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Abstract. The finite element method is the established simulation tool for
the numerical solution of partial differential equations in many engineering
problems with many mathematical developments such as mixed finite ele-
ment methods (FEMs) and other nonstandard FEMs like least-squares, non-
conforming, and discontinuous Galerkin (dG) FEMs. Various aspects on
this plus related topics ranging from order-reduction methods to isogeomet-
ric analysis has been discussed amongst the pariticpants form mathematics
and engineering for a large range of applications.
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Introduction by the Organisers

The finite element method is now an established simulation tool for the solution
of partial differential equations that are related to the models in many engineering
problems. It has an enormous range of applicability including elasticity, visco-
elasto-plasticity, contact, fluid mechanics, heat conduction, acoustics, and electro-
magnetism. As the range of applications has grown it has become increasingly
apparent that special features of each model can be exploited to improve the per-
formance and robustness of the finite element method (FEM). This has led to many
mathematically interesting developments including mixed FEMs and other non-
standard FEMs like least-squares, non-conforming, and discontinuous Galerkin
(dG) FEMs. Their use often aims at improved or robust discretizations that are
superior to standard FEMs in many numerical simulations in solid, structural, and
fluid mechanics and electromagnetics.
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Discontinuous Galerkin (dG) schemes are more flexible than standard finite el-
ement formulations. Here the trial and test functions are piecewise polynomial
functions that are not required to be continuous across element boundaries which
leads to an increase in the number of unknowns. Nonetheless the extra flexibility
can be advantageous for up-winding, for adaptivity, for overcoming locking, and
for the design of simple schemes for fourth order problems. At present, the conver-
gence analysis for dG FEMs has been carried out for simple model problems, but
the corresponding analysis for more complicated problems was in the focus of the
discussion amongst the participants. This was shown in recent results reported
by Jay Gopalakrishnan who discussed a discrete inf-sup condition and showed su-
perb applications to wave propagation in heterogeneous materials. Antonio Huerta
made a comparative study of continuous and discountinuous Galerkin formulations
that lead to some surprising results and thus proved the urge of further research in
this area. Furthermore Eun-Jae Park gave an overview on the latest developments
on hybrid dG and mixed FEM for problems with multiple scales.

While edge elements have proved very useful in electromagnetics applications,
it was shown that they can also be applied to elasticity and flow problems using
special weak forms. this was discussed in depth in the presentation by Joachim
Schöberl who reviewed new classes of elements for elasticity and flow problems
based on curl and div div spaces. This generated great interest, especially, since
the related discretization schemes are accompanied by fast iterative solvers. Never-
theless significant questions remain about the best choice of elements and penalty
parameters, a posteriori estimates and the robustness of the various schemes to
non-conforming mesh adaptation.

Besides principle applications and the empirical investigation of the perfor-
mance in practical real-life applications, the mathematical understanding of the
non-standard FEMs was progressed during the meeting. Mira Schedensack pre-
sented comparison results which complemented earlier work by Dietrich Braess.
For the simplest model problem, three different FEMs are equivalent in their per-
formance up to multiplicative constants and up to data oscillations. Dietmar Gal-
listl discussed the optimality of adaptive mesh-refining strategies for the Stokes
equations using a pseudo-stress formulation, while Hella Rabus pointed out the
robustness in the optimality of non-conforming adaptive FEMs in elasticity; all
three were Leibniz fellows. Finally, Thirupathi Gudi illustrated the medius analy-
sis for fourth-order plate problems with mathematical arguments from the a priori
and a posteriori error analysis.

In the whole it was impressive to note how much mixed finite element technolo-
gies have recently progressed by combining the deep knowledge of the properties of
the mathematical spaces with technological aspects such as e.g. integration rules
and element shapes.

The application of conforming and non-conforming mixed FEMs to finite strain
problems with hyperelastic materials were discussed by Ferdinando Aurricchio.
He illustrated many challenges related to the design of finite element spaces in
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combination with different incompressibility conditions. This has stressed pratical
and mathematical challenges that constitute problems with non unique solutions.

Isogeometric analysis has gained interest over the last years since it opens up
the possibility to go directly from CAD models to the analysis phase. Besides
the classical NURBS based interpolations, new formulations with T-Splines and
other mesh coupling techniques were explored in the talks by Robert L. Taylor
and Yuri Bashilevs. Especially the application to fluid-structure interaction prob-
lems of wind turbines generated interest since this coupled modern discretizations
techniques with the dynamics solution of large systems based on moving meshes.
Besides being a promising new technology for science and engineering numerical
simulation, the new method carries a rich mathematical structure still to be ex-
plored. Those presentations along with the one of Wolfgang Wall have documented
the interest of using non-standard meshes in real industrial applications. It has
been clear during the discussion that progresses in this hot topic of non-conforming
meshes (precision, stability, optimality) can be made by merging the knowledge of
the mathematical community with the one of the engineering science community.

Least-squares FEMs offer in general some advantages compared to other vari-
ational methods, such as, for instance, the inherent ellipticity of the governing
functional or an a posteriori error estimator without additional costs. Even for
equations with non-selfadjoint operators, the procedure leads to a symmetric and
positive definite algebraic system, which can be solved efficiently with iterative
solution strategies. Recent developments related to large strain models for hyper-
elastic materials were discussed for example in the talk by Alexander Schwarz.
Those results can be generalized to even more complex physically nonlinear con-
tinuum mechanical problems; as e.g. quasi-incompressibility, elasto-viscoplasticity
and anisotropic elasticity.

In a variety of complex applications, the discretization of the underlying bound-
ary value problem could lead to several 100 million of unknowns. With todays de-
mands to solve such problems in industrial and medical environments in real-time
computing, one has to design reduced models for the design of process control
algorithms and for the numerical simulation of processes with uncertainties. The
scientific challenge is to simplify the model in such a way that certain modeling
aspects are accurately described while non-relevant aspects are neglected. The
question of modeling error and of output of interest are at the heart of reduction
method and of progresses in uncertainty quantification. The later aspect has been
particularly clear in the talk of Michael Ortiz. The certification of computation
with guaranteed bounds in an uncertain context is one future topic of highest
relevance in advanced engineering computation.

While there are established methods of order-reduction available in some fields
(like e.g. proper orthogonal decomposition (POD) or singular value decomposition
(SVD), reduced basis (RB) techniques, and Craig-Bampton methods in structural
dynamics or model order reduction in differential equation systems), there ex-
ist only a very limited amount of methodologies that can be employed in order
to reduce nonlinear or multi-scale problems. The lectures by Pierre Ladeveze
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addressed the proper generalized decomposition (PGD) method that has advan-
tages in engineering application and that can be combined with error analysis for
domain decomposition methods. Some of the modeling approaches include multi-
scale models and uncertainty quantification procedures. Daniel Peterseim could
provide a new analysis technique for up and down scaling effective for applica-
tions even without scale separation. All those different approaches were discussed
vividly during the breaks and in the evenings. Other new methods emerge from
the need to do real-time computations e.g. in computer assisted surgery, where
Here Stefanie Reese and Adrien Leygue provided new insights. Especially the
presentation by Adrien Leygue showed how to combine off-line with on-line com-
putations in order to achieve real-time analysis tools. This was demonstrated by
an impressive deformation analysis of a liver. Nevertheless these techniques are
still in their beginnings but will open up new possibilities for many engineering
and medical applications.

The interaction of mathematicians and engineers was extremely fruitful and pro-
vided definitions of new research directions. This workshop on Advanced Compu-
tational Engineering clearly demonstrated that the field is very active and currently
enjoys great progress with many new important results. It became transparent
during the workshop that new non-standard FEMs with higher-order approxima-
tions and a huge range of different partial differential equations have a large po-
tential for future work. The improvement of sharp bounds for error control within
adaptive methods, mathematical stability conditions – for example the nonlinear
counterpart of the inf-sup condition – lead to valuable discussion amongst the
participants from the different mathematical and engineering disciplines.
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Abstracts

Advances in discontinuous Petrov Galerkin methods

Jay Gopalakrishnan

(joint work with Leszek Demkowicz)

This report summarizes a few recent developments in the construction and
analysis of DPG (discontinuous Petrov Galerkin) methods.

To describe the DPG method in the abstract, suppose we want to approximate
u ∈ U satisfying b(u, v) = l(v) for all v ∈ V . Here U is a reflexive Banach space
and V is a Hilbert space under an inner product (·, ·)V , both over R, and the
forms b(·, ·) : U × V 7→ R and l(·) : V 7→ R are continuous. Let Uh ⊂ U be a finite
dimensional trial subspace (where h denotes a parameter determining the finite
dimension). The DPG method finds an approximate solution uh in Uh satisfying

(1) b(uh, v) = l(v), ∀v ∈ Vh,

where Vh = T (Uh) and T : U 7→ V is defined by

(2) (Tw, v)V = b(w, v), ∀v ∈ V.

The test functions of the form Tw are called “optimal test functions” [6] because
they attain the supremum in an inf-sup condition. These methods are interesting
because by design, the discrete inf-sup condition is inherited from the exact inf-sup
condition. The concept of optimal test functions resurfaces from time to time in
the literature, in different forms and names, e.g., [1, 9, 13] (and also [12], as was
pointed out in this workshop). Another viewpoint to understand (1) is to interpret
it as a least squares Galerkin method [2] in a non-standard inner product, which
points to further avenues to connect to older literature. Notwithstanding these
relationships at the abstract level, the novelty in our approach is the use of a DG
framework to locally compute the optimal test functions.

To explain this further, let us first note that the main drawback of methods
of the form (1) is that it is not easy to apply the operator T in most standard
variational formulations. However, for a few one-dimensional problems, and a two-
dimensional linear advection problem, it is possible to calculate T in closed form,
as shown in [5, 6]. The remarkable stability properties of the resulting methods
motivated our further research into such methods. But it turned out to be difficult
or impossible to calculate T in closed form for many physically important problems,
so we abandoned this avenue for generalizations. The further development of DPG
methods stemmed from the observation that in certain ‘ultraweak’ variational
formulations, the operator T becomes local. For instance, consider a formulation
with a test space V consisting of functions with continuity constraints across mesh
element interfaces. It can often be reformulated, by hybridization, to yield a
test space of discontinuous functions with no inter-element continuity constraints,
yielding an ‘ultraweak’ formulation. Then, the computation of T in (2) can proceed
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element by element. Although this was noticed in [6], the resulting methods were
not mathematically understood completely until [7].

DPG methods based on such ultraweak formulations were developed for acous-
tic wave propagation in [10] and for linear elasticity in [3]. In the former [10],
we found, numerically, that the method exhibits negligible phase errors (otherwise
known as pollution errors) even in the lowest order case. Theoretically, we are able
to prove [10] error estimates that explicitly show the dependencies with respect
to the wavenumber ω, the mesh size h, and the polynomial degree p. But the
current state of the theory does not fully explain the remarkably good numerical
phase errors. In the latter [3], we presented two new methods for linear elasticity
that simultaneously yield stress and displacement approximations of optimal ac-
curacy in both the mesh size h and polynomial degree p. Locking-free convergence
properties were established. While existing mixed methods for linear elasticity
require very rich stress spaces to ensure the discrete inf-sup condition, within the
DPG framework the discrete inf-sup condition is automatically obtained for any
Uh. This provides a wide array of simple stress elements with corresponding stable
test spaces.

A further development concerns an essential practical approximation made in
implementation of DPG methods. Even if the DPG approach yields a local T ,
calculable element-by-element, a glance at (2) shows that an infinite dimensional
problem on each mesh element needs to be solved to apply T . In practical compu-
tations, T is approximated using polynomials of some degree r > p on each mesh
element, where p is the degree of trial polynomials spaces. In [11], we showed that
such an approximation of T does not destroy optimal convergence rates, provided
that r ≥ p+N , where N is the space dimension (two or more), for certain elliptic
equations.

Among other interesting recent developments, we note [8] which proves robust-
ness in convection-dominated diffusion, and [4] which gives a unified derivation of
DPG methods for general Friedrichs’ systems. More work is needed to address
the gap between theoretical predictions and practical observations, especially in
wave propagation. Unexploited opportunities may also lie in the design of efficient
solvers using the Hermitian positive definite nature of the systems that result from
DPG discretizations.
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Stress-displacement least squares mixed finite element approximation
for hyperelastic materials

Gerhard Starke

(joint work with Benjamin Müller, Alexander Schwarz, Jörg Schröder)

A mixed finite element method for nonlinear elasticity is investigated which is
based on the stress-displacement first-order system least squares formulation stud-
ied in [3] and [2] for the linear case. Our approach is based on the first-order system

div P+ f = 0 ,(1)

PFT − ∂Fψ(C)FT = 0 ,(2)

where f is some external source, P denotes the first Piola-Kirchhoff stress tensor
and F = I + ∇u stands for the deformation gradient. Moreover, the stored
energy function ψ : IR3×3

sym → IR is defined on the space of symmetric matrices and

C = FTF denotes the right Cauchy-Green strain tensor (we also introduce the
left Cauchy-Green strain tensor B = FFT at this point which we will use further
below).

As one specific instance of hyperelasticity we consider neo-Hookean materials
with a stored energy function of the form

ψ(C) =
µ

2
trC+

λ

4
J2 −

(
λ

2
+ µ

)
ln J
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with J = detF and Lamé parameters λ, µ (cf. Ciarlet [4, Sect. 4.10]). For this
neo-Hookean stored energy function,

∂Fψ(C)FT = µ FFT +

(
λ

2
(J2 − 1)− µ

)
I =: G(B)

holds, where the mapping G(B) = µB+(λ/2(detB−1)−µ)I leaves the subspace
of symmetric matrices invariant. For the Gâteaux derivative, a straightforward
calculation leads to

G′(B)[E] = lim
s→0

G(B+ sE)−G(B)

s
= µE+

λ

2
detB(B−T : E)I .

In particular, G′(I)[E] = µ E + λ/2(tr E)I recovers the well-known strain-stress
relation from linear elasticity.

The first-order system associated with this formulation is given by

R(u,P) =

(
div P+ f

G′(I)−1/2(PF(u)T −G(B(u)))

)
,

where the scaling of the second argument is done in order to obtain uniform results
in the incompressible limit analogous to the linear case (cf. [3]). The corresponding
least squares formulation consists in finding u ∈ H1(Ω)3 and P ∈ H(div,Ω)3 such
that

F(u,P) = ‖R(u,P)‖2L2(Ω)

is minimized subject to suitable boundary conditions for u on ΓD ⊂ ∂Ω and for
P · n on ΓN ⊂ ∂Ω. The solution of this nonlinear least squares problem also
satisfies the variational formulation

(R(u,P),J (u,P)[v,Q])L2(Ω) = 0

for all u ∈ H1
ΓD

(Ω)3 and P ∈ HΓN
(div,Ω)3, where

J (u,P)[v,Q] =





divQ

G′(I)−1/2(QF(u)T +P(∇v)T − µ(F(u)(∇v)T + (∇v)F(u)T )
−λ det(I+∇u)(Cof (∇u) : ∇v))I





denotes the Gateaux derivative of the first-order system operator R(u,P). For
the behavior of the stress-displacement least squares approach for other nonlinear
models in solid mechanics, see also [7] and [6].

We report on a simple numerical experiment illustrating the feasibility of the
method. More sophisticated computations involving adaptively refined triangula-
tions will be contained in [5]. Here we study the second problem in [1] where plane
strain assumptions are set and a uniform body force f = (0, γ) is applied to the
unit square Ω = [−1, 1]2. As boundary conditions, u · n = 0 and (P · n) · t = 0 on
the left, right and bottom are prescribed while the top is held traction-free, i.e.,
P · n = 0. The case λ→ ∞ is investigated (and µ is normalized to 1) which leads
to a known exact solution u ≡ 0 and P(x1, x2) = γ(1− x2)I.

In order to estimate the critical load values where the problem loses its stability
and a secondary solution occurs, the smallest eigenvalue of the system matrix
(J (u,P)[Φj ],J (u,P)[Φi]) is computed. On a triangulation with 2144 elements,
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we use standard conforming piecewise quadratic functions for u and next-to-lowest
order Raviart-Thomas (RT1) spaces for P.
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The smallest eigenvalue of the system matrix is plotted (on a logarithmic scale)
against the load parameter in the range of 0 to 8 in the figure above. Critical
load values are obtained at about γ = 3.23 in accordance to the results in [1] and
again at γ = 6.28. It is obvious from the graph shown above that the smallest
eigenvalue approaches zero at these load values and a one-dimensional null space
is approximated. In the figures below the corresponding (near zero) eigenfunctions
at γ = 3.23 (left) and at γ = 6.28 (right) are shown.
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Least-squares mixed finite elements for hyperelastic material models

Alexander Schwarz

(joint work with Jörg Schröder, Gerhard Starke, Karl Steeger)

1. Introduction

In recent years the interest in solving partial differential equations with the least-
squares method has grown steadily. The resulting least-squares finite element
method (LSFEM) has some theoretical advantages compared to other variational
approaches. In general the LSFEM is based on a minimization principle and
is not restricted to the LBB-condition. Furthermore, least-squares formulations
normally provide an a posteriori error estimator without additional computational
costs, which can be used for the construction of algorithms for adaptive mesh
refinement. The method has been successfully applied to many fields in mechanics
and mathematics; an exhaustive overview with respect to theoretical foundations
and application-oriented issues can be found for example in the monograph [1]. In
solid mechanics exist, amongst others, contributions towards e.g. elasticity ([2],
[3], and [4]) and plasticity ([5]).

2. Least-Squares Formulation

In the present work a mixed finite element based on a geometrically nonlinear least-
squares formulation in consideration of a hyperelastic material model is proposed.
Basis for the element formulation is a div-grad first order system consisting of the
equilibrium condition and a material law

(1) DivP + f = 0 and F−1P − 2ρ ∂Cψ(C) = 0 ,

with the first Piola-Kirchhoff stress tensor P , the vector of the body forces f , a free
energy ψ, the right Cauchy-Green deformation tensor C = F TF , the deformation
gradient F = 1 +∇u, and the density ρ (in the following we assume a constant
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unity density ρ = 1). For the considered St.Venant-Kirchhoff material the free
energy is given by

(2) ψ(C) =
1

2
λ(trE)2 + µtrE2 =

1

2
E · CE =

1

8
(C − 1) · C(C − 1) .

Here, the Green-Lagrange strain tensor and the constitutive tensor are defined as

(3) E =
1

2
(∇u+ [∇u]T + [∇u]T∇u) and C = λ1⊗ 1+ 2µII .

With ∂Eψ(C) = 2∂Cψ(C) = CE and by multiplying (1)2 with the compliance
tensor C−1 we obtain the relations

(4) DivP + f = 0 and C−1F−1P −E = 0 .

These residuals lead by means of quadratic L2-norms to a least-squares functional
depending on stresses and displacements

(5) F (P ,u) =
1

2

(
||DivP + f ||20 + ||C−1F−1P −E||20

)
.

For the minimization of the functional, the first variations with respect to the
unknowns have to vanish, i.e. δu,PF = 0. We obtain the first variations as

(6)

δuF =

∫

B

(C−1F−1P −E) · (C−1δF−1P − δE) dV

δPF =

∫

B

(C−1F−1P −E) · C−1F−1δP dV+

∫

B

(DivP + f ) ·Div δP dV .

The solution of the problem can be obtained, similar to the case governed by
material non-linearites in [5], by the Newton method. Therefore, we have to find
the minimizer I(P ,u) by updating of

(7) ∆I(P ,u) = K−1r with K ∈ ∆δF and r ∈ δF ,

where ∆δF denotes the second variation with respect to all unknowns. The imple-
mentation as well as the interpolation of the unknowns follows similar procedures
as in case of linear elasticity, see e.g. [3]. The finite element space in two dimen-
sions for the stresses is

(8) Xm
h =

{
P ∈ H(div, Be)

2 : P |Be
∈ RTm(Be)

2 ∀ Be

}
⊂ X .

Thus, shape functions related to the edges of a respective triangular element Be are
applied. These vector-valued functions belong to a Raviart-Thomas space, which
guarantees a conforming discretization of the required Sobolev space H(div, Be).
The finite element space for the displacements is

(9) V k
h =

{
u ∈ W 1,p(Be)

2 : u|Be
∈ Pk(Be)

2 ∀ Be

}
⊂ V .
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Here, standard Lagrange polynomials associated to vertices are used for the con-
tinuous approximation of the displacements. In (8) and (9) the indices m and k
denote the polynomial interpolation order of the resulting mixed finite element
RTmPk.

3. Numerical Example

In order to provide a numerical example, we consider the well-known Cook’s Mem-
brane problem. On the trapezoidal geometry with dimensions of 48 × 60 units
{l} the left side is assumed to be a displacement boundary and clamped. The
other edges are stress boundaries. Stress-free boundary conditions are applied at
the upper and lower edge. On the right edge we prescribe a maximum load of
PN = (0, 5)[N/{l}2], which is increased in every load step by 10% of the final
load. The Young’s modulus is chosen as E = 200[N/{l}2] and Poisson’s ratio as
ν = 0.35. In Figure 1 the material parameters and boundary conditions as well
as the geometry can be found. Figure 2 shows the Cauchy stresses σ11 and the
convergence of the vertical displacement of the top right point.

16

44

48

PN
System setup:

Right side PN = (0,5)[N/{l}2]

Upper/Lower side PN = (0,0)[N/{l}2]

Left side u = (0,0)[{l}]

Young’s modulus E = 200[N/{l}2]

Poisson’s ratio ν = 0.35

Figure 1. Material parameters, boundary conditions and geom-
etry of Cook’s Membrane.

The results are reasonable and convergent, but the performance of the cubic ele-
ment is clearly superior to the performance of the quadratic element.
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A new Mixed Finite Element Formulation based on Different
Approximations of the Minors of Deformation Tensors

Daniel Balzani

(joint work with Jörg Schröder, Peter Wriggers)

1. Introduction

The notion of polyconvexity in the sense of Ball [2] is fundamental in the field of
nonlinear continuum mechanics, especially for hyperelastic materials since the ex-
istence of minimizers of variational problems is guaranteed. The first anisotropic
polyconvex strain energy functions are introduced in [4] and recently extended to
different applications, e.g. to soft biological tissues in [3]. Especially for the case of
incompressibility various mixed Finite Element approaches have been introduced
in the past, however, suitable formulations providing locking-free accurate solu-
tions for coarse meshes still need attention, see e.g. [1]. Along these lines we focus
in this contribution on a new mixed Finite Element formulation is derived based
on different approximations of the deformation gradient, its cofactor and its de-
terminant. These quantities are the minors of the deformation gradient and play
a major role with respect to (i) the transformation of infinitesimal line-, area- and
volume elements, and (ii) in the formulation of polyconvex strain energy functions.

2. Variational Basis of the Mixed Formulation

Considering a framework formulated in the deformation gradient F the modified
Hu-Washizu functional can be written as Πtot = Π + Πext, wherein the external
potential is given by Πext = −

∫
Ω x · f dV −

∫
∂Ω x · t dA and the internal part reads

Π(x,Hc
, θ ,B, p) =

∫

Ω

W (F,Hc
, θ) dV +

∫

Ω

p(J − θ) dV +

∫

Ω

B · (cofF−H
c) dV .

Here, the independent variables are the deformation x, a tensor field Hc, repre-
senting the cofactor, and the scalar θ related to the volumetric dilatation. Associ-
ated with the last two quantities are the stress-like quantityB and the pressure-like
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quantity p. The volume forces and traction forces are denoted by f and t, respec-
tively. Alternatively, the strain energy functionW as a function of the deformation
gradient and its minors can also be written in terms of the right Cauchy-Green
tensor C = FTF, i.e. ψ := ψ(C,Hc, θ), which then leads to

Π(x,Hc
, θ ,B, p) =

∫

Ω

ψ(C,Hc
, θ) dV +

∫

Ω

p(J − θ) dV +

∫

Ω

B · (cofC−H
c) dV .

3. Approximation

The first variation and a consistent linearization are given in [5], where it is also
shown that the five-field formulation can be reduced to a pure displacement for-
mulation by static condensation. For the approximation the ansatz spaces have
to be balanced in order to obtain a robust and stable discretization. It is known
in classical formulations for incompressibility that a reduced ansatz space, applied
to the pressure term, could yield more suitable finite element formulations. This
results for example in the well-known T2/P1 or T2/P0 formulations for trian-
gular/tetrahedral elements. Since the volumetric term depends cubically on the
components of the right Cauchy-Green tensor C and the cofactor cofC depends
quadratically on the components of C a suitable choice for the ansatz spaces could
be provided by

• a quadratic interpolation for x,
• a linear interpolation for Hc and B and
• a constant interpolation for θ and p.

4. Numerical Examples

As a first example we consider a bending beam, cf. Fig. 1a and investigate the
mesh distortion sensitivity. For this purpose different meshes are analyzed which
are distorted by increasing the distortion parameter a. For the analysis a number
of nele = 12288 elements are used for the discretization of the beam. As can be
seen in Fig. 1c the proposed formulation (cofem) shows a reduced sensitivity with
respect to mesh distortions than the standard displacement formulation (t2) or the
F-bar approach (fbar). Furthermore, a completely unreasonable stress distribution
is observed for the standard displacement formulation and the strongly distorted
mesh (a = 4.99), see Fig. 1b (lower image), whereas the proposed formulation
shows a rather smooth distribution, see Fig. 1b (upper image).

As a second example the Finite-Element convergence is studied at a Cooks-type
problem, see Fig. 2a for the boundary value problem. Then the displacements of
point C are analyzed for different Finite-Element discretizations. Fig. 2b,c show
the displacements ux and uy, respectively, versus the number of elements in a
logarithmic scale. It can be observed that the proposed formulation converges
faster than the standard displacement formulation and the F-bar approach.
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Figure 1. Mesh-distortion analysis: a) boundary value problem
with an undeformed undistorted mesh (a = 0), b) the distorted
mesh for nele = 12288 elements and a mesh distortion of a = 4.99
unit lengths, and c) vertical displacements of the loading point
versus distortion parameter a.
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Figure 2. Convergence study of Cook’s-type problem: a) bound-
ary value problem, b) distribution of the displacements ux and c)
uy versus number of elements (in a logarithmic scale).
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Adaptive mixed finite element methods and new hybriddiscontinuous
Galerkin method

Eun-Jae Park

(joint work with Dongho Kim and Youngmok Jeon)

This short report deals with locally conservative methods and consists of two
parts: first part on adaptive mixed finite element methods and second on new
hybrid discontinuous Galerkin (HDG) method.

First part is based on joint work with Dongho Kim. The mixed finite element
method has two important features; it conserves the mass locally and produces ac-
curate flux even for highly nonhomogeneous media with large jumps in the physical
properties. In many cases the mixed finite element method gives better approxi-
mations for the flux variable associated with the solution of a second order elliptic
problem than the classical Galerkin method. Mixed finite element methods for
highly nonlinear cases in divergence form were treated by the author [11, 12, 13].
There, by using the Brouwer fixed point theory, unique solvability of the approx-
imate problem is proved and optimal order error estimates are obtained for the
Raviart-Thomas mixed finite element space. This approach requires construction
of a mapping which maps a ball in appropriate function spaces into itself. The
choice of norms used to measure the distance from the approximation to a projec-
tion of the solution and its flux variable, plays a crucial role in proving solvability
of the nonlinear algebraic equations arising from the mixed finite-element method.
In order to be able to prove existence of a numerical solution, more regularity was
required of the solution. This has the negative effect of precluding the use of the
lowest-indexed mixed finite-element spaces (see [11, 12, 13]). In practice, one often
uses the lowest order elements which are of interest for actual implementation.

In [7], we presented a priori and a posteriori mixed finite element error analysis
of elliptic problems, in particular, with gradient nonlinearities in the lower order
term in two and three space dimensions [11]. We take a different approach based
on the Brezzi-Rappaz-Raviart framework [3, 4] rather than using the Brouwer fixed
point theory. First, we derived an optimal order a priori error estimate measured
in the Lm(Ω)-norm in the framework of Brezzi-Rappaz-Raviart which requires of
the C1,1-regularity of the lower order term b(x, p,∇p); we extended the theory to
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allow more general C1,α class of the function b for 0 < α ≤ 1. Then, we derived
reliable and efficient a posteriori error estimators in Lm(Ω) for the error control of
our approximation to the nonlinear problem under consideration in two and three
space dimensions using some of the ideas presented in [5].

On the other hand, Newton type methods for solving nonlinear algebraic equa-
tions arising from discretization give rise to convection-diffusion equations. In
particular, in the case of the convection dominated diffusion problems, one needs
to incorporate upwind method to capture internal or boundary layers. Since the
mixed finite element method uses discontinuous finite elements for pressure spaces,
it is natural to use upwind method for the convection term. In [6], we derived reli-
able and efficient error estimators. Numerical results shows that the derived error
estimators are also computationally robust in terms of the diffusion parameter.

Second part is based on joint work with Youngmok Jeon [9, 10]. The new
method is based on recently introduced nonconforming cell boundary element
(CBE) methods [8]. The CBE method is designed in such a way that they enjoy
the mass conservation at the element level and the normal component of fluxes at
inter-element boundaries are continuous for unstructured triangular meshes.

A brief outline of the GCBE can be described as follows.

Step 1: Introduce a trace variable λ = u|Kh
on the skeleton.

Step 2: Solve two elliptic equations for uλ and uf on each T such that

−∆uλ = 0 in T, uλ = λ on ∂T,

−∆uf = f in T, uf = 0 on ∂T

and set u = uλ + uf .
Step 3: Use the flux continuity equation at cell interfaces to obtain a global

system of equations in unknowns λ only.

Our method has a flavor of the discontinuous Galerkin (DG) method. In the
GCBE, generic unknowns are supported on the skeleton of a mesh as in Step 1.
Step 2 is a process of generating PDE-adapted local basis which can be done
in parallel. This is achieved by a DG method similar to the Baumann-Oden
formulation [1] at the element level. We use completely discontinuous polynomials
Pk(T ) for u and globally continuous polynomials Pk(∂T ) for the interface variable
λ. For the lowest order case, i.e., k = 1, we add a bubble for each T as in [2] for
stability. More details on GCBE can be found in [9, 10], where some extension to
the Stokes problem is discussed.
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Computational competition of symmetric mixed FEM in linear
elasticity

Joscha Gedicke

(joint work with Carsten Carstensen, Martin Eigel)

The numerical solution of the Navier-Lamé equation with mixed weak formula-
tions allows a robust approximation even if the crucial Lamé parameter passes to
the incompressible limit when the Poisson ratio approaches 1/2, see [5, Chapter IV
§3]. In low-order displacement formulations, the well-known locking effect causes
a priori error estimates to deteriorate. While there are many known stable mixed
finite element methods (MFEM), the additional symmetry constraint implied for
the stress tensor σ proved to be difficult to impose in numerical schemes. This
has resulted in the introduction of discretisations with no or reduced symmetry
incorporated in the discrete stress space [1, 8, 17]. The first MFEM which were
designed especially to fulfil the stress symmetry without the need of a sub-grid are
due to Arnold and Winther [3, 4, 10]. As discussed in [3], the continuity property
imposed on the stress field in the conforming MFEM substantially increases com-
plexity of the finite elements. Since (complete) continuity is not required in the
mixed formulation of linear elasticity, non-conforming MFEM can be an efficient
and easier to implement alternative to conforming elements.

The article [9] is devoted to the computational competition of several FEM
displayed in Table 1 for the Navier-Lamé equation of linear elasticity. While the
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name convergence result

AW21 ‖σ − σh‖L2(Ω) ≤ Ch‖u‖H2(Ω)

AW15 ‖σ − σh‖L2(Ω) ≤ Ch‖u‖H2(Ω)

AW30 ‖σ − σh‖L2(Ω) ≤ Chm‖σ‖Hm(Ω) for 1 ≤ m ≤ 3
AW24 ‖σ − σh‖L2(Ω) ≤ Chm‖σ‖Hm(Ω) for 1 ≤ m ≤ 2
S15 ‖σ − σh‖L2(Ω) ≤ Chm−1‖u‖Hm(Ω) for 1 ≤ m ≤ 2
S27 ‖σ − σh‖L2(Ω) ≤ Chm−1‖u‖Hm(Ω) for 1 ≤ m ≤ 3
KS ‖σ − σh‖L2(Ω) ≤ Ch‖σ‖H1(Ω)

PEERS ‖σ − σh‖L2(Ω) ≤ Ch‖σ‖H1(Ω)

Pk ‖σ − σh‖L2(Ω) ≤ C(λ)hk‖u‖Hk+1(Ω) for k = 1, 2, 3
P4 ‖σ − σh‖L2(Ω) ≤ Ch4‖u‖H5(Ω)

Table 1. Theoretical convergence rates of different mixed FEM,
the non-conforming KS-FEM and the conforming Pk-FEM; σ de-
notes the stress tensor and u the displacement. The constant C
is independent of material parameters (except for Pk, k = 1, 2, 3)
and independent of the (sufficiently small) mesh-size h.

conforming lowest-order AW30 and AW24 MFEM of Arnold and Winther [3] have
30 and 24 degrees of freedom and are based on a polynomial basis of degree 3, the
non-conforming AW21 and AW15 MFEM [4] are based on a quadratic polynomial
basis with 21 and 15 degrees of freedom. The recently introduced S15 and S27
MFEM due to Pechstein and Schöberl [16] are based on linear and quadratic
polynomials and have 15 and 27 degrees of freedom. Of particular interest is the
numerical competition of the many newly available mixed finite elements of order
one up to three with traditional displacement-oriented FEM of the same orders.
Since P4 is locking free [6] in contrast to Pk, k = 1, 2, 3, it is included in the
survey as well as the low-order MFEM of weak symmetry (PEERS) [1] and the
non-conforming KS-FEM [15]. We note that there are some recent elements which
we could not include in this survey such as [12, 13]. Moreover, while there are
several MFEM with weak symmetry constraints that might also have been worth
to consider in our comparison, see e.g. [2, 14, 11], our focus lies on symmetric
methods. The reason for including PEERS and KS-FEM is the great popularity of
these methods in the engineering community. We also mention that, although out
of the scope of this comparison, higher-order PEERS are available which probably
would show a more favourable performance than the lowest-order version.

While robustness, locking and computational complexity usually play a pivotal
role, singularities in the solution or high regularity may dominate the choice for
the method and the mesh-design. The numerical experiments with several Poisson
ratios ν close to 1/2 confirm the theoretical locking-free property of the symmetric
MFEM. The theoretical findings of [6], that Pk, k = 1, 2, 3, show locking while
P4 is locking free, are empirically verified. For this smooth example the higher-
order schemes show faster convergence rates and higher accuracy. However, this
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example is not representative from a practical point of view. Experiments for the
Cook’s membrane and the example with rigid circular inclusion show that singular
solutions or curved boundaries can reduce the convergence rates of the methods.
For the Cook’s membrane problem even the low-order schemes lead to suboptimal
convergence rates. This motivates the use of local mesh refinement which is in-
vestigated more closely for some L-shaped domain in [9]. The experiments show
that graded meshes in contrast to uniform meshes lead to optimal convergence
rates. However, the right choice of the grading parameter is not known in practise
because it depends on the material parameters. The experiments show that a too
small grading parameter results in suboptimal convergence rates while a too large
value can lead to errors of different order of magnitude in accuracy. Therefore
adaptive mesh refinement strategies for the symmetric MFEM have to be inves-
tigated which is postponed to forthcoming work. The experiments of [9] indicate
that among the first-order methods P1, PEERS, KS, AW21, AW15 and S15, the
AW15 MFEM shows the best results. Among the second-order methods P2, AW24
and S27, the AW24 MFEM shows the best results. Among the third-order meth-
ods P3 and AW30, the locking-free AW30 MFEM shows the better results. The
comparison of conforming FEM and the MFEM under consideration shows that
only the robust version P4 is competitive and performs best. However, the com-
parison of the fourth-order scheme with some third-order method clearly shows
superiority of the higher-order scheme provided the exact solution is sufficiently
smooth. The experiments for the L-shaped domain leads to the conjecture that
for f ≡ 0 the AW30 and AW24 exhibit some superconvergence phenomenon of
order O(N−2). This is in agreement with the conjecture of [10]. These results of
the AW30 and AW24 MFEM can compete with those of the one order higher P4

displacements solution.
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[6] I. Babuška and M. Suri, Locking effects in the finite element approximation of elasticity

problems, Numer. Math. 62 (1992), no. 4, 439–463.
[7] C. Carstensen, An adaptive mesh-refining algorithm allowing for an H1 stable L2 projection

onto Courant finite element spaces, Constr. Approx. 20 (2004), no. 4, 549–564.
[8] C. Carstensen, G. Dolzmann, S. A. Funken, and D. S. Helm, Locking-free mixed finite

element methods in linear elasticity, Comput. Methods Appl. Mech. Engrg. 190 (2000),
1701–1781.



Advanced Computational Engineering 481

[9] C. Carstensen, M. Eigel, and J. Gedicke, Computational competition of symmetric mixed
FEM in linear elasticity, Comput. Methods Appl. Mech. Engrg. 200 (2011), no. 41-44,
2903–2915.

[10] C. Carstensen, D. Günther, J. Reininghaus, and J. Thiele, The Arnold-Winther mixed FEM
in linear elasticity. Part I: Implementation and numerical verification, Comput. Methods
Appl. Mech. Engrg. 197 (2008), 3014–3023.

[11] B. Cockburn, J. Gopalakrishnan, and J. Guzmán, A new elasticity element made for en-
forcing weak stress symmetry, Math. Comp. 79 (2010), no. 271, 1331–1349.

[12] J. Gopalakrishnan and J. Guzmán, A second elasticity element using the matrix bubble,
IMA J. Numer. Anal. 32 (2012), no. 1, 352–372.

[13] J. Gopalakrishnan and J. Guzmán, Symmetric non-conforming mixed finite elements for
linear elasticity, SIAM J. Numer. Anal. 49 (2011), no. 4, 1504–1520.

[14] J. Guzmán, A unified analysis of several mixed methods for elasticity with weak stress
symmetry, J. Sci. Comput. 44 (2010), no. 2, 156–169.

[15] R. Kouhia and R. Stenberg, A linear nonconforming finite element method for nearly in-
compressible elasticity and Stokes flow, Comput. Methods Appl. Mech. Engrg. 124 (1995),
no. 3, 195–212.
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Approximations of incompressible large deformation elastic problems:
some unresolved issues!

Ferdinando Auricchio

(joint work with L.Beirao da Veiga, C.Lovadina, A.Reali, R.L.Taylor, P.Wriggers)

1. Introduction

It is well known in the literature that many finite element formulations fail
to properly reproduce highly incompressible finite strain solutions, showing un-
physical instability hourglass modes [1]. This has been a puzzling point for many
researchers who have been devoted many efforts in trying to produce stable and
robust numerical schemes also in a finite strain regime. However, up today there
is no effective and exhaustive proof that any of the proposed approach is really
working, due also to the fact that there is not yet a clear theoretical understanding
on the numerical pathologies. This observation is also evident from the numerical
point of view, since there is no agreement on which could be effective numerical
round-robin tests and on possible benchmark tests to really test and prove the
robustness of approximation schemes.

2. Proposed approach

As a consequence, within the framework of incompressible finite elasticity, we
focus on some simple two-dimensional examples, reported in Figures 1-2.
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In particular, for the first problem we are able to study the stability of the
continuum problem, while the second one seems to be a simple numerical problems;
we may hope that in the future both problems may become benchmark tests.

Figure 1. Problem 1.

Figure 2. Problem 2.

Depending on the specific problem, we theoretically and numerically study the
stability of the solutions to the discretized problem, obtained by means of dis-
placement, mixed, mixed-enhanced finite elements, which are well-performing in
linear elasticity (some results can be found in [2, 3]).

In particular, we explore the dependency of the numerical results on the specific
form of the Θ function enforcing the incompressibily constraint. From a theoretical
point the solution of the continuous problem is clearly independent from such a
function, while we observe that several reliable approximation schemes show a
dependency of the numerical solution on the adopted Θ function.

As an example, in Table 2 we report some numerical results for the case of a
quadrilateral element based on quadratic continuous approximation for the dis-
placement and linear discontinuous approximation for the pressure (Q2− P1 ele-
ment). In particular, we report the maximum load multiplier (Load) and vertical
displacement of a point before detecting numerical instability. The results are
reported for different meshes and for different Θ functions.
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Approx Θ Mesh Load v

Q2-P1 (J − 1) 8 x 4 60.3347 0.116456
16 x 8 60.5748 0.105804
32 x 16 57.3658 0.098591
64 x 32 55.2208 0.093658

Log(J) 8 x 4 77.4181 0.161595
16 x 8 69.2701 0.135808
32 x 16 64.3658 0.115045
64 x 32 62.5729 0.109898

1− 1/J 8 x 4 88.4547 0.211841
16 x 8 73.1676 0.157548
32 x 16 66.7125 0.124232
64 x 32 63.462 0.111932

Table 2. Numerical results for the Q2-P1 approximation for
problem 2

From an inspection of the numerical results it is clear that the adopted Θ
function plays a significant role and that different instability loads are detected.

3. Conclusions

We conclude drawing some general considerations. In particular, we find out
that, in some situations, not only enhanced schemes fail in reproducing the solution
stability range, but that similar failures can be also observed when using mixed
finite elements generally considered reliable.
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Hybrid Discontinuous Galerkin Methods in Solid Mechanics and Fluid
Dynamics

Joachim Schöberl

(joint work with Christoph Lehrenfeld)

In this talk we present several aspects of hybrid discontinuous Galerkin meth-
ods. The method is explained for the Poission Equation. We look for element-
polynomials and facet-polynomials (u, λ) ∈ P p(T )× P p(F) such that

∑

T

∫

T

∇u · ∇v +

∫

∂T

∂u

∂n
(µ− v) +

∫

∂T

∂v

∂n
(λ− u) + (u − λ, v − µ)jump =

∫

Ω

fv

for all (v, µ) ∈ P p(T ) × P p(F). The hybrid DG method shares the advantages
of standard DG methods: it allows for upwinding for convection dominated prob-
lems, and it enables flexibility for the construciton of approximation spaces. In
addition, hybrid DG allows for static condensation, and the problem is reduced
to the element interface variables, often called Lagrange parameters. In a recent
work [1] we have analyed p-version preconditioners for the resulting system, and
proven poly-logarithmic growth in p of the condition number.

In [2, 3] the tangential-displacement normal-normal-stress continuous mixed
finite element method (TD-NNS) was presented, and robust anisotropic error esti-
mates have been proven. Here we show that the method can also be formulated as
a hybrid - DG method: The element variable u should be chosen with continuous
tangential component, the facet variable λ has only normal components.

In [4] a hybrid DG method with normal-continuous, this means H(div)-confor-
ming velocity u has been presented. This method produces an exactly divergence
free discrete velocity field, and thus is stable in kinetic energy.
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Are High-order and Hybridizable Discontinuous Galerkin methods
competitive?

Antonio Huerta

(joint work with Xevi Roca, Aleksandar Angeloski and Jaime Peraire)

The talk covered several issues motivated by a practical engineering wave prop-
agation problem: real-time evaluation of wave agitation in harbors. The first
part, presented the application of a reduced order model in the framework of a
Helmholtz equation with non-constant coefficients in an unbounded domain. This
problem requires large numbers of degrees of freedom (ndof) because relatively
high frequencies with small (compared with the domain size) geometric features
must be considered. The incoming dimensionless wave length and its direction
are the two parameters introduced in the reduced order model. Here, the Proper
Generalized Decomposition (PGD) [1, 2, 3]. This method imposes a separated
representation of the approximation uses the operators associated to the weak
form of the problem at hand but not the solution itself as the Proper Orthogonal
Decomposition techniques. Consequently, the PGD determines the separated rep-
resentation without the knowledge a priori of any solution of the problem. This
technique is successful in elliptic and parabolic problems, see [4] for an insightful
analysis, and with the proper error estimates based on quantities of interest the
number of terms can be satisfactorily estimated [5]. PGD is studied here in a
wave propagation problem on an unbounded domain. After showing several PGD
approaches the issue of non-optimality in the convergence of the separable repre-
sentation is raised. Although an L2 projection after several PGD steps reduces
drastically (in fact, optimally) the rank in the separable representation its cost in
the off-line phase is non-negligible.

The second part of the talk addressed two questions, which continuously em-
anate in advanced computational engineering: are high-order approximations bet-
ter/worse than low-order ones? and can Discontinuous Galerkin (DG) be more
efficient then Continuous Galerkin (CG)?

To compare high versus low order approximations for this wave problem apart
from run-time comparisons, which are clearly dependent on implementation and
hardware, operation count is proposed. This is done for a direct solver. In par-
ticular, for the Hybridizable DG (HDG) see [6, 7, 8, 9, 10], because this is the
technique retained for this wave problem. For this, the standard hypotheses for
these analyses are employed: large uniform structured mesh (boundary influence
is negligible), smooth solution (bounded with bounded derivatives) and the inter-
polation error is dominant. This allows to estimate the ratio between order-one
elements, ne,1, and order-p elements, ne,p, for a given error tolerance, ε, namely

(1)
ne,1
ne,p

=

(
(p+ 1)!

)d/p+1

(
2!
)d/2 ε−d(p−1)/2(p+1).

The cost of generating the matrices and solving the local (elemental) problems
in HDG is also considered. But it is crucial to estimate the operation count for the
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Figure 1. Normalized (by order-p elements) cost vs. order p for
different error tolerances: tetrahedra (left) and hexahedra (right)

direct solve. For this it is important to note that HDG induces a sparse matrix
with uniform pattern and dense blocks (of size the ndof in each face). With a
duality argument on the faces of the mesh and assuming nested dissection is used
to renumber faces the operation count for the global system is

G =

(
d+ 1

2

)(d+1)/2(
d

p+ d

)3

n(d+1)/2
e,p ndof

3
e for simplexes,

and

G =
d(d+1)/2

(p+ 1)3
n(d+1)/2
e,p ndof

3
e for parallelotopes.

Figure 1 shows the total cost (add to the previous expression the cost of gen-
erating each local matrix and the cost of the solving the local HDG problems).
This is done in a worse case scenario (sequential processor). Note that all the
elemental computations can be easily parallelized, this is beneficial to high-order
approximations. These results show that for a given accuracy, there is an optimal
value of p ≥ 1 and that for engineering accuracy (usually two significant digits)
high-order always pays-off. On the contrary, in [11] it is stated that it is difficult
to improve on linear elements. Two issues support the present conclusions. First,
inner degrees of freedom are obviously condensed (also true for CG). Thus, the
cost of the global system is only determined by the ndof on faces. Second, the
(p+ 1)! factor of the interpolation error is taken into account in (1).

Once high-order is justified, the issue of DG vs. CG is addressed. This is
analyzed with a simple operation count for a mesh under the same assumptions
as before. In particular, the number of non-zero (nnz) terms in the matrix is
computed. The results clearly show that for uniform order meshes (same a priori
error estimate) the overhead introduced by DG methods is always larger than CG.
Table 3 conveys more clearly this conclusion presenting the ratio of the nnz for
Compact DG (CDG), HDG, and a post-processed HDG (pHDG) solution obtained
using the super-convergence property of HDG.
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Table 3. Ratio of nnz, normalized by CG

triangles tetrahedra

p CDG HDG pHDG CDG HDG pHDG
2 3.91 2.93 1.30 8.86 13.14 3.28
5 4.77 1.57 1.09 4.21 3.31 1.69

10 9.08 1.26 1.04 4.88 1.89 1.31

However, it is important to note that an adaptive HDG method would exhibit
the best computational efficiency in terms of ndof and run-time for this wave
propagation problem. The super-convergent post-process of the HDG method is
used to construct a simple error estimator. Note that the overhead of such a
posteriori error estimate is, in this case, negligible. The error estimator is used
to drive an iterative procedure of mesh adaptation aimed at reaching a desired
level of error in the zone of interest of the domain. Under these circumstances,
p-adaptive high-order HDG is the most efficient technique.
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Isogeometric analysis of solids and structures

Robert L. Taylor

Isogeometric methods have been introduced in an attempt to connect analysis
methods more closely to problems defined by CAD systems. The method is de-
scribed in some detail in the book by Cottrell et al.[1]. Output from CAD systems
is often in the form of NURBS (non-rational uniform B-splines) which can be re-
fined by degree elevation (p-refinement) and knot insertion (h-refinement). The
two together are commonly referred to as ‘k-refinement’. Procedures to perform
these operations are defined in the book by Piegl and Tiller[2].

Our research is directed to the development of methods to analyze finite defor-
mation behavior. The integration with a CAD system has not been realized in
our work and we define our problems manually in terms of control points (nodes)
and knot vectors. These are combined to form tensor product surface and solid
domains. Subsequent refinement is performed by k-refinement to achieve analy-
sis suitable descriptions. We also have the ability to import regions described by
analysis suitable T-splines[3].

To show typical behavior a curved beam subjected to an end shear is considered,
Fig. 1(a). This problem has an exact solution that is easily enforced by subjecting
x-axis control points to a uniform displacement. The problem is analyzed for
the data: a = 5, b = 10, E = 10, 920, ν = 0.3 and u(x, 0) = 0.1. Using the
exact solution the energy error may be computed for different approximations. In
Fig. 1(b) we show the error for traditional finite elements where ”Qn” denotes
a quadrilateral with n nodes. Isogeometric solutions are also shown in which the
radial direction is initially a linear NURBS and the circumferential direction a
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(a) Problem description. (b) Error in energy.

Figure 1. Curved beam subjected to end shear: Problem de-
scription and energy errors.
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quadratic NURBS. An analysis is shown where only h-refinement is performed
and one where the radial direction is elevated to quadratic degree and refined.
Finally we show an analysis in which only degree elevation is performed.

A more complex situation arises when finite deformation occurs and the solids
are modelled by constitutive models in which near incompressibility occurs. In
such situations standard Galerkin solutions employing only displacement approx-
imations do not achieve an optimal solution, especially when low order forms are
used. This is also true for NURBS based methods. In engineering applications
the use of mixed methods in which displacements are augmented by stress and/or
deformation approximations are usually introduced. For solid domains the defor-
mation gradient F may be split into volumetric and deviatoric parts as

F = Fv Fd where Fv = J1/3 I and Fd = J−1/3 F

where J = detF . In our mixed form we replace J by J̄ and define the mixed
deformation gradient and right Cauchy-Green deformation tensor by

F̄ =

(
J̄

J

)1/3

F and C̄ = F̄T F̄

For a hyperelastic material a variational problem may be defined by

Π =

∫

Ω

[
W (C̄) + p

(
J − J̄

)]
dΩ + Πext

whereW (C̄) denotes a stored energy function and Πext the boundary and volumet-
ric loading effects. For tensor product NURBS an approximation may be defined
in which coordinates and displacements are defined by q degree forms, pressure p
by q− 1 degree forms and J̄ by either q− 1 or discontinuous polynomial forms[4].
This generalizes the approach of Elguedj et al.[5] and permits solutions using stan-
dard nodal based algorithms. An illustration of the improvement in performance
of NURBS based mixed approximations may be observed for a twisted rectangular
bar problem. The bar has a square cross section of 1 × 1 and a length of 5. The
material is modeled by a Neohookean material with a small strain bulk modulus of
400942 and a shear modulus of 80.1938. This gives a small strain Poisson ratio of
0.4999. The bar is modeled by quadratic NURBS with k-refinement and twisted
to an angle of 90-degrees. The axial stress from a Galerkin displacement method
is shown in Fig. 2(a) and that for a mixed solution in Fig. 2(b) using NURBS
for displacement and pressure and linear polynomial approximation in each knot
interval for J̄ . The results for the mixed solution compare well with refined finite
element solutions. The displacement Galerkin solution produces results with sig-
nificant errors. Also, of particular note is the robustness of the Newton method
used for solution. Very large increments of rotation can be used in the NURBS
solutions compared to a standard quadratic finite element solution.

All of our NURBS based solutions are implemented in the general purpose
finite element program FEAP[6] using user functions. Currently, we are able to
analyze problems composed of solids and shells. There are, however, a number
of issues that need to be resolved in order to solve realistic engineering problems.
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Figure 2. Twisted bar: Axial stress σ3 for 90o twist.

First, is a direct connection to a CAD system in order to generate the models
for analysis as well as the features necessary to impose loading and boundary
conditions. Since NURBS descriptions are commonly surface based a method to
generate the internal knot intervals and control points is needed. For models
described by local refinement of NURBS (e.g., T-splines) a more general form to
impose constraints is required. For problems in which stresses are computed from
models with internal variables such as plastic strain the results are available only
at quadrature points. An accurate projection to the control points is required.
Currently, this is performed using a local least squares method, however, for high
order NURBS this is not stable and improved methods are required.
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Isogeometric Analysis of Multi-Physics Problems: Formulations,
Coupling, and Applications

Yuri Bazilevs

(joint work with Ming-Chen Hsu, Ido Akkerman)

Figure 1. Fluid–structure interaction of a wind turbine in 3D.
Example of a simulation, in which it is beneficial to make use
of non-matching fluid and structural discretizations. In this
case, standard FEM is used for aerodynamics, while isogeometric
Kirchhoff–Love shell is employed for the rotor blades. The former
significantly simplifies the model and mesh generation process,
while the latter provides a very efficient structural discretization.

Isogeometric Analysis (IGA) [1], despite its young age, has significantly ma-
tured as a technology for geometry representation and computational analysis.
Although NURBS remain the most popular means of geometry modeling for IGA,
advances in T-Spline and Subdivison surface representations enabled the solution
of computational problems requiring local mesh refinement, which is not easily ac-
complished with NURBS. Advances in model quality definition and improvement
enabled the generation of better parameterized shapes for IGA, thus improving
the quality of the computational solution.

Recent efforts to define standardized file formats for data exchange between the
geometry modeling and computational analysis software enabled straightforward
solution of complicated structural problems that involve large deformation, plas-
ticity and contact, using well-validated commercial FEM software. Furthermore,
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IGA is able to naturally handle many applications that otherwise create significant
challenges to standard finite element technology.

However, many challenges remain for IGA to be fully accepted as an industrial-
grade analysis technology. The ability to create 3D volumetric complex geometry
models in an automated manner is one such challenge. Another challenge is to
prove that IGA is capable of producing accurate and robust results for complex-
geometry multi-physics problems (e.g., fluid-structure interaction), which is one of
the major demands of modern computational analysis.

This presentation focused on the coupling strategies, specific to IGA, for multi-
physics applications that make use of non-matching descriptions of geometry at the
interface between different physical subsystems, as well as different subdomains
of a single physical system. These coupling procedures allow greater flexibility
in the computational analysis, and, simultaneously, alleviate the difficulties of
geometry modeling and construction of interfaces that exactly match geometrically
and parametrically (see, e.g., Figure 1).
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Finite Element Methods for a Fourth Order Obstacle Problem

Susanne C. Brenner

(joint work with Christopher B. Davis, Li-yeng Sung, Hongchao Zhang, Yi
Zhang)

Let Ω be a bounded convex polygonal domain in R2. The following optimization
problem provides a mathematical model for the bending of a clamped Kirchhoff
plate over an obstacle: Find u ∈ H2

0 (Ω) such that

(1) u = argmin
v∈K

[1
2
a(v, v)− (f, v)

]
,

where u is the vertical displacement of the middle surface of a thin plate with Ω
as the configuration domain, K = {v ∈ H2

0 (Ω) : v ≥ ψ in Ω}, ψ ∈ C2(Ω̄) is the
obstacle function, f ∈ L2(Ω) is the load density divided by the flexural rigidity,

a(w, v) =

∫

Ω

2∑

i,j=1

wxixj
vxixj

dx and (f, v) =

∫

Ω

fv dx.

We assume ψ < 0 on ∂Ω.
Since the symmetric bilinear form a(·, ·) is bounded and coercive on H2

0 (Ω), it
follows from the standard theory [11] that the obstacle problem (1) has a unique
solution characterized by the following variational inequality

(2) a(u, v − u) ≥ (f, v − u) ∀ v ∈ K.
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The solution u of (1) belongs to H3(Ω) ∩ C2(Ω), but in general u does not
belong to H4(Ω) even for smooth data [10, 7]. Thus the complementarity form
of (2) only exists in the following weak sense: There exists a nonnegative Borel
measure µ supported on the coincidence set I = {x ∈ Ω : u(x) = ψ(x)} such that
∆2u−f (in the sense of distributions) is given by the linear functional φ→

∫
Ω
φdµ.

This is the main difference between the plate obstacle problem and the membrane
obstacle problem, where the complementarity form of the second order variational
inequality exists in a strong sense because the solution of the membrane obstacle
problem belongs to H2(Ω) under appropriate assumptions [5]. This difference
significantly complicates the numerical analysis of (1)/(2).

Consider a C1 finite element method where u is approximated by

(3) uh = argmin
v∈Kh

[1
2
a(v, v)− (f, v)

]
.

Here

(4) Kh = {v ∈ Vh : v(p) ≥ ψ(p) ∀ p ∈ Vh},

Vh is for example the Hsieh-Clough-Tocher macro finite element space associated
with a triangulation of Ω, and Vh is the set of the vertices of Th. By a standard ar-
gument using the boundedness and coercivity of a(·, ·) and the discrete variational
inequality for (3), we have

(5) |u− uh|
2
H2(Ω) ≤ C1|u−Πhu|

2
H2(Ω) + C2[a(u,Πhu− uh)− (f,Πhu− uh)],

where Πh : H3(Ω) −→ Vh is a quasi-interpolant such that

|u−Πhu|H2(Ω) ≤ Ch|u|H3(Ω).

Hence an optimal O(h) error estimate for |u−uh|H2(Ω) requires an estimate of the
form

a(u,Πhu− uh)− (f,Πhu− uh) ≤ Ch2.

However, if we follow the second order approach [9, 6] we will only have a subop-
timal estimate. Indeed, if Ih is the nodal interpolation operator for the P1 finite
element space associated with Th (so that Ihψ−Ihuh ≤ 0 on Ω), then proceeding
as in the second order case will lead to the estimate

a(u,Πhu− uh)− (f,Πhu− uh) =

∫

Ω

(Πhu− uh)dµ

=

∫

Ω

[(Πhu− u) + (u − ψ) + (ψ − Ihψ) + (Ihψ − Ihuh) + (Ihuh − uh)]dµ

≤

∫

Ω

[(Πhu− u) + (ψ − Ihψ) + (Ihuh − uh)]dµ

≤ µ(Ω)[‖Πhu− u‖L∞(Ω) + ‖ψ − Ihψ‖L∞(Ω) + ‖Ihuh − uh‖L∞(Ω)]

≤ C[h2|u|H3(Ω) + h2|ψ|W 2
∞

(Ω) + h|uh|H2(Ω)],

which is suboptimal.
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A general framework for obtaining optimal error estimates for finite element
methods for (1)/(2) was introduced in [4]. The finite element approximation is

(6) uh = argmin
v∈Kh

[1
2
ah(v, v)− (f, v)

]
,

where the finite element space Vh in the definition of Kh (cf. (4)) can be a C1

finite element space, a classical nonconforming finite space, or a C0 Lagrange finite
element space, as long as the functions in Vh are continuous at the vertices of Th.
The bilinear form ah(·, ·) is (i) identical with a(·, ·) for C1 finite element methods,
(ii) a piecewise version of a(·, ·) for classical nonconforming finite element methods,
and (iii) a piecewise version of a(·, ·) plus symmetrization and stabilization terms
for C0 interior penalty methods. The discrete obstacle problem (6) is equivalent
to the variational inequality

(7) ah(uh, v − uh) ≥ (f, v − uh) ∀ v ∈ Kh.

We were able to show that all these methods have O(h) error in the energy
norm, without using the complementarity form of the variational inequality (2).
The key idea is to define an intermediate auxiliary obstacle problem

(8) ũh = argmin
v∈K̃h

[1
2
a(v, v)− (f, v)

]

where

(9) K̃h = {v ∈ H2
0 (Ω) : v(p) ≥ ψ(p) ∀ p ∈ Vh}.

This problem shares the space H2
0 (Ω) with the continuous problem (1) and the

constraints with the discrete problem (6). Therefore it can be used as a bridge to
connect (1) and (6). The convergence analysis based on this new approach involves
only the variational inequalities (2) and (7), and the variational inequality

a(ũh, v − ũh) ≥ (f, v − ũh) ∀ v ∈ K̃h

for the obstacle problem (8). The complementarity form of these variational in-
equalities are not needed.

The extension of the results in [4] to nonconvex domains and general Dirichlet
boundary conditions have been carried out in [3, 2, 1], where the convergence of uh
to u in L∞(Ω) and convergence of the discrete free boundaries to the continuous
free boundaries are also addressed.

This new approach can be applied to the obstacle problem of simply supported
plates. It is also relevant for certain optimal control problems with state con-
straints [8, 12].
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Comparison results for first-order FEMs

Mira Schedensack

(joint work with Carsten Carstensen, Daniel Peterseim)

Various first-order finite element methods are known for the Poisson Model Prob-
lem (1) and for linear elasticity (2). The recent publications [1] started the com-
parison between some of these methods for the Poisson Model Problem, which is
completed in this presentation and its underlying paper [3].

Given a bounded polygonal Lipschitz domain Ω in the plane and data f ∈
L2(Ω), the Poisson model problem seeks the weak solution u ∈ H1(Ω) of

(1) −∆u = f in Ω and u = 0 on ∂Ω.

This presentation compares the error of three popular finite element meth-
ods (FEM) of Figure 1 for the numerical solution of (1), namely the conform-
ing Courant FEM (CFEM) [4], the nonconforming Crouzeix-Raviart FEM (CR-
NCFEM) [5], and the mixed Raviart-Thomas FEM (RT-MFEM) [7] with respec-
tive solutions uC, uCR, and (pRT, uRT) based on a shape-regular triangulation T
of Ω into triangles. The finite element space of CFEM reads P1(Ω) ∩ C0(Ω) for

Figure 1. CFEM (left), CR-NCFEM (middle), RT-MFEM (right).

C0(Ω) the continuous functions with zero boundary conditions. The finite element
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space of Crouzeix-Raviart CR1
0(T ) consists of all piecewise affines which are con-

tinuous at the midpoints of interior edges and vanish at the midpoints of exterior
edges. The Raviart-Thomas finite element space for the flux approximation reads
RT0(T ) := {pRT ∈ P1(T ,R2) ∩ H(div,Ω) | ∀T ∈ T ∃ aT , bT , cT ∈ R : pRT|T (x) =
(aT , bT ) + cTx}.

The comparison is stated in terms of A . B which abbreviates the existence
of some constant C which only depends on the minimal angle in T , but not on
the domain Ω and not on the mesh-size hT , such that A ≤ CB. The comparison
includes data oscillations, namely osc(f, T ) := ‖hT (f − Π0f)‖ where Π0 denotes
the L2 orthogonal projection onto the piecewise constants.

The comparison result for CFEM, CR-NCFEM and RT-MFEM states that the
errors of CFEM and CR-NCFEM are equivalent up to data oscillations, in the
sense that

‖∇u−∇uC‖ . ‖∇u−∇NCuCR‖ . ‖∇u−∇uC‖+ osc(f, T ).

The error of RT-MFEM is superior in the sense that

‖∇u−∇NCuCR‖ . ‖hT f‖+ ‖∇u− pRT‖ . ‖∇u−∇NCuCR‖+ osc(f, T ),

but the converse is false, i.e.,

‖∇u−∇NCuCR‖ 6. ‖∇u− pRT‖+ osc(f, T ).

The proof of the inequalities is an example of the medius analysis for it combines
arguments of an a priori with those of an a posteriori error analysis. It is em-
phasised that no regularity assumption is made and the results hold for arbitrary
coarse triangulations and not just in an asymptotic regime. The proof of the su-
periority of RT-MFEM considers a sequence of domains, on which the RT-MFEM
has a steeper convergence rate than CR-NCFEM.

The results for the Poisson Model Problem can be generalised for the Navier-
Lamé equations from linear elasticity, which seek u ∈ H1

0 (Ω;R
2) with

f + 2µ∆u+ (µ+ λ)∇(div u) = 0 in Ω.(2)

The compared FEMs are the conforming Courant FEM (CFEM) [2], the noncon-
formingKouhia-Stenberg FEM (KS-NCFEM) [6], and the nonconformingCrouzeix-
Raviart FEM (CR-NCFEM) [2] with respective solutions σC, σKS and σCR. The
finite element space of KS-NCFEM reads KS := (P1(T ) ∩C0(Ω))×CR1

0(T ). The
discretisation of CFEM and KS-NCFEM is based on the bilinear form

a(uKS, vKS) :=

∫

Ω

εNC(uKS) : CεNC(vKS) dx,

while the discretisation of CR-NCFEM involves the bilinear form

a(uCR, vCR) :=

∫

Ω

(
µDNCuCR : DNCvCR + (µ+ λ) divNC uCR divNC vCR

)
dx.

The comparison result for linear elasticity involves the Lamé modulus λ, which
effects the locking and the . notation means, that, in addition, the underlying
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constants do not depend on the Lamé modulus λ. Then

‖σ − σC‖ . λ ‖σ − σKS‖ . λ
(
‖σ − σC‖+ osc(f, T )

)

and

‖σ − σKS‖+ osc(f, T ) ≈ ‖σ − σCR‖+ osc(f, T ).
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Quasi optimal adaptive pseudostress approximation of the Stokes
equations

Dietmar Gallistl

(joint work with Carsten Carstensen, Mira Schedensack)

The pseudostress-velocity formulation [3, 5] of the stationary Stokes equations

−∆u+∇p = f and div u = 0 in Ω(1)

with Dirichlet boundary conditions along the polygonal boundary ∂Ω allows the
stresses-like variables σ in Raviart-Thomas mixed finite element spaces [2] RTk(T )
with respect to a regular triangulation T , and hence allows for higher flexibility
in arbitrary polynomial degrees.

The weak form of problem (1) is formally equivalent and reads: Given f ∈
L2(Ω;R2) and g ∈ H1(Ω;R2) ∩ H1(E(∂Ω);R2) with

∫
∂Ω
g · ν ds = 0 seek σ ∈

H(div,Ω;R2×2)/R and u ∈ L2(Ω;R2) such that

(2)

∫

Ω

dev σ : τ dx+

∫

Ω

u · div τ dx =

∫

∂Ω

g · τ ν ds,

∫

Ω

v · div σ dx = −

∫

Ω

f · v dx
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for all (τ, v) ∈ H(div,Ω;R2×2)/R × L2(Ω;R2), where the deviatoric part of the
tensor σ reads dev σ := σ − 1/2 tr(σ)I2×2. The discrete formulation of (2) seeks
σPS ∈ PS(T ) := RTk(T ) ∩H(div,Ω;R2×2)/R and uPS ∈ P0(Tℓ;R2) such that

∫

Ω

dev σPS : τPS dx+

∫

Ω

div τPS · uPS dx =

∫

∂Ω

g · τPSν ds

∫

Ω

div σPS · vPS dx = −

∫

Ω

f · vPS dx

for all (τPS, vPS) ∈ PS(T )× Pk(T ;R2).
The reliability and efficiency up to data oscillations of the explicit residual-

based error estimator ηℓ have been established in [5]. The contributions on each
triangle T with edges E ∈ E(T ) and tangents τE and jumps [·]E read

η2(T ) := osc2(f, T ) + |T | ‖curl(dev σPS)‖
2
L2(T )

+ |T |1/2
∑

E∈E(T )

‖[dev σPS]EτE‖
2
L2(E).

This gives rise to run the following adaptive algorithm Apsfem with the steps
Solve, Estimate, Mark, Refine, in each loop iteration.

Input: Initial triangulation T0, bulk parameter 0 < θ < θ0 ≪ 1
Loop: For ℓ = 0, 1, 2, . . .

Solve. Compute (uℓ, σℓ) with respect to the triangulation Tℓ
Estimate. Compute the piecewise contributions of ηℓ
Mark. Mark minimal subset Mℓ ⊂ Tℓ such that

θη2ℓ ≤ η2ℓ (Mℓ) :=
∑

T∈Mℓ

η2ℓ (T ).

Refine. Refine Mℓ in Tℓ with newest vertex bisection, generate Tℓ+1

Output: Sequences (Tℓ)ℓ and (uℓ, σℓ)ℓ

The definition of quasi-optimal convergence is based on the concept of approx-
imation classes. For s > 0, let

As :=
{
(σ, f, g) ∈H(div,Ω;R2×2)/R× L2(Ω;R2)

×
(
H1(Ω;R2) ∩H1(E(∂Ω);R2)

) ∣∣ |(σ, f, g)|As
<∞

}

with |(σ, f, g)|As
:=

sup
N∈N

Ns inf
|T |−|T0|≤N

(
‖dev(σ − σT )‖

2
L2(Ω) + osc2(f, T ) + osc2

(∂g
∂s
, E(∂Ω)

))1/2
.

In the infimum, T runs through all admissible triangulations (with respective dis-
crete solutions σT ) that are refined from T0 by newest vertex bisection of [1, 7] and
that satisfy |T |− |T0| ≤ N . The main result relies on a novel observation from on-
going work of Carstensen, Kim, and Park on the equivalence with nonconforming
schemes in the spirit of [6] and is therefore restricted to the lowest-order Raviart-
Thomas finite element functions. The main theorem states quasi-optimal conver-
gence in the following sense. For any sufficienty small bulk parameter 0 < θ < θ0
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Figure 1. Convergence history for uniform and adaptive mesh-
refinement in the L-shaped domain example and mesh generated
by Apsfem.

and (σ, f, g) ∈ As, Apsfem generates sequences of triangulations (Tℓ)ℓ and discrete
solutions (uℓ, σℓ)ℓ of optimal rate of convergence in the sense that

(|Tℓ| − |T0|)
s
(
‖dev(σ − σℓ)‖

2
L2(Ω) + osc2(f, Tℓ) + osc2(∂g/∂s, Eℓ(∂Ω))

)1/2

≤ Copt |(σ, f, g)|As
.

The main ingredients of the proof are the quasi-orthogonality, which leads to a
contraction of some linear combination of error, estimator, and data oscillations,
and the discrete reliability. Those are established for the lowest-order case.
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Model reduction in nonlinear biomechanics

Stefanie Reese

(joint work with Annika Radermacher)

The constantly rising requirements of accuracy and complexity of simulations in
various fields, especially in biomechanical applications, together with the non-
linearity of those systems lead to numerical models with an increasing number
of degrees-of-freedom (dof). Biomechanical simulations, such as surgery training
programs or online supports should be performed in minimal computational time
(possibly in real time) and provide results with a high level of accuracy. Therefore
model reduction is needed to allow for the required real time simulation. There
exist a variety of different approaches to reduce a problem in the literature. In
the medical field, one often uses spring mass (e.g. [8]) or tensor mass systems
(e.g. [4]) for training simulations. In other research fields like turbulence mod-
eling, fluid dynamics, image processing or signal analysis many different model
reduction methods exist. Based on [1] two classes of model reduction methods are
identified: the singular value decomposition (SVD)-based methods and the Krylov-
based methods. The methods which we will discuss here are SVD-based reduction
methods. These methods project the equation system on a subspace of smaller
dimension Φ. There exist a lot of different possibilities to choose this subspace.
For instance, the modal basis reduction (MOD) method (e.g. [10]) developed in
the field of dynamical structural analysis chooses the modal eigenforms as sub-
space. In the load-dependent Ritz (RITZ) method (e.g. [11]) these eigenvectors
are approximated by the so-called Ritz vectors. The promising proper orthogonal
decomposition (POD) method (e.g. [9, 3, 2]) builds up the subspace by using
snapshots from a precomputation. All concepts mentioned above were developed
and are widely used for solving linear problems. There exist a few strategies to
expand these methods to nonlinear mechanical systems (e.g. [6, 7]). Especially in
biomechanical applications Niroomandi et al. [12] and Dogan and Serdar [5] use
proper orthogonal decomposition based methods to reduce their systems.

Reduction. The discrete form of the general equations of nonlinear solid mechan-
ics

(1) G(U) = R(U)−P = 0

is based on the momentum equation. R is the residual force vector, P the external
load vector and U the global vector of nodal displacements. The dimension of this
equation is n, the number of dofs. To reduce eq. (1) the SVD-based methods
use the approximation U ≈ ΦUred for the displacement vector. The reduced
vector of unknowns Ured has a dimension of m × 1 with m ≪ n. Inserting this
approximation [13] into the linearization of eq. (1) leads to the reduced equation

(2) ΦTG(ΦUred,i) +ΦTKT (ΦUred,i)Φ∆Ured,i+1 = 0.

In the latter relation i represent the Newton iteration step. Note that the m× n
dimensional subspace matrix Φ is held constant during one load step. There are
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different possibilities to choose the subspace matrix. By using the POD method
the subspace matrix is built up from a certain data set, the so-called snapshots.
To collect the snapshots the full system has to be computed beforehand in a
precomputation. The solution vectors are saved in the snapshot matrix D =
[U(t1),U(t2), ...,U(tl)]. The first m eigenvectors of the correlation matrix R =
1/l DTD are used to fill the subspace matrix Φ. The computation of eq. (2) is
here denoted as the reduced computation.

Numerical examples. To compare the three model reduction methods (MOD,
RITZ, POD) a cube under compression with large deformation with different ma-
terial laws (hyperelastic, viscoelastic and elastoplastic) is investigated. The model
reduction methods are implemented into the finite element solver FEAP developed
by Taylor [14]. Figure 1 shows the results for the elastoplastic cube. It is obvious

Figure 1. Error and CPU time ratio of the three methods.

that the POD method leads to the smallest error in the displacement averaged
over time. Additionally, the POD method reaches the largest reduction of the
CPU time ratio. Furthermore we have studied different POD parameters such
as the time increments, the total time of the precomputation and the number of
bases. The best approximation is reached by using the same time increments and
the same total time values in the precomputation and in the reduced computation.
A suitable number of bases can be found by a study of the eigenvalues of the cor-
relation matrix. Figure 2 shows the reduction of a realistic biomechanical model
of a simplified inferior turbinate. The results shows, that a reduction to about
0.1% of the original number of dofs leads to a satisfactory good approximation of
displacements and stresses while simultaneously reducing the computational time
enormously. In spite of this very large reduction in CPU time, the desired real
time requirement is currently not reached. To reduce the CPU time further, we
intend to modify the assembly of the reduced matrix and investigate other solver
strategies (e.g. BFGS). Also other extended reduction approaches based on POD
shall be investigated.
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Figure 2. Displacement and stress error of the reduction of a turbinate.
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PGD approximations in Multiscale Structural Mechanics: basic
features and verification

Pierre Ladevèze

Computational Mechanics carries on supplying numerous science and engineering
problems which remain inaccessible to standard FE codes. Not all these problems
are exotic, and many are indeed practical problems. A significant number of these
engineering problems are related to today’s growing interest in physics-based ma-
terial models described on a scale smaller than that of the macroscopic structure,
with applications such as the design of new materials, structural design and man-
ufacturing. In addition to these large-scale, time-dependent and highly nonlinear
problems, one can mention numerous problems involving multiple parameters and
uncertainties (e.g. bolted assemblies), cyclic viscoplastic problems with many cy-
cles, and real-time simulations of complex thermomechanical systems.

The main approach we are developing in order to solve these very-large-scale
nonlinear problems (which cannot be addressed by multiscale calculation strategies
alone) is the Proper Generalized Decomposition (PGD). This is an extension of
POD, which we introduced in 1986 under the name “Radial Time-Space Approx-
imation”. The main idea consists in calculating shape functions and the solution
itself simultaneously using an iterative procedure. A priori, these shape functions
are arbitrary and must only verify a variable separation assumption.

The talk will first present the basic features of PGD and the mechanical expla-
nation of its considerable advantages in terms of computation time and storage
requirements, and also its limits. New verification tools will also be introduced.
A last PGD technique will be detailled for time-dependent nonlinear multiscale
problems thanks to the LATIN method , and illustrations based on engineering
problems will be shown.
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PGD Based Model Reduction: A Route Towards Simulation-Based
Control and Augmented Reality

Adrien Leygue

(joint work with Francisco Chinesta)

In simulation-based engineering models should sometimes be solved very fast,
in some cases in real time, for many different parameters value on light com-
puting platforms. Classical simulation techniques often fail to fulfill the above
constraints. Despite constant impressive advances in numerical analysis, dis-
cretization techniques, computer science and high performance computing, many
thermo-mechanical problems remain today intractable using classical simulation
approaches. This can stem either from the sheer complexity of the problem or
from time constraints on the solution method. As advanced numerical simulations
strive to be on the limit of what modern computers allow, they often can generate
results at a maximum pace that is totally incompatible with the requirements of
e.g. virtual reality or real time applications. Additionally the increase in available
computing power is often balanced by a corresponding increase in the complex-
ity and/or size of the model to be solved. Among the many cases where these
limitations occur we distinguish the following cases:

(1) Optimization, control and inverse problems require the computation of a
large number of solutions for many different values of the identified/optimi-
zed parameters. The number of solutions to compute increases further
when derivatives of the function to optimize with respect to the parame-
ters have to be evaluated. In the case of large problems this large number
of direct problems constitute the dominant computing cost. Such costs
make the use of advanced optimization algorithms (genetic algorithms,
simulated annealing), or simply the computation of high dimensional gra-
dients prohibitive. An alternative of course lies in the use of approximate
surrogate models. Such models however need to be identified which is a
non-trivial task as the “true model” is often large and nonlinear.

(2) For real-time and virtual reality applications based on a complex model,
the simulation has to be fast enough to incorporate in real time external
inputs. Surrogate models are therefore a common alternative, with the
drawbacks discussed before. Should one wish to pre-compute the true
model for “all” possible input scenarios, modern mesh-based techniques
would face at least two major obstacles:

• It would take ages to a priori simulate all scenarios.
• The mere storage of the outputs of these scenarios would be unfeasi-
ble.

An appealing alternative consists in considering off-line solutions of parametric
models, in which all the sources of variability - loads, boundary conditions, mate-
rial parameters, geometrical parameters, etc. - are considered as extra-coordinates.
Thus, by solving only once the resulting multidimensional model one has access
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to the solution of the model for any value of the parameters considered as extra-
coordinates. This off-line solution can be used on-line for real time post-processing,
optimization, inverse analysis, analysis of sensibilities, stochastic analysis. Since
most of the computation is performed in the offline phase light computing plat-
forms such as smartphones are powerful enough. On-line adaptation within the
framework of dynamic data-driven application systems - DDDAS - is also possible.
The price to pay is the solution of parametric models defined in high dimensional
spaces that could involve hundreds of coordinates. The use of the Proper General-
ized Decomposition, allows the computation of such solutions while alleviating the
associated pitfalls often referred to as “the curse of dimensionality” and maintain-
ing very low computational and memory costs. This off-line-on-line Proper Gen-
eralized Decomposition Based Dynamic Data-Driven Application Systems could
constitute a new paradigm in computational sciences.

Ammar et al. introduced the PGD [1] in the framework of computational
rheology for solving models originating from the kinetic theory description of vis-
coelastic fluids. An overview of the PGD applications in this field can be found
in [2]. At the core of the PGD, lies the separated representation of the unknown
field as a finite sum of functional products involving functions defined on lower
dimensionality spaces. For example a scalar field u(x, y, z, t, α, β) defined on a
space of dimension 6 can be approximated in the following way:

(1) u(x, y, z, t, α, β) ≈
N∑

i=1

Xi(x) · Yi(y) · Zi(z) · Ti(t) ·Ai(α) ·Bi(β) ,

where x,y,z and t are the usual space-time dimensions and α and β might be some
model parameters that are introduced as extra-coordinates. The specific partition
of the problem variables in the above functional product depends on the problem
being solved. A similar partition of space and time variables has been proposed
in the early 80s by P. Ladeveze in the framework of the LATIN Method [3]. The
PGD incrementally computes the different terms of the finite sum, making use
of an appropriate linearization strategy to compute the different factors of the
functional product. Using this approach, high dimensionality problems are never
solved and as soon as the solution exhibits some degree of regularity, the number N
of terms in the finite sum is limited (from a few tens to some hundreds) hence the
low computational and memory costs. The two following features of the method
particularly interest us:

• The separation of variables depicted above can be applied to the space
coordinates in order to break down the complexity of the problem. Many
relevant engineering problems are formulated on degenerate domains for
which one can separate at least one space coordinate from the others. This
is the case for example in plate or shell domains where one can separate
the out-of-plane coordinate from the in-plane coordinates. This features
allows the solution of the full 3D problem (e.g. thermal, mechanical) at a
numerical cost scaling like 2D without resorting to a priori assumption on
the unknown field like in classical plate theories [4].
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• The method allows the introduction of many extra-coordinates to the prob-
lem. Such coordinates are not restricted to the classical space-time vari-
ables but can be material, process or design parameters of the simulated
system. These two features are clearly of interest for problems needing a
fast solution. The key point for real time and optimization applications is
that the PGD solution needs to be computed once in an offline step, pos-
sibly on a powerful computing platform. During the online step (i.e. the
real time application), one only needs to particularize the different vari-
ables depending on the scenario and evaluate the solution or its derivative,
which is computationally very cheap [5, 6].

This talk reports recent advances in the use of the Proper Generalized Decomposi-
tion applied to structural mechanics, optimization, control and inverse problems,
virtual prototyping and virtual reality applications.
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Mixed FEM of Higher-Order for Variational Inequalities

Andreas Schröder

1. Introdution and notation

In this note, we present a posteriori estimates for mixed finite element methods
of higher-order for frictional contact problems in linear elasticity as well as elasto-
plasticity. The mixed method is based on a saddle point formulation, where the
constraints are captured by Lagrange multipliers. The latter are discretized by
piecewise polynomial and discontinuous functions with constraints which are only
ensured on a finite set of points. This results in a certain non-conformity of the
discretization.

We use the following notation: Let Ω ⊂ Rk, k ∈ {2, 3}, be a domain with
sufficiently smooth boundary Γ := ∂Ω. Moreover, let ΓD ⊂ Γ be closed with
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positive measure and let ΓC ⊂ Γ\ΓD with ΓC ( Γ\ΓD (without corners in ΓC).
We set H1

D(Ω) := {v ∈ H1(Ω) | γ(v) = 0 on ΓD} with the trace operator γ and
V := H1

D(Ω;Rk). Let (·, ·)0, (·, ·)0,Γ′ denote the usual L2-scalar products on Ω and

Γ′ ⊂ Γ. Note, that the linear and bounded mapping γC : H1
D(Ω) → H1/2(ΓC)

with γC(v) := γ(v)|ΓC
is surjective and continuous due to the assumptions on ΓC ,

cf. [3, p.88]. For a function v, we define the positive part by (v)+ := max{v, 0} and
the cutoff functions (·)ζ by (v)ζ := v if |v| ≤ ζ and (v)ζ := ζv/|v| otherwise. Here,

ζ is a non-negative function and | · | the euclidian norm. We set H
1/2
+ (ΓC) := {v ∈

H1/2(ΓC) | v ≥ 0} and Λt := {µ ∈ L2(ΓC ;R
k−1) | |µ| ≤ ζ(s, s̃)}, where ζ(s, s̃) is

defined as s/s̃ on supp s̃ and 0 on ΓC\ supp s̃ for s ∈ L2(ΓC), s ≥ 0 and s̃ ∈ {1, s}.

Furthermore, we define the dual cone Λn := (H
1/2
+ (ΓC))

′ := {µ ∈ H̃−1/2(ΓC) |

∀w ∈ H
1/2
+ (ΓC) : 〈µ,w〉 ≥ 0} and set ΓN := Γ\(ΓD∪ΓC). For a displacement field

v ∈ V the linearized symmetric strain tensor is defined as ε(v) = 1
2 (∇u +∇u⊤).

Let the elasticity tensor C with Cijkl ∈ L∞(Ω) satisfy the standard symmetry
condition Cijkl = Cjilk = Cklij and be uniformly elliptic. We define the stress
tensor σ(v) := Cε(v) in the case of linear elasticity and σ(v, q) := C(ε(v) − q) in
the case of elastoplasticity, where q ∈ Q := {q ∈ L2(Ω;Rk×k

sym ) | tr(q) = 0} is the
plastic strain. Furthermore, we set Λd := {q ∈ Q | |q| ≤ 1}. The vector-valued
function n describes the outer unit normal vector with respect to ΓC and the
k × (k − 1)-matrix-valued function t contains the tangential vectors. Finally, we
define γn(v) := γC(vi)ni, γt(v)j := γC(vi)tij and γN (v)i := γ(vi)|ΓN

.

2. Variational inequalities and their mixed discretizations

The variational inequality for Signorini’s problem with Tresca friction is to find
u ∈ K := {v ∈ V | g − γn(v) ≥ 0}, such that

(1) (σ(u), ε(v−u))0+(s, |γt(v)|− |γt(u)|)0,ΓC
≥ (f, v−u)0+(fN , γN (v−u))0,ΓN

is fulfilled for all v ∈ K. Here, f ∈ L2(Ω), fN ∈ L2(ΓN ) and g ∈ H1/2(ΓC).
It is well-known that (1) has a unique solution and is equivalent to the mixed
formulation: Find (u, λn, λt) ∈ V × Λn × Λt such that

(2)
(σ(u), ε(v))0 = (f, v)0 + (fN , γN (v))0,ΓN

− 〈λ0, γn(v)〉 − (λt, s̃γt(v))0,ΓC
,

〈µn − λn, γn(u)− g〉+ (µt − λt, s̃γt(u))0,ΓC
≤ 0

for all (v, µn, µt) ∈ V × Λn × Λt, cf. [3]. The existence of a unique solution of (2)
is guaranteed, since Λt is bounded and α‖µn‖−1/2,ΓC

≤ supv∈V, ‖v‖1=1〈µn, γn(v)〉

holds for a constant α > 0 and all µn ∈ H̃−1/2(ΓC), cf. [3, 7]. A higher-order finite
element discretization based on quadrangles or hexahedrons is given as follows: Let
T be a finite element mesh of Ω with mesh size h and let E be a mesh of ΓC with
size H . Furthermore, let ΨT : [−1, 1]k → T ∈ T and ΦT : [−1, 1]k−1 → T ∈ T
be bijective and sufficiently smooth transformations and let p, q ∈ N. Using the
polynomial (Serendipity) tensor product space Qk,p of order p on the reference
element [−1, 1]k, we substitute V by Vhp := {v ∈ V | ∀T ∈ T : v|T ◦ΨT ∈ (Qk,p)

k}
and define MHq := {µ ∈ L2(ΓC) | ∀E ∈ E : µ|E ◦ ΦE ∈ Qk−1,q}. To substitute
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Λn and Λt, we enforce the constraints on a finite set of points. For this purpose,
let M ⊂ [−1, 1] be this finite set and define

Λn,Hq := {µn,Hq ∈MHq | ∀E ∈ E : ∀x ∈ Mk−1 : µn,Hq(ΦE(x)) ≥ 0},

Λt,Hq := {µt,Hq ∈ (MHq)
k−1 | ∀E ∈ E , ∀x ∈ Mk−1 : |µt,Hq(ΦE(x))|

≤ (ζ(s, s̃))(ΦE(x))}.

Note that the definition of Λn,Hq and Λt,Hq using discrete points leads to the
non-conformity Λn,Hq 6⊂ Λn and Λt,Hq 6⊂ Λt. In order to ensure the stability
of the discretization scheme, we have to verify a discrete inf-sup condition with
a constant independent of the mesh sizes h and H as well as the polynomial
degrees p and q. This is done for quasi-uniform meshes in [4, 7], where hq2(Hp)−1

is assumed to be sufficiently small. Some convergence results of the scheme for
similar problems are given in [6, 8] where Gauss quadrature points are chosen to
define the setM. To estimate the discretization error given by the discrete solution
(uhp, λn,Hq , λt,Hq) ∈ Vhp×Λn,Hq×Λt,Hq, we consider the residual Res ∈ V ′ defined
by 〈Res, v〉 := (f, v)0 + (fN , γN (v))0,ΓN

− (λn,Hq , γn(v))0,ΓC
− (λt,Hq , γt(v))0,ΓC

−
(σ(uhp), ε(v))0 and assume the inf-sup condition

(3) κ̂(‖µn‖−1/2,ΓC
+ ‖µt‖−1/2,ΓC

) ≤ sup
v∈V,‖v‖1=1

〈µn, γn(v)〉+ (µt, s̃γt(v))0,ΓC

for a constant κ̂ > 0 and all (µn, µt) ∈ H̃−1/2(ΓC) × L2(ΓC ;R
k−1). In the case

s̃ = 1, condition (3) directly results from the surjectivity of γn and γt. With

η := ‖Res ‖2V ′ + ‖λn,Hq − (λn,Hq)+‖
2
−1/2,ΓC

+ ‖λt,Hq − (λt,Hq)ζ(s,s̃)‖
2
0,ΓC

+ ‖(γn(uhp)− g)+‖
2
1/2,ΓC

+ |(λn,Hq , (γn(uhp)− g)+)0,ΓC
|

+ |〈(λn,Hq)+, g − γn(uhp)〉|+ |(s, |γt(uhp)|)0,ΓC
− ((λt,Hq)ζ(s,s̃), s̃γt(uhp))0,ΓC

|,

there holds the a posteriori error estimation

(4) EhpHq := ‖u− uhp‖
2
1 + ‖λn − λn,Hq‖

2
−1/2,ΓC

+ ‖λt − λt,Hq‖
2
−1/2,ΓC

. η

The proof can be found in [5].
In quasi-static elastoplasticity, one pseudo time-step of the primal problem with

linear kinematic hardening is given by the variational inequality: Find (v, p) ∈
K ×Q such that

(5) (σ(u, p), ε(v − u))0 + (s, |γt(v)| − |γt(u)|)0,ΓC
+ (Hp− σ(u, p), q− p)0

+ (σy , |q| − |p|)0 ≥ (f, v − u)0 + (fN , γN (v − u))0,ΓN

holds for all (v, q) ∈ K ×Q, cf. [1]. Here, H denotes the symmetric and positive
definite hardening tensor and σy > 0 the yield stress. The variational inequality
(5) is equivalent to find (u, p, λn, λt, λd) ∈ V ×Q× Λn × Λt × Λd such that

(σ(u, p), ε(v))0 + (Hp− σ(u, p), q)0 = (f, v)0 + (fN , γN (v))0,ΓN
− 〈λn, γn(v)〉

− (λt, s̃γt(v))0,ΓC
− (λd, σyq)0,

〈µn − λn, γn(u)− g〉+ (µt − λt, s̃γt(u))0,ΓC
+ (µd − λd, σyp)0 ≤ 0
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for all (v, q, µn, µt, µd) ∈ V × Q × Λn × Λt × Λd. A higher-order finite element
discretization is given by Qhp := {q ∈ Q | ∀T ∈ T : qij|T ◦ΨT ∈ Qk,p−1} and

Λd,hp := {µd,hp ∈ Qhp | ∀T ∈ T : ∀x ∈ D : |µd,hp|T (ΨT (x))| ≤ 1},

where D ⊂ [−1, 1]k is a finite set and php ∈ Qhp and λd,hp ∈ Λd,hp are discrete
solutions. Extending (3) by the contributions related to the Lagrange multiplier
of elastoplasticity and replacing σ(uhp) by σ(uhp, php) in the definition of Res, we
obtain the following estimate with similar arguments as in the frictional case,

(6) EhpHq + ‖λd − λd,hp‖
2
0 . η + ‖λd,hp − (λd,hp)1‖

2
0

+ |(σy , |php| − (λd,hp)1 : php)0|+ ‖ dev(σ(uhp, php)−Hphp)− σyλd,hp‖
2
0,Ω.

In both error estimates (4) and (6), ‖Res ‖V ′ can be estimated by well-known
techniques of a posteriori error estimation for variational equations. The remainder
terms capture errors with respect to geometrical and complementary conditions
and constraints given by friction and elastoplasticity as well as errors resulting
from the non-conformity of the Lagrange multipliers.
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Goal-oriented error estimation in Computational Mechanics

Ludovic Chamoin

Numerical simulations are nowadays a common tool in mechanical engineering and
design, as they enable to predict the behavior of complex structures submitted to
a given environment. Nevertheless, in order to represent the real world accurately,
this tool requires a permanent control of the various mathematical and numerical
models it involves. This scientific concern, known as model Verification and Vali-
dation (V&V), is a component of simulations which is fundamental for robustness
and reliability aspects. However, in many cases, numerical simulations do not
aim at predicting the whole solution of the physical phenomenon under study, but
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only some specific aspects, i.e. local features (maximal displacement, stress inten-
sity factors, etc...) referred as quantities of interest and primarily used for design
purposes. It is therefore sound to control only parameters which are influent for
these outputs of interest, leading to a goal-oriented and simplified V&V procedure.

In this talk, we present some of our recent works that aim at building simulation
models which are optimized with respect to a given quantity of interest. We
particularly focus on works dealing with “classical” model verification [1, 2, 3], i.e.
assessing discretization errors and leading to discretizations (finite element mesh
for instance) and numerical techniques which are dedicated to the computation of
such quantities. We first show that guaranteed and accurate local error bounds
can be obtained for a large class of mechanical problems, such as (visco-)elasticity
[4, 5], fracture mechanics [6], visco-dynamics [7], or plasticity [8], using the concept
of Constitutive Relation Error [2] as well as adjoint-based procedures [9]. The
obtained strict bounding of the error on a given quantity of interest I reads:

|Iex − Ih − Ihh| ≤ ECRE × ẼCRE

where Iex is the exact unknown value of I, Ih is the approximate finite element
value of I, Ihh is a computable correcting term, and ECRE (resp. ẼCRE) is the
constitutive relation error of the reference (resp. adjoint) problem.

In that framework, we focus on the construction of an admissible stress field
which is required to get guaranteed bounds [10, 11]. We also introduce a bounding
procedure that avoids the use of the Cauchy-Schwarz inequality and leads to more
accurate bounds. This procedure is based on relations among discretization errors
defined over homothetic domains (mathematical view of Saint-Venant’s principle).

In a second part, we present non-intrusive techniques [12, 7] that optimize the
quality of error bounds and enable to implement the proposed goal-oriented error
estimation tools into commercial softwares. These techniques consist of an enrich-
ment of the adjoint solution by means of so-called handbook functions [13], that
correspond here to (generalized) Green’s functions computed in a (semi-)infinite
domain. The adjoint displacement field is then searched under the form:

ũ = ũhandΦ+ ũres

where ũhand is the handbook function associated with the quantity of interest
under study; Φ is a weighting function, with bounded support, so that the enrich-
ment is introduced locally; ũres is a residual term that enables to verify boundary
conditions of the adjoint problem. Performing such an enrichment leads to an
accurate solution of the adjoint problem without mesh refinement; it also enables
to deal with pointwise quantities of interest in space and time.

Capabilities of the proposed a posteriori goal-oriented error estimation method
are illustrated on 2D and 3D numerical experiments.
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Figure 1. Example of 3D Green’s function (left), and compar-
ison between classical and optimal bounds with respect to the
discretization of the adjoint problem (right).
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[11] F. Pled, L. Chamoin, P. Ladevèze, On the techniques for constructing admissible stress
fields in model verification: performances on engineering examples, International Journal
for Numerical Methods in Engineering 88(5) (2011), 2032–2047.
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Numerical Upscaling and Preconditioning of flows in highly
heterogeneous porous media

Raytcho D. Lazarov

(joint work with Yalchin Efendiev, Juan Galvis, Joerg Willems)

The generalized Stokes equations (called also Brinkman equations),

(1) −µ∆u+∇p+ µκ−1u = f , ∇ · u = 0 in Ω,

where µ is the viscosity and κ is the permeability, are used for modeling flows in
highly porous media. Examples of such media are industrial open foams, filters,
and insulation materials, shown on Figure 1. For high values of κ these equations
recover flows at Darcy’s regime. Motivated by industrial applications of such
materials we have derived, studied, and tested a numerical upscaling procedure,
of the class of multiscale FEM, e.g. [4], for highly porous media with complicated
internal structure of the permeability κ that covers both limits, Brinkman and
Darcy. These are modeled by (1) whith a contrast, ratio η = maxx κ(x)/minx κ(x),
in the range 104 − 108.

Figure 1. Various highly porous media on a micro-scale level

There are two different applications of the proposed method: (1) numerical up-
scaling of Brinkman equations on coarse-grid that incorporates fine-grid features,
and (2) an alternating Schwarz iteration that uses the coarse-grid approximation
in the overlapping domain decomposition setting. The presented numerical ex-
amples demonstrate the performance of both the subgrid approximation and the
iterative procedure.

First, we derive two-scale finite element approximation of Brinkman equations.
The method uses two main ingredients: (1) discontinuous Galerkin finite element
method for Stokes equations, proposed and studied by J. Wang and X. Ye [7] and
(2) subgrid approximation developed by T. Arbogast in [1] for Darcy’s equations.
The main idea is scetched below.

We set up the finite element partition of the domain by introducing a coarse grid
TH and further refine the coarse grid to obtain a fine grid Th. The construction of
the finite elements spaces on this composite grid is done in the following manner
(see, e.g. [6, 8]): on the mesh TH we introduce the finite element spaces VH of
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vector functions that belong to the class of BDM1 (see, [7]) and for WH we choose
the space of piece-wise constant functions with mean value zero over Ω. Further,
on the mesh Th we introduce the spaces VH piece-wise polynomial functions of the
class BDM1, which have zero normal component on each coarse-mesh interface and
WH , piece-wise constant functions with mean zero on each coarse-mesh element.
Then the composite approximation spaces are VH⊕Vh and WH⊕Wh for the velocity
u and the pressure p. These spaces have the following fundamental properties: (1)
∇ · Vh = Wh, (2) ∇ · VH = WH , and (3) WH ⊥ Wh in the L2-inner product.

Then one can set up a Galerkin method for solving (1) using the composite
spaces introduced above. This decomposition yields the following weak form: find
uH + uh ∈ Wh ⊕ WH , and pH + ph ∈ Vh ⊕ VH such that

a(uH + uh,vH + vh) + (∇ · (vH + vh), pH + ph) = (f ,vH + vh),

(∇ · (uH + uh), qH + qh) = 0,

for all vH +vh ∈ Wh⊕WH and qH + qh ∈ Vh⊕VH . Here the bilinear form a(·, ·) is
an approximation of the discontinuous Galerkin finite element method applied to
H(div)-conforming spaces with stabilization of the discontinuity of the tangential
component of the gradient of u, (cf. [7, 8]).

Due to the properties of the spaces VH , Vh, WH and Wh we show that the
solution process of this system could be made in two separate stages: for a given
uH we find the fine grid response (uh(uH), ph(uH)), computed in parallel over all
coarse finite elements by solving

a(uh(uH),vh) + (∇ · vh, ph(uH)) + (∇ · uh(uH), qh) = −a(uH ,vh)

for all vh ∈ Vh and qh ∈ Wh. Similarly we define the fine-grid responses (δu, δp) of
the data f by solving

a(δu,vh) + (∇ · vh, δp) + (∇ · δu, qh) = (f ,vh), ∀vh ∈ Vh, ∀qh ∈ Wh.

Then the upscaled equation is defined only on (VH , WH) and involves solving
the problem for (uH , pH)

a(uH+uh(uH),vH +vh(vH))+(∇·vH , pH)+(∇·uH , qH) = (f ,vH)−a(δu,vH),

for all vH ∈ VH and qH ∈ WH . This has a natural description and implementation
in term of the nodal basis functions in VH .

On Figure 2 we show the results of this procedure applied to Brinkman equation
in vuggy media on sequence of coarse meshes. It is clear that along the coarse-grid
faces we have much larger error. It is reduces by refining the mesh, but the error
remains in the range 8-10% for the velocity measured in L2-norm (for more details
see, [6, 8]). In order to improve the results we can perform similar solves on a
staggered grid, which will will result in improving the accuracy across the coarse-
grid interfaces. Such approach are described in [6] and the results of numerical
computations for a 2-D section of the SPE10 benchmark are shown on Figure 3.

In the second part of the talk we present an iterative method for solving the
system of algebraic equations obtained on a global fine grid. Due to the small
mesh-size and high contrast, the overlapping domain decomposition method (like



514 Oberwolfach Report 09/2012

Figure 2. Vuggy porous media (shown on the left figure) with
low permeability (dark region) and high permeability (the white
region); On the four figures we show the reference solution for the
horizontal velocity obtained on 128 × 128 grid and approximate
solutions obtained on coarse grids with 16× 16, 8× 8, and 4× 4
finite elements

Figure 3. Numerical results for media of permeability field dis-
tribution shown on the top left picture; Top middle picture is a
computed reference solution on a fine mesh and top right picture
is the upscaled solution obtained on 4×4 coarse mesh; the bottom
two figures show the solution after one iteration and five iterations

those used in the computations shown on Figure 3) are very slow and might not
converge at all for very high contrast in Brinkman equation. Therefore, special
care should be taken in the case of highly heterogeneous media with high contrast.
In [5] such a method, based on overlapping domain decomposition technique, has
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been devised and justified for second order elliptic problems. In [2, 3] we were able
to extend this theory to abstract symmetric positive definite bilinear forms.

The construction of a robust with respect to the contrast method relies on an
augmented coarse space defined on a partition of Ω into a number of overlap-
ping subdomains with size H . The standard coarse grid finite element space is
augmented with functions that are solutions of certain local eigenvalue problems
(for details see, e.g. [2, 3, 5]). This “spectral” coarse space V

sp
H leads to a new

decomposition of a function form the global finite element space into a sum of
local functions and a function from this coarse space. A remarkable property of
this decomposition is that the sum of the “energy” of the components is bounded
by the energy of the function with a constant independent of the contrast. This
results in an overlapping domain decomposition preconditioner that produces con-
dition number that is independent of the contrast η. An example illustrating its
perfomence for a partucular permability distribution is shown on Table 4. Using
stream function in 2-D we have reduced the mixed finite element method for Darcy
equations and discontinuous Galerkin method Brinkman equations to fit into this
apstract setting and have used it for computing flows in high contrast materials.
Examples of such computations are shown in our papers [2, 3].

VH V
sp
H

η iter. dim VH cond. iter. dim VH
sp cond.

1e2 27 49 2.1e1 21 49 10.8
1e4 70 49 2.2e3 22 60 10.9
1e6 113 49 1.2e5 22 60 11.0

Table 4. Comparison of the condition numbers and the dimen-
sions of the coarse spaces VH used in the standard DD method
and our space V

sp
H for a model second order elliptic problem with

highly heterogeneous permability with contrast η.
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Finite Element Discretization of Multiscale Elliptic Problems

Daniel Peterseim

(joint work with Axel Målqvist)

Background. The numerical solution of second order elliptic problems with strong-
ly heterogeneous and highly varying (non-periodic) diffusion coefficient is a chal-
lenging part within the simulation of modern composite materials. The coefficient
may represent different materials or material phases and, hence, heterogeneities
and oscillations of the coefficient typically appear on several non-separated scales.
Similar difficulties arise in geophysical applications such as ground water flow, oil
recovery modeling, or CO2 sequestration.

The abstract mathematical setup of this note is as follows. Given some bounded
polygonal Lipschitz domain Ω in 2 or 3 space dimensions, some uniformly elliptic
diffusion matrix A ∈ L∞

(
Ω,Rd×d

sym

)
, and some force f ∈ L2(Ω), we seek u ∈ V :=

H1
0 (Ω) such that

a (u, v) :=

∫

Ω

〈A∇u,∇v〉 dx =

∫

Ω

fv dx =: F (v) for all v ∈ V.

If A varies rapidly on microscopic scales, classical polynomial based finite ele-
ment methods are unable to capture neither the microscopic nor the macroscopic
behavior of the solution unless the meshwidth is chosen fine enough (i.e., smaller
than the smallest scale in the coefficient). To overcome this lack of performance,
many methods that are based on general (non-polynomial) ansatz functions have
been developed, amongst others [5, 4, 2, 1]. In these methods, the problem is
split into coarse and (possibly several) fine scales. The fine scale effect on the
coarse scale is either computed numerically or modeled analytically. The resulting
modified coarse problem can then be solved numerically and its solution contains
crucial information from the fine scales. Although many of these approaches show
promising results in practice, their convergence analysis typically relies on strong
assumptions such as periodicity and scale separation. Those assumptions, which
essentially justify homogenization, appear unrealistic in the applications under
consideration.

A New Variational Multiscale Method [8]. Without any additional assump-
tions on the coefficient, we construct for any (possibly coarse) shape regular mesh
TH of size H an upscaled variational problem with solution ums

H such that the
estimate ‖u− ums

H ‖H1(Ω) ≤ CfH holds with a constant Cf that depends on f and

the contrast of A but not on its variations. The upscaled problem is related to
a Galerkin method with respect to a modified coarse space. This coarse space is
spanned by one modified nodal basis function per vertex in TH and their compu-
tation involves only local solves on patches of coarse elements.
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We shall briefly summarize our construction. Let VH denote the space of con-
tinuous TH -piecewise affine finite element functions that matches the homogeneous
Dirichlet boundary condition. The key tool in our construction is linear surjec-
tive (quasi-)interpolation operator IT : V → VH from [3, Section 6]. Its kernel
V f := {v ∈ V | IT v = 0} represents the microscopic features of V that are not
captured by VH . Since V f is a closed subspace, we have the decomposition

V = V ms
H ⊕ V f ,

where V ms
H denotes the orthogonal complement of V f in V for the scalar product a.

The space V ms
H is coarse in the sense that dimV ms

H = dimVH . Given the classical
nodal basis (tent) function λx ∈ VH for some x in the set of vertices NH of TH ,
let φx ∈ V f solve the corrector problem

(1) a(φx, w) = a(λx, w) for all w ∈ V f .

We then have V ms
H = span{λx − φx | x ∈ NH}. Needless to say that the correc-

tions φx have theoretical purpose only because they are solution of some infinite
dimensional problem and because they have global support in general. However,
[8] shows that both issues can be handled efficiently. The correction φx decays
exponentially fast (with respect to the number of layers of coarse elements) away
from x and that a simple truncation leads to localized basis functions with good
approximation properties. This decay is due to the fact that φx solves a variational
problem in the kernel of the interpolation operator where functions are constraint
to have vanishing averages in nodal patches. Moreover, this result is stable with
respect to perturbations arising from the discretization of the local problems.

Denote nodal patches of k-th order about x ∈ NH by ωk
x. Given some finescale

finite element space Vh ⊃ VH that captures microscopic scales sufficiently well,
define discrete and localized finescale spaces V f

h(ωx,k) := {v ∈ V f ∩Vh | v|Ω\ωx,k
=

0}, x ∈ NH . Then the solutions φhx,k ∈ V f
h (ωx,k) of

(2) a(φhx,k, w) = a(λx, w) for all w ∈ V f
h(ωx,k),

are discrete approximations of φx from (1) with local support. Note that these
corrector problems are completely decoupled and can be computed in parallel
without any communication.

The proposed (variational) multiscale finite element method then seeks an ap-

proximation ums,h
H,k of u in the coarse multiscale space

(3.a) V ms,h
H,k = span{λx − φhx,k | x ∈ NH} ⊂ V.

The approximation ums,h
H,k satisfies the upscaled system of equations

(3.b) a(ums,h
H,k , v) = F (v) for all v ∈ V ms,h

H,k .

This method is a new variant of the variational multiscale methods introduced in
[6]. Note that dim V ms,h

H,k = |NH | = dimVH , i.e., the number of degrees of freedom

of the proposed method (3) is the same as for the classical finite element method
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related to the space VH . The basis functions of the multiscale method have local
support. The overlap is proportional to the parameter k.

Review of A Priori Error Analysis. The error analysis in [8] shows that the

error u− ums,h
H,k for k ≈ log 1

H satisfies the following a priori estimate:

(4) ‖A1/2∇(u − ums,h
H,k )‖ ≤ CfH + inf

vh∈Vh

‖A1/2∇(u− vh)‖;

H being the mesh size of the underlying coarse finite element mesh, h being the
fine mesh size for the local (parallel) computations. The desired accuracy TOL,
e.g., TOL ≈ 0.01 is achieved by choosing H ≈ TOL independent of any scales
in the problem and by ensuring that the local problems are solved sufficiently
accurate. For example, if A ∈ W 1,∞ (bounded with bounded weak derivative)
and ε is the smallest present scale, i.e., ‖∇A‖L∞(Ω) . ε−1, the second term in

the right-hand side of (4) may be replaced by the worst case bound Chε−1 for a
first-order ansatz space Vh (see [9]). In this case, Cf (H + h

ε ) bounds the error of
our multiscale approximation (3).

The proof in [8] does not rely on regularity of the solution and gives a very
explicit expression for the rate of convergence. The analysis confirms previous
numerical results in [6, 7] and gives the (variational) multiscale method the solid
theoretical foundation that has previously been missing. We further stress that
our result is not asymptotic but holds for arbitrary coarse mesh parameter H .

The author is supported by the DFG Research Center Matheon Berlin.
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On the treatment of interfaces in coupled problems (with a special
focus on fluid-structure interaction)

Wolfgang A. Wall

(joint work with M.W Gee, A. Gerstenberger, T. Klöppel, A. Popp, S. Shahmiri)

The numerical simulation of coupled problems, in particular of fluid-structure
interaction (FSI) phenomena, has long been a field of intensive research because of
many applications in civil, mechanical, aerospace and biomechanical engineering.
Of particular interest is the interaction of incompressible fluid flow with flexible
structures. Crucial issues for such surface coupled problems are the treatment of
the interface and the way the overall coupled problem is solved. Over the past
decades, a manifold of solution schemes ranging from weakly coupled partitioned
over strongly coupled partitioned to monolithic algorithms have been developed.
Our focus here is on advanced approaches for the treatment of the interfaces that
also favorably interplay with the different coupled solution schemes.

In order to establish the coupling between the fields, usually the no-slip condi-
tion at the interface Γ is applied, i.e.

∂dS
Γ

∂t
= uF

Γ in Γ× (0, T ).(1)

The superscript ·S denotes quantities in the structure field, whereas ·F refers to
the fluid field. Additionally to condition (1), the interface tractions hS

Γ and hF
Γ of

structure and fluid, respectively, have to match, yielding

hS
Γ = −hF

Γ in Γ× (0, T ).(2)

Note that a priori the interface tractions is to be introduced to the system as
unknown quantity.

Most FSI coupling schemes are based on the assumption of a conforming inter-
face discretization, for which enforcing the coupling conditions is rather straight-
forward. However, this assumption will hold only in very rare cases. Different
resolution requirements in the domains or simply a complex interface geometry
make the creation of matching meshes cumbersome or even impossible.

A possible remedy for moving grid FSI (with an arbitrary Lagrangean-Eulerian
(ALE) formulation for the fluid field) has been proposed in [1], where the dual
mortar method is integrated into the FSI framework. This is done in a similar
way as it was previously done in the context of structure meshtying and finite
deformation contact [2]. In this approach, the method of weighted residuals is
applied to (1), which introduces a Lagrange multiplier field. Characteristic for the
method is the interpolation of this multiplier with so-called dual shape functions.
Due to the particular interpolation, one of the two resulting mortar matrices is a
diagonal matrix.

For Dirichlet-Neumann partitioned approaches this diagonality can be used for
a numerically cheap transfer of interface degrees of freedom from structure to
fluid field and of forces from fluid to structure. Focussing on monolithic coupling
schemes, the dual mortar method allows for an efficient and robust elimination of
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the additional Lagrange multiplier degrees of freedom from the coupled linear sys-
tem by static condensation. Numerically, this condensation, which is only possible
because of the particular interpolation of the multiplier, is very import for the
applicability of state-of-the-art iterative solvers, as for standard mortar methods,
the choice of applicable solvers is limited by the saddle-point-like structure of the
system matrix.

The condensed system has the same block structure as its counterpart for the
conforming case. Thus, two recently developed, very efficient coupled solvers pre-
sented in [3] can be used without any further modification. The first approach is
based on a standard block Gauss-Seidel approach, where approximate inverses of
the individual field blocks are based on a algebraic multigrid hierarchy tailored for
the type of the underlying physical problem. The second is based on a monolithic
coarsening scheme for the coupled system that makes use of prolongation and re-
striction projections constructed for the individual fields. The resulting method,
therefore, involves coupling of the fields on coarse approximations to the problem
yielding significantly enhanced performance.

Generally, moving grid algorithm with an ALE formulation suffer from an in-
ability to realize very large rotations of the interface due to extreme mesh distortion
around the interface of the fluid grid. An extension of the algorithm presented in
[1] has been developed, which allows for a sliding motion of the fluid grid on the
FSI surface. The algorithm uses the fact that, since conforming interfaces are no
longer required, fluid grid and structure displacements can be decoupled, while
the no-slip condition is still fulfilled.

In case of extreme deformations and rotations and in particular for multiple
structures embedded within a fluid domain or cases where the domain topology
changes, even sliding of the fluid grid on the FSI interface is not sufficient to avoid
extreme mesh distortion. Therefore, an FSI approach based on the extended finite
element method (XFM) has been developed [4]. In this fixed grid FSI approach,
a Lagrangean structure is coupled with an extended fixed Eulerian background
fluid field. Due to this setup, the no-slip condition (1) has to be enforced on an
embedded interface, which requires tailored formulations as derived in [5]. This
fixed grid FSI method provides enough flexibility to even allow for the treatment of
topology changes in the fluid domain, which is for example the case with contacting
structures within a fluid domain [6]. For the contact algorithm again a dual mortar
method has been employed.

This XFEM based coupling approach can also be used to couple an extended
Eulerian background fluid field with a second embedded fluid field [7]. The second
fluid domain allows to resolve the boundary layers around a rigid obstacle in the
flow. Moreover, the approach is not restricted to the Eulerian description of the
embedded fluid. Thus, if the second field is formulated in an ALE framework it
allows to resolve the boundary layer for the flow around a flexible and moving
structure.
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Multiscale Modelling of Fracture

Stefan Loehnert

(joint work with Dana Mueller-Hoeppe, Corinna Prange, Matthias Holl)

In brittle materials microcracks in the vicinity of the crack front of a macrocrack
can have a significant influence on the propagation of the macrocrack. Thus, it
is important to accurately resolve the microstructural behaviour in such critical
domains. It is difficult to account for these microstructural effects within a macro-
scopic part accurately in a single scale numerical analysis. Thus, error controlled
adaptive multiscale strategies for the accurate prediction of microcrack / macroc-
rack interaction and propagation are required.

In contrast to multiscale techniques based on the RVE concept, the multiscale
projection method has the advantage to directly capture microstructural effects
including localization in detail and mesh independent. Shielding and amplification
effects can be taken into account accurately. Due to the definition of a decoupled
fine scale problem, multiple fine scale simulations of different regions of the macro-
scopic domain can be calculated independently and in parallel. This leads to a
significant speedup of the method.

When cracks propagate the fine scale domains are automatically updated and
move with the zone of interest around the propagating crack front. Cracks are
modelled by means of the extended finite element method (XFEM) in 2D and 3D.
Even though the XFEM is capable of producing accurate results for coarse meshes,
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error controlled strategies are required to make sure that the numerical solution
for arbitrary crack shapes and arbitrary boundary conditions leads to small errors
without an unnecessary increase of numerical effort.

Recently the multiscale projection method was extended with error controlled
mesh refinement strategies based on the simple Zienkiewicz Zhu error estimator.
The stress smoothing technique is modified to account for the physical stress dis-
continuities due to cracks. The XFEM is applied also for the stress smoothing
process. This error controlled strategy leads to a further significant reduction of
numerical effort especially for three dimensional simulations. Different error esti-
mation techniques like goal oriented estimators are possible.

In combination with the discretization error controlled strategy, recently also the
model error is investigated and controlled. A fine scale model is only required
where microcracks can develop and / or have a significant influence on the propa-
gation behaviour of a macrocrack front. Since microcracks develop in domains of
high stresses and stress gradients, the stress gradient is used to estimate where a
fine scale model is required.

The accurate and error controlled prediction of 3D crack propagation remains a
challenge.

Since the XFEM can be used for arbitrary discontinuities, it is also applied to
heterogeneous media like metal foams. Recently in a joint work with the Uni-
versity of Split and the University of Maribor the effects of soft filler material on
the energy absorption behavior of metal foams was investigated. Here one of the
main challenges is the robust calculation of level set values for the definition of the
foam geometry by means of a computer tomography scan to guarantee that the
geometry of the foam with filler and without filler material is the same.

In a similar way the XFEM can be used to calculate other types of heterogeneities
like polycristalline materials and their effective behavior during forming processes.
Currently these processes are simulated using standard finite elements. However,
for the simulation of fracture processes during forming the XFEM is an ideal tool.
The simulation of multiphysical behavior in that context is still an open task.
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Enforcing interface flux continuity in enhanced XFEM: stability
analysis

Pedro Dı́ez

(joint work with Sergio Zlotnik and Régis Cottereau)

XFEM is found to be an efficient approach for solving multiphase problems. The
model problem reads as follows, find u taking values in Ω1 ∪ Ω2 such that

∇·(−ν1∇u) = f in Ω1(1a)

∇·(−ν2∇u) = f in Ω2(1b)

−ν∇u·n = gN on ΓN(1c)

u =uD on ΓD(1d)

ν1∇u|Ω1
·n =ν2∇u|Ω2

·n on Γ := ∂Ω1 ∩ ∂Ω2(1e)

The level set representation of the phase domains allows having a grid inde-
pendent of the location of the interface [2]. In order to introduce the necessary
gradient discontinuities inside the elements crossed by the interface, XFEM uses
the partition of the unity idea to enrich the discretization. In this context, a
sensible choice for the enrichment is using a ridge function R defined as

R =

nH∑

i=1

Ni|φi| −

∣∣∣∣∣

nH∑

i=1

Niφi

∣∣∣∣∣ ,

being Ni the shape functions and φi the nodal values of the level set, for i =
1, . . . , nH , see [1, 3]. Thus, the XFEM approximation reads

uX =

nH∑

i=1

Niui +
∑

j∈Na

RNjaj ,

where the coefficients ui for i = 1, . . . , nH are the standard Finite Element nodal
unknowns and aj , j ∈ Na, stand for the enriched nodal coefficients.

XFEM provides a much better approximation of the multiphase solution, im-
proving the quality the global quantity (energy like) that the variational form of
the problem seeks minimizing. Nevertheless, when applied to diffusion problems
in a multiphase setup with high diffusivity contrast, the XFEM strategy suffers
from an inaccurate representation of the local fluxes in the vicinity of the interface.
The XFEM enrichment improves the global quality of the solution but it is not
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properly enforcing any local feature to the fluxes. Thus, the resulting numerical
fluxes in the vicinity of the interface are not realistic, in particular when the para-
metric contrast between the two phases is important. An additional restriction to
the XFEM formulation is introduced, aiming at properly reproducing the features
of the local fluxes in the transition zone. This restriction is implemented through
Lagrange multipliers. The resulting enlarged variational problem reads find the
XFEM approximation uX ∈ VX and the (discrete) Lagrange multiplier λH ∈ ṼH
such that

a(uX , w) + b(λH , w) = ℓ(w) ∀w ∈ VX,0(2a)

b(µ, uX) = 0 ∀µ ∈ ṼH(2b)

being a(·, ·) the standard bilinear form representing the weak form of problem (1)
and

(3) b(µ, u) :=

∫

Γ

(ν1∇u|Ω1
− ν2∇u|Ω2

)·nµ dΓ.

Note that (2b) is the weak form of (1e) and it is the restriction aiming at improving
the quality of the flux continuity and, consequently, the quality of the fluxes in the
vicinity of the interface. Several examples are presented and the solutions obtained
from (2) show a spectacular improvement of the quality of the fluxes with respect
to the standard XFEM.

Figure 1. Illustration of the semi-hat functions of the Lagrange
multipliers space, Ñk.

The problem of choosing the proper Lagrange multiplier space introduces a
classical dilemma: if ṼH is too small the restriction is not properly enforced and if
it is too large the resulting method may be unstable. After some numerical tests,
the option selected corresponds to the semi hat functions along the interface, as
illustrated in figure 1. In this case, the dimension of ṼH is twice the number of
elements crossed by the interface.
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The mathematical proof of the stability of the numerical scheme requires check-
ing if the LBB condition (also known as inf-sup condition) is fulfilled for the elected
spaces and bilinear restriction. We propose a novel approach to prove this propo-
sition by introducing an equivalent form of the theorem and two auxiliary lemmas.

Recall that the well-known LBB compatibility condition, is sufficient to guar-
antee the stability of the formulation. In other words, the formulation is stable if
it exists k > 0 such that

(4) inf
µ∈ṼH

sup
w∈VX

b(µ,w)

||µ|| ||w||
≥ k

The LBB condition is equivalent to the following
Proposition: ∃α > 0 such that ∀µ ∈ ṼH , ∃v ∈ VX verifying

Jν∇v · nK =µ(5a)

‖v‖VX
≤α‖µ‖ṼH

(5b)

The equivalence is straightforwardly shown by considering that

b(µ,w) =

∫

Γ

µ2dΓ = ||µ|| and
b(µ, v)

||µ|| ||v||
=

||µ||

||v||

Thus, since ||v|| ≤ α||µ||, taking k = 1/α the LBB condition follows.
The latter proposition is reduced to proof the two following lemmas.

Lemma 1 (local version of the proposition, restricted to one element):
Let Ωk be one linear triangular element crossed by the interface Γ. The restriction
of Γ to Ωk is denoted Γk. The nodes of Ωk are denoted P1, P2 and P3, choosing
the order such that P1 and P2 are on the same side of the interface. As classically
done in XFEM, we assume that ∃ǫ > 0 such that |Γk| > ǫ. The restrictions of the

functional spaces VX and ṼH to Ωk and Γk are denoted V k
X and Ṽ k

H , with respective
norms ‖v‖2

V k
X

=
∫
Ωk v

2dΩ and ‖µ‖2
Ṽ k
H

=
∫
Γk µ

2dΓ. The standard FE shape function

corresponding to the node P1 is denoted N1, and the ridge function R.

Then, ∃α > 0 such that ∀µ ∈ Ṽ k
H , ∃v ∈ span{N1, RN1} ⊂ V k

X (i.e. describing v
with the d.o.f. corresponding to P1 only) verifying

Jν∇v · nK =µ(6a)

‖v‖V k
X
≤α‖µ‖Ṽ k

H
(6b)

Lemma 2 (controlled propagation of the norm along the interface el-
ements strip): Let Ωk and Ωk+1 be two contiguous elements crossed by the
interface. Let us denote P1 and P3 the common nodes to Ωk and Ωk+1, being
P2 the third node in Ωk. P1 is selected such that it is on the same side of the
interface as P2. The third node in Ωk+1 is denoted as P4. Then, ∃β > 0 such that,

for any v defined by the d.o.f. of Ωk, v ∈ span{Ni, RNi}, i = 1, 2, 3 it holds that
‖v‖V k+1

X
≤ β‖v‖V k

X
.
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Isoparametric C0 Interior Penalty Methods for Plate Bending
Problems on Smooth Domains

Li-yeng Sung

(joint work with Susanne C. Brenner and Michael Neilan)

Let Ω be a bounded smooth domain in R2 such that ∂Ω is the union of the disjoint
closed curves ΓC, ΓS and ΓF . The bending problem of a thin Kirchhoff plate [7] is
to find u ∈ V such that

(1)

∫

Ω

{(∆w)(∆v) − (1− ν)[w, v]} dx =

∫

Ω

fv dx ∀ v ∈ V,

where V = {v ∈ H2(Ω) : v = 0 on ΓC ∪ ΓS and ∂v/∂n = 0 onΓC}, ν ∈ (0, 12 ) is
the Poisson ratio, and

[w, v] =
(∂2w
∂x21

)(∂2v
∂x22

)
+
(∂2w
∂x22

)(∂2v
∂x21

)
− 2
( ∂2w

∂x1∂x2

)( ∂2v

∂x1∂x2

)

is the Monge-Ampère bilinear form.
Here u is the vertical displacement of the middle surface of the plate, f ∈ L2(Ω)

is the vertical load density divided by the flexural rigidity of the plate, and ΓC

(resp. ΓS and ΓF ) is the clamped (resp. simply supported and free) part of ∂Ω.
We assume |ΓC|+ |ΓS| > 0 so that (1) is well-posed.

In order to obtain high order convergence, the computational domain of a finite
element method for (1) must approximate Ω to a high order. For second order
problems this can be accomplished by the isoparametric approach [6, 9, 4]. But
the construction of C1 finite element methods on non-polygonal domains is much
more complicated [14, 15, 12, 10, 11, 13].

We have shown in [3] that by combining isoparametric finite element spaces for
second order problems with the C0 interior penalty methodology [8, 5, 2], it is
possible to solve the plate bending problem (1) efficiently. In this approach the
discrete problem is obtained by the following procedure.

We construct a curvilinear polygon Ωh whose corners belong to ∂Ω such that Ωh

is the union of the triangles in a quasi-uniform triangulation Th. We assume that
Ωh is a good approximation of Ω so that ∂Ωh is the union of the disjoint closed
subsets ΓC,h, ΓS,h and ΓF,h that approximate ΓC , ΓS and ΓF respectively. Each of
the triangles in Th can have at most one curved edge and only those triangles with
more than one vertex on ∂Ω can have a curved edge. We assume that each triangle
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T ∈ Th is the diffeomorphic image of the reference triangle T̂ under a polynomial
map FT : T̂ −→ T of degree less than or equal to k (k ≥ 2).

Let Ṽh ⊂ H1(Ωh) be the isoparametric Pk Lagrange finite element space asso-

ciated with Th. We assume that all the nodes associated with Ṽh belong to Ω̄ and
the boundary nodes of Ṽh also belong to ∂Ω. Under the assumption that

(2) f ∈ W k−1
p (Ω) where

{
p > 2 if k = 2

p = 2 if k > 2
,

we can then define the nodal interpolant fh (∈ Ṽh) of f .
The discrete problem for (1) is to find uh ∈ Vh such that

(3) ah(uh, v) =

∫

Ωh

fhv dx ∀ v ∈ Vh,

where Vh = {v ∈ Ṽh : v = 0 on ΓC,h ∪ ΓS,h},

ah(w, v) =
∑

T∈Th

∫

T

(
(∆w)(∆v) − (1− ν)[w, v]

)
dx

−
∑

e∈EI
h
∪EC

h

∫

e

(
{{Me(w)}}[[∂v/∂ne]] + {{Me(v)}}[[∂w/∂ne]]

)
ds

+
∑

e∈EI
h
∪EC

h

σ

|e|

∫

e

[[∂w/∂ne]][[∂v/∂ne]] ds,

EI

h is the set of the interior edges of Th, EC

h is the set of the edges of Th along ΓC,h,

{{Me(v)}} = {{−∆v + (1 − ν)(∇2v)te · te}}

is the average of the bending moment across the edge e, [[∂v/∂ne]] is the jump
of the normal derivative across the edge e, |e| is the length of e, and σ > 0 is a
penalty parameter.

Let the mesh-dependent energy norm ‖ · ‖h be defined by

‖v‖2h =
∑

T∈Th

(
ν‖∆v‖2L2(T ) + (1− ν)|v|2H2(T )

)

+
∑

e∈EI
h
∪EC

h

|e|

σ
‖{{Me(v)}}‖

2
L2(e)

+
∑

e∈EI
h
∪EC

h

σ

|e|
‖[[∂v/∂ne]]‖

2
L2(e)

.

The bilinear form ah(·, ·) is bounded with respect to ‖ · ‖h, and for a sufficiently
large σ, it is also coercive. Therefore we have a standard abstract error estimate
[6, 4] for the solution uh of (3):

(4) ‖u− uh‖h ≤ C
[
inf
v∈Vh

‖u− v‖h + sup
w∈Vh\{0}

ah(u− uh, w)

‖w‖h

]
.

Under the regularity assumption (2), the magnitude of the first term on the
right-hand side of (4) is easily shown to be O(hk−1) by the interpolation error
estimates developed in [1]. Thus the main difficulty for traditional approaches
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to fourth order problems on curved domains, namely the constructions of good
interpolants, disappears in the C0 interior penalty approach.

The second term on the right-hand side of (4), which measures the consistency
error, can also be handled in a standard fashion. It follows that

(5) ‖u− uh‖h ≤ Chk−1,

which is optimal. If the free boundary is absent, we can also prove an L2 error
estimate

(6) ‖u− uh‖L2(Ωh) ≤ Chk+min(3,k)−2

under the assumption that f ∈ W k+min(3,k)−2. The estimate (6) is optimal for
k ≥ 3.

Details for (5) and (6) can be found in [3], where subparametric C0 interior
penalty methods are also discussed.
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Optimal Mesh Refinement Strategies

Hella Rabus

(joint work with Carsten Carstensen)

1. Marking strategies in adaptive mesh refinement

In general adaptive finite element algorithms consist of successive loops of the
steps

Solve −→ Estimate −→ Mark −→ Refine.

The choice of the error estimator ηℓ and the particular marking strategy play
an elementary role in the analysis of the convergence of discrete solutions. In
particular the generated sequence of meshes (Tℓ)ℓ needs to resolve oscillations of
the right-hand side f sufficiently. Oscillations of f ∈ L2(Ω) on a Tℓ are defined via

osc2ℓ := osc2(f, Tℓ) :=
∑

T∈Tℓ

osc2(f, T ) with osc(f, ω) := |ω|1/2 ‖f − fω‖L2(ω) ,

where fω is the integral mean of f on the subset ω ⊆ Ω.
One possible strategy is to reduce oscillations a priori (cf. [8, for conform FEM]

and [7, for mixed FEM]). Before running the Afem algorithm itself, an initial

mesh T̂0 is generated (e.g., by Approx [3]), which satisfies osc(f, T̂0) ≤ Tol for a
given Tol > 0.

When oscillations are simultaneously reduced within the Afem-loop, one basi-
cally distinguishes between separate and collective marking strategies. Collective
marking relies on error estimators, which dominate oscillations and therefore os-
cillation are simultaneously reduced.

Separate marking means that oscillations are treated separately, they are not
necessarily dominated by the specific error estimator. One strategy is to introduce
an inner loop for oscillations reduction [11], which may cause additional com-
putational effort. Another separate marking strategy is to switch between cases
depending on whether oscillations are small compared to the error estimator. Two
possibilities, which result in quasi-optimal convergent algorithms, have been pre-
sented recently for the Raviart-Thomas finite element method and the Poisson
model problem, cf. [1, BM-Amfem] and [6, Amfem]. Whereas BM-Amfem ap-
plies a standard Dörfler marking in both cases, Amfem makes use of the Approx

algorithm if oscillations are large. The Amfem-loop reads as follows.
After having solved the problem on Tℓ, with right-hand side f ∈ L2(Ω) and

ηℓ(E), and oscℓ are computed in step estimate. Then, the algorithm switches
between Case (a) if osc2ℓ ≤ κη2ℓ and Case (b) otherwise as follows

Case (A): Mark: Compute Mℓ s.t. θη
2
ℓ ≤ η2ℓ (Mℓ).

Refine: Tℓ+1 = Refine(Tℓ,Mℓ,NVB).
Case (B): Mark: Run Approx [3] to generate optimal refinement T of T0 with

osc2(T , f) ≤ Tol2 = ρB osc2(Tℓ, f), for ρB < 1.
Refine: Compute Tℓ+1 = Tℓ ⊕ T .
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One difficulty arises in the analysis of quasi-optimal convergence, when in step
Refine the overlay Tℓ+1 = Tℓ ⊕ T of Tℓ and T has to be computed. Numerical
experiments verify that for Amfem a proper choice of ρB leads to a significant
reduction of number of loops where Case (B) applies, while the Dörfler marking
for oscillations in BM-Amfem allows less flexibility.

2. The pure displacement problem in linear elasticity

The Navier Lamé equations read in terms of the pure Dirichlet problem in linear
elasticity as −µ∆u− (λ+µ)∇ div u = f in Ω and u = 0 on ∂Ω. For the symmetric
gradient symD u = (Du+DuT )/2, and Lamé parameters λ and µ this formulation
is known to be equivalent to

− div (C symD u) = f in Ω

with CA = 2µA + λ tr(A)1 for all A ∈ R2×2. Let Vℓ := V (Tℓ) := CR1
0(Tℓ) ×

CR1
0(Tℓ) be the nonconforming space of piecewise affine Crouzeix-Raviart functions

in two dimensions with homogeneous Dirichlet boundary conditions. The discrete
problem reads: Seek discrete displacements uℓ ∈ Vℓ such that

aNC(ℓ)(uℓ, vℓ) = F (vℓ) for all vℓ ∈ Vℓ,(1)

with aNC(ℓ)(uℓ, vℓ) :=
∫
Ω
Dℓ uℓ : CDℓ vℓ dx for uℓ, vℓ ∈ Vℓ.

Input: Initial coarse triangulation T0, 0 < θ < θ0 ≤ 1.
Loop: For ℓ = 0, 1, . . .

Solve problem (1) on Tℓ.
Estimate η2ℓ :=

∑
T∈Tℓ

η2ℓ (T ) with

η2ℓ (T ) := |T | ‖f‖2L2(T ) + |T |1/2
∑

E∈E(T ) ‖[∂uℓ/∂s]E‖
2
L2(E) .

Mark a minimal subset Mℓ ⊆ Tℓ of triangles with

θη2ℓ ≤ η2ℓ (Mℓ) :=
∑

T∈Mℓ
η2ℓ (T ).

Refine Mℓ in Tℓ with NVB and generate Tℓ+1.
Output: Sequence of triangulations (Tℓ) and discrete solutions (uℓ).

U
p
d
a
te
ℓ

A
c
r
f
e
m

With respect to some approximation class As :=
{
(u, f) | |(u, f)|As

<∞
}
, for

s > 0 the adaptive algorithm Acrfem is of quasi-optimal convergence [5] in the
sense that for any 0 < θ < θ0 ≤ 1 with θ0 independent of λ Acrfem generates
sequences (Tℓ)ℓ, (uℓ)ℓ of quasi-optimal rates of convergence in the sense that

|Tℓ| − |T0| ≤ Copt

(
|||u− uℓ|||

2
NC(ℓ) + ‖hℓf‖

2
L2(Ω)

)−1/(2s)

.

As the analysis proves robustness in λ as λ → ∞, Acrfem provides an algo-
rithm of quasi-optimal convergence for the Stokes problem, cf. [2, 9, 4]. Further-
more numerical experiments verify this robustness, cf. the subsequent figure for
a comparison of the convergence behaviour for the pure displacement problem in
linear elasticity on the L-shaped domain. For conform FEM locking is observed,
while the convergence rates of the nonconforming CR FEM are robust in λ.
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Error estimation in a non-overlapping domain decomposition
framework

Christian Rey

(joint work with P. Gosselet, A. Parret-Fréaud)

For the last decades, three trends have grown and reinforced each other: the fast
growth of hardware computational capacities, the requirement of finer and larger
finite element models for industrial simulations and the development of efficient
computational strategies amongst which non-overlapping domain decomposition
(DD) methods [1, 3, 4] are very popular since they have proved to be scalable
in many applications. One main fallout lies on the verification of the discretized
models in order to warranty the quality of numerical simulations (global or goal-
oriented error estimators). Among the different classes of global error estimators,
the one based on the evaluation of the constitutive relation error ecr(Ω)(û, σ̂) [5],
offers a simple and efficient way to obtain a guaranteed upper bound of the dis-
cretization error,

|‖u− û‖| ≤ ecr(Ω) (û, σ̂)

where, |‖.‖| is the standard energy norm and (û, σ̂) is a pair of admissible fields
(typically a displacement-stress pair in elasticity). In a standard FE context, the
FE solution û being admissible, the key point then reduces to the construction
of an admissible stress field σ̂. Classical methods are the dual approach [8], the
element equilibrium technique [6] which have been improved by the use of the
concept of partition of unity which lead to [7] and the flux-free technique [10].

In this talk, we present some of our recent works [2] that aim at building error
estimators based on the constitutive relation error in a non-overlapping domain
decomposition framework. Let us consider a non-overlapping domain decomposi-
tion of Ω̄ = ∪sΩ̄

(s) in Nsd subdomains. We focus on the construction of a fully
parallel global error estimator by the use of a global error estimator, as a black
box, on each subdomains Ω(s). It is based on the construction of a pair of admis-
sible interface fields (ub, λb) that satisfy (i) a continuity condition for ub and (ii)
for λb both a flux condition (balance condition) and the Fredholm’s alternative
that ensures, on each subdomain, the well-posedness of Neumann problems. Note
that the last condition involves the solution to a coarse problem. Let us denote

uD =
{
u
(s)
D

}

s
(resp. uN =

{
u
(s)
N

}

s
) the collection of FE solutions on each subdo-

main associated to ub-Dirichlet (resp. λb-Neumann) boundary type condition at
the interface, we then can prove :

|‖u− uD‖| ≤ eddmcr (uD, σ̂ (uN)) =

(
∑

s

(
ecr(Ω(s))

(
u
(s)
D , σ̂(u

(s)
N )
))2

)1/2

which defines a first simple and fully parallel DD-error estimator. Connection with
both primal (BDD) and dual (FETI) iterative domain decomposition solver can
be derived. The estimator yields a guaranteed upper bound on the discretization
error whatever the state (converged or not) of the associated iterative solver. It
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has been numerically observed that our DD-error estimator enables to recover the
same efficiency factor as the standard sequential one. Figure (1) illustrates, on a
small crack opening problem already used in [10], the convergence of the DD-error
estimator as well as its local contribution (element level) along FETI iterations.
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Substructuring (Nsd = 14) Convergence of eddmcr

eddmcr(Elt): iter. 1 eddmcr(Elt): iter. 3 eddmcr(Elt): at convergence

Figure 1. Crack opening problem: Convergence of eddmcr vs. in-
terface residual and elementary contributions to eddmcr(Elt)

The fast convergence numerically observed of both indicators, strongly suggests
to improve the previous upper bounds so that to separate contributions coming
from both the discretization error and the algebraic error related to the used of
the DD-iterative solver. Using results from [9], we eventually prove the following
upper bound,

|‖u− uN‖| ≤ |[uN ]|b + eddmcr (uN , σ̂ (uN))

where |.|b is the norm associated to the FETI preconditioner and [uN ] is the jump of
uN at the interface. This last inequality clearly enable us to separate the algebraic
error related to the FETI solver and discretization error eddmcr (uN , σ̂ (uN)). This
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enables to stop FETI iterations as soon as the norm of the FETI preconditioned
residual is small enough compared to the discretization error.

Works in progress are related to (i) goal-oriented error estimator (ii) nonlinear
problems.
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Automation of Finite Element Method

Jože Korelc

The automated generation of computational models has been explored by re-
searchers from the fields of mathematics, computer science and computational
mechanics, resulting in a variety of approaches (e.g. object-oriented, domain spe-
cific languages [2] and hybrid symbolic-numeric methods [1]) and available soft-
ware tools (e.g. symbolic and algebraic systems, automatic differentiation tools,
problem solving environments and numerical libraries).

The obvious solution to use general computer algebra tools like Mathematica
or Maple directly to derive complex nonlinear finite elements has proved to be
extremely difficult and results in uncontrollable expression swell, redundant oper-
ations and inefficient codes. Additionally, the nonlinear problems require highly
specific solution procedures and, as usual in science, the high uniqueness of a
specific formulation renders the whole concept of automation questionable. The
above have stipulated an intensive scientific research into the problem of automa-
tion in recent years. Automation can address all steps of a finite element solution
procedure from the strong form of a boundary-value problem to the visualization
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of results (FEniCS [2] is a recent examples of the approach), or it can be ap-
plied only to the automation of selected (usually deterministic) steps in a whole
procedure. In the first case we can speak of automation of numerical solution of
physical or mathematical problem and in the second case about automation of
scientific research to optimal computational approach to the solution of physical
or mathematical problem.

The paper presents a hybrid symbolic-numeric approach to automation of deriva-
tion of nonlinear finite-elements [1]. The hybrid symbolic-numeric approach em-
ploys general-purpose automatic code generator AceGen [1] to derive and code
characteristic finite element quantities (e.g. residual vector and stiffness matrix)
at the level of individual finite element and a general-purpose finite element en-
vironment AceFEM [1] to solve the global problem. The automatic code genera-
tion approach presented combines a symbolic system Mathematica, an automatic
differentiation technique with the simultaneous expression optimization and an
automatic generation of program code in a selected compiled language.

The true advantages of automation become apparent only if the description of
the problem, the notation and the mathematical apparatus used are changed as
well. It is demonstrated in the paper that this can be achieved using the automatic
differentiation technique. The purpose of the automatic differentiation (AD) tech-
nique is to compute the derivative of function f , as defined by the algorithm, with
respect to variables a. Let define the corresponding computational derivative with

the following formalism ∇f := δ̂f(a)

δ̂a
. The operator δ̂f(a)/δ̂a has a dual purpose,

to indicate the mathematical operation of differentiation as well as to indicate
the AD algorithm used to obtain the required quantity. However, as powerful
as automatic differentiation technique is, the results of the automatic differentia-
tion procedure might not automatically correspond to the specific mathematical
formalism used to describe the problem. The essential feature of the proposed
approach is that it extends the classical formulation of automatic differentiation
technique by additional operators defining exceptions in automatic differentiation
procedure. Let b be a set of mutually independent intermediate variables that
are part of evaluation of function f , G a set of arbitrary functions of a such that
b := G(a), and M an arbitrary matrix. The following formalism,

(1) ∇fA :=
δ̂f(a,b(a))

δ̂a

∣∣∣∣∣Db
Da

=M

indicates that during the AD procedure, the total derivatives (indicated byDb/Da)
of intermediate variables b with respect to independent variables a are set to be
equal to matrix M, and the actual way how the variables b are evaluated in the
algorithm is neglected for the evaluation of derivatives of b.

Finite-strain elastoplasticity is a typical application area where the use of the
presented apparatus can greatly simplify the derivation of the governing equations
of the problem and the derivation of consistent tangent matrix. The elasto-plastic
problem is defined by a hyperelastic strain energy density function W , a yield
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condition f and a set of algebraic constraints Qg(hg) = 0 to be fulfilled at Gauss
point g when the material point is in plastic state. Vector of local, Gauss point
unknowns hg is composed of an appropriate measure of plastic strains, hardening
variables and consistency parameter, while Qg are composed of the corresponding
set of discretized evolution equations that describe the evolution of plastic strains
and hardening variables and the consistency condition f = 0.

As presented in [1], the automatic differentiation based form of contribution
of the internal forces Re to the weak form of equilibrium equations is for the 1st

Piola-Kirchhof stress tensor P and the deformation gradient F given by
(2)

Re =

∫

Ωe

∂W

∂F

∂F

∂pe

dV =

∫

Ωe

δ̂W

δ̂pe

∣∣∣∣∣Dhg
DF

=0

dV ≈

ng∑

g=1

wg
δ̂W

δ̂pe

∣∣∣∣∣Dhg
DF

=0

=

ng∑

g=1

wgRg

where pe is a vector of generalized displacements of e-th element. The automatic
differentiation based evaluation of Gauss point contribution to consistent tangent
is then obtained from (2) as follows

(3) Kg =
∂Rg

∂pe

+
∂Rg

∂hg

∂hg

∂pe

=
δ̂Rg

δ̂pe

∣∣∣∣∣Dhg
Dpe

=−(
δ̂Qg

δ̂hg
)−1 δ̂Qg

δ̂pe

.

An essential part of the formulation of finite-strain plasticity problems is time
integration of evolution equations. Evolution equations of the form Ḃ = A(t)B,
B(t0) = B0 with A and B as second order tensors can be integrated by first-order,
implicit integration scheme based on the exponential map as follows,

(4) Bn+1 = exp((tn+1 − tn)An+1)Bn.

The main beneficial feature of the exponential map integrators is that they pre-
serve exactly the plastic incompressibility condition as well as symmetry of tangent
matrix and objectivity of the resulting finite element, while the drawback is nu-
merically expansive and often ill-conditioned evaluation of matrix exponential. As
shown in [3], for the evaluation of the matrix exponential of a 3×3 matrix A, a
scalar generating function G(A) can be constructed in terms of the eigenvalues λi
of A,

(5) G(A) = eλ1 + eλ2 + eλ3 ,

such that the derivative of G with respect to AT gives the exponential of A.
While the closed form expressions for eigenvalues of 3×3 matrix are known to
be ill-conditioned around multiple eigenvalues, the scalar generating function G is
smooth and well defined on the whole domain. With a numerically stable definition
of the generating function G, automatic differentiation can be applied to obtain
matrix exponential and its first derivative directly

(6) expA :=
δ̂G

δ̂AT
, D expA :=

δ̂ expA

δ̂A
.
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Thus, a combination of automatic differentiation and scalar generating func-
tion leads to stable, singularity-free and computationally efficient closed-form rep-
resentation of matrix exponential and its derivative. Numerical tests show that
automatic differentiation based formulation of matrix exponential gives machine
precision accurate results and that is almost always numerically more efficient
than the truncated series approximation of matrix exponential and its derivative.
Presented automatic differentiation based formulation of elasto-plastic problems
and matrix exponential is general and it can be used to derive numerically efficient
elasto-plastic finite elements of arbitrary complexity. Moreover, as shown in [1] it
can be easily extended to automatic differentiation based formulation of sensitivity
analysis as a basis for gradient based nonlinear optimization.
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Optimal Uncertainty Quantification

Michael Ortiz

(joint work with Michael McKerns, Houman Owhadi, Tim Sullivan, Clint Scovel)

The present work is concerned with the formulation of a rigorous theory of Un-
certainty Quantification (UQ) within the framework of Quantification of Margins
and Uncertainties (QMU) [1, 2, 3, 4], as well as with the formulation of effi-
cient methods of solution and approximation thereof. For definiteness, we adopt
throughout a certification viewpoint. Specifically, we consider a system with ran-
dom inputs in a probability space (X , µ), whose behavior is characterized by a
response function f : X → Rn. The values of f may be viewed as a collection
of performance measures, and the safe behavior of the system requires f to take
values within a safe or admissible set A ⊂ Rn. The probability of failure (PoF) of
the system is, then,

(1) PoF = Eµ[χ{f 6∈A}],

where, here and subsequently, χE denotes the indicator function of the set E. We
say that the system is certified with probability at least 1− ǫ if

(2) PoF ≤ ǫ,

where ǫ is a failure tolerance.
In practice, a number of difficulties prevent the direct evaluation of the prob-

ability of failure of a system. For instance, the input space is often of very high
dimension and some of the input parameters are unknown (unknown unknowns).
In addition, the probability distribution of the inputs is often not fully known. The
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response of many systems is stochastic and it is only imperfectly characterized ex-
perimentally or otherwise. Physical and computational models of the system may
exist, but often these models are only partially verified and validated. In some
cases, some of the underlying physics may be unwittingly omitted from the models
or may not be covered by existing theory. The situation is often compounded for
systems whose performance cannot be fully tested, either because the operating
conditions cannot be reproduced in the laboratory, or because the tests are costly,
or subject to environmental or treaty restrictions, or some combination thereof.
Often, legacy or archival data exists but is incomplete, or inconsistent, or noisy.
Moreover, the mechanisms responsible for the failure of systems are often rare
events and thus not directly accessible to simple Monte Carlo sampling. Finally,
the failure of some systems is of great consequence, be it economic or in loss of
life, and the tolerance for failure is correspondingly low.

Owing to these and other strictures, in practice the available information about
a system is limited and suffices only to restrict its possible response functions f
and its possible probability distributions µ of the inputs to some admissible or
information set A ⊆ M(X )×F(X ), where F(X ) denotes the space of real-valued
(Borel) measurable functions on X and M(X ) denotes the set of Borel probability
measures on X . Thus, any pair (µ, f) ∈ A represents a scenario consistent with
all the information available on the system. Under these conditions,

(3) L(A) ≡ inf
(µ,f)∈A

Eµ[χ{f 6∈A}] ≤ PoF ≤ sup
(µ,f)∈A

Eµ[χ{f 6∈A}] ≡ U(A)

are the best, or tightest, upper and lower bounds on the PoF of the system, in
the sense that, if pL and pU are respectively, any valid lower and upper bounds on
PoF, it follows that, necessarily,

(4) pL ≤ L(A) ≤ PoF ≤ U(A) ≤ pU .

In general, (3) defines two exceedingly large global optimization problems over in-
finite dimensional spaces of functions and measures, which calls into question the
computability of the optimal bounds L(A) and U(A). However, it has been shown
by Owhadi et al. [5] that, under rather general conditions, these optimization prob-
lems can be reduced to finite dimensions, and that the resulting finite-dimensional
problems are computable. In order to enunciate the main result, let

(5) ∆k(X ) ≡





k∑

j=0

αjδxj

∣∣∣∣∣∣
xj ∈ X , αj ≥ 0 for j = 0, . . . , k and

k∑

j=0

αj = 1





denote the set of (k + 1)-fold convex combinations of Dirac masses. Then, the
main reduction result is embodied in the following theorem [5].
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Theorem 0.1. Let Xi, i = 1, . . . ,m, be Suslin spaces and X = X1 × · · · × Xm.
Suppose that the information set is of the form:

(6) A =





(µ, f)

∣∣∣∣∣∣∣∣∣∣∣∣

f ∈ G ⊆ F(X ),
µ = µ1 ⊗ · · · ⊗ µm,

Eµ[g0j] ≤ 0, j = 1, . . . , n0,
Eµ1 [g1j ] ≤ 0, j = 1, . . . , n1,

. . .
Eµm

[gmj ] ≤ 0, j = 1, . . . , nm,





where g0j : X → R, j = 1, . . . , n0, and gij : Xi → R, j = 1, . . . , ni, i = 1, . . . ,m
are measurable functions that may depend in an arbitrary way on f . Let

(7) Ared =

{
(µ, f) ∈ A

∣∣∣∣∣µ ∈
m⊗

i=1

∆n0+ni
(Xi)

}

be a reduced information set consisting of convex combinations of Dirac masses.
Then,

L(A) = L(Ared)(8a)

U(A) = U(Ared)(8b)

Linear moment constraints on the factor spaces Xi permit consideration of infor-
mation sets with independent random variables X1, . . . , Xm and weak constraints
on their probability distribution. An example of such an admissible set is furnished
by Bernstein inequalities [6], in which a priori bounds are given on the variances of
the variables Xi. Other examples of information sets of practical relevance arise,
e. g., when a priori bounds are known on the mean performance Eµ[f ] of the
system or on the oscillation of the system response [5, 7, 8]. The optimal bounds
delivered by OUQ in these cases improve on classical inequalities such as Hoeffd-
ing’s [9] and McDiarmid’s [10]. A different type of constraints on the information
set arises when certain features of the response function f can be elucidated a

priori, e. g., Lipschitz constants, and when legacy or archival experimental data
is available [11]. Issues pertaining to the computability of the optimal bounds,
and efficient algorithms for their computation thereof, are discussed in [5, 12, 13].
Applications of OUQ to terminal ballistics and seismic risk assessment may be
found in [5, 7, 8].
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Conservative and monotone optimization–based transport

Pavel Bochev

(joint work with Denis Ridzal, Joseph Young)

1. Introduction

In [4, 11, 9], we formulate, apply and study computationally a new optimization-
based framework for computational modeling. The framework uses optimization
and control ideas to (i) assemble and decompose multiphysics operators and (ii)
preserve their fundamental physical properties in the discretization process. It
further develops the approach in [3, 2], which demonstrates an optimization-based
synthesis of fast solvers. In this talk we develop an optimization-based algorithm
for transport (OBT) of a positive scalar function, which is monotone and preserves
local bounds and linear functions on arbitrary unstructured grids.

The OBT algorithm combines the incremental remap (constrained interpola-
tion) strategy for transport in [6] with the reformulation of the remap step as an
inequality constrained quadratic program (QP) [5]. The objective in this QP is
to minimize the discrepancy between target high-order mass fluxes and the ap-
proximate mass fluxes subject to inequality constraints derived from physically
motivated bounds on the primitive variable (density). The merger of these ideas
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yields a new type of transport algorithms that can be applied to arbitrary unstruc-
tured grids and extended to higher than second-order accuracy by using suitably
defined target fluxes.

Our approach differs substantially from the dominant methods for transport,
which preserve the physical properties directly in the discretization process through
monotonic reconstruction of the fields. The slope and flux limiters used for this
purpose tie together preservation of physical properties with restrictions on the
mesh geometry and/or the accuracy. As a result, many of them do not preserve
linear functions on irregular grids [1], which impacts accuracy and robustness. An
alternative is to use sophisticated “repair” procedures [7] or error compensation
algorithms [8], which fix the out-of-bound values and maintain positivity on ar-
bitrary unstructured grids. However, limiters and “repair” procedures obscure
the sources of discretization errors, which complicates the analysis of the trans-
port schemes, and their higher-order extensions on unstructured grids are very
complex.

2. Application to transport problems

We present a new class of conservative, monotone and bounds preserving meth-
ods for the scalar transport equation

(1) ∂tρ+∇ · ρv = 0 on Ω× [0, T ] and ρ(x, 0) = ρ0(x) ,

where T > 0 is the final time, ρ(x, t) is a positive density function (the primitive
variable) on Ω× [0, T ] with initial distribution ρ0(x), and v is a velocity field. For
simplicity, we assume that ρ(x, t) = 0 on ∂Ω× [0, T ]. Let Kh(Ω) denote a partition
of Ω into cells κi, i = 1, . . . ,K.

On each cell κi the degree of freedom ρni approximates the mean cell density
∫

κi

ρ(x, tn)dV/

∫

κi

dV

at time t = tn. The approximate mass in cell κi at time tn is mn
i = ρni vol(κi).

To solve (1) we proceed as follows. Numerical integration of ρ0(x) on each grid

cell κi yields the initial cell masses ~m 0 = (m0
1, . . . ,m

0
K) and the initial density

distribution ~ρ 0 = (ρ01, . . . , ρ
0
K) on Kh(Ω), where ρ

0
i = m0

i /vol(κi). Suppose that
the approximate solution ~ρ n = (ρn1 , . . . , ρ

n
K) is known on Kh(Ω) at time 0 ≤

tn < T and ∆tn is an admissible explicit time step. To find the approximate
density distribution ~ρ n+1 = (ρn+1

1 , . . . , ρn+1
K ) on Kh(Ω) at the new time step

tn+1 = tn+∆tn, we apply the forward incremental remapping algorithm [6]. This
algorithm advances the solution of (1) to the next time step using that the mass
of a Lagrangian volume VL(t) is conserved along the trajectories dx/dt = v:

(2)

∫

VL(tn+1)

ρdV =

∫

VL(tn)

ρdV .

The incremental remap approach evolves Kh(Ω) into a grid K̃h(Ω̃) on the de-

formed region Ω̃ at tn+1, computes the mean density on this grid and interpolates it
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Algorithm 1 One forward step of incremental remapping

input: Density approximation ~ρ n = (ρn1 , . . . , ρ
n
K) at time tn, time step ∆tn

output: Density approximation ~ρ n+1 = (ρn+1
1 , . . . , ρn+1

K ) at time tn+1

Project grid: Kh(Ω) ∋ xp 7→ xp +∆tnv = x̃p ∈ K̃h(Ω̃)

Transport m and ρ: ∀κ̃i ∈ K̃h(Ω̃) set m̃i = mn
i and ρ̃i = m̃i/vol(κ̃i)

Remap density: ~ρ n+1 = R({ρ̃1, . . . , ρ̃K})

back to Kh(Ω). Let VL(tn) = κi then, from (2) the mass m̃i in VL(tn+1) equals the
mass mn

i in VL(tn) and the mean density on VL(tn+1) is ρ̃i = mn
i /vol(VL(tn+1)).

We approximate VL(tn+1) by evolving the vertices {xp} of κi along the trajec-
tories using time integrator. This yields a cell κ̃i with vertices x̃p = xp + ∆tnv,
which approximates VL(tn+1). The mass m̃i and the mean density ρ̃i on κ̃i are

m̃i = mn
i and ρ̃i =

mn
i

vol(κ̃i)
; i = 1, . . . ,K .

Conservative interpolation (remap) of the mean density values ρ̃i from the de-

formed mesh K̃h(Ω̃) onto the original mesh Kh(Ω) gives the approximate mean

cell density ~ρ n+1 = (ρn+1
1 , . . . , ρn+1

K ) at the next time level; see Algorithm 1. The
conservative interpolation (remap) operatorR is the key ingredient of Algorithm 1.
To state the requirements on R without going into unnecessary technical details,
it is convenient to assume that v · n = 0. In this case the original and deformed

regions coincide: Ω = Ω̃, and the mass is conserved at all times. Let Ñi, and Ni

denote the neighborhoods of κ̃i ∈ K̃h(Ω̃), and κi ∈ Kh(Ω), resp., i.e., all cells that
share vertex or an edge or a face with κ̃i or κi. Define

ρ̃min
i = min

j∈Ñi

ρ̃j ; ρ̃max
i = max

j∈Ñi

ρ̃j ;

Under the assumptions stated above, R must satisfy the following requirements:

R.1 local bounds are preserved: ρ̃min
i ≤ ρn+1

i ≤ ρ̃max
i ;

R.2 total mass is conserved:
∑K

i=0m
n+1
i =

∑K
i=0 m̃i =

∑K
i=0m

n
i ;

R.3 linearity is preserved: mn+1
i =

∫
κi
ρ(x, tn+1)dV if ρ(x, t) is linear in x.

The starting point in the construction of R is the flux-form formula for the cell
masses on Kh(Ω) corresponding to the new time level:

(3) mn+1
i = m̃i +

∑

κ̃j∈Ñi

F̃h
ij ; i = 1, . . . ,K .

The mass fluxes F̃h
ij approximate the mass exchanges between the cells in the

neighborhood Ñi of κ̃i. The target fluxes are

F̃T
ij =

∫

κi∩κ̃j

ρ̃ ℓ
j(x)dV −

∫

κ̃i∩κj

ρ̃ ℓ
i(x)dV ; κ̃j ∈ Ñi ;κj ∈ Ni
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where ρ̃ ℓ
i (x) is density reconstruction on cell κ̃i, which is exact for linear functions.

Finally, from R.1 we obtain bounds for the mass on the new time level:

ρ̃min
i vol(κi) = mmin

i ≤ mn+1
i ≤ mmax

i = ρ̃max
i vol(κi)

The following QP defines the constrained interpolation operator R:

(4)

minimize
F̃h

ij

K∑

i=1

∑

κ̃j∈Ñi

(F̃h
ij − F̃T

ij )
2 subject to






F̃T
ij =

∫

κi∩κ̃j

ρ̃ ℓ
j (x)dV −

∫

κ̃i∩κj

ρ̃ ℓ
i (x)dV

F̃h
ij = −F̃h

ji

mmin
i ≤ m̃i +

∑

κ̃j∈Ñi

F̃h
ij ≤ mmax

i .

The optimization-based formulation (4) separates enforcement of the physical
properties R.1 and R.2, which is done through the constraints, from the enforce-
ment of the accuracy R.3, which is achieved through the objective functional. As
a result, (4) is impervious to cell shapes and can be used on arbitrary grids.

In [5] we prove that (4) preserves linear densities if the barycenter of κi remains

in the convex hull of the barycenters of the cells in Ñi for all 1 ≤ i ≤ K. This
condition is less restrictive than the one required for linearity preservation by
Van Leer limiting [10] and is valid for any unstructured grid. In summary, using
Algorithm 1 in conjunction with an operator R defined by the QP (4), yields a
conservative and monotone transport algorithm that is applicable to arbitrary cell
shapes, including polygons and polyhedra.
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Three-field mixed methods in elasticity: old and new

Daya Reddy

Mixed formulations are among the more popular approaches for constructing finite
element methods for problems in elasticity and more generally in solid mechanics,
which are stable in the incompressible limit. A particular objective has been that
of developing methods that are stable when low-order elements are used. Some
representative works include [1, 8].

Two- and three-field methods, first proposed more than 50 years ago [6, 7, 11],
have been a particularly fertile basis from which to develop stable methods. Among
computational specialists, an approach favoured is that in which the corresponding
saddle-point problem takes the form, on a bounded domain Ω ⊂ Rd,

(1)
(u,d,σ) = arg minv,emaxτ H1(v, e; τ )

=

∫

Ω

[
1
2 (tr e)

2 + µ|e|2 + (e− ǫ(v)) : τ − f · v
]
dx .

Here u,d,σ ∈ [H1
0 (Ω)]

d × [L2(Ω)]d×d
s × [L2(Ω)]d×d

s are respectively the displace-
ment, symmetric strain and stress fields with corresponding arbitrary quanti-
ties v, e, τ , while λ and µ are the Lamé constants and f is the body force.
The strain-dislacement relation is given by ǫ(u) = 1

2 (∇u + (∇u)T ). The in-
compressible limit corresponds to λ → ∞. This formulation is in contrast to
those two-field formulations favoured by the mathematical community, in which
u,d,σ ∈ [L2(Ω)]d × [H(div)(Ω)]d×d, with the symmetry of the stress possibly not
imposed a priori.

A full analysis has been presented in [9] of a broad range of three-field finite
element approaches based on (1). Special cases covered by the general analysis
include the method of mixed enhanced strains [8] and the method of enhanced
strains [10]. In order to carry out such an analysis it is essential to modify the
functional (1) so that, for isotropic bodies, it takes the form

(u,d,σ) = arg minv,emaxτ H2(v, e; τ )

=

∫

Ω

[
µ|e|2 + (e+ (tr e)I − ǫ(v)) : τ − 1

2 (λ/(dλ+ 2µ))|τ |2 − f · v
]
dx .
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This functional is in fact a special case of a modified formulation introduced in
[9], in which a family of modified forms, parametrized by a scalar, is introduced.
Conditions for the uniform convergence of finite element approximations are es-
tablished, and applied to the case in which displacements are approximated by
piecewise-bilinear functions in two dimensions.

In more recent work [4] the general conditions for convergence established in [9]
are used as a basis for constructing new stable families. The starting point is a
velocity-pressure pair that is stable for the Stokes problem: this defines the space of
displacements which is the same as that for the velocities, while the pressure space
serves to define a discrete space of stresses, and then of the stresses. A number of
examples, based on the Mini, Crouzeix-Raviart and Taylor-Hood elements [3] is
presented.

The final part of the presentation is concerned with the extension of the ideas
in the linear theory to problems in finite-strain elasticity. The three-field form of
the rate problem is

(2) H3(v, e; τ ) =

∫

Ω

[
1
2 Ḟ : AḞ + (Ḟ −∇u̇) : P − f · u̇

]
dx ,

in which F is the deformation gradient, P the first Piola-Kirchhoff stress, and
A = ∂2W/∂F∂F is the elasticity tensor, for a specified strain energy function W .
Current work is concerned with establishing conditions for the stability of finite
element approximations of the rate problem, borrowing from the framework for
the linear problem.
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Multiscale modelling and approximation of incompressible reinforced
materials

Patrick Le Tallec

(joint work with Éric Lignon)

Fiber reinforced layers are very popular in industry but are prone to structural
instabilities. Such situations combine global inplane buckling of the reinforcing
fibers and local shearing or compression of the filling material. Standards shell el-
ements as described in [2] do not have the proper kinematics to treat such inplane
instabilities. Our purpose is then to develop an enriched multiscale model, able
to treat both aspects through an adequate kinematic and energetic description
of the different components and their coupling at different scales. By a classical
asymptotic analysis, it introduces in addition to the filling material a surface den-
sity of rods able to resist against in plane and out of plane bending. The result
is implemented in a new finite element model developed at macroscopic level and
validated in different asymptotic or postbuckling regimes [4].

The overall strategy is based on a two scale asymptotic expansion. The macro-
scopic scale is defined by the overall dimension L of the structure. A small scale ε
is introduced to handle the thickness tε = ε ∗ t of the reinforcing layer, the radius
rε = ε ∗ r of the reinforcing fibers, the distance eε = ε ∗ e between two fibers, and
the rubber shear modulus Gε = ε2 ∗ G as compared to the fiber elastic modulus
G. The idea is to find a local model independent of ε describing the microdefor-
mations on the fiber reinforced plane at the limit when the small scale ε tends to
0. This is classically achieved as in [1] by using a two scale asymptotic expansion
of the overall deformation inside the reinforced layer

xm(X1, X2 + εY2, εY3) = x0(X1, X2, Y2, Y3) + εx1(X1, X2, Y2, Y3) + . . .

coupled to a smooth expansion of the same deformation outside the layer. Here
X1, X2 are global coordinates in center plane, and (Y2, Y3) = (X1/ε,X2/ε) are
local normalized coordinates inside the representative volume element, describing
the local variations of the solution at fiber scale.

The scale separation is specified by imposing on the solution at the reinforced layer
a Y2 periodicity condition and a P0 mortar matching condition in Y3

1

e

∫
xm(. . . , εY2,±ε

t

2
)dY2 = xU,D(. . . ,±ε

t

2
)

which assumes slowly varying interface stresses. After matching independently
the different powers of ε in the equilibrium equations and in the weak treatment
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Figure 1. Two scale expansion, and resulting two dimensional
representative volume element

of the local boundary conditions, it is proved that the zero order expansion is
independent on Y , that the fibers at first order obey a Bernouilli kinematics

x|cab = r(X1, X2) + Y2d2(X1, X2) + Y3d3(X1, X2),

with (
∂r

∂X1
, d2, d3) orthonormal, and that the first order correction x1(Y2, Y3) (with

respect to center rod motion) in the membrane is obtained by locally minimizing
∫

ΩY

w

(
∂r

∂X1
⊗ e1 +

(
∂r

∂X2
+
∂x1

∂Y2

)
⊗ e2 +

∂x1

∂Y3
⊗ e3

)
dΩ

at each macroscopic point (X1, X2) on the set of local fields x1(Y2, Y3) respecting
the specified local boundary conditions.

The resulting global model developed in [6] and implemented in [4] is a 3D
continuous body with fibers, the filling material in the far field being governed by
a standard smooth large deformation elastic model, the reinforcing fibers behaving
like a continuous distributions of beams, the global rubber and fiber motion being
coupled by the boundary conditions at local scale, and the local energy of the
rubber next to the fibers being given by the solution of the above local energy
minimisation problem.

On this model, it is then necessary to properly handle the incompressibility
constraints which requires a triple action :

- Impose pointwise incompressibility of the rubber inside each local problem
which is achieved by using mixed finite elements with discontinuous pressures on
local problem.

- Ensure the well posedness of the local problem. In particular, global deforma-
tions imposed at local scale must verify a volume preserving restriction.

- Avoid numerical locking at global scale due to the volume preserving restriction
to be imposed at local scale and to the incompressibility of the rubber at far field.

The last two issues are resolved by weakly imposing the incompressibility of
the finite element solution at global level (Q2 displacements with P1 discontinuous
pressures), by using reduced invariants for the far field energy, and by using a least
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square correction of the boundary conditions at local level in order to satisfy the
volume preserving condition. This strategy can be proved to be consistent and
convergent for linear problems by following the steps of [5].

The remaining question is to properly choose the reference thickness t in the
local problem. This affects the construction of the homogeneized energy and the
definition of the region where the far field energy is to be used. The challenge is
to avoid a region which will be too thin and hence where the interface stresses will
not be smooth enough while forbidding any zero energy mode in cross bending.
The second order strategy proposed in [3] cannot be directly applied. A practical
choice has been implemented in [4], but must be further justified.

This work was largely supported by M.F.P. Michelin
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Medius Error Analysis of Discontinuous Galerkin Methods: Estimates
under Minimal Regularity

Thirupathi Gudi

(joint work with S.C. Brenner, S. Gu, M. Neilan, and L. Y. Sung)

The standard a priori error analysis of discontinuous Galerkin methods requires
additional regularity on the solution of the elliptic boundary value problem in order
to justify the Galerkin orthogonality and to handle the normal derivative on ele-
ment interfaces that appear in the discrete energy norm. Medius error analysis of
discontinuous Galerkin methods is developed using only the Hk weak formulation
of a boundary value problem of order 2k. This is accomplished by constructing
a suitable enriching map that connects the discontinuous finite element space to
a conforming finite element space, by replacing the Galerkin orthogonality with
estimates borrowed from a posteriori error analysis and by using a discrete energy
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norm that is well defined for functions in Hk. The results lead up to some higher
order terms the best approximation property in the discrete energy norm [4].
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Institut für Kontinuumsmechanik
Leibniz Universität Hannover
Appelstr. 11
30167 Hannover

Prof. Dr. Peter Monk

Department of Mathematical Sciences
University of Delaware
501 Ewing Hall
Newark , DE 19716-2553
USA

Dana Müller-Hoeppe

Institut für Kontinuumsmechanik
Leibniz Universität Hannover
Appelstr. 11
30167 Hannover

Prof. Dr. Neela Nataraj

Department of Mathematics
Indian Institute of Technology Bombay
Powai, Mumbai 400 076
INDIA

Prof. Dr. Michael Ortiz

Division of Engineering and
Applied Sciences, MS 104-44
California Institute of Technology
Pasadena , CA 91125
USA

Prof. Dr. Eun-Jae Park

Computational Sciences & Engineering-
WCU
Yonsei University
Seoul 120-749
KOREA

Dr. Daniel Peterseim

Fachbereich Mathematik
Humboldt Universität Berlin
Unter den Linden 6
10099 Berlin

Prof. Dr. Paulo Pimenta

Department of Structural and
Geotechnical Engineering, Polytechnic
School at University of Sao Paulo
Av. Prof. Almeida Prado, trav. 2, 83
Sao Paulo SP 05508-900
BRAZIL

Dipl.-Math. Hella Rabus

Fachbereich Mathematik
Humboldt Universität Berlin
Unter den Linden 6
10099 Berlin

Prof. Dr. B. Daya Reddy

Department of Mathematics and
Applied Mathematics
University of Cape Town
7701 Rondebosch
SOUTH AFRICA

Prof. Dr.-Ing. Stefanie Reese

Institut für Angewandte Mechanik
RWTH Aachen
Mies-van-der-Rohe-Str. 1
52074 Aachen

Prof. Dr. Christian Rey

L.M.T. Cachan
61 Avenue du President Wilson
F-94235 Cachan



Advanced Computational Engineering 553

Mira Schedensack

Fachbereich Mathematik
Humboldt Universität Berlin
Unter den Linden 6
10099 Berlin

Prof. Dr. Joachim Schöberl
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