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Introduction by the Organisers

The workshop was organized by Susanne C. Brenner (Louisiana State University),
Ronald Hoppe (University of Houston, Augsburg University) and Béatrice Rivière
(Rice University). There were twenty-one lectures. The meeting was well attended
with participants from Europe, England, North America and India. Both theoret-
ical and computational talks on state-of-the-art discontinuous Galerkin methods
were given by leading experts as well as by promising young mathematicians. The
workshop addressed important issues in the development of discontinuous Galerkin
methods. These issues include (but are not limited to) the formulation of more
efficient methods with fewer number of degrees of freedom, the formulation of
methods for coupled problems, the analysis of guaranteed a posteriori error es-
timation, and faster and accurate solvers. Scientific discussions continued in the
evening among smaller groups of participants.
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Abstracts

Schwarz methods for a preconditioned WOPSIP discretization of
elliptic problems

Paola F. Antonietti

(joint work with Blanca Ayuso de Dios, Susanne C. Brenner, Li-yeng Sung)

The aim of this talk is to propose and analyze a class of non-overlapping Schwarz
methods for a preconditioned weakly over-penalized symmetric interior penalty
(WOPSIP) discretization of a second order boundary value problem.

The WOPSIP method has been introduced in [6] for the discretization of the
weak form of the Poisson equation with homogeneous Dirichlet boundary condi-
tions:

(1) Find uh ∈ Vh : Ah(uh, v) =

∫

Ω

fv dx ∀v ∈ Vh,

where Vh is the space of piecewise linear discontinuous functions defined on a
triangulation Th of granularity h. Denoting by Eh the set of all edges of the
partition Th, the WOPSIP bilinear form Ah(·, ·) : Vh × Vh −→ R reads

Ah(w, v) :=
∑

T∈Th

∫

T

∇w · ∇v dx +
∑

e∈Eh

α

h3e

∫

e

Π0
e([[w]]) ·Π0

e([[v]]) ds w, v ∈ Vh.

Here α ≥ 1 is a parameter at our disposal, he is the length of an edge e ∈ Eh,
[[·]] is the jump operator defined according to [3], and Π0

e(·) is the L2-orthogonal
projection onto the space of constant functions over e ∈ Eh, i.e.,

Π0
e(v) :=

1

he

∫

e

v ds ∀ e ∈ Eh ∀v ∈ Vh.

As shown in [6], the WOPSIP method (1) is stable for any choice of the penalty
parameter α, and exhibits optimal error estimates both in the L2 norm and in
a suitable energy norm. However, due to the over-penalization, the condition
number of the WOPSIP stiffness matrix grows as O(h−4). For such a reason, a
block-diagonal, symmetric and positive definite operator can be introduced with
the aim of effectively reduce the condition number of the WOPSIP method [6].
More precisely, let the bilinear form Bh(·, ·) : Vh × Vh −→ R be defined as

Bh(w, v) :=
∑

T∈Th

∑

e∈Eh

w|T (me)v|T (me) +
∑

e∈Eh

α

he

∫

e

Π0
e([[w]]) ·Π0

e([[v]]) ds

for all w, v ∈ Vh, where me denotes the midpoint of an edge e ∈ Eh. Denoting by
Bh : Vh −→ V ′

h the discrete operator associated with the bilinear form Bh(·, ·), i.e.,
< Bhw, v >:= Bh(w, v) w, v ∈ Vh,
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we consider the following P-WOPSIP method:

(2) Find uh ∈ Vh : Ah(B
−1/2
h uh,B

−1/2
h v) =

∫

Ω

f B
−1/2
h v dx ∀v ∈ Vh.

Notice that the operator B
−1/2
h : V ′

h −→ Vh is symmetric and positive definite,
thanks to the fact that Bh(·, ·) is symmetric and positive definite. Moreover, in [6]
it was shown that

Bh(v, v) . Ah(v, v) . h−2Bh(v, v) ∀v ∈ Vh.

The above estimate guarantees that the condition number of the stiffness matrix
associated with the P-WOPSIP method is of order O(h−2) as typical finite element
discretizations of second order elliptic problems. Moreover, in [5] it is shown that,
by a suitable ordering of the degrees of freedom, the P-WOPSIP method has an
intrinsic high-level of parallelism, making the P-WOPSIP discretization technique
an ideal method for parallel computations.

In this talk we will show that, by employing a suitable ordering of the degrees
of freedom and exploiting the orthogonal decomposition of the DG space proposed

in [4], the action of the operator B
−1/2
h can be fully characterized, and that the

P-WOPSIP bilinear form is continuous and coercive in the following (standard)
DG norm

‖v‖2DG :=
∑

T∈Th

‖∇v‖20,Ω +
∑

e∈Eh

1

he
‖Π0

e([[v]])‖20,e ∀v, w ∈ Vh.

Lemma 1 (Continuity and coercivity of the P-WOPSIP method [2]). It holds

Ah(B
−1/2
h w,B

−1/2
h v) . ‖w‖DG‖v‖DG ∀w, v ∈ Vh.

Moreover, there exists h0 > 0 such that

Ah(B
−1/2
h v,B

−1/2
h v) & ‖v‖2DG ∀v ∈ Vh.

provided the mesh size h < h0.

The above result guarantees, in particular, that problem (2) is well posed. More-
over, Lemma 1 also suggests a spectral equivalence of the P-WOPSIP method with
all the stable and strongly consistent DG discretizations proposed so far in the lit-
erature.

In order to reduce further the condition number of the matrix arising from the
P-WOPSIP discretization, in this talk we will also propose and analyze several
two-level non-overlapping Schwarz methods for the P-WOPSIP method. We will
consider both exact and inexact local solvers as the ones proposed in [7] and
[1], respectively. Following the abstract theory of Schwarz methods [8], we will
show that the preconditioners are scalable (i.e., the performance are independent
on the number of suddomains), and that the condition number of the resulting
preconditioned linear systems of equations is of order O(Hh−1), being H and
h the granularity of the coarse and fine partitions, respectively. Moreover, our
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condition number estimates are independent of the penalty parameter. This is
indeed a novelty in the framework of solution techniques for DG approximations.
Finally, numerical experiments that illustrate the performance of the proposed
two-level Schwarz methods will be also presented.
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DG−H(div) Conforming Approximations for Stokes Problem: A
Simple Preconditioner

Blanca Ayuso de Dios

(joint work with Franco Brezzi, L. Donatella Marini, Jinchao Xu and L.T.
Zikatanov)

Block preconditioners are generally employed to solve the linear algebraic systems
of saddle point type that arise from Finite Element (FE) discretizations of fluid
flow problems, such as the Stokes problem. Although in many cases they can be
shown to be optimal (guaranteeing uniform convergence with respect to the mesh
size of the discretization, in the asymptotic limit), a very slow convergence of the
resulting iterative method is often observed. A possible reason for this could be
related to the treatment of the divergence-free condition on the velocity field at
the discretization level, which is typically enforced only weakly. In this talk, fol-
lowing an approach similar to that of [5], we construct Discontinuous Galerkin
(DG) approximations to the Stokes problem where the velocity field is H(div,Ω)-
conforming. This implies that the velocity solution is divergence-free in the whole
domain. We show how this property can be exploited to design a simple and ef-
fective preconditioner (actually one of the blocks), assuming one has an optimal
and efficient solver for elliptic second order problems (AMG, GMG or any of your
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favorite methods).

• Model Problem: Let Ω ⊂ Rd, d = 2, 3 be a polygonal or polyhedral domain
with boundary Γ = ∂Ω and f ∈ [L2(Ω)]d. The Stokes equations we consider read

(1)

{
−div(2νε(u)) +∇p = f in Ω

divu = 0 in Ω.

u is the velocity field, p the pressure, ν the viscosity of the fluid, and ε(u) ∈
[L2(Ω)]d×d

sym is the symmetric (linearized) strain rate tensor defined by ε(u) =
1
2 (∇u + (∇u)T ). Equations (1) are completed with no-slip boundary conditions
on u and a natural condition on the tangential component of the normal stresses:

(2) u · n = 0, and ((2 ν ε(u)− pI) · n) · t = 0 on Γ.

From now, we present the ideas in d = 2, pointing out the differences that arise
for d = 3 in the end.

• Abstract Setting: The finite element partition Th is assumed to be shape-
regular and with no hanging nodes. The main ingredient is the choice of a triplet
of finite element spaces denoted by (Vh,Qh,Nh) and defined as:

Vh := {v ∈ H(div; Ω) : v|K ∈ R(K) ∀K ∈ Th, v · n = 0 on Γ} ,

Qh :=
{
q ∈ L2(Ω)/R : q|K ∈ Q(K) ∀K ∈ Th

}
,

Nh :=
{
ϕ ∈ H1

0 (Ω) : ϕ|K ∈ M(K) ∀K ∈ Th
}
,

where R(K) is a vector FE space and Q(K) and M(K) are scalar FE spaces. Our
basic assumptions on the triplet of spaces (Vh,Qh,Nh) is that they have to be
related by the following exact sequence:

(3) 0 −→ Nh
curl−→ Vh

div−→ Qh −→ 0,

and each operator in (3) must have a uniformly bounded (in h) continuous right
inverse. The spaces are also assumed to have some approximation property.
From the triplet (Vh,Qh,Nh), only the first two spaces are used in the construction
of the DG −H(div; Ω) methods; the third one will be only used for the design of
the preconditioner. We note also that Nh arises naturally in the construction of
the discrete Helmholtz decomposition of Vh:

(4) Vh = Gh(Qh)⊕ curlNh,

where the discrete gradient operator Gh : Qh −→ Vh is defined by [3]

(Ghqh,vh)0,Ω := −(qh, div vh)0,Ω ∀vh ∈ Vh.

Examples of triplets are easily given by choosing (Vh,Qh) as one of the H(div; Ω)
conforming mixed FE methods for second order problems: say Raviart-Thomas or
Brezzi-Douglas-Marini elements [2]. In both cases,Nh reduces to the standard con-
forming FE space of Lagrange polynomials (of one degree higher than that of Vh).



Theory and Applications of Discontinuous Galerkin Methods 563

• The DG-H(div; Ω) methods read: Find (uh, ph) in Vh ×Qh such that

(5)

{
ah(uh,v) + b(v, ph) = (f ,v) ∀v ∈ Vh

b(uh, q) = 0 ∀ q ∈ Qh,

where since Vh ⊂ H(div; Ω) the bilinear forms reduce to

ah(u,v) := 2ν
[
(ε(u) : ε(v))Th

− 〈{{ε(u)}} : [[vt]]〉Eo
h
− 〈[[ut]] : {{ε(v)}}〉Eo

h

]

+ 2να
∑

e∈Eo
h

h−1
e

∫

e

[[ut]] : [[vt]] ds ∀u,v ∈ Vh,(6)

b(v, q) := −(q, divv)Ω ∀v ∈ Vh, ∀q ∈ Qh.

We prove stability following the classical framework in [3]; i.e, showing coercivity
of ah(·, ·) and an inf-sup condition for b(·, ·), in appropriate norms. However, un-
like in [5], coercivity of ah(·, ·) does not follow straightforwardly and we have to
prove a discrete Korn’s inequality. This is so, since the results in [4] do not apply
directly here because the jumps of uh are not penalized on boundary edges/faces
(see definition of ah(·, ·) in (6)). Then, the error analysis can be completed follow-
ing [3], showing optimal error estimates for both velocity and pressure.

• Preconditioning strategy: The preconditioning strategy is based on a key
property of the methods: that the solution of (5) uh ∈ Vh is divergence free on

the whole Ω, i.e, uh ∈ Vh∩H(div0; Ω). Therefore, taking into account the discrete
Helmholtz decomposition (4) it follows that for such uh

(7) there exists a unique ψh ∈ Nh such that uh = curlψh.

Then, restricting the bilinear form ah(·, ·) toVh∩H(div0; Ω) corresponds to restrict
trial and test spaces to curl(Nh); that is Find ψh ∈ Nh such that

(8) ãh(ψh, ϕh) := ah(curlψh, curlϕh) = (f , curlϕh) ∀ϕh ∈ Nh.

Observe now that, in order to compute the approximate velocity uh ∈ Vh, one
only needs to solve (8). As a consequence, it turns out that the question of
preconditioning the linear system arising from (5) can be reduced to devise a good
preconditioner for the linear system associated to the above problem.

Denoting by Ã the operator associated to ãh(·, ·) as defined in (8), we construct

a preconditioner for Ã using the auxiliary space method [6]. As auxiliary space,
we choose the larger space Vh, and we consider as auxiliary operator the one
associated to ah(·, ·) defined in (6) (without the incompressibility constraint), say
A. To link both problems and spaces, we define the operator Πh : Vh −→ Vh ∩
H(div0; Ω) ≡ curl(Nh) which associates to each vh ∈ Vh its divergence free
part. We show then that if problem (1) is H2-regular (say Ω convex), the operator
Πh is stable in the DG norm and as a consequence we have the following result:

Theorem: In the above assumptions, let B be an optimal preconditioner for A.

Then, the preconditioner B̃ := ΠhBΠ∗
h is an optimal preconditioner for Ã.
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• Case d = 3: Only the design and analysis of the preconditioner needs to be
modified. The third space in the triple of FE spaces, is now defined by

N h := {v ∈ H(curl; Ω) : v|K ∈ M(K) ∀K ∈ Th, v × n = 0 on Γ}
guaranteeing that the resulting triplet (Vh,Qh,Nh) still satisfies the same basic
assumptions and that the corresponding discrete Helmholtz decomposition (4) can
be established. The main difficulty now is that uniqueness cannot be guaranteed

in the corresponding equation to (7). As a consequence, the operator Ã associated
to the (8), now defined in curl(N h) is singular. We show how the same ideas can
still be applied by extending the Auxiliary space techniques to singular problems.
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Recent Developments in the Numerical Methods for the Chemotaxis
Models

Yekaterina Epshteyn

In this talk we will discuss recent progress in the development of the numerical
methods for the chemotaxis models and closely related problems in physics and
biology. We consider the most common formulation of the classical Patlak-Keller-
Segel system [1] with the ’parabolic-parabolic’ coupling, which can be written in
the dimensionless form as

(1)

{
ρt +∇ · (χρ∇c) = ∆ρ,
ct = ∆c− c+ ρ,

(x, y) ∈ Ω, t > 0,

subject to the Neumann boundary conditions:

(2) ∇ρ · n = ∇c · n = 0, (x, y) ∈ ∂Ω.

Here, ρ(x, y, t) is the cell density, c(x, y, t) is the chemoattractant concentration,
χ is a chemotactic sensitivity constant, Ω is a bounded domain in R2, ∂Ω is its
boundary, and n is a unit normal vector.
Chemotaxis refers to mechanisms by which cellular motion occurs in response to an
external stimulus, usually a chemical one. Chemotaxis is an important process in
many medical and biological applications, including bacteria/cell aggregation and
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pattern formation mechanisms, as well as tumor growth. There exists an extensive
literature about chemotaxis models and their mathematical analysis a first place to
start is [2], as well as [4, 3], and for a deeper background [11, 15, 9, 10, 1, 13, 14, 12].
The first descriptions of the mechanism owe to Keller and Segel, [7, 6, 5] and Patlak
[8]. In this description, the organism or migrating enzyme chooses a direction
upwards of a chemical signal which leads to aggregation.

Although there is an extensive literature on this subject, only a few numeri-
cal methods have been proposed for these models. Chemotaxis models are usu-
ally highly nonlinear due to the density dependent cross diffusion term (attract-
ing force) that models chemotactic behavior, and hence, any realistic chemotaxis
model is too difficult to solve analytically. Therefore, development of accurate and
efficient numerical methods is crucial for the modeling and analysis of chemotaxis
systems. Furthermore, a common property of all existing chemotaxis systems is
their ability to model a concentration phenomenon that mathematically results in
rapid growth of solutions in small neighborhoods of concentration points/curves.
The solutions may blow up or may exhibit a very singular, spiky behavior. This
blow-up represents a mathematical description of a cell concentration phenomenon
that occurs in real biological systems, see, e.g., [10, 11, 13, 14, 15, 12]. In either
case, capturing such solutions numerically is a very challenging problem.

Let us briefly review the numerical methods that have been proposed in the
literature. A finite-volume, [16], and finite-element, [22, 17], methods have been
proposed for a simplified version of the Patlak-Keller-Segel model with ’parabolic-
elliptic’ coupling: the equation for concentration of chemical signals c has been
replaced by an elliptic equation using an assumption that c changes over much
smaller time scales than the density of the cells ρ. A fractional step numerical
method for a fully time-dependent chemotaxis system from [23] has been proposed
in [24]. However, the operator splitting approach may not be applicable when a
convective part of the chemotaxis system is not hyperbolic, which is a generic situa-
tion for the original Patlak-Keller-Segel model with ’parabolic-parabolic’ coupling.
In [25], a finite-volume central-upwind scheme was derived for the original Patlak-
Keller-Segel model and extended to some other chemotaxis models. Recently, in
[18], an implicit flux-corrected finite element method has been developed for the
original Patlak-Keller-Segel model as well. In our recent work [28, 26, 27] we de-
veloped a family of high-order Finite Element Methods (Discontinuous Galerkin
Methods) for the original Patlak-Keller-Segel chemotaxis model. However, among
the methods that have been proposed, only [22, 17, 18] were designed to treat com-
plex geometry by the use of unstructured meshes. Finally, a different approach
has been proposed in [19]. The authors considered the measure-valued global in
time solutions of the simplified Patlak-Keller-Segel system in R2 and proposed a
stochastic particle approximation. The advantage of their method is that it cap-
tures the solution even after the (possible) blow-up. However, the method was
only designed for the simplified Patlak-Keller-Segel model with ’parabolic-elliptic’
coupling. Moreover, at least in the 2D case, methods based on particle simulation
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are usually less efficient than ’conventional’ finite element or finite volume meth-
ods for solving convection-diffusion equations.

Often, modeling of real biomedical problems has to deal with the complex struc-
ture of the computational domains. Therefore there is a need for accurate, fast,
and computationally efficient numerical methods for different chemotaxis models
that can handle arbitrary geometries. In our recent paper [20] we develop novel and
efficient upwind-difference potentials method which can handle complex geometry
without the use of unstructured meshes and it can be combined with fast Poisson
solvers. Our method combines the simplicity of the positivity-preserving upwind
scheme on Cartesian meshes [21] with the flexibility of the Difference Potentials
method [29].

Therefore, in this talk we will discuss and compare recently developed high-order
Discontinuous Galerkin Methods [28, 26, 27] and Upwind-Difference Potentials
method [20] for the original Patlak-Keller-Segel chemotaxis model.
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[2] P. Benôıt, Transport equations in biology, Frontiers in Mathematics, Birkhäuser Verlag,
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Discontinuous Galerkin methods for fully nonlinear second order
partial differential equations

Xiaobing Feng

(joint work with Thomas Lewis)

Fully nonlinear partial differential equations (PDEs) refer to the class of PDEs
which are nonlinear in the highest order of derivatives of unknown functions ap-
pearing in the equations. For example, the general first and second order fully non-
linear PDEs, respectively, have the form H(∇u, u, x) = 0 and F (D2u,∇u, u, x) =
0, where ∇u and D2u denote the gradient vector and Hessian matrix of the un-
known function u. Fully nonlinear PDEs, which have experienced extensive an-
alytical developments in the past thirty years (cf. [2, 6, 14]), arise from many
scientific and engineering applications such as differential geometry, astrophysics,
antenna design, image processing, optimal control, optimal mass transport, and
geostrophical fluid dynamics. Fully nonlinear PDEs play a critical role for the
solutions of these application problems because they appear one way or another
in the governing equations of these problems. As expected, this class of nonlinear
PDEs are the most difficult to study analytically and to solve numerically. On the
one hand, great successes have been achieved in the past 30 years on the analysis
of these PDEs. On the other hand, numerical approximations of fully nonlinear
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second order PDEs was an untouched area just 4–5 years ago. There are two main
reasons for the lack of progress. First, the notion of viscosity (weak) solutions is
nonvariational, which prevents any direct construction of Galerkin-type numerical
methods and forces one to use indirect approaches as done in [4, 5, 7, 9] for ap-
proximating viscosity solutions. Second, fully nonlinear PDEs often have multiple
solutions, the uniqueness of viscosity (weak) solutions may only hold in a restric-
tive function class. This conditional uniqueness is difficult to handle at discrete
level and prevents any straightforward construction of finite difference methods
because such a method does not have a mechanism to enforce the conditional
uniqueness and often fails to capture the sought-after viscosity solution.

The goal of this talk was to present a newly developed general framework for
directly constructing discontinuous Galerkin (DG) methods for fully nonlinear sec-
ond order elliptic and parabolic PDEs. The bulk of the materials of this talk are
taken from references [12, 13] and are inspired by the finite difference work [10].
The proposed DG framework consists of the following five key ingredients/ideas.
First, the given fully nonlinear PDE must be rewritten into a nonstandard mixed
formulation in which all second order derivatives (i.e., the Hessian matrix) are
treated as independent variables. Second, due to possible discontinuity of second
order partial derivatives, each of these second order derivatives must be approx-
imated by three functions representing some well-defined left, right and central
derivatives. Third, the original differential operator F must be approximated by

a “numerical operator” F̂ which satisfies some consistency and generalized mono-
tonicity properties. Fourth, in order to construct the desired “numerical opera-

tor” F̂ , the main idea is to introduce a key concept called “numerical moment” to
achieve the goal. Fifth, when formulating DG methods, different numerical fluxes
must be used to discretize the three (linear) equations satisfied by three variables
which represent the left, right and central (second order) derivatives. Several one-
dimensional numerical experiments were presented to guage the performance of
the proposed DG framework and methods. Generalizations to high dimensional
case and the formulation of local discontinuous Galerkin (LDG) methods were also
discussed. Connections between the proposed DG framework with the finite dif-
ference work [10] and with the finite difference and DG results [15, 16] for the first
order fully nonlinear Hamilton-Jacobi equations were briefly discussed as well.
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Convergence Analysis of an Adaptive Interior Penalty Discontinuous
Galerkin Method for the Biharmonic Problem

Thomas Fraunholz

(joint work with R. H. W. Hoppe, M. A. Peter)

For the biharmonic problem, we study the convergence of adaptive C0-Interior
Penalty Discontinuous Galerkin (C0-IPDG) methods of any polynomial order.
We note that C0-IPDG methods for fourth order elliptic boundary value problems
have been suggested in [1], whereas a residual-type a posteriori error estimator
for a quadratic C0-IPDG method applied to the biharmonic equation has been
developed and analyzed in [2].

Let Ω ⊂ R2 be a bounded polygonal domain with boundary Γ = ∂Ω. For a
given function f ∈ L2(Ω) we consider the biharmonic problem

∆2u = f in Ω,

u =
∂u

∂n
= 0 on Γ.

(1)
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A weak formulation of (1) requires the computation of u ∈ V := H2
0 (Ω) such that

a(u, v) = (f, v)0,Ω, v ∈ V,(2)

where the bilinear form a(·, ·) is given by

a(v, w) = (D2v,D2w)0,Ω :=
∑

|β|=2

(Dβv,Dβw)0,Ω, v, w ∈ V.

Let Th be a geometrically conforming simplicial triangulation of Ω. We denote
by EΩ

h and EΓ
h the set of edges of Th in the interior of Ω and on the boundary Γ,

respectively, and set Eh := EΩ
h ∪ EΓ

h . For T ∈ Th and E ∈ Eh we denote by hT and
hE the diameter of T and the length of E, and we set h := max

T∈Th

hT .

Denoting by Pk(T ), k ∈ N, the linear space of polynomials of degree ≤ k on T , for
k ≥ 2 we refer to

Vh := {vh ∈ H1
0 (Ω) | vh|T ∈ Pk(T ), T ∈ Th}

as the finite element space of Lagrangian finite elements of type k. Given a penalty
parameter α > 1, the C0-IPDG method for the approximation of (2) requires the
computation of uh ∈ Vh such that

aIPh (uh, vh) = (f, vh)0,Ω, vh ∈ Vh.(3)

Here, the mesh-dependent bilinear form aIPh (·, ·) : Vh × Vh → R is given according
to

aIPh (vh, wh) :=
∑

T∈Th

(D2vh, D
2wh)0,T +

∑

E∈Eh

({∂
2vh
∂n2

}E, [
∂wh

∂n
]E)0,E

+
∑

E∈Eh

([
∂vh
∂n

]E , {
∂2wh

∂n2
}E)0,E + α

∑

E∈Eh

h−1
E ([

∂vh
∂n

]E , [
∂wh

∂n
]E)0,E .

For adaptive mesh refinement we consider the residual-type a posteriori error
estimator

ηh :=
( ∑

T∈Th

η2T +
∑

E∈EΩ
h

η2E

)1/2
,

where the element residuals ηT , T ∈ Th, and the edge residuals ηE , E ∈ Eh, are
given by

η2T := h4T ‖f −∆2uh‖20,T , T ∈ Th,

η2E := hE ‖[∂
2uh
∂n2

]E‖20,E + h3E ‖[ ∂
∂n

∆uh]E‖20,E, E ∈ EΩ
h .

Following the convergence analysis of adaptive IPDG methods for second order
elliptic problems [3], we prove a contraction property for a weighted sum of the
C0-IPDG energy norm of the global discretization error and the estimator. The
proof of the contraction property is based on the reliability of the estimator, a
quasi-orthogonality result, and an estimator reduction property.
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Theorem. Let u ∈ H2
0 (Ω) be the unique solution of (2). Further, let Th(Ω)

be a simplicial triangulation obtained by refinement from TH(Ω), and let uh ∈
Vh, uH ∈ VH and ηh, ηH be the C0-IPDG solutions of (3) and error estimators,

respectively. Then, there exist constants 0 < δ < 1 and ρ > 0, depending only

on the local geometry of the triangulations and the parameter Θ from the Dörfler

marking, such that for sufficiently large penalty parameter α the fine mesh and

coarse mesh discretization errors eh := u− uh and eH = u− uH satisfy

aIPh (eh, eh) + ρ η2h ≤ δ
(
aIPH (eH , eH) + ρ η2H

)
.

102 103 104 105

degrees of freedom

10-1

100

101

102

a
IP h

(e
h
,e

h
)

0.90

0.93

0.98uniform
0.7
0.3

102 103 104 105

degrees of freedom

2

4

6

8

10

12

14

η h
/
a
IP h

(e
h
,e

h
)1

/
2

uniform
0.7
0.3

102 103 104 105

degrees of freedom

10-4

10-3

10-2

10-1

100

101

a
IP h

(e
h
,e

h
)

0.76

2.98
2.61

uniform
0.7
0.3

102 103 104 105

degrees of freedom

100

110

120

130

140

150

160

170

η h
/
a
IP h

(e
h
,e

h
)1

/
2

uniform
0.7
0.3

102 103 104 105

degrees of freedom

10-4

10-3

10-2

10-1

100

a
IP h

(e
h
,e

h
)

0.78

4.73

6.80

uniform
0.7
0.3

102 103 104 105

degrees of freedom

250

300

350

400

450

500

550

600

650

η h
/
a
IP h

(e
h
,e

h
)1

/
2

uniform
0.7
0.3

Figure 1. Error reduction (left) and effectivity index (right) for
k = 2 (top), k = 4 (middle) and k = 6 (bottom).
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In order to provide a detailed documentation of the performance of the adaptive
C0-IPDG method we take an illustrative example from [2]. We have run simula-
tions for polynomial degrees 2 ≤ k ≤ 6 with penalty parameter α = 2.5(k + 1)2.
For k = 2, k = 4, and k = 6, Figure 1 shows the convergence histories in terms
of the broken C0-IPDG energy norm of the error aIPh (u − uh, u − uh) (left), as

well as the computed effectivity indices ηh/a
IP
h (u − uh, u − uh)

1/2 (right) as a
function of the total number of degrees of freedom (DOF) on a logarithmic scale
for uniform refinement and adaptive refinement with Θ = 0.7 and Θ = 0.3 in
the Dörfler marking. As far as the convergence rates and the estimator reduction
are concerned, the benefits of adaptive versus uniform refinement can be clearly
recognized, in particular for increasing polynomial degree. Moreover, as in case
of IPDG methods for second order elliptic boundary value problems and H-IPDG
methods for Maxwell’s equations we observe a different convergence behavior de-
pending on the choice of Θ in the Dörfler marking. The effectivity indices show a
clear dependence on the polynomial degree k.
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DG Methods and Local Time-Stepping For Wave Propagation

Marcus J. Grote

(joint work with Michaela Mehlin, Teodora Mitkova)

The efficient simulation of time-dependent wave phenomena is of fundamental
importance in a wide variety of applications from acoustics, electromagnetics and
elasticity, for which the scalar damped wave equation

(1) utt + σut −∇ · (c2∇u) = f in Ω× (0, T ) ,

often serves as a model problem. Here, Ω is a bounded domain, f(x, t) is a (known)
source term, whereas the damping coefficient σ(x) ≥ 0 and the speed of propaga-
tion c(x) > 0 are piecewise smooth.

Three popular spatial discretizations for (1) are standard continuous (H1-confor-
ming) finite elements with mass lumping [1], the symmetric IP-DG formulation [5],
or nodal DG finite elements [7]. All three lead to a system of ordinary differential
equations with an essentially diagonal mass matrix. Thus, when combined with
explicit time integration, the resulting fully discrete scheme for the solution of (1)
will be truly explicit.

Locally refined meshes impose severe stability constraints on explicit time-
stepping methods for the numerical solution of (1). Local time-stepping (LTS)
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methods overcome that bottleneck by using smaller time-steps precisely where
the smallest elements in the mesh are located. In [2, 3], explicit second-order LTS
integrators for transient wave motion were developed, which are based on the stan-
dard leap-frog scheme. In the absence of damping, i.e. σ = 0, these time-stepping
schemes yield methods of arbitrarily high (even) order when combined with the
modified equation approach. By blending the leap-frog and the Crank-Nicolson
methods, a second-order LTS scheme was also derived there for (damped) elec-
tromagnetic waves in conducting media, i.e. σ > 0, yet this approach cannot be
readily extended beyond order two. To achieve arbitrarily high accuracy even in
the presence of damping, while remaining fully explicit, explicit LTS methods for
(1) based on Adams-Bashforth multi-step schemes can be used [4, 7].

Here we propose explicit LTS methods based either on standard or low-storage
Runge-Kutta (RK) schemes of arbitrarily high order. In contrast to Adams-
Bashforth methods, RK methods are one-step methods; hence, they do not require
a starting procedure and easily accommodate adaptivity in time. Although Runge-
Kutta methods require more computational work per time-step, that additional
work is typically compensated by a less stringent CFL stability restriction.

Clearly, the idea of using different time steps for different components in the
context of ordinary different equations is not new [8]. However, RK methods
achieve higher accuracy not by extrapolating farther from the (known) past but
instead by including further intermediate stages from the current time step. Thus
for the numerical solution of partial differential equations, the derivation of high-
order local time-stepping methods that are based on RK schemes is generally more
difficult.

To illustrate the versatility of our approach, we now consider a computational
rectangular domain of size [0, 2]×[0, 1] with two rectangular barriers inside forming
a narrow gap. We use continuous P 2 elements on a triangular mesh, which is highly
refined in the vicinity of the gap, as shown in Fig. 1. For the time discretization, we
choose an LTS method based on an explicit third-order low-storage Runge-Kutta
scheme. Thus, the numerical method is third-order accurate both in space and
time with respect to the L2-norm. Since the typical mesh size inside the refined
region is about p = 7 times smaller than that in the surrounding coarser region,
we take p local time steps of size ∆τ = ∆t/p for every time step ∆t. In Fig. 2, a
Gaussian pulse initiates two plane waves which propagate horizontally in opposite
directions. As the right-moving wave impinges upon the obstacle, a small fraction
of the incoming wave penetrates the gap and generates multiple circular waves on
both sides of the obstacle, which further interact with the wave field.
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Figure 1. The initial triangular mesh (left); zoom on the “fine”
mesh indicated by the darker (green) triangles (right).

Figure 2. The solution at times t =0.55 and 0.7.
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A Posteriori Error Control of Discontinuous Galerkin Methods for
Elliptic Obstacle Problem

Thirupathi Gudi

(joint work with Kamana Porwal)

Variational inequalities form an important class of nonlinear problems for which
obstacle problem may be considered as a prototype model. For given f ∈ L2(Ω)
and ψ ∈ H1(Ω) ∩ C0(Ω) with ψ ≤ 0 on ∂Ω, we consider the model problem of
finding u ∈ K = {u ∈ H1

0 (Ω) : u ≥ ψ in Ω} such that

a(u, v − u) ≥ (f, v − u) ∀v ∈ K,
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where a(u, v) = (∇u,∇v) and (·, ·) denotes the L2(Ω) inner-product. The conver-
gence of finite element approximations for obstacle problems is known for many
years [7, 5, 13, 8]. A priori error estimates for conforming linear and quadratic
finite element methods are derived in [7] and [5, 13], respectively. For general con-
vergence analysis and error estimates, we refer to [8]. However, the a posteriori

error analysis of conforming finite element methods for obstacle problems has been
received attention since a decade [6, 12, 2, 3, 11]. In [10], Hierarchical error estima-
tor is derived. In [6], the first residual based a posteriori error estimator is derived
using a positivity preserving interpolation operator. The a posteriori error anal-
ysis in [12] is derived without using positivity preserving interpolation operator.
The estimates in [6] and [12] are slightly different from each other but it is shown
therein that both the estimators are reliable and efficient. In [2], error estimates
based on averaging techniques are derived for conforming finite element method.
Error estimates for conforming finite element methods in an abstract framework
can be found in [3, 11] when the obstacle is a P1(Ω) function. Recently, conver-
gence of adaptive conforming finite element method for obstacle problem is studied
in [4].

During the past decade and half, discontinuous Galerkin methods have been
attractive for the numerical approximation of variety of applications [1]. In this
article, we are concerned on the application of DG methods for variational in-
equalities. Recently, a priori error analysis of various discontinuous Galerkin(DG)
methods for elliptic variational inequalities of the first and the second kind is
derived in [14]. The discontinuous Galerkin methods in [14] are based on the
discontinuous Galerkin formulations in [1] for the Laplace equation.

In this article, we derive a posteriori error estimates for various DG finite ele-
ment methods for second order elliptic obstacle problems. Using a key property of
discontinuous Galerkin methods, we perform the analysis in a unified framework.
The error estimator for discontinuous Galerkin methods is comparable with the
estimator for conforming finite element method. This is achieved by using a nonlin-
ear smoothing function mapping discontinuous finite element space to conforming
finite element space. The error estimator consists of a discrete Lagrange multi-
plier associated with the obstacle constraint. It is shown for non over-penalized
discontinuous Galerkin methods that the discrete Lagrange multiplier is uniformly
stable on non-uniform meshes. The results are verified by numerical experiments.
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Two-Grid hp–Adaptive Discontinuous Galerkin Finite Element
Methods for Second–Order Quasilinear Elliptic PDEs

Paul Houston

(joint work with Scott Congreve and Thomas Wihler)

In this talk we present an overview of some recent developments concerning the
a posteriori error analysis and adaptive mesh design of h– and hp–version dis-
continuous Galerkin finite element methods for the numerical approximation of
second–order quasilinear elliptic boundary value problems. In particular, we con-
sider the derivation of computable bounds on the error measured in terms of an
appropriate (mesh–dependent) energy norm in the case when a two-grid approxi-
mation is employed. In this setting, the fully nonlinear problem is first computed
on a coarse finite element space VH,P . The resulting ‘coarse’ numerical solution
is then exploited to provide the necessary data needed to linearise the underlying
discretization on the finer space Vh,p; thereby, only a linear system of equations is
solved on the richer space Vh,p. Here, an adaptive hp–refinement algorithm is pro-
posed which automatically selects the local mesh size and local polynomial degrees
on both the coarse and fine spaces VH,P and Vh,p, respectively. Numerical exper-
iments confirming the reliability and efficiency of the proposed mesh refinement
algorithm are presented.
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Error Analysis for a Monolithic Discretization of Coupled Darcy and
Stokes Problem

Guido Kanschat

(joint work with Vivette Girault and Béatrice Rivière)

Recently, we proposed a monolithic discretization of coupled Darcy/Stokes flow
problems in [4], based on a weak formulation of the coupled problem with velocities
in a subspace ofHdiv(Ω). Let us briefly summarize the setting: The computational
domain Ω ⊂ Rd, d = 2, 3, is divided into two subdomains ΩS and ΩD with Stokes
and Darcy flow, respectively. Their outer boundaries are denoted by ΓS and ΓD,
and the interface between the two as ΓSD. On ΓSD, we impose the Beavers-Joseph-
Saffman interface conditions (see e. g. [5, 3]), consisting of the conservation of mass
and normal momentum, and a tangential friction term. Using the function spaces

Hdiv
0 (Ω) =

{
v ∈ L2(Ω;Rd)

∣∣∇·v ∈ L2(Ω), (v · n)|∂Ω = 0
}
,

V =
{
v ∈ Hdiv

0 (Ω)
∣∣v|ΩS

∈ H1(ΩS), v|ΓS
= 0
}
,

Q =
{
q ∈ L2(Ω)

∣∣(q, 1)Ω = 0
}
,

we strive to approximate a solution (u, p) ∈ V ×Q of the weak formulation

(1) 2µ(Du,Dv)ΩS + (ρ2u, v)ΩD + (γρuS;τ , vS;τ )ΓSD − (p,∇·v)Ω
− (q,∇·u)Ω = (f, v)Ω + (g, q)Ω ∀v ∈ V, q ∈ Q.

Here µ is the dimensionless viscosity, Du is the strain tensor of u, ρ2 = µ/K,
K the permeability of the porous media, and γ the friction coefficient introduced
by Saffman. For our discretization, we propose a finite element pressure space
Qh ⊂ Q. The velocity space Vh ⊂ Hdiv

0 (Ω) is chosen such that ∇·Vh = Qh;
without confining ourselves to this case, consider for instance the space of dis-
continuous polynomials Pk and the matching Raviart-Thomas RTk on simplicial
elements. Since Vh 6⊂ V , we choose a discontinuous Galerkin method in order to
fix the inconsistency on ΩS . The method is required to be consistent and adjoint
consistent in order such that we can apply duality arguments.

While we observed optimal and balanced convergence rates of order k + 1 for
the velocity error in L2(ΩD) and L2(ΩS), respectively, the energy error analysis
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only yields rates suboptimal by one order in ΩD, namely

(2) ‖u− uh‖1,h;ΩS + ‖ρ(u− uh)‖ΩD + ‖∇·(u− uh)‖Ω
+ ‖√γρ(uS;τ − uh,S;τ )‖ΓSD ≤ chs|u|Hs+1(Ω).

This is due to the fact that the derivatives on the Stokes side pollute the error
on the Darcy side. Since we have no derivatives of the Darcy velocity, a straight
forward duality argument does not help.

More recently, we presented the optimal L2 analysis in [2]; the outcome was,
that the errors in ΩD and ΩS are indeed balanced. We review the main steps of the
proof and omit the details. One important feature needs to be pointed out though:
as soon as the interface is just Lipschitz, the solution u cannot have full H2-
regularity anymore, since one of the two subdomains has a reentrant corner/edge.
Therefore, all estimates are presented assuming that all solutions to (1) with right
hand side in L2 are bounded in Hs+1(Ω;Rd) with 1/2 < s ≤ 1. We assume further,
that ∇·u ∈ Hs+1(Ω).
(I) In a standard duality argument, we solve (1) with right hand side f =
χ(ΩS)(u − uh) and g = 0. Without much ado, we obtain the estimate

‖u− uh‖L2(ΩS) ≤ Ch2s|u|Hs+1(ΩS).(3)

(II) In the second step, we prove improved estimates for the error on the interface
ΓSD. To this end, we observe that ∇·uh is the L2-projection of ∇·u, and thus

‖∇·u−∇·uh‖L2(ΩS) ≤ Chs+1|∇·u|Hs+1(ΩS).(4)

Combining estimates (3) and (4), a standard trace estimate yields the same con-
vergence order for the error in H−1/2(∂Ω), which can be localized by an argument
in [1]. By a more technical argument in order to avoid requiring mesh uniformity,
we also get an estimate in L2(ΓSD):

‖u · n− uh · n‖H−1/2(ΓSD) ≤ ch2s|u|Hs,div(ΩS),

‖u · n− uh · n‖L2(ΓSD) ≤ ch
3
2 s|u|Hs+1(ΩS),

(5)

where we define |u|2Hs+1,div(ΩS) = |u|2Hs+1(ΩS) + |∇·u|2Hs+1(ΩS).

(III) We introduce the divergence free lifting w of the error on the interface into
the Darcy subdomain, and we have

‖w‖L2(ΩD) ≤ C‖u · n− uh · n‖H−1/2(ΓSD)

‖w‖
H

1
2 (ΩD)

≤ C‖u · n− uh · n‖L2(ΓSD).
(6)

This lifting allows us to effectively decouple the Darcy subproblem from the Stokes
subproblem, since u− uh − w ∈ Hdiv

0 (ΩD). On the other hand, the estimates (6)
(where the second is needed to apply the Raviart-Thomas interpolation operator
to w) guarantee that the pollution of the right hand side due to this decoupling is
sufficiently small. Finally, we get the estimate

‖u− uh‖L2(ΩD) ≤ Ch2s
(
|u|Hs+1,div(ΩS) + |u|Hs+1(ΩD)

)
.(7)
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Tools and Methods for Discontinuous Galerkin Solvers on
Modern Computer Architectures

Andreas Klöckner

(joint work with Timothy Warburton, Jan S. Hesthaven)

The solution of partial differential equations (PDEs) by numerical methods is an
endeavor that is severely constrained by computational cost. Very few simulation
codes are able to achieve the fidelity that would be desirable from the point of view
of their target application. To determine the cost of finding a solution to a PDE,
one needs to know the application problem, along with the desired accuracy. If one
then chooses a numerical method that will be employed along with its parameters,
one can begin to estimate cost. Still, considerable uncertainty remains in how
mathematical expressions are to be evaluated, and algorithmic choices (such as the
use of stored vs. recomputed quantities) may make a large amount of difference.
The final, actual cost is only known once the solver software and the target machine
is in place.

Curiously, the literature on PDE solvers abounds with claims of optimality, but
largely ignores algorithmic and machine concerns. Previously, computational time
was roughly comparable between machines, but this is no longer true. Computer
design has encountered restrictive economical bounds on power as well as band-
width and latency in memory access and communication. Many different machine
types have emerged, each optimized for a different workload. For example, a few
hundred US dollars will buy a parallel computer that is capable of performing,
in each second, ∼ 4 · 1012 floating point operations (“flops”), but only of reading
∼ 5 · 1010 values from memory. From the point of view of numerical analysis, this
means that the traditional cost measure of “flops” has become mostly irrelevant.
Claims of optimality derived from this measure therefore need to be reevaluated.

Necessarily, this situation increases the burden on numerical analysts and soft-
ware implementers, and if practical cost is adopted as the measure of success, then
the creation of PDE solvers becomes an interdisciplinary effort in a joint design

space where complex interdependencies exist. For example, the type of workload
that is well-supported by actual machines may determine what numerical schemes
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Figure 1. Performance of GPU-DG on Nvidia GTX295 as shown
in [1]. a) Aggregate, wall-clock performance measured timestep-
to-timestep. b) Achieved memory bandwidth, broken down by
computational component. (Above-peak values due to texture
cache effects.)

for the solution of PDEs are sensible and which ones are not. As a numerical
analyst, one may ignore such facts at one’s own peril. In the context of a discon-
tinuous Galerkin (DG) scheme, this contribution presents infrastructure and tools
we propose to alleviate some of this burden.

In 2009, we were able to demonstrate [1] that nodal DG methods for hyperbolic
systems of conservation laws ∂tu+∇ · F (u) = S, when implemented with consid-
eration for modern processors, can achieve excellent utilization of Nvidia GPUs.
More specifically, the evolution of the solution on a finite element Dk is governed
by

(1) ∂tu
k = (Mk)−1

[
∑

ν

S∂ν ,k[F (uk)]−
∑

A⊂∂Dk

Mk
A[(n̂ · F )∗]|A

]
,

where S∂ν ,k is a one-sided stiffness matrix, Mk is the mass matrix, Mk
A is the

mass matrix on a face A, and (n · F )∗ is the numerical flux. Exploiting, among
other things, the block-diagonal structure of all these matrices, one may rewrite
this expression such that there are only two matrix-vector products per element
to be computed. Using either an affine mapping between Dk and the reference
element, or Warburton’s low-storage curvilinear scheme [3], these matrices can all
be related back to template matrices (with scaling factors) that are usable for the
entire computational problem.

It is thus reasonable to expect that the main computational expense of the ex-
pression (1) will be the evaluation of element-wise matrix-vector products, even
at low-to-moderate polynomial order N . Unfortunately, even the seemingly sim-
ple implementation of matrix-vector products becomes slightly non-trivial, as the
machine presents its user with a large array of granularities that need to be taken
into account. For instance, as the polynomial degree N varies, the amount of
storage for each element-local matrix grows as O(N6). Thus, any finite amount of
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on-chip temporary storage will likely be exhausted as N increases. The matrix is
clearly the most-used piece of information in the expression, so bringing as much
of it as possible close to the computation is clearly a priority. Further granularity
restrictions emerge at the core-parallel level (or rather the programming model’s
abstraction thereof, variously called “thread block” or “work group”), where one
is forced to decide how large a task is undertaken by each such “core”, be it in the
form of vector parallelism, instruction-level parallelism, or sequential processing.

It is expedient to automatically tune for optimal values of the choices described
above within some predetermined parameter space. This is a step in the right di-
rection, as it emphasizes tuning ideas over ephemeral tuning results. Yet, even this
approach falls short, although it naturally leads to a key to addressing the issues
outlined–namely, the generation of code at run time (“RTCG”). This amounts to
inserting another layer of reasoning between the user and the code expressing the
computation (which is often very redundant and not genuinely “human-readable”).
It further enables the creation of tools operating on this code.

This approach is embodied in our packages PyOpenCL and PyCUDA [2], which
were first written to support our implementation of the DG method. In addition to
facilitating RTCG by features such as object code caches, they provide elementary
linear algebra and basic primitives for parallel programming. The idea of RTCG
and its use through these packages have struck a chord with a global community,
as we have so far counted over 80,000 source-code downloads of these tools, in
addition to many available third-party binary distributions.

In the context of DG methods, the approach enables auto-tuning for memory
layout, work partition and other granularities, but it also yields a number of further
important benefits. It allows high-performance code to be written generically, so
that an input language close to mathematical notation may be used. Since kernel
code is now single-use, it may be emitted with constants instead of variables. This
often helps compilers generate more efficient code.

Performance obtained using this approach is shown in Figure 1. A hand-written
reference code that does not do automatic tuning achieves similar performance
from N ≥ 6, however in the intermediate regime of N = 3, . . . , 5, the automated
code is faster by up to 60% on identical hardware. This regime is practically
important because of the DG CFL restriction ∆t ≤ h/N2, and it is challenging
because the small number of degrees of freedom (and the associated matrix sizes)
frequently clash with machine-imposed granularities. It is all the more encouraging
that for N ≥ 3, our method achieves near-peak memory bandwidth utilization.

Despite the undoubted success of the effort described above, we acknowledge
that the transformations required on even a simple concept such as matrix-vector
multiplication are not appealing to carry out by hand. Seeking to enable more
researchers to face this challenge, we have therefore created a next-generation tool
called “loo.py”, which takes in a semi-mathematical description of an expression to
be evaluated and accepts commands that gradually transform the expression into
memory-efficient, granularity-respecting parallel C code. In a sense, loo.py is the
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smallest, simplest possible increment in tool abstraction over our existing infras-
tructure. It is capable of non-redundantly expressing a large range of workloads
ranging from dense linear algebra, to DG, to n-body problems.

As we have tried to outline above, numerical analysis for PDEs finds itself at
a crossroads, with great challenge, but also great opportunity. We believe that
innovation in tools as we have described in this contribution may help enable
additional progress towards high-fidelity PDE solvers.
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Trefftz-Discontinuous Galerkin Methods for Acoustic Scattering

Ilaria Perugia

(joint work with Ralf Hiptmair, Andrea Moiola)

Trefftz discontinuous Galerkin (TDG) methods are finite element methods based
on approximation spaces locally made by finite linear combinations of solutions to
the homogeneous PDE to be discretized. They have recently been applied to prob-
lems for which standard polynomial-based finite elements present computational
challenges, like time-harmonic wave propagation problems. For these problems,
TDG methods using plane wave approximation spaces generalize the ultra-weak
variational formulation (UWVF) of [2], as observed in [1, 4].

Here, following [7], we focus on TDG methods applied to the time-harmonic
acoustic scattering. In previous papers, we developed h- and p-version error anal-
ysis of TDG methods (see [4] and [6]), restricting to convex domains and quasi-
uniform meshes. On the other hand, practical experience (see [8]) suggests that
TDG methods should be used on locally refined meshes together with spatially

varying local dimension of trial spaces. Moreover, in order to consider acoustic
scattering problems, we need to extend our analysis to non-convex domains.

We consider the following acoustic scattering problem:

(1)

−∆u− k2u = 0 in Ω := ΩR \ ΩD ,

u = 0 on ΓD := ∂ΩD ,

∂u

∂n
+ iku = gR on ΓR := ∂ΩR ,

where k is the wave number, ΩD is a bounded, star-shaped, Lipschitz polyhedron
occupied by a sound-soft scatterer, and ΩR is an artificial bounded, either smooth
or polyhedral Lipschitz domain such that dist(ΓR,ΓD) > 0.
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Well-posedness of (1) can be proved by Fredholm alternative, while stability
estimates in weighted H1-norm has been proved in [9, 3, 5]. On the other hand,
the duality argument in our error analysis requires refined regularity and stability
results: provided that gR ∈ Hr(ΓR), 0 < r < 1/2, we prove that the solution to (1),

with a general L2 right-hand side in the first equation, belongs to H
3
2+s(Ω); we

also prove stability in H
3
2+s-norm with explicit dependence of the constant on k.

Given a mesh Th and local resolutions (pK)K∈Th
, define

Vp(Th) = {vhp ∈ L2(Ω) : vhp|K ∈ VpK (K) ∀K ∈ Th} ,
where VpK (K) is a pK-dimensional space of functions such that ∆v + k2v = 0
for all v ∈ VpK (K). With standard DG notation, we write our TDG methods as
follows: find uhp ∈ Vp(Th) such that, for all vhp ∈ Vp(Th) and for all K ∈ Th,

∫

∂K

ûhp ∇vhp · nK dS −
∫

∂K

ikσ̂hp · nK vhp dS = 0 ,

with numerical fluxes defined by

ikσ̂hp =





{{∇huhp}} − α ik [[uhp]]N on interior faces,

∇huhp − (1− δ) (∇huhp + ikϑuhpn− gRn) on faces on ΓR,

∇huhp − α ik uhpn on faces on ΓD,

ûhp =





{{uhp}} − β (ik)−1[[∇huhp]]N on interior faces,

uhp − δ
(
(ikϑ)−1∇huhp · n+ uhp − (ikϑ)−1gR

)
on faces on ΓR,

0 on faces on ΓD.

The flux parameters α, β, δ are piecewise constant positive functions on suitable
unions of edge/faces; we require 0 < δ ≤ 1/2. Well-posedness and quasi-optimal
hp-error estimates in a mesh-dependent norm are obtained as in [6], while in
order to avoid the quasi-uniformity mesh assumption, instead of using constant
numerical flux parameters, we define them on each edge/face f as

α |f = a
h

hf
, β |f = b

h

hf
, δ |f = d

h

hf
,

with hf = min{hK , hK′} if f = ∂K∩∂K ′, hf = hK if f = ∂K∩∂Ω, and a, b, d > 0
independent of the mesh width, the local Trefftz spaces, and k. With this choice
of flux parameters, we derive hp-error estimates in the L2-norm assuming quasi-
uniformity of the meshes only close to the outer artificial boundary, while allowing
local refinement near the scatterer. Then, for plane wave or circular/spherical
wave approximation spaces, the actual convergence rates are derived from the
best approximation estimates proved in [10].
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Comparison of Finite Element Methods for the Poisson Model
Problem

Daniel Peterseim

(joint work with C. Carstensen and M. Schedensack)

In the recent preprint [7], the authors establish the equivalence of conforming
Courant finite element method (CFEM) and nonconforming Crouzeix-Raviart fi-
nite element method (CRFEM) in the sense that the respective energy error norms
are equivalent up to generic constants and higher-order data oscillations in a Pois-
son model problem. The Raviart-Thomas mixed finite element method is bet-
ter than the previous methods whereas the conjecture of the converse relation is
proved to be false. Those results complete the analysis of comparison initiated by
Braess [2]. This note extends the comparison to several Discontinuous Galerkin
FEM (DGFEM), e.g., symmetric interior penalty method (SIPG) [10, 12, 1], non-
symmetric interior penalty method (NIPG) [14], and local DG (LDG) [9, 8].

Given a bounded polygonal domain Ω in the plane and data f ∈ L2(Ω), the
Poisson model problem seeks u ∈ V := H1(Ω) such that

a(u, v) :=

∫

Ω

∇u · ∇v dx =

∫

Ω

fv dx for all v ∈ V.

Let T be some shape regular triangulation of Ω with associated mesh size func-
tion hT . The Courant finite element space of H1-conforming T -piecewise affine
functions is denoted VC(T ) := P1(T ) ∩ V . The corresponding (unique) Galerkin
approximation uC ∈ VC(T ) satisfies

a(uC, vC) =
∫
Ω
fvC dx for all vC ∈ VC(T ).
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Abstract DGFEM. Consider the space VDG(T ) := P1(T ) of T -piecewise affine
functions with associated norm ‖ • ‖DG := (‖∇ • ‖2L2(Ω) + | • |2J)1/2 and jump

seminorm

| • |2J :=
∑

E∈E

|E|−1‖[•]E‖2L2(E);

[vDG]E denotes the jump of vDG ∈ VDG(T ) across the edge E ∈ E as usual.
The bounded and coercive (with respect to ‖ • ‖DG) DG bilinear form aDG :

VDG(T )× VDG(T ) → R extends a|VC(T )×VC(T ) to VDG(T )× VDG(T ) and satisfies

(1) |a(v, vC)− aDG(vDG, vC)| ≤ C1‖v − vDG‖DG‖∇vC‖L2(Ω)

for all vC ∈ VC(T ), v ∈ V , and vDG ∈ VDG(T ) with some universal positive
constant C1 independent of hT . The (unique) DG approximation uDG ∈ VDG(T )
satisfies

aDG(uDG, vDG) =
∫
Ω
fvDG dx for all vDG ∈ VDG(T ).

Assume further that there exists some bounded linear operator IC : VDG(T ) →
VC(T ) and some positive constant C2 that does not depend on hT such that

(2) ‖vDG − IC vDG‖DG ≤ C2|vDG|J holds for all vDG ∈ VDG(T ).

It is shown in [11, Section 3.2] that SIPG, NIPG, and LDG fit into this abstract
framework with some operator IC based on nodal averaging [3, 4, 5, 13].

Main result. The comparison is stated in terms of A . B which abbreviates
the existence of some constant C which only depends on the minimal angle in T ,
but not on the domain Ω and not on the mesh-size hT , such that A ≤ CB. The
comparison includes data oscillations osc(f, T ) := ‖hT (f −Π0f)‖L2(Ω), where Π0

denotes the L2 orthogonal projection onto the piecewise constants.
The comparison result for CFEM and DGFEM reads

(3) ‖∇u−∇uC‖L2(Ω) . ‖u− uDG‖DG . ‖∇u−∇uC‖L2(Ω) + osc(f, T ).

Needless to say that (3), by transitivity, establishes the equivalence of SIPG, NIPG,
and LDG as well as CRFEM. It is remarkable that those results do not rely on any
regularity assumption and hold for arbitrary coarse triangulations and not just in
an asymptotic regime.

Sketch of proof. The inclusion VC(T ) ⊂ VDG(T ) and the triangle inequality yield

‖∇(u− uC)‖L2(Ω) = ‖u− uC‖DG ≤ ‖u− uDG‖DG + ‖uDG − uC‖DG.

Coercivity of aDG (with respect to ‖ • ‖DG), Galerkin orthogonality, boundedness
of aDG, and the property (2) of the averaging operator IC lead to

‖uDG − uC‖2DG . aDG(uDG − uC, uDG − uC) = aDG(uDG − uC, uDG − IC uDG)

. ‖uDG − uC‖DG|uDG|J . ‖uDG − uC‖DG|u− uDG|J.
The combination of the previous estimates proves the first inequality in (3). The
proof of the second inequality follows directly from [11, Section 3.2], which requires
the condition (1). �
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Various generalizations. The equivalence of CFEM and DGFEM immediately
generalizes to its higher-order variants. Let V k

C (T ) := Pk(T )∩V be the conforming
subspace of T -piecewise polynomials of degree at most k ∈ N; V k

DG(T ) := Pk(T )
denotes the corresponding DG space of the same order. Then

‖∇u−∇ukC‖L2(Ω) . ‖u− ukDG‖DG . ‖∇u−∇ukC‖L2(Ω) + osck(f, T )

holds with osck(f, T ) := ‖hkT (f − Πk−1f)‖ where Πk−1 denotes the L2 orthogo-
nal projection onto Pk−1(T ). The hidden generic constants may depend on the
polynomial degree k but not on the mesh size hT .

Often, the large number of degrees of freedom in DGFEM compared to CFEM
is justified by the possibility of using non-conforming meshes that may contain
some finite number of hanging nodes per edge. Define V k

DG(T ) := Pk(T ) for
some non-conforming triangular mesh T . It is shown in [13] that also for such
meshes there exists an averaging operator IC : V k

DG(T ) → V that satisfies (2) with
suitably redefined jump seminorm. The image IC(V

k
DG(T )) = V k

DG(T )∩ V defines
some conforming space V k

C (T ). One might not want to use V k
C (T ) for actual

computations but the corresponding Galerkin solution ukC serves for a comparison.
The proof of (3) remains valid in this setting and establishes the comparison

‖∇u−∇ukC‖L2(Ω) . ‖u− ukDG‖DG . ‖∇u−∇ukC‖L2(Ω) + osck(f, T )

for non-conforming meshes. Hence, SIPG, NIPG, and LDG are equivalent also
on non-conforming meshes and their accuracy is limited by the accuracy that is
provided by its largest conforming subspace.

These new results on DGFEM will be included in an upcoming revised version
of [7]. Similar comparison results can be achieved for 3-dimensional domains,
non-simplicial meshes, or other DG schemes (e.g., WOPSIP [6]). Applications
of comparison results include least-squares finite element methods and equality
of approximation classes for concepts of optimality for adaptive finite element
methods.

The author is supported by the DFG Research Center Matheon Berlin.
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Exponential Convergence of hp-Version Discontinuous Galerkin
Methods for Elliptic Problems in Polyhedral Domains

Dominik Schötzau

(joint work with Christoph Schwab, Thomas Wihler)

In a series of land mark papers in the mid eighties, Babuška and Guo proved that
using hp-version finite element methods for the numerical approximation of elliptic
problems with piecewise analytic data in polygonal domains leads to exponential
rates of convergence in the number of degrees of freedom. The convergence bounds
are typically of the form

‖u− uN‖E ≤ C exp(−b 3
√
N),

where u is the solution of the boundary-value problem, uN its hp-version finite
element approximation, ‖ · ‖E a suitable (energy) norm to measure the error, N
the dimension of the hp-version finite element space, and C and b are constants
independent of N ; see [2, 3, 4] and the references therein.

Starting in the nineties, steps were undertaken to extend these results to poly-
hedral domains in R3; see [1] and the references therein. It was asserted and

confirmed numerically that the errors decay exponentially as C exp(−b 5
√
N), i.e.,

with an exponent that contains the fifth root of N .
In this talk, we prove this convergence rate for hp-version discontinuous Galerkin

(DG) discretizations of the model problem

−∇ · (A∇u) = f in Ω ⊂ R3,

u = 0 on ∂Ω,
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where Ω is an axiparallel Lipschitz polyhedron, A a constant symmetric positive
definite coefficient matrix, and f is a right-hand side which we assume to be
analytic in Ω.

The solution u now exhibits not only isotropic corner singularities as in poly-
gons, but possesses also anisotropic edge and corner-edge singularities near edges
and corners of the domain Ω. In the very recent work [5], the precise behaviour
of these singularities has been characterized in terms of analytic regularity results
in anisotropically weighted Sobolev spaces; this will be a key ingredient in our
analysis.

To numerically resolve these singularities, we shall present a specific construc-

tion of families Mσ = {M(ℓ)
σ }ℓ≥1 of geometrically and anisotropically refined hex-

ahedral meshes in Ω; see [6]. The parameter σ ∈ (0, 1) is the geometric refinement
factor, and the index ℓ represents the number of geometric layers. In Figure 1, we

show an example of an axiparallel geometric mesh M(ℓ)
σ on the Fichera domain

with σ = 0.5. Notice the high aspect ratio elements along edges, which are man-
dated by the regularity of the solution u. Following [6], we shall further introduce

accompanying polynomial degree distributions on each geometric mesh M(ℓ)
σ . We

allow for elemental polynomial degree distributions which are nonuniform between
elements and anisotropic in elements along edges, but whose ratio across interfaces
of hexahedral elements is uniformly bounded. As in the two-dimensional case, the
polynomials degrees are linearly increased away from corners and edges.

Figure 1. Geometric mesh on Fichera domain with σ = 0.5.

The hp-meshes and polynomial degree distributions lead to hp-version DG finite
element spaces of the form

V (M(ℓ)
σ ) =

{
u ∈ L2(Ω) : u|K ∈ QpK (K), K ∈ M(ℓ)

σ

}
,

where QpK (K) denotes the usual mapped tensor-product polynomial space on
elementK, and pK = (pK,1, pK,2, pK,3) is the polynomial degree in each coordinate
direction. The discontinuous Galerkin approximation of our model problem now
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reads as follows:

Find uDG ∈ V (M(ℓ)
σ ) s.t. ADG(uDG, v) =

∫

Ω

fv dx for all v ∈ V (M(ℓ)
σ )

Here, we take ADG(u, v) as an hp-version interior penalty form; cf. [6]. Due to the
presence of anisotropic elements and polynomial degrees, the penalization terms
will have to be defined suitably in terms of discretization parameters perpendicular
to faces.

For our error analysis, we introduce the broken energy norm

‖u‖2DG =
∑

K∈M
(ℓ)
σ

‖∇u‖2L2(K) +
∑

F∈F

α|F ‖[[u]]‖2L2(F ),

where we denote by F the set of all mesh faces, [[·]] signifies the jump across
elements, and α|F is the interior penalty parameter restricted to face F .

We shall show that the DG method is well-defined on geometric mesh families,
that the associated bilinear form ADG is bounded and coercive over the discrete
spaces, and that we have the property of Galerkin orthogonality. With these
results, it follows now straightforwardly that the error in the DG norm can be
bounded by quantities involving only the interpolation error u−Πu, for a properly
chosen elementwise interpolation operator Πu.

First, we shall derive an abstract error estimate of the form

‖u− uDG‖DG ≤ C (EI [u−Πu] + EB[u−Πu] ) .

The first error term EI only involves elements away from the boundary of Ω,
while the second contribution EB is related to elements at the boundary of Ω;
cf. [6]. To bound EI [u − Πu], we shall take Π as an elementwise tensorized hp-
interpolation operator. Hence, combining the regularity results of [5] with classical
hp-approximation techniques yields

EI [u−Πu] ≤ Ce−bℓ.

On the boundary, we take the zero interpolation operator Πu = 0. Since the ele-
ments there are exponentially small and by exploiting the structure of the weighted
spaces in [5], we obtain

EB[u] ≤ Ce−bℓ.

Since N = dim(V (M(ℓ)
σ )) ≃ ℓ5, these two bounds imply the main result of this

talk; see [7]:

Theorem 1. Let Mσ = {M(ℓ)
σ }ℓ≥1 be a geometric mesh family on Ω. Then for

each ℓ ≥ 1, the DG approximation uDG ∈ V (M(ℓ)
σ ) is well-defined, and as ℓ→ ∞,

it satisfies the error bound

‖u− uDG‖DG ≤ C exp
(
−b 5

√
N
)
,

with constants C and b independent of N = dim
(
V (M(ℓ)

σ )
)
.
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Let us conclude by mentioning possible extensions that are the subject of on-
going research: mixed boundary conditions which are considerably more involved
than Dirichlet boundary conditions, more general element mappings and geome-
tries, non-constant coefficients, as well as more complex elliptic boundary-value
problems (such as elasticity).
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Convergence Analysis of an Adaptive Interior Penalty Discontinuous
Galerkin Method for the Helmholtz Equation

Natasha S. Sharma

(joint work with R. H. W. Hoppe)

We are concerned with a convergence analysis of an adaptive Interior Penalty
Discontinuous Galerkin (IPDG) method for the numerical solution of acoustic wave
propagation problems as described by the Helmholtz equation. The mesh adaptiv-
ity relies on a residual-type a posteriori error estimator that does not only control
the approximation error but also the consistency error caused by the nonconfor-
mity of the approach. As in the case of IPDG for standard second order elliptic
boundary value problems [1, 2, 4], the convergence analysis is based on the relia-
bility of the estimator, an estimator reduction property, and a quasi-orthogonality
result. However, in contrast to the standard case, special attention has to be
paid to a proper treatment of the lower order term in the equation containing the
wavenumber which is taken care of by an Aubin-Nitsche type argument for the as-
sociated conforming finite element approximation. This idea, which can be traced
back to [6], has been used in the convergence analysis of adaptive conforming finite
element approximations of general second order elliptic PDE [5] and of adaptive
conforming edge element approximations of the time-harmonic Maxwell equations
[8]. Numerical results are given for a screen problem illustrating the performance
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of the adaptive IPDG method.
The screen problem for the Helmholtz equation (1a)-(1c) describes the propagation
of an acoustic wave with wave number k in the computational domain Ω := ΩR\ΩD

and its scattering at a soft-sound screen ΩD.

−∆u− k2u = f in Ω,(1a)

∂u

∂νR
+ iku = g on ΓR,(1b)

u = 0 on ΓD,(1c)

where f, g, u are complex-valued functions.
Under the following assumption on the data of the problem

f ∈ L2(Ω), g ∈ L2(ΓR),

the weak formulation of (1a)-(1c) amounts to the computation of u ∈ V, V :=
H1

0,ΓD
(Ω) := {v ∈ H1(Ω) | v|ΓD = 0} such that for all v ∈ V it holds

a(u, v)− k2c(u, v) + ik r(u, v) = ℓ(v).(2)

Here, the sesquilinear forms a, c, r and the linear functional ℓ are given by

a(u, v) :=

∫

Ω

∇u · ∇v̄ dx, c(u, v) :=

∫

Ω

uv̄ dx,

r(u, v) :=

∫

ΓR

uv̄ ds, ℓ(v) :=

∫

Ω

f v̄dx+

∫

ΓR

gv̄ ds.

The convergence of the proposed adaptive IPDG method is analyzed by proving
the following contraction property for a weighted sum of the global discretization
error in the IPDG energy norm and the residual-type a posteriori error estimator.

Theorem. Let u ∈ H1
0,ΓD

(Ω) be the unique solution of (2). Further, let Th(Ω)
be a simplicial triangulation obtained by refinement from TH(Ω), and let uh ∈
Vh, uH ∈ VH and ηh, ηH be the associated IPDG approximations solutions and

error estimators, respectively. Then, there exist constants 0 < δ < 1 and ρ > 0,
depending only on the shape regularity of the triangulations and the parameter θ
from the Dörfler marking, such that for sufficiently large penalty parameter α and
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sufficiently small mesh widths h,H the fine mesh and coarse mesh discretization

errors eh := u− uh and eH = u− uH satisfy

aIPh (eh, eh) + ρ η2h ≤ δ
(
aIPH (eH , eH) + ρ η2H

)
.

Numerical Experiments. The benefits of the adaptive IPDG approach have
been illustrated by various experiments in [3, 7]. In particular, the screen problem
(1a)-(1c) has been investigated for f ≡ 0 and an incoming wave g(x, y) = expiky

on the exterior boundary ΓR of the domain. Figure 1 below depicts the real part
of the computed solution and the refined mesh after 11 refinement steps.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

N=6 Level 12,Screen Problem 

Figure 1. Real part of the computed IPDG solution for k = 15
(left); refined mesh for θ = 0.1 in Dörfler marking for k = 15
(center); Real part of the computed IPDG solution for k = 20
(right) .

As expected, refinement is concentrated around the corner singularities present
at the boundary ΓD of the acoustic screen.
For a fixed wavenumber k = 10 and polynomial degrees N = 2 (left), N = 4
(center), and N = 6 (right), Figure 2 displays the convergence history for different
values of the universal constant θ in the Dörfler marking. Since an analytic solution
is not available, the decrease in the error estimator is shown as a function of
the total number of degrees of freedom on a logarithmic scale. As expected, the
benefits of the adaptive approach can be observed for increasing polynomial degree
N. Moreover, higher polynomial degrees can handle higher wave numbers better
at the expense of increased computational work.
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Figure 2. Convergence history of the adaptive IPDG method.
Error estimator as a function of the DOF (degrees of freedom) on
a logarithmic scale: k = 10, N = 2 (left), k = 10, N = 4 (center),
and k = 10, N = 6 (left).
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BDDC for SIPG

Li-yeng Sung

(joint work with Susanne C. Brenner and Eun-Hee Park)

The balancing domain decomposition by constraints (BDDC) method was intro-
duced in [5] for classical finite element methods for second order elliptic boundary
value problems. It is a nonoverlapping domain decomposition algorithm closely
related to the balancing domain decomposition (BDD) algorithm [8] and the finite
element tearing and interconnecting dual-primal (FETI-DP) algorithm [7]. In this
talk we discuss the extension of the BDDC algorithm to the symmetric interior
penalty Galerkin (SIPG) method [6, 11, 1].

Let Ω be a bounded polygonal domain in R2, Ω1, . . . ,ΩJ be a shape regular
nonoverlapping decomposition of Ω and ρ1, . . . , ρJ be positive constants. We con-
sider the following model problem: Find u ∈ H1

0 (Ω) such that

(1)

J∑

j=1

ρ

∫

Ωj

∇u · ∇v dx =

∫

Ω

fv dx ∀ v ∈ H1
0 (Ω),

where ρ = ρj on Ωj for 1 ≤ j ≤ J and f ∈ L2(Ω).
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Let Th be a conforming triangulation of Ω aligned with the boundaries of the
subdomains, Eh be the set of the edges of the triangles in Th, and Vh be the
discontinuous P1 finite element space associated with Th. The SIPG method for
(1) is to find uh ∈ Vh such that

(2) ah(uh, v) =

∫

Ω

fv dx ∀ v ∈ Vh,

where

ah(w, v) =
∑

T∈Th

∫

T

ρ∇w · ∇v dx −
∑

e∈Eh

∫

e

(
{{ρ∇w}} · [[v]] + {{ρ∇v}} · [[w]]

)
ds

+ η
∑

e∈Eh

ρe
|e|

∫

e

[[v]] · [[w]] dx,

|e| is the length of e and η is a (sufficiently large) positive penalty parameter. On
an interior edge e shared by two triangles T±, we define

ρe =
2ρ−ρ+
ρ− + ρ+

, {{ρ∇v}} =
ρ−ρ+
ρ− + ρ+

(∇v− +∇v+) and [[v]] = v−n− + v+n+,

where ρ± = ρ
∣∣
T±

and n± is the outward unit normal of T±. On a boundary edge

they reduce to ρ, ρ∇v, and v.
There are two main difficulties in extending the analysis of BDDC in [9, 10, 4] to

SIPG: (i) the coupling along the interface Γ = ∪J
j=1Γj = ∪J

j=1(∂Ωj \ ∂Ω) prevents
the representation of the bilinear form ah(·, ·) as the sum of bilinear forms defined
on the subdomains; (ii) the discontinuous nature of the finite element functions

prevents the analysis of discrete harmonic functions through the H
1
2 (∂Ωj) norm

of their traces on the boundaries of the subdomains.
To avoid the first difficulty, we introduce a space decomposition

(3) Vh = Vh,C ⊕ Vh,D

where

Vh,C = {v ∈ Vh : [[v]] = 0 on the edges along Γ},
Vh,D = {v ∈ Vh : {{v}} = 0 on the edges along Γ and v vanishes

at all the other nodes of Vh}.
Here the average {{v}} is defined by

{{v}} =
( ρ−
ρ− + ρ+

)
v− +

( ρ+
ρ− + ρ+

)
v+

for an interior edge. The original problem (2) is reduced to a subproblem on Vh,D
and a subproblem on Vh,C . Since the dimension of Vh,D is small and the system
matrix for the subproblem on Vh,D is block diagonal with small blocks of fixed
sizes, the subproblem on Vh,D can be easily solved. Hence we can focus on the
subproblem on Vh,C .
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Let ah,j(·, ·) be defined by

ah,j(w, v) =
∑

T∈Th,j

∫

T

ρ∇w · ∇v dx−
∑

e∈Eh,j

∫

e

(
{{ρ∇w}} · [[v]] + {{ρ∇v}} · [[w]]

)
ds

+ η
∑

e∈Eh,j

ρe
|e|

∫

e

[[v]] · [[w]] dx,

where Th,j is the set of the triangles in Th that are subsets of Ωj and Eh,j is the
set of the edges in Eh that are subsets of Ω̄j \ Γj . Then we have

(4) ah(vC , vC) =
J∑

j=1

ah,j(vC,j , vC,j) ∀ vC ∈ Vh,C ,

where vC,j is the restriction of vC to Ωj .
We now apply the BDDC methodology to construct a nonoverlapping domain

decomposition preconditioner for the problem on Vh,C . Because of the relation
(4), the first difficulty mentioned above disappears and we can show that the
minimum eigenvalue of the preconditioned system is greater than or equal to 1
as in the case of classical finite element methods. The estimate for the maximum
eigenvalue of the preconditioned system requires the equivalence of the energy
norm and a trace norm on the space of discrete harmonic functions so that the
effect of truncating the nodal values along the interface, which appears in many
nonoverlapping domain decomposition algorithms, can be controlled. Here we
encounter the second difficulty mentioned above, namely, the equivalence of the
energy norm and a trace norm is not obvious for discrete harmonic functions
that are discontinuous. Using the techniques developed in [3], we can overcome
this difficulty by showing that for discrete harmonic functions the energy norm
is equivalent to a norm involving continuous piecewise cubic polynomials on the
boundaries of the subdomains constructed from the traces of the discrete harmonic
functions.

With the two difficulties circumvented, we can recover the condition number
estimate that holds for classical finite element methods. Let Ah : Vh −→ V ′

h be the
system operator for (2) and Bh : V ′

h −→ Vh be the preconditioner constructed from
the space decomposition (3) and the BDDC preconditioner for the subproblem
associated with Vh,C . Then we have

κ(BhAh) =
λmax(BhAh)

λmin(BhAh)
≤ C

(
1 + ln

H

h

)2
,

where H represents the typical diameter of a subdomain and the positive constant
C is independent of ρ, h, H , J and η. Details can be found in [2].
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HP-Multigrid as Smoother Algorithm for Higher Order Discontinuous
Galerkin Discretizations of Advection Dominated Flows

J. J. W. van der Vegt

(joint work with S. Rhebergen)

Higher order accurate space-time discontinuous Galerkin methods are well suited
for the solution of the compressible and incompressible Navier-Stokes equations
on time dependent domains, such as occur in fluid structure interaction and free
surface problems [1, 3]. The space-time DG algorithm achieves higher order accu-
racy on general unstructured deforming meshes and is well suited to be combined
with local mesh refinement, resulting in a versatile solution adaptive finite element
method.

The space-time DG method is, however, implicit in time and requires the effi-
cient solution of a generally large system of algebraic equations. This also applies
to DG discretizations in space in combination with an implicit time integration
method. For second order accurate space-time DG discretizations of advection
dominated flows a reasonably efficient algorithm for the solution of the algebraic
system resulting from a space-time DG discretization can be obtained using h-
multigrid in combination with an explicit Runge-Kutta method as smoother [2].
Unfortunately, this is not the case for higher order accurate DG discretizations.
In order to achieve also good multigrid convergence rates for higher order accurate
discretizations we developed the hp-Multigrid as Smoother algorithm (hp-MGS)
[4, 5]. This algorithm combines p-multigrid with h-multigrid at all p-levels, where
the h-multigrid acts as smoother in the p-multigrid. The performance of the hp-

MGS algorithm is further improved using semi-coarsening in combination with a
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new semi-implicit Runge-Kutta method as smoother. A detailed multilevel anal-
ysis of the hp-MGS algorithm is used to obtain more insight into the theoretical
performance of the algorithm. For the multilevel analysis a fourth order accurate
space-time DG discretization of the advection-diffusion equation is used as model
problem. The multilevel analysis shows that the hp-MGS algorithm has excellent
convergence rates, both for low and high cell Reynolds numbers and also on highly
stretched meshes.

The multilevel analysis also gives the opportunity to optimize the Runge-Kutta
smoother in the hp-Multigrid as Smoother algorithm since it provides accurate
predictions of the spectral radius and operator norms of the multigrid error trans-
formation operator. These results then can be used to search for Runge-Kutta
coefficients which minimize the spectral radius of the multigrid error transforma-
tion operator under properly chosen constraints. In particular, it is required that
the Runge-Kutta smoothers are stable at each polynomial level in order to ensure
a sufficiently robust multigrid algorithm. The Runge-Kutta coefficients have been
computed for a wide range of cell Reynolds numbers and during numerical simu-
lations the optimal coefficients are used based on the local cell Reynolds number.
This results in a very efficient multigrid algorithm which is suitable for higher or-
der accurate discretizations of advection dominated flows, including thin boundary
layers and stretched meshes.
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Aspects of the a priori convergence analysis for the low storage
curvilinear discontinuous Galerkin method

Timothy Warburton

Modern many-core processing units, including graphics processing units (GPU),
presage a new era in on-chip massively parallel computing. The advent of proces-
sors with O(1000) floating point units (FPU) raises new issues challenging con-
ventional measures of “optimality” of numerical methods. The ramp up in FPU
counts for each new generation of GPU over the past four years has been accom-
panied by a slower increase in the the memory capacity of the GPU. Even more
importantly the bandwidth for data transfer between the GPU chip and on board
memory has also not increased in line with the number of FPU.

In [2] Warburton introduced the low storage curvilinear discontinuous Galerkin
method (LSC-DG) as an extension to the GPU accelerated DG methods intro-
duced by Klöckner et al [1]. The idea behind LSC-DG is to build customized
approximation spaces for each curvilinear element that removes the dependence of
the elemental mass matrix on the non-constant determinant of the Jacobian of the
coordinate transform between the physical and reference element. This reduces
the memory requirement for meshes with a large number of curvilinear elements.

In this abstract we consider a reference element, with local coordinates (r, s),

given by D̂ = {−1 ≤ r, s; r + s ≤ 0}, in the case of a triangle or D̂ = {−1 ≤
r, s ≤ 1}, in the case of a quadrilateral element. The physical element Dk ⊂ R2

is the image of (xk, yk) ∈
(
SN (D̂)

)2
where SN (D̂) is the space of polynomials of

total degree at most N in the case of triangles and the space of polynomials of
maximum degree N in either variable in the case of quadrilateral elements. The
superscript k emphasizes the specialization of the transformation to element k.

The determinant of the transform between D̂ and Dk is given by Jk = ∂(xk,yk)
∂(r,s) .

The LSC-DG ansatz involves the numerical approximation of the solution on
element k by choosing functions from element specific function spaces

V k =

{
φ : φ =

φ̃√
Jk

for some φ̃ ∈ PN(T̂ )

}
,

i.e. each function is a linear combination of polynomials on the reference element
divided by the determinant of the Jacobian. The following holds for all φ, ψ ∈ V k

(φ, ψ)Dk =
(
φ, ψJk

)
D̂
=

(
φ̃√
Jk
,
ψ̃√
Jk
Jk

)

D̂

=
(
φ̃, ψ̃

)
D̂
,

where (., .) is the usual L2 inner-product on D̂. Thus when we choose a basis for

the polynomial numerator space SN (D̂) on the reference element the associated
mass matrix does not depend on the geometry of the curvilinear element.

Numerical experiments presented by Warburton [2] indicate that the novel
choice of approximation spaces V k does not greatly impact accuracy when com-
pared with the standard DG method. As a first step in a full a priori analysis
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of the LSC-DG method we sketch an L2 approximation result when using these
spaces. Given u ∈ Hs(Dk) we define a weighted L2 projection operator Πk by

Πku =
1√
Jk

Π̂
(
u
√
Jk
)
,

where Π̂ is the reference element L2 projection operator defined implicitly by

(φ, Π̂u)D̂ = (φ, u)D̂ for all φ ∈ SN (D̂).

The weighted projection operator error can be estimated by observing
∥∥u−Πku

∥∥
Dk =

∥∥∥u
√
Jk − Π̂

(
u
√
Jk
)∥∥∥

D̂
≤ C

∣∣∣u
√
Jk
∣∣∣
HN+1

2 (D̂)
,

which follows from the Bramble-Hilbert lemma [4] applied on the reference ele-

ment D̂ with generic constant C independent of u
√
Jk. We next assume that the

elements are quasi-regular and that the following scaling argument holds
∣∣∣u
√
Jk
∣∣∣
HN+1

2 (D̂)
≤ ChN

∥∥∥u
√
Jk
∥∥∥
HN+1

2 (Dk)
,

for representative element size h. Applying standard arguments we separate the
Sobolev norm on the right hand side into the product of two norms to obtain

∥∥u−Πku
∥∥
Dk ≤ ChN

∥∥∥
√
Jk
∥∥∥
HN+1

∞ (Dk)
‖u‖HN+1

2 (Dk) .

This suggests an extra condition for asymptotically optimal order approximation:
that the first norm on the right hand side scales as

(1)
∥∥∥
√
Jk
∥∥∥
HN+1

∞ (Dk)
≈ Ch.

To examine the relevance of this constraint we include a numerical convergence
study for transverse mode, time-domain Maxwell’s equation in a perfectly electri-
cally conducting cavity. We used two sequences of quadrilateral meshes inspired
by Arnold, Boffi, & Falk [3] as shown in Figure 1.

a)

b)

Figure 1. Sequence of meshes used to test convergence rates of
standard DG and LSC-DG. Top: meshes obtained through self-
similar refinement. Bottom: meshes obtained through bisection.

The first sequence of meshes is generated through self-similar refinement (Figure
1a). In Figure 2a we show that the standard DG method converges as expected
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but LSC-DG convergence stalls on this mesh sequence. The quadrilateral elements
used have non-constant Jacobians and it is straightforward to show that for the
self-similar sequence of elements shaded blue in Figure 1a satisfy∥∥∥

√
Jk
∥∥∥
HN+1

∞ (Dk)
≈ Ch−N ,

strongly violating the sufficient geometric scaling constraint (Equation 1) and the
initial condition is approximated in a sub-optimal way.
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Figure 2. Numerical convergence of standard DG (dashed lines)
and LSC-DG (solid lines) of the error in the electric field for a
two-dimensional transverse mode time-dependent Maxwell’s sim-
ulation. a) convergence on sequence of self-similar meshes. b)
convergence on meshes obtained through bisection.

In the second sequence of meshes obtained through bisection, it is straightfor-
ward to show that the element geometry constraint of Equation 1 is satisfied for
the representative blue elements highlighted in Figure 1b. The results for this ex-
periment shown in Figure 2b reveal that the standard DG and LSC-DG converge
at similar rates with h-refinement using bisection.

In summary, these and previous results reported in [2] prompt a conjecture:
assuming the exact solution satisfies usual regularity assumptions of standard DG
analysis and that the sequence of meshes satisfy the geometric scaling constraint
of Equation 1 then LSC-DG will converge at the same order as standard DG.
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Discontinuous Galerkin for Geophysical Applications

Mary Fanett Wheeler

We discuss discontinuous Galerkin (DG) algorithms for modeling three important
and complex geophysical applications. These include: (1) domain decomposition
algorithms for elasticity and poroelasticity; (2) a linear slip model for elastic wave
propagation; (3) two phase flow with DG-DG IMPES using H(div)-projection and
enforcing continuous capillary pressure.

The coupling of geomechanics and multiphase flow is an important research
area for both energy and environmental applications. In stress-sensitive reser-
voirs, variation of the effective stress resulting from fluid production may induce
deformation of the rocks and cause permeability reduction. This effect may signif-
icantly reduce expected productivity. In other applications, when CO2 is injected
in saline aquifers, the impact on uplifting is still not completely understood. Here
we discuss a parallel domain decomposition method for solving both linear elas-
ticity and poroelasticity systems. In linear elasticity [1], data are transmitted by
jumps, as in the discontinuous Galerkin method, and mortars are introduced at
the interfaces to dissociate the computation between neighboring subdomains. A
decoupling algorithm condenses the unknowns on the interface. The matrix of
the system is constructed by parallel computation. Numerical experiments are
presented to confirm the theoretical convergence rates. In poroelasticity [2], we
build upon this work using domain decomposition, by coupling a time-dependent
poroelastic model in a localized region with an elastic model in adjacent regions.
Each model is discretized independently on non-matching grids and the systems
are coupled using DG jumpso n the interface. The unknowns are condensed on the
interface, so that at each time step, the computation in each subdomain can be
performed in parallel. We also propose an algorithm where the computation of the
displacement is time-lagged. We show that in each case, the matrix of the interface
problem is positive definite. Error estimates are established for this scheme. This
work was done in collaboration with V. Girault, G. Pencheva, and T. Wildey.

In the second application [3], we formulate and implement a discontinuous
Galerkin method for elastic wave propagation that allows for discontinuities in
the displacement field to simulate fractures or faults using the linear-slip model.
We show numerical results using a two dimensional model with one linear-slip
discontinuity and different frequencies. The results show a good agreement with
analytic solutions. This work was done in collaboration with J. De Basabe and
M. Sen.

In the third application [4], we discuss a slightly compressible two-phase flow in
porous media based on an iteratively coupled DG-DG scheme which includes cap-
illary pressure that varies over fault blocks. The problem is solved using ’implicit
pressure, explicit saturation’-method (IMPES), and the convergence is acceler-
ated with iterative coupling of the equations. We use discontinuous Galerkin to
discretize both the pressure and the saturation equations. We propose two im-
provements, namely projecting the flux to a mass conservative H(div)-space and
penalizing the jump in capillary pressure in the saturation equation. We show
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that these modifications stabilize the method. We also discuss the need and use
of slope limiters. The method is validated with numerical examples. This work
was done in collaboration with T. Arbogast, M. Juntunen, and J. Pool.
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A Posteriori Error Analysis for Linear Parabolic PDE based on
hp-Discontinuous Galerkin Time-Stepping

Thomas P. Wihler

(joint work with M. Georgoulis, O. Lakkis, D. Schötzau)

In this work we are interested in the numerical solution of linear parabolic evolution
problems of the form

u′(t) + Au(t) = g(t), t ∈ (0, T ), u(0) = u0,

with given data

u0 ∈ H, g ∈ L2((0, T );X⋆).

Here,X andH are Hilbert spaces with dense embeddingX →֒ H , and A : X → X⋆

is a linear elliptic operator that is bounded and coercive:

|a(u, v)| ≤ α‖u‖X‖v‖X ∀u, v ∈ X,

a(u, u) ≥ β‖u‖2X ∀u ∈ X.

This problem has a unique solution satisfying

u ∈ L2((0, T );X) ∩ C0([0, T ];H), u′ ∈ L2((0, T );X⋆),

with continuous dependence on the data.
In order to discretize the above initial-value problem in time, the use of Galerkin

time-stepping methods is proposed. They are based on variational formulations
and provide piecewise polynomial approximations in time. The approximation
can be chosen to be either continuous or discontinuous at the time discretization
points, thereby giving rise to the so-called continuous Galerkin (cG) and discon-
tinuous Galerkin (dG) time-stepping methods, respectively. For both approaches,
the discrete Galerkin formulations decouple into local problems on each time-step,
and the discretizations can therefore be understood as implicit one-step schemes.
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Due to its dissipative nature, the dG time-stepping scheme has proved to be par-
ticularly attractive in the context of parabolic PDEs. The variational character
of Galerkin time-stepping methods allows for arbitrary variation in the size of the
time-steps and the local approximation orders. Therefore, they can be extended
naturally to hp-version Galerkin schemes. The main feature of these hp-methods is
their ability to approximate smooth solutions—with possible local singularities—
at high algebraic or even exponential rates of converge. In particular, exponential
convergence can be achieved in the numerical approximation of problems with
start-up singularities.

Choosing, on each time step Im = (tm−1, tm), 0 = t0 < t1 < t2 < · · · < tm−1 <
tm < · · · < tM = T , a conforming spatial subspace Xm ⊂ X , dim(Xm) < ∞, and
a polynomial degree rm > 0 for the discretization of the time variable, the dG
time-stepping method is to find a solution UdG|Im ∈ Prm(Im;Xm) such that

∫

Im

{(U ′
dG, v)H + a(UdG, v)} dt+ (UdG(t

+
m−1), v(t

+
m−1))H

=

∫

Im

〈g, v〉X⋆×X dt+ (UdG(t
−
m−1), v(t

+
m−1))H

for any v ∈ Prm(Im;Xm). In order to obtain a posteriori error estimates for
this scheme several techniques have been proposed in the literature. A recent ap-
proach [1] is based on an appropriate time reconstruction of the dG solution which
allows the dG variational formulation to be rewritten in strong form, and subse-
quently, enables the application of natural energy arguments to obtain suitable
error estimates. This idea has been worked out in the hp-context in the paper [2],
where a posteriori error estimates for semi-discrete hp-version Galerkin schemes
(discontinuous dG and continuous cG time stepping) of linear parabolic PDE have
been derived within a fully abstract Hilbert space setting. They are completely
explicit with respect to the size of the time-steps and polynomial degrees.

In our current work, a posteriori error estimates for the full-discretization in
time and space of linear parabolic problems by combined hp-dG time stepping
and conforming spatial FEM, respectively, are investigated in [3]. Again, the time
discretization is dealt with by means of the above-mentioned time reconstruction;
moreover, the spatial variables are analyzed with the aid of an elliptic reconstruc-
tion. This yields the following strong form for the full-discrete problem on each
time step Im = (tm−1, tm):

Û ′
dG(t) + AŨdG(t) = Πmg(t), t ∈ Im.

Here, ÛdG and ŨdG are parabolic and elliptic reconstructions, respectively, of
the numerical solution UdG|Im . Moreover, Πm : X⋆ → Xm is a suitable L2-
projection. Now, subtracting the exact problem and applying energy techniques,

this approach allows to derive computable bounds for the errors ‖u−ÛdG‖L2(Im;X)
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and ‖u− ŨdG‖L2(Im;X). Then, we obtain

‖u− UdG‖L2(Im;X) ≤ ǫ‖u− ÛdG‖L2(Im;X) + (1− ǫ)‖u− ŨdG‖L2(Im;X)

+ ǫ‖UdG − ÛdG‖L2(Im;X) + (1− ǫ)‖ŨdG − UdG‖L2(Im;X)

for any ǫ ∈ (0, 1). The last two terms on the right-hand side of the above estimate
are time and space reconstruction errors of the numerical solution, respectively.
For the former term a simple explicit representation in terms of the discontinuity
jumps over time steps has been derived in [2]; the latter term can be bounded by
means of a posteriori error techniques for elliptic PDE. In summary, we obtain a
computable L2(X)-type a posteriori error bound for the fully discrete dG-in-time-
FEM-in-space method on each time step. In our future work, suitable adaptive
procedures, which will be based upon the a posteriori error estimates derived here,
will be investigated.
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Finite Element Methods for the Displacement Obstacle Problem of
Clamped Plates

Yi Zhang

(joint work with Susanne C. Brenner, Li-yeng Sung, Hongchao Zhang)

The displacement obstacle problem of clamped plates is a classical example of a
fourth order variational inequality. In this talk we present a unified convergence
analysis for C1 conforming finite element methods, classical nonconforming finite
elements methods and discontinuous Galerkin methods for this problem.

Suppose Ω ⊂ R2 is a convex polygonal domain, f(x) ∈ L2(Ω) and ψ(x) ∈
C2(Ω)∩C(Ω̄) such that ψ(x) < 0 on ∂Ω. We formulate the displacement obstacle
problem as the following variational inequality: Find u ∈ K such that

a(u, v − u) ≥ (f, v − u) ∀v ∈ K,(1)

where

K = {v ∈ H2
0 (Ω) : ψ ≤ v in Ω},(2)

a(w, v) =

∫

Ω

D2w : D2vdx =

∫

Ω

2∑

i,j=1

wxixjvxixj dx,(3)
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and (·, ·) denotes the L2 inner product.
It is well known that the problem (1) possesses a unique solution (cf. [12, 11]).

However, the solution only belongs toH3(Ω)∩C2(Ω) on a convex polygonal domain
(cf. [10, 7, 8]). Since the solution does not have H4 regularity, we cannot obtain
the optimal error estimate if we use the complementarity form of the variational
inequality in the convergence analysis. In the following, we will introduce a new
approach to prove the optimal error estimate.

First, we consider the finite element methods for (1). Let Vh be a finite element
space and ah(·, ·) be a symmetric bilinear form such that it is bounded and coercive
on Vh. The discrete obstacle problem is: Find uh ∈ Kh such that

(4) ah(uh, v − uh) ≥ (f, v − uh) ∀v ∈ Kh,

where

Kh = {v ∈ Vh : ψ(p) ≤ v(p) ∀p ∈ Vh},(5)

and Vh is the set of the vertices of the triangulation.
In general, the sets Kh and K are not subsets of each other. To connect Kh

and K, we make use of the enriching operator Eh (cf. [2, 3]). In fact, Eh maps
functions from the finite element space Vh to the Sobolev space H2

0 (Ω). Moreover,
it preserves function values at the vertices and also has the correct approximation
properties. By introducing

(6) K̃h = {v ∈ H2
0 (Ω) : ψ(p) ≤ v(p) ∀p ∈ Vh}

we can connect Kh and K through the relation EhKh ⊂ K̃h and K ⊂ K̃h.
It leads us to consider an auxiliary obstacle problem: Find ũh ∈ K̃h such that

(7) a(ũh, v − ũh) ≥ (f, v − ũh) ∀v ∈ K̃h.

We show that the auxiliary solution ũh converges uniformly to u. Combining this
with the fact that K ⊂ K̃h, ‖u− ũh‖H2(Ω) can be bounded by the square root of
the distance between ũh and K (cf. [1]). In [4], we show the distance between ũh
and K is of order O(h2). Hence ‖u− ũh‖H2(Ω) is bounded by O(h).

By using the approximation properties of the enriching operator and the prop-
erties of the auxiliary obstacle problem, we show in [4] that the convergence rate is
O(h) for C1 conforming finite element methods, classical nonconforming finite el-
ements methods and C0 interior penalty methods. The results can be extended to
two-sided obstacle problems on general polygonal domains with general Dirichlet
boundary conditions (cf. [5, 6]).
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