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Abstract. Control theory is an interdisciplinary field that is located at the
crossroads of pure and applied mathematics with systems engineering and
the sciences. Its range of applicability and its techniques evolve rapidly with
new developments in communication systems and electronic data processing.
Thus, in recent years networked control systems emerged as a new fundamen-
tal topic, which combines complex communication structures with classical
control methods and requires new mathematical methods. A substantial num-
ber of contributions to this workshop was devoted to the control of networks
of systems. This was complemented by a series of lectures on other current
topics like fundamentals of nonlinear control systems, model reduction and
identification, algorithmic aspects in control, as well as open problems in
control.
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Introduction by the Organisers

Control theory is now a classical field in mathematics which is permanently evolv-
ing due to new developments in the engineering sciences. The advent of new com-
munication means like wireless signal transmission, or the internet has led to the
development of networked control systems, which combine a possibly large num-
ber of classical control systems in a digital network. Control variables, measured
variables and other signals are transmitted between the subsystems via commu-
nication channels. Properties of these channels like capacity and bandwidth, the
protocol, or transmission delays and losses thus affect the possibility to control the
system. On the other hand, wireless connections between distantly located parts
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of a system offer new strategies for control and monitoring. New mathematical
questions which arise in this context are, for instance, related to the amount of
information needed to control a system, the role of the toplogy of the connecting
graph, the differences between event-driven and synchronized communication or
centralized and decentralized control, as well as the statistical properties of the
channel.

The field therefore covers a wide variety of topics, ranging from fundamental
mathematical aspects and new control paradigms in the sciences to real world engi-
neering applications of industrial relevance. In particular, it has deep connections
to different branches of pure and applied mathematics, including e.g. ordinary and
partial differential equations, operator theory, real and complex analysis, prob-
ability theory, numerical analysis, discrete mathematics, stochastics as well as
algebraic and differential geometry.

The workshop Control Theory: Mathematical Perspectives on Complex Net-
worked Systems brought together about 45 internationally active researchers from
Austria, Belgium, France, Germany, Israel, Italy, The Netherlands, Sweden, Swit-
zerland, the United Kingdom and the United States, with both a mathematical
and systems engineering background. In order to address the new challenges posed
by the new communication structures, a special focus of this workshop has been
on networked control systems. This was complemented by challenging systems en-
gineering topics. In all these talks, the interaction of mathematical methods from
nonlinear dynamics and control with those from discrete mathematics (especially
graph and information theory) played a crucial role. The program comprised 24
talks on the theory and applications of control theory. The lengths of the talks
were different, between 30 and 45 minutes, where always enough time (at least
about 10 minutes) was granted for the discussion. The lectures were organized
into rather coherent sessions on the topics:

• Networks and Control
• Fundamentals of Nonlinear Control Systems
• Model reduction and Identification
• Algorithmic Aspects in Control
• Fundamental Control Problems

In addition to these lectures and the very active discussions throughout the
workshop there was an informal open problem session on Tuesday evening, in which
10 participants presented open mathematical problems in control. Furthermore,
as a new format, we implemented poster sessions on Wednesday and Thursday
evening to have a more informal forum to discuss recent results. These sessions
were accompanied by ‘poster-teaser-sessions’, where each presenter of a poster
had about ten minutes to introduce the audience to the topic of the poster and
to answer first questions. In particular the younger participants used this chance
to present their work very actively. The extended abstracts of all lectures and
posters are collected in this report.

The traditional Wednesday afternoon walk to St. Roman was replaced by a
walk to Wolfach, where the participants enjoyed the exciting new MIMA-museum.
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Synchronization in networks of linear parameter-varying systems . . . . . . 715

Malcolm C. Smith
Classical Network Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 716

Héctor J. Sussmann
Universal regularity results for open-loop optimal controls . . . . . . . . . . . . . 717



Control Theory: Mathematical Perspectives on Complex Networked Systems 665

Patrick Thiran (joint with Florence Bénézit, Martin Vetterli)
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Abstracts

Dynamics of Chemical Reaction Networks

David Angeli

Complex interactions of chemical species are a key ingredient of life when regarded
at the cellular level. The goal of Chemical Reaction Networks Theory is to model
such interactions by means of dynamical systems and to understand the quali-
tative features of their behaviour. We discuss some results in this area, with a
focus on recent advances in the field of monotone chemical reaction networks and
persistence analysis.
A Chemical Reaction Network can be formally defined as a list of reactions of the
following type:

(1)
∑

i∈S

αijSi →
∑

i∈S

βijSi

where i ranges on some finite set S = {1, 2, . . . , ns}, j ranges in R := {1, 2, . . . , nr}
and the Si are symbols denoting the chemical species involved in the network. The
αij and βij are non-negative integers called the stoichiometry coefficients of the
network. Such coefficients define the structure of the network and are normally
arranged in a matrix Γ, defined according to [Γ]ij = βji − αji which is referred to
as the stoichiometry matrix of the reaction.

In order to associate a dynamical description of the network to the list of reac-
tion in (1) an expression for the individual rates of reaction is needed. In particular,
this is a function R : [0,+∞)ns → [0,+∞)nr which maps species concentrations
to rates of reactions. Once kinetics are specified, an ODE model of the network
(1) is defined as follows:

ẋ(t) = ΓR(x)

where the state x ∈ [0,+∞)ns is the vector of species concentrations.
A natural way to represent chemical networks is by means of bipartite graphs.

Nodes are associated to either chemical species and chemical reactions, an arc
means that a particular species is either involved as a reactant and/or a product
in a given reaction. It is an interesting question to understand the subtle links
between the topological features of the graph associated to some network and its
dynamics. We will discuss results related to monotonicity of chemical reaction
networks (when regarded as dynamical systems on partially ordered state spaces,
[1]) and with persistence (that is to the asymptotic availability of all species when
initial conditions are selected in the interior of the positive orthant [2]).

References

[1] D. Angeli, P. de Leenheer, and E.D. Sontag, “Graph-theoretic characterizations of mono-
tonicity of chemical networks in reaction coordinates”, J. Mathematical Biology, 61, (2010),
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A stochastic approach to control of refrigerator appliances for
frequency regulation

David Angeli

(joint work with A. Kountouriotis)

Dynamic demand management is a promising research direction for improving
power system resilience. In a power network, the system frequency (mains fre-
quency) can be interpreted as a measure of the balance between demand (load)
and supply (generation), with perfect balance corresponding to the nominal value
of 50Hz. In cases where demand exceeds the available supply, the frequency drops
below 50Hz, while excess supply leads to frequency rising above 50Hz. As a re-
sult, system frequency continuously fluctuates around the nominal level, and the
system operator ensures that the balance between demand and supply is continu-
ously maintained, stabilizing the frequency within narrow bands around 50Hz, by
regulating the available supply.

In order for such (supply) regulation to be possible, however, it is required
that ‘frequency response services’, as well as sufficient reserves, are included in
the system This is essential not only for instantaneous frequency balancing, but,
more importantly, for the ability to respond to sudden power plant failures, which
would otherwise lead to severe blackouts.

These ‘support’ services, however, significantly add to the cost of power gener-
ation, and any method which manages to reduce the magnitude of these services,
without sacrificing system stability, is of significant importance. “Dynamic de-
mand control” is a recent research direction, which focuses on the possibility of
using frequency responsive loads, so as to reduce the amount of frequency response
and reserve services that are required.

In this poster, we consider the problem of managing power demand by means
of “smart” thermostatic control of domestic refrigerators. In this approach, the
operating temperature of these appliances, and thus their energy consumption, is
modified dynamically, within a safe range, in response to mains frequency fluctu-
ations.

An individual refrigerator is represented as a hybrid automaton, capable of
switching between 2 states (an ON state and an OFF states). Simple affine first
order equations are assumed to describe the evolution of the temperature within
the two states:

Ṫ = −α(T − TON) Ṫ = −α(T − TOFF )

where α is a coefficient which characterizes the thermal dispersion of the refrig-
erator, TOFF is the ambient temperature, and TON is the temperature that the
refrigerator would reach asymptotically if always ON.

In order to compensate for frequency fluctuations dynamically we define a sto-
chastic and frequency dependent switching policy. In particular, individual re-
frigerators adopt a Markovian switching policy (that is they behave as stochastic
hybrid automata), in which transition rates are frequency dependent. Suitable
design of such transition rates λ1 and λ2 can provide desirable stability features
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for the closed-loop system as well as avoid potential synchronization issues arising
from deterministic switching laws.

The results illustrated in the poster can be found in greater detail in [1].

References

[1] D. Angeli and A. Kountouriotis, A Stochastic Approach to ‘Dynamic-Demand’ Refrigerator
Control, IEEE Trans. on Control Systems Technology, DOI: 10.1109/TCST.2011.2141994,
in press

Model reduction of parametrized systems

Thanos Antoulas

Abstract. This talk was dedicated to the approximation of linear dynamical sys-
tems which depend on parameters. The main tool is the Loewner matrix frame-
work which was recently extended to deal with parameters. This yields an all
important tradeoff between accuracy of fit and model complexity.

Keywords: Model order reduction, parametrized dynamical systems, Loewner ma-
trices, multivariate functions, interpolation, approximation, accuracy, model com-
plexity.

Some details

Dynamical systems are a principal tool in modeling and control of physical
processes in engineering, economics, the natural and social sciences. In many
areas, direct numerical simulation (DNS) has become essential for studying the rich
complexity of these phenomena and for the design process. Due to the increasing
complexity of the underlying mathematical models, unmatched by the increase
in computing power, model reduction has become an indispensable tool in order
to facilitate or even enable simulation, control, and optimization of dynamical
systems. Here, we focused on parametrized models where the preservation of
parameters as symbolic quantities in the reduced-order model is essential. We
pursued an approach which starts from empirical data and employs advanced
interpolation techniques, overcoming limitations of standard projection methods.
The empirical data may be provided by physical experimentation or by DNS.
Our theme consisted in constructing reduced-order models satisfying interpolation
conditions. This resulted in computationally efficient model reduction algorithms.

Many of the model reduction approaches which have been proposed can be
interpreted as Petrov-Galerkin projections (see e.g. [1, 4]). The first class is that
of SVD-based methods, and originates in systems and control. The second class,
known as Krylov approximation methods, have their roots in numerical linear
algebra. Krylov methods are moment matching methods and thus automatically
provide Padé or Padé-type approximations. For an overview of these appraches
to model reduction, see [1]. More recent developments are based on a further
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interpretation of Krylov methods as rational interpolation. Such methods can
also be used for the conservation of structural properties [4].

In the use of mathematical models for applications, an important aspect is
that such models may depend on parameters. This allows the use of the same
model in simulations, for instance under changing material properties, geometric
characteristics or varying boundary conditions. This is particularly important at
the stage of design and optimization. Moreover, often parameters are affected by
measurement noise and are thus uncertain. An uncertainty quantification thus
also requires the possibility to vary the parameters in the model. Therefore, the
preservation of parameters as symbolic variables in the reduced model becomes an
important aspect for the use of model reduction in applications.

In this talk we proposed an approach to model reduction of parameter depen-
dent systems based on measured data. In the case of systems not depending on
parameters, it was shown in [2, 3], that the Loewner matrix is a powerful tool
which allows the construction of models and reduced models from measured data,
while providing a trade-off between accuracy of fit and model complexity. This
approach was recently extended to the parameter dependent case (for details see
[5]). The talk was built around this paper.
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[4] A.C. Antoulas, C.A. Beattie, and S. Gugercin, Interpolatory model reduction of large-scale
systems, in Efficient modeling and control of large-scale systems, K. Grigoriadis and J.
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Some Mathematical Formulations of Poblems in Network Control

Roger Brockett

1. In some cases the most important factor limiting the performance of a dis-
tributed control system is not the availability of computational power but rather
the availability of communication channels of suitable capacity which can be used
to establish feedback paths between the sensors, the control computer and the
actuators. This may be modeled as follows. We assume that at each sampling in-
stant there is a state x consisting of the state of all the individual physical devices
together with the values of all past measurements currently in memory. There is
also a set of linear functions, 〈ci(t), x(t)〉, i = 1, 2, ..., p defining those function of
x(t) that are available at time t for use by the control computer. We can think of



Control Theory: Mathematical Perspectives on Complex Networked Systems 671

the ci(t) as describing the availability of sensed information. We also have a set of
vectors b1(t), b2(t), ..., bm(t) which enter into the overall evolution equation

x(t+ h) = Ax(t) +

m∑

i=1

bi(t)ui(t)

and serve to the possible control actions one can take at a given time. We can
think of these as describing the extent to which the desired control policy is deliv-
erable. We postulate that each communication event, such as the request to send
the value of a variable associated with one of the sensors to one of the actuators
takes a specific time, τ . We have in mind that τ is much larger than the sampling
times associated with the individual sensors and actuators. Pick a periodic com-
munication sequence of period p which specifies the sequence in which information
is delivered. For a given linear system with an n-dimensional state vector, each
choice of communication sequence of period pτ , defines an affine subspace of the
space of all real pn × pn matrices. Each matrix in this space corresponds to a
specific choice of feedback gains; the mapping from the space of gains to the space
of matrices takes the form

k 7→ A0 +
∑

kiAi

The eigenvalues of the product of matrices in this subspace determine the rate of
growth or decay of the solutions of the closed-loop system as described by Floquet
theory. This leads to a novel eigenvalue placement problem.

2. The collective and individual behaviors of the elements of a set of identical
units are investigated from the point of view of their response to a coordination
signal broadcast by a leader. In terms of the model used here, we show that for such
systems nonlinearity plays a critical role in making this type of control effective.
A new method for establishing controllability of nonlinear, replicated systems is
given and a flock stabilization problem, depending strongly on nonlinear effects,
is solved. More details are to be found in reference [6] below.

3. For the third topic of the lecture we described problems in automatic control
related to the Liouville equation. The mathematical problems can be interpreted
either in terms of designing a feedback controller which effectively controls a par-
ticular system over repeated trials corresponding to different initial conditions or,
alternatively, using a broadcast signal to simultaneously control many copies of a
particular system. In many cases a certain continuum limit can be formulated and
in this way we are led to problems involving the control of an associated Liouville
equation.

Given an ordinary differential equation, ẋ(t) = f(x(t)) defined on a manifold
X , and having the property that there exists a unique solution through each point,
there is an associated partial differential equation which describes the evolution
of an initial density of points. Let ρ(0, ·) be the initial density, thought of as a
probability density for x(0). As such it is nonnegative and normalized. Under
mild additional assumptions, the first oder equation

∂ρ(t, x)

∂t
= −

〈
∂

∂x
, f(x)ρ(t, x)

〉



672 Oberwolfach Report 12/2012

then describes the evolution of ρ. We can think of this as Cauchy problem. Ob-
viously the properties of the Liouville equation reflect quite closely the properties
of the underlying ordinary differential equation. However, the fact that in the Li-
ouville formulation the control term u(t, x) is operated on by derivative operators
means that a feedback implementation, i.e., expressing u as a function of x, differ
greatly from open loop implementation in which u is expressed as a function of t
alone. This observation can serve as the starting point for the rationalization of
some of the many benefits of feedback control.
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Hierarchical clustering of dynamical networks using a saddle-point
analysis

Mathias Bürger

(joint work with Daniel Zelazo and Frank Allgöwer)

We analyze the phenomenon of cluster synchronization in dynamical networks.
Cluster synchronization, or clustering, is the phenomenon that in a network of dy-
namical systems the network partitions into several groups and all systems within
the same group agree upon a common state [1]. We consider a novel class of
nonlinear dynamic networks that exhibit clustering in their asymptotic behavior.
The distinguishing features in the model we adapt are (i) the uncoupled node dy-
namics have distinct equilibria, and (ii) the interaction rules between neighboring
systems are bounded. We show that the network synchronizes for sufficiently large
saturation bounds, but partitions into clusters otherwise.

A main contribution of our work is to establish a connection between the as-
ymptotic behavior of the dynamic network and the solution of a static saddle-point
problem. We show that the solution of the saddle-point problem, corresponding to
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the Lagrange-dual of a network optimization problem with additional constraints
on the dual variables, exhibits a clustered structure. If the bounds on the dual
variables are chosen as the saturation levels of the interaction functions of the
dynamic network, then both clustering structures are equivalent, and the saddle-
point problem can be used to predict the clustering structure of the dynamic
network.

The relationship between the behavior of the dynamical network and the static
optimization problem allows us to explain the connection between the clustering
structure and the topology of the underlying graph, and builds a bridge between
dynamic synchronization [2] and static community detection or graph partition-
ing [3]. We show that the network partitions according to a precise optimality
criterion: it maximizes the ratio of the “power imbalance” between the partitions
over the number of edges connecting them. Using these results, we can explain
exactly how our setup is related to the combinatorial min s-t-cut problem and the
“inhibiting bisection problem”, which is used in the literature for power network
analysis.

A simple variation of some network parameters leads to different clustering
structures, which can be shown to be hierarchically ordered. In this way, a varia-
tion of the parameters can be used to identify the complete hierarchical clustering
structure of a network. Our theoretical results are applied to detect the hierarchi-
cal structure of the IEEE 30-bus power system, a benchmark system widely used
in power network analysis.
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Minimal Bit Rates and Entropy for Stabilization

Fritz Colonius

An approach is presented for the study of minimal bit rates for exponential
stabilization of control systems in continuous time. Upper and lower bounds for
the stabilization entropy are derived. In particular, for linear systems, a formula
is given in terms of the real parts of eigenvalues. Furthermore, extensions to other
control problems are discussed. In particular, entropy for the disturbance decou-
pling problem and controlled invariant subspaces is considered. The relations of
the concepts of entropy for control problems introduced here is put into perspective
by discussing the relation to topological entropy of flows.



674 Oberwolfach Report 12/2012

Ensemble Controllability of Bilinear Systems

Gunther Dirr

During the last decade, the concept of ensemble controllability emerged and devel-
oped in the field of quantum control. Depending on the underlying applications,
the corresponding models range from finite dimensional large-scale to infinite di-
mensional control systems. Either way, one is interested in simultaneously con-
trolling an ensemble of identical systems via a single control signal. Thereby, the
ensemble members are assumed to obey in principle the same dynamical law, yet
model parameters may vary individually. Such control scenarios arise in many
different areas such as

• control of spin ensembles (in NMR spectroscopy and imaging) [1, 2, 6],
• flock/formation control by a leader [3],
• “open loop” robust control for models with parameter uncertainties [5],
• control of bilinear systems with continuous spectrum [2].

In the talk, we focus on ensembles of bilinear systems evolving on semisimple
(matrix) Lie groups. We present a complete characterization of simultaneous ac-
cessibility which for compact groups guarantees simultaneous controllability.

General setting. Consider a smooth manifold M and an ensemble of smooth
control systems

(Σp) ẋ = fp(x, u), u ∈ U ⊂ R
m, p ∈ P,

evolving on M , where P can be in principle any set – finite, countable, etc.

Problem. What can be said about the controllability of the “joint system” under
the assumption that all individual systems (Σp) are controllable?

For the finite case, i.e. for P := {1, . . . , s} the “joint system” is simply defined on

the product manifold M̂ :=M × · · · ×M by

(Σ̂) ˙̂x :=



ẋ1
...
ẋs


 = f̂(x̂, u) :=



f1(x1, u)

...
fs(xs, u)


 , u ∈ U ⊂ R

m.

Definition 1. (1) An ensemble (Σ1), . . . , (Σs) is called simultaneously acces-

sible if the joint system (Σ̂) is accessible.
(2) An ensemble (Σ1), . . . , (Σs) is called simultaneously controllable (or en-

semble controllable) if the joint system (Σ̂) is controllable.

Example. Let G ⊂ GLn(R) denote a matrix Lie group and g ⊂ gln(R) its Lie
algebra, e.g. G = SOn and g = son. Consider an ensemble of bilinear systems

(Σp) Ẋ = (Ap + uBp)X, u ∈ U ⊂ R, p = 1, . . . , s
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with X ∈ G and Ap, Bp ∈ g. Then the joint system on G× · · · ×G can easily be
pictured as block-diagonal system in GLn·s(R) as follows

(Σ̂)




Ẋ1 0 ··· 0

0 Ẋ2

. . .
...

...
. . .

. . . 0

0 ··· 0 Ẋs


 =







A1 0 ··· 0

0 A2

. . .
...

...
. . .

. . . 0

0 ··· 0 As


+ u




B1 0 ··· 0

0 B2

. . .
...

...
. . .

. . . 0

0 ··· 0 Bs










X1 0 ··· 0

0 X2

. . .
...

...
. . .

. . . 0

0 ··· 0 Xs


 .

Note that the set of all block-diagonal matrices of the above type constitutes a
semisimple Lie subalgebra of gln·s(R) whenever g is semisimple.

Definition 2. Given A,B1, . . . , Bm ∈ g and A′, B′
1, . . . , B

′
m ∈ g′, where g and g′

are Lie algebras. We say that the tuples (A,B1, . . . , Bm) and (A′, B′
1, . . . , B

′
m) are

Lie-related, if there exists a Lie algebra isomorphism τ : g → g′ such that

A′ = τ(A) and B′
k = τ(Bk) for k = 1, . . . ,m.

Otherwise, (A,B1, . . . , Bm) and (A′, B′
1, . . . , B

′
m) are called Lie-unrelated.

Theorem 3. [D. 2012] Let g = g1⊕· · ·⊕gs be a semisimple (matrix) Lie algebra,
let G be the corresponding connected (matrix) Lie group, and let A,B ∈ g. Then
the following statements are equivalent:

(1) The system

(Σ) Ẋ =
(
A+ uB

)
X, u ∈ U ⊂ R

is accessible on G.
(2) For all p ∈ {1, . . . , s} the Lie algebra generated by Ap, Bp coincides with

gp and for p 6= p′ the pairs (Ap, Bp) and (Ap′ , Bp′) are Lie-unrelated.

Here, Ap and Bp denote the p-th component of A and B with respect to the direct
sum decomposition g = g1 ⊕ · · · ⊕ gs.

Applying Theorem 1 to the semisimple Lie subalgebra of block-diagonal matrices
described in the above example leads to the following result.

Corollary 4. Let g be a simple (matrix) Lie algebra, let G be the corresponding
connected (matrix) Lie group, and let Ap, Bp ∈ g for p = 1, . . . , s. Then the
following statements are equivalent:

(1) The ensemble of bilinear systems

(Σp) Ẋp = (Ap + uBp)Xp, u ∈ R, p = 1, . . . s

is simultaneously accessible.
(2) For all p ∈ {1, . . . , s} the Lie algebra generated by Ap, Bp coincides with g

and for p 6= p′ the pairs (Ap, Bp) and (Ap′ , Bp′) are Lie-unrelated.

If G is compact the above results actually provide necessary and sufficient condi-
tions for simultaneous controllability.
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On invariant subspaces and intertwining maps

Paul Fuhrmann

The main topic of the talk is is the representation of invariant subspaces of
a linear transformation as kernels and images of maps commuting with it. This
extends a result of Halmos [3]. This result has strong system theoretic connection.
In particular, J.C. Willems’ characterization of behaviors, given in Willems [5], is
a result of this type.he context in which we work is that of polynomial models,
introduced in Fuhrmann [1]. We treat also the embeddability of quotient modules
of a polynomial model into the model, the relation between the invariant factors of
a polynomial model and those of its submodules and quotient modules. We focus
also on the study of how complementarity of invariant subspaces is related to the
invertibility of linear maps. That such a connection exists is not surprising as both
properties can be characterized in terms of coprimeness of polynomial matrices.
This analysis connects to the concept of skew-primeness, introduced in Wolovich [6]
as well as to a theorem of Roth [4]. Fuhrmann [2] contains an infinite dimensional
generalization of skew-primeness. This opens up the possibility of establishing the
analog of Halmos’s theorem in the context of backward shift invariant subspaces.
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Nonlinear MPC with systematic handling of a class of constraints

Knut Graichen

(joint work with Bartosz Käpernick)

Model predictive control (MPC) is well suited for multiple input systems with
constraints and nonlinear dynamics. However, the numerical solution of the under-
lying optimal control problem (OCP) is often numerically expensive, in particular
if state constraints are involved.

In order to relax this problem, the talk presented an approach to systematically
include a class of state and control constraints within a new unconstrained prob-
lem formulation that can be efficiently solved with unconstrained optimization
methods. The OCP formulation for this approach is of the form

minimize V (x(T )) +

∫ T

0

l(x(τ), u(τ)) dτ(1)

subject to ẋ = f(x) +
m∑

i=1

gi(x)ui , x(0) = xk(2)

ci(x) ∈ [c−i , c
+
i ] , ui ∈ [u−i , u

+
i ] , i = 1, . . . ,m(3)

with the cost (1), the nonlinear input-affine system (2) with the state x ∈ Rn,
and the constraint set (3) consisting of m state and input constraints, where m
corresponds to the number of controls u ∈ Rm. The initial conditions in (2) are
given by the current system state xk at time instant tk = k∆t + t0, k ∈ N0 with
the sampling time 0 < ∆t ≤ T . The MPC horizon is denoted by T .

Under the assumption that the state constraint functions ci(x), i = 1, . . . ,m
possess a well-defined vector relative degree {r1, . . . , rm} [1], the system (2) can
be transformed into a normal form representation with the state constraints ap-
pearing at the top of chains of integrators. The introduction of saturation func-
tions and successive differentiation along the normal form cascades then leads to a
state/input transformation [2] between (x, u) and new variables (x̃, v) of the form

(4)
x = hx(x̃)

u = hu(x̃, v)

}
⇐⇒

{
x̃ = h−1

x (x)

v = h−1
u (h−1

x (x), u) ,

where the functions hx : Rn → X and hu : Rn × Rm → U are defined on the open
intervals

(5)
X = {x ∈ R

n : c−i < ci(x) < c+i , i = 1, . . . ,m}

U = {u ∈ R
m : u−i < u < u+i , i = 1, . . . ,m} .

Based on this transformation, the original OCP (1)-(3) can be replaced by a new
unconstrained OCP with respect to the new control v:

minimize Ṽ (x̃(T )) +

∫ T

0

l̃(x̃(τ), v(τ)) + ε||v||2 dτ(6)

subject to ˙̃x = f̃(x̃, v) , x̃(0) = x̃k = h−1
x (xk)(7)
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with the new system dynamics (7) and the cost functions Ṽ (x̃) := V (hx(x̃)) and

l̃(x̃, v) := l(hx(x̃), hu(x̃, v)). The additional regularization term ε||v||2 in (6) is
necessary to account for singular arcs that correspond to constrained arcs in the
original OCP (1)-(3). Details on the regularizazion term and the convergence
properties for ε → 0 are given in [2]. For the MPC implementation, ε is kept
constant at a small value. The derivation of the transformation (4) and functions
in (6)-(7) can be automated with computer algebra software.

Due to the incorporation of the original constraints (3), the new OCP (6)-(7)
can be solved with unconstrained optimization methods, e.g. by means of the
gradient method in optimal control. The implementation of the gradient method
in the context of input-constrained MPC is described in [3]. In the talk, the MPC-
tailored gradient method was adapted to the new OCP (6)-(7) resulting from the
constraint handling approach.

The overall concept was demonstrated for a nonlinear model of an overhead
crane with state and input constraints and a sampling time of 3ms. The uncon-
strained OCP (6)-(7) was computed with Mathematica and exported as C code.
In addition, a C implementation of the gradient algorithm outlined in [3] with
Matlab interface was used to numerically and experimentally demonstrate the
efficiency and performance of the concept with a computation time of approxi-
mately 150 µs per MPC step.
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Economic MPC and the role of exponential turnpike properties

Lars Grüne

1. Problem formulation

We consider discrete time control systems with state x ∈ X and control values
u ∈ U , where X and U are normed spaces with norms denoted by ‖·‖. The control
system under consideration is given by

(1) x(k + 1) = f(x(k), u(k))

with f : X×U → X . For a given control sequence u = (u(0), . . . , u(K− 1)) ∈ UK

or u = (u(0), u(1), . . .) ∈ U∞, by xu(k, x) we denote the solution of (1) with initial
value x = xu(0, x) ∈ X .
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For given admissible sets of states X ⊆ X and control values U ⊆ U and an
initial value x ∈ X we call the control sequences u ∈ UK satisfying

xu(k, x) ∈ X for all k = 0, . . . ,K

admissible. The set of all admissible control sequences is denoted by UK(x).
Similarly, we define the set U∞(x) of admissible control sequences of infinite length.
For simplicity of exposition we assume U∞(x) 6= ∅ for all x ∈ X, i.e., that for each
initial value x ∈ X we can find a trajectory staying inside X for all future times.

Given a feedback map µ : X → U , we denote the solutions of the closed loop
system

x(k + 1) = f(x(k), µ(x(k)))

by xµ(k) or by xµ(k, x) if we want to emphasize the dependence on the initial value
x = xµ(0). We say that a feedback law µ is admissible if it renders the admissible
set X (forward) invariant, i.e., if f(x, µ(x)) ∈ X holds for all x ∈ X. Note that
U∞(x) 6= ∅ for all x ∈ X immediately implies that such a feedback law exists.

Our goal is now to find an admissible feedback controller which yields ap-
proximately optimal average performance. To this end, for a given stage cost
ℓ : X × U → R we define the averaged functionals and optimal value functions

JN (x, u) :=
1

N

N−1∑

k=0

ℓ(xu(k, x), u(k)), VN (x) := inf
u∈UN (x)

JN (x, u),

J∞(x, u) := lim sup
N→∞

JN (x, u) and V∞(x) := inf
u∈U∞(x)

J∞(x, u).

We assume that ℓ is bounded from below on X, i.e., that ℓmin := infx∈X,u∈U ℓ(x, u)
is finite. This assumption immediately yields JN (x, u) ≥ ℓmin and J∞(x, u) ≥ ℓmin

for all admissible control sequences. In order to simplify the exposition in what
follows, we assume that (not necessarily unique) optimal control sequences for JN
exist which we denote by u⋆N,x or briefly by u⋆.

Similarly to the open loop functionals, we can define the average cost of the
closed loop solution for any feedback law µ by

JK(x, µ) =
1

K

K−1∑

k=0

ℓ(xµ(k, x), µ(xµ(k, x)))

J∞(x, µ) = lim sup
K→∞

JK(x, µ).

In order to construct the desired feedback law, henceforth denoted by µN , we
employ a model predictive control (MPC) approach: in each time instant k, we
compute an optimal control u⋆N,x0

for the initial value x0 = xµN
(k, x) and define

the feedback value as µN (x0) := u⋆N,x0
, i.e., as the first element of the finite horizon

optimal control sequence.

2. Value and trajectory convergence results

The presented results hold for averaged optimal control problems exhibiting an
optimal steady state, i.e., for which there exists a point xe ∈ X and a control value
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ue ∈ U with

f(xe, ue) = xe and V∞(x) ≥ ℓ(xe, ue)

for all x ∈ X.
For such problems, it was shown in [1, 2, 4] that the receding horizon controller

µN shows optimal infinite horizon averaged performance if the terminal constraint
xu(N, x) = xe is added as an additional condition to the finite horizon problem
employed for computing µN .

Here, we consider the MPC formulation without such terminal constraints. Mo-
tivation for doing so is on the one hand that removing the terminal constraint also
removes the need to compute xe beforehand and on the other hand that not impos-
ing terminal constraints increases the region of feasibility for the MPC problem.

The central result from [5] shows that under appropriate conditions the feed-
back µN indeed shows approximately optimal performance and that the gap to
optimality, i.e., the difference |J∞(x, µN ) − V∞(x)| decreases to 0 for N → ∞.
The assumptions for this result are

(i) Uniform continuity of VN in a neighborhood of xe for all sufficiently large
N

(ii) A turnpike property, which describes the fact that the finite time opti-
mal trajectory enters a neighborhood of the optimal equilibrium xe which
shrinks to 0 as N → ∞

Both properties can, e.g., be ensured by suitable controllability and dissipativity
properties involving both the dynamics and the stage cost, for details and a formal
version of (i) see [5]. The turnpike property (ii) is formally expressed as follows:

There is σ(N) such that any optimal trajectory xu⋆(k) with horizon N satisfies

min
k=0,...,N

‖xu⋆(k)− xe‖ ≤ σ(N), with σ(N) → 0 as N → ∞.

In addition to the value convergence result, important additional results are
proved in [5] under the condition that σ(N) tends to 0 faster than 1/N . More
precisely, under this additional condition, convergence of the MPC closed loop
trajectory to a neighborhood of xe (shrinking to xe asN → ∞) and an approximate
optimality condition during the transient phase can be shown.

Several numerical examples show that it is a reasonable condition to expect that
σ(N) tends to 0 faster than 1/N . More precisely, in many examples σ(N) ≈ CθN

for constants C > 0 and θ ∈ (0, 1) can be observed, i.e., an exponential turnpike
property.

3. Exponential turnpike properties

Since exponential turnpike properties play an important role in Economic MPC,
it is of considerable importance to find conditions which ensure this property for a
given example. The following condition for an exponential turnpike property will
be presented and discussed in [3] (to which we also refer for the precise technical

assumptions and the proof). For its formulation, for a modified stage cost ℓ̃ defined



Control Theory: Mathematical Perspectives on Complex Networked Systems 681

in [5] we define

J̃N (x, u) :=
1

N + 1

N∑

k=0

ℓ̃(xu(n), u(n)),

and the optimal value function of the terminal constrained problem

ṼN (x0, xN ) := inf
u
J̃N (x, u), s.t. xu(0) = x0, xu(N) = xN

Then, an exponential turnpike property holds if there exists γ ≥ 1 and δ ≥ 1 such
that for all x0, xN ∈ X and N ∈ N the inequality

VN (x0, xN ) ≤
γminu ℓ̃(x0) + δminu ℓ̃(xN )

N + 1

holds.
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Kernel Methods for Model Reduction of Parameterized Nonlinear
Systems

Bernard Haasdonk

(joint work with Daniel Wirtz)

This work is concerned with model order reduction for for parameterized, non-
linear kernel-based systems. The dynamical systems under consideration consist
of a nonlinear, time- and parameter-dependent kernel expansion representing the
system’s inner dynamics as well as time- and parameter-affine inputs, initial con-
ditions and outputs. The class of dynamical systems we consider is given by

x′(t) = f(x(t), t, µ) +B(t, µ)u(t),(1)

x(0) = x0(µ), y(t) = C(t, µ)x(t)(2)

with x(t) ∈ Rd denoting the system state, x0 initial condition, B,C input/output
matrix, input/control u(t) and parameters µ ∈ P ⊆ Rp. Further, f is a kernel

expansion f(x, t, µ) =
∑N

i=1 ciΦs(x, xi)Φt(t, ti)ΦP (µ, µi), having scalar state, time

and parameter kernels Φs,Φt,ΦP , expansion centers xi ∈ Rd, ti ∈ [0, T ], µi ∈ P,
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and coefficient vectors ci ∈ R
d, i = 1 . . .N . The components B,C and x0 are time-

and parameter-affine, e.g. B(t, µ) =
∑QB

i=1 θ
B
i (t, µ)Bi, with QB ∈ N small, con-

stant matrices Bi ∈ Rd×m and low-complexity coefficient functions θBi : [0, T ] ×
P → R. The reduction technique we use was originally proposed in [1] which we
extend here to the full parametric and time-dependent case. The system above
is reduced applying a Galerkin projection with biorthogonal matrices V,W ∈
Rr×d, V tW = Ir. For more general settings, the evaluation of the projected non-
linear term W tf(V ·, t, µ) would involve d-dimensional computations. Therefore,
our key ingredient is to use translation & rotation-invariant kernels Φ(x, x′) =
φ(‖x − x′‖) induced by a so called bell function φ. Key features for efficient er-
ror estimation [2] are to use local Lipschitz constants and an iterative scheme to
balance computation costs against estimation sharpness. Together with the time-
and parameter-affine system components a full offline/online decomposition for
both the reduction process and the error estimators is possible. Some experimen-
tal results for synthetic systems illustrate the efficient evaluation of the derived
error estimators for different parameters. The figure shows improving estimation
results for a synthetic system using global (square), local (star) and iterated lo-
cal (star/triangle) Lipschitz constants. The right image shows a parameter sweep
with system output and a-posteriori error bounds (transparent red).

Figure 1. Left: Estimation results using different (local) Lipschitz con-
stants. Right: Parameter sweep with system output and error bounds
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Optimal Event-based Control - The Extended Linear Quadratic
Problem

Sandra Hirche

(joint work with Adam Molin)

Summary. We investigate the structure of joint optimal control and schedul-
ing policies for event-based feedback control systems. The problem setting is an
extension of the stochastic linear quadratic system framework, where the joint
design of the control law and the event-triggering law minimizing a common ob-
jective is considered. We study three differing variants that reflect the resource
constraints: a penalty term to acquire the resource, a limitation on the number of
resource acquisitions, and a constraint on the average number of resource acquisi-
tions. By reformulating the underlying optimization problem, a characterization of
the optimal control law is possible. This characterization shows that the certainty
equivalence controller is optimal for all three optimization problems.

d

PLANT
u x

CONTR

S

N

z

y

Figure 1. System model of the resource-constrained control sys-
tem with process P , event-trigger E , controller C, and communi-
cation channel N .

The Extended Linear Quadratic Problem. The system under consideration
is illustrated in Figure 1 and can be viewed as a resource-constrained control
system. For the sake of illustration, the constraint is represented by a resource-
constrained communication channel N . The other part of the system consist of
a process P , an event-trigger E and a controller C. The stochastic discrete-time
process P to be controlled is described by the following time-invariant difference
equation

(1) xk+1 = Axk +Buk + wk,

where A ∈ Rn×n, B ∈ Rn×d. The variables xk and uk denote the state and the
control input and are taking values in X ⊂ Rn and U ⊂ Rd, respectively. The
initial state x0 is a random variable with finite mean and covariance. The system
noise proces {wk} is i.i.d. (independent identically distributed); wk takes values in
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R
n and is zero-mean and has finite covariance. The random variables x0 and wk

are statistically independent for each k. The statistics of the process P are known
a-priori to both, the event-trigger E and the controller C. The event-trigger E
situated at the sensor station has access to the complete state information and
decides, whether the controller C should receive an update over the feedback chan-
nel N . The controller calculates inputs uk to regulate the process P . Concerning
the amount of information available at the control station at each time step k
we assume the following: The output signal of the event-trigger, δk, takes values
in {0, 1} deciding whether information is transmitted at time k, i.e.,

δk =

{
1, measurement xk sent,

0, otherwise.

Therefore, the signal yk is defined as

(2) yk =

{
xk, δk = 1,

∅, otherwise.

We allow the control input and the event-triggering output to depend on their
complete past history. Let the event-triggering law f = {f0, f1, ..., fN−1} and the
control law γ = {γ0, γ1, ..., γN−1} denote admissible policies for the finite hori-
zon N with

δk = fk(I
E
k ), uk = γk(I

C
k ),

where IE
k and IC

k represent the available information at the event-trigger and the
controller, respectively. The communication channel N takes the role of restricting
or penalizing transmissions in the feedback loop. This will be reflected in the
optimization problem. Let JC be the control objective defined as

JC = xTNQNxN +

N−1∑

k=0

xTkQxk + uTkRuk

and let JE be the communication cost given by the number of transmissions, i.e.,

JE =
N−1∑

k=0

δk

We consider three different optimization problems, which represent extensions to
the classical linear quadratic setting.
Problem A: Let λ ≥ 0. Find the optimal f∗ and γ∗ that

inf
f,γ

E[JC + λJE ]

Problem B: Let m be a non-negative integer. Find the optimal f∗ and γ∗ that

inf
f,γ

E[JC ], s.t. JE ≤ m

Problem C: Let m̄ ≥ 0. Find the optimal f∗ and γ∗ that

inf
f,γ

E[JC ], s.t. E[JE ] ≤ m̄
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The Optimal Control Policy - Preliminary Result. Finding the joint op-
timal policies of the event-triggered controller is in general difficult for all three
problem settings. The controller and event-trigger have different information avail-
able, and it is well known that such problems are usually very hard to solve [1].
Stochastic control problems with non-classical information pattern generally do
not allow to apply concepts like dynamic programming directly. Nevertheless, it is
possible to obtain structural results of the optimal solution. As a preliminary re-
sult concerning the optimal control policy we can state that certainty equivalence
controller is optimal for all three problem settings A-C. the following.

Proposition Let the system be given by (1) and (2). The class of policies UCE ⊂ U
defined by

UCE = {(f, γ∗)|γ∗ = −LkE[xk|I
C
k ]

with

Lk = (R+BTPk+1B)−1BTPk+1A

Pk = ATPk+1A+Q −ATPk+1B(R +BTPk+1B)−1BTPk+1A and PN = QN ,

is a dominating class of policies for the problem settings A-C.
Details on the proof can be found in [2]. Further extensions towards the joint
optimal control and transmission scheme design are concerned with a separation
principle for the optimal control and event-triggering law [4], and optimal decen-
tralized control laws and transmission schemes for multiple control loops coupled
via resource constraints [3].
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Post-processing internal models for robust nonlinear output regulation

Alberto Isidori

(joint work with Lorenzo Marconi)

The problem of robust output regulation for linear multivariable control systems
has been thoroughly studied and fully solved in the works [1], [2]. In particular,
these works demonstrate that, in a general multivariable setting, robust regulation
is achieved if and only if the controller possesses a realization in which the regulated
variable drives an internal model, consisting of as many identical copies of the
exosystem (to be precise, of the largest cyclic component of the exosystem) as
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the number of components of output to be regulated. The realization in question,
therefore, can be seen as embedding an internal model that directly post-processes
the regulated output, cascaded with stabilizer that, driven by the state of the
internal model as well as by any other variable available for measurement, produces
the appropriate control input.

The problem of output regulation for nonlinear systems, beginning with the
work [3], has been addressed by several authors and a rather satisfactory corpus of
results has been developed, the majority of which address the problem in question
for single-input single-output systems (see for instance [4]) and references therein).
For the class of systems in question, (robust) regulation is typically achieved by
means of a controller consisting of an internal model that provides a control input,
to the purpose of forcing the existence of a “steady-state (invariant) manifold” on
which the regulated variable vanishes, complemented by a stabilizer that makes the
manifold in question attractive for the cascade of two such subsystems. Thus, the
approach is somewhat complementary to the one derived in linear multivariable
systems, because this structure can be seen as embedding an internal model that
directly pre-processes the control input.

Of course, in the case of linear single-input single-output systems, the two struc-
tures are fully equivalent, because internal model and stabilizer can be swapped.
But the structures are not equivalent in the case of multivariable linear systems.
In fact, it is not fully understood, in a general multivariable setting, how to design
a robust controller in which an internal model directly preprocesses the control
input. If the system has q outputs, only p < q of which need to be regulated,
but all of which are necessary for detectability, it is not immediately clear how to
handle these extra q − p outputs in the context of a controller structure embed-
ding a pre-processing internal model. Likewise, if the system has m > p controls,
only p of which are needed for regulation purposes, but all of which might be
necessary for stabilization, it is not immediately clear how to identify a “robust
selection” of the inputs that are to be driven by the internal model. All such prob-
lems disappear in the case of the control structure embedding an “internal model”
that directly post-processes the regulated output and this is why the structure in
question appears as the most “natural” one in a multivariable setting.

In view of a (systematic) extension of the theory of nonlinear output regulation
to general multivariable systems, it seems appropriate to investigate to what extent
controllers in which the internal model post-processes the regulated output are
feasible. This is this a problem that, to the best of our knowledge, has not been
addressed so far. Consider a nonlinear plant modeled as

(1)

ẇ = s(w)
ẋ = f(w, x, u)
e = he(w, x)
yr = hr(w, x) ,

in which x ∈ Rn, u ∈ Rm, e ∈ Rp, yr ∈ Rq−p. The state w of the exosystem
evolves on a compact invariant set W . All maps are assumed to be smooth. Take
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a post-processing nonlinear internal model

(2)
η̇ = Φ(η) +Ge
ē = γ(η) + e

cascaded with a system having the following structure

(3)
ξ̇ = ϕ(ξ, e, yr) +Msē
u = ϑ(ξ, e, yr) +Nsē .

Then, the following claim is trivially true.
The controller (2)-(3) solves the problem of output regulation if

• the equations

(4)

[
∂π
∂w
∂πs

∂w

]
s(w) =

[
f(w, π(w), ϑ(πs(w), 0, hr(w, π(w)) +Nsψ(w))

ϕ(πs(w), 0, hr(w, π(w)) +Msψ(w)

]

0 = he(w, π(w))

have a solution π(w), πs(w), ψ(w),
• there exists σ(w) satisfying

(5)
∂σ
∂w
s(w) = Φ(σ(w))
ψ(w) = γ(σ(w)) ,

• the manifold x = π(w), η = σ(w), ξ = πs(w), that by construction is in-
variant in the closed-loop system, attracts all its trajectories.

Note that, in view of the general results of [4], given any ψ(w) satisfying (4) for
some π(w), πs(w), there always exist Φ(η) and γ(η) such that (5) holds for some
σ(w). Hence, the intermediate condition in the previous Proposition is immaterial.
As a matter of fact, it is known that, if d is large enough, there always exists a
d×d Hurwitz matrix F , a d×p matrix G such that (F,G) is controllable, a smooth
map σ(w) and a continuous map γ : Rd → Rp such that

(6)
∂σ
∂w
s(w) = Fσ(w) +Gψ(w)
ψ(w) = γ(σ(w)) .

Thus, the choice Φ(η) = Fη+Gγ(η) makes (5) fulfilled. From this viewpoint, the
previous result can (trivially again) be restated as follows.

A controller of the form

(7)

η̇ = Fη +G[γ(η) + e]

ξ̇ = ϕ(ξ, e, yr) +Ms[γ(η) + e]
u = ϑ(ξ, e, yr) +Ns[γ(η) + e] .

solves the problem of output regulation if :

• the equations (4) have a solution π(w), πs(w), ψ(w),
• γ(η) is chosen as to fulfill (6), as it is always possible,
• the manifold x = π(w), η = σ(w), ξ = πs(w), that by construction is in-
variant in the closed-loop system, attracts all its trajectories.
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Of course, the previous results are all but constructive. The problem remains to
determine how to find a system of the form (3) such that the indicated properties
hold. As a matter of fact, it is possible to show that this is always possible
for single-input single-output nonlinear systems possessing a well-defined relative
degree r, a normal form and an asymptotically stable zero dynamics. In these
cases, the controller in question is a controller of the form

(8)

η̇ = Fη +G[γ(η) + e]
˙̂y = Aŷ +Be
u = −k(satL(Hŷ) + gr−1c0[γ(η) + e])

in which satL(·) is a saturation function
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On the Role of Plant Model Information in Large-scale Control
Systems

Karl H. Johansson

(joint work with Farhad Farokhi and Cédric Langbort)

Introduction. Many complex networked control systems, such as aircraft for-
mations, vehicle platoons, and power grids, consist of several subsystems coupled
through their dynamics, controls, or performance objectives. When regulating
these systems, we often adopt a distributed control architecture, in which the
overall controller is composed of several local subcontrollers that only access local
state measurements. A common, but often implicit, assumption is that the design
is performed with the full knowledge of the plant model. However, in practice,
this assumption is quite seldom being warranted due to the following reasons:

• Maintenance: Requirements from control systems maintenance and tuning im-
pose that each subcontroller is a function only of local subsystem parameters,
so that the resulting subcontroller does not need to be modified even if the
model parameters of a particular subsystem change over time.
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• Availability: The lack of a complete plant model at the time of the design
restricts the control designer to only use local model information in the com-
putation of each subcontroller.

• Privacy: Privacy constraints caused by financial or security incentives limit
the amount of the model information available in the control design for each
subsystem.

Removing the assumption of full plant model knowledge from the control design
procedure generates a new class of problems, namely, limited model information
control design problems. Some instances of these problems are discussed in this
talk.

Main Results. The main contribution is on the achievable performance for large-
scale networked control design under limited plant model information. The consid-
ered limited model information setup was introduced in [1] and is here extended to
a network setting with plants, controllers, and design information constraints rep-
resented as graphs. First, we consider limited model information control design for
interconnections of fully-actuated discrete-time linear time-invariant subsystems
with a quadratic separable cost function [2, 3]. We investigate the best closed-
loop performance achievable by structured static state-feedback controllers based
on limited model information design strategies. To do so, we introduce control de-
sign strategies as mappings from the set of plants of interest to the set of eligible
controllers. These control design strategies are compared using the competitive
ratio as a performance metric and the domination as a partial order on the set
of limited model information control design strategies. We define the competitive
ratio as the worst case ratio of the cost of a control design strategy to the cost of
the optimal control design with full model information. We show that the compet-
itive ratio depends crucially on how the subsystems are interconnected and what
state measurements that are available. We prove that the deadbeat control design
strategy is the best limited model information design strategy when there is no
subsystem that cannot affect any other subsystems and each subcontroller has ac-
cess to at least the state measurements of those subsystems that affect it. However,
the deadbeat control design strategy is dominated when there is a subsystem that
cannot affect any other subsystem. We find an undominated limited model infor-
mation control design strategy that achieves a better closed-loop performance in
average while having the same competitive ratio. We also characterize the amount
of model information needed to achieve a better competitive ratio than the dead-
beat control design strategy. We generalize these results to structured dynamic
state-feedback controllers when the closed-loop performance criterion is H2-norm
of the closed-loop transfer function [4]. Surprisingly, the optimal limited model
information control design strategy is static. This is the case even though the opti-
mal decentralized state-feedback controller with full model information is dynamic.
We partially relax the assumption that all the subsystems are fully-actuated and
generalize the result for a class of under-actuated systems where the sinks (in the
plant graph) are not necessarily fully-actuated. Later, we also discuss the design
of dynamic controllers for disturbance accommodation [5, 6]. This problem is of



690 Oberwolfach Report 12/2012

special interest, because the best limited model information control design is dy-
namic in this case. The dynamic control design strategy can be divided into two
parts: a static feedback law and a dynamic observer. For constant disturbances,
it is shown that this structure corresponds to proportional-integral control.

Example. Vehicle platooning is used to illustrate the results and the applicabil-
ity of the approach. We consider the problem of regulating the distance between
trucks in a platoon. The characteristics of each truck (e.g., mass, tire quality,
break capability) influence its model parameters. The designer of the controller
of each truck may want its controller to only be a function of its own truck pa-
rameters due to several reasons. One reason could be that the designer wants its
controller to be fixed because of safety constraints since changing a truck’s subcon-
troller may result in an unpredictable behavior. Another reason is simply that the
models of the other trucks in the platoon are not available at the time of design.
Privacy constraints might also limit the amount of information available in the
design procedure since different trucks might belong to different companies and
these companies may wish to disclose information about the performance of their
trucks. Independent of these design constraints, the designers want to guarantee
some reasonable bounds on the closed-loop performance of the platoon in terms
of reduction of the fuel consumption. This problem is hence a viable candidate for
optimal control design with limited model information.
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Coordination Control of Linear Systems (poster)

Pia L. Kempker

(joint work with André C.M. Ran, Jan H. van Schuppen)

Coordinated linear systems are a special class of hierarchical systems, with a top-
to-bottom information structure. Our interest in coordinated linear systems is
motivated by the need for coordination in many engineering systems, with several
subsystems collaborating to achieve a common goal.

A coordinated linear system consists of three subsystems, of which the coordi-
nator subsystem influences the local subsystems but is not influenced by them, and
when disregarding the influence of the coordinator, the local subsystems are inde-
pendent. This structure allows for a partially decentralized approach to control
synthesis: given the closed-loop coordinator, each local subsystem can be treated
independently. Some global control objectives can be approached in a fully decen-
tralized manner: For example, global stabilizability reduces to local stabilizability
of all subsystems.

The theory developed in [1], [2] and [3] is based on the concepts of conditional
independence of linear subspaces and of invariant spaces with respect to linear
maps. Coordinated linear systems have a state space representation of the form





ẋ1

ẋ2

ẋc



 =





A11 0 A1c

0 A22 A2c

0 0 Acc









x1

x2

xc



+





B11 0 B1c

0 B22 B2c

0 0 Bcc









u1

u2

uc



 ,





y1
y2
yc



 =





C11 0 C1c

0 C22 C2c

0 0 Ccc









x1

x2

xc



 ,

where subscripts 1 and 2 correspond to the local subsystems, and c corresponds
to the coordinator. The set of matrices of this type forms an algebraic ring. The
structure can easily be extended to hierarchical systems with more subsystems
and several coordination layers.

Coordinated linear systems can be constructed from arbitrary interconnected
systems, by moving those parts of each component which require interaction with
the rest of the system to the coordinator, and moving those parts of each com-
ponent which have no influence on the rest of the system to one of the local
subsystems ([2]).

For coordinated linear systems, the concepts of controllability and observabil-
ity are refined ([3]), taking into account which part of the system is controllable
via which input, and observable from which output : The local subsystems may
be controllable via their local inputs, or via the coordinator input or (part of)
both, and similarly the subsystem observations may involve their local state, the
coordinator state, or (part of) both. This distinction leads to refined controllabil-
ity and observability decompositions, and to new concepts of controllability and
observability.
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The corresponding LQ optimal control problem separates into independent LQ
problems at the lower level, which can be solved locally, and a more involved con-
trol problem at the coordinator level. For the latter problem, possible approaches
include using numerical optimization ([5]), and approximating the centralized op-
timum by means of event-based bottom-to-top feedback ([4]).
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Linear time invariant minimax filtering

Arthur J. Krener

(joint work with Wei Kang)

The problem of filtering a linear time invariant system with white Gaussian obser-
vation noise and unknown but bounded driving noise is considered. This models
the possibility that the driving noise is under the control of an intelligence adver-
sary who is trying to corrupt the filter or that the driving noise is a stochastic
process about which little is known except that its sample paths are bounded.

We review the minimax filter of Johansen and Berkovitz-Pollard for the dou-
ble integrator. While their solution is very elegant, the optimal filter is infinite
dimensional. We show that there is a two dimensional filter that is within 2.5%
of optimal and a four dimensional filter that is within 0.7% of optimal. The best
Kalman filter is within 2.6% of optimal.

We show that similar results hold for other linear time invariant systems.
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Necessary and sufficient dissipativity conditions
for stability of interconnected systems

Mircea Lazar, Rob H. Gielen

In what follows, necessary and sufficient conditions based on dissipativity the-
ory are established for global exponential stability of interconnected dynamical
systems. The non-conservative nature of these conditions is due to a relaxation
of local dissipation inequalities inspired by the asymptotic stability criterion of
[1] for time-variant dynamical systems. A simple example of two scalar linear
interconnected systems, for which the original dissipativity conditions of [2] are
not feasible, demonstrates the non-conservatism of the proposed framework for
stability analysis of interconnected systems.

Consider a set of N ∈ Z≥2 interconnected systems

xi(k + 1) = gi(x1(k), . . . , xN (k)), k ∈ Z+,(1)

with xi ∈ Rni and gi : R
n1 × . . . × RnN → Rni for all i ∈ Z[1,N ]. For notational

convenience, throughout this abstract we use xi to denote both an arbitrary vector
in R

ni and a solution of system (1), i.e., xi(k), k ∈ Z+. Also, for arbitrary sets
S,P ⊆ R, we use the notation SP := S ∩ P . To describe the overall system, let

x = col({xi}i∈Z[1,N ]
) := [ x⊤

1 ... x⊤

N ]
⊤

and let n =
∑N

i=1 ni, which yields

x(k + 1) = G(x(k)), k ∈ Z+,(2)

where G(x) = col({gi(x1, . . . , xN )}i∈Z[1,N ]
).

Definition 1. The interconnected system (2) is globally exponentially stable
(GES) if for all (x(0), k) ∈ Rn × Z+ it holds that ‖x(k)‖ ≤ cµk‖x(0)‖ for some
(c, µ) ∈ R≥1 × R[0,1).

Since the fundamental work [2], the following result has been heavily employed
in establishing GES of interconnected systems of the form (2).

Theorem 2. Suppose that there exists a set of storage and supply functions
{Wi, Si,j}(i,j)∈Z2

[1,N ]
, with Wi : R

ni → R+ and Si,j : R
ni ×Rnj → R, such that the

following conditions hold: (i) for all i ∈ Z[1,N ]

c1‖xi‖
λ ≤Wi(xi) ≤ c2‖xi‖

λ, ∀xi ∈ R
ni ,

for some (c1, c2, λ) ∈ R2
>0 × Z≥1; (ii) for all i ∈ Z[1,N ]

Wi(gi(x1, . . . , xN )) ≤ ρWi(xi) +
∑N

j=1 Si,j(xi, xj),

for all x ∈ Rn and some ρ ∈ R[0,1); and (iii) Si,j(xi, xj) + Sj,i(xj , xi) ≤ 0 for all

(i, j) ∈ Z2
[1,N ] and all x ∈ Rn. Then, the overall interconnected system (2) is GES.

The following example demonstrates that the hypothesis of Theorem 2 is con-
servative even for very simple linear interconnected systems.
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Example 3 (Part I). Consider the interconnected scalar systems

x1(k + 1) = x1(k)− 0.5x2(k)
x2(k + 1) = x1(k)

, k ∈ Z+.(3)

It can be concluded from standard Lyapunov arguments that the interconnected
system is GES with µ = 0.7071 and c = 2.62. Next, suppose that there exists
a set of storage and supply functions, i.e., (W1,W2, S1,2, S2,1), that satisfies the
hypothesis of Theorem 2. Then, for any ρ ∈ R[0,1), it follows from property (ii),
by choosing x = col(1, 0), that

W1(1) ≤ ρW1(1) + S1,2(1, 0),

W2(1) ≤ ρW2(0) + S2,1(0, 1).

The above inequalities together with property (i) imply that 0 < S1,2(1, 0)+S2,1(0, 1),
which contradicts property (iii) of Theorem 2. Therefore, the interconnected sys-
tem (3), although it is GES, it does not admit a set of storage and supply functions
that satisfy the hypothesis of Theorem 2. �

In what follows, the relaxation of Lyapunov inequalities proposed in [1] for time-
variant systems is exploited to obtain non-conservative dissipativity-like conditions
for GES of time-invariant interconnected systems.

Theorem 4. Suppose that the map G : Rn → R
n corresponding to the dynamics

(2) is Lipschitz continuous. The interconnected system (2) is GES if and only if
there exists a finite M ∈ Z≥1 (e.g., any integer M ≥ logµ(

ρ
Nc

) will do) and a set
of storage and supply functions {Wi, Si,j}(i,j)∈Z2

[1,N ]
where Wi : Rni → R+ and

Si,j : R
ni ×R

nj → R such that the following conditions hold: (i) for all i ∈ Z[1,N ]

c1‖xi‖
λ ≤Wi(xi) ≤ c2‖xi‖

λ, ∀xi ∈ R
ni ,

for some (c1, c2, λ) ∈ R
2
>0 × Z≥1; (ii) for all i ∈ Z[1,N ]

Wi(xi(M)) ≤ ρWi(xi) +
∑N

j=1 Si,j(xi, xj),

for all x ∈ Rn and some ρ ∈ R[0,1) (above xi(k + 1) := gi(x1(k), . . . , xN (k)) and
xi(0) := xi for all (k, i) ∈ Z+ × Z[1,N ]); and (iii) Si,j(xi, xj) + Sj,i(xj , xi) ≤ 0 for

all (i, j) ∈ Z2
[1,N ] and all x ∈ Rn.

Remark 5. Theorem 4 holds in terms of global asymptotic stability (GAS) as
well, with a suitable change in condition (i). Moreover, the Lipschitz continuity
assumption can be relaxed to Hölder continuity or even K-continuity. However,
then it is not clear how to obtain an estimate of the value of M .

Clearly, the proposed non-conservative dissipativity conditions recover the orig-
inal dissipativity conditions of Theorem 2 for M = 1. Furthermore, they are also
equivalent to a linear matrix inequality for linear interconnected systems with
quadratic storage and supply functions.

Example 3 is revisited next to demonstrate the non-conservativeness of the
hypothesis of Theorem 4.
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Example 3 (Part II). Consider again the interconnected scalar systems (3). In
Example 3, Part I it was shown that there does not exist a set of storage and supply
functions that satisfy the hypothesis of Theorem 2. However, the functions

W1(x1) = x21, W2(x2) = x22,

S1,2(x1, x2) = −S2,1(x2, x1) = −0.51x21 + 0.063x22,

satisfy the hypothesis of Theorem 4 for any ρ ∈ R[0.51,1) and M = 3. Interestingly,
the lower bound on M indicated in Theorem 4 yields that for any M ≥ 5 the
hypothesis of Theorem 4 can be satisfied with ρ ∈ R[0.95,1).

The lower bound obtained for the above example indicates that further relax-
ations of condition (ii) of Theorem 4 may be possible, i.e., by reducing N to the
number Ni ∈ Z≥1 of systems that have a direct interconnection with system i
and by allowing for a different Mi ∈ Z≥1 for each system i. Clearly, the situation
Mi = Ni = 1 for all i ∈ Z[1,N ] would correspond to a standard fully decentralized
stability condition.
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ARMA Identification of Graphical Models

Anders Lindquist

(joint work with Enrico Avventi and Bo Wahlberg)

Consider a Gaussian stationary stochastic vector process with the property that
designated pairs of components are conditionally independent given the rest of the
components. Such processes can be represented on a graph where the components
are nodes and the lack of a connecting link between two nodes signifies conditional
independence. This leads to a sparsity pattern in the inverse of the matrix-valued
spectral density. Such graphical models find applications in speech, bioinformatics,
image processing, econometrics and many other fields, where the problem to fit an
autoregressive (AR) model to such a process has been considered. In this paper we
take this problem one step further, namely to fit an autoregressive moving-average
(ARMA) model to the same data. We develop a theoretical framework and an op-
timization procedure which also spreads further light on previous approaches and
results. This procedure is then applied to the identification problem of estimating
the ARMA parameters as well as the topology of the graph from statistical data.
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Event-based control: A state-feedback approach

Jan Lunze

Event-based control is a means to reduce the communication between the sensors,
the controller and the actuators in a control loop by invoking a communication
among these components only after an event has indicated that the control error
exceeds a tolerable bound. This working principle differs fundamentally from that
of the usual feedback loop, in which data are communicated from the sensor to
the controller and from the controller to the actuator continuously or at every
sampling instance given by a clock. Hence, in the control schemes currently used
a communication takes place independently of the size of the control error and,
in particular, also in case of small control errors when no information feedback is
necessary to satisfy the performance requirements on the plant. In these situations,
the communication resources are used unnecessarily.

This paper considers the event-based control loop, which consists of

• a plant with state x(t) and input u(t),
• an event generator,
• a control input generator and
• a digital communication network that connects the event generator with
the control input generator.

In this scheme, the control law is implemented in the event generator and the
control input generator.

The event generator determines the time instants tk, (k = 0, 1, ...) at which the
next communication from the event generator towards the control input generator
is invoked. The control input generator determines the input u(t) for the time in-
terval t ∈ [tk, tk+1) in dependence upon the information x(tk) obtained at time tk.
The information link from the event generator towards the control input generator
is only used after an event has been generated.

The aim of this paper is to propose a new scheme of event-based control, where
the communication link is only used if the disturbance d(t) has caused an intoler-
able effect on the loop performance. As the main result, algorithms for the event
generation and the control input generation are described for which the event-based
control loop mimics the continuous state-feedback loop with adjustable accuracy.

In comparison with the numerous recent publications on event-based control,
the approach described in this talk has three novelties. First, the control input
generator is no longer a zero-order hold, but uses a model of the continuous closed-
loop system to adapt the input continuously to the plant state. Second, the
event generator evaluates the current plant state in comparison with the state
that a continuous state-feedback system has. Hence, an event does not indicate a
large control error but a large deviation of the event-based control loop from the
continuous loop. Third, both the event generator and the control input generator
include a disturbance estimator.

The talk also reports on the experimental evaluation of event-based control for
a thermofluid process. The experiments show that event-based control leads to a
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considerable reduction of the communication within the control loop in comparison
with sampled-data control. Furthermore, the experiments demonstrate a consid-
erable robustness of the closed-loop system with respect to model uncertainties.

The paper is based on the following references:
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Hybrid Linear Regulation

Lorenzo Marconi

(joint work with Andrew Teel)

In this work we focus on the problem of output regulation for a class of hybrid
linear systems and exosystems governed by the flow dynamics

τ̇ = 1 , ẇ = Sw , ẋ = Ax+Bu+ Pw

whenever ((τ, w), x, u) ∈W ×Rn ×R and subject to jumps according to the rules

τ+ = 0 , w+ = Jw , x+ = Nw +Mx

whenever ((τ, w), x, u) ∈ (W ∩ ({τmax}×Rs))×Rn ×R, where W is a compact set
that is invariant for the hybrid dynamics with state (τ, w). In the equations above,
τmax is a positive known constant that imposes a dwell-time constraint between
two consecutive jumps. The dynamics of the exogenous variable is what, in the
literature on output regulation, is usually called the “exosystem”. Associated to
the previous system there is a regulation error given by e = Cx+Qw, e ∈ R which
jumps, whenever the state jumps, as e+ = (CN +QJ)w +CMx. In this context,
the problem we are interested in is to develop a continuous hybrid regulator,
processing the error e and the clock τ , of the form

ξ̇ = Φ(τ)ξ + Λ(τ)e (τ, ξ, e) ∈ [0, τmax]× Rm × R

ξ+ = Σξ +∆e (τ, ξ, e) ∈ {τmax} × Rm × R

u = Γ(τ)ξ +K(τ)e

so that the resulting hybrid closed-loop system has bounded trajectories and the
regulation error converges to zero uniformly over compact sets of initial conditions.

The objective of this work is to lay the foundation for an output regulation theory
for linear hybrid systems described in the flow-jump hybrid formalism. A funda-
mental tool that is developed in the work is a notion of steady-state response for
hybrid cascade systems. This tool will form the basis to generalize the notion of
regulator equations and of the internal model principle ([1]) to the considered case
of hybrid linear regulation and, in turn, to present necessary and sufficient con-
ditions for the regulator design. We also present constructive design procedures
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for the regulator by emphasizing how to achieve robustness to possible system
uncertainties. We precisely characterize scenarios in which the hybrid regulator
can be taken to be independent of time, while showing how robust asymptotic reg-
ulation can be sometimes achieved by necessarily adopting regulators embedding
time-varying internal models. Am extended version of the work is presented in [2].
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Synchronization in networks with time-delay coupling:
“the sympathy of pendulum clocks and beyond”

Henk Nijmeijer, Jonatan Peña-Raḿırez

1. Introduction

In the 17-th century, the Dutch scientist Christiaan Huygens observed that two
pendulum clocks hanging from a common support (a wooden bar supported by
two chairs) kept in pace relative to each other such that the two pendulums always
swung together (in opposite motion) and never varied. Huygens called this “the
sympathy of the two clocks” [1]. Since then, several attempts have been made to
better understand the true mechanism behind the sympathy of pendulum clocks
described by Huygens. For instance, in [2] and [3], an experimental study related
to the original Huygens’ experiment is presented. In such works, the pendulum
clocks have been replaced by arbitrary nonlinear oscillators and instead of the
flexible wooden bar, a one degree of freedom rigid bar is considered. Then, it is
shown that the oscillators may exhibit in-phase and anti-phase synchronization.
These results in fact suggest that the synchronized motion observed by Huygens
extends beyond pendulum clocks.

The purpose of the present contribution is to pursue further the nature of syn-
chronization of arbitrary oscillators and see to what extent such sympathy is also
meaningful in understanding synchronization in a network of identical systems.

2. Framework

There exist many different types of synchronization, in nature often perceived as
surprising or fairly difficult to understand. In particular, the mechanism underly-
ing synchronization effects in a swarm of fireflies blinking simultaneously, or a flock
of birds flying in a v-shape, or, the reader may start to generate numerous other
examples, is often intriguing and extremely challenging for scientific study, see
for instance the stimulating book of Strogatz [4]. On the other hand, the famous
example by Christiaan Huygens of two pendulum clocks exhibiting anti-phase or
in-phase synchronized motion as brought forward in his notebook features exactly
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the crucial point: despite the lack of good modeling tools, Huygens did realize
that there is a “medium” responsible for the synchronized motion, namely the bar
to which both pendula are attached! Despite this sharp observation, even today a
complete rigorous mathematical derivation using proper models for pendula and
flexible beam showing the occurrence of synchronized motion is still lacking. Ob-
viously, understanding of synchronized motion of a larger set of coupled identical
systems is in general even more difficult and therefore a fitting framework for this
type of study seems mandatory. The ingredients required in the framework that
we use in our work are semi-passive systems, convergence, and network topology
(or rather coupling topology).

First, we briefly describe semi-passive systems, but before doing this, it is nec-
essary to mention two (related) properties: dissipativity and passivity. We say
that a system is dissipative if it does not generate energy and dissipates (or at
most conserves) the energy supplied to it. A system is called passive if it is dis-
sipative and its supply rate is given by the bilinear product of the input(s) and
output(s). On the other hand, a semi-passive system is an input-output system
with as many inputs as outputs, and which is passive outside some ball in the state
space. Basically, this amounts to the fact that without external forcing the system
trajectories are confined to that bounded region. It should also be noted that in
contrast with passive systems, semi-passive systems may generate a finite amount
of energy itself. Moreover, semi-passive systems might feature much richer dynam-
ical behaviour (in comparison with passive systems) like for instance self-sustained
oscillatory behaviour.

One of the key properties of semi-passive systems is that when two or more semi-
passive systems are linearly interconnected, they posses bounded solutions. This
property can actually be exploited in the analysis of synchronization of networks
of semi-passive systems, cf. [5, 6]

The second key element in our framework is the property of convergence. An
input-output system is said to be convergent if any solution of the system starting
in a certain region “forgets” its initial condition such that, after transients, the so-
lutions converge to a steady-state solution which only depends on the input signal
applied to the system. Such input can be either a disturbance or a feed-forward
control signal. In fact, the property of convergence is associated with the output
regulation problem in control theory, where an internal stability condition for the
closed-loop system is required. Namely, that every solution of the closed-loop sys-
tem must be independent of its initial condition and it should converge to a unique
solution, which is determined only by the input. In the case of asymptotically sta-
ble linear systems, convergence is a natural property, whereas nonlinear systems
do not have this property in general. For more formal and general definitions on
the convergence property, the reader is referred to [7].

In the study of synchronization of interconnected systems, the property of con-
vergence can be useful in determining internal stability properties of the (inter-
connected) systems. For instance, the notion of convergence can be used in order
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to find conditions such that it is ensured that the (interconnected) systems are
minimum-phase.

The final ingredient is the so called network or coupling topology. This is
illustrated by means of an example. Suppose that one has a collection of dynam-
ical systems and it is desired to connect them in such way that they synchronize
their states either partially (clustering) or completely. Then, a natural question
would be what kind of network structure and coupling functions will lead to (par-
tial/complete) synchronization of the systems? Moreover, what happens if either
the number of couplings and /or systems increases? This kind of questions can be
addressed by, for instance, the use of graph theory. Under this formalism, each
dynamical system is considered as a node and the coupling between two systems,
which normally it is assumed to be either unidirectional or bidirectional, is taken
to be an edge of the graph.

Existing results suggest that when all members in the network are assumed to
be identical, the existence of invariant (partial/complete) synchronization mani-
folds is likely to follow from the specific topology of the network. In particular, in
[8] it is shown how the structure of the network can be chosen such that partial
synchronization occurs. Further results related to the topology of diffusive net-
works and synchronization in time-varying network topologies are presented in [9]
and [10], respectively.

3. Networks with time-delay coupling

So far, the case where the interaction between the dynamical systems within
the network is instantaneous has been considered, i.e. it has been assumed that
the communication delay between two or more systems is negligible. However,
when a signal is traveling through a complex network, the time that it takes to the
signal to go from one system to another (time delay) is generally not negligible.
The time delay in the network can be caused, for instance, by speed transmis-
sion and/or traffic congestion. Consider for example the interaction between two
distant neurons; due to the finite propagation speed of the membrane potential
through the neuron’s axon, a neuron “feels” the change of membrane potential
of the other neuron to which it is connected only after some time has elapsed.
Another familiar example can be found in communication systems, like in com-
puter networks, where the transmission of a message from one client to another
takes certain amount of time, i.e. is subject to a delay; in this case the time delay
can be caused either by excess of traffic through the network and/or because of
processing time required by the servers in order to process the information.

In practical situations, time delays caused by signal transmission may affect
the behavior of coupled systems. It is therefore necessary to study the effect that
time delays have in existing synchronization schemes. Actually, at this point the
natural question would be, can systems in networks show synchronous behaviour
even in the presence of time delays?
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By using the framework above described in combination with some basic theory
about retarded functional differential equations (like the well known Lyapunov-
Razumikhin Theorem), it is possible to prove under some mild assumptions, that
identical strictly semi-passive systems, whose internal dynamics are stable, always
will synchronize given that the coupling between the systems is sufficiently strong
and a possible constant time delay is sufficiently small [11].

4. Conclusions

A theoretical framework than can be used to study synchronization in networks
of certain dynamical systems has been presented. The ingredients required in the
proposed framework are semi-passive systems, the convergence property and the
network (or coupling) topology. Furthermore, the proposed framework is valid
even in the case where the communication between the members/systems of the
network is subject to a time delay.
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An Optimal Controller Architecture for Poset-Causal Systems

Pablo A. Parrilo

(joint work with Parikshit Shah)

Summary: We propose a novel and natural architecture for decentralized control that

is applicable whenever the underlying system has the structure of a partially ordered

set (poset). This controller architecture is based on the concept of Möbius inversion

for posets, and enjoys simple and appealing separation properties, since the closed-loop

dynamics can be analyzed in terms of decoupled subsystems. The controller structure

provides rich and interesting connections between concepts from order theory such as

Möbius inversion and control-theoretic concepts such as state prediction, correction, and

separability. In addition, using our earlier results on H2-optimal decentralized control

for arbitrary posets, we prove that the H2-optimal controller in fact possesses the pro-

posed structure, thereby establishing the optimality of the new controller architecture.

A complete version of these results can be found in [2].

In this work we are concerned with the following questions: “What is a sensible
architecture of controllers for poset-causal systems? What should be the role of
controller states, and what computations should be involved in the controller?”

Our main contributions are:

• We propose a controller architecture that involves natural concepts from
order theory and control theory as building blocks.

• We show that a natural coordinate transformation of the state variables
yields a novel separation principle.

• We show that the optimal state-feedback H2 controller that we studied
earlier in [3] has precisely the proposed controller structure.

• We establish novel connections that tie together three well-known con-
cepts: (a) Youla parameterization in control, (b) the concept of purified
output feedback in robust optimization and (c) Möbius inversion on posets.

Poset-causal systems. We consider state-space systems in continuous time:

ẋ(t) = Ax(t) + w(t) +Bu(t)

z(t) = Cx(t) +Du(t)

y(t) = x(t).

(1)

The system matrices (A,B,C,D) are partitioned into blocks in the following nat-
ural way. Let P = (P,�) be a finite poset with P = {1, . . . , s}. We think of sys-
tem (1) as being divided into s subsystems, with subsystem i having states xi(t) ∈
Rni . The control inputs at the subsystems are ui(t) ∈ Rmi for i ∈ {1, . . . , s}.
The external output is z(t) ∈ R

p. The signal w(t) is a disturbance signal. The
states and inputs are partitioned in the natural way such that the subsystems

correspond to elements of the poset P with x(t) = [x1(t) |x2(t) |. . . |xs(t) ]
T
, and

u(t) = [u1(t) |u2(t) |. . . |us(t) ]
T
. This naturally partitions the matrices A,B,C,D
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into appropriate blocks so that A = [Aij ]i,j∈P
, B = [Bij ]i,j∈P

, C = [Cj ]j∈P

(partitioned into columns), D = [Dj ]j∈P
.

We call such systems poset-causal due to the following causality-like property
among the subsystems. If an input is applied to subsystem i via ui at some time
t, the effect of the input is seen by the downstream states xj for all subsystems
j ∈↓ i (at or after time t). Thus ↓ i may be seen as the cone of influence of
input i. We refer to this causality-like property as poset-causality. This notion
of causality enforces (in addition to causality with respect to time), a causality
relation between the subsystems with respect to a poset.

Information Constraints on Controller. We require the controller K to
also be poset-causal, with respect to the same (block) incidence algebra as the
system. We want to compute the best structure-preserving controller, that mini-
mizes a measure of performance given by the standard H2 norm of the feedback
interconnection.

Controller architecture and properties: The proposed controller structure
is as follows. At each subsystem, the partial ordering allows a decomposition of the
global state into “upstream” states (i.e. states that are available), “downstream”
(these are unavailable) and “off-stream” states (corresponding to uncomparable
elements of the poset). The downstream and off-stream states are (partially)
predicted using available upstream information using a “simulator” (see Figure 1),
this prediction is the role of the controller states. The best available information
of the global state at each subsystem is then described using a matrix X ; each
column of X corresponds to the best local guess or estimate of the overall state at
a particular subsystem.

Having computed these local partial estimates, the controller then performs
certain natural local operations on X that preserve the structure of the poset.
These local operations are the well-known ζ and µ operations in Möbius inversion.
These operations, which are intimately related to the inclusion-exclusion formula
and its generalizations, have a rich and interesting theory, and appear in a variety
of mathematical contexts [1]. The control inputs are of the form U = ζ(F◦µ(X)).
The operators µ and ζ can be interpreted as generalized notions of differentiation
and integration on the poset so that µ(X) may be interpreted as the differential
improvement in the prediction of the local state. Here F = {F (1), . . . , F (s)} are
feedback gain matrices corresponding to the different subsystems. The quantity
F ◦ µ(X) may therefore be interpreted as a local “differential contribution” to
the overall control signal. The overall control law then aggregates all these local
contributions by “integration” along the poset using ζ. This architecture is been
shown diagrammatically in Figure 1.

The key property of this architecture is the decoupling or separation of the
dynamics of the independent subsystems. Each subsystem can simulate the global
dynamics using local states and inputs. This can be compactly written as

Ẋ(t) = AX(t) +BU(t).(2)
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Figure 1. Block diagram representation of the control architec-
ture. The simulator predicts the unknown states at each subsys-
tem (predictions at subsystem k are denoted by Xk). The con-
troller then computes a differential improvement on the prediction
using µ, acts on it with local gains F (k) and then “integrates”
them along the poset using ζ to produce the control inputs.

Applying µ to these equations we obtain the following closed-loop dynamics in the
new variables µ(X):

˙µ(X)(t) = Aµ(X)(t) +Bµ(U)(t).

Define A + BF =
{
A+BF̂ (1), . . . , A+BF̂ (s)

}
. From the fact that µ(ζ(F ◦

µ(X))) = F ◦ µ(X) the modified closed-loop dynamics are then decoupled:

˙µ(X)(t) = (A+BF) ◦ µ(X)(t).

References

[1] G.-C. Rota. On the foundations of combinatorial theory I. Theory of Möbius functions,
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Generalized Factor Analysis Models

Giorgio Picci

(joint work with Giulio Bottegal)

An interesting generalization of factor analysis models has been proposed by
Chamberlain and Rothschild in 1983 [2] and recently extended to the dynamic
setting by Forni, Lippi and collaborators [3].
These models, called generalized factor analysis (GFA) models describe observa-
tions of infinite cross-sectional dimension. Restricting to the static case, let y be
an infinite string of zero-mean finite variance random variables, which we write as
a column vector; then a GFA is a infinite dimensional linear model of the following
type

y =

q∑

i=1

fixi + ỹ

where:
fi ∈ R

∞, i = 1, . . . , q i-th factor loading vector,
xi = i-th latent factor, w.l.g. normalized to unit variance Exx⊤ = Iq
ỹ is the “idiosyncratic” noise vector with x ⊥ ỹ .

The idiosyncratic term is no longer required to have uncorrelated components
as in the classical factor analysis model, but to satisfy instead a zero-average
condition. This condition implies that the covariance of any two variables ỹ(k)
and ỹ(j), say σ̃(k, j) tends to zero when |k − j| → ∞.

It can be shown that with this new definition the inherent non-uniqueness of
classical factor analysis models does not occur. Moreover in this generalized con-
text the dimension q of the latent factors vector can be characterized as the number
of “infinite eigenvalues” of the covariance matrix of y.

We attempt to use this class of models to do modeling of large interconnected
systems. We show that the overall covariance of the observed process can be
decomposed in the sum of two contributions.

• A long range correlation structure which describes the component of y
driven by the latent vector. The long range property means that the
covariance of two varible ŷ(k) and ŷ(j), say σ̂(k, j) does not go to zero
when |k − j| → ∞.

• A short range correlation structure which corresponds to the idiosyncratic
component ỹ. The short range property means that the covarinace of two
varible y(k) and y(j), say σ̃(k, j) → 0 when |k − j| → ∞.

There is a natural interpretation of generalized factor analysis models in terms
of Wold decomposition of stationary sequences. A stationary sequence admits a
(unique) generalized factor analysis decomposition if and only if two rather natural
conditions are satisfied.
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Distributed Control of Positive Systems

Anders Rantzer

Classical methods for multi-variable control, such as LQG and H∞, suffer from
a lack of scalability that make them hard to use for large-scale systems. The
difficulties come from both computational complexity and from the absence of
distributed structure in the resulting controllers. The complexity can be traced
back to the fact that even stability verification of a linear system with n states
generally requires a Lyapunov function involving n2 quadratic terms. This is true
even if the system matrices are sparse. However, the situation improves drasti-
cally if we restrict our attention to system matrices with nonnegative off-diagonal
entries. Then stability and performance can be verified using a Lyapunov function
with only n linear terms. Sparsity can be exploited in performance verification
and even synthesis of distributed controllers can be done with a complexity that
grows linearly with the number of nonzero entries in the system matrices. These
basic observations have far-reaching implications:

(1) The essential mathematical mechanism extends beyond system matrices
with nonnegative off-diagonal entries. A sufficient assumption is that the
transfer functions involved are “positively dominated”.

(2) The desired structure appears naturally in many important application
areas, such as mechanical systems, economics, transportation networks,
power systems and biology.

(3) In control applications, the condition on positive dominance need not ap-
ply to the open loop process. Instead, a large-scale control system can
often be structured into local control loops that give positive dominance,
thereby enabling scalable methods for optimization of the global perfor-
mance.
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Flatness of driftless systems equivalent to the canonical Cartan
distributions

Witold Respondek

(joint work with Shun-Jie Li)

Our talk is devoted to flatness of control systems and based on two recent publica-
tions [6],[7] of Shun-Jie Li and the author. The notion of flatness was introduced
in control theory around 1990 by Fliess, Lévine, Martin and Rouchon [1],[2] (see
also [3],[8],[12]). Roughly speaking, a control system of the form

Ξ : ẋ = f(x, u),

x ∈ M , a smooth manifold (state space), and u ∈ Rm, is flat if there exist m
functions (of the state, controls, and their time derivatives) that allow to represent
the whole state and all controls via differentiation only. More precisely:

Definition A smooth control system Ξ : ẋ = f(x, u), with m controls, is locally
flat if there exit m functions hi(x, u, . . . , u

(r)), called flat outputs, such that

x = φ(h, . . . , h(s))

u = ψ(h, . . . , h(s)),

where h = (h1, . . . , hm), holds locally for some smooth maps φ and ψ. If hi =
hi(x), then we say that the system is x-flat.
In other words, a system is flat if it is locally linearizable via a (dynamic) endoge-
nous invertible feedback, that is, it has, locally, the same trajectories as a linear
controllable system.

In the first part of the talk, we deal with two-input driftless (equivalently,
control-linear) systems

Σ : ẋ = f1(x)u1 + f2(x)u2,

on an (n+2)-dimensional state-spaceM and u = (u1, u2)
⊤ ∈ R2. To the system Σ,

we associate the distribution D spanned by the vector fields f1, f2, i.e.,

D = span {f1, f2}.

The derived flag of D is the sequence of distributions defined inductively by

D(0) = D and D(i+1) = D(i) + [D(i),D(i)], for i ≥ 0.

The characteristic subdistribution C of D is C = {f ∈ D : [f,D] ⊂ D} and is
always involutive.

For two-input driftless sytems the three following properties are closely related:
flatness, the condition rankD(i) = i + 2, for 0 ≤ i ≤ n, and feedback equivalence
to the chained form

ż0 = v0, żj = zj+1v0, żn = v1

where (z0, z
0, . . . , zn) are coordinates on Rn+2 and 0 ≤ j ≤ n− 1.

It is easy to see that the chained form is x-flat with flat outputs chosen as h =
(h1, h2) = (z0, z

0) and provided that the control v0 6= 0. The converse implication
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that flatness implies the chained form was proved by Martin and Rouchon [9] to
hold almost everywhere on M . It is is a classical result, going back to von Weber
(1898), Cartan (1914), and Goursat (1923), that rankD(i) = i + 2, 0 ≤ i ≤ n,
implies the chained form, called also Goursat normal form or Cartan distribution
for curves in R. Finally, Shun-Jie Li and the author proved [7] that x-flatness and
equivalence to the chained from coincide around any point of M (and not only
generically).

Knowing that only 2-input driftless systems equivalent to the chained form are
flat, we answer the following natural question: when does a pair of two functions
on M form flat outputs?

Theorem Consider a 2-input driftless control system Σ feedback equivalent to
the chained form everywhere on M . A pair of smooth functions (ϕ1, ϕ2) is an
x-flat output of Σ at x0 if and only if the following conditions hold:

(i) dϕ1 and dϕ2 are independent at x0;
(ii) L = (span {dϕ1, dϕ2})⊥ ⊂ Dn−1 in M;
(iii) D(x0) is not contained in L(x0).

The conditions of the theorem are verifiable, i.e., we can easily verify whether
for a pair of functions (ϕ1, ϕ2) on M forms an x-flat output of a given system and
verification involves derivations and algebraic operations only (without solving
PDE’s or bringing the system into a normal form).

In the second part of the talk, we propose a kinematic model of a system moving
in an (m+1)-dimensional Euclidean space and consisting of n rigid bars attached
successively to each other and subject to the nonholonomic constraints that the
instantaneous velocity of the source point of each bar is parallel to that bar [6].
The n-bar system is a natural generalization of the n-trailer system [4],[5]. We
prove that the associated control system is controllable and feedback equivalent
to the m-chained form around any regular configuration, that is, provided that
the angles of any two consecutive bars are not ±π/2. The m-chain form is the
following control system

ż0 = v0, żji = zj+1
i u0, żni = vi,

where 1 ≤ i ≤ m, 0 ≤ j ≤ n− 1 and (z0, z
j
i ) are coordinates on Rm(n+1)+1. As a

consequence, we deduce that the n-bar system is flat at any regular configuration
and show that the Cartesian position of the source point of the last (from the top)
bar is a flat output.

The m-chained form is a natural generalization of the chained form (in which
we have replaced one chain of length n + 1 by m such chains) and the geometry
of both classes exhibits many similarities. Indeed, the inclusions D(i) ⊂ D(i+1)

are of corank m for the m-chain form and of corank one for the chained form
while the inclusions Ci ⊂ D(i−1) are of corank one for both classes (where Ci is the
charactersitic subdistribution of D(i)):

D(0) ⊂ D(1) ⊂ · · · ⊂ D(n−2) ⊂ D(n−1) ⊂ D(n) = TM
∪ ∪ ∪ ∪
C1 ⊂ C2 ⊂ · · · ⊂ Cn−1 ⊂ L
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On the other hand, there is a substantial difference concerning the involutive sub-
distribution L ⊂ D(n−1) of corank one. For the m-chained form, m ≥ 2, it is
unique and thus it determines minimal flat outputs uniquely (up to a diffeomor-
phism), see [6] for a detailed analysis. For the chained form, D(n−1) contains many
involutive subdistributions L (although none of them is canonical) and any invo-
lutive subdistribution L of D(n−1) gives a pair of flat outputs, as described by the
theorem above.

For the chained and m-chained forms, we provide also systems of partial differ-
ential equations to be solved in order to find all flat outputs.
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Stability and stabilization of piezoeletric beams

Jacquelien M. A. Scherpen

(joint work with Thomas Voß)

1. Introduction

We analyze the finite dimensional dynamics of a piezoelectric beam in the port-
Hamiltonian (pH) framework. These dynamics have been previously derived using
a structure preserving spatial discretization scheme [2], see [7, 8]. We show that
although the method proposed in [2] yields a finite dimensional pH system, it is not
guaranteed that this model can then be used for the design of a controller because
the system may not satisfy a necessary condition for stabilization. It turns out
that the system is not stabilizable due to modeling simplifications made for the
infinite dimensional system. Two different type of simplifications are analyzed, as
well as the model without these simplifications, see [10]. .

The pH framework was originally developed for modeling finite dimensional
systems, but was later on extended to the case of infinite dimensional systems as
shown in [3, 4]. For more details we refer the interested reader to [1]. Here we
consider smooth spatially discretized pH systems with neglectable dissipation that
takes the following form,

ẋ = J(x)
∂H

∂x
(x) +Bintuint +Bextuext(1)

yint = B⊤
int

∂H

∂x
(x) +Dintuint, yext = B⊤

ext

∂H

∂x
(x) +Dextuext

where x = (x1, . . . , xn) are the local coordinates of an n-dimensional state space
manifold X , uint ∈ Rm and yint ∈ Rm are the inputs and outputs corresponding
to the boundary ports, and uext ∈ Rp and yext ∈ Rp are the distributed inputs and
outputs corresponding to the distributed ports. J(x) : X → Rn×n is the smooth
skew-symmetric interconnection matrix. Bint(x) : X → Rn×m and Bext(x) :
X → Rn×p are the smooth input matrices, and H(x) : X → R with H(x) > c >
−∞∀x ∈ X is the smooth so called Hamiltonian of the system, H(x) represents the
stored energy in the system. Interconnection of two finite dimensional pH systems
yields again a finite dimensional pH system. This property can be exploited for
finite dimensional control design.

The model we use was derived in [7, 8] We first modeled the infinite dimensional
dynamics of the piezoelectric beam in the pH framework [8] and then we used the
method proposed in [2] to spatially discretize an infinite dimensional nonlinear
piezoelectric Timoshenko beam while preserving the pH structure [7]. Different to
the very simple system in [2] the model in [7] consists of 8 states and has a non
constant interconnection structure.

We consider a piezoelectric composite beam which consists of a base layer to
which a piezoelectric layer is bonded. We assume that the base layer has a constant
thickness and a constant height, while its length is L. Each side of the piezoelectric
layer in the z1z2 plane is covered by an electrode to which a homogeneous voltage
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distribution is applied. The voltage distribution will generate an electrical field
between the electrodes. Hence, due to the piezoelectric properties, the material
will deform. This electrical field can be controlled and thus we can also control
the shape of the piezoelectric beam.

Following the spatial discretization scheme proposed in [2] we first divide a patch
of the beam with one piezoelectric element, which is described in the interval
Z = [0, L], into n subintervals. On each of these n subintervals, e.g., Zab =
[a, b] with 0 ≤ a < b ≤ L, we spatially discretize the dynamics, resulting in
a finite dimensional approximation for the inifinite dimensional dynamics of our
piezoelectric composite on the interval Zab, for more details see [7]. Then, these n
finite dimensional pH models are interconnected in a physical way via the boundary
ports uint, yint. The interconnected model then approximates the dynamics of the
total piezoelectric beam on the interval Z.

2. Discretized models and stabilizability

First we consider the model of the piezoelectric Timoshenko beam with a quasi-
static electrical field, a standard assumption in engineering, see [5], i.e., the mag-
netic coupling between the mechanical and the electrical domain is neglected.

Important physical quantities are [pu, pw, pφ, u
′, w′, φ, φ′, E] on the interval

Zab. Here φ is the angle of the deformation, u the horizontal displacement, and w
the vertical displacement. The pi, i ∈ {u,w, φ} are the momenta in the u, w, and
φ direction, u′, w′, φ, and φ′ are strain parameters ε, where the prime operator
stands for x′ = ∂x

∂z
, where z is the relevant spatial coordinate. Finally, E is the

electrical field generated between the two electrodes. The energy function H is
given by H = 1

2p
⊤M−1p + 1

2ε
⊤C(ε)ε + 1

2ǫ
eE2, where where M is the matrix

of the beam, C is a nonlinear smooth positive definite matrix which relates the
stresses and the strains in the system and ǫe is the permittivity of the piezoelectric
material.

Using the above described physical quantities as states, we have a constant in-
terconnection (Dirac) structure, and hence, we can apply the discretization method
described above. However, it turns out that the resulting finite dimensional port-
Hamiltonian system with constant interconnection structure and 8 states on Zab

does not fulfill the necessary condition for stabilizability (see e.g., Proposition
4.2.14 from [6]) by the distributed inputs. This necessary condition is easily check-
able by checking the rank of J(x) and Bext, and stems from Brockett’s necessary
condition. The reason for that may be the dependency of two state variables,
namely φ and φ′.

In fact, the strains of an infinite dimensional nonlinear Timoshenko beam are
given by ε11 = u′0 +

1
2 (w

′)2 − zφ′, ε13 = 1
2 (w − φ′) . The strain is parametrized

to define the states of the dynamical system. In order to obtain a constant in-
terconnection structure, we we have chosen a linear strain parametrization ε :=

[u′0, w
′, φ, φ′]⊤ which results in a constant infinite dimensional interconnection

structure, but yields a finite dimensional system that cannot be stabilized. Another
way to parametrize the strains is to define the following nonlinear strain states
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ε :=
[
ε011, ε

1
11, ε13

]⊤
where ε011 :=

(
u′0 +

1
2 (w

′)
2
)
, ε111 := φ′, ε13 := 1

2 (w − φ′) .

resulting in a non-constant interconnection structure. To translate this to the finite
dimensional case, we define a coordinate change for the 8th order finite dimensional
model, resulting in a 7th order finite dimensional model with a non-constant in-
terconnection structure on Zab. It is readily checked that the system on Zab does
fulfill the necessary condition for stabilizability. However, when the n subsys-
tems are interconnected through the internal ports, so that we obtain a model
for Z = [0, L], and taking into account that the input from uext is the same for
all n subsystems, it turns out that the system in Z does not fulfill the necessary
condition for stabilizability anymore.

A reason for these results could be that the magnetic coupling between the
piezoelectric element and the mechanical beam is important for the control, i.e.,
the coupling may be very small, but on the other hand it may be crucial for the
stabilizability Inclusion of the magnetic field in the model is rather straightforward.
The mechanical states are the same as described above. For the electrical states we
take the flux and charge distribution of the piezoelectrical element. The structure
of the interconnection matrix is now such that the rank is 8, different from the
previous cases, resulting in an interconnection matrix of the n interconnected
systems on Z with rank 8n, and thus the necessary condition for stabilizability
is fulfilled. In [9] a energy shaping and damping injection shape controller is
developed.
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A novel Lyapunov function for kick-synchronization models

Rodolphe Sepulchre

(joint work with Alexandre Mauroy)

We consider a continuum of phase oscillators on the circle interacting through an
impulsive instantaneous coupling. In contrast with previous studies on related
pulse-coupled models, the stability results obtained in the continuum limit are
global. For the nonlinear transport equation governing the evolution of the os-
cillators, we propose (under technical assumptions) a global Lyapunov function
which is induced by a total variation distance between quantile densities. The
monotone time evolution of the Lyapunov function completely characterizes the
dichotomic behavior of the oscillators: either the oscillators converge in finite time
to a synchronous state or they asymptotically converge to an asynchronous state
uniformly spread on the circle. The results of the present paper apply to popular
phase oscillators models (e.g. the well-known leaky integrate-and-fire model) and
draw a strong parallel between the analysis of finite and infinite populations. In
addition, they provide a novel approach for the (global) analysis of pulse-coupled
oscillators.
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Circulant and Pseudo-circulant Control Systems

Frederike Rüppel

(joint work with Uwe Helmke)

Linear dynamical systems with circulant interconnection structures have been
investigated quite often in the control literature; mainly in connections with con-
sensus algorithms; see e.g. [3]. More general interconnection structures such as
rings, chains or trees were also investigated by [2], with applications to e.g. multia-
gent systems and cellular chemistry. These structures are often of a Toeplitz-form.
Before analyzing the controllability properties of Toeplitz formations we consider
the much easier case of circulant formations. Since circulant systems are never
controllable, this motivates to consider more general classes of systems, defined by
pseudo-circulants or Toeplitz matrices.
Consider now the task of characterizing the reachable sets of bilinear control sys-
tems on Cn

(1) ẋ =




d∑

j=1

ujCj


x,

defined by circulant matrices C1, . . . , Cd ∈ C
n×n, d ≤ n. Without loss of general-

ity we can assume that the circulant matrices Cj := Circ(c
(j)
0 , ..., c

(j)
n−1) are linearly
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independent. Let pj(z) =
∑n−1

k=0 c
(j)
k zk denote the corresponding generating poly-

nomials, j = 1, . . . , d, and let Vd denote the vector space of complex polynomials
spanned by p1, . . . , pd. Identify a vector of coefficients x = (x0, . . . , xn−1)

⊤ ∈ Cn

with the associated polynomial πx(z) :=
∑n−1

k=0 xkz
k.

Any element in the system Lie algebra of (1) is of the form Φp(Ω)Φ∗, where p runs
through the elements of Vd and Ω is a diagonal matrix. Therefore, the elements of
the system Lie group are exactly Φep(Ω)Φ∗, where p ∈ Vd. Thus, for x ∈ C

n, the
reachable sets of (1) are

R(x) = {Φep(Ω)Φ∗x | p ∈ Vd}.

We conclude

Theorem 1. (1) The circulant control system (1) is never controllable on Cn.
(2) For d = n there is a unique reachable set R(x) that is dense in Cn. R(x)

is characterized by πx(ω
j) 6= 0 for j = 0, . . . , n− 1.

(3) For d < n all reachable sets have empty interior.

Before presenting our main results, we begin with a reformulation of general
controllability results by Gauthier and Bornard [1] and Silva-Leite and Crouch [4]
for arbitrary bilinear control systems on the Lie group of complex invertible n×n
matrices GLn(C)

Ẋ =




d∑

j=1

ujAj


X, X(0) = In.

Theorem 2 (Gauthier, Bonnard; Silva-Leite, Crouch). Suppose that complex ma-
trices A1, . . . , Ad (or complex skew-Hermitian matrices A1, . . . , Ad, respectively,)
satisfy

(1) There exist u1, . . . , ud ∈ C (or u1, . . . , ud ∈ R, respectively,) such that∑d
j=1 ujAj is strongly regular.

(2) A1, . . . , Ad possess no non-trivial common invariant subspace V ⊂ C
n.

Then the system Lie algebra L(A1, . . . , Ad) is either equal to sln(C) or equal to
gln(C) (or equal to sun(C) or un(C), respectively).

One can show that there exists λ ∈ Cn such that Cλ is strongly regular if and
only if the first row vector of Cλ lies in Cn −W . Here W denotes the subspace
W :=

⋃
ijkl ker

(
In − Ω(ωj−i) + Ω(ωl−i)− Ω(ωk−i)

)
of Cn with (i, j) 6= (k, l), i <

j, k 6= l. Hence one can use Theorem 2 for proving the following theorem:

Theorem 3. Let c ∈ Cn−W , c0 6= 0. Then the bilinear control system on GLn(C)

Ẋ = Circu(t)(c0, . . . , cn−1)X

is accessible.

By Theorem 3, the Lie algebra generated by pseudo-circulant matrices is equal
to the full matrix Lie algebra Cn×n. Therefore, the products of exponentials of
pseudo-circulant matrices generate GLn(C). As every matrix exponential of a
pseudo-circulant is an invertible pseudo-circulant we obtain:
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Corollary 4. GLn(C) is the smallest Lie group that contains all invertible pseudo-
circulant matrices. In particular, the discrete-time pseudo-circulant control system

Xt+1 = Circun(t)(u0(t), . . . , un−1(t))Xt, X0 = In,

is controllable on GLn(C) . Here u0(t), . . . , un(t) denote arbitrary control se-

quences such that
∑n−1

j=0 ujz
j 6= 0 on all n−th roots of un 6= 0.

Since the elements of the reachable sets of a symmetric bilinear control system
on a Lie group are always reached in finite time, this has an interesting consequence
in Linear Algebra.

Corollary 5. Any complex invertible matrix is a finite product of invertible pseudo-
circulant matrices.

Since pseudo-circulant matrices being special Toeplitz matrices, we obtain sim-
ilar results for invertible Toeplitz matrices and Toeplitz copntrol systems:

Corollary 6. Any complex invertible matrix is a finite product of invertible Toeplitz
matrices.

Theorem 7. The Lie algebra generated by n×n complex Toeplitz matrices is equal
to the full matrix Lie algebra Cn×n. In particularly, the bilinear Toeplitz control
system

Ẋ =




n−1∑

k=−(n−1)

ukTk


X

is controllable on GLn(C).
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Synchronization in networks of linear parameter-varying systems

Georg S. Seyboth

(joint work with Frank Allgöwer)

We study synchronization problems in heterogeneous networks of linear parameter-
varying (LPV) dynamical systems. The heterogeneity is described by local time-
varying parameters in the subsystems. The agents in the network are given as

(1)
ẋk = A(γ(t), λk(t))xk +B(γ(t), λk(t))uk

yk = Cxk,
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where xk(t) ∈ R
n is the state, yk(t) ∈ R

p is the output and uk(t) ∈ R
q the input

of agent k, k = 1, ..., N . The time-varying parameters γ(t) and λk(t) are assumed
to be available as real-time measurements. In particular, agent k has access to the
global parameter γ(t) and its own local parameter λk(t).

Synchronization problem: For a given set of N agents (1), find dynamic LPV
controllers such that the outputs yk and ζk synchronize, i.e., that for all k, j =
1, ..., N , (yk − yj) → 0 and (ζk − ζj) → 0 exponentially as t→ ∞.

The situation is illustrated in Fig. 1. As indicated, each agent has a local

Agent k

yk

Controller k

uk

ζk

Network G(t)

vk

Figure 1. Network of agents (1) and local controllers, intercon-
nected with graph G(t).

controller which has access to yk and may communicate with neighbors in the
network according to a time-varying communication graph G(t).

We propose a solution for the synchronization problem and show that concepts
from synchronization in heterogeneous networks of linear time-invariant systems
[1] can be adapted to the more general framework of LPV systems.
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Classical Network Synthesis

Malcolm C. Smith

The talk consists of four parts. In the first part, the motivation is explained for
revisiting certain questions in circuit theory, in particular, the synthesis theory of
“one-port” (i.e. with a pair of external driving terminals) RLC networks and the
questions of minimality associated with the Bott-Duffin procedure. The motivation
relates to the synthesis of passive mechanical impedances and the need for a new
ideal modelling element the “inerter” [7]. The development of the inerter from a
mathematical concept and ideal modelling element through to its adoption as a
standard component in Formula One racing and beyond is described [2].
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In the second part, classical results from electrical circuit synthesis are reviewed
including the procedures of Foster, Cauer, Brune, Darlington, Bott and Duffin.
The reactance theorem of Foster [3] for lossless networks and the Bott-Duffin
construction [1] for arbitrary positive-real functions are highlighted.

In the third part, the concept of regular positive-real functions is described.
A positive-real function Z(s) is defined to be regular if the smallest value of
Re (Z(jω)) or Re

(
Z−1(jω)

)
occurs at ω = 0 or ω = ∞. It is shown how the

concept can aid the classification of low-complexity networks. A generating set for
the two-reactive/three-resistive-element networks is described [4].

The fourth part presents a reworking and amplification [5] of the proof of the
theorem of Reichert [6] which states that any driving-point impedance which may
be realised using two reactive elements and an arbitrary number of resistors can
be realised using two reactive elements and three resistors.
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Universal regularity results for open-loop optimal controls

Héctor J. Sussmann

A “universal regularity result” for a class of problems is a theorem that says that
for all problems in the class, whenever a solution exists, then a solution having
certain regularity properties exists. Here we consider optimal control problems of
the Lagrange type, with a given state space which is a real analytic manifold, a
control set which is a compact subanalytic subset of some other real analytic man-
ifold, a dynamics which is real analytic in the state and the control, a Lagrangian
that is also real analytic in the state and the control, and fixed initial and terminal
states. For such problems, the universal regularity theorem says that whenever an
optimal open-loop control exists, then there exists one which is real analytic on
an open dense subset of its interval of definition. The proof is a construction by
“induction” on the dimension of the control set, where the dimension of a compact
subanalytic set U is defined as follows: let (V, f) be a “desingularization” of U .
(This means that V is a compact manifold which is a finite union of tori, possibly of
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different dimensions, and f : V 7→ U is a real analytic surjective map. Such a pair
(V, f) exists by Hironaka’s desingularization theorem.) Let n = (n0, n1, n2, . . .) be
the sequence such that nk is the number of k-dimensional connected components
of V . Then the dimension of U is the minimum—with respect to the lexicographi-
cal ordering—of all sequences n arising from desingularizations of U . Induction is
carried out with respect to the lexicographical ordering. The inductive step con-
sists, roughly, of using the Pontryagin Maximum Principle to conclude that every
optimal trajectory is actually an optimal trajectory of a problem with a smaller
U . In the lecture, the much simpler case of a Lagrangian equal to 1 (minimum
time control), a control set U equal to the interval [−1, 1], and a dynamics which
is affine linear in the control, was considered. In that case, the regularity theorem
can be proved by successively differentiating the switching function.

From Gossip to Voting

Patrick Thiran

(joint work with Florence Bénézit, Martin Vetterli)

An increasingly larger number of applications require networks to perform decen-
tralized computations over distributed data. A representative problem of these
“in-network processing” tasks is the distributed computation of the average of
values present at nodes of a network, known as gossip algorithms. They have
received recently significant attention across different communities (networking,
algorithms, signal processing, control) because they constitute simple and robust
methods for distributed information processing over networks.

The first part of the talk is a survey some recent results on these stochastic,
linear, discrete-time dynamical systems. The conditions for convergence are well
established, but the convergence time or cost (number of message exchanges) is
more challenging to estimate. Classical nearest-neighbor gossip algorithms are
slow, but a variation of these algorithms can be proven to order optimal (cost of
O(n) messages for a network of n nodes) for some random geometric graphs. The
reader is referred to [1, 2, 3] for more details on “analog” gossip algorithms.

The second part of the talk is devoted to quantized gossip on arbitrary connected
networks. By their nature, quantized algorithms cannot produce a real, analog
average, but they can (almost surely) reach consensus on the quantized interval
that contains the average, in finite time.

The interval consensus problem [4, 7] can be described as follows. At time
t = 0, n nodes measure some quantized values (x1[0], x2[0], . . . , xn[0]), where R

has been uniformly quantized with step δ. We denote by xave the average of the
n measurements:

xave =
1

n

n∑

i=1

xi[0].

The nodes can communicate through a connected network G and we are given
an ordered subset of quantization levels Θ1 < Θ2 < . . . < Θr called thresholds.
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The goal is to design a quantized distributed algorithm such that nodes can tell
whether the average xave is smaller than Θ1, or between Θ1 and Θ2, . . ., or larger
than Θr. At each step of the algorithm, nodes can store a limited number of bits
as their current state, and neighboring nodes can exchange their states. Based on
their final state, all the nodes should reach a consensus on the interval [Θi,Θi+1]
which contains xave. To simplify, we assume that xave cannot be threshold level
(xave 6= Θ). A particular instance of this problem, where states are quantized on
two values, is the voting problem: nodes initially vote for x = 1 or x = 0, and
they want to know the majority opinion. The interval consensus parameters are
therefore δ = 0.5, Θ = 0.5, and 3 quantization levels: {0, 0.5, 1}, n odd.

Just as in [5], our algorithm is a quantized version of the pairwise gossip algo-
rithm. Similarly to gossip, at the beginning of every round of our algorithm, an
undirected edge of the communication network is randomly selected and its two
end-nodes exchange their states. We denote by pe the probability that edge e is
chosen. The most common way of selecting edges is to assign a random exponen-
tial clock to each node. When their clock activates, nodes wake up and choose a
neighbor uniformly at random among their neighbors. In that setting, if i and j are
neighbors, edge e = (i, j) is chosen with positive probability pe = (1/ndi)+(1/ndj),
where di and dj are the degrees of nodes i and j.

In pairwise gossip, nodes update their states to the average of the two states.
By iterating this update rule over the successively chosen edges, all the states
progressively converge to the average of the initial states. Our goal is to modify
this simple averaging rule so that the states are quantized and so that the nodes
reach an interval consensus.

In order to achieve our goal, we assign two states to each threshold level Θ while
all the other quantization levels are represented by one state only. An ordinary
state will be denoted by its quantization value. The two states with threshold value
Θ are distinguished by Θ− and Θ+. We order the set of states: if the quantization
level of state x is smaller than the quantization level of state y, we write x ≺ y.
Also, for any threshold level Θ, we adopt the following convention: Θ− ≺ Θ+. As
a result, for example, the voting problem functions with 4 states, coded by the two
bits we announced. The four states are ordered: 0 ≺ 0.5− ≺ 0.5+ ≺ 1. We adopt
all the natural ordering vocabulary, which we adapt to ≺: min, max, =, �, ≻,
�. In particular the notion of consecutive states is crucial. In previous example,
0 and 0.5− are consecutive states. So are 0.5− and 0.5+. But 0 and 0.5+ are not
consecutive states.

A quantized gossip algorithm has converged if and only if all the nodes have
either equal or consecutive states. In other words, an algorithm has converged
when there are two consecutive states x and y such that every state in the net-
work is equal to x or y. Suppose that we have run a converging algorithm that
preserves average, and that the average xave is in [Θ1,Θ2], then necessarily, the
two converging states are Θ+

1 , Θ
−
2 or quantized levels between these two. Indi-

vidually, each node knows in which interval xave is. Even a node with state Θ+
1

makes the correct decision, because the + sign tells it that xave ≥ Θ1. Thanks to
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the threshold state splitting, we are able to locally decide common intervals. To
simplify the wording, we say that state x has color C, if a node that has state s
decides that interval C contains xave. For example in the voting problem, states 0
and 0.5− have color 0 (they lead to the conclusion that 0 wins), and states 1 and
0.5+ have color 1 (they lead to the conclusion that 1 wins).

The following properties of the interval consensus algorithm are sufficient for
the algorithm to converge, but not necessary. If nodes i and j are activated at
time t:

• Conservation property The average should be preserved: xi[t + 1] +
xj [t+ 1] = xi[t] + xj [t].

• Contraction property xi[t + 1] and xj [t + 1] should be either equal or
consecutive states. Furthermore, if xi[t] = xj [t] then xi[t+1] = xj [t+1] =
xi[t] = xj [t].

• Mixing property If xi[t] � xj [t], then xi[t+1] � xj [t+1]. In particular,
if xi[t] and xj [t] are consecutive states, then states are swapped: xi[t+1] =
xj [t] and xj [t+ 1] = xi[t].

The algorithm in [5] has similar properties, which we have adapted to our setting.
We can now explicit the interval consensus algorithm. To simplify, we consider

that quantization levels are centered at 0, i.e. they can be written kδ, with k
integer. At time t, an edge is randomly chosen. We denote by i the activated node
with smaller state and by j the other activated node: xi[t] � xj [t]. Nodes i and j
update their states according to the following rules:

xi[t+ 1] =

⌈
xi[t] + xj [t]

2δ

⌉
δ

xj [t+ 1] =

⌊
xi[t] + xj [t]

2δ

⌋
δ.

When xi[t + 1] or xj [t + 1] is equal to a threshold value Θ, we need to specify
whether they are equal to Θ+ or Θ−. There are 4 cases:

• If xi[t] = xj [t], then xi[t+ 1] = xj [t+ 1] = xi[t].
• If xi[t] 6= xj [t] and xi[t + 1] = xj [t + 1] = Θ, then xi[t + 1] = Θ+ and
xj [t+ 1] = Θ−.

• If only xi[t+ 1] = Θ, then xi[t+ 1] = Θ−.
• If only xj [t+ 1] = Θ, then xj [t+ 1] = Θ+.

It is easy to check that this algorithm conserves averages through the iterations,
contracts and mixes states. By the conservation property, if the algorithm con-
verges, then the network reaches consensus on the interval containing xave. In
addition, we can prove that our algorithm converges in finite time with probabil-
ity 1 [4, 7]:

Theorem 1. Let T be the first time the algorithm has converged. If the updating
rules have the conservation, contraction and mixing properties, P[T <∞] = 1.

An upper bound on E[T ] has been computed in [6].
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The interval consensus problem can be extended to multiple voting: a finite set
V of agents is connected in a graph G = (V , E), which is possibly time-varying.
Each agent initially votes for a “color” among a finite set of colors. By means
of local communications only, and using constant, identical and simple updating
rules, the agents want to distributively reach a state of consensus indicating the
initial majority color. We have defined pairwise asynchronous graph automata
(PAGA), for binary (which is given above), ternary and quaternary voting (which
are described in [7]).
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Switched differential algebraic equations

Stephan Trenn

Mathematical modeling of physical (or other) systems naturally leads to a com-
bination of differential equations and algebraic constraints. For analysis purposes
the algebraic equations are often resolved and plugged into the differential equa-
tions to obtain an explicit ordinary differential equation (ODE). However, in the
presence of switches or sudden component faults the algebraic equations may de-
pend on the mode of the system and the corresponding ODEs for each mode might
not be compatible anymore to obtain an overall system description. For this rea-
son it is necessary (and in many other situations possibly advantageous) to study
switched systems where each mode is described by a differential algebraic equation
(DAE):

(1)
Eσ(t)ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t),

y(t) = Cσ(t)x(t).

In contrast to switched ODEs, solutions of (1) may contain intrinsic jumps or even
Dirac impulses. This introduces some mathematical difficulties to interpret (1) be-
cause the product of a piecewise-constant function with a Dirac impulse (and its
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derivatives) has to be defined. It is not possible to define such a multiplication con-
sistently for general distributions; however, if one restricts oneself to the smaller
space of piecewise-smooth distributions [1] one can utilize the Fuchssteiner multi-
plication [2, 3] in order to interpret (1) as an equation in the space of piecewise-
smooth distributions. Within this solution framework typical system theoretical
questions can be studied. There are already some promising results like characteri-
zation of existence and uniqueness of solutions [4], stability analysis via Lyapunov
functions [5, 6, 7], impulse detection [8], and observability [9]. However, there
are still many open questions like characterization of controllability, observer and
controller design as well as possible extensions to the nonlinear case.
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Robustness and adaptation of biological networks under kinetic
perturbations

Steffen Waldherr

(joint work with Frank Allgöwer, Elling W. Jacobsen, Stefan Streif)

We study biochemical reaction networks described by the ODE ẋ = Nv(x) where
x ∈ Rn is the concentration vector, N ∈ Rn×m the stoichiometric matrix, and
v(x) ∈ Rm the reaction rate vector. The network is assumed to have a steady
state x̄ with Nv(x̄) = 0.

A kinetic perturbation is defined as a change from v(x) to ṽ(x) such that ṽ(x̄) =
v(x̄). Defining a suitable perturbation matrix ∆, the change in the reaction rate
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Jacobian at steady state is given by

(1)
∂v̄

∂x
(x̄)−

∂v

∂x
(x̄) = diag v(x̄)∆(diag x̄)−1.

Considering the linear approximation of the network at steady state, we have
the Jacobian

(2) Ã(∆) = N
∂v

∂x
(x̄) + diag v(x̄)∆(diag x̄)−1.

In my talk, I discuss first the robustness problem: find ∆ such that Ã(∆) has
eigenvalues on the imaginary axis.

In the adaptation problem, we study a network given by ẋ = Nv(x, u) and
y = Cx, where u and y are a scalar input and output, respectively, added to the
previous network. Let ū be a stationary input and define B = N ∂v

∂u
(x̄, ū). The

adaptation problem is to find ∆ such that

det

(
Ã(∆) B
C 0

)
= 0,

and Ã(∆) is Hurwitz.
Both the robustness and adaptation problem are solved by robust control tech-

niques.
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Open Stochastic Systems

Jan C. Willems

In this presentation we propose a definition of stochastic system, of a linear
stochastic system, of interconnection of stochastic systems, and of constrained
probability.

Our aim is the notion of ‘open’ stochastic system, that is, a model that incor-
porates the environment as an unmodeled feature. A basic requirement imposed
on this concept is that it should accommodate interconnection as an elementary
operation on stochastic systems. Interconnection is the central feature of systems
thinking. It a plays a crucial role in modeling, in analysis, and in synthesis.

The larger picture underlying this presentation it to put forward a framework
that does for stochastic systems what [1] does for deterministic systems.

Definition 1. A stochastic system is a triple (W,E, P ) with

• W a non-empty set, the outcome space, with elements called outcomes,
• E a σ-algebra of subsets of W with elements are called events,
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• P a probability measure on E.

Classical stochastic systems use for E the Borel σ-algebra induced by the topol-
ogy on W. No probabilistic modeling then enters into the specification of the
events. In Definition 1 on the other hand, the event space E is very much a part
of the stochastic model. One of the aims of the presentation is to demonstrate
that notions as linearity and interconnection of stochastic systems require coarse
σ-algebras and therefore the full generality of Definition 1.

Definition 2. The stochastic system (Rn,E, P ) is said to be linear if there exists
a linear subspace L of Rn such that the events are the Borel subsets of the quotient
space Rn/L, and the probability is a Borel probability on Rn/L. Note that Rn/L is
a finite dimensional real vector space, with therefore well-defined Borel sets. L is
called the fiber and dimension(L) the number of degrees of freedom of the linear
stochastic system (Rn,E, P ).

The stochastic system (Rn,E, P ) is said to be gaussian if it is linear and if the
Borel probability on Rn/L is gaussian. We consider a probability measure that is
concentrated on a singleton to be gaussian. More generally, a gaussian probability
measure may be concentrated on a linear variety.

In order to deal with system interconnection, we first need to discuss comple-
mentarity. Two σ-algebras E1 and E2 on a set W are said to be complementary
if for all nonempty sets E1, E

′
1 ∈ E1, E2, E

′
2 ∈ E2 there holds

[E1 ∩ E2 = E′
1 ∩ E

′
2] ⇒ [E1 = E′

1 and E2 = E′
2].

The stochastic systems Σ1 = (W,E1, P1) and Σ2 = (W,E2, P2) are said to be
complementary if for all E1, E

′
1 ∈ E1 and E2, E

′
2 ∈ E2 there holds

[E1 ∩ E2 = E′
1 ∩ E

′
2] ⇒ [P1(E1)P2(E2) = P1(E

′
1)P2(E

′
2)].

Complementarity of two stochastic systems is implied by complementarity of
the associated σ-algebras. It is easy to construct examples involving zero proba-
bility events that show that complementarity of two stochastic systems does not
imply complementarity of the associated σ-algebras. Complementarity of the event
σ-algebras is a more primitive condition that is convenient for proving complemen-
tarity of stochastic systems.

Definition 3. Let Σ1 = (W,E1, P1) and Σ2 = (W,E2, P2) be complementary
stochastic systems (assumed stochastically independent). Then the interconnec-
tion of Σ1 and Σ2 is defined as the stochastic system (W,E, P ) with E the σ-
algebra generated by E1 ∪ E2, and the probability P defined through ‘rectangles’
{E1 ∩ E2 | E1 ∈ E1, E2 ∈ E2} by

P (E1 ∩ E2) := P1(E1)P2(E2).

The definition of the probability P for rectangles uses complementarity in an
essential way and E is in fact the σ-algebra generated by these rectangles. It is
readily seen that the class of subsets of W that consist of the union of a finite
number of disjoint rectangles forms an algebra of sets, that is, a class of subsets
of W that is closed under taking the complement, intersection, and union. The
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probability of rectangles defines the probability on the subsets of W that consist
of a union of a finite number of disjoint rectangles. By the Hahn-Kolmogorov
extension theorem, this leads to a unique probability measure P on E, the σ-
algebra generated by the rectangles. This construction of the probability measure
P is completely analogous to the construction of a product measure.

Consider the stochastic system Σ = (W,E, P ). Let S be a nonempty subset of
W (with typically S /∈ E). We discuss the meaning of the stochastic system induced
by Σ with outcomes constrained to be in S by considering the interconnection of
Σ with the (deterministic) system Σ′ = (W, {∅, S, Scomplement,W}, P ′), P ′(S) = 1.
Complementarity imposes the regularity condition

[E1, E2 ∈ E and E1 ∩ S = E2 ∩ S] ⇒ [P (E1) = P (E2)].

Definition 4. Let Σ = (W, E , P ) be a stochastic system and S ⊆ W. Assume that
the regularity condition holds. Then the stochastic system

Σ|S := (S,E|S, P |S)

with

E|S := {E′ ⊆ S | E′ = E ∩ S for some E ∈ E},

and

P |S(E
′) := P (E) with E ∈ E such that E′ = E ∩ S,

is called the stochastic system Σ with outcomes constrained to be in S.

The notion of the stochastic system Σ with outcomes constrained to be in S, while
reminiscent of the notion of the stochastic system Σ conditioned on outcomes in
S, is quite different from it. The former basically requires S /∈ E, while the latter
requires S ∈ E. Secondly, constraining associates with the event E ∈ E of Σ, the
event E ∩ S of Σ|§ with probability P (E), while conditioning associates with the
event E ∈ E of Σ the event E ∩ S, also in E, with probability P (E ∩ S)/P (S). So,
constraining pulls the probability of E ‘globally’ into E ∩ S, while conditioning
associates with E ‘locally’ the probability of E ∩ S, renormalized by dividing by
P (S).

More details on the matters discussed in this extended abstract may be found
in [2].
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Performance and Design of Cycles in Consensus Networks

Daniel Zelazo

(joint work with Simone Schuler and Frank Allgöwer)

Consensus networks have emerged as a canonical model for studying networked
systems. The linear consensus protocol, typically expressed as a collection of single
integrators interacting over a communication graph, reveals a deep connection
between its dynamic behavior and the underlying properties of the graph. Beyond
its analytic elegance, it has also proven to be of important practical relevance for a
variety of applications from formation control to distributed computation. From an
engineering perspective, there remains a need to consider the design of consensus
networks in conjunction with a notion of performance. This work contributes
in that direction by first revealing how certain combinatorial properties of the
underlying graph, namely the length of cycles, affect the H2 performance of the
consensus network. This result is then used to motivate a synthesis problem for
placing cycles in a graph using an ℓ1 relaxation method.

1. Cycles, Performance, and the Edge Agreement Problem

We consider a general model of the consensus protocol that includes distur-
bances at both the process and measurement of the system. The closed-loop
representation of this system takes the form





ẋ(t) = −L(G)x(t) +
[
I −E(G)

] [ w(t)
v(t)

]

z(t) = E(G)T x(t).
(1)

Here, E(G) is the incidence matrix of a graph with arbitrary orientation, and
L(G) = E(G)E(G)T is the combinatorial graph Laplacian matrix [1]. The con-
trolled variable z(t) is taken to be the difference between neighboring states, and
thus captures the notion of “agreement” when z(t) = 0.

A straightforward study of the H2 performance of the consensus system (1) is
not possible due to the marginally stable eigenvalue at the origin. However, via a
coordinate transformation, one can consider a minimal realization orthogonal to
the agreement subspace and study the performance of the minimal system. An
important result from [2] showed that there exists a transformation that preserves
the combinatorial features encoded in the state matrix, and this leads to what
is referred to as the edge agreement problem. This transformation is constructed
using the edge Laplacian matrix, defined as [2]

Le(G) = E(G)TE(G).(2)

The minimal system can then be expressed as

Σe(G)




ẋτ (t) = −LT

e RT RT
T xτ (t) +

[
E(T )T −LT

e RT

] [ w(t)
v(t)

]

z(t) = xτ (t).
(3)
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Here, LT
e is the edge Laplacian for some spanning graph T ⊂ G, and the rows of

RT = [I TT ] form a basis for the cut-space of the graph G [1].
The minimal system (3) is stable, and thus its H2 performance is well-defined

[2]. It is straightforward to arrive at the following result,

Theorem 1 ([2]). The H2 performance of the edge agreement problem (3) is given
as

‖Σe(G)‖
2
2 =

1

2
tr[(RT R

T
T )

−1] + n− 1.(4)

An immediate consequence of this result is the following corollary, revealing
how the addition of a single edge to a spanning tree affects the performance.

Corollary 2 ([3]). The H2 performance of the edge agreement problem (3) for the
graph G = T ∪ e is

‖Σe(G)‖
2
2 = ‖Σe(T )‖22 −

1

2
(1− l(c)−1),(5)

where l(c) is the length of the cycle formed by adding the edge e /∈ T to the spanning
tree T .

This result can be used to conclude that long cycles are preferable for improving
the H2 performance. These results are extended to also show that edge disjoint
cycles are also advantageous from an H2 perspective [3].

2. Design of Consensus Networks

The results of Theorem 1 and Corollary 2 can be used to consider synthesis
problems for consensus networks. In particular, we can consider the problem of
adding k edges to some skeletal tree structure with the objective of improving the
H2 performance as much as possible. It is readily seen that such a problem is in
fact combinatorial, and either specialized algorithms or certain convex relaxations
are required to solve the problem. In this work, we consider an ℓ1 relaxation of
the problem.

The performance expressions can be converted to a convex problem by intro-
ducing weights on the edges. To promote sparsity of the relaxed solution, we
also append a weighted ℓ1-norm term in the objective function. The resulting
minimization problem has the following form:

min
γ,wi

−αγ + (1− α)‖m ◦ w‖1(6)

s.t. (γ − 1)I − TTWT T
T ≤ 0∑

iwi = k

0 ≤ wi ≤ 1.

The matrixW contains the candidate edge weights on the diagonal, and the matrix
TT is taken from the cut-space of the graph G.

The optimization problem given above is iterated using a re-weighted ℓ1 algo-
rithm, as proposed in [4]. While this scheme can not be expected to yield the
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optimal solution, in practice we find that it leads to sparse and integer solutions.
An important feature of this problem, however, is the role that the weights m play
in the optimization. Indeed, m can be chosen to promote, for example, long cycles
or edge disjoint cycles. This parameter then falls under the realm of an engineering
design choice and can be used to promote certain features of the solution of this
algorithm.
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