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Abstract. The goal of this workshop was to discuss recent developments of
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Introduction by the Organisers

This workshop was well attended with over 50 participants from around the world.
The workshop brought together a nice blend of researchers with various back-
grounds, from leading experts to Ph.D. students, from mathematical statisticians
to theoretical computer scientists and applied mathematicians.

The workshop featured 27 talks covering a wide range of research problems in
nonparametric statistics. A major focus was on and high-dimensional inference,
including estimation of large matrices, high-dimensional signal recovery, inference
in non- and semiparametric models, shape constrained and adaptive estimation
and inference, statistical inverse problems and nonparametric Bayesian theory.
The talks were well received and stimulated a lot of discussions among the partic-
ipants. In addition to the regular talks, there were two informal evening sessions,
one tutorial on casual inference and one session of Ph.D. students’ talks. These
experimental informal sessions turned out to be a great success. As always, the
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traditional Wednesday afternoon hike to St. Roman was an enjoyable experience
to all participants.

Estimation of Large Matrices Based on Noisy Data

The analysis of high-dimensional data sets, nowadays commonly arising in sci-
entific investigations, poses many statistical challenges not present in smaller scale
studies. Among the many interesting applications are genomics, fMRI analysis,
risk management, and web search problems. A major part of this workshop was
on the very active research area of high-dimensional statistical inference and in
particular estimation of large matrices based on noisy observations.

After a brief introduction, the workshop opened on the Monday morning with
an hour-long talk by Martin Wainwright (UC Berkeley) entitled “Some Recent
Results in High Dimensional Statistics: from Parametrics to Nonparametrics”.
A major focus of his talk was on recovery of large matrices, including low-rank
matrices, sparse matrices, and sparse precision matrices which are closely related
to Gaussian graphical model selection. Using regularization as a common theme,
Martin presented a set of new results on several interconnected problems, from
high-dimensional linear regression, to matrix completion, to sparse graphical mod-
els, to nonparametric additive models. Ming Yuan (Georgia Institute of Technol-
ogy) discussed adaptive estimation of covariance matrices in the high-dimensional
setting. He presented a fully data-driven block thresholding estimator which at-
tains the minimax optimal rate simultaneously over each parameter space in a
large collection. The results and technical analysis reveal new features that are
quite different from the conventional low-dimensional problems.

The discussions on matrix estimation continued on the Monday afternoon. Hui
Zou of University of Minnesota considered the choices of the penalty function for
estimation of sparse precision matrices and the related computational issues. This
problem is directly connected to the sparse Gaussian graphical model selection.
Cun-Hui Zhang of Rutgers followed with a talk on matrix completion using cali-
brated elastic regularization.

Jianqing Fan (Princeton University) considered a multi-factor model for esti-
mating a high-dimensional covariance matrix that is a sum of a low-rank matrix
and a sparse matrix. A procedure, called principal orthogonal complement thresh-
olding, was introduced to explore the approximate factor structure. Both theoreti-
cal and numerical results were discussed. Huibin Zhou (Yale University) presented
a talk focusing on the minimax lower bounds for matrix estimation, introducing
a new lower bound technique particularly well suited for treating matrix estima-
tion under the spectral norm. The result can be viewed as a generalization of Le
Cam’s method in one direction and Assouad’s Lemma in another. Applications to
optimal estimation of sparse covariance matrix, sparse precision matrix and sparse
volatility matrix were discussed.

Noureddine El Karoui (UC Berkeley) reported on the properties of solutions
of quadratic programs with linear constraints in the setting where parameters are
estimated from noisy data. He studied the impact of distributional assumptions on
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the empirical solution of the problem. His results also shed light on the behavior
of the high-dimensional ridge regression estimators, as well as techniques such as
regularized discriminant analysis. Angelika Rohde’s (Universität Hamburg) talk
focused on the accuracy of random projections of large Gaussian matrices and
Zongming Ma (University of Pennsylvania) presented his latest results on sparse
singular value decomposition of high-dimensional low-rank matrices based on noisy
observations. He introduced an iterative thresholding estimation procedure for
estimating the sparse principle components shown to be theoretically optimal and
computationally efficient.

High-dimensional Statistical Inference

As already indicated above, high-dimensional statistics is a very active and
ongoing field in many areas of statistics.

After the opening lecture on the Monday morning, Sara van de Geer (ETH
Zürich) presented new results on regularization for structured sparsity. She intro-
duced an elegant framework with separable regularizers and made an interesting
connection to Wainwright’s opening talk which covered decomposable regulariz-
ers. The framework allows for a wide variety of important sparsity structures,
including e.g. overlapping groups.

Pradeep Ravikumar (University of Texas, Austin) highlighted the importance of
Bregman divergence leading to a computationally tractable loss function for single-
and multi-index models. His contribution combined “classical nonparametrics”
(projection pursuit regression and backfitting) with a new and modern viewpoint
where convex optimization replaces notoriously difficult optimization in projection
pursuit regression (or neural networks).

Nicolai Meinshausen (Oxford University) impressively demonstrated that qual-
itative constraints are sufficient for effective regularization in high-dimensional
problems. Examples include non-negative matrix factorization and he mainly fo-
cused on non-negative least squares in regression. Advantages were high-lighted by
practical problems and by demonstrating the issue that no regularization (tuning)
parameter is required.

Much discussion was generated by a session on causal inference and dynamic
treatment/intervention analysis. Marloes Maathuis (ETH Zurich) focused on the
problem of high-dimensional inference for bounds of causal effects, based on obser-
vational data: the methods were demonstrated on real applications from biology.
Susan Murphy (University of Michigan, Ann Arbor) highlighted major challenges
and new problems in the area of dynamic treatment schemes which are of eminent
importance in medical research. The field is closely connected to causal inference
since a treatment is an active intervention and the effect of the latter is called
a causal effect. James Robins (Harvard University) presented novel and sharp
results on identifiability of causal effects.
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Nonparametric Bayesian Inference

Nonparametric Bayesian analysis has been recently proved to be a very powerful
and necessary tool for understanding widely but frequently used ad hoc Bayesian
computational methods. Larry Brown (University of Pennsylvania) presented a
new class of empirical Bayes estimators for the Poisson decision problem improving
remarkably on Robbin’s estimator by employing a ”convolution” trick. Judith
Rousseau (Paris Dauphine) discussed adaptation for different loss functions in
a Bayesian setting. She gave counterexamples in semiparametric models to the
common adaptation results using a hierarchical prior. Volodia Spokoiny (WIAS
Berlin) presented a Bernstein von Mises theorem on the asymtotic posterior under
model misspecification. Aad van der Vaart (VU Amsterdam) gave an entirely new
insight into the practically important question of asymptotic coverage by Bayesian
credible sets. He presented a number of remarkable results showing that the rate
of contraction of the posterior depends on the fine properties of the Gaussian prior.

Non and Semiparametric Inference and Applications

In high dimensional models, structural constraints such as additive modeling
allow for improved estimation and inference. This issue has been highlighted by
Enno Mammen (Universität Mannheim), who considered a generalized varying
nonparametric coefficient model where division of the covariates into two groups
is not required and interaction terms between all covariates can be included. Rate
optimal estimators are constructed and kernel type-estimators are given as the so-
lution of a system of nonlinear integral equations, which provides a suprising link
to inverse problems. Hans Georg Müller (UC Davies) introduced new functional
volatility processes to model financial volatility and extended principal component
analysis for functional data to these processes. Ji Zhu (University of Michigan)
suggested a semiparametric framework to estimate parameters of a dynamical sys-
tem given by a system of ordinary differential equations. Holger Dette (Universität
Bochum) introduced a new concept for spectral density estimation for time series
based on copulae, generalizing classical methods restricted to covariances, hence
relying on normality to some extent. Wolfgang Polonik (UC Davies) proposed
novel methods to estimate filamentary structures, using bump hunting techniques
linking this to multiscale methods. Finally, he discussed several interesting appli-
cations.

Statistical Inverse Problems, Adaptive Confidence Sets and Shape

Constrained Inference

A major lesson in the last years understood by the community is that shape
constraint estimation and inference, in particluar for difficult statistical inverse
problems, allows to overcome the burden of slow minimax convergence rates and
non adaptation of confidence sets. Consequently, this has recently initiated much
research recently, in particular on computational and inferential aspects. Otmar
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Scherzer (Universität Wien) gave a one-hour overview talk on variational meth-
ods for solving linear inverse problems and he highlighted interesting links to a
variety of statistical inverse problems. In particular, he focused on mathematical
imaging and related it to graph cut algorithms on discrete grids. Lutz Dümbgen
(Universität Bern) discussed asymptotic results and computational strategies for
log concave shape contraint density estimation, in particular for censored data. He
introduced bi-log concavity as a new concept to overcome the burden of unimodal-
ity for log concave estimators. Linking shape constraints with statistical inverse
problems Johannes Schmidt-Hieber (VU Amsterdam) introduced a new multiscale
technique to extract qualitaive information, e.g. on the number of modes or points
of inflection from deconvolution problems. Klaus Frick (Universität Göttingen) ex-
tended the Dantzig estimation method, well known in high dimensional statistics,
to multiscale constraints, showing its usefulness for signal detection and imaging re-
covery problems. He demonstrated that the multiscale Dantzig estimator leads to
a unifying concept covering many known and new estimators. Günther Walther’s
(Stanford University) talk was related to this and he surveyed and compared sev-
eral multiscale methods and highlighted advantages of the average likelihood ratio
statistics. Richard Nickl (Cambridge University) discussed necessary and sufficient
conditions for the existence of honest confidence sets in adaptative function esti-
mation problems, this being based on a sharp analysis of certain minimax testing
problems.

On the Thursday evening the ”New Researchers Session” provided the unique
opportunity for Ph.D. students to discuss their current Ph.D. projects with world-
wide recognized experts. Within this new format short talks had been given by Yin
Xia (University of Pennsylvania) on ”Some High Dimensional Hypothesis Testing
Problems”, Till Sabel (Universität Göttingen) on ”Lower Bounds in Estimation
of Scale Parameters in Stationary Gaussian Time Series”, Diego Colombo (ETH
Zürich) on “Learning Causal Information with Hidden Variables”, Hannes Sieling
(Universität Göttingen) on ”Jump Penalized Regression in Exponential Families”
and Alain Hauser (ETH Zürich) on ”Causal Inference from Interventional Data”.
This session has been perceived as particularly fruitful by the young researchers
as well as the senior scientists and we very much hope that this will serve as a role
model for the future Oberwolfach events.
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Abstracts

Poisson Compound and Empirical Bayes Estimation, Revisited

Lawrence Brown

(joint work with Eitan Greenshtein,Yaacov Ritov)

We investigate a classical non-parametric Poisson empirical Bayes estimation prob-
lem and propose an estimator that performs better than the original proposal of
Robbins (1955).

Begin with independent Poisson obervations, Yi ∼ Po(λi), i = 1, . . . , p. Con-
sider the standard decision theoretic estimation problem. Estimate the vector
λ = (λ1, . . . , λp) by δ = δ(Y ). Consider the average quadratic risk R(δ, λ) =
Eλ(p

−1‖δ − λ‖2). For a prior distribution, G, the expected risk is denoted by
R(G, δ) = EG(R(Λ, δ)). The Bayes procedure δG(y) = E(Λ|Y = y) (with the con-
ditional expectation taken coordinate-wise). The Bayes risk is B(G) = R(G, δG) =
minδ R(G, δ).

Here is the classical empirical Bayes estimator proposed in [1]. Here, G is

unknown. The goal is to find an estimator δ̃ that approximates δG sufficiently
well so that R(G, δ̃)−B(G) is “small” uniformly in G as p→ ∞. In this setting,
“small” can mean o(1) or sometimes something even smaller, if possible.

The approach we take is consistent with Robbins’ original empirical Bayes pro-
posal. Write δG as a functional of the marginal distribution PG(y) =

∫
Poλ(y)G(dλ),

i.e., δG = ∆(PG). Then use the sample Y = Y1, . . . , Yp to estimate PG by, say, P̃ ,

and δG by
˜̃
δ = ∆(P̃ ). In his paper, Robbins took such an approach. He observed

that if G is known then the Bayes estimator can be written as

δG(y) =

∫
λPo(y|λ)G(dλ)∫
Po(y|λ)G(dλ) =

∫
(y + 1)Po(y + 1|λ)G(dλ)∫

Po(y|λ)G(dλ) =
(y + 1)PG(y + 1)

PG(y)
.

Note that this is a function of the marginal distribution PG. Summarize the
observed sample by ZY = {NY (k)} where NY (k) = #{Yi : Yi = k}. Then a

natural estimator of PG is P̂ (y) = Zy/p. This suggests the following empirical
Bayes estimator, which is known as Robbins’ estimator for this problem:

ˆ̃
δ(k) =

(k + 1)P̂ (k + 1)

P̂ (k)
=

(k + 1)NY+1(k + 1)

NY (k)
.

It is clear that for any fixed G and each y, P̂ (y) → PG(y) as p→ ∞ and
ˆ̃
δ(y) → y.

However, there are some serious problems with ˆ̃δ:

Problem 1: If N(k + 1) > 0 but N(k) = 0 (or is small) then ˆ̃δ(Yi = k) = ∞
(or is probably not desirably accurate).

Problem 2: Any Bayes estimator is monotone in y, but ˆ̃δ is not.

Problem 3: (a subcase of Problem 2) At y(p) = max{yi} we have
ˆ̃
δ(y(p)) =

0.
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The remainder of the construction is devoted to modifying the estimator so as to
remedy these problems.

To address Problem 1, pick a small h > 0 (called the “corruption” parameter).
Let Q ∼ Po(h). Choices for h in the range 0.5 ≤ h ≤ 3 seem to work well.
We will later propose a cross-validation step to choose h. Let Z = Y + Q. Use
NY (k) as a basis for estimating the marginal distribution of Z. The estimate is

P̃Z(z) =
∑z

j=0
N(j)
p

hz−jeh

(z−j)! . Now generate Qi ∼iid Po(h) and build a corrupted

sample {Zi} with Zi = Yi + Qi. (Each Zi ∼ Po(λi + h).) Apply Robbins’

method to estimate λi from this sample via ˜̃δh;1(z) =
(z+1)P̃Z(z+1)

P̃Z(z)
−h. It is easily

checked that
˜̃
δh;1(z) > 0 for all z ≥ y(1). So define

˜̃
δh;1(z) = 0 for all z < y(1).

This guarantees Problem 1 does not happen. However, {˜̃δh;1(zi)} is a randomized
estimator, since Zi = Yi +Qi. Such estimators can be improved. To do so, Rao-

Blackwellize. Let
˜̃
δh;2(y) = EQ(

˜̃
δh;1(y + Q)) =

∑ hje−h

j!
˜̃
δh;1(y + j). The random

Qi have now disappeared. The estimator {˜̃δh;2(yi)} is a closed-form function of
{Yj} through the sufficient statistics {NY (k); k = 0, . . .}.

Problem 2 usually persists –
˜̃
δh;2(y) need not be monotone in y. So we monotone-

ize ˜̃δh;2. As a convenient, but rather ad-hoc method, we use the Pool-Adjacent-
Violators algorithm developed for least-squares isotonic regression. Koenker and
Mizra (unpublished) have proposed a more principled and likely better method
that appears to still be computationally feasible. It can be verified that so long
as h is not too small, this should also fix any remnant of Problem 3. Call the
resulting monotone-ized estimator ∆h. It remains only to choose the corruption
parameter, h. One plausible possibility that generally works well on examples is
to directly choose a moderate value of h – say 1 ≤ h ≤ 3. A more interesting and
flexible choice involves what we call “inbred cross-validation”:

Let p < 1 but not too far from 1. Let Bi ∼ind Bin(Yi, p). Let Ui = Bi and
Vi = Yi−Ui. This yields Ui ∼ Po(pλi), Vi ∼ Po((1−p)λi) and Ui ⊥ Vi. Then use
∆h on the sample {Ui} to estimate {pλi}, and use cross-validation on the smaller
sample {Vi} to choose h. The estimates of {pλi} can be adjusted to estimate {λi}.
It is possible to also use an additional Rao-Blackwell step here to further improve
the estimator, but we did not do so for simulations that we have reported.

Asymptotics of Robbins’ method are quite appealing. But simulations we have
performed show that actual performance in examples can be quite suboptimal.
Here is a slightly informal statement of a theorem we have proved.

If {Gk} is a sequence of priors on a bounded set that does not concentrate at a
single point then a rate-sharp bound is

R(Gk, δ̂)−B(Gk) = O
( (log p)2

log log p

)
.

This is not much different from (log p)2, and so seems a pretty desirable conver-
gence rate. But behavior in finite (not too large) samples can be much worse
than this suggests, as revealed by simulations we have performed for a variety of
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examples. For p = 200 and G supported within [0, 20], Robbins’ estimator can be
worse than ∆h by 5-35% in terms of squared error risk, depending on the form of
G.

References

[1] H. Robbins, An Empirical Bayes Approach to Statistics, Proc. Third Berkeley Symp. on
Prob. Statist. (1955), 157–164.

Of Copulas, Quantiles, Ranks and Spectra: An L1-approach to

spectral analysis

Holger Dette

(joint work with Marc Hallin, Tobias Kley, Stanislav Volgushev)

In this talk we presented a new method to overcome the limitations of conditional
location-scale modeling, and to provide statistical tools for a new approach to
time series modeling. The traditional nonparametric techniques, such as spectral
analysis (in its usual L2-form), which only account for second-order serial features,
cannot handle such objects, and we therefore propose and develop an original,
flexible and fully nonparametric L1-spectral analysis method.

While classical spectral densities are obtained as Fourier transforms of classical
covariance functions, we rather define spectral density kernels, associated with
covariance kernels of the form

(1) γk(x1, x2) := Cov(I{Yt ≤ x1}, I{Yt−k ≤ x2})
(Laplace cross-covariance kernels) or

(2) γk(τ1, τ2) := Cov(I{Ut ≤ τ1}, I{Ut−k ≤ τ2})
(copula cross-covariance kernels), where Ut := FY (Yt) and FY denotes the mar-
ginal distribution of the strictly stationary process {Yt}t∈Z. Contrary to covari-
ance functions, the kernels {γk(x1, x2)|x1, x2 ∈ R} and {γk(τ1, τ2)|τ1, τ2 ∈ [0, 1]}
allow for a complete description of arbitrary bivariate distributions for the couples
(Yt, Yt−k) and arbitrary bivariate copulas of the pairs (Ut, Ut−k), respectively, and
thus escape the conditional location-scale paradigm. They are able to account for
sophisticated dependence features that covariance-based methods are unable to
detect, such as time-irreversibility, tail dependence, varying conditional skewness
or kurtosis, etc. Special virtues, such as invariance/equivariance (with respect to
continuous order-preserving marginal transformations), can be expected from the
copula covariance kernels defined in (2).

Classical nonparametric spectral-based inference methods have proven quite
effective [Granger (1964), Bloomfield (1976)], essentially in a Gaussian context,
where dependencies are fully characterized by autocovariance functions. Therefore,
it can be anticipated that similar methods, based on estimated versions of Laplace
or copula spectral kernels (associated with Laplace and copula covariance kernels,
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respectively) would be quite useful in the study of series exhibiting those features
that classical covariance-related spectra cannot account for.

Estimation of Laplace and copula spectral kernels, however, requires a substi-
tute for the ordinary periodogram concept considered in the classical approach.
We therefore introduce Laplace and copula periodogram kernels. While ordinary
periodograms are defined via least squares regression of the observations on the
sines and cosines of the harmonic basis, our periodogram kernels are obtained via
quantile regression in the [Koenker and Bassett, (1978)] sense. A study of their
asymptotic properties shows that, just as ordinary periodograms, they produce
asymptotically unbiased estimates (more precisely, the mean of their asymptotic
distribution is 2π times the corresponding spectrum), and we therefore also con-
sider smoothed versions that yield consistency. Asymptotic results show that
copula periodograms, as anticipated, are preferable to the Laplace ones, as their
asymptotic behavior only depends on the bivariate copulas of the pairs (Ut, Ut−k),
not on the (in general unknown) marginal distribution FY of the Yt’s.

Unfortunately, copula periodogram kernels are not statistics, since their defini-
tion involves the transformation of Yt into Ut, hence the knowledge of the mar-
ginal distribution function FY . We therefore introduce a third periodogram kernel,
based on the empirical version of FY , that is, on the ranks of the random variables
Y1, . . . , Yn, and establish, under mild assumptions, the asymptotic equivalence of
that rank-based Laplace periodogram with the copula one. Smoothed rank-based
Laplace periodogram kernels, accordingly, seem to be the adequate tools in this
context. We conclude with a brief numerical illustration – simulations and an
empirical application – of their potential use in practical problems.

References
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Shape-constraints for i.i.d. and censored data

Lutz Dümbgen

(joint work with Petro Kolesnyk, Kaspar Rufibach, Richard Samworth, Dominic
Schuhmacher)

In the first part we discuss approximation of distributions Q on R
d by log-concave

densities f = f(· |Q). This means that f(· |Q) maximizes
∫
log f dQ over all

probability densities f such log f is concave. As shown by Dümbgen et al. (2011),
f(· |Q) is well-defined if, and only if, Q has finite first absolute moment and is not
supported by a hyperplane in R

d. Moreover, the mapping Q 7→ f(· |Q) ∈ L1(Rd)
is continuous with respect to Wasserstein distance (i.e. weak convergence plus
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convergence of first absolute moments). Explicit algorithms to compute f(· |Q) in
case of discrete distributions Q with finite support are provided by Dümbgen and
Rufibach (2011) and Cule et al. (2010).

In the second part we show how to adapt this approach to arbitrarily censored
event times. It turns out that a specific version of the EM algorithm yields satis-
factory estimators of an unknown event time distribution on (0,∞], often superior
to traditional nonparametric maximum-likelihood estimators. (This part is based
on joint work in progress of Dümbgen, Rufibach and Schuhmacher.)

In the last part we introduce a weaker shape constraint: A distribution function
F is called bi-log-concave if both logF and log(1 − F ) are concave. This restric-
tion allows distributions with arbitrarily high modality. We present equivalent
characterizations of this shape-constraint. While maximum-likelihood estimation
in this class seems to be difficult and may even be impossible, one can com-
bine this shape-constraint with traditional nonparametric confidence regions, e.g.
Kolmogorov-Smirnov confidence bands. It turns our that this leads to rather infor-
mative and honest confidence regions for F and functionals of F such as moments
of arbitrary order. (This part is pased on joint work in progress of Dümbgen and
Kolesnyk.)
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Some questions in high-dimensional statistics

Noureddine El Karoui

The talk was concerned with problems in high-dimensional statistics, i.e the setting
where we observe n vectors, Xi, in dimension p and p/n has a finite non-zero limit
as n→ ∞. Specifically, I considered the problem of understanding the properties
of solutions of quadratic programs with linear constraints, when parameters are
estimated from data.

Rather than making structural assumptions (e.g sparsity in one sense or an-
other) on those parameters, I studied the impact of distributional assumptions on
the Xi’s on the empirical solution of the problem. I considered the case of elliptical
data - which includes the normal distribution as a subcase. The analysis reveals
that one can for instance very well estimate the optimal value of the problem,
even though naive estimates are quite biased. In a risk management context, it
is also possible to predict accurately the future risk of such as an estimate. The
solution depends non-trivially on the ellipticity of the data, which is a proxy for
its geometry.
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I presented extensions for situations involving penalized estimates of covariance,
under very weak distributional assumptions. In joint work with Holger Koesters
(Bielefeld), we found deterministic equivalents for all the random quantities ap-
pearing in the problem. The work also naturally sheds light on the behavior of
ridge regression estimators in high-dimension, as well as techniques such as regu-
larized discriminant analysis.

Finally, I discussed briefly regression M -estimates. With techniques and ideas
similar to the ones employed above, it is possible to understand their risk (at the
time of the talk, this understanding was not yet fully mathematically rigorous). In
the case where p < n, it is also possible to optimize over the objective function to
find the best performing estimator, in the case of Gaussian design. Interestingly,
this optimal objective function depends in general of the dimension and of course
the distribution of the errors. It should be noted that it does not coincide with
natural objective functions coming from maximum-likelihood ideas, which yield
suboptimal estimators in this context, despite the well-known fact that they are
optimal when p/n→ 0. This part was based on joint works with Peter Bickel, Bin
Yu and our students Derek Bean and Chingwhay Lim.

Principal Orthogonal Complement Transformation

Jianqing Fan

This paper deals with estimation of high-dimensional covariance with a con-
ditional sparsity structure, which is the composition of a low-rank matrix plus
a sparse matrix. By assuming sparse error covariance matrix in a multi-factor
model, we allow the presence of the cross-sectional correlation even after taking
out common but unobservable factors. We introduce the Principal Orthogonal
complEment Thresholding (POET) method to explore such an approximate fac-
tor structure. The POET estimator includes the sample covariance matrix, the
factor-based covariance matrix (Fan, Fan, and Lv, 2008), the thresholding esti-
mator (Bickel and Levina, 2008) and the adaptive thresholding estimator (Cai
and Liu, 2011) as specific examples. We provide mathematical insights when the
factor analysis is approximately the same as the principal component analysis for
high dimensional data. The rates of convergence of the sparse residual covariance
matrix and the conditional sparse covariance matrix are studied under various
norms, including the spectral norm. It is shown that the impact of estimating the
unknown factors vanishes as the dimensionality increases. The uniform rates of
convergence for the unobserved factors and their factor loadings are derived. The
asymptotic results are also verified by extensive simulation studies.
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Multiresolution Dantzig Estimation for Imaging and Signal Detection

Klaus Frick

(joint work with Philipp Marnitz, Axel Munk, Hannes Sieling)

In many applications the relation of observable data Y (that is assumed to
be given on a grid G = {1, . . . , n}d) and an underlying, unknown signal u0 can
be modelled as an inverse regression problem: We assume that u0 ∈ U for some
suitable model space U and that independently

(1) Yν ∼ P(Ku0)ν ν ∈ G.

Here K : U → R
G is a linear operator that is assumed to model data acquisition

and sampling at the same time. Further, we assume that P = {Pθ}θ∈Θ is some
one-dimensional standard exponential family of distributions.

In practical situations, the signal u0 exhibits features of different scales and
modality, as for example images contain constant and smooth portions as well as
oscillating patterns both of different sizes. Thus, a minimum requirement for mod-
ern reconstruction methods is to allow for such spatially varying characteristics. In
this talk, we will introduce an estimation paradigm that meets this requirement.

To be more precise, we study multiresolution Dantzig estimators (MDE) that
are solutions of the following minimization problem

(2) inf
u∈U

J(u) subject to max
S∈S

TS(Y,Ku) ≤ q.

Here S is some family of subsets of the grid G and TS(Y, θ) is a likelihood-ratio
type statistic restricted to the set S ∈ S. The functional J : U → R is supposed
to encode some notion of cost and q is a threshold that balances costs against
data-fit.

Put differently, the constraint in (2) selects those estimators û for which the
restricted data {Yν : ν ∈ S} is well described by û on all sets S ∈ S according
to a local likelihood-ratio criterion. Among these estimators we then pic the most
parsimonious by minimizing J . Hence, the multiresolution (MR) statistic

T (Y, ·) = max
S∈S

TS(Y, ·)

is sensitive to local violations of the hypotheses that the data Y is generated by
Ku0, where the spatial resolution for detecting violations is governed by the system
S. A popular choice for the system S, for example, is the set of all d-dimensional
cubes contained in the grid G (cf. [9])

It is important to note, that numerous well established estimation methods are
covered by our SMRE framework (see for example [4, 2]). A further prominent
example is the Dantzig selector as introduced in [3]. In a Gaussian model with
d = 1, U = R

p and p≫ n the Dantzig selector is defined as the solution of

inf
u∈U

‖u‖1 subject to max
1≤i≤p

|KT (Ku− Y )i| ≤ q

Setting J(u) = ‖u‖1 and Ti(Y, θ) = |KT (θ−Y )i| gives (2). The system S consists
of all singletons in {1, . . . , p} which reveals the uni-scale nature of the Dantzig
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selector. This justifies the name multiresolution Dantzig estimators for solutions
of (2).

In this talk we study the performance of the above estimation paradigm for two
particular problems:

Changepoint estimation. We describe how the above paradigm can be em-
ployed for model selection and estimation in one-dimensional changepoint prob-
lems, generalizing the work in [1]. Put differently, we assume that U is the set of
all piecewise constant functions u : [0, 1] → Θ and (Ku)i = u(i/n). Assume that
u0 ∈ U has N ∈ N jumps and that the data (Y1, . . . , Yn) is given by (1).

Firstly, we estimate N by the minimal number N̂ such that T (Y,Ku) is finite

for some u with N̂ jumps. Then, we compute a solution of (2) with J being the

negative log-likelihood function restricted to the functions with N̂ jumps. We
discuss how to choose the threshold q = qn and prove nearly optimal convergence
rates for û as n→ ∞. Additionally, we propose a modified version of the dynamic
programming algorithm [6] for the efficient solution of (2).

Image reconstruction. Here, we aim for the reconstruction of an unknown
(gray-valued) image u0 ∈ U = L2([0, 1]d) from the data in (1) by computing a
solution of (2). We restrict our considerations on convex cost functionals J , as for
example the total variation semi-norm that is well known to foster smooth solu-
tions while preserving edges. We propose a general algorithmic framework for the
solution of (2) with convex costs J based on the combination of the alternating
direction method of multipliers (ADMM) with Dykstra’s projection method (cf.
[7]). We illustrate the applicability of our approach for various imaging exam-
ples, including deconvolution problems in Poisson models arising in fluorescence
microscopy [8].
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The geometry of adaptive confidence sets

Richard Nickl

We give general sets of necessary and sufficient conditions for the existence of
honest confidence sets in adaptative function estimation problems. We give results
for L2-confidence balls as well as L∞ confidence bands, using a sharp analysis of
certain minimax testing problems, generalising work of Ingster and others to the
situation relevant here. We highlight the subtle dependence of our existence results
on the geometry of the given adaptation problem, and discuss various consequences
for the theory of statistical inference in such models.

The main results are of the following flavour:
Let Σ(s) be a Hölder ball. For s > r define

Σ̃(r, ρn) :=

{
f ∈ Σ(r) : inf

g∈Σ(s)
‖g − f‖∞ ≥ ρn

}

where ρn ≥ 0. We are thus removing those functions from Σ(r) that are not
separated away from Σ(s) in sup-norm by at least ρn.

Can we find a honest confidence band over

P(ρn) := Σ(s) ∪ Σ̃(r, ρn)

that is also adaptive in the sense that

f ∈ Σ(s) ⇒ Ef |Cn| ≤ Lrn(s) and

f ∈ Σ̃(r, ρn) ⇒ Ef |Cn| ≤ Lrn(r)

where rn(s) is the optimal rate of estimation in the given Hölder ball?
→ Ideally ρn = 0, but the following result shows that this is impossible, and

moreover characterises the optimal admissible choice for ρn.

Theorem 1. (Hoffmann, Nickl, 2011) Let s > r > 0 and B be given. An adaptive
and honest confidence band over

Σ(s) ∪ Σ̃(r, ρn)

exists if and only if ρn exceeds the minimax rate of testing between the hypotheses

H0 : f0 ∈ Σ(s) and H1 : f0 ∈ Σ̃(r, ρn);

and this rate is

ρn ≃ rn(r) =

(
logn

n

) r
2r+1

.

More precisely:
(⇐) If Cn is a confidence band that is adaptive and honest with level α < 0.5

over Σ(s) ∪ Σ̃(r, ρn), then

lim inf
n

ρn
rn(r)

> 0.

(⇒) Suppose B is known and 0 < α < 1 is given. Then there exists a sequence
ρn satisfying

lim sup
n

ρn
rn(r)

<∞
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and a confidence band Cn that is honest with level α and adaptive over Σ(s) ∪
Σ̃(r, ρn).

When one separates in L2, the results change, and show the dependence on the
geometry.

Consider again adaptation to a fixed submodel Σ(s) with s > r, and define

Σ̃(r, ρ) ≡ {f ∈ Σ(r) : ‖f − Σ(s)‖2 ≥ ρ},

the only difference being that we now ’remove in L2’.
Instead of asking for the maximal sup-norm diameter of the confidence set to

shrink at the optimal rate, we now weaken this requirement and only require
the L2-diameter to shrink at the optimal rate. (FDR-idea: coverage only for
sufficiently many points). For a random subset C of L2 define

|C|2 = inf
{
ρ : C ⊂ {h : ‖h− g‖2 ≤ ρ}, g ∈ L2

}
.

Theorem 2 (Bull and Nickl, 2011). An L2 - adaptive and honest confidence set
over

Σ(s) ∪ Σ̃(r, ρn)

exists if and only if ONE of the following conditions holds true.
a) s ≤ 2r and ρn = 0 ∀n,
b) s > 2r and ρn exceeds the minimax rate of testing between

H0 : f0 ∈ Σ(s) and H1 : f0 ∈ Σ̃(r, ρn);

and this rate is

ρn ≃ n− r
2r+1/2 .

One can also study the continuous adaptation problem as in Giné and Nickl
(2010), and new results on such settings are obtained as well.
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Singular Value Decomposition for High-Dimensional Data

Zongming Ma

(joint work with Dan Yang, Andreas Buja)

Singular value decomposition (SVD) is widely used in multivariate analysis for di-
mension reduction, data visualization, data compression and information extrac-
tion in such fields as genomics, imaging, financial markets, etc. However, when
used for statistical estimation in high-dimensional low rank matrix models, singu-
lar vectors of the noise-corrupted matrix are inconsistent for their counterparts of
the true mean matrix (Shabalin and Nobel, 2010). To achieve consistency in esti-
mation and better interpretability, in addition to low-rankness, we further assume
that the true singular vectors have sparse representations in a certain basis.

Sparse SVD in high dimensions has been studied by several recent papers. Wit-
ten et al. (2009) introduced penalized matrix decomposition which constrains the
ℓ1 norm of the left and right singular vectors to impose sparsity on the solutions.
Lee et al. (2010) used penalized least squares for rank-one matrix approximations
with ℓ1 norms of the singular vectors as additive penalties. Both papers focus on
obtaining the first pair of singular vectors. The subsequent pairs are then obtained
by repeating the same procedure on the residual matrices. This may cause non-
identifiability and non-orthogonality issues, and theoretical properties of resulting
estimators are not well understood.

The goal of this work is to provide a theoretically optimal and computationally
efficient solution to the high dimensional SVD problem. In particular, we propose
an iterative thresholding estimation procedure, which has the following distinctive
features. First, it does not involve any optimization criterion and is based on a
simple matrix computation method. Second, it estimates the subspaces spanned
by the leading singular vectors simultaneously as well as the true mean matrix,
as opposed to the previous one-pair-at-a-time methods. Hence, it yields orthog-
onal sparse singular vectors. iterative procedure, our method even outperforms
the classical SVD in terms of speed. Fourth, simulation results also show that it
has competitive finite sample performance. Last but not least, under normality
assumption, the resulting estimators achieve near optimal minimax rates of conver-
gence and adaptivity. We further turn the algorithm into a practical methodology
that is fast, data-driven and robust to heavy-tailed noises (Yang et al., 2011).

We now lay out the model assumptions. To start with, we assume the data
matrix is the sum of signal and fully exchangeable noise:

(1) X =M + Z .

In (1), the signal matrixM = (mij) is of dimension pu by pv and has a multiplica-
tive low-rank structure: M = UDV ′ =

∑r
l=1 dlulv

′
l, where d1 ≥ · · · ≥ dr and the

singular vector matrices U = [u1, . . . ,ur], V = [v1, . . . ,vr] are both deterministic.
The rank r ≪ min(pu, pv) is assumed to be fixed in later asymptotic analysis and
known throughout. Moreover, the noise matrix Z = (zij) consists of i.i.d. errors as
its components. For theoretical analysis, we assume that the zij ’s are i.i.d. N(0, 1).
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Furthermore, we assume that the singular vectors are sparse and use the notion
of weak ℓq ball to quantify the sparsity level. For any p-vector u, we say that u

belongs to the weak ℓq ball of radius s, denoted by u ∈ wlq(s), if |u|(i) ≤ si−1/q.
For 0 < q < 2, the above condition implies rapid decay of the ordered coefficients
of u, and hence sparsity. Altogether, for qu, qv ∈ (0, 2), we focus on parameter
spaces characterized by parameters (su, qu, sv, qv) as the following:

(2)

Θ(su, qu; sv, qv) = {M = UDV ′ : U ′U = Ir, V
′V = Ir,

D = diag(d1, . . . , dr) > 0,

ul ∈ wlqu(su),vl ∈ wlqv (sv)} , .
Given the model assumptions, our goal is to estimate the subspaces spanned

by the leading left and right singular vectors span(U), span(V ) and/or to recover
the low rank mean matrix M . For estimating singular subspaces, we use the loss

function LU (Û , U) = ‖PÛ − PU‖22, where PU , PÛ are the projection matrix onto

span(U) and span(Û) and ‖ · ‖2 is the spectral norm. For estimating the mean

matrix, we use the loss function LM (M̂,M) = ‖M̂ −M‖2F /‖M‖2F , where ‖ · ‖F is
the Frobenius norm.

Iterative thresholding for sparse SVD

repeat

Right-to-Left Multiplication: U (k),mul = XV (k−1).

Left Thresholding: U (k),thr = (u
(k),thr
il ), with u

(k),thr
il = η

(
u
(k),mul
il , γul

)
.

Left Orthonormalization with QR Decomposition: U (k)R
(k)
u = U (k),thr.

Left-to-Right Multiplication: V (k),mul = X ′U (k).

Right Thresholding: V (k),thr = (v
(k),thr
jl ), with v

(k),thr
jl = η

(
v
(k),mul
jl , γvl

)
.

Right Orthonormalization with QR Decomposition: V (k)R
(k)
v = V (k),thr.

until Convergence

We next give a detailed description of the proposed sparse SVD method. Our
algorithm originates from “orthogonal iteration” algorithm in the matrix compu-
tation literature which seeks the leading eigenvectors for symmetric matrices. We
first generalize the orthogonal iteration method to handle asymmetric or even rect-
angular matrix. Moreover, we modify the algorithm by inserting thresholding steps
within each iteration, which wipes out small entries, achieves sparsity, and reduces
the variance in the estimator; see also Ma (2011). One more advantage of adding
thresholding steps is the computational benefit since the subsequent multiplica-
tion and orthonormalization steps are much reduced because of the resulting zeros
after thresholding. The proposal is schematically laid out in Algorithm 2. At each
thresholding step, we perform entry-wise thresholding. We allow any thresholding
function η(x, γ) that satisfies |η(x, γ) − x| ≤ γ and η(x, γ)1|x|≤γ = 0, which in-
cludes soft-thresholding with ηs(x, γ) = sign(x)(|x| − γ)+, hard-thresholding with

ηh(x, γ) = x1|x|>γ, etc. The threshold level γ is set to be
√
2 log(pu ∨ pv) [with
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a ∨ b = max{a, b}] under normality assumption and can be chosen by data-driven
method for other noise distributions; see Yang et al. (2011) for the details.

Under model (1), with the parameter space defined in (2), we have the following
minimax lower bounds.

Theorem 3. Under model (1) and parameter space (2), there exists a constant c,

s.t., for any estimator Ũ and M̃ ,

inf
Ũ

sup
Θ(su,qu;sv ,qv)

EML(Ũ , U) ≥ cmuǫ
2 ,

inf
M̃

sup
Θ(su,qu;sv,qv)

EML(M̃,M) ≥ c (mu ∨mv)ǫ
2 ,

where mu, ǫ
2 are given by the following formulas:

{
mu =

squu dqu
1

(log(pu∨pv))
qu/2 , ǫ2 = log(pu∨pv)

d2
1

, if mu = O(pαu), 0 < α < 1;

mu = min{d21, pu, squu dqu1 }, ǫ2 = d−2
1 , otherwise.

Our estimators achieve near optimal minimax rates of convergence, as is shown
in the following upper bound result. Further note that our estimators do not
require knowledge of the parameters (su, qu; sv, qv) and hence are adaptive.

Theorem 4. Let Û , V̂ be the output of Algorithm 2. Define M̂ = ÛD̂V̂ ′, where
D̂ = diag(d̂1, . . . , d̂r) with d̂l = û′

lXv̂l. Under mild conditions, there exists a
constant C, s.t.,

sup
Θ(su,qu;sv ,qv)

EMLU (Û , U) ≤ Cmuǫ
2 ,

sup
Θ(su,qu;sv,qv)

EMLM (M̂,M) ≤ C(mu ∨mv)ǫ
2 ,

where ǫ2 = log(pu∨pv)
d2
1

, mu =
squu dqu

1

(log(pu∨pv))
qu/2 and mv is defined accordingly.

The proof of the above theorems can be found in Yang et al. (2012).
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High-dimensional estimation of causal effects

Marloes H. Maathuis

(joint work with Diego Colombo, Markus Kalisch, Peter Bühlmann)

We recently introduced a method to estimate bounds on causal effects from obser-
vational data, assuming the data are generated from an unknown directed acyclic
graph (DAG) without hidden confounders. This method, called IDA (Intervention-
calculus when the DAG is Absent; see [8, 7]) conceptually consists of two steps:
(i) estimating the Markov equivalence class of DAGs from the conditional inde-
pendence relationships in the observational data, and (ii) listing all DAGs in the
estimated equivalence class and estimating the desired causal effect for each of
these DAGs. The resulting possible causal effects are collected in a multi-set,
which can be summarized by a summary measure of choice. Step (i) is known as
causal structure learning. We used the PC-algorithm [13] for this purpose, which
requires the so-called faithfulness assumption. This algorithm has been shown to
be consistent for high-dimensional sparse graphs under some conditions [6]. Step
(ii) concerns the estimation of causal effects when the DAG is given. We used
Pearl’s do-calculus [9, 10] for this step, which reduces to linear regression with
covariate adjustment in the multivariate normal model. For large graphs, we de-
veloped a local version of step (ii) that does not require listing all DAGs in the
equivalence class, as this quickly becomes computationally infeasible.

I presented a validation of IDA on a high-dimensional yeast gene expression
data set [5], as described in [7]. This data set contains both observational and
interventional data, obtained under similar conditions. The interventional data
contains expression measurements of 5361 genes for 234 single-gene deletion mu-
tant strains, and the observational data contains expression measurements of the
same 5361 genes for 63 wild-type cultures. We used the interventional data to
estimate the sizes of the causal effects of the 234 deletion genes on the remaining
genes, and defined the top 10% of these effects as the “target set”. We then ap-
plied IDA, as well as Lasso [14] and elastic-net [17] to estimate these causal effects,
and obtained rankings of the estimated causal effects for each of the methods. The
ROC curve in Figure 1 shows that IDA clearly outperforms the regression methods
in identifying causal effects in the target set. This validation indicates that IDA
can be a useful new tool for the design of experiments, since it can predict which
interventions are likely to show a large effect.

I closed my talk with a discussion of some selected recent work on causal struc-
ture learning that might be incorporated into step (i) of IDA:
(a) Estimating an equivalence class based on a combination of observational and
interventional data, see [3]. This approach has connections to active learning (see,
e.g., [2]), i.e., given the estimated equivalence class, which interventions should
be done subsequently to learn as much as possible about the underlying causal
structure?
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Figure 1. (Taken from [7]) The number of true positives (effects
in the target set) versus the number of false positives (effects not
in the target set) are plotted for the indicated methods, for the
top q = 1, . . . , 5000 predicted effects from the observational data.
The target set is defined as the top 10% of the effects as computed
from the interventional data.

(b) By imposing additional assumptions one can avoid the issue with the equiva-
lence class. This is for example used in LiNGAM (Linear Non-Gaussian Acyclic
Models, see, e.g., [12]) and in general additive noise models (see, e.g., [4, 11]).
(c) Estimating an equivalence class when allowing for arbitrarily many hidden and
selection variables, using the FCI algorithm [13] or the much faster (but slightly
less informative) RFCI algorithm [1]. See also Jamie Robins’ talk for an approach
that can sometimes narrow down the equivalence class substantially.
(d) Estimating an equivalence class based on different data sets with overlapping
sets of variables, possibly obtained under different conditions, see, e.g., [15, 16].
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Some Generalizations of Varying Coefficient Regression Models

Enno Mammen

(joint work with Young K. Lee, Byeong U. Park)

In this talk we consider a generalization of the varying coefficient regression model,
proposed by Hastie and Tibshirani (1993). In the classical varying coefficient
regression model the covariates are divided into two groups and the model contains
only interaction terms between these two groups. In our model we abstain from
the division of the covariates into two groups and we allow for interaction terms
between all covariates. This broadens the field of applications of varying coefficient
models. We discuss optimal rates for the estimation of nonparametric components
of the model and we show that these rates can be attained by sieve and penalized
least squares estimators. Furthermore, we give a detailed asymptotic distribution
theory for kernel type-estimators that are given as the solution of a system of



Frontiers in Nonparametric Statistics 835

nonlinear integral equations. This talk reports in particular on the results in Lee,
Mammen and Park (2012).

In the Varying Coefficient Regression Model (Hastie and Tibshirani, 1993): one
assumes for a response Y and covariatesX and Z that m(x, z) ≡ E(Y |X = x, Z =
z) takes the form

m(x, z) = x1f1(z1) + · · ·+ xdfd(zd)

for some unknown univariate functions fj . This model is simple in structure, gives
easy interpretation, and yet is flexible since the dependence of the response variable
on the covariates is modeled in a nonparametric way. But it is restrictive: each
Xj and Zj enter in only one ”nonparametric interaction term” Xjfj(Zj) and the
covariates are divided into Z-covariates that are transformed nonparametrically
and into X-covariates that are not transformed.

We consider the following generalization of the varying coefficient regression
model:

g(m(x)) = x1

(∑

k∈I1

f1k(xk)

)
+ · · ·+ xd

(∑

k∈Id

fdk(xk)

)
,

where the index sets Ij ⊂ {1, 2, . . . , D} are known and each Ij does not include j.
The index sets Ij may not be disjoint and g is a known link function.

Our model frees us from the restrictive assumption that covariates have to
be divided into X-covariates and Z-covariates. It does not assume that all co-
variates only appear in one “nonlinear interaction term” Xjfjk(Zk). In par-
ticular, it allows to let all covariates interact with all covariates, that is, take
I1 ∪ {x1} = · · · = Id ∪ {xd}. Furthermore, the introduction of a link function al-
lows us to have a binary response. Our model generalizes the Varying Coefficient
Regression Model, extended versions of it, the generalized additive model and the
functional coefficient model.

We now discuss rate-optimal estimation in our model if n i.i.d. copies (X i, Y i) of
(X,Y ) can be observed. By application of empirical process theory rate-optimality
can be easily checked for the estimation of m. Suppose e.g. that fjk have bounded
second order derivatives. Then we get by standard empirical process theory that
(under some standard regularity conditions) m can be estimated with rate n−2/5.
This follows because entropy conditions for classes of fjk carry over to the resulting
class of functions m. This shows, that under appropriate conditions, m can be
estimated with the same rate of convergence as the function f∗ in the model
Y = f∗(U)+ ε, where f∗ is the function among fjk (k ∈ Idj , 1 ≤ j ≤ d) belonging
to the largest entropy class. We now will give conditions under which the rates
for estimation of m carry over to the estimation of fjk. For this purpose, we need
two rewritings of our model. First we write our model as

g(m(x)) =
d∑

j=1

αjxj +
∑

j<k
j,k∈C0

αjkxjxk +
d∑

j=1

xj


∑

k∈Ij

fjk(xk)


 .
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where each function fjk satisfies the constraint
∫
fjk(xk)wk(xk) dxk = 0, k ∈ C, 1 ≤

j ≤ d;
∫
xkfjk(xk)wk(xk) dxk = 0, j, k ∈ C0 for nonnegative weight functions wk

with C0 = {1, 2, . . . , d}∩C, C =
⋃d

j=1 Ij . Secondly, by collecting those X-elements
that pertain to the function argument we can also write by rearrangement of terms:

g(m(x, z)) =

d∑

j=1

αjxj +
∑

j<k
j,k∈C0

αjkxjxk + x̃⊤1 f1(xr+1) + · · ·+ x̃⊤p fp(xr+p),

where X̃k = {Xj : r+k ∈ Ij , 1 ≤ j ≤ d} for 1 ≤ k ≤ p and where we have assumed

that C =
⋃d

j=1 Ij = {r+1, ..., r+ p}. We now assume that the smallest eigenvalue

of the matrix E(X̃kX̃
⊤
k |Xr+k = xr+k), as a function of xr+k, is bounded away

from zero on the support of Xr+k. Under this assumption and under some other
regularity conditions one can show the following inequality:

‖m−m∗‖ ≥ c


‖α− α∗‖∗ +

∑

k∈I1

‖f1k − f∗
1k‖+ · · ·+

∑

k∈Id0

‖fd0k − f∗
d0k‖


 .

for some constant c > 0 and for all functions m and m∗ with components α,

fjk or α∗, f∗
jk, respectively (k ∈ Idj , 1 ≤ j ≤ d0). Here, ‖α‖2∗ =

∫
(
∑d

j=1 αjxj
+
∑

j<k
j,k∈C0

αjkxjxk)
2PX(dx). From the inequality we get immediately:

Proposition: Suppose that an estimator m̂ of m satisfies for a null sequence

κn, that ∫
[g(m̂(x)) − g(m(x))]2PX(dx) = Op(κ

2
n).

Then, it holds that∫
[f̂jk(xk)− fjk(xk)]

2pXk
(xk) dxk = Op(κ

2
n)

for all k ∈ Ij , 1 ≤ j ≤ d.
In particular, this result can be used to show that the penalized least squares

estimator and the sieve estimator achieve optimal rates.
We now discuss estimation procedures based on kernel smoothing. These es-

timators allow a complete asymptotic theory. Our estimation procedure is based
on maximizing a quasi-likelihood. For this purpose we choose Q as a quasi-
likelihood function with ∂

∂µQ(µ, y) = y−µ
V (µ) . Here, V is a function for mod-

eling the conditional variance v(x, z) ≡ var(Y |X = x, Z = z) by v(x, z) =
V (m(x, z)). The quasi-likelihood for the mean regression function m is then given
by
∑n

i=1Q(m(X i, Zi), Y i). We maximize the integrated kernel-weighted quasi-
likelihood

LNW (α, η) ≡
∫ n∑

i=1

Q
(
g−1(α ∗X i + η1(z1)

⊤X̃ i
1 + · · ·

+ηp(zp)
⊤X̃ i

p), Y
i
)
Kh(X

c,i, z) dz,
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where

Xc,i = (X i
r+1, . . . , X

i
r+p)

⊤,

z = (z1, . . . , zp)
⊤,

η(z) = (η1(z1)
⊤, . . . , ηp(zp)

⊤)⊤,

ηk = {ηj,r+k : r + k ∈ Ij , 1 ≤ j ≤ d},

α ∗X i =

d∑

j=1

αjX
i
j +

∑

j<k
j,k∈C0

αjkX
i
jX

i
k,

and where Kh is a product kernel with bandwidth vector h.
Our nonparametric quasi-likelihood estimator is defined as:

(α̂NW , f̂NW ) = argmax
(α,η)

LNW (α, η)

where the maximization runs over the tuple of functions η = (η1, . . . , ηp), each ηk
being a vector of univariate functions that satisfy the constraints

∫
ηjl(u)wl(u)du =

0, r + 1 ≤ l ≤ r + p, 1 ≤ j ≤ d;
∫
u ηjl(u)wl(u) du = 0, r + 1 ≤ j, l ≤ d. We also

considered a local linear quasi-likelihood estimator. For both estimators results
on rate optimality and asymptotic normality can be found in Lee, Mammen and
Park (2012). There also an algorithm is proposed based on the iterative solution
of nonlinear integral equations.
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Non-negative least squares for high-dimensional data

Nicolai Meinshausen

Many regularization schemes for high-dimensional regression have been put for-
ward. Most require the choice of a tuning parameter, using model selection cri-
teria or cross-validation schemes. We show that a simple non-negative or sign-
constrained least squares is a very simple and effective regularization technique
for a certain class of high-dimensional regression problems. The sign constraint
has to be derived via prior knowledge or an initial estimator. The success depends
on conditions that are easy to check in practice. A sufficient condition for our re-
sults is that most variables with the same sign constraint are positively correlated.
For a sparse optimal predictor, a non-asymptotic bound on the L1-error of the
regression coefficients is then proven. Without using any further regularization,
the regression vector can be estimated consistently as long as log(p)s/n → 0 for
n → ∞, where s is the sparsity of the optimal regression vector, p the number of
variables and n sample size. The bounds are almost as tight as similar bounds
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for the Lasso despite the fact that the method does not have a tuning parameter
and does not require cross-validation. Network tomography is shown to be an ap-
plication where the necessary conditions for success of non-negative least squares
are naturally fulfilled and empirical results confirm the effectiveness of the sign
constraint for sparse recovery.

The data are assumed to be given by a n× 1-vector of real-valued observations
Y and a n× p-dimensional matrix X, where column k of X contains all n samples
of the k-th predictor variable for k = 1, . . . , p. The non-negative least squares
(NNLS) regression estimator is defined as

(1) β̂ := argminβ ‖Y −Xβ‖22 such that min
k
βk ≥ 0.

The following Positive Correlation Condition is the main assumption necessary
to show success of non-negative least squares. The positively constrained minimal
ℓ1- eigenvalue of matrix A is defined as

φ2pos(A) := min
{βTAβ

‖β‖21
: min

k
βk ≥ 0

}
,

A lower bound on this restricted eigenvalue will be a sufficient condition for sparse
recovery success of NNLS. A lower bound on this eigenvalue seems to be a much
stricter condition than the Compatibility Condition [1]. However, the latter al-
lows for positive and negative regression coefficients, while the Positive Eigenvalue
Condition is restricted to positive coefficients. There are thus some immediate ex-
amples where it is fulfilled, the simplest of which being the case where all entries
in the matrix S = XTX are positive, mini,j Ŝ ≥ ν > 0.

Assume that the Positive Eigenvalue Condition holds with ν > 0. Choose any
0 < η < 1/3. Assume that the compatibility condition holds with φ > 0 for
L = 4ν−1. Setting

K2
p,η := 2 log

(√2p√
πη

)

and assuming mink∈S βk > Kp,ησ/
√
nφ, it then holds with probability at least

1− η that

‖β̂ − β∗‖1 ≤ Kp,η (5/ν + 4/
√
φ)

sσ√
n

(2)

If the conditions hold, NNLS can thus recover the correct sparsity pattern in the
absence of any further shrinkage, as long as log(p)s/n → 0 for n → ∞. The
rate of convergence is thus identical as for Lasso-type estimators [2]. A bound on
prediction error can also be derived, which has the same rate again as Lasso-type
estimators. [3] derived a bound for the prediction error of NNLS without compat-
ibility condition, with a consequently

√
n-factor slower convergence. Overall the

most compelling aspect of NNLS is that it does not require any tuning parameter
beyond the choice of the signs of the individual regression coefficients. This makes
the method very simple to understand and efficient to implement.
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Dynamics and Volatility

Hans-Georg Müller

(joint work with Rituparna Sen, Ulrich Stadtmüller, Wenwen Tao, Nicolas
Verzelen, Fang Yao)

Common diffusion models for financial trading data include the Black-Scholes
continuous time diffusion model for equity prices X(t),

dX(t)

X(t)
= µ dt+ σ dW (t),

with Wiener processW and constants µ, σ. For intra-day trading data, underlying
processes are not not observed in the continuum, but rather on a discrete grid of
densely spaced time points, tj = j∆, j = 1, . . . , [T/∆]. Typical recordings are
available on grids with ∆ = 5min, so-called “high-frequency” data.

For asymptotic analysis, we consider limits ∆ → 0. Various diffusion models
specifically for volatility include the Heston (1993) model:

d logX(t) = µX(t)dt+
√
v(t)X(t)dW1(t),

for a Wiener process W1, where the stochastic volatility function v follows the
Cox-Ingersoll-Ross square root diffusion model

dv(t) = a(b− v(t))dt + c
√
v(t)dW2(t),

with constants a, b, c, where Wiener process W1 and W2 have correlation ρ. Such
diffusion models feature non-differentiable volatility trajectories.

As an alternative to these diffusion approaches, we consider a class of smooth
volatility models, where the structure of the underlying processes is learned from
a sample of n realizations of the underlying processes,

d logXi(t) = µ̃i(t) dt+ σ̃i(t) dWi(t), 0 ≤ t ≤ T, i = 1, . . . , n,

and µ̃i(t) , σ̃i(t) are i.i.d. copies of the stochastic processes µ̃ and σ̃, which are
assumed to be smooth but not stationary, andWi, i = 1, . . . , n, are n independent
standard Wiener processes. Assume that the log-volatility process is smooth and
can be represented as

log(σ̃2(t)) = W̃ (t) +H(t), W̃ (t) = f(

∫ t

t−δ

κ(t− v)dW (v)) for a δ > 0,
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where the stochastic process H and the function f are continuously differentiable,

H ⊥ W ; κ is a smooth kernel function with supp(K) ⊆ [0, δ], and
∫ δ̃

0 κ
2(u)du >

0 for all δ̃ > 0,

κ(0) = κ′(0) = κ′′(0) = 0, κ(δ) = κ′(δ) = κ′′(δ) = 0.

The availability of multiple copies is crucial for the application of functional
data analysis methodology in this setting. Defining

Z∆(t) =
1√
∆

log

(
X(t+∆)

X(t)

)
,

W∆(t) =
1√
∆

(W (t+∆)−W (t)),

write

Z∆(t) =
1√
∆

∫ t+∆

t

µ̃(v) dv +
1√
∆

∫ t+∆

t

σ̃(v) dW (v)

= µ̃(t)
√
∆+ σ̃(t)W∆(t) + R1(t,∆) +R2(t,∆),

where under regularity conditions

E[ sup
t∈[0,T ]

|R1(t,∆)|] = O(∆3/2), E[ sup
t∈[0,T ]

|R2(t,∆)|] = O(∆1/2).

The target is the smooth volatility process

V (t) = log({σ̃(t)}2),

which is related to the observations Z∆(tj) =
1√
∆

log
(

X(tj+∆)
X(tj)

)
by

log({Z∆(tj)}2)− q0 ≈ Y∆(tj) = V (tj) + U∆(tj).

Here q0 is a numerical constant and Y∆(t), U∆(t) are stochastic processes,

q0 = E(logW 2
∆(t)) ≈ −1.27,

Y∆(t) = log({σ̃(t)W∆(t)}2)− q0, observed raw volatilities

U∆(t) = log({W∆(t)}2)− q0, residuals for volatility.

Setting GV (s, t) = cov(V(s),V(t)), E(V(t)) = µV(t), consider the auto-co-
variance operator of V , GV (f)(s) =

∫
GV (s, t)f(t) dt, with orthonormal eigen-

functions φk and eigenvalues λk, k = 1, 2, . . . , such that λ1 ≥ λ2 ≥ · · · and∑
k λk <∞. This leads to the Karhunen-Loève representation

V (t) = µV (t) +
∞∑

k=1

ξkφk(t),

where the ξk are uncorrelated random variables that satisfy

ξk =

∫
(V (t)− µV (t))φk(t) dt, Eξk = 0, var(ξk) = λk.
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The components of the functional volatility process V can then be estimated
from observed trades

Zij∆ =
1√
∆

log

(
Xi(tj +∆)

Xi(tj)

)
, i = 1, . . . , n, j = 1, . . . , [

T

∆
],

and raw volatilities Yij∆ = log(Z2
ij∆)− q0, as

E(Y∆(t)) = µV (t),

cov(Y∆(s),Y∆(t)) = O(
√
∆) +GV (s, t), s 6= t.

An estimation approach based on these relations can be implemented with com-
mon functional principal component analysis methodology, see PACE2.14 at
http://anson.ucdavis.edu/∼mueller/data/pace.html. The tuning parame-
ters (smoothing parameters, number of included components) may be obtained
with various methods, including variants of cross-validation, pseudo-BIC or frac-
tion of variance explained. Under regularity conditions, these estimates are con-
sistent, as the number of observed processes n satisfies n → ∞ and ∆(n) → 0.
This functional approach can be used to predict or classify volatility by applying
various functional regression and classification methods ([1]).

A standard dynamic model for the univariate case is

X ′(t) = f(t,X(t), θ),

with a known “force function” f . Repeatedly observed realizations as considered
here make it possible to learn the dynamics of the processes. In this endeavor,
one needs to distinguish between Gaussian and non-Gaussian cases. In Gaussian
situations, the dynamics are linear ([2]), while in non-Gaussian situations, as likely
present in functional volatility processes, a general approach is

E{X(1)(t)− µ(1)(t) | X(t)} = f(t,X(t)),

where f is unknown. One can then use smoothing methods to regress X̂ ′(t) versus
(t, X̂(t)) to obtain the unknown forcing function f and residual processes can be
used to infer the properties of the drift process X(1)(t)− µ(1)(t)− f(t,X(t)) ([3]).
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Estimating filamentary structures

Wolfgang Polonik

(joint work with Wanli Qiao)

A filamentary structure in the plane is a collection of one-dimensional curves. This
collection is envisioned to have a web-like geometric appearance, and observations
taken from a distribution with ridges corresponding to this filamentary structure
will tend to cluster along these curves. In other words, the corresponding distri-
bution shows a higher concentration along the individual curves (filaments). This
type of geometric structure is observed in several practical situations. Most promi-
nently, the two-dimensional locations of the (observable) galaxies of our universe
are known to form such a pattern (cosmic web). Other applications in which fil-
amentary structures play a central role include diffusion tensor imaging, remote
sensing, and medical imaging.

While a large number of approaches for the estimation of filaments can be found
in the literature, in particular in the area of cosmology, not many of them come
with a more theoretical foundation. Some exceptions from the more statistical lit-
erature are [1, 2, 3, 4, 5]. In this paper we discuss two novel statistically motivated
approaches for filament estimation. As in [3] and [4] our methods also are based
on the estimation of integral curves.

For simplicity we only discuss the case of 2-dimensional filamentary structures.
Given a vector field v : R2 → R

2 an integral curve x : [0, T ] → R
2 is the solution

of the differential equation d
dtx(t) = V (x(t)) with a given starting value x(0) = w.

1. Method I: A geometric algorithm

The first method for estimating filaments is based on integral curves of the gra-
dient field of an underlying probability density f , i.e. here we have V (x) = ∇f(x).
Integral curves of gradient fields are paths of steepest ascent. We estimate these
integral curves by the corresponding integral curves of a kernel density estimator.

A filament or ridge line corresponds to an integral curve with a particular
starting value which itself then obviously lies on the filament. However, given
observations, the choice of the ‘right’ starting value is the problem. Instead we
use the intuitive geometric idea that many integral curves of the gradient field
will ultimately run along ridges lines of the density (i.e. filament) up to a local
maximum. Our proposed methodology can be described in brief as follows:

• estimate the integral curves via a (modified) mean shift algorithm; each es-

timated integral curve is given by a sequence of pairs (m̂1, d̂1), (m̂2, d̂2), . . . ,

(m̂N , d̂N ), where the m̂j denote the local means and the d̂j denote the di-
rections in which to move from m̂j ;

• clip mean shift paths once close to ridges;

• use local means m̂j and directions d̂j from clipped mean shift paths as
input for the following steps;

• use input to construct estimates of filamentary pieces as follows:
– determine a starting value x̂0;
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– i = 0
WHILE f̂(x̂i) > ǫ0 DO

– estimate directional derivative of filament at x̂i by averaging the di-

rections d̂j corresponding to means m̂j ∈ {x ∈ R
2 : ‖x̂j − x̂i‖ < ǫ}

for a predetermined value ǫ > 0;
– move a ‘small’ step into the estimated directional derivative of the

filament to find x̂i+1;
– set i = i+ 1

END
• apply B-spline (combination of interpolation and fitting) to get final smooth
estimate of filament.

The algorithm also involves a bias correction at each step, and the determination
of candidates for branching points (or points of intersections) of filaments via clus-
tering of directional data. Further details are omitted here.

2. Method II: Ridge estimation via bump hunting

Definition: A point is said to lie on a ridge or filament of a twice differentiable
function f if

H∇f = λ1∇f
λ2 < 0

where λ1 > λ2 are the two eigenvalues of the Hessian H of f .

Let V denote second eigenvector of Hessian H . Notice that on the filament, either
∇f = 0 or ∇f ‖ V ⊥, i.e. 〈∇f, V 〉 = 0. The underlying geometric idea is the
following. Consider the vector field generated by the second eigenvectors V (x) of
the Hessian H of f . Then,

• a ridge point corresponds to a local mode of f along the path of the corre-
sponding integral curve generated by V (x).

Let W ⊂ supp(f) open. For each w ∈ W let xw(t), t ∈ [0, T ] denote the integral
curve corresponding to the vector field V (x) starting at xw(0) parametrized by
t ∈ [0, T ] and define

θw = arg max
t∈[0,T ]

f(xw(t)),

i.e. xw(θw) is a point on the ridge line of f .

Estimation. Let f̂n denote a standard kernel density estimator of f with kernel
K and bandwidth h based on a random sample X1, . . . , Xn ∼ f . Let further

V̂ = V̂ (x) denote the second eigenvector of the Hessian of f̂n. We write

V̂ (x) = G(vechĤ(x)),

where for a symmetric (2×2)-matrixA = (aij) we write vech(A) = (a11, a12, a22)
T ,

and the function G : R3 → R
2 is defined by this identity. We let further X̂w(t), t ∈
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[0, T ] denote the integral curve corresponding to vector field V̂ (x) starting at
w ∈W and define

θ̂w = arg max
t∈[0,T ]

f(X̂w(t)),

i.e. X̂(θ̂w) is a point on the ridge line of f̂n. Of course we assume that both θw
and θ̂w are well defined. For a vector v we let v⊥ denote the vector orthogonal to v.

Assumptions.

(A0) W ⊂ R
2 is a bounded open set.

(A1) supp(f) := {x : f(x) 6= 0} ⊂ G and f is four times continuously differen-
tiable. All partial derivatives up to 4th-order are bounded and L1-integrable.
(A2) The kernelK is a symmetric pdf with bounded support, all partial derivatives
up to 3-rd order are bounded and

∫
R2 K(x)xxT dx = µ2(K)I with µ2(K) <∞.

(A3) ||R(vech∇2K)|| <∞ where R(g) :=
∫
R2 g(x)g(x)

T dx.
(A4) The two eigenvalues of the Hessian of f are different within supp(f).
(A5) There exists a ridge in W defined by f with the corresponding underlying
manifold (ridge line) being differentiable and having bounded curvature.

Theorem 1. Suppose that in addition to the above assumptions we have nh9 →
β ≥ 0, hn → 0.

(a) If ∇f(x(θ)) 6= 0, then for any starting point x ∈ W we have

√
nh6V (xw(θ))

′(X̂w(θ̂w)− xw(θ)) → N(0, σ2
1(xw(θw)))√

nh5
(
V (xw(θ))

⊥)′(X̂w(θ̂w)− xw(θw)) → N(0, σ2
2(xw(θw)))

(b) If ∇f(x(θ)) = 0, then for any starting point w ∈W we have

√
nh5V (xw(θ))

′(X̂w(θ̂w)− xw(θw)) → N(0, σ2
3(xw(θw)))√

nh5(
(
V (xw(θ))

⊥)′(X̂w(θ̂w)− xw(θw)) → N(0, σ2
4(xw(θw)))

We only provide a heuristic argument for the proof. It is well-known that (for
d = 2) our smoothness assumptions assume that the kernel estimate of the 1-st

derivatives converges at the rate OP (1/
√
nhd+2) = OP (

√
1/nh4), and the corre-

sponding estimate of the 2-nd derivatives at rate OP (1/
√
nhd+4) = OP (1/

√
nh6).

Integral curves, however, are of the form x(t) = w +
∫ t

0
V (x(s)) ds, i.e. they are

one-dimensional integrals of a smooth function of second derivatives. Therefore

one can expect that points at the ridge can be estimated at rate OP (1/
√
nh5)

(gain one power of h in the variance).

Next observe that we can write
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X̂w(θ̂w)− xw(θw) =
[
X̂w(θ̂w)− xw(θ̂w)

]

︸ ︷︷ ︸
≈OP (1/

√
nh5)

+
[
xw(θ̂w)− xw(θw)

]

︸ ︷︷ ︸
≈OP

(
V (xw(θw))(θ̂−θ)

)
.

We will see below that

θ̂w − θw =

{
OP (1

√
/nh6) if ∇f(xw(θw)) 6= 0,

OP (1/
√
nh5) if ∇f(xw(θw)) = 0

This then implies the result. Next we present some discussion to understand

the rates of convergence of θ̂ − θ. The following result is crucial. To simplify
notation we omit the index w indicating the starting value:

Lemma. If z(x(θ)) = ∇〈∇f(x(θ)), V (x(θ))〉 6= 0, then we have under our
smoothness assumptions that

θ̂ − θ =
1

z(X(θ))
〈∇f̂(X̂(θ)), V̂ (X̂(θ))〉 + op(θ̂ − θ)

=
1

z(X(θ))

[
〈H(x(θ))(X̂(θ) − x(θ)), V (x(θ))〉

+ 〈∇f(x(θ)), V̂ (X(θ)) − V (x(θ))〉
]
+ op(θ̂ − θ)

Considering the leading terms in this expansion, we can see the following. At

first order the difference θ̂ − θ depends on estimates of the first derivatives, the
estimates of the second derivatives, and on the estimates of the integral curve

itself. The estimation of V̂ is the hardest, and it determines the rates of θ̂ − θ
provided that ∇f(x(θ) 6= 0. Otherwise, the estimation of V (x(θ)) only enters the
second order terms, and the rates of convergences of the integral curve determine

the rate of θ̂ − θ.
gradient itself is zero, then one does not need to estimate the second derivatives

well in order for θ̂ to be close to θ. Otherwise, the rate of estimation of V̂ comes
into the picture and in fact this rate dominates the other estimation rates.

More precisely, since ∇f̂(X(θ))−∇f(X(θ)) = OP (
1√
nh4

), V̂ (x(θ))−V (x(θ)) =

Op(
1√
nh6

) and X̂(θ)− x(θ) = Op(
1√
nh5

) (for the latter, see below), we see that for

∇f(x(θ)) = 0, we have

√
nh5(θ̂ − θ) =

〈H(x(θ))
√
nh5(X̂(θ)− x(θ)), V (x(θ))〉

λ2(x(θ)) ||V (x(θ))||2 + op(1),

and for ∇f(x(θ)) 6= 0 we have

√
nh6(θ̂ − θ) =

〈∇f(x(θ)),
√
nh6[V̂ (x(θ)) − V (x(θ))]〉

〈∇ 〈∇f(x(θ)), V (x(θ))〉 , V (x(θ))〉 + op(1).

Conditions that assure the rate of convergence of X̂(θ) − x(θ) used in the ar-
guments above, are formulated in the following theorem, which can be proven by
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an adaptation of the arguments given in [3]. Recall that V̂ = V̂ (x) denotes the

second eigenvector of the Hessian of f̂n. We write

V̂ (x) = G(vechĤ(x)),

where the function G : R3 → R
2 is defined by this identity.

Theorem 2. Assume hn → 0, nh9n → β ≥ 0 as n→ ∞, and nh7 → ∞ as n→ ∞,
then √

nh5n(X̂(t)− x(t)) → ξ(t) weakly

in C[0, T ] = C([0, T ),R2), the space of R2-valued continuous functions on [0, T ].
Here ξ(t), 0 ≤ t ≤ T , is a Gaussian process satisfying

dξ(t) =

√
β

2
∇G(vechH(x(t)))B(x(t))dt +∇G(vechH(x(t)))ξ(t)dt

+
(
∇G(vechH(x(t)))Ω(x(t))(∇G(vechH(x(t))))T

)1/2
dW (t)

with initial condition ξ(0) = 0, where W (t), t ≥ 0, is a standard Brownian sheet in
R

2, Ω(x(t)) =
∫ ∫

Ψ(x(t), τ, z)f(x(t))dzdτ where Ψ(x(s), τ, z) denotes the (3× 3)-
matrix (aij), i, j = 1, 2, 3 with aij = bicj , where vech(∇2K(z)) = (a1, a2, a3)

T

and vech(∇2K(G(vechH(x(s)))τ + z) = (b1, b2, b3)
T . Further,

B(x(s)) =



∫
K(z)zT∇2f (2,0)(x(s))zdz∫
K(z)zT∇2f (1,1)(x(s))zdz∫
K(z)zT∇2f (0,2)(x(s))zdz




with (f (2,0)(x), f (1,1)(x), f (0,2)(x))T = vechH(x).

Uniform convergence of X̂w(θ̂w)−xw(θw). Notice that the difference X̂w(θ̂w)−
xw(θw) is the difference of one point at the estimated ridge line and a ‘correspond-
ing’ point at the true ridge line. By corresponding points we mean that each of
them is determined by an integral curve (true and estimated, respectively) with
the same starting value. By considering the supremum over all starting values, we
obtain a measure for the distance between the true and the estimated ridge line.
We have the following result for the supremums distance.

Theorem 3. Under the above assumptions we have

P

(
sup
w∈W

|αw
n (X̂w(θ̂w)− xw(θw))

T V (xw(θw))| < B(h) + z/(2 log 1
h )

1/2

)

= exp{−2 exp{−z}}

where B(h) = (2 log 1
h )

1/2 + (2 log 1
h )

−1/2 log{(2π)−1/2M} with M a constant
depending on the filament, and

αw
n = 〈∇〈∇f(xw(θw)),V (xw(θw))〉,V (xw(θw))〉/‖V (xw(θw))‖2√

∇f(xw(θw))T∇G(vechH(xw(θw)))Σ(xw(θw))∇G(vechH(xw(θw)))T∇f(Xw(θw))

with Σ(x) = R(vech∇2K)f(x).
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Efficient Estimation of Single Index Models using Adapted Bregman

Losses

Pradeep Ravikumar

(joint work with Martin J. Wainwright, Bin Yu)

A multiple-index regression model [1] is a semiparametric regression model
where the response or output variable Y ∈ R depends on the covariates or in-
put variables X ∈ R

p as

Y =

m∑

j=1

gj(β
T
j X) + ǫ,(1)

where ǫ is additive zero mean noise, independent of X . The functions {gj}mj=1

are assumed to belong to some given class of functions G, for instance the set
of differentiable functions, or monotonically increasing functions. The linear pro-
jections βT

k X provide unidimensional summaries of the covariates, and each of
these is called an index (hence the name multiple-index model). Another term
typically used for these components is that of a ridge function, since the function
g(βTx) is constant over the hyperplane βTx = c (so that its function surface looks
like a ridge). Given n i.i.d. samples S = {(X i, Y (i)), i = 1, ..., n} from the model
(1), the model-estimation task comprises estimating both a parametric component
{βj}mj=1 as well as the nonparametric components or functions {gj}mj=1.

Single Index Model. A key step in estimating these multiple-index models, for
instance via back-fitting, requires the estimation of a single-index model, which is
the special case of (1) withm = 1. In the sequel of this report, we concern ourselves
with just the estimation of such a single-index model. Overloading notation, we
assume the following model:

Y = g(βTX) + ǫ,(2)

where ǫ is zero mean noise independent of X , and we are given samples
{(X(i)Y (i))}ni=1 drawn iid from this model. A popular approach for estimating
the model components (g, β) from these samples is via an alternating procedure
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that optimizes over the parameters β and the function g alternately [1]. As [2]
and others show, such alternating steps (or even a finite number of them) can be
shown to result in good estimator provided we are able to obtain the global optima
of the corresponding optimization problems. However, this is a significant caveat
because estimating the β parameters entails solving a non-convex optimization
problem.

Non-convexity. Estimating the parameteric vector of a single index model using
the squared error loss function is a non-convex estimation task. The solutions
computed using practical methods are thus only suboptimal, and do not enjoy
the strong guarantees available to the global minimum [2]. Moreover, they can
be unstable, particularly in the presence of multiple local minima. Our goal is
thus to obtain a surrogate loss function that is convex, and moreover has a nearly
identical minimum as the squared error loss. Towards this, we propose a novel
two-stage estimation procedure, where instead of using the squared error, we use
a convex loss function applied to β that is adapted from the current estimate of
g. For the case of monotonic functions g, by using appropriate classes of Bregman
divergences, we obtain an overall procedure that involves only tractable convex
optimization steps, and is provably Fisher consistent.

Bregman Updates. Consider the population least squares functional, namely

min
g∈G,β∈Rp

E(Y − g(βTX))2.(3)

By computing the Hessian with respect to β, it is straightforward to see that this
function is not convex in terms of β for general functions g. (It is convex, for
instance, for linear g.) Given this non-convexity, we are motivated to consider a
larger class of loss functions, in particular the class of Bregman divergences. For
any Bregman function F (roughly, a strictly convex differentiable function), the
Bregman divergence DF (a, b) is defined as,

DF (a‖b) := F (a)− F (b)−∇F (b)T (a− b),(4)

The Bregman divergence induced by a univariate Bregman function F , between
Y and g(βTX) is then given by,

DF (Y ‖g(βTx)) = F (Y )− F (g(βTX))− f(g(βTX))(Y − g(βTX)),(5)

where f = F ′. The squared error loss function is a special case, obtained by setting
F (z) = 1/2z2. Of interest to us are alternative choices of Bregman distances; in
particular, the following result shows that for any monotonic g, there is always a
Bregman divergence for which estimation of β reduces to a convex problem:

Proposition 5. Consider the single index model (2) when g belongs to the class G
of monotonically increasing functions. Then for any g ∈ G, there exists a Bregman
divergence DF (g) for which the estimation of β is a convex problem. In particular,
define G(v) =

∫ v

∞ g(t)dt, and define the function

F (u) = sup
v∈R

vTu−G(v),(6)



Frontiers in Nonparametric Statistics 849

The Bregman divergence DF (g) induced by this choice of F , when applied to the
pair y and g(βTx), takes the form

DF (g)(y‖g(βTx)) = G(βTx)− βTxy + F (y),(7)

which is a convex function of β whenever g is monotonic.

Note that the function (6) is the Fenchel conjugate of the function G. Overall,
this result motivates the following practical scheme. Since G is convex for mono-
tonic g, optimizing the “surrogate” function (7) for β is a convex program. On the
other hand, for fixed β, estimation of the function g in the single index model (2) is
a standard problem in isotonic regression. Thus, we have the following two-stage
procedure for estimating a single index model:

Solving a single-index model: Bregman Updates

Initialize: β = 0, g = 0.
for outer iterations t = 1, 2, . . . until convergence do
Fixing g, obtain β by solving:

β ∈ arg min
β∈Rp

{
1

2n

n∑

i=1

(
G(βTX(i))− Y (i)(βTX(i))

)}
.(8)

Fixing β, obtain g by solving

g ∈ argmin
g∈G

{
1

2n

n∑

i=1

(Y (i) − g(βTX(i)))2

}
.(9)

end for
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Accuracy of empirical projections in high dimension

Angelika Rohde

As a consequence of the Bai and Yin (1993) law, the maximal singular value

λmax(ε) of a standard Gaussian M ×M -matrix ε is equal to 2
√
M(1 + o(1)) a.s.

With π̂1 denoting the projection onto the one-dimensional subspace of RM max-
imizing ‖π̃1ε‖2S2

over all one-dimensional projections π̃1, i.e. ‖π̂1ε‖2S2
= λmax(ε)

2,
one can also establish the bound, due to uniform integrability,

(1) E‖π̂1ε‖2S2
= 4M(1 + o(1)),
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with the Hilbert-Schmidt or Frobenius norm ‖ · ‖S2. In contrast, E‖π̃1ε‖2S2
= M

for every fixed π̃1. Thus, replacing one single projection by the supremum over all
projections increases the Hilbert-Schmidt norm by a positive factor. This effect
raises the question about the accuracy for empirical reduced-rank projections in
general. Here and subsequently, let

π̂r := arg max
π̃r∈SM,r

‖π̃rX‖2S2
and πr ∈ Arg max

π̃r∈SM,r

E‖π̃rX‖2S2

with SM,r denoting the set of all orthogonal projections onto r-dimensional sub-
spaces of RM . How close is E‖π̂rX‖2S2

to E‖πrX‖2S2
= ‖πrC‖2S2

+ σ2rM if the

Gaussian matrix X = C + ε, εij iid N (0, σ2), is not centered? Can the above
described situation in (1) be improved by an adequate choice of C = EX , or does
there exist for any arbitrarily large real number c some unfavorable matrix C(c)
such that E‖π̂rX‖2S2

− E‖πrX‖2S2
≥ c?

The motivation for considering this problem is manifold. Mainly, since

E‖π̂rX‖2S2
=
(
E‖π̂rX‖2S2

− E‖πrX‖2S2

)
+ ‖πrC‖2S2

+ σ2rM

and E‖π̂rX‖2S2
− E‖πrX‖2S2

≥ 0, the problem is of theoretical interest as our re-
sults complement the bound in (1) for centered Gaussian matrices with a detailed
analysis of the noncentered case, extending also to more general rank-r projec-
tions. Finite-rank perturbations of random matrices have found recently a lot of
attention, see Capitaine et al. (2009), Capitaine et al. (2012), Pizzo et al. (2012),
Tao (2012) among others. Tao (2012), Theorem 1.7, studies the the eigenvalue
value spectrum of low rank perturbations of an iid complex random matrix and
proves, as a special case, that γmax(C + ε/(σ

√
M)) = γmax(C) + op(1) as M → ∞

and rank(C) = O(1) as long as |γmax(C)| = O(1) is sufficiently large, with γmax(C)
the eigenvalue of C which is maximal in absolute value. Capitaine et al. (2009)
and Pizzo et al. (2012) study Wigner matrices instead of iid random matrices.
Somewhat remarkably, the outlier eigenvalues of the perturbed matrix are not
close in probability to those of the original matrix C but to some shifted value
λi(C) + σ2/λi(C), where σ

2 is the common variance of the entries of the Wigner
matrix, and λi(C) the eigenvalues of an Hermitian matrix C. Our results are
complementary: We derive non-asymptotic cumulated second moment bounds on
the singular values in the deformed (non-Hermitian) iid real Gaussian matrix case
for general, not necessarily low or uniformly bounded rank perturbations, and we
study the quality of approximation in particular. Our proofs differ significantly
from the techniques of the above mentioned results but rely on empirical process
techniques without making use of classical random matrix tools.
Subsequently, c > 0 denotes some constant which does not depend on the variable
parameters in the expressions. It may vary over different places of appearance.
Our first result is an upper bound in the small amplitude regime ‖C‖S∞

≤ σ
√
M ,

where ‖ · ‖S∞
denotes the spectral norm.
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Proposition 6 (Small amplitude regime). For any M ∈ N, r < M :

sup
C∈R

M×M :
‖C‖S∞≤σ

√
M

E sup
π̃r∈SM,r

(
‖π̃r(C + ε)‖2S2

− ‖πr(C + ε)‖2S2

)
≤ cσ2rM.

The proposition demonstrates that the small amplitude regime resembles the
well-known situation in high-dimension for C = 0.
The large amplitude regime is shown to be substantially different. The next result
is a lower bound on the expected squared Hilbert-Schmidt norm of the rank-r-
projection in case that the singular value spectrum of C is constant.

Proposition 7. Let Cα ∈ R
M×M with singular value decomposition UΛαV

′. As-
sume that Λα = αId with some real number α ∈ R. Then for any fixed πr ∈ SM,r

and for any α ∈ R, (i)

E

(

sup
π̃r∈SM,r

w

wπ̃r(Cα + ε)
w

w

2

S2
−
w

wπr(Cα + ε)
w

w

2

S2

)

≥ E

(

sup
π̃r∈SM,r

‖π̃rε‖2S2

)

− σ
2
rM,

and (ii)

lim inf
|α|→∞

1

|α| E
(

sup
π̃r∈SM,r

wwπ̃r(Cα + ε)
ww2

S2
−
wwπr(Cα + ε)

ww2

S2

)
> 0 for any r < M.

Proposition 7 (i) says that the accuracy of the empirical projection in case
C = UαIdV ′ is always worse than in case C = 0. (ii) complements this message
by a lower bound on the accuracy: E‖π̂rX‖2S2

− E‖πrX‖2S2
explodes (at least)

linearly in the amplitude |α| for |α| → ∞. Inspection of the difference

E
w

wπ̂r(C + ε)
w

w

2

S2
− E

w

wπr(C + ε)
w

w

2

S2

= E sup
π̃r∈SM,r

{

w

wπ̃rε
w

w

2

S2
−
w

wπrε
w

w

2

S2
+ 2 tr

(

ε
′(π̃r − πr)C

)

−
(

w

wπrC
w

w

2

S2
−
w

wπ̃rC
w

w

2

S2

)

}

.

shows that there is no deterministic compensation term in case C = UαIdV ′:
‖πrC‖2S2

− ‖π̃rC‖2S2
= 0 for every πr ∈ SM,r. Therefore, the case of constant

singular value spectrum C = UαIdV ′ is some prototype of weak accuracy.
The conjecture about the possibility of improvement for a certain type of matrices
follows from the fact that, in contrast to the situation in the above Proposition 7,
the differences ‖π̃r(C+ε)‖2S2

−‖πr(C+ε)‖2S2
are usually not centered but have ex-

pectation less than zero. The next Theorem provides a general upper bound on the
approximation of the reduced-rank projection for non-centered Gaussian random
matrices X = C + ε and covers the large amplitude regime in particular. It turns
out that the characterization of the quality of approximation is expressed in terms
of the ”signal-to-noise ratio” C̃ := C/(σ

√
M) rather than C. Correspondingly,

λ̃1, ..., λ̃M denote the singular values of C̃.

Theorem 8. Let (εij)
M
i,j=1 be a centered matrix of independent Gaussian entries

with variance σ2. Then for any C ∈ R
M×M with rank(C) ≥ r, r ≤ M − r, and
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{π̃r ∈ SM,r : ‖π̃rC‖2S2
= ‖πrC‖2S2

} = {πr}, the following bound holds true:

E sup
π̃r∈SM,r

(

‖π̃r(C + ε)‖2S2
− ‖πr(C + ε)‖2S2

)

≤ cσ
2
rM

{

min

(

(1 + λ̃1)
2

λ̃2
r

, (1 + λ̃1)

)

+ log(1 + r)1
(

λ̃
2
r ≤ log(1 + r)(

√
r(1 + λ̃1) + r)

)

}

+ cσ
2
rM

{( 1
r

∑2r
i=r+1 λ

2
i

λ2
r

)1/2

· (1 + λ̃1) + min

[√
r

( 1
r

∑2r
i=r+1 λ

2
i

λ2
r

)1/2

, log(1 + r)

]}

.

It is worth mentioning that the expression remains bounded in order by σ2rM
up to a logarithmic (in r) factor as long as

1 + λ̃1

λ̃r
and

( 1
r

∑2r
i=r+1 λ̃

2
i

λ̃2r

)1/2

(1 + λ̃1)

stay uniformly bounded, and this may be possible even if ‖C‖S∞
→ ∞. The most

tractable situation arises for rank-r-matrices with rectangular singular value spec-
trum: In this case, the bound is of the order σ2rM up to some logarithmic term
which can be omitted as the amplitude tends to infinity.
The question remains whether this bound in case of rank-r-matrices with rectan-
gular singular value spectrum is optimal. Our last result gives a positive answer:

Theorem 9. Let (εij)
M
i,j=1 be a centered matrix of independent Gaussian entries

with variance σ2. Let Cα,s ∈ R
M×M with singular value decomposition UΛα,sV

′,
where Λα,s = αIds and 1 ≤ s < M . Ids denotes the s × s-identity, canonically
embedded into R

M×M . Then

lim inf
|α|→∞

max
s∈{r,M−r}

E

(

sup
π̃s∈SM,s

w

wπ̃s(Cα,s + ε)
w

w

2

S2
−
w

wπs(Cα,s + ε)
w

w

2

S2

)

≥ cσ
2
r(M − r).

The same result without the max over over {r,M−r} is established for s = r = 1.
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Some remarks on the problem of bias in Bayesian semi-parametrics

Judith Rousseau

There has been an increasing literature in the past ten years on asymptotic
properties of Bayesian nonparametric procedures, initiated mostly by the work of
[2] on posterior concentration rates for density estimation. Now in many nonpara-
metric models and for quite a large range of families of priors bounds have been
obtained on posterior concentration rates when the (pseudo) metric which is con-
sidered is ”comparable” with the Kullback-Leibler divergence. Let Xn denote the
observations where n represents a measure of information brought by the data,
such as the sample size when n observations are observed or the inverse of the
variance of the noise in a white noise model. Consider a sampling model Pn

θ for
the observations Xn conditionally on a parameter value θ. Given a loss (metric)
d(., .) on θ, the posterior concentration rate on θ is defined as the smallest rate ǫn
such that there exists M > 0 with

(1) P π[d(θ, θ0) ≤Mǫn|Xn] = 1 + op(1)

where P π[.|Xn] denotes the posterior distribution given the observationsXn. This
type of problems has been studied in the last 10 years for various types of models.
Typical models are :

• The density model.
The observations Xn are independently and identiacally distributed

from a distrbution having a density fθ with respect to some fixed measure µ
and d(θ, θ′) is either the Hellinger or the L1 distance between the densities.

• The regression or the white noise model : the unknown parameter is the
regression function (or the signal) and potentially the variance of the noise.
In this case the loss function is usually the L2 norm, or possibly the em-
pirical L2 norm over the design points in the case of the regression.

• Stationary gaussian time series : in this case the unknown parameter of
interest is the spectral density. In this case the loss function is often

d(θ, θ′) =

∫ π

−π

(log fθ − log fθ′)2(x)dx

where fθ is the spectral density.

There are many variants of those models that have also been studied, however
for the purpose of the present work I will only mention those three. In particular
for these models general conditions on the priors have been established to derive an
upper bound on the posterior concentration rate defined in (1) and some families
of priors have been considered, see for instance [2], [3], [7]. For instance in the case
of density estimation under the Hellinger or the L1 loss adaptive minimax con-
centration rates have been obtained with nonparametric priors based on Gaussian
or Beta mixtures, when the density belongs to a Hölder class with smoothness α,
when α is not known in advance, see [4]. Similarly [8] have obtained similar results
for scaled Gaussian process priors. This means that in both cases the prior does
not depend on the unknown smoothness α (nor on the radius of the Hölder ball
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the density is assumed to belong to) and that for each α > 0 and each true density
f0 belonging to a Hölder class with smoothness α the posterior concentration rate
was proved to be bounded by (n/ logn)−α/(2α+1) which is the minimax rate up
to a logn term. Moreover, adaptation is obtained by very natural priors leading
to procedures which are relatively easy to implement. The same featureis true for
the other two types of models.

This phenomenon becomes untrue when the pseudo-metric d does not compare
well with Kullback-Leibler.

Three examples are considered. First consider the white noise model which we
write as the infinite sequence model:

Yi = θi + ǫi/
√
n, i ∈ N, θ = (θi, i ∈ N) ∈ ℓ2,

using an expansion of the observed signal on an orthonormal basis of L2[0, 1], for
instance the Fourier basis. Consider the following hierarchical prior on θ: Let
k ∈ N follow a Poisson or Geometric prior and given k, θ is distributed as

(2) θi/τi ∼ N (0, 1), i ≤ k, θi = 0 i > k

independently, where τi = i−α for some 1 > α > 1/2. Then for all θ0 in a Sobolev
ball with smoothness β > 1/2 the posterior distribution on θ concentrates around
θ0 at the rate (n/ logn)−β/(2β+1) in terms of the L2 loss and under Pθ0 . However
if the parameter of interest is ψ =

∑
i θi which corresponds to the signal function

computed at 0 in the case of a Fourier basis, then the posterior concentration rate
around ψ0 =

∑
i θi0 is of order n−(β−1/2)/(2β+1) instead of n−(β−1/2)/(2β) which is

the minimax rate in this case. The reason is that the posterior in the truncation
parameter k concentrates on k ≤ kn = O(n1/(2β+1)) which is the optimal (up
to logn) threshold for the L2 norm and not to k′n = O(n1/(2β)) which would be
optimal for estimating ψ. The reason behind this behaviour is that the posterior
is mainly driven by the Kullback-Leibler loss, which in this case corresponds to
the L2 loss. This result is presented in [1].

Interstingly the same phenomenon occures for the estimation of the spectral
density in stationary Gaussian long memory processes. Such models can be written
as :

Xn ∼ N (0, Tn(f)), (Tn(f))j1,j2 = cov(Xj1 , Xj2) =

∫ π

−π

ei(j1−j2)xf(x)dx

where f is the spectral density and in the case of long-memory f has the form

f(x) = (1− cos(x))−dg(x) ≈ |x|−2dg(x)

near 0, where g is a positive and continuous function on [0, 1]. The asymptotic
in such models is slightly different than usual since the autocovariances are not
summable and the minimax estimation of d depends on the smoothness of the
short memory part g. Consider a prior constructed on the expansion of log g on
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th Fourier basis on [−π, π] :

fθ,k,d(x) = (1− cosx)−d exp




k∑

j=0

θj cos(jx)


 , k ∈ N

where a Poisson distribution is chosen on k and given k the θj ’s follow (2). If θ0

belongs to a Sobolev ball with smoothness β > 1 (in fact 1/2) then the posterior
distribution on f concentrates at the rate (n/ logn)−2β/(2β+1) in terms of the loss
l(f, f ′) = ‖ log f − log f ′‖22, and under Pθ0 . We thus obtain the adaptive minimax
concentration rate (up to a logn term).However the posterior concentration rate
to estimate d in this case is (n/ logn)−(β−1/2)/(2β+1) instead of optimal minimax
rate n−(β−1/2)/(2β). The reason is exactly the same as in the case of the white
noise model above. This result is presented in [6]

These two semi-parametric problems are considered as irregular since the mini-
max rate for estimating the finite dimensional parameter of interest is slower than
the usual 1/

√
n. However the problems encountered by some Bayesian semipara-

metric priors is not restricted to nonregular cases. Indeed, in the case of the
density model, if the parameter of interest is the cumulative distribution function
at a given point, the posterior distribution can behave strangely although it has
avery good behaviour for estimating the whole density under the Hellinger loss.
Consider a prior based on the following representation of the density :

fθ(x) = exp




k∑

j=0

θjφj(x)




where φj is the Fourier basis on [0, 1], where k follows a Poisson distribution and
given k θ follows the same distribution as in (2). Then for all β > 1/2, there exists
θ0 belonging to a Sobolev ball with smoothness β such that the posterior distri-
bution of Fθ(x1) for a given x1 and with Fθ denoting the cumulative distribution
function concentrates at a rate which is bounded from below by a constant times√
logn/

√
n. Hence although the prior leads to adaptive estimation of the density

fθ in terms of Hellinger distance it is suboptimal for estimating the cumulative
distribution function at a given point, which is a smooth functional of the density.

These three examples are all based on the same pattern although they concern
very different models. Suboptimality appear in these semi-parametric frameworks
when there is a conflict between optimal approximation schemes under losses that
are close to Kullback and optimal approximation schemes under losses that are
different. The question of existence of optimal procedures that would adapt (up
to logn terms) both in these global and local losses is still open.
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Convex Variational Regularization Methods for Inverse Problems

Otmar Scherzer

(joint work with Clemens Kirisits)

In this talk we give an overview on convex variational methods for imaging
processing and for the solution of linear inverse problems, such as inversion of the
Radon transform.

The first observation is that gray-valued images (we only concentrate on such)
can be described in various manners:

(1) Images can be considered as functions from R
2 into R,

(2) as graphs in R
3.

(3) They can also be described via their level sets. These are three infinite
dimensional formulations.

(4) They can be described as matrices with real valued entries.

(5) Moreover, they can be described fully discrete as functions from {1, . . . , N}2
(pixels) to {0, . . . , 255} (discrete intensities),

(6) or as ordered binary tensors {0, 1}N×N×256
, where for each

(i, j) ∈ {1, . . . , N}2 the corresponding subrow of the tensor consists of
first ones and second zeros. The sum of this vector defines the intensity of
the image.

The talk is concerned with the infinite dimensional setting, where images are
considered as functions from R

2 into R, and the fully discrete setting, where they

are regarded as ordered binary tensors {0, 1}N×N×256
.

In the infinite dimensional setting we give an overview on recent regularization
results from our work [11, 8, 9]. Convex variational regularization consists in
minimizing the functional

(1) Tα(u) :=
1

p
‖Fu− vδ‖pV + αR(u) ,

where F : U → V is the forward operator mapping between Banach spaces U and
V and where we have 1 ≤ p < ∞. Moreover, R : U → [0,+∞] is a convex and
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proper stabilizing functional. Under these conditions it is relatively straightfor-
ward to prove convergence and stability. However, convergence rates results for
Tikhonov-regularized minimizers with convex minimizers have been established
just recently [3, 1, 11], in an abstract setting. The convergence rates results have
been applied to concrete applications, such as total variation and sparsity reg-
ularization, where R(u) denotes the total variation of u or the l1-norm of the
coefficients of a series expansion with respect to an orthonormal basis, respec-
tively. One remarkable property of l1-sparsity regularization is that it allows for
optimal convergence rate in a norm of order δ, which can be recasted from the
abstract convergence rates results from [11] under additional restricted injectivity
conditions, see [11, 8, 9]. For numerical minimization the functionals and the func-
tions u have to be discretized. This introduces discretization errors, which have
to be taken into account in a numerical analysis [17]. By solving the discretized
system, one recovers a matrix with typically real valued function values.

We go one step further and consider images with a discrete range of intensities.
In the case of image denoising with total variation regularization, we aim to find

(2) argmin Tα(u),

where u : {1, . . . , N}2 → {0, . . . , 255} is a discrete image defined on a grid

{1, . . . , N}2 with discrete intensity values {0, . . . , 255}, and Tα is a discretized
version of the total variation functional, which can be derived in a sound way
by utilizing the coarea and Cauchy-Crofton formulae [5, 12]. Combinatorial opti-
mization algorithms, such as graph cuts, can then be employed to compute exact
minima of the discrete functional [10, 5, 4, 7]. For the efficient implementation
it is important to notice that, on the one hand, images can be represented as bi-
nary tensors, i.e. they are decomposable into binary levels, and that, on the other
hand, the discrete total variation functional has the favourable property that its
minimization can be formulated as a sequence of minimization problems for the
levels of u. As a consequence, optimization algorithms can be applied to each
level separately while reusing information in each step. Finally, after “gluing” the
solutions together, the result resembles a total variation regularized image.

Basically, graph cut algorithms make use of the fact that certain functions can
be interpreted as cut functions of suitably constructed graphs. In other words,
the minimization of a given function is mapped to the problem of finding the
minimum cut on a flow network. For image processing tasks this usually leads to
graphs, where every vertex represents one pixel and proximity of pixels is indicated
by weighted edges between them. Due to the max-flow min-cut theorem [6], the
minimum cut problem is equivalent to computing the maximum flow through the
network, which in turn can be done exactly in low-order polynomial time [2].

Our particular work in this context is concerned with image analysis on a hexag-
onal grid. That a rectangular lattice might not be the best choice for the sampling
and processing of two-dimensional signals has been recognized at least half a cen-
tury ago [15, 13]. Since then, researchers who investigated the use of hexagonally
arranged pixel configurations almost unanimously conclude that they should be
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preferred over their more common counterparts for a wide variety of applications,
such as edge detection, shape extraction or image reconstruction (see e.g. [14]).
Total variation denoising on hexagonal grids and its approximation properties are
analyzed in [16], and confirm the former observation by some limiting arguments.
The finite dimensional implementation and realization with graph cuts is analyzed
in [12].
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Obtaining Qualitative Statements in Deconvolution Models

Johannes Schmidt-Hieber

(joint work with Axel Munk and Lutz Dümbgen)

Introduction and model. Whereas pointwise estimation in density deconvolu-
tion is nowadays a well-studied problem, there has been some recent interest in
construction of uniform confidence bands (cf. Bissantz et al. [1] and Lounici and
Nickl [5]). Pointwise estimates are known to have very slow convergence rates
and are highly sensitive to the choice of the bandwidth parameter. Moreover,
in applications, pointwise reconstructions are usually not necessary, since one is
often rather interested in qualitative features of the underlying density, such as
the number of modes, confidence intervals for the modes, regions of increase and
decrease and so on (for a real data example see [1], p.500). Therefore, it is natural
to ask for an analysis of confidence statements. We do this, by extending the idea
of multiscale inference, introduced by Dümbgen and Spokoiny [2] and Dümbgen
and Walther [3] in regression and density estimation, to deconvolution problems.
Suppose that we observe

Yi = Xi + ǫi, i = 1, . . . , n,

where ǫ1, ǫ2, . . . and X1, X2, . . . are independent sequences of i.i.d. random vari-
ables. The densities of Y1, X1, and ǫ1 are denoted by g, f, and fǫ, respectively.

We consider the moderately ill-posed case, where the decay of the Fourier trans-

form of the error density, denoted by f̂ǫ, is polynomial. Together with the assump-

tions on the tail decay of the derivatives of f̂ǫ from Fan [4], we can show that the
inversion operator which maps g to f is essentially pseudo-differential. Since a
large class of shape constraints can be expressed as pseudo-differential inequali-
ties, this shows that deconvolution and shape analysis are very similar and can
therefore nicely be composed. For simplicity, let us consider confidence state-
ments for qualitative features which are related to monotonicity, i.e. regions of
increase/decrease and modes. In this case, it is convenient to derive a multiscale
result for f ′. For that suppose that for all (t, h) ∈ [0, 1]× (0, 1] we can construct a

(kernel-type) estimator f̂ ′
nh(t) with expectation equals 1

h

∫
K
(
s−t
h

)
f ′(s)ds, where

the kernel K is itself a pdf supported on [0, 1]. In the following we focus on the
statistical implications. In particular we show how multiscale statistics appears in
this context.

Multiscale inference: If we can find a (random) function bh(t), that is measur-
able with respect to our observation vector, and satisfies with probability 1 − α

for all t ∈ [0, 1], |f̂ ′
nh(t)− Ef̂ ′

nh(t)| ≤ bh(t), then

t 7→ [f̂ ′
nh(t)− bh(t), f̂

′
nh(t) + bh(t)](1)

is a uniform 1− α confidence band for the mean function t 7→ Ef̂ ′
nh(t). Now, sup-

pose we know how to choose a bandwidth h such that we slightly undersmooth,
then, inflating the band (1) by a small number yields an asymptotically uniform
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confidence band for f ′. Such a confidence band already allows us to construct
simultaneous confidence statements. For instance, we might conclude that f is
monotone increasing on all points t, where the confidence band for f ′ lies com-
pletely in the upper half plane. The strength of a confidence band lies in the
simple visual interpretability. However, such a procedure has also a number of
drawbacks. It depends on a proper bandwidth selection and even if we could
choose the bandwidth locally adaptive, this does not guarantee a high power of
the test. To overcome these difficulties it could be more convenient to use a mul-
tiscale approach, which means to test on all scales simultaneously. A multiscale
object does neither require a bandwidth selection step nor a distinction between
undersmoothing and oversmoothing scales. In the following, let us describe the
construction in more detail. Define the multiscale statistic

Tn := sup
(t,h)∈Bn

√
log e

h

log
(
e log e

h

)
( |f̂ ′

nh(t)− Ef̂ ′
nh(t)|

Ŝtd
(
f̂ ′
nh(t)

) −
√
2 log e

h

)
,(2)

with Bn a subset of [0, 1]×(0, 1], Ŝtd
(
f̂ ′
nh(t)

)
an estimate of the standard deviation

of f̂ ′
nh(t), and e the Euler number. Now, suppose that we can find a distribution-

free approximation of Tn, denoted by T∞
n , such that |Tn−T∞

n | = oP (1) (uniformly
over f, with f in a certain function space) and supn T

∞
n < ∞ a.s. Then, we can

approximate the (1 − α)-quantile of Tn by the one from T∞
n and thus, in view of

(1), we obtain, with probability 1 − α, for all (t, h) ∈ Bn (computable) bounds

bh(t) such that |f̂ ′
nh(t) − Ef̂ ′

nh(t)| ≤ bh(t). This extends (1) to all scales h. Note
that the calibration factors in (2) are motivated by Lévy’s modulus of continuity of
Brownian motion and ensure finiteness of Tn and T∞

n as well as that the supremum
is attained uniformly over different scales.

To give a straightforward statistical application of the result, note that whenever

(t, h) ∈ Bn and f̂ ′
nh(t) > bh(t) we can conclude that with probability 1 − α,

f(s1) < f(s2) for some points s1, s2 ∈ [t, t + h]. Hence, if we find such a tuple,
we can reject the hypothesis that f is constant. To give another application, one
can show that the multiscale approach leads to simultaneous confidence intervals
for modes and inflection points of f, with length of the optimal order up to a
log(n)-factor.

As described above, the construction of f̂ ′
nh depends on a kernel K. By using

variational calculus, one can easily identify the optimal kernel as the density of
a beta distributed random variable. Hence, the proposed method depends finally
only on the choice of the confidence level α.

For a more general treatment of shape constraints in deconvolution models, let us
refer to the article [6].
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Bernstein von Mises Theorem for quasi-posterior

Vladimir Spokoiny

Let Π be a prior measure on the parameter set Θ. Recall that the posterior is
the random measure on Θ describing the conditional distribution of ϑ given Y

and obtained by normalization of the product exp
{
L(θ)

}
Π(dθ). This relation is

usually written as

ϑ | Y ∝ exp
{
L(θ)

}
Π(dθ).(1)

Now we study the properties of the posterior measure. An important feature of
our analysis is that L(θ) is not assumed to be the true log-likelihood. This means
that a model misspecification is possible and the underlying data distribution can
be beyond the considered parametric family. In this sense, the Bayes formula (1)
describes a quasi posterior.

The Bernstein - von Mises Theorem states a result which is similar to the Fisher
Theorem: the posterior being centered at θ̃ and properly standardized is nearly
standard normal. This is very useful for constructing Bayesian credible sets.

However, practical applications of all mentioned results are limited: they re-
quire true parametric distribution, large samples and a fixed parameter dimension.
Modern applications stimulate a further extension of the classical theory beyond
the classical parametric assumptions. [15] offers a general approach which appears
to be very useful for such an extension.

This paper also discusses the Bernstein - von Mises (BvM) Theorem for Gauss-
ian priors. The Bayes approach with Gaussian priors is effectively equivalent to
roughness penalization in the frequentist approach. In particular, the credible sets
based on the posterior distribution are nearly equivalent to the confidence sets in
the penalized maximum likelihood estimation and the size is determined by the
total Fisher information; see e.g. [10, 11] and references therein. Both confidence
and credible sets are asymptotically centered at the penalized MLE and both suf-
fer from the bias. If the bias term is larger than the width of the confidence or
credible set, the true parameter will not be included in any of these two sets with
a large probability; cf. [5] or [13, 14].

The Bayesian nonparametrics is being intensively developed in the last years.
There is a number of papers recently appeared. We mention [7], [8], [9] for high
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dimensional linear models, [1], [12] for non-Gaussian models, [4] for the semipara-
metric version of the BvM result, [13], [3], [14] for the misspecified parametric
case, among many others. However, all the mentioned results require some special
parametric structure, mainly model linearity w.r.t. the parameter, as well as large
samples. An extension to the case of a large parameter dimension relative to the
sample size require to change the main tools and methods: asymptotic expansions
have to be replaced by nonasymptotic bounds.

Here the main result of the paper:

Theorem 10. Assume (ED0G), (ED1G), and (L0G) on Θ0,G. Then for any
A ⊆ Dǫ,GΘ0,G and A ⊆ Dǫ,GΘ0,G, it holds on ΩG(x)

IP
{
Dǫ,G(ϑ− θ∗

G) ∈ A | Y
}

≤ exp
{
∆ǫ,G + κǫ,G + τǫ,G

}
Φ
(
ξǫ,G,A

)
,

IP
{
Dǫ,G(ϑ− θ∗

G) ∈ A | Y
}

≥ exp
{
−∆ǫ,G − κǫ,G − τǫ,G − δǫ,G

}
Φ
(
ξǫ,G,A

)
,

∫
Θ\Θ0,G

exp
{
LG(θ, θ

∗
G)
}
dθ

∫
Θ0,G

exp
{
LG(θ, θ∗

G)
}
dθ

≤ exp{♦ǫ,G(r0) + τǫ,G} δǫ,G

where

∆ǫ,G
def
= ♦̺,G +♦ǫ,G +

(
‖ξǫ,G‖2 − ‖ξǫ,G‖2

)
/2,

κǫ,G
def
= log detDǫ,G − log detDǫ,G,

τǫ,G
def
= − logΦ

(
ξǫ,G, Dǫ,GΘ0,G

)

δǫ,G
def
=

det(Dǫ,G)

(2π)p/2

∫

Θ\Θ0,G

exp
{
−u(θ)

}
dθ

The result involves some terms like ∆ǫ,G, κǫ,G, τǫ,G, δǫ,G, which can be shown
to be relatively small under standard conditions. The main message is the upper
and lower Gaussian approximation of the posterior measure which is the non-
asymptotic version of the Bernstein - von Mises result.
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Separable regularization penalties and structured sparsity

Sara van de Geer

We consider the linear model

Y = Xβ0 + ǫ,

where Y ∈ R
n is a response variable, X is an n× p matrix of covariables, β0 ∈ R

p

is an unknown vector of coefficients, and ǫ ∈ R
n is a noise vector.

Let Ω be some norm on R
p, and let β̂ be the norm-penalized estimator

β̂ := β̂Ω := arg min
β∈Rp

{
‖Y −Xβ‖22/n+ 2λΩ(β)

}
.

The parameter λ > 0 is a tuning parameter. Our aim is now to show that the
estimator mimics an oracle which knows the sparsity structure of the unknown
vector β0.

For an index set S ⊂ {1, . . . , p}, we use the notation

βj,S := βjl{j ∈ S}, j = 1, . . . , p.

Definition Fix some set S. We say that the norm Ω is separable for S if there
exists a norm ΩSc

on R
p−|S| such that for all β ∈ R

p,

Ω(β) ≥ Ω(βS) + ΩSc

(βSc).

We then take ΩSc

as large as possible:

6 ∃ Ω̃Sc

:

{
Ω̃Sc

(βSc) ≥ ΩSc

(βSc) ∀ βSc

}
.

Examples of separable norms are the ℓ1-norm and the group Lasso norm, more
generally, the structured sparsity norm, as introduced by [2], which is defined as

Ω(β) := Ω(β;A) := min
a∈A

1

2

p∑

j=1

(
β2
j

aj
+ aj

)
,

where A ⊂ [0,∞)p be a given convex cone, satisfying A ∩ (0,∞)p 6= ∅.
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The following definition extends the notion of compatibility constant ([3]) or of
restricted eigenvalue ([1]).

Definition Suppose Ω is separable for S. Let L > 0 be some constant. The
Ω-eigenvalue (for S) is

δ2Ω(L, S) := min

{
‖XβS −XβSc‖22/n : Ω(βS) = 1, ΩSc

(βSc) ≤ L

}
.

The Ω-effective sparsity is Γ2
Ω(L, S) := 1/δ2Ω(L, S).

The dual norm of Ω is denoted by Ω∗, that is

Ω∗(w) := sup
Ω(β)≤1

|wT β|, w ∈ R
p.

We moreover let ΩSc

∗ be the dual norm of ΩSc

.

Theorem Let S0 ⊃ {j : β0
j 6= 0} and let Ω be separable for S0. Define

λS0 := Ω∗

(
(ǫTX)S0/n

)
, λS

c
0 := Ω

Sc
0∗

(
(ǫTX)Sc

0
/n

)
.

Suppose

λ > λS
c
0 .

Define

L :=
λ+ λS0

λ− λS
c
0
.

Then

‖X(β̂ − β0)‖22/n ≤ 4(λ+ λS0)2Γ2
Ω(L, S0),

Ω(β̂S0 − β0
S0
) ≤ 2(λ+ λS0)Γ2

Ω(L, S0),

and

ΩSc
0 (β̂) ≤ 2L(λ+ λS0)Γ2

Ω(L, S0).

The above theorem is a generalization of the sparsity oracle inequalities for the
Lasso and group Lasso.
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Gaussian priors and Credible Sets

Aad van der Vaart

(joint work with Bartek Knapik, Suzanne Sniekers, Botond Szabo, Harry van
Zanten)

We model a function or surface a-priori as the sample path of a Gaussian pro-
cess, and next by the usual Bayesian machine combine this with the likelihood to
produce a posterior distribution for the function given the data. This posterior
distribution can be visualized by plotting the posterior mean, and/or a number of
realizations, and/or posterior credible bands. Pointwise versions of the latter are
defined by computing for each argument lower and upper quantiles of the marginal
posterior distribution of the function value at that argument.

We ask the questions:

• Does this give good constructions?
• Do credible sets give a correct sense of remaining uncertainty?

As an illustration consider nonparametric logistic regression with integrated
Brownian motion as a prior. In the Bayesian model unknown function and data
are generated according to

{
θ ∼ scaled integrated Brownian motion,

(X1, Y1), . . . , (Xn, Yn)|θ ∼ i.i.d. : Pr(Yi = 1|Xi = x) = 1/(1 + e−θ(x)).

The posterior distribution is the law of the function θ given (X1, Y1), . . . , (Xn, Yn).
Integrated Brownian motion is just one example of many possible priors: Brownian
motion is an obvious example of a Gaussian process, but it might be considered
to rough as a model for the unknown function, whence it is integrated once. The
figure illustrates its application on a simulated data set.

Simulation experiment (n = 250). Two realisations of the posterior mode (black, solid) and 95 % posterior

credible bands (blue, dotted), overlaid with true curve θ0 (red, dashed). Two different scalings of IBM.

Computations by the INLA package.

The bands in the figure supposedly give an impression of the remaining uncertainty
in the estimate. Such bands are standard output of any Bayesian analysis. The
following figure gives a real data example.
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Nonparametric Bayesian analysis in genomics. Estimated abundance of a transcription factor as function of

time: posterior mean curve and 95% credible bands. From Gao et al. Bioinformatics, 2008, 70–75.

Our interest is to investigate the validity of doing this. For this we leave the
Bayesian model, which assumes that θ is random, and assume that the data are
generated according to a given true function θ0. We then investigate whether the
posterior distribution puts most of its mass around this function, and whether the
bands cover the function with a given probability.

In an asymptotic framework the data Yn has a density y 7→ pn(y|θ) that depends
on a parameter n, and the posterior distribution is given by

dΠn(θ|Yn) ∝ pn(Yn|θ) dΠ(θ).
The rate of contraction of the posterior distribution is defined to be (at least)
ǫn = ǫn(θ0) if, for every Mn → ∞,

Eθ0Πn

(
d(θ, θ0) > Mnǫn|Yn) → 0.

A credible set is a a set C(Yn) with Πn

(
C(Y )|Yn) = 0.95. The coverage of the

credible region Cn(Yn) is

Pr
θ0

(
Cn(Yn) ∋ θ0

)
.

Does it tend to 95 %?
We established a number of results showing that the rate of contraction depends

on the fine properties of the Gaussian prior. One result is a randomly time-scaled
Gaussian process with analytic sample paths yields a posterior distribution that
adapts its rate of contraction to the smoothness of the true function.

Surprisingly the question of coverage of credible sets has so far hardly been
studied. One of the few authors to consider the second question, Cox (1993) wrote

Non-Bayesians often find such Bayesian procedures attractive because as n → ∞, the frequen-
tist coverage probability of the Bayesian regions tends to the posterior coverage probability in
“typical” cases. It was my hope that this would also hold in the nonparametric setting [· · · ]
Unfortunately, the hoped for result is false in about the worst possible way, viz.,

lim inf
n→∞

P
[

‖θ̂ − θ‖2 ≤ ∆n|θ
]

= 0, a.s..

The notation θ̂ refers here to the posterior mean, in a special conjugate Gaussian

problem, and {θ : ‖θ̂− θ‖2 ≤ ∆n} is a credible ball in this problem. The assertion
is that for almost every θ0 according to the prior distribution, the coverage is zero,
which is a disturbing message.
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We were able to establish that the problem is actually one of a failing bias-
variance-spread trade-off. If the (Gaussian) prior charges only functions that are
smoother than the true function, then the posterior mean tends to be relatively far
from the truth, while at the same time the spread of the posterior is small, as the
set of smooth functions is relatively small. This creates coverage zero. On the other
hand if the prior undersmoothes the truth, then the coverage is one. Furthermore,
credible balls have the same order of magnitude as correct frequentist confidence
balls.

We established these findings so far only for a number of special models. Future
research effort is focused on proving these results in general, and to illuminate
the role of Bayesian adaptation of the prior, by hierarchical or empirical Bayes
methods.
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Statistical inference in high dimensions: From parametric to

non-parametric

Martin J. Wainwright

(joint work with Alekh Agarwal, Sahand Negahban, Pradeep Ravikumar, Bin Yu)

We discuss some recent results in high-dimensional inference, which range from
results on parametric estimation non-parametric regression. After providing an
overview of various high-dimensional models, we present some theory for noisy
matrix decomposition. The problem of noisy matrix decomposition is to recover a
pair of matrices (Θ∗,Γ∗) based on observations of the form Y = X(Θ∗ +Γ∗) +W ,
where X is a linear observation operator, and W is a noise matrix. This problem
has applications in robust PCA, multitask regression, robust covariance estima-
tion, and security-aware forms of matrix completion. We derive non-asymptotic
bounds on the performance of a natural convex relaxation, and show that they are
minimax-optimal for Gaussian additive noise [1]. We then describe some of the
general theory that underlies results of this type, including the notion of a decom-
posable regularizer and restricted strong convexity [2]. Time permitting, we sketch
some extensions of these techniques to obtain optimal rates for high-dimensional
non-parametric regression [3].



868 Oberwolfach Report 14/2012

References

[1] A. Agarwal, S. Negahban, and M. J. Wainwright. Noisy matrix decomposition via convex
relaxation: Optimal rates in high dimensions. To appear in Annals of Statistics.

[2] S. Negahban, P. Ravikumar, M. J. Wainwright, and B. Yu. A unified framework for high-
dimensional analysis of m-estimators with decomposable regularizers. Full length version at
http://arxiv.org/abs/1010.2731v1.

[3] G. Raskutti, M. J. Wainwright, and B. Yu. Minimax-optimal rates for sparse additive models

over kernel classes via convex programming. Journal of Machine Learning Research, 12:389–
427, 2012.

The Average Likelihood Ratio for Large-scale Multiple Testing and

Detecting Sparse Mixtures

Günther Walther

Large-scale multiple testing problems require the simultaneous assessment of many
p-values. This talk compares several methods to assess the evidence in multiple
binomial counts of p-values: the maximum of the binomial counts after standard-
ization (the ‘higher-criticism statistic’), the maximum of the binomial counts after
a log-likelihood ratio transformation (the ‘Berk-Jones statistic’), and a newly in-
troduced average of the binomial counts after a likelihood ratio transformation.
Simulations show that the higher criticism statistic has a superior performance to
the Berk-Jones statistic in the case of very sparse alternatives (sparsity coefficient
β ' 0.75), while the situation is reversed for β / 0.75. This is due to the heavy
long tail of the binomial distribution, which results in the higher criticism statistic
assigning a large weight to the evidence contained in the smallest p-values, and
these smallest p-values are known to be the relevant statistic in the very sparse
case.

On the other hand, the log-likelihood transformation results in an equal weight-
ing of the evidence contained in the various p-values, and this yields a better per-
formance in the less sparse case where the evidence of mixing is most pronounced
in p-values that are not among the smallest ones.

Finally, the average likelihood ratio is motivated via a minimax approach to ob-
tain good detection power uniformly in the sparsity parameter. Simulations show
that the average likelihood ratio does indeed combine the favorable performance
of higher criticism in the very sparse case with that of the Berk-Jones statistic in
the less sparse case and thus appears to dominate both statistics.

Adaptive Covariance Matrix Estimation Through Block Thresholding

Ming Yuan

(joint work with T. Tony Cai)

Covariance matrix estimation is of fundamental importance in multivariate anal-
ysis. Driven by a wide range of applications in science and engineering, the high
dimensional setting, where the dimension p can be much larger than the sample
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size n, is of particular current interest. In such a setting, conventional methods
and results based on fixed p and large n are no longer applicable and in particular
the commonly used sample covariance matrix and normal maximum likelihood
estimate perform poorly. A number of regularization methods, including banding,
tapering, thresholding, and ℓ1 minimization, have been developed in recent years
for estimating a large covariance matrix or its inverse.

One of the most commonly considered class of covariance matrices is the “band-
able” matrices, where the entries of the matrix decay as they move away from the
diagonal. More specifically, consider the following class of covariance matrices
introduced in Bickel and Levina (2008):

Cα = Cα(M0,M) :=

{
Σ : max

j

∑

i

{|σij | : |i − j| ≥ k} ≤Mk−α ∀k,

and 0 < M−1
0 ≤ λmin(Σ), λmax(Σ) ≤M0

}
.(1)

Several regularization methods have been introduced for estimating a bandable
covariance matrix Σ ∈ Cα. In particular, Cai, Zhang and Zhou (2010) established
the minimax rate of convergence for estimation over Cα and introduced a tapering
estimator Σ̄ ◦ Tk where the tapering matrix Tk is given by

Tk =

(
2

k
{(k − |i− j|)+ − (k/2− |i− j|)+}

)

1≤i,j≤p

,

with (x)+ = max(x, 0) and ◦ stands for the Schur or element-wise product. It was
shown that the tapering estimator Σ̄◦Tk with k ≍ n1/(2α+1) achieves the minimax
optimal rate of convergence

(2) ‖Σ̄ ◦ Tk − Σ‖ = Op

(
n− α

2α+1 +

(
log p

n

) 1
2

)

uniformly over Cα.
The minimax rate of convergence in (2) provides an important benchmark for

the evaluation of the performance of covariance matrix estimators. It is, however,
evident from its construction that the rate optimal tapering estimator constructed
in Cai, Zhang and Zhou (2010) requires explicit knowledge of the decay rate α
which is typically unknown in practice. This naturally leads to the arguably more
practically important question of adaptive estimation: Is it possible to construct
a single estimator, not depending on the decay rate α, that achieves the optimal
rate of convergence simultaneously? We shall show in this paper that the answer is
affirmative. A fully data-driven adaptive estimator Σ̂ is constructed and is shown
to be simultaneously rate optimal over the collection of the parameter spaces Cα
for all α > 0.

Σ̄ into blocks and then simultaneously estimate the entries of Σ in a block by
thresholding.

The adaptive covariance matrix estimator achieves its adaptivity through block
thresholding of the sample covariance matrix Σ̄. The idea of adaptive estimation
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through block thresholding can be traced back to nonparametric function estima-
tion using Fourier or wavelet series. However, the application of block thresholding
to covariance matrix estimation poses new challenges. One of the main difficulties
in dealing with covariance matrix estimation as opposed to function estimation or
sequence estimation problems is the fact that the spectral norm is not separable in
its entries. Another practical challenge is due to the fact that the covariance ma-
trix is “two-directional” where one direction is along the rows and another along
the columns. The blocks of different sizes need to be carefully constructed so that
they fit well in the sample covariance matrix and the risk can be assessed based
on their joint effects rather than their individual contributions. There are two
main steps in the construction of the adaptive covariance matrix estimator. The
first step is the construction of the blocks. Once the blocks are constructed, the
second step is to estimate the entries of the covariance matrix Σ in groups and
make simultaneous decisions on all the entries within a block. This is done by
thresholding the sample covariance matrix block by block. The threshold level is
determined by the location, block size and corresponding spectral norms.

We shall show that the proposed block thresholding estimator Σ̂ is simultane-
ously rate-optimal over every Cα for all α > 0. The theoretical analysis of the
estimator Σ̂ requires some new technical tools that can be of independent interest.
One is a concentration inequality which shows that although the sample covari-
ance matrix Σ̄ is not a reliable estimator of Σ, its submatrices could still be a good
estimate of the corresponding submatrices of Σ. Another useful tool is a so-called
Norm Compression Inequality which reduces the analysis on the whole matrix to
a matrix of much smaller dimensions, whose entries are the spectral norms of the
blocks.
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Calibrated elastic regularization in matrix completion

Cun-Hui Zhang

(joint work with Tingni Sun)

Matrix completion concerns the estimation of a large matrix when a small fraction
of it is observed. Consider an unknown matrix Θ ∈ R

d1×d2 . Let Ω∗ = {1, . . . , d1}×
{1, . . . , d2}. Suppose we observe iid vectors (ωi, yi),

yi = Θωi + εi,

where ωi is uniformly distributed in Ω∗ and εi ∼ N(0, σ2).
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Suppose Θ is of low rank. It seems natural to consider the nuclear penalized
least squares estimator [5]. This estimator can be written as the minimizer of

n∑

i=1

M2
ωi
/2−

n∑

i=1

yiMωi + λ‖M‖(N),(1)

where ‖M‖(N), the nuclear norm, is the sum of the singular values ofM . However,
analytical properties of the minimizer of (1) is unclear.

Error bounds for two modifications of minimizing (1) have been provided in
[6] and [4]. Let r =rank(Θ) and d = d1 + d2. Consider d1 ≤ d2 without loss of
generality. Define α(sp)(M) = ‖M‖∞

√
d1d2/‖M‖(F ) as the spikiness of a matrix

M , where ‖M‖∞ = maxjk |Mjk| is the vectorized supreme norm and ‖M‖(F ) is
the Frobenius norm. For ‖Θ‖(F ) ≤ 1 and α(sp)(Θ) ≤ α∗, [6] proved

‖Θ̂(NW ) −Θ‖2(F ) ≤ C0 max(d1d2σ
2, 1)(α∗)2rd(log d)/n

with large probability, where Θ̂(NW ) is the minimizer of (1) under the constraint
‖M‖∞ ≤ α∗/

√
d1d2. Here and in the sequel, C0 denotes a numerical constant. In

[4], the quadratic term
∑n

i=1M
2
ωi
/2 in (1) is replaced by its expectation π0‖M‖2(F ),

with π0 = n/(d1d2), and the resulting minimizer is proved to satisfy

‖Θ̂(KLT ) −Θ‖2(F )/(d1d2) ≤ C0 max(σ2, ‖Θ‖2∞)rd(log d)/n

with large probability. We note that for ‖Θ‖(F ) ≤ 1, d1d2‖Θ‖2∞ ≤ α2
(sp)(Θ). The

penalty level λ is of the order σ
√
π0d log d in [6] and max(σ, ‖Θ‖∞)

√
π0d log d in

[4]. In both cases, the sample size requirement is n ≥ C∗rd log d with a factor C∗

depending on the spikiness α(sp)(Θ). These results provide (nearly) optimal error
bounds when σ and ‖Θ‖∞ are of the same order, but not for smaller noise level σ.

In [3], an error bound proportional to the noise level was obtained for the result

Θ̂(KMO) of a non-convex recursive algorithm based on the knowledge of the rank
r. For n ≥ C∗

1 rd log d+C
∗
2r

2d
√
d2/d1 with certain {C∗

1 , C
∗
2} dependent on several

coherence factors,

‖Θ̂(KMO) −Θ‖2(F )/(d1d2) ≤ C0(s1/sr)
4σ2rd(log d)/n,

where sj is the j-th largest singular value of Θ. This provides continuity in the
matrix completion theory between the noisy and noiseless cases [1]. However, the
required sample size is large for large d2/d1.

The main difficulty with matrix completion theory is that the quadratic
∑n

i=1M
2
ωi

is ill-posed. This has led to the modifications of (1) in [6] and [4]. We propose
to consider calibrated elastic regularization as follows. In linear regression, the
elastic net is the lease squares estimator with a sum of the ℓ1 and ℓ2 penalties [7].
For completing a low-rank Θ, the corresponding elastic regularized estimator is

Θ̃ = argmin
M

{ n∑

i=1

M2
ωi
/2−

n∑

i=1

yiMωi + λ1‖M‖(N) + (λ2/2)‖M‖2(F )

}
(2)

Let Θ = USV ⊤ be the singular value decomposition of Θ with S ∈ R
r×r. Under

proper coherence conditions on {Θ, U, V, S} and proper choices of penalty levels,
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Θ̃ is approximately Θ = (π0 +λ2)
−1(π0Θ−λ1UV

⊤). This suggests correcting the

bias of Θ̃ with the following calibrated elastic penalized least squares estimator

Θ̂ = (1 + λ2/π0)Θ̃.(3)

We briefly describe our analytical result in the following theorem.

Theorem 1 For proper choices of λ1 and λ2, the calibrated elastic penalized least
squares estimator (3) satisfies

‖Θ̂−Θ‖2(F )/(d1d2) ≤ 10σ2rd(log d)/n

with at least probability 1 − 1/d2, provided that n ≥ C∗r2d log d, where C∗ is
a constant depending only on the following coherence factors: αsp(Θ), α(sp)(U),

α(sp)(V ), and ‖Θ‖(F )/(r
1/2sr).

Compared with [6] and [4], the error bound in Theorem 1 is proportional to the

noise level. Compared with [3], Theorem 1 replaces the root aspect ratio
√
d2/d1 ≥

1 with a log factor in the sample size requirement.
Let T = {UU⊤M1 + M2V V

⊤ : Mj ∈ R
d1×d2} be the tangent space of the

nuclear norm at Θ. Define H by 〈HM,M〉 =
∑n

i=1M
2
ωi

with the trace inner

product. Let PT be the orthogonal projection from R
d1×d2 to T . The key element

in our analysis is to prove

max
‖∆‖(N)=1

〈(H− π0)(PTHPT )
−1(H/π0 − 1)(λ1UV

⊤ + λ2Θ),P⊥
T ∆〉 ≤ λ1/2

with large probability. For λ2 = 0, this was considered in [2] where the sample
size requirement is n ≥ C0 min{µ2r2(log d)2d, µ2r(log d)6d} for a certain coherence
factor µ stronger than max{α(sp)(U), α(sp)(V )}. We are able to remove a log factor

in the r2 bound, resulting in the sample size requirement in Theorem 1. If the
second bound in [2] (linear in r) or its proof is also applicable, our calculation can
be modified to achieve the sample size requirement n ≥ C∗rd(log d)6.
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A New Minimax Lower Bound for Matrices Estimation

Huibin Zhou

Minimax risk is one of the most widely used benchmarks for optimality and
substantial efforts have been made on developing minimax theories in the statistics
literature. A key step in establishing a minimax theory is the derivation of minimax
lower bounds and several effective lower bound arguments based on hypothesis
testing have been introduced in the literature. Well known techniques include Le
Cam’s method, Assouad’s Lemma and Fano’s Lemma. See Le Cam (1986) and
Tsybakov (2009) for more detailed discussions on minimax lower bound arguments.

Driven by a wide range of applications in high dimensional data analysis, esti-
mation of large covariance matrices has drawn considerable recent attention. See,
for example, Bickel and Levina (2008a, b), El Karoui (2008), Ravikumar, Wain-
wright, Raskutti and Yu (2008), Lam and Fan (2009), Cai and Zhou (2009), Cai,
Zhang and Zhou (2010), and Cai and Liu (2011). Many theoretical results, in-
cluding consistency and rates of convergence, have been obtained. However, the
optimality question remains mostly open in the context of covariance matrix esti-
mation under the spectral norm, mainly due to the technical difficulty in obtaining
good minimax lower bounds.

We develop a minimax lower bound technique that is particularly well suited for
treating “two-directional” problems such as estimating sparse covariance matrices.
The result can be viewed as a simultaneous generalization of Le Cam’s method in
one direction and Assouad’s Lemma in another. This general technical tool is of
independent interest and is useful for solving several matrix estimation problems
such as optimal estimation of sparse covariance, precision and volatility matrices.

We now introduce our new lower bound technique. Again, let X ∼ Pθ where
θ ∈ Θ. The parameter space Θ of interest has a special structure which can be
viewed as the Cartesian product of two components Γ and Λ. For a given positive
integer r and a finite set B ⊂ R

p \ {01×p}, let Γ = {0, 1}r and Λ ⊆ Br. Define

(1) Θ = Γ⊗ Λ = {θ = (γ, λ) : γ ∈ Γ and λ ∈ Λ} .
In comparison, the standard lower bound arguments work with either Γ or Λ
alone. For example, Assouad’s Lemma considers only the parameter set Γ and
the Le Cam’s method typically applies to a parameter set like Λ with r = 1. For
θ = (γ, λ) ∈ Θ, denote the projection of θ to Γ by γ(θ) = γ and to Λ by λ(θ) = λ.

It is important to understand the structure of the parameter space Θ. One can
view an element λ ∈ Λ as an r×p matrix with each row coming from the set B and
view Γ as a set of parameters along the rows indicating whether a given row of λ
is present or not. Let DΛ =Card(Λ). For a given a ∈ {0, 1} and 1 ≤ i ≤ r, denote
Θi,a = {θ ∈ Θ : γi(θ) = a} where θ = (γ, λ) and γi(θ) is the i−th coordinate of of
the first component of θ. It is easy to see that Card(Θi,a) = 2r−1DΛ. Define the
mixture distribution P̄i,a by

(2) P̄i,a =
1

2r−1DΛ

∑

θ∈Θi,a

Pθ
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So P̄i,a is the mixture distribution over all Pθ with γi(θ) fixed to be a while all
other components of θ vary over all possible values in Θ.

The following result gives a lower bound for the maximum risk over the param-
eter set Θ of estimating a functional ψ(θ) belonging to a metric space with metric
d.

For any s > 0 and any estimator T of ψ(θ) based on an observation from the
experiment {Pθ, θ ∈ Θ} where Θ is given in (1),

(3) max
Θ

2sEX|θd
s (T, ψ (θ)) ≥ α

r

2
min
1≤i≤r

∥∥P̄i,0 ∧ P̄i,1

∥∥

where P̄i,a is defined in Equation (2) and α is given by

(4) α = min
{(θ,θ′):H(γ(θ),γ(θ′))≥1}

ds(ψ(θ), ψ(θ′))

H(γ(θ), γ(θ′))
.

The idea behind this new lower bound argument is similar to the one for As-
souad’s Lemma, but in a more complicated setting. Based on an observation
X ∼ Pθ where θ = (γ, λ) ∈ Θ = Γ ⊗ Λ, we wish to test whether γi = 0 or 1 for
each 1 ≤ i ≤ r. The first factor α in the lower bound (3) is the minimum cost of
making an error per comparison. The second factor r/2 is the expected number of
errors one makes to estimate γ when Pθ and Pθ′ are indistinguishable from each
other in the case H (γ(θ), γ(θ′)) = r, and the last factor is the lower bound for
the total probability of making type I and type II errors for each comparison. A
major difference is that in this third factor the distributions P̄i,0 and P̄i,1 are both
complicated mixture distributions instead of the typically simple ones in Assouad’s
Lemma. This makes the lower bound argument more generally applicable, while
the calculation of the affinity becomes much more difficult.

In applications of the result, for a γ = (γ1, ..., γr) ∈ Γ where γi takes value 0 or
1, and a λ = (λ1, ..., λr) ∈ Λ where each λi ∈ B is a p-dimensional nonzero row
vector, the element θ = (γ, λ) ∈ Θ can be equivalently viewed as an r × p matrix

(5)




γ1 · λ1
γ2 · λ2

...
γr · λr




where the product γi · λi is taken elementwise: γi · λi = λi if γi = 1 and the ith
row of θ is the zero vector if γi = 0. The term ‖P̄i,0 ∧ P̄i,1‖ of Equation (3) is then
the lower bound for the total probability of making type I and type II errors for
testing whether or not the ith row of θ is zero.

Note that the lower bound (3) reduces to the classical Assouad’s Lemma when Λ
contains only one matrix for which every row is nonzero, and becomes a two-point
argument of Le Cam with one point against a mixture when r = 1. The technical
argument is an extension of that of Assouad’s Lemma. See Assouad (1983), Yu
(1997) and van der Vaart (1998).

The advantage of this method is to break down the lower bound calculations
for the whole matrix estimation problem into calculations for individual rows so
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that the overall analysis is simplified and more tractable. Although the tool is
introduced here for the purpose of estimating a sparse covariance matrix, it is of
independent interest and is expected to be useful for solving other matrix estima-
tion problems as well.
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Regularized Semiparametric Estimation for Ordinary Differential

Equations

Ji Zhu

(joint work with Yun Li, Naisyin Wang)

In engineering, physics and bio-medical sciences, dynamic systems are often mod-
eled through a set of ordinary differential equations (ODEs). Most ODE dynamic
systems are fully determined by the parameters and initial values. They usually
have non-linear structures and non-trivial analytic solutions. Given the parame-
ters and initial values, there exist various numerical methods to solve non-linear
ODEs, including the well known family of Runge-Kutta methods. In reality, the
parameters of an ODE system are often unknown and need to be estimated using
the observed data.

Suppose that an ODE dynamic model has the following general structure:

(1)
dX

dt
= F{X(t), θ, t}

where X(t) = {X1(t), · · · , Xm(t)}T is the state vector (also referred as ODE
curves) to describe the dynamic system, θ = (θ1, · · · , θd)T denotes the unknown
parameters to be estimated, and F (·) = {F1(·), · · · , Fm(·)}T is a known force
functional structure, which is usually highly non-linear. Instead of directly ob-
serving the true state vector X(t), we assume that we observe the surrogate Y (t)
at discrete time points

(2) Yij = Yj(tij) = Xj(tij) + εij , i = 1, . . . , nj; j = 1, . . . ,m.

In most of the current statistics literature, the parameters θ are assumed as
constants, and there are mainly two categories of methods for estimating the con-
stant θ. The first category consists of various two-stage methods: one estimates
the ODE curves X(t) and their first derivatives in stage-one by a nonparametric
smoothing fit to the data, and then, in the second stage, finds the parameter es-
timates through the classical least-square optimization with X(t) and dX(t)/dt
replaced by the nonparametric estimates obtained from the first stage. For exam-
ple, Varah (1982) estimated X(t) and dX(t)/dt using a spline smoothing technique
in stage-one. Liang and Wu (2008) extended the work of Varah (1982) by using
the local polynomial regression as the smoothing approach and they further pro-
vided statistical properties of the estimator. The use of non-parametric kernel
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estimation was proposed and studied in Brunel (2008). These approaches can be
easily implemented and can perform very well with moderate to large data sets
with densely observed data points. However, if the level of observation noise is rel-
atively high and/or the sample size is relatively small, the two-stage method may
not be able to obtain sufficiently precise estimates of dX(t)/dt in the first stage
and consequently the estimation of parameters in the second stage also suffers.

The second category of methods are built on profile estimation. The approach
was introduced by Ramsay et al. (2007), and it has been referred to as the parame-
ter cascade method. Instead of estimating the ODE curves directly from the data,
one first constructs the ODE curves as functions of the parameters in the inner
step. These estimated functions are then included into the outer step which mini-
mizes a loss function between the observed data and the esimated ODE curves. In
Ramsay et al. (2007) and the follow-up papers, a penalty term is included in the
inner step with the intention of balancing the goodness of fit between the observed
data and the estimated ODE curves and the faithfulness of the estimated ODE
curves towards the assumed system.

Recently, a variation of the parameter cascade method was investigated in Li
et al. (2011). Their theoretical and numerical findings all suggest that, for the
variance reduction purpose, one should remove the additional penalty term in
the inner step. It turns out that the resulting simplified estimator is the most
efficient one for the larger family of estimators considered by Ramsay et al. (2007).
Furthermore, by considering the ODE initial values as part of the parameters
to be estimated and reconstructing the optimization criterion in the inner step,
the simplified parameter cascade method achieves smaller estimation standard
errors and the results are much less affected by tuning parameters within the
nonparametric estimation in the inner step, such as the choice of B-spline knots.

We note that the above methods all assume the parameters θ as constants. In
reality, however, the parameters θ may not always remain constants as the system
evolves with time. For example, Chen and Wu (2008) noticed that the ODE
parameters in the HIV/AIDS dynamics could vary with time and they applied a
two-stage method to estimate the time-varying ODE parameters. In this paper,
we consider a different modeling approach that allows the ODE parameters to
vary with time, but at the same time retains the interpretation advantage of a
parametric ODE system. Taking the Lotka-Volterra dynamic model as an example,
which is widely used to study the population evolution of predator and prey in
ecological sciences. When the two components of the Lotka-Volterra model are
dynamically balanced with each other, the parameters of the model are constants.
However, when certain unpredictable human factors or unusual natural phenomena
strike, such as earthquake, forest fire or environmentally unsound logging practice,
the balance of the system may be broken and the ODE parameter values will
change. If the perturbation does not last long, after a certain time period, another
balanced system may be re-established and the parameters would again become
constants, usually at different values from before. Note that in this situation,
the estimation methods by treating ODE parameters as constants will not be
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suitable, while assuming time varying parameters through out the whole time
domain will result in loosing the understandings of the system provided by the
constant parameters.

With this setup in mind, we wish to achieve a comprise between the two. Specifi-
cally, we propose a semi-parametric method that encourages the ODE parameters
to stay as constants (for interpretability) and at the same time also allows the
ODE parameters to vary with time when needed (for flexibility). The proposed
method extends the framework of Li et al. (2011); the new contribution comes
from a penalty term that we propose to add in the outer step of the parameter
cascade method. We also show that, under certain regularity conditions, the dif-
ference between the estimated ODE curves by the proposed method and the truth
is bounded at a certain rate as the sample size grows.
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Sparse Precision Matrix Estimation via Positive Definite Constrained

Minimization of ℓ1 Penalized D-Trace Loss Penalized D-Trace Loss

Hui Zou

(joint work with Teng Zhang)

We introduce a new collection of convex loss functions for estimating preci-
sion matrices, including the likelihood function of Gaussian graphical model as a
special case. Another interesting special case gives rise to a simple loss function
called the D-Trace loss which is expressed as the difference of two trace opera-
tors. We then introduce a new sparse precision matrix estimator defined as the
minimizer of the ℓ1 penalized D-Trace loss under a positive definite constraint.
We develop a very efficient algorithm based on alternating direction methods for
computing the positive definite constrainedℓ1 penalized D-Trace loss estimator.
Under a new irrepresentable condition our estimator has the sparse recovery prop-
erty. Our irrepresentable condition is different from the irrepresentable condition
for the ℓ1 penalized MLE. An example is given to show that our irrepresentable
condition can hold while the irrepresentable condition for the ℓ1 penalized MLE
fails. We establish rates of convergence of our estimator under the element-wise
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maximum norm, Frobenius norm and operator norm for distributions with sub-
Gaussian and polynomial tails. Simulated and real data are used to demonstrate
the computational efficiency of our algorithm and the finite sample performance
of our estimator. It is shown that our estimator compares favorably with the ℓ1
penalized MLE.

Reporter: Axel Munk
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