolmogorov complexity is a standard tool for measuring the initial segment com-
plexity of an infinite binary sequence. Identifying subsets of N with their char-
acteristic sequence, we say that the initial segment (Kolmogorov) complexity of
A ⊆ N is trivial if it is bounded by the Kolmogorov complexity of a computable set
(modulo a constant). This concept was introduced by Chaitin (see [Cha76, Sol75]).
For the case of plain Kolmogorov complexity Chaitin [Cha76] showed that any set
with trivial initial segment complexity must be computable. In the case of the
prefix-free complexity K, Solovay [Sol75] showed that there are non-computable
sets with trivial initial segment complexity. In the last decade these so-called K-
trivial sets, the sets A with ∀n K(A ↾n) ≤ K(n)+ c for some c ∈ N, have been the
subject of intense research in algorithmic randomness. They are known to form
a very interesting Σ0

3 class K which is an ideal in the Turing degrees, see [Nie09,
Chapter 5].

The members of K are stratified in a cumulative hierarchy where level e consists
of the sets A such that ∀n K(A ↾n) ≤ K(n) + e. In this case we say that A is
K-trivial with constant e, or even that e is a K-triviality constant for A. Chaitin
[Cha76] also showed that for each e there are finitely many K-trivial sets with
constant e. A question of Downey/Miller/Yu (see [DH10, Section 10.1.4] and
[Nie09, Problem 5.2.16]) asked about the complexity of the following problem.

(1) Given e ∈ N, find the number of K-trivial sets with constant e.

Let Ke denote the class of K-trivial sets with constant e. The following question
refers to the complexity of the function e → |Ke|.

Question 1 (Section 10.1.4 in [DH10] and Problem 5.2.16 in [Nie09]). What is
the arithmetical complexity of (1)? In particular, is it ∆0

3?

In this work we give a positive answer to the above question, thus showing that
the function e → |Ke| lies exactly at level ∆0

3 of the arithmetical hierarchy. In
particular, although the function e → |Ke| depends on the choice of the underlying
universal machine, its arithmetical complexity does not.

The solution of this problem gives a general methodology for answering the
same question for related Σ0

3 classes, like the finite K-trivial sets or the low for K
sets. A set A is low for K if it does not compress strings more efficiently than a
computable oracle. More precisely, if the prefix-free complexity KA relative to A is
not smaller than their unrelativized prefix-free complexity K, modulo a constant.
In symbols, if K(τ) ≤ KA(τ) + c for some constant c and all strings τ . This
Σ0

3 class can also be seen as the union of a cumulative hierarchy whose eth level
consists of the sets A with K(τ) ≤ KA(τ)+ e for all strings σ. As in the case of K
we say that A is low for K with constant e if it lies in the eth level of this hierarchy.
Hirschfeldt and Nies showed in [Nie05] that the class of low for K sets coincides
with K. However this coincidence is not effective, in the sense that there is no
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algorithm which outputs a level in the low for K hierarchy where a set lives, given
a level of it in the K-triviality hierarchy. Hence determining the complexity of the
functions giving the cardinality of the levels of the two hierarchies constitutes two
separate problems.

Further applications of our methodology concern the plain complexity versions
of the above triviality notions.

The positive answer to Question 1 can also be used in order to refine the work
of Csima and Montalbán in [CM06]. In this paper the authors construct an un-
bounded nondecreasing function f such that for all reals X and all constants c

if ∀n (K(X ↾n) ≤ K(n) + f(n) + c) then X is K-trivial.

An analysis of the construction shows that f is ∆0
4. The complexity of f can be

reduced to ∆0
3 using the answer to Question 1 as it is shown in [BB10]. Moreover

this is optimal in the sense that if f is ∆0
2 then it does not have the above property.

This was shown in [BV11] and in [BB10] it was extended, showing that if f is ∆0
2

unbounded and nondecreasing then there is a large and rich collection of reals X
which satisfy ∀n (K(X ↾n) ≤ K(n) + f(n) + c) for some constant c.

The purpose of constructing f in [CM06] was the construction of minimal pairs
with respect to ≤K , where A ≤K B if ∃c ∀n (K(A ↾n) ≤ K(B ↾n)+ c). According
to the above discussion the complexity of minimal pairs is reduced to ∆0

3. However
different methods in [BV11] give a simpler construction of a Σ0

2 set that forms a
minimal pair with every Σ0

1 with respect to ≤K .
The main remaining open problem concerns the computational power of the

function e → |Ke|. Let ∅′ be the halting problem and let ∅′′ be the halting problem
relativized to ∅′.

Problem. Does the function e → |Ke| compute ∅′ or even ∅′′?

Our methods do not seem sufficient for the solution of this problem. Furthermore,
the answer is likely to depend on the choice of the underlying universal prefix-free
machine.
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An example related to a theorem of John Gregory

Julia Knight

(joint work with Jesse Johnson, Victor Ocasio, and Steven VanDenDriessche)

Around 1970, parts of model theory (infinitary logic), set theory (fine structure
of L), and computability (α-recursion) had very close ties. Jon Barwise proved
a Compactness Theorem for infinitary logic, and he became a great spokesperson
for the unity of logic. There were many contributors to the body of work, in-
cluding Ronald Jensen, Carole Karp, Georg Kreisel, Saul Kripke, Richard Platek,
John Schlipf, Jean-Pierre Ressayre, and Gerald Sacks and some of his students, in
particular, Richard Shore and Sy Friedman. We state the Barwise Compactness
Theorem [1], and then Gregory’s Theorem [2].

Theorem 1 (Barwise Compactness Theorem). Let A be a countable admissible
set and let T be a set of LA sentences that is Σ1 on A. If every A-finite subset of
T has a model, then T has a model.

For the case where A is the least admissible set containing ω, the LA sentences
are essentially the computable infinitary sentences, a set is Σ1 on A iff it is Π1

1,
and a set is A-finite iff it is hyperarithmetical.

Theorem 2 (Gregory). Let A be a countable admissible set. Suppose T is a set
of LA-sentences that is Σ1 on A. If T has a pair of countable models M,N s.t.
M ≺LA

N , then T has an uncountable model.

Gregory’s proof was quite clever. There is a simpler proof[3], using Ressayre’s
notion of Σ-saturation [4]. Gregory said that there were known examples showing
that the assumption T is Σ1 on A cannot be dropped. He did not give an example,
and we have been unable to find one published.

There is current work on absoluteness of statements asserting the existence of
an uncountable member of a “non-elementary” class K—K may be the class of
models of a sentence of Lω1ω or Lω1ω(Q), or it may be an “abstract elementary
class”. John Baldwin is involved in joint work of this kind with
Martin Körwein, Typani Hyttinen, and Sy Friedman, and also with Paul Larson.
Baldwin asked for an example illustrating Gregory’s Theorem. He believed (cor-
rectly) that the example would involve computability. We describe an example.

Theorem 3 (Johnson-K-Ocasio-VanDenDriessche). There is a set T of com-
putable infinitary sentences, in a computable language L, s.t. T has just two mod-
els, M and N , up to isomorphism, where M,N are countable and M ≺∞ N .
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Moreover, for each computable ordinal α, the set of computable Σα sentences in T

is hyperarithmetical.

The language of T consists of unary predicates Un for n ∈ ω. Each L-structure
represents a family of sets. The set represented by an element x is the set of n
s.t. Unx holds. The universe of M is an infinite computable set of constants C,
partitioned effectively into infinitely many infinite sets Cn. The extra element of
N is a further constant a. We identify the constants with the sets they represent,
once we have determined these sets.

The set a will be “hyperarithmetically” generic; i.e., it is α-generic for all com-
putable ordinals α. We choose an increasing sequence of computable ordinals
(αn)n∈ω with limit ωCK

1 . We suppose that αn + αn+1 = αn+1. For all c ∈ Cn

and all k < n, Ukc iff Uka. Apart from this, the elements of Cn will be mutually
αn-generic, and uniformly ∆0

αn+1. We choose the set a in advance. We then use
iterated forcing to choose the families of sets Cn, first C0, then C1, etc. We must
prove the following.

Proposition 4.

A M and N are the only models of T , up to isomorphism.
B M ≺∞ N

For A, it is enough to note that the computable infinitary theory of M and N
includes the following.

(1) sentences saying that all elements that are not ∆0
αn+1 satisfy the same

predicates Uk for k ≤ n,
(2) sentences saying exactly which ∆0

αn+1 sets are represented,
(3) a sentence saying that distinct elements differ on some Uk.

For B, we must understand truth in the structures. The control that we have of
truth in M and N comes from forcing. We do not decide truth in M or N directly.
Let Mn be the structure with universe ∪k≤nCk, and let Nn be the structure with
universe ∪k≤nCk ∪ {a}. We choose a in advance, deciding truth in Nn, for all
possible choices of Mn. When we choose Cn, having already chosen C<n, we
decide truth in Mn. We prove three lemmas.

Lemma 5. Mn ≺αn
Mn+1. (This implies that Mn ≺αn

M.)

Lemma 6. Mn ≺αn
Nn

Lemma 7. Nn ≺αn
Nn+1. (This implies that Nn ≺αn

N .)

Assuming the three lemmas, we finish as follows.

Proposition B. M ≺∞ N

Proof. Suppose N |= ϕ(c), where ϕ(c) is computable Σαn
and c is in Mn. Since

Mn ≺αn
Nn ≺αn

N , ϕ(c) holds in Nn and in Mn. Since Mn ≺αn
M, it also

holds in M.
�
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Computable Differential Fields

Russell Miller

(joint work with Alexey Ovchinnikov and Dmitry Trushin)

Differential algebra is the study of differential equations from a purely algebraic
standpoint. The differential equations studied are polynomials in a variable Y

and its derivatives δY, δ(δY ), . . ., with coefficients from a specific field K which
admits differentiation on its own elements via the operator δ. Such a field K

is known as a differential field : it is simply a field with one or more additional
unary functions δ on its elements, satisfying the usual properties of derivatives:
δ(x + y) = (δx) + (δy) and δ(x · y) = (x · δy) + (y · δx). It is therefore natural
to think of the field elements as functions, and standard examples include the
field Q(X) of rational functions in one variable under differentiation d

dX
, and the

field Q(t, δt, δ2t, . . .) with a differential transcendental t satisfying no differential
equation over the ground field Q. Additionally, every field becomes a differential
field when the operator δx = 0 is adjoined; we call such a differential field a
constant field, since an element whose derivative is 0 is commonly called a constant.

Although the natural examples are fields of functions, the treatment of differ-
ential fields regards the field elements merely as points. There are strong con-
nections between differential algebra and algebraic geometry, with such notions as
the ring K{Y } of differential polynomials (namely the algebraic polynomial ring
K[Y, δY, δ2Y, . . .], with each δiY treated as a separate variable), differential ideal,
differential variety, and differential Galois group all being direct adaptations of the
corresponding notions from field theory. Characteristically, these concepts behave
similarly in both areas, but the differential versions are often a bit more compli-
cated. In terms of model theory, the theories ACF0 and DCF0 (of algebraically
closed fields and differentially closed fields, respectively, of characteristic 0) are
both complete and ω-stable with effective quantifier elimination, but ACF0 has
Morley rank 1, whereas DCF0 has Morley rank ω.

Just as the algebraic closure F of a field F (of characteristic 0) can be defined as
the prime model of the theory ACF0 ∪∆(F ) (where ∆(F ) is the atomic diagram

of F ), the differential closure K̂ of a differential field K is normally taken to be

the prime model of DCF0 ∪ ∆(K). This K̂ is unique up to isomorphism over

K, but not always minimal: it is possible for K̂ to embed into itself over K (i.e.
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fixing K pointwise) with image a proper subset of itself. This has to do with

the fact that some 1-types over K are realized infinitely often in K̂, so that the
image of the embedding can omit some of those realizations. As a prime model,
the differential closure realizes exactly those 1-types which are principal over K,
i.e. generated by a single formula with parameters from K. It therefore omits the
type of a differential transcendental over K, since this type is not principal, and
so every element of K̂ satisfies some differential polynomial over K. On the other
hand, the type of a transcendental constant, i.e. an element x with δx = 0 but
not algebraic over K, is also non-principal and hence is also omitted, even though
such an element would be “differentially algebraic” over K.

The goal of the current work in computable differential fields, by the speaker
and two co-authors, is to adapt the two fundamental theorems from computable
field theory to computable differential fields. These two theorems, each used very
frequently in work on computable fields, are the following.

Theorem 1. (Kronecker’s Theorem (1882); see [5] or [2])

(1) The field Q has a splitting algorithm. That is, the set of irreducible poly-
nomials in Q[X ], commonly known as the splitting set of Q, is decidable.

(2) If a computable field F has a splitting algorithm, so does the field F (x),
for every element x algebraic over F (within a larger computable field).

(3) If a computable field F has a splitting algorithm, then so does the field
F (t), for every element t transcendental over F .

(The algorithms in Parts II and III are different, and no unifying algorithm exists.)

Theorem 2. (Rabin’s Theorem (1960); see [7])

(1) Every computable field F has a Rabin embedding, i.e. a computable field
embedding g : F → E such that E is a computable, algebraically closed
field which is algebraic over the image g(F ).

(2) For every Rabin embedding g of F , the image g(F ) is Turing-equivalent to
the splitting set SF of F .

For differential fields, the analogue of the first part of Rabin’s Theorem was
proven in 1974 by Harrington, who showed that for every computable differential
field K, there is a computable embedding g of K into a computable, differentially
closed field L such that L is a differential closure of the image g(K). Harrington’s
proof used a different method from that of Rabin, and therefore did not address the
question of the Turing degree of the image. Indeed, the first question to address,
in attempting to adapt either of these theorems for differential fields, is the choice
of an appropriate analogue for the splitting set SF in the differential context.

Kronecker saw the question of reducibility of a polynomial in F [X ] simply as
a natural question to ask. With twentieth century model theory, we understand
better the reasons why it is important. Specifically, every irreducible polynomial
p(X) ∈ F [X ] generates a principal type over the theory ACF0 ∪ ∆(F ), and
every principal type is generated by a unique monic irreducible polynomial. (More
exactly, the formula p(X) = 0 generates such a type.) On the other hand, no
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reducible polynomial generates such a type (with the exception of powers p(X)n

of irreducible polynomials, in which case p(X) generates the same type). So the
splitting set SF gives us a list of generators of principal types, and every element
of F satisfies exactly one polynomial on the list. Moreover, since these generating
formulas are quantifier-free, we can readily decide whether a given element satisfies
a given formula from the list or not. Thus, a decidable splitting set allows us to
identify elements of F very precisely, up to their orbit over F .

From model theory, we find that the set TK of constrained pairs over a dif-
ferential field K plays the same role for the differential closure. A pair (p, q) of
differential polynomials from K{Y } is constrained if p is monic and irreducible
and of greater order than q (i.e. for some r, p(Y ) involves δrY nontrivially while

q(Y ) ∈ K[Y, δY, . . . , δr−1Y ]) and, for every x, y ∈ K̂, if p(x) = p(y) = 0 and
q(x) 6= 0 6= q(y), then there exists h ∈ K{Y } such that either h(x) = 0 6= h(y)
or h(y) = 0 6= h(x). This says that, if x and y both satisfy the pair (p, q), then

the differential fields K〈x〉 and K〈y〉 which they generate within K̂ must be iso-
morphic, via an isomorphism fixing K pointwise and mapping x to y. This is
sufficient to ensure that the formula p(Y ) = 0 6= q(Y ) generates a principal type
over DCF0 ∪ ∆K, and conversely, every principal type is generated by such a
formula with (p, q) a constrained pair. With this background, we may state our
results, first addressing Rabin’s Theorem and then Kronecker’s.

Theorem 3. For every embedding g of a computable differential field as described
by Harrington in [3], the image g(K) is Turing-computable from the set TK. So too

is algebraic independence of finite tuples from K̂, and also the function mapping
each x ∈ K̂ to its minimal differential polynomial over K. However, there do exist
such embeddings g for which TK has no Turing-reduction to g(K).

Theorem 4. Let K be a computable nonconstant differential field, with z ∈ K̂.
Then TK〈z〉 is Turing-computable from TK .

So the middle part of Kronecker’s Theorem holds. We believe that we also have
a proof for constant fields, and for the third part, but this remains to be checked.

Conjecture 5. Let K be a computable differential field, and z an element dif-
ferentially transcendental over K within some larger comptuable differential field.
Then TK〈z〉 is Turing-computable from TK .

It remains to determine whether the set TQ of constrained pairs over the con-
stant differential field Q is decidable; we regard this as the most important question
currently open in this area of study. A positive answer would likely give us a much
better intuition about the structure of various simple differentially closed fields,
well beyond any current understanding. It would also be desirable to make the
failure of the second part of Rabin’s Theorem more precise, by finding sets which
are always equivalent to the Rabin image g(F ), and by finding sets which are
always equivalent to TK .
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Recent results on random sets

Frank Stephan

(joint work with Johanna Franklin, Keng Meng Ng, André Nies)

The talk presented recent work done with Johanna Franklin as well as with Keng
Meng Ng and André Nies. The common topic was intersecting random sets with
r.e. or recursive sets and studying the Turing degree of the resulting sets. Here
Martin-Löf random sets and Schnorr random sets were studied; the definitions
of these sets are as follows. A martingale is a function M from binary strings
into positive real numbers such that M(σ) = 0.5(M(σ0) + M(σ1)). A set A is
Martin-Löf random iff there is no martingale M such that M(A(0)A(1) . . . A(n))
is unbounded and {(σ, q) : σ ∈ {0, 1}∗, q ∈ Q,M(σ) > q} is recursively enu-
merable; A is Schnorr random iff there is no martingale M and no recursive
function f such that M(A(0)A(1) . . . A(f(n))) > n for infinitely many n and
{(σ, q) : σ ∈ {0, 1}∗, q ∈ Q,M(σ) > q} is recursive. A set B is co-retraceable
iff there is a recursive function f such that the complement of B, given in ascend-
ing order as {b0, b1, . . .}, satisfies that f(bn+1) = f(bn) for all n; here it is assumed
that b0 < b1 < . . . and one can have that f is total as one can define f arbitrarily
when the input is enumerated into B. Co-retraceable r.e. sets are well-studied.
They are known to be semirecursive. Dekker’s deficiency sets are the most promi-
nent examples of r.e. co-retraceable sets. See standard text books on algorithmic
randomness or recursion theory for further information [3, 4, 6]; a draft of the
work with Johanna Franklin is available from the speaker’s homepage [2] and a
draft of the work with Ng and Nies can be found in the logic blog 2012 on Nies’
homepage [5].

In joint work with Johanna Franklin, it is shown that if A is a Martin-Löf
random and B is r.e., Turing incomplete and coretraceable then B ≤T A ∩ B;
furthermore, if A is Schnorr random and B is an r.e., non-high and coretraceable
set then B ≤T A ∩ B. Both results are sharp; that is, there are the following
counterexamples: One can choose B Turing complete and co-retraceable and A
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Martin-Löf random such that B 6≤T A∩B; one can choose B as a r.e. coretraceable
set of given high r.e. Turing degree and A as a Schnorr random subset of B strictly
Turing below B such that B 6≤T A and A = A ∩ B. Furthemore, one can choose
B to be low and r.e. and A to be Martin-Löf random with B 6≤T A∩B in order to
see that the condition of B being co-retraceable can also not be omitted from the
above theorems. Furthermore, it is shown that the complement of an r.e. coinfinite
set B is indifferent for Schnorr randomness iff B is dense simple. More precisely,
for every Schnorr random set A and every dense simple set B and every set C with
A∩B = C ∩B it holds that C is Schnorr random; in addition one has that if A is
Schnorr random and B is r.e., coinfinite and not dense simple then there is a set
C which is not Schnorr random and satisfies A ∩B = C ∩B. This result extends
work done by Figueira, Miller and Nies on indifference for random sets [1].

In joint work with Keng Meng Ng and André Nies, it is shown that in every high
Turing degree there is a Schnorr random set A such that A ≡T A ∩ B for every
infinite recursive set B. Furthermore, for every set C there is a Martin-Löf random
set A such that, for every recursive set B, either A∩B ≥T C or A∩(N−B) ≥T C.
This shows that there are Martin-Löf random sets A which cannot be split into
halves along any recursive set B such that both halves are Turing incomplete or
low or otherwise computationally weak. This insight strengthens the findings of
Gács and Kučera who proved that there is a Martin-Löf random set Turing above
any given set C. Furthermore, this result does not hold on the level of Turing
degrees: If C is Turing complete then there is a low set A and a further Turing
incomplete set B such that A ⊕ B ≡T C and A ⊕ B is Martin-Löf random. To
prove this, one starts with choosing A to be Martin-Löf random and low; then one
chooses relative to A a random set with its jump being B, call it B0. Furthermore,
let B1 = ΩA⊕B0 be Chaitin’s Ω relativised to A ⊕ B0. One can see by using van
Lambalgen’s theorem twice that A⊕B0⊕B1 is Martin-Löf random; furthermore, it
has the Turing degree of (A⊕B0)

′ what is the one of C. Now taking B = B0⊕B1

completes the proof, as B is Martin-Löf random relative to A and, as a Martin-
Löf random set cannot be a base of Martin-Löf randomness, A 6≤T B; hence B is
Turing incomplete.
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[3] Ming Li and Paul Vitányi, An Introduction to Kolmogorov Complexity and Its Applications,
Springer, 2008.
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Lattice embeddings into the computably enumerable ibT- and
cl-degrees

Thorsten Kräling

(joint work with Klaus Ambos-Spies, Philipp Bodewig, Liang Yu, and Wei Wang)

Given any degree structure D, an interesting question is which (finite) lattices
can be embedded into D preserving joins and meets.

For RT, the structure of the computably enumerable Turing degrees, this is
a long-standing open problem. It is known that every distributive finite lattice
can be embedded into RT (Lachlan-Lerman-Thomason, see [6]) and that some
nondistributive lattices can be embedded. In particular, Lachlan [3] showed that
the nondistributive modular 5-element lattice M3 and the nondistributive non-
modular 5-element lattice N5 (see the diagrams below), are embeddable into RT.
These two lattices are the most basic nondistributive lattices in the sense that
every nondistributive lattice contains at least one of them as a sublattice. There
are also examples of lattices known which cannot be embedded into RT, like the
8-element lattice S8 (see Lachlan and Soare [5]) or a 20-element lattice by Lempp
and Lerman [4], but a simple characterisation of which lattices are embeddable
has not been found so far.
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For other degree structures the picture looks different. For example, Fejer
and Shore [2] have shown that every finite lattice can be embedded into Rtt, the
structure of the computably enumerable truth-table degrees.

Here, we are looking at the embeddability question with respect to the degree
structure Rcl of the computably enumerable computable Lipschitz degrees and
the degree structure RibT of the computably enumerable identity-bounded Turing
degrees. A set A is computably Lipschitz-(cl-)reducible to a set B if it is Turing-
reducible to B via a reduction where the oracle questions to determine A(x) are
bounded by x+ c for some constant c. If this constant can be chosen to be 0, then
A is called identity-bounded Turing-(ibT-)reducible to B.
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Ambos-Spies [1] observed that every finite distributive lattice can be embedded
into Rcl and RibT preserving the least element. Using more elaborate methods,
we were able to establish the following two results about nondistributive lattices.

Theorem 1 (Ambos-Spies, Bodewig, Kräling, and Yu, unpublished). The N5 can
be embedded into Rcl and RibT preserving the least element.

Theorem 2 (Ambos-Spies, Bodewig, Kräling, and Wang, unpublished). The M3

can be embedded into Rcl and RibT.

On the other hand, by a yet unpublished result of Ambos-Spies and Wang the
M3 cannot be embedded into Rcl or RibT preserving the least element. This shows
that embeddability and embeddability preserving 0 are not equivalent for Rcl and
RibT, while for RT the question whether such an equivalence holds is still open.
Moreover, since it can be shown that each c.e. ibT- or cl-degree is the bottom of
a diamond lattice, Theorem 2 implies the following, once again contrasting the
situation in the c.e. Turing degrees.

Corollary 3. The S8 can be embedded into Rcl and RibT.

The general embeddability question for Rcl and RibT is still open.

Question. Is there a finite lattice which cannot be embedded into Rcl or RibT?
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Computably enumerable equivalence relations

Steffen Lempp

(joint work with Uri Andrews, Joseph S. Miller, Keng Meng Ng, Luca San Mauro
and Andrea Sorbi)

We investigate computably enumerable equivalence relations, which naturally arise
in the context of computable numberings and the investigation of provability from
theories of first-order arithmetic.
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In particular, we answer two questions of Gao and Gerdes [1] by proving that
if the halting jump operator of a c.e. equivalence relation R is of the same degree
as R itself, then R is universal, and that universality of c.e. equivalence relations
is a Σ0

3-complete property.
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A Hierarchy of Computably Enumerable Degrees, Unifying Classes
and Natural Definability

Rod Downey

(joint work with Noam Greenberg)

1. Introduction

In this lecture, we will discuss recent programme of the authors which is still
in a state of formation, but already has several published results (Barmpalias,
Downey, Greenberg [2], Day [4], Downey, Greenberg and Weber [9] and Downey
and Greenberg [7]) as well as more in preparation (or being worked out!), such as
Downey and Greenberg [8], devoted to understanding some new naturally definable
degree classes which capture the dynamics of various natural constructions arising
from disparate areas of classical computability theory.

It is quite rare in computability theory to find a single class of degrees which
capture precisely the underlying dynamics of a wide class of apparently similar
constructions, demonstrating that they all give the same class of degrees. A good
example of this phenomenon is work pioneered by Martin [17] who identified the
high c.e. degrees as the ones arising from dense simple, maximal, hh-simple and
other similar kinds of c.e. sets constructions. Another example would be the
example of the promptly simple degrees by Ambos-Spies, Jockusch, Shore and
Soare [1]. Another more recent example of current great interest is the class of
K-trivial reals of Downey, Hirscheldt, Nies and Stephan [6], and Nies [18].

We remark that in each case the clarification of the relevant degree class has lead
to significant advances in our basic understanding of the c.e. degrees. We believe
the results we mention in the present paper fall into this category. Our results
were inspired by another such example, the array computable degrees introduced
by Downey, Jockusch and Stob [10, 11]. This class was introduced by those authors
to explain a number of natural “multiple permitting” arguments in computability
theory. The reader should recall that a degree a is called array noncomputable iff
for all functions f ≤wtt ∅′ there is a a function g computable from a such that
∃∞x (g(x) > f(x)).
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2. Totally ω-c.a. degrees

Our two new main classes are what we call the totally ω-c.e. degrees and the
totally < ωω-c.e. degrees. These classes turn out to be completely natural and
relate to natural definability in the c.e. degrees as we will discuss below. We begin
with the ω case.

Definition 1 (Downey, Greenberg, Weber [9]). We say that a c.e. degree a is
totally ω-c.a. if for all functions g ≤T a, g is ω-c.e.. That is, there is a computable
approximation g(x) = lims g(x, s), and a computable function h, such that for all
x,

|{s : g(x, s) 6= g(x, s+ 1)}| < h(x).

The reader should keep in mind that array computability is a uniform version of
this notion where h can be chosen independent of g. This class captures a number
of natural constructions in computability theory.

For example, we can define a class of reals to be finitely boundedly random iff
it passes all Martin-Löf tests {Un | n ∈ ω} where Un is a clopen set (given by a
c.e. index and has at most g(n) many members for some order g.

Theorem 2 (Brodhead, Downey and Ng [3]). A c.e. degree a contains a f.b. left
c.e. real iff a is not totally ω-c.a.

One of the really fascinating things is that this is all connected to natural defin-
ability issues within the computably enumerable Turing degrees. At the present
time, as articulated in Shore [20], there are very few such natural definability
results.

In [7, 9], we gave some new natural definability results for the c.e. degrees.
Moreover, these definability results are related to the central topic of lattice em-
beddings into the c.e. degrees as analyzed by, for instance, Lempp and Lerman
[15], Lempp, Lerman and Solomon [16].

A central notion for lattice embeddings into the c.e. degrees is the notion of a
weak critical triple. The reader should recall from Downey [5] and Weinstein [21]
that three incomparable elements a0, a1 and b in an upper semilattice form a weak
critical triple if a0 ∪ b = a1 ∪ b and there is no c ≤ a0, a1 with a0 ≤ b ∪ c. This
notion captures the need for “continuous tracing” which is used in an embedding
of the lattice M5 into the c.e. degrees (first embedded by Lachlan [14]).

The necessity of the “continuous tracing” process was demonstrated by Downey
[5] andWeinstein [21] who showed that there are initial segments of the c.e. degrees
where no lattice with a (weak) critical triple can be embedded. Downey and Shore
[13] prove that if a is non-low2 then a bounds a copy of M5.

Theorem 3 (Downey, Greenberg and Weber [9]). A degree a is totally ω-c.a. iff
it does not bound a weak critical triple in the c.e. degrees. Hence, the notion of
being totally ω-c.a. is naturally definable in the c.e. degrees.

This class also codes some other constructions. For example:
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Figure 1. The lattice M5

Theorem 4 (Downey, Greenberg and Weber [9]). A c.e. degree a is totally ω-c.a.
iff there are c.e. sets A, B and C of degree ≤T a, such that

(i) A ≡T B

(ii) A 6≤T C

(iii) For all D ≤wtt A,B, D ≤wtt C.

3. Totally < ωω-c.e. degrees

The class of totally < ωω-c.a. degrees also arises quite naturally. Recall that
if b is an ordinal notation in Kleene’s O, then a ∆0

2 function g is b-c.a. if there
is a computable approximation g(x, s) for g such that the number of changes in
the guessed value is bounded by some decreasing sequence of notations below
b; that is, there is a function o(x, s) such that for every x and s, o(x, s) <O b,
o(x, s + 1) ≤O o(x, s) and if g(x, s+ 1) 6= g(x, s) then o(x, s+ 1) <O o(x, s). The
definition of the class of totally < ωω-c.e. degrees involves strong notations, being
notations for ordinals in Kleene’s sense, except that we ask that below the given
notation, Cantor normal form can be effectively computed. Exact formalization
of this notion is straightforward for the ordinals below ǫ0; such notations are
computably unique, and so the corresponding class of functions is invariant under
the chosen strong notation for a given ordinal; we thus call a function α-c.a. if it
is b-c.a. for some (all) strong notations b for α. A degree a is totally < ωω-c.a.
if every g ≤T a is ωn-c.a. for some n. In [7], Downey and Greenberg introduced
this notion and in [8] will show that the collection of totally < ωω-c.a. degrees is
naturally definable:

Theorem 5 (Downey and Greenberg [8]). A c.e. degree is totally < ωω-c.a. iff it
does not bound a copy of M5.



Computability Theory 449

Again, Downey and Greenberg showed that a number of other constructions
gave rise to the same class. Adam Day [4] has shown that this class relates to
generic sets which can compute what are called indifferent subsets of themselves.
(Namely flipping the bits any way on those positions keeps the real generic.)

We also examine the hierarchy and examine how we can add promptness to get
infima a0.
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