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Abstract. The rapid advances of modern fabrications technologies require a
thorough understanding of physical and mechanical properties of materials as
influenced by their atomic composition, processing history and structure at
the micro- and nanometer length scales. Carbon nanotubes, nanometer sized
crystals, thin films and coatings, MEMS, smart materials and bio-inspired
multifunctional materials are current examples employing technologies and
processes that heavily depend on material properties at very small length
scales. Today’s leading materials for a range of applications are hierarchical,
having characteristics of structure at multiple length scales to satisfy a com-
plex set of performance requirements and constraints. Composite materials
and advanced alloy systems for transportation and infrastructure increasingly
must rely on theoretical understanding at each of a range of length scales from
the atomic scale upward to improve existing materials and to develop new
materials to meet critical societal needs.
Modern day efforts in mechanics of materials exploit recent advances in me-
chanics of materials that draws upon concurrent use of solid state physics,
mathematics and information technology, continuum and discrete (statisti-
cal) mechanics and materials chemistry. Advanced materials derive their
outstanding properties, durability and multifunctionality from heterogene-
ity of their underlying microstructure. There is a richness of outstanding
problem sets at the intersection of theoretical and applied mathematics and
materials mechanics. This state of affairs motivates the central goals of this
workshop, namely to explore new and emerging mathematical approaches
to multiscale modelling of evolving microstructures and to identify new and
emerging mathematical approaches to interfaces in materials.
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Introduction by the Organisers

The workshop Mechanics of Materials attracted over 50 participants with broad
geographic representation from Europe and the United States. This workshop was
a well balanced blend of researchers with backgrounds in mathematics, mechanics
and materials science. The organizers successfully recruited a significant number
of younger representatives of the mentioned research communities.
The field of predictive modeling and simulation of the nonlinear behavior of micro-
structure-property/response relations of materials is taking on increasing global
importance the desire for computer-assisted design of new and improved materials
continues to build momentum. This workshop was convened to explore the status
of foundational mathematical methods and approaches that support this important
emerging multidiscipline. Materials are challenging to model, having both short
and long range order, as well as fading memory of prior deformation and damage
history. Accordingly, the mathematics of materials modeling is at the frontier of
knowledge and applications.
The Oberwolfach Mechanics of Materials series has evolved to reflect cutting-edge
trends in applied mechanics and mathematics of evolving microstructures and
microstructure-property relations for a broad range of materials, including metals,
polymers, composites, and ceramics. Based on experience gained in organizing
preceding workshops on mechanics of materials, the following main topics were
targeted in this workshop:

(1) New and extended variational principles for modelling multiscaled ma-
terial systems with multiphysics phenomena of interest (composite and
polycrystal plasticity; biological material systems).

(2) Quantitative mathematical representation of microstructures and methods
for inverse analysis (i.e., localization) to simulate distributed responses of
interest at the scale of microstructure.

(3) Physical interpretation and mathematical framing of boundary conditions
for material interfaces such as phase and grain boundaries in field theories
for line defects (dislocations), point and/or surface defects in materials,
including the treatment of interfaces with constitutive equations and as-
sociated initial/boundary conditions.

(4) Mathematical methods for bridging discrete atomistic and continuummod-
elling methods in the vicinity of interfaces.

Topics in variational methods and associated field theories in mechanics of mate-
rials were clustered as follows:

• Variational methods (including multiscale approaches)
• Heterogeneity field mechanics
• Multiscale modeling
• Multiphysics modeling
• Atomistics and first principles modeling
• Inelasticity and evolving microstructure
• Phase transformations and moving interfaces
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The basic philosophy underlying workshop presentations and discussions was to
explore the frontiers of problem formulations and underlying mathematics. To en-
hance cross-cutting collaborative discussion, sessions addressing the above clusters
were organized by participants during the opening session on Monday morning.
Keynote presentations were identified along with contributed talks, and themes
for discussion were outlined. This unique style of organization afforded more time
for open discussion than in our prior Mechanics of Materials Workshops organized
that were based on a more conventional lecture style format, and facilitated pair-
ing of interested participants to formulate common topics flowing from workshop
interactions. The closing session on Friday afternoon summarized the results of
the weeklong discussions, as highlighted in the following.

Clusters 1 & 2: Variational Methods & Heterogeneity Field Mechanics

The recommendations of these two clusters were combined in view of considerable
overlap. Two of the potentially most fruitful areas to focus at the intersection
with mathematics include:

• Methods for passing relevant information related to dislocation fields up
to a continuum scale description (e.g., back stress in continuum crystal
plasticity models derived from discrete dislocation models)

• Framing descriptions at different scales within a variational framework
(applications include, for example, dislocation field theory and homoge-
nization involving generalized continua descriptions).

Several presentations evoked discussion related to Gamma-convergence:

• Application of Gamma-convergence and asymptotic homogenization for
the upscaling to achieve consistent coupling of models/descriptions at dif-
ferent scales.

• Extension of Gamma-convergence to rate-dependent problems and dissi-
pation.

It was concluded that interactions with experiments are necessary to formulate
improved and more realistic models of interfaces, including interaction of disloca-
tions with grain and phase boundaries in metallic systems. We are not yet in a
position to lead experimental observation with theory, but can benefit by taking
advantage of new characterization methods to gain more insight into the evolu-
tion of dislocation structures from complex strain path experiments. Emerging
areas of considerable interest include extension of mean field dislocation theory
to mesoscopic methods to facilitate enhanced overlap in the submicron regime,
as well as to multiple phases (e.g., precipitates) and interfaces, and extension to
multi-component material systems.

Cluster 3: Multiscale Modeling

The major theme of this cluster was the upscaling and downscaling (i.e., scale
bridging) within a series of models framed with different degrees of freedom at
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various length and time scales. Another stream of presentations considered tran-
sitions between two adjacent scales in continuum micromechanics.
One common point of agreement from workshop participants was that connections
between atomistic and continuum models, one important type of discrete to con-
tinuous field theory scale transition, are lacking and require considerable attention
in order to address the needs of materials design. In addition, several directions
were identified for future work to enable mathematical foundtions for multiscale
modeling:

• Development of integrated multiscale methods (as opposed to information
passing between disparate models).

• Problem-specific mathematical tools based on physical insight.
• Rigorous tools for assessing invertibility of structure-property relations in
very large-dimensional spaces (e.g., large degree of freedom microstructure
representations).

• Fast solvers for sparse matrices to support FE2-type methods.
• Efficient finite element formulations.
• Statistical methods to assess RVE size and convergence for dynamic pro-
cesses involving microstructure evolution.

• Interconnections between complex behavior and complex microstructure
topology.

Cluster 4: Multiphysics Modeling

The major theme addressed by this cluster was that of problems involving multiple
physical processes and traditionally distinct governing field equations that are
inherently coupled and must be considered simultaneously. It is a rich subject
area in great need of efficient and robust numerical schemes, for example.
A number of issues were identified that require further clarification at the inter-
section of mathematics and mechanics of materials:

• Coupling transfer of energy between disparate systems based on degree of
disparity and the type of approximations to be made.

• Probabilistic versus deterministic approaches.
• Experimental methods to distinguish energy dissipation versus storage
during nonequilibrium deformation processes such as plastic deformation.

• Determination of heat capacity, especially considering the role of consti-
tutive equations.

• Developing frameworks for verification and validation.
• Effects of microstructure on multiphysics phenomena such as electrochemi-
cally-induced phase transformation.

• Computing rates of chemical reactions.
• Consideration of defect clustering and its influence on coupled diffusion-
inelastic deformation problems.

• Predictive modeling of fracture, fatigue, and creep phenomena.
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• Multidomain integration for phenomena that are of disparate spatial and
temporal order.

Cluster 5: Atomistic and First Principles Modeling

This cluster focused primarily on methods for multiple time scaling information
obtained from atomistic modeling, including various methods related to transition
state theory. In addition, some attention was devoted to passing information
among scales in a consistent manner that minimizes additional assumptions or
needs for parameter estimation.
A dominant perspective of this session was the exploitation of atomistics via con-
tinuum mechanicians as a tool to augment experiments in constructing consti-
tutive models and estimating parameters. Potential opportunities exist in terms
of providing input for higher scale models, judiciously guiding experiments, and
predicting mechanisms. On the other hand, there are many challenges, including
uncertainty quantification, verification and validation on more relevant problems,
the complexity of the relevant configuration spaces, spatial and temporal scaling,
the need for accurate yet efficient interatomic force computations, and strategies
for effective use of these tools and methods.

Cluster 6: Inelasticity and Evolving Microstructure

The irreversible rearrangement of microstructure under various applied stimuli is
one of the most challenging problem classes in mechanics of materials. Presenta-
tions in this cluster highlighted some of the issues with underlying mathematics
of various problems.
Open Problems include:

• Definition of representative volume size in the context of numerical ho-
mogenization schemes.

• Existence of solutions for nonlinear material behavior.
• Micromechanically-based definition of state variables and derivation of cor-
responding balance/evolution equations, e.g. in the context of dislocation
dynamics theory.

Cluster 7: Phase transformations and moving interfaces

This session explored the formation and migration of boundaries during plastic
deformation. Experiments reveal these phenomena at both sub-micron and mi-
cron scales. In an analogous way to magnetic and fluid phase transformations,
mathematical modeling using statistical physics was discussed starting from the
crystalline level to obtain the Gibbs free energy of representative volume elements.
In this way, all basic thermodynamic properties can be calculated. Equilibrium
and kinetics of interfaces can be modeled within the framework of the construc-
tion of energy minimizers and based on the theory of configurational forces. A
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variety of microstructures can be realized as a function of the strain state. Energy
minimization is employed once again in order to study the influence of interface
energies on the formation of microstructures. A mesoscopic model is presented
which facilitates modeling of the competition of surface/interface energy and bulk
energy associated with phase topology, giving rise to interesting scaling laws. The
partial differential equations of a phase field model can be solved using the finite
element method, with spatial and temporal discretization based on goal-oriented
error estimates.
Three major areas of open problems were identified:

• Migration of interfaces such as phase and grain boundaries within solids.
Here we see a strong connection to the field of dislocation modeling. While
driving forces are to some extent understood from energetics, the resistance
or rate-controlling phenomena are very difficult to assess experimentally
as well as theoretically using atomistics or first principles.

• Modeling of microstructures, with specific reference to multiscale mod-
eling. There is a strong need to derive mesosopic models from those at
smaller scales in a consistent manner.

• Nucleation of microstructures. Here the different levels of heterogeneities
of the material will play an important role, and interface energies will have
a strong influence.

A number of areas can benefit from cooperation with mathematicians. For ex-
ample, gamma-convergence and upscaling of models, local and global stability
problems associated with the formation of microstructure, statistical and stochas-
tic aspects, as well as stability, convergence and efficiency of numerical methods.

As always, the unique atmosphere of the Institute offered an extraordinary retreat
from the daily pressures of communications and travel that enabled fruitful and
productive collaborations to be initiated. We found the model for self-organization
of sessions around major themes to be a useful construct, and intend to pursue
this in future workshops with additional advance planning to further enrich the
discussion and informal collaborations.
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Abstracts

Theoretical aspects of a continuum dislocation microplasticity theory

and numerical examples

Thomas Böhlke

(joint work with Stephan Wulfinghoff, Eric Bayerschen)

Modern continuum approaches for microplasticity applications try to fill the
gap between size-independent, phenomenological plasticity models for macroscopic
simulations and microplasticity models based on discrete objects like ab-initio
methods or discrete dislocation dynamics. The formulation of phenomenological
nonlocal hardening models based on plastic strain gradient measures like Nye’s dis-
location density tensor [4] is the most popular approach for continuum mechanical
microplasticity theories and allows to reproduce many of the experimentally ob-
served size-effects at least qualitatively. Additionally, several dislocation density-
based theories have emerged that account explicitly for dislocation transport and
production. The kinematical theory of Hochrainer et al. [1], numerically imple-
mented by Sandfeld et al. [2], averages the collective motion of three-dimensional
discrete, connected and curved dislocation lines.

Figure 1. Higher-dimensional and simplified continuum disloca-
tion dynamics theory

The theory can be considered as a generalization of Nye’s work. Besides Ge-
ometrically Necessary Dislocations it contains detailed information on the dis-
location microstructe, e.g. the total line length per unit volume and the average
dislocation curvature. As the theory is numerically expensive in three-dimensional
multislip applications, a simplified version (see e.g. Sandfeld et al. [3]) of the kine-
matical continuum mechanical dislocation-density framework is considered in the
presentation based on two evolution equations for the dislocation density ρt and
the average dislocation curvature k̄ (see Figure 1). The dislocation velocity ν
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couples the dislocation field problem to the elasto-visco-plastic crystal plasticity
framework via Orowan’s equation γ̇ = ρtbν, where γ is the plastic slip. The kinetic
coupling based on hardening approaches like the Taylor-relation τY ∼ √

ρt as well
as boundary conditions are also discussed. Three-dimensional model problems are
discussed in detail in order to highlight the advantages of the dislocation based
approach.
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Particle shape effects on global and local behavior of particle

reinforced composites

Helmut J. Böhm

(joint work with Azra Rasool)

Continuum models of the mechanical and conduction behavior of particle re-
inforced composites have typically assumed inhomogeneities to be spherical. The
present contribution uses FE-based periodic homogenization for studying aspects
of the influence of particle shape on the large-grained and small-grained, ther-
momechanical and thermal conduction behavior of two-phase particle reinforced
composites containing convex, polyhedral, equi-axed inhomogeneities.

The modeling strategy is based on using a number of relatively small synthetic
volume elements, each containing some 20 uniformly sized, randomly positioned
and, where applicable, randomly oriented spherical, octahedral, cube-shaped or
tetrahedral inhomogeneities. Appropriate periodic phase arrangements were gen-
erated by a modified random sequential addition algorithm. Five statistically
equivalent volume elements were set up per particle shape, all results pertaining
to a given shape being ensemble averages. Generic, isotropic material properties
were prescribed to the constituents for evaluating the effective responses, interfaces
between particles and matrix being assumed to be perfect. Six linearly indepen-
dent elastic load cases, one thermoelastic load case and three linearly independent
conduction cases were evaluated for obtaining the homogenized elastic, thermal
expansion and thermal conduction tensors, respectively. The effective elastic ten-
sors, which show some anisotropy after ensemble averaging, were “isotropized” by
extracting the closest isotropic tensors [1]. Phase averages and standard deviations
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of the microfields at the phase and particle levels were evaluated by approximate
numerical integration, the volume integrals being replaced by sums of integration
point data weighted by the integration point volumes.

All results on the homogenized thermoelastic and conduction behavior fulfill
the pertinent two-point and, where available, three-point bounds, the standard
deviations of the moduli being some two orders of magnitude smaller than the
corresponding ensemble averages. Moderate, but consistent particle shape effects
are predicted, with spheres giving rise to the lowest and tetrahedra to the highest
effective moduli. In the linear range the phase averages show moderate particle
shape effects, and the phase-level standard deviations of the local stress fields in the
matrix are nearly independent of the particle shapes. However, the distributions
of stresses or fluxes within the polygonal inhomogeneities are much wider than
the ones pertaining to spherical particles, the effect again being most pronounced
for the tetrahedra. Similarly, the intra-particle fluctuations of the stress and flux
components are predicted to be markedly higher for polyhedral than for spherical
inhomogeneities. Details and further results are given in [2]. A generally anal-
ogous ordering of shape effects was also obtained for the elastoplastic responses
under tensile uniaxial loading [3], where particle shape effects on residual strains
after unloading may be pronounced.

A number of issues can be identified that require further work. Whereas the
present model geometries appear to be adequate for studying the homogenized
behavior, this is not as clear for the fine-grained responses. Accordingly, approx-
imate (physical) representative volume elements (RVEs) obtained on the basis of
homogenization may differ from RVEs pertinent to local responses. Second, there
appear to be practically no results in the literature on conditions for and the orders
of singular behavior at the vertices and edges of polyhedral inclusions embedded
in a matrix. Finally, the influence of the actual shapes of vertices and edges on
the local behavior of the composites may warrant further study.
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Aspects of differential geometry and tensor calculus in anholonomic

configuration space

John D. Clayton

In the context of finite deformation mechanics, a tangent mapping is anholonomic
over some domain when it is not a gradient of a motion; conversely, a deformation
gradient is holonomic when it is integrable to a motion field everywhere in that
domain. This brief report addresses covariant differentiation for four possible
choices of basis vectors in anholonomic space. As an example from continuum
physics, the theory is applied towards description of divergence of the heat flux.
An extensive treatment of anholonomic mathematics can be found in a recent
article [1]; however, this report includes material not found in [1], and vice-versa.

As suggested by Schouten [2], consideration of differential geometry of anholo-
nomic spaces dates back to at least 1926 [3]. Many important identities are derived
in [2, 4]. Various coordinate systems and associated metric tensors in anholonomic
space are considered in [5], with particular focus on convected basis and Cartesian
representations. Correspondences among mathematical objects from differential
geometry and their continuum physical counterparts in defect field theory of crys-
tals are described at length in a more recent monograph [6].

The present description is limited to the time-independent case, such that spa-
tial coordinates xa are related to reference coordinates XA by one-to-one and at
least twice-differentiable mappings xa(X) and XA(x), with X a material particle
and x its spatial representation. Let the usual holonomic deformation gradient
F (X) be decomposed multiplicatively as

(1) F = F̄ F̃ , F a
�A = F̄ a

�αF̃
α
�A;

(2) F = ∂Ax
aga ⊗GA, F̄ = F̄ a

�αga ⊗ g̃α, F̃ = F̃α
�Ag̃α ⊗GA.

Denoting ∂A = ∂/∂XA and ∂a = ∂/∂xa, partial differentiation proceeds as

(3) ∂α(·) def
= F̄ a

�α∂a(·) = F̃−1A
�α∂A(·), ∂A(·) = ∂Ax

a∂a(·) = F a
�A∂a(·).

Attention is restricted to a simply connected domain in reference and current
configurations such that {XA} and {xa} are global coordinate charts. Let indices

in brackets be skew, e.g., A[AB]
def
= 1

2 (AAB−ABA). SinceX
A and xa are holonomic

coordinates,

(4) ∂[A∂B](·) = 0, ∂[a∂b](·) = 0; ∂[AF
a
�B] = 0, ∂[aF

−1A
�b] = 0.

Similar identities do not always hold for ∂α(·) since F̄−1
and F̃ are not necessarily

integrable functions of xa or XA. Anholonomic object κκκ obeys [1, 2]

(5) κ��αβχ
def
= −F̄−1α

�a∂[βF̄
a
�χ] = −F̃α

�A∂[βF̃
−1A

�χ] = −κ��αχβ ;

(6) ∂[α∂β](·) = −κ��χαβ∂χ(·).
Holonomic charts {x̃α(X)} [or {x̃α(x)}] exist in a one-to-one fashion with X or x
if and only if κ��αβχ = 0 throughout a simply connected domain.
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Let A be a generic differentiable tensor field. Covariant differentiation in an-
holonomic space is defined as

(7) ∇νA
α...φ
γ...µ

def
= ∂νA

α...φ
γ...µ+Γ��α

νρA
ρ...φ
γ...µ+· · ·+Γ��φ

νρA
α...ρ
γ...µ−Γ��ρ

νγA
α...φ
ρ...µ−· · ·−Γ��ρ

νµA
α...φ
γ...ρ .

Connection coefficients can be expressed in general form as [2]

(8) Γ��α
βχ = 1

2 g̃
αδ(∂{β g̃δχ} − 2T{βδχ} + 2κ{βδχ} +M{βδχ}),

where g̃αχg̃χβ = δαβ and the following definitions apply:

(9) (·){αβχ} def
= (·)αβχ − (·)βχα + (·)χαβ , (·)βχδ def

= (·)��αβχg̃δα;

(10) g̃αβ
def
= g̃α · g̃β , T ��α

βχ
def
= Γ��α

[βχ] + κ��αβχ, Mαβχ
def
= −∇αg̃βχ.

In this report attention is restricted to metric connections so that Mαβχ = 0 and

(11) ∂αg̃β = Γ��χ
αβ g̃χ, ∂αg̃

β = −Γ��β
αχg̃

χ;

(12) ∂α ln
√
g̃ = Γ��β

αβ, ∇αǫβχδ = ∂αǫβχδ − Γ��φ
αφǫβχδ = 0;

(13) g̃
def
= det(g̃αβ), ǫαβχ

def
=
√
g̃eαβχ, ǫαβχ

def
= (1/

√
g̃)eαβχ.

The covariant derivative of a generic differentiable vector field V = V αg̃α is then

(14) ∇V = ∂βV ⊗ g̃β = (∂βV
α + Γ��α

βχV
χ)g̃α ⊗ g̃β .

Total covariant derivatives of two-point tangent mappings F̃ and F̄
−1

are [1, 6]

(15) F̃α
�A:B

def
= ∂BF̃

α
�A + Γ��α

βχF̃
β
�BF̃

χ
�A − Γ��C

BAF̃
α
�C = F̃α

�A:βF̃
β
�B ;

(16) F̄−1α
�a:b

def
= ∂bF̄

−1α
�a + Γ��α

βχF̄
−1β

�b F̄
−1χ

�a − Γ��c
ba F̄

−1α
�c = F̄−1α

�a:βF̄
−1β

�b .

Metrics and Levi-Civita connections in reference and current configurations are

(17) GAB
def
= GA ·GB = ∂AX · ∂BX , Γ��A

BC
def
= 1

2G
AD∂{BGDC};

(18) gab
def
= ga · g b = ∂ax · ∂bx , Γ��a

bc
def
= 1

2g
ad∂{bgdc}.

Letting g = det(gab) and G = det(GAB), Jacobian determinants are [5, 6]

(19) J =
√
g/Gdet(∂Ax

a) = J̄ J̃ , J̄ =
√
g/g̃ det(F̄ a

�α), J̃ =
√
g̃/Gdet(F̃α

�A).

Piola’s identities for possibly anholonomic Jacobian determinants are then [1, 4, 6]

(20) (J̃ F̃−1A
�α):A = ǫαβχǫ

ABCF̃ β
�AF̃

χ
�[B:C], (J̄−1F̄ a

�α):a = ǫαβχǫ
abcF̄−1β

�aF̄
−1χ

�[b:c].

Let q̄ = q̄αg̃α denote the heat flux vector referred to anholonomic space, let kαβ

denote a covariant constant positive semi-definite tensor of thermal conductivity
with the particular form dictated by the material symmetry group, and let θ denote
temperature. Nanson’s formula and energy invariance among configurations lead
to relationships among q̄ , spatial flux q , and reference flux Q :

(21) q̄α = J̄ F̄−1α
�aq

a = J̃−1F̃α
�AQ

A = −kαβ∂βθ.



900 Oberwolfach Report 15/2012

Heat transfer per unit anholonomic volume is the divergence [6, 7]

∇̄αq̄
α def
= ∇αq̄

α + q̄αJ̄(J̄−1F̄ a
�α):a = ∇αq̄

α + q̄αJ̃−1(J̃ F̃−1A
�α):A

= J̃−1∇AQ
A = J̄∇aq

a.
(22)

Four choices of basis {g̃α} are considered. In the first case, the anholonomic
object is assumed to vanish such that Euclidean position vector x̃ (X) exists:

(23) g̃α = ∂αx̃ , Γ��α
βχ = 1

2 g̃
αδ∂{β g̃δχ}, (J̃ F̃−1A

�α):A = 0, (J̄−1F̄ a
�α):a = 0;

(24) ∇̄αq̄
α = ∂αq̄

α + q̄α∂α ln
√
g̃ = −kαβ(∂α∂βθ − Γ��χ

αβ∂χθ).

In the second case, Cartesian intermediate bases {eα} are assigned, but tangent
maps need not be integrable:

(25) g̃α
def
= eα, g̃αβ = δαβ , Γ��α

βχ = 0, ∇α(·) = ∂α(·);

(26) ∇̄αq̄
α = ∂αq̄

α + q̄αJ̄∂a(J̄
−1F̄ a

�α) = −kαβ [∂α∂βθ + J̄∂a(J̄
−1F̄ a

�α)∂βθ].

In the third case, {g̃α} are chosen coincident with reference basis vectors {GA};
object κ��αβχ, torsion T

��α
βχ , and curvature from Γ��α

βχ all may be nonzero [1]; and

(27) g̃α
def
= δAαGA, Γ��α

βχ = F̃−1B
�β δ

α
Aδ

C
χ Γ

��A
BC , ∇αV

β = F̃−1A
�α∇AV

BδβB;

(28) ∇̄αq̄
α = −kαβ[∂α∂βθ − F̃−1A

�αδ
B
β δ

χ
CΓ

��C
AB∂χθ + J̃−1(J̃ F̃−1A

�α):A∂βθ].

In the fourth case, {g̃α} are chosen coincident with spatial basis vectors {ga};
object κ��αβχ, torsion T

��α
βχ , and curvature from Γ��α

βχ all may be nonzero [1]; and

(29) g̃α
def
= δaαga, Γ��α

βχ = F̄ b
�βδ

α
a δ

c
χΓ

��a
bc , ∇αV

β = F̄ a
�α∇aV

bδβb ;

(30) ∇̄αq̄
α = −kαβ[∂α∂βθ − F̄ a

�αδ
b
βδ

χ
c Γ

��c
ab∂χθ + J̄(J̄−1F̄ a

�α):a∂βθ].

The second case (Cartesian) is most common and presumably most practical for
materials of arbitrary anisotropy; the third or fourth cases may prove useful for
structures with curved shapes and hexagonal or isotropic symmetry.

References

[1] J.D. Clayton, On anholonomic deformation, geometry, and differentiation, Mathematics
and Mechanics of Solids (2012), in press, DOI:10.1177/1081286511429887.

[2] J.A. Schouten, Ricci Calculus, Springer-Verlag, Berlin (1954).
[3] G. Vranceanu, Sur les espaces non holonomes, C R Academie Sciences 183 (1926), 852–854.

[4] W. Noll, Materially uniform simple bodies with inhomogeneities, Archive for Rational Me-
chanics and Analysis 27 (1967), 1–32.

[5] J.D. Clayton, D.J. Bammann, D.L. McDowell, Anholonomic configuration spaces and metric
tensors in finite strain elastoplasticity, International Journal of Non-Linear Mechanics 39

(2004), 1039–1049.
[6] J.D. Clayton, Nonlinear Mechanics of Crystals, Springer, Dordrecht (2011).
[7] J.D. Clayton, A continuum description of nonlinear elasticity, slip and twinning, with ap-

plication to sapphire, Proceedings of the Royal Society of London A 465 (2009), 307–334.



Mechanics of Materials 901

Simplified Methods for rate dependent processes based on a

thermodynamic variational principle

Alan C. F. Cocks

A wide range of rate dependent processes can be analysed using the variational
functional

(1) Π = Ψ+ Ġ ,

where Ψ is a global rate potential and Ġ is the rate of change of Gibbs free en-
ergy. Each of these quantities can be expressed in terms of suitable rate degrees
of freedom that describe the evolution of the state of a body. The appropriate
combination of these rates is that which minimises the functional. This condition
follows directly from the requirement that is convex. This framework can be used
to develop detailed numerical models in terms of many degrees of freedom. It can
also provide a framework for the development of simpler models in terms of a small
number of degrees of freedom. This latter approach is ideally suited to the devel-
opment of multiscale models. It allows simplification to be made at one scale which
are thermodynamically and kinetically consistent and which naturally filter infor-
mation to provide that which is most important for the development of models at
a higher scale. This methodology has been applied to an extensive range of prob-
lems in which a wide range of different kinetic processes contribute to the material
and/or component response, including surface/interface/boundary/bulk diffusion,
interface reactions, attachment/detachment and evaporation/condensation pro-
cesses, and linear and non-linear viscous processes. These are all captured through
suitable functional forms for the rate potential. Similarly, the approach can ac-
commodate thermodynamic driving forces arising from mechanical, electrical or
chemical effects, through identification of the major contributions to Ġ.

Models of the sintering of particulate systems and of sintering and mud-cracking
in thermal barrier coatings have been developed by assuming simple geometric
profiles of necks between contacting particles and asperities. Similarly, models for
the growth of cavities and cracks in creeping solids and the growth of quantum
dots have been developed by assuming simple shapes of the voids, cracks or dots,
which have either been guided by detailed numerical simulations or experimen-
tal observations. The choice of simple representative profiles allows the state to
be represented by a limited number of internal variables. Use of the variational
principle then provides constitutive relationships for the material behaviour and
evolution laws for the internal state variables, which can be represented in terms
of convex potentials.

The variational principle has also allowed detailed and simplified models of dis-
location climb to be developed. At elevated temperatures edge dislocations can
move normal to their slip plane by either emitting or absorbing vacancies. When
combined with a continuity equation which relates the diffusive flux into the core
to the rate of climb, the variational functional provides: the chemical potential
for vacancy diffusion, in terms of the local vacancy concentration and stress state;
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the Peach-Kohler and drag forces for dislocation climb; the governing diffusion
equation, which is a function of local state; and boundary conditions. These equa-
tions can be solved using conventional finite element techniques, but fine meshes
are required adjacent to the dislocation cores to fully capture the details of the
local diffusion process. This severely limits the scale of problem that can be anal-
ysed. Detailed simulations of small groups of dislocations reveal that limited climb
(less than the length of the Burgers vector) occurs as the vacancy concentration
field moves towards a steady state. This observation allows terms which relate
to changes of the local concentration of vacancies to be simply removed from the
variational functional. The variational functional can be simplified further by as-
suming a uniform effective diffusivity throughout the body, with the magnitude of
this diffusivity and the effective size of the dislocation cores determined by calibra-
tion against a wide range of simulations using the set of equations generated from
the full variational principle. These observations and simplifications allow the dif-
fusional interaction of the dislocations to be modelled as a classical multi-source
potential problem. This potential problem can be cast within the framework of
the variational principle, where now the only degrees of freedom are the climb ve-
locities of the dislocations. This reduced model, when combined with conventional
models of dislocation climb, allows large arrays of dislocations to be analysed and
avoids the need to solve a computationally expensive background field problem for
the diffusional interaction of the dislocations.

Generalized continuum crystal plasticity

Samuel Forest

The micromorphic medium, as invented by Eringen and Mindlin, represents
one of the most general continuum theories. The links between the micromorphic
continuum and the plasticity of crystalline materials has been recognized very
early by Eringen himself. Lattice directions in a single crystal can be regarded as
directors that rotate and deform as they do in a micromorphic continuum. The
fact that lattice directions can be rotated and stretched in a different way than
material lines connecting individual atoms, especially in the presence of static or
moving dislocations, illustrates the independence between directors and material
lines in a micromorphic continuum, even though their deformations can be related
at the constitutive level.

The identification of a micromorphic continuum from the discrete atomic single
crystal model is possible based on proper averaging relations. Analytical solutions
have been provided that give the generalized stress fields around individual screw
or edge dislocations embedded in an elastic generalized continuum medium, like
the micromorphic medium. The physical meaning of such a calculation is the
account of non–local elasticity at the core of dislocations that may suppress or
limit the singularity of the stress fields. For instance, non singular force and couple
stress were determined for a screw dislocation embedded in a gradient micropolar
medium that combines the first strain gradient with independent rotational degrees
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of freedom. The unphysical singularities at the core of straight screw and edge
dislocations are also removed when the second gradient of strain is introduced in
the theory, while the first strain gradient is not sufficient.

The next step is to consider the collective behaviour of dislocations in a single
crystal by means of the continuum theory of dislocations. The material volume
element is now assumed to contain a large enough number of dislocations for
the continuum theory of dislocation to be applicable. Non–homogeneous plastic
deformations induce material and lattice incompatibilities that are resolved by a
suitable distribution of the dislocation density tensor field which is a second rank
statistical mean for a population of arbitrary dislocations inside a material volume
element [10]. Nye’s fundamental relation linearly connects the dislocation density
tensor to the lattice curvature field of the crystal. This fact has prompted many
authors to treat a continuously dislocated crystal as a Cosserat continuum. The
Cosserat approach records only the lattice curvature of the crystal but neglects
the effect of the rotational part of the elastic strain tensor, which is a part of
the total dislocation density tensor [5]. Full account of plastic incompatibilities
is taken in strain gradient plasticity theories, starting from the original work by
Aifantis up to recent progress in [9]. Formulation of crystal plasticity within
the micromorphic framework is more recent and was suggested in [3] for a large
spectrum of crystal defects, including point defects and disclinations. Limiting the
discussion to dislocation density tensor effects, also called geometrically necessary
dislocation (GND) effects, it was shown in [5], within a small deformation setting,
how the micromorphic model can be used to predict grain and precipitate size
effects in laminate crystalline materials. In particular, the micromorphic model
is shown to deliver more general scaling laws than conventional strain gradient
plasticity. These models represent extensions of the conventional crystal plasticity
theory that accounts for single crystal hardening and lattice rotation but does not
incorporate the effect of the dislocation density tensor.

The objective of the present work is, first, to formulate a finite deformation mi-
cromorphic extension of conventional crystal plasticity to account for GND effects
in single crystals, and, second, to show that the micromorphic approach can also
be used to predict grain size effects in polycrystals. The first part represents an
extension to finite deformation of the model proposed in [1, 5]. It also provides
new analytical predictions of size effects on the yield stength and kinematic hard-
ening of laminate microstructures made of an elastic layer and an elastic–plastic
single crystal layer undergoing single slip [7, 8]. The theory is called the microcurl

model because the evaluation of the curl of the microdeformation, instead of its
full gradient, is sufficient to account for the effect of the dislocation density tensor.
The second part is dedicated to finite element simulations showing the continuum
description of pile–up formation around hard particles in metal single crystal ma-
trix [2] and on the effect of grain size on the overall mechanical response and the
development of intragranular plastic strain fields of polycrystals [4].
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The models proposed in this work for single crystals fall in the class of anisotropic
elastoviscoplastic micromorphic media for which constitutive frameworks at finite
deformations have been proposed [6].
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The missing flow rule?

Gilles A. Francfort

(joint work with Alessandro Giacomini)

In this very short talk we revisit our Oberwolfach talk of December 2011 during
the Workshop entitled: “Variational Methods for Evolution ”.

We assume perfect small strain elasto-plastic evolution in the absence of iner-
tia and body loads (for simplicity sake). Thus the only driving mechanism is a
boundary displacement w(x, t) on the Dirichlet part of the boundary.

Then, the restriction that the deviatoric part of the Cauchy stress σD(t) should
remain within the set of admissible stresses K, together with the balance equation
div σ(t) = 0, immediately implies that the tangential part of the surface traction
σ(t)ν – where ν is the outer normal to a point at the Dirichlet boundary of the
domain – must satisfy

(σ(t)ν)τ = (σD(t)ν)τ ∈ (Kν)τ ,

with obvious notation.
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But, since at such a point, the plastic strain is given by [w(t)−u(t)]⊙ν (u(x, t)
being the displacement field), it is natural, if adopting the Clausius-Duhem view
of the positivity of the mechanical dissipation, to expect a boundary flow rule,
namely

[ẇ(t)− u̇(t)] ∈ N(Kν)τ ((σDν)τ ).

Above, N(Kν)τ (ξ) is the normal cone (a cone of vectors) to the set (Kν)τ (a set of
vectors orthogonal to ν) at ξ.

That flow rule is not implied by the bulk flow rule and must be added to the
traditional set of equations governing the evolution if Hill’s maximum plastic work
principle is expected.

Similarly, in the case of a multiphase material, then, at the interface between
phases i anf j (with associated sets of admissible stresses Ki and Kj), one has

(σDν)τ ∈ (Kiν)τ ∩ (Kjν)τ .

So one should also obey the following flow rule:

u̇i − u̇j ∈ N(Kiν)τ∩(Kjν)τ ((σDν)τ ).

Absent such a rule, the problem will be undetermined because of the possible
presence of plastic slips along such interfaces. That flow rule seems to be absent
from the mechanics literature.

Also, this is the only flow rule that will abide by Hill’s maximum plastic work
principle, so that there is no possibility of constitutively “modeling” interfacial
behavior. That behavior is set by that inside the phases.
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Equilibrium and kinetics of interface boundaries and chemical

reactions fronts in elastic solids

Alexander B. Freidin

(joint work with Mikhail Antimonov, Andrej Cherkaev, E.N. Vilchevskaya,
I.K. Korolev, D.O. Volkova)

Considering solids undergoing stress-induced and stress-assisted phase or chem-
ical transformations we focus on the following problems.

• Phase transitions limit surfaces and exact energy lower bounds construction.

We construct direct and reverse transformations surfaces in strain space based
on two approaches. The first one is based on local thermodynamic equilibrium
considerations and uses a semi-inverse method. The shape of the new phase nu-
cleus is prescribed (layer, cylinder, ellipsoid) and external strains are found at
which the boundary of such a nucleus can satisfy the local equilibrium conditions
(including the Maxwell relation). Then geometric parameters of the nucleus shape



906 Oberwolfach Report 15/2012

and orientation can be found in dependence of the external strains (see, e.g., [1, 2]
and references therein). We construct the surfaces of the appearance of new phase
equilibrium seeds of various shape in strain space and after discussion of the the
new phase domains stability we consider an envelope of such surfaces as a kind of
transformation surface.

The second approach is based on construction of an exact energy lower bound
for a composite with a fixed volume fraction of the new phase. We construct such
a bound using translation estimates (see, e.g., the monographs [3, 4] and references
therein), and compute the corresponding fields in an optimal microstructure. We
show that, depending on a strain state, the bound is attained if the microstructure
is a first, second or third order laminate. For arbitrary isotropic phases and arbi-
trary average strains we find the microstructure parameters in dependence of the
average strains. We note that two types of second order laminate are needed to
cover the whole strain space: with normals which coincide with the eigenvectors
of the average strain tensor and with normals which do not lie in the eigenplane
of the strain tensor – so called declined second order laminates (cf. with [5]). As
a result we find all optimal microstructures for a 3D elastic two-phase composite.

Then, given an average strain, we find the equilibrium new phase volume frac-
tion minimizing the energy lower bound with respect to the volume fraction. Those
strains at which the equilibrium volume fraction tends to zero form the transforma-
tion limit surface in strain space. Finally we compare the transformation surfaces
and microstructures for the direct and reverse transformations obtained by two
approaches.

• Kinetics of interphase boundaries in elastic solids.

We consider a moving interphase boundary within the frameworks of config-
uration (driving) forces concept. We write down the kinetic relationship as an
equation that relates the interface velocity, the strains on one side of the interface
and the normal to the interface [1]. Strains at which this equation can be satisfied
form a so called “modified” phase transition zone (PTZ) in a strain space.

The PTZs for the case of the equilibrium interface were constructed earlier (see,
e.g., [2] and references therein). Here we focus on the modified PTZ-boundaries
and demonstrate that the modified PTZ-boundaries construction in a case of sta-
tionary moving interface gives the answer to the following two questions:

− Given interface velocity, what are the strains which can exist at the interface?
− How does strain state affect the interface orientation with respect to the

strain tensor axis?
Giving examples of the PTZ construction we examine how material parameters

and strains affect the interface velocity and local orientation.

• Kinetics of chemical reactions fronts propagation in deformable solids.

Finally we consider a propagating stress-assisted chemical reaction front prop-
agation implying a reaction such as silicon oxidation.
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After deriving an expression of the entropy production due to the reaction front
propagation we construct the chemical affinity tensor as a combination of Eshelby
stress tensors of the solid constituents and a chemical potential of a gaseous con-
stituent [7]. We determine a transformation strain tensor produced by the chem-
ical reaction in dependence of the reaction parameters. We demonstrate that the
transformation strain produces internal stresses which in turn affect the chemical
reaction front kinetics. We discuss how external and internal stresses can acceler-
ate or decelerate the reaction front propagation.

Acknowledgement: This work was supported by the Russian Foundation for Basic
Research (10-01-00670-a), National Science Foundation (DMS-0707974), Sandia
National Laboratories and the Program for Fundamental Research of RAS.
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Comparison of spherical and cubical representative volume elements

with respect to convergence, anisotropy and localization behavior

Rainer Glüge

(joint work with Martin Weber, Albrecht Bertram)

The representative volume element (RVE) technique is commonly used for the
estimation of the effective properties of a micro-structured material. Mostly, cubi-
cal RVEs with periodic boundary conditions are employed, which result in a better
convergence, compared to the uniform boundary conditions. In this work, the pos-
sibility of using spherical RVEs is discussed, since their use promises a reduction of
the influence of the boundary, and thus a more efficient estimation of the effective
material properties. We assess the convergence of spherical and cubical RVEs to
the effective material behavior for the uniform and periodic boundary conditions,
which are given by

(1) u = H̄x0, linear displacement BC
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(2) t = T̄ n0, homogeneous traction BC

(3) u+ − u− = H̄(x+
0 − x−

0 ), t+ = −t−, n+
0 = −n−

0 coupled BC .

The displacement, position in the reference placement and surface normal in the
reference placement are denoted by u, x0 and n0. The imposed average displace-
ment gradient and the imposed average first Piola-Kirchhoff-stresses are written as
H̄ and T̄ . The coupled BC require to form pairs of surface points with opposing
surface normals. In case of spherical RVE, this assignment is unique, in case of
cubical RVE the surface points are usually paired such that the RVE boundary
allows for a periodic arrangement, thus the common denomination as periodic
BC. All these BC satisfy the Hill-Mandel-condition. However, the coupled BC
are mostly preferred over the uniform BC since the latter correspond to extremal
assumptions (suppress either strain or stress fluctuations on the boundary).

We assessed the RVE quality by examining different aspects of the homoge-
nized properties of an elastic-plastic, macroscopically isotropic matrix-inclusion
material. We generated a large material sample, from which we cutted out spheri-
cal and cubical RVE of different sizes. For each size, we examined 100 realizations
with the different BC. The RVE has been subjected to a uniaxial tension test in
the e1 direction, and Young’s modulus and the Cauchy stress component σ11 at
10% of nominal strain have been extracted.

Anisotropy. The elastic as well as the plastic properties of the macroscale
material show a cubic anisotropy for small cubical RVE, independently on the
BC. This anisotropy is strongest for the periodic BC. However, this effect vanishes
as the RVE size is increased.

Convergence. Considering the linear displacement boundary conditions, the
spherical RVE converge faster to the effective material behavior as the RVE size is
increased. Results of similar quality require cubical RVE with a volume of roughly
four times the volume of the corresponding spherical RVE. For the coupled BC,
the results are quite close, but the spherical RVE perform slightly better. For
the homogeneous traction BC, convergence has been considered only for Young’s
modulus, since the RVE tend to localize extremely soon for this BC. No notable
difference has been found in this case.

Localization. For this issue we considered a softening, isotropic, von Mises-
plastic material. It has been assigned homogeneously on RVE with a perturbation
near the center. Only the coupled BC have been employed, since the linear dis-
placement BC do not allow for an RVE-wide localization, and the homogeneous
traction BC allow for arbitrary localizations. The coupled BC are used by many
researchers who address macroscale material failure by microscale mechanisms,
in order to determine macroscale traction-separation laws or stability maps, for
example. We subjected the RVE to a simple shear deformation, where the shear di-
rection has been varied. It is found that the localization behavior differs markedly
between cubical and spherical RVE. The spherical RVE form a single shear zone
of 50% of volume fraction, and the stress-strain curves are practically independent
on the shear direction. The cubical RVE display a shifting between differently
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oriented shear bands, leading to non-monotonic stress-strain curves. This is due
to the fact that shear banding parallel to the imposed shear direction is due to the
cubic periodicity pattern not always possible. Thus, the imposed effective shearing
is approximated by successive shearing in different directions. For shearing in 0◦

and 45◦ the response is softest, since shear bands can align nicely with the peri-
odicity frame. This effect is independent on the RVE size. However, none of the
RVE recovered the softening stress strain law correctly, although the RVE could
be considered as practically homogeneous. Only for linear displacement BC, the
microscale material law has been conducted to the macroscale. This indicates that
for softening materials one should employ the linear displacement BC.
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Competition of energies, interface effects and scaling laws for

martensitic microstructures

Klaus Hackl

(joint work with Mehdi Goodarzi)

Martensitic materials exhibit different patterns at the micro-level consisting of
laminates of twin-compatible variants. These microstructures show a variety of
interesting boundary-layer phenomena like branching or needling at interphases
to other variants or at grain boundaries. The patterns observed posses prominent
self-similarity properties valid over a large range of scales, [4, 5].

In [1, 2, 3] we develop a model explaining these phenomena via a competition
of three contributions to the energy stored in the material,

(1) min
u,a,b,λ,h

{E : for given boundary conditions} .
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Here u denotes the macroscopic displacement vector of the material, a the displace-
ment-amplitude vector of the laminate microstructure, b the normal vector on the
twin-interface, λ the volume fraction of twin-variants, and h the lath-width of the
laminate, see [1]. The total stored energy

(2) E =

∫

Ω

(
ψel + ψin

)
dV +

∫

Γ

ψΓ dA

is comprised of elastic strain energy ψel, interfacial energy between martensitic
variants ψin, and surface energy at boundaries external to the martensitic mi-
crostructure ψΓ. We employ a three-field approach with volume-fraction λ of the
two martensitic variants involved, lath-width h, and displacement-amplitude u as
independent fields. Energy minimization then yields a system of partial differential
equations for those variables, which in general has to be solved numerically.

The model correctly predicts the different scaling propertied observed in exper-
iments, namely

(3) E ∝ γ2/3, h ∝ x2/3, h ∝ L2/3,

where γ is the specific twin-interface energy, x denotes the distance from an ex-
ternal boundary, and L is the size of a meso-scale twin block-structure, see [1, 2]
for a detailed explanation.

We are able to demonstrate, that interfacial energy contributes significantly
to the total stored energy in martensitic microstructures. Finally the model is
able to distinguish whether a laminate terminates via branching, determined by
h → 0, or needling, determined by λ → 0 or λ → 1, at an outer boundary, both
phenomena being seen in experiments. Interestingly the predicted behavior does
not only depend on local material properties like specific energies, but also on
the global geometry, comprising shape and size, and boundary conditions of the
material body under investigation.
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Multiscale modeling – extending the design space

Craig S. Hartley

The design of engineering structures has historically treated the materials em-
ployed as ”black boxes” of immutable properties, whose values are the result of
extensive testing and analysis. Generally no consideration is given to the fact
that materials properties are often functions of the microstructure of the material,
which follows from the processing employed to produce the material. Consequently
these material properties are constraints on the design of components and as such,
not considered a part of the ”design space” within which modifications are possible
as part of the design process.

Since the mid-1980s there has been considerable progress towards changing this
paradigm by employing models of materials containing structural variables that
can be manipulated as part of the design process, thus extending the design space
to include the processing of materials to produce desired properties in finished
components. In addition, models are increasingly being developed and employed
to reduce the amount of testing and experimentation required to produce design
databases of properties suitable for inclusion in engineering design software. The
development and use of physics-based models of materials that link macro-scale
properties, such as those employed in engineering design, to the microstructure of
materials at various length and time scales broadly constitutes the field of mul-
tiscale modeling. The emerging discipline of Integrated Computational Materials
Engineering (ICME) is an example of the application of the principles of multiscale
modeling within the engineering community.

The following brief example illustrates one approach to developing a method
of extracting a continuum field variable from the results of an advanced compu-
tational technique, discrete dislocation dynamics (DDD), that uses physics-based
models of dislocation motion to calculate the development of dislocation struc-
tures in single crystals as a function of deformation. The intent of this connection
is to extract information such as constitutive laws relating the local stress field,
temperature and dislocation structure to the behavior of dislocations that cause
permanent deformation. This information can then be cast in a form for input to
models of crystal plasticity, which relate the deformation of crystalline materials
to the behavior of groups of dislocations. The DDD thus provides the means to
conduct virtual experiments on simulated crystals under controlled conditions to
produce information for use at the next higher length scale.

Consider a crystal deforming by the motion of dislocations on several slip planes.
For each slip system, we define a coordinate system based on the slip direction η,
normal to the slip plane ν, and Taylor axis ξ, where the triad (η ν ξ) forms a right-
hand set. Represent the distribution of dislocations in each slip system by three
coplanar vectors formed from the projections of the dislocation lines along the
slip direction (screw components) and Taylor axis (edge components). Define the
Direct Dislocation Density Vector ρG as the vector sum of the projected lengths of
positive and negative screw and edge segments of dislocations in the population. If
the total projected lengths of screw and edge components of opposite sign occur in
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Figure 1. Direct and derived dislocation density vectors

equal pairs for the dislocation population, the Burgers vector flux across a section
plane intersecting the slip planes is null and this vector is undefined. The Total
Dislocation Density Vector ρT has screw and edge components that are equal to
the L1 norms of the associated signed components. When the DDDV is not zero,
the direction of the TDDV is chosen so that the vectors make an acute angle,
otherwise the direction of the TDDV is undefined. The Statistically Stored DDV
ρSS is the vector difference between the TDDV and the DDDV. The relationships
are illustrated schematically in Figure 1.

Following the evolution of these vector components as deformed structures de-
velop in DDD simulations or direct observations of deformed structures in trans-
mission electron microscopy provides a means of quantifying the growth of the
dislocation content and separating the contributions of the components of the
TDDV, while simultaneously giving information about the screw-edge character
of the dislocation distribution.

Applications in thermal and thermo-mechanically coupled problems

Stefan Hartmann

(joint work with K. J. Quint, S. Rothe)

In Engineering Sciences there exist a number of applications where thermal pro-
cesses at large temperatures below the melting limit are of interest. For example,
in metal forming the heat is applied by electrical induction in a local region in
order to obtain, after the forming and the subsequent cooling process, particular
material properties, see [6]. Another application are field-assisted sintering pro-
cesses, where a powder material is heated, compressed and cooled down. This
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process, goes very fast and the heating phase exceeds 600 Kelvin/minute. In the
metal forming application large spatial temperature gradients but also large tem-
perature rates occur, whereas in the powder compaction process very fast heating
and cooling processes are applied. Moreover, all material properties describing
the temperature evolution are functions of the temperature itself, for both the
tools and the material itself, and the mechanical balance equations depends on
the temperature-dependent material properties.

In order to understand the coupled problems mentioned above, the fully cou-
pled and highly non-linear equations have to be investigated. In the given lecture
a rigorous application of the method of vertical lines is performed, where the
spatial discretization is carried out using finite elements. This yields differential-
algebraic (DAE-system), ordinary differential (ODE) or systems of (non-)linear
equations, see [1, 2, 3]. Which kind of mathematical structure results depends
essentially on the underlying initial boundary-value problem and the constitutive
model describing the material. In the case of an existing system of DAEs or ODEs
higher-order diagonally implicit Runge-Kutta methods (DIRK) are applied in com-
bination with the Multilevel-Newton algorithm, see [4, 7]. The latter is applied
in order to keep the size of resulting system of non-linear equations as small as
possible, because the material properties are formulated as systems of ordinary-
differential equations which are point-wise independent. It turns out that the
application of DIRK-methods is a promising tool because high-order methods are
applicable and current implicit finite element programs remain nearly unchanged
when they are extended (at least order two is obtained depending on the under-
lying equations). Additionally, temporal step-size control for restricting the local
integration errors are applied. The time-adaptive procedure stabilizes the entire
computational procedure as well. Moreover, beside the DIRK-methods, which lead
coupled systems of non-linear equations, very efficient iteration-free methods are
applicable, namely, Rosenbrock-type methods, [2, 5] which seems to be a promising
procedure in coupled finite element analyses.
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Higher order alignment tensors in continuum dislocation dynamics

Thomas Hochrainer

Single crystal plasticity is mediated by the motion of dislocations. Dislocations
are line like crystal defects which carry a characteristic unit of shear, the Burgers
vector b, and may move when subject to stresses. A moving dislocation crossing
a crystal volume shifts the two parts of the crystal separated through the surface
swept by the dislocation relative to each other by its Burgers vector. At low
temperatures dislocations typically only move within planes containing the line
direction and the Burgers vector. Dislocation density theories for single crystals
therefore typically work on a glide system basis and dislocations are treated as
planar curves within their glide plane.

There are two traditional macroscopic dislocation density measures, which are
the scalar total dislocation density ρt and the dislocation density tensor α. While
the statistical definition behind the scalar density is rather obvious as a line length
per unit volume, the statistical nature of the dislocation density tensor is some-
what obscured by its common definition, α = curlβp, as the curl of the plastic
distortion tensor βp, which allows for its definition even in fully phenomenolog-
ical theories which do not mention dislocations otherwise. Statistical theories of
dislocations were first developed for straight parallel edge dislocations and later
generalized to systems of curved dislocations [1]. The theory for curved disloca-
tions is a mesoscopic theory in the sense that it contains variables defined on a
manifold appended to each point of the crystal. These mesoscopic variables are the
orientation distribution function ρ(x, ϕ) and the curvature density q(x, ϕ), which
are both defined on the unit circle within the glide plane and which together define
the dislocation density tensor of second order. To simplify the presentation we fix
a glide system and choose a coordinate system, such that the Burgers vector b

points in 1-direction and the glide plane normal n in 3-direction. The unit circle
in the glide plane is parameterized by the angle ϕ to the direction of the Burgers
vector in mathematically positive direction. The evolution of this tensor can be
given in terms of the evolution of the density function ρ and the curvature density
q as

(1)
∂tρ = −Div (ρV) + vq
∂tq = −Div (qV − ρϑL) ,

where Div denotes the divergence operator on the configuration space, L = (cosϕ,
sinϕ, 0, ρ/q) is the generalized tangent vector and V = (v sinϕ,−v cosϕ, 0, ϑ) is
the generalized velocity with the rotational velocity ϑ = −∇Lv. We propose to
expand the angular dependent density function ρ in irreducible fully symmetric
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tensors which we call alignment tensors such that

(2) ρ (l) =
1

2π

(
ρt +

∞∑

k=1

(2k + 1)!!

k!
ρi1···ik l

i1 · · · lik
)
,

with l = l(ϕ) = (cosϕ, sinϕ, 0). The coefficients ρi1···ik are the coefficients of
symmetric traceless alignment tensors obtained by integration through

(3) ρi1···ik =

∫

S1

ρ (l) li1 · · · lik︸ ︷︷ ︸
sym.traceless

dS .

Evolution equations for these tensors can be derived from Eq. (1) , which yields a
hierarchy of evolution equations which needs to be closed at low order in order to
be useful. The lowest order truncation yielding a closed system of equations on slip
system level is proposed for the case of an isotropic dislocation velocity v. In that
case it suffices to keep the first two tensors of the tensor expansion of the density,
that is the total dislocation density ρt and the dislocation density vector κ which
corresponds to the geometrically necessary dislocations. Additionally one needs
the zeroth order of a similar expansion for the curvature density q, which we call
qt. As the dislocation density vector is contained in the slip plane, κ = (κ1, κ2, 0),
we introduce the vector tilted clockwise by 90 degrees as κ⊥ = (κ2,−κ1, 0). With
this we find the evolution equations after a simple closure approximation as

(4)

∂tρt = −div
(
vκ⊥

)
+ vqt

∂tκ = −curl (vρtn)

∂tq = −div
(
v qt
ρt

+ 1
2|κ|

[
(ρt + |κ|)κ⊗ κ+ (ρt − |κ|)κ⊥ ⊗ κ⊥

])
.

As a simple numerical example we showed that these equations are capable of
predicting the line length increase and flux of dislocations, enabling for example
the simulation of mechanical annealing as observed in micro-pillar experiments
[2]. We view such kinematically closed system of equations on the slip system
level as a prerequisite to the development of dislocation based plasticity models.
Obviously there remains a lot of room for the inclusion of physics, which mainly
displays in the constitutive equation for the dislocation velocity v. A multiple slip
extension will moreover have to address latent hardening through the consideration
of interactions between slip systems.
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Formulation and calibration of higher-order elastic Localization

relationships using the MKS approach

Surya R. Kalidindi

(joint work with Tony Fast)

Localization (opposite of homogenization) describes the spatial distribution of the
response field of interest at the microscale for an imposed loading condition at
the macroscale. A novel approach called Materials Knowledge Systems (MKS)
has been formulated recently to build accurate, bi-directional, microstructure-
property-processing linkages in hierarchical material systems to facilitate compu-
tationally efficient multi-scale modeling and simulation. This approach is built on
the statistical continuum theories developed by Kröner that express the localiza-
tion of the response field at the microscale using a series of highly complex con-
volution integrals, which have historically been evaluated analytically. The MKS
approach dramatically improves the accuracy of these expressions by calibrating
the convolution kernels in these expressions to results from previously validated
physics-based models. All of the prior work in the MKS framework has thus far
focused on calibration and validation of the first-order terms in the localization
relationships. In this paper, we explore for the first time, the calibration and vali-
dation of the higher-order terms in the localization relationships. In particular, it
is demonstrated that the higher-order terms in the localization relationships play
an increasingly important role in the spatial distribution of elastic stress or strain
fields at the microscale in composite systems with relatively high contrast.

FE2 method for electro-mechanical boundary value problems:

consistent linearization of macroscopic field equations

Marc-André Keip

(joint work with J. Schröder)

The contribution addresses the computation of the consistent macroscopic tangent
within the FE2 method for electro-mechanically coupled solids. The FE2 method
is a two-scale computational homogenization procedure based on the finite element
computation of a macro-scale boundary value problem in consideration of the con-
stitutive response of a micro-scale representative volume element (RVE) attached
to each macroscopic material point. The constitutive response of the microscopic
RVE is the result of the solution of a microscopic boundary value problem that is
driven by energetically consistent boundary conditions. In incremental form, the
constitutive relations on the macroscopic scale are given by

(1) ∆σ = C : ∆ε− eT∆E and −∆D = −e : ∆ε− ǫ∆E,

where ε and E are the macroscopic strains and the macroscopic electric field,
respectively. The macroscopic stresses and electric displacements are denoted as
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σ and D and can be determined by averaging over the microscopic counterparts
σ and D on the RVE following

(2) σ :=
1

V

∫

RVE

σ dv and D :=
1

V

∫

RVE

D dv.

The macroscopic mechanical moduli C, piezoelectric moduli e, and dielectric mod-
uli ǫ appearing in (1) are defined as the partial derivatives C = ∂εσ, e = ∂εD =
−{∂Eσ}T , and ǫ = ∂ED. In order to derive these moduli, we must compute the
partial derivatives of the volume integrals given in (2), so (1) appears as

[
∆σ

−∆D

]
=

1

V




∂ε






∫

RVE

σ dv




 ∂E






∫

RVE

σ dv






−∂ε





∫

RVE

D dv



 −∂E





∫

RVE

D dv








[
∆ε

∆E

]
.

Additively splitting the microscopic strains and electric field into a constant part

and a fluctuating part ε = sym[∇u(x)] = ε + ε̃ and E = −∇φ = E + Ẽ (with∫
RVE

ε̃ dv = 0 and
∫
RVE

Ẽ dv = 0) leads, using the chain rule, to

[
∆σ

−∆D

]
=

1

V




∫

RVE




C −eT

−e −ǫ



+




C : ∂εε̃ −eT · ∂EẼ

−e : ∂εε̃ −ǫ · ∂EẼ



dv




[

∆ε

∆E

]
,

In order to compute the appearing partial derivatives we analyze the microscopic
weak forms in an equilibrium state

∫

RVE

δε̃ : C : (∆ε+∆ε̃) dv −
∫

RVE

δε̃ : eT ·
(
∆E +∆Ẽ

)
dv = 0,

∫

RVE

δẼ · e : (∆ε+∆ε̃) dv +

∫

RVE

δẼ · ǫ ·
(
∆E +∆Ẽ

)
dv = 0.

Using the finite element discretization of the microscopic RVE gives after some
algebraic manipulations the consistent tangent



C −eT

−e −ǫ


 =

1

V
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C −eT

−e −ǫ


 dv

− 1
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LT
uu LT
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Kuu Kuφ
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Lφu Lφφ




with the FE matrices L and the inverse global (microscopic) stiffness matrix K.
For a detailed derivation see [1] – [4].
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Bifurcation phenomena in hole expansion testing

Christian Krempaszky

Several methods have been developed to characterize the formablility of sheet ma-
terials. Besides standard tensile testing, providing ductility measures sufficient to
describe the deep drawability, tests characterizing the stretch flangeability are be-
coming increasingly important, especially in case of advanced high strength steels.
One of the well-established methods quantifying stretch flangeability is hole ex-
pansion testing. The forming limits are in this case determined by stretching a
machined hole by a conical punch until the first through-thickness crack can be
observed, usually appearing at the hole edge. The so-called hole expansion ratio
serves as a measure of the stretch flangeability and is defined as the technical
strain of the edge fiber in circumferential direction at failure. Due to the me-
chanical boundary conditions the stress state in the edge fiber of the stretched
hole in circumferential direction is uniaxial, similar to a tensile test. However,
compared to a uniaxial tensile test specimen exhibiting a homogeneous strain
distribution until uniform elongation, the strain distribution in a deformed hole
expansion specimen is always highly inhomogeneous. Due to the stabilizing ef-
fect of the lesser strained material around the edge fiber, the plastic instability in
form of local necking is shifted to much higher plastic strains. Therefore, in hole
expansion generally much higher strains can be achieved than in tensile testing.
Hole expansion tests of high strength dual-phase steels show, that in most cases
no plastic instability can be observed, but the forming limit is reached due to
local damage of the dual-phase microstructure [1]. In contrast, the microstructure
complex-phase steels is ”mechanically” more homogenous, the local stresses in the
vicinity of phase boundaries are much lower than in the dual-phase microstructure
of similar macroscopic strength at the same macroscopic deformation. Therefore
complex-phase steels can be deformed to higher strains than dual-phase steels of
similar strength level. However, complex-phase steels may show a plastic insta-
bility in hole expansion testing in form of a pronounced periodical necking of the
edge-fiber [2]. Within the scope of this contribution a stability analysis is pre-
sented on the basis of the membrane shell theory to estimate and to discuss the
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occurrence of plastic instabilities in dependence of the strain-hardening behavior,
the stress state and the significant geometrical test parameters. The diffuse bi-
furcation modes of the elastic-plastic membrane shell are investigated in the sense
of Shanley [3] as if it were an elastic solid with given tangent moduli as material
coefficients. In contrast to classical analyses taking into account homogeneous
distributions of the pre-stress state (e.g. [4]) here the emphasis is placed on the
analysis of inhomogeneous (axisymmetric) distributions of pre-stress and tangent
stiffness. It is shown that the model captures the stabilizing effect of the lesser
strained material around the edge fiber and predicts the experimentally observed
periodical localization patterns.
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Continuum dislocation theory and formation of microstructure in

ductile single crystals

Khanh Chau Le

(joint work with D. Kochmann, B.D. Nguyen)

The characteristics of plastic deformation of engineering materials depend to a
high degree on the material microstructure comprising all structural characteris-
tics on the microscale. Along with the properties of the periodic crystal lattice,
the microstructural defects are integral components to determine the macroscopic
mechanical response of the material. The most important mechanism for plas-
tic yielding is the nucleation and motion of dislocations in crystals. Dislocation
sliding and climbing accomodate plastic deformation, cross-slip or pile-up of dis-
locations are only two examples of mechanisms responsible for work hardening.
Furthermore, dislocations are not only a key microstructural defect for plastic slip
but also the core ingredient for forming microstructural patterns and substruc-
tures. The formation of microstructure like deformation twinning, polygonization,
recrystalization, grain growth, texturing etc. exhibits various rearrangements of
dislocation patterns. The aim of this talk is to show that the continuum dislocation
theory can be used to describe such formation of microstructure, where we focus
just on two continuum models of deformation twinning and of polygonization.

Slip and twinning are the major deformation modes which accomodate a change
of shape under the action of applied tractions or displacements. Experimental ev-
idence for deformation twinning was found long time ago and has been reported
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to occur especially in bcc, hcp and lower symmetry metals and alloys but also in
many fcc metals and alloys with low stacking-fault energy, or other intermetallic
compounds as well as in geological materials such as calcite or quartz. Twinning
becomes particularly important in metals with only a limited number of slip sys-
tems, as it can operate to provide the five slip systems required to satisfy the
criterion for a general slip deformation. Deformation twinning basically divides
the originally uniform single crystal into two volumetric parts – a parent phase
(with unaltered crystal lattice) and a twin phase (with a different crystal lattice
orientation). Both phases normally occur in the form of lamellar structures, where
a bicrystal consisting of neighboring parent and twin phase is commonly referred
to as a twin. The twin lattice can be generated either by a rotation of the original
crystal lattice by 180◦ about some axis (mode I) or by reflection in some plane
(mode II) so that in both cases – when joint with the undistorted parent phase – an
unfaulted single crystal is formed, which exhibits a twin boundary with coincident
lattice positions at the interface.

A new ingredient of our theory (see [1]) is the so-called twinning shear produced
by the existing dislocations in the already active slip system, which plays a similar
role as Bain’s strain in the theory of martensitic phase transformations, see e.g.
[2]. This twinning shear followed by a rotation enables the initially homogeneous
crystal to form the twin phase from the parent phase. The underlying mecha-
nism of twin formation is closely related to that of [3], where a decomposition of
the deformation into shear and rotation was employed. The introduction of the
twinning shear into the energy of the twin renders the energy multi-welled and
non-convex. Besides, there is a dependence of the energy on the gradient of the
plastic distortion due the dislocation density. It can be shown by standard varia-
tional calculus that, in a certain range of straining, a mixing of parent and twin
phase is energetically more preferable and the volume fraction of the twin phase
has a finite value at the onset of deformation twinning. This finite jump provides
space (or mean free path) for the subsequent dislocation pile-up within the twin
phase. In spite of the dislocation pile-up in the twin phase and the elastic behavior
of the parent phase, the formation of the twin phase does not lead to hardening of
the material but rather to a load drop in the stress-strain curve, until the transi-
tion from parent to twin phase is completed and the material hardens again. The
load-drop can be explained by the spontaneous formation and subsequent increase
of the volume fraction of the twin phase near the second minimum of the energy
which considerably lowers the total energy of the material.

The second part of this talk is devoted to the continuummodel of polygonization
of the single crystal beam. The experimental observations of polygonization have
been reported in the late forties of the last century; see for example [4, 5]. The first
attempt of taking into account the dislocations in the plastically bent beam was
made by Nye [6] who expressed the curvature of a beam caused by dislocations
in terms of the dislocation density tensor bearing now his name. However, the
qualitative modelling of polygonization based on the continuum dislocation theory
was proposed only recently by Le and Nguyen in [7]. In that paper the simplest
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case of polygonization of the single crystal beam with one active slip system parallel
to the beam axis was considered. The obtained results confirmed the LEDS (low
energy dislocation structures) hypothesis. We extend this continuum model to
the case of single crystal having one active slip system inclined at some angle to
the beam axis (see [8]) and compare the results with the experiments reported
in [5]. To match Gilman’s experimental setup, we specify the displacements of
one face of the beam rather than applying the bending moment to the ends of
the beam. We then consider the exact two-dimensional variational problem of
minimizing energy of the bent beam within the continuum dislocation theory.
Applying the variational asymptotic procedure, we simplify this energy functional
and then find the smooth minimizer in closed analytical form. Based on this
smooth solution we then construct a sequence of piecewise smooth displacements
and piecewise constant plastic distortions having the same bending moment as
that of the smooth minimizer. By including also energy contributions at jumps
of the plastic distortion, proposed in accordance with the Read-Shockley formula
for the low angle tilt boundaries, we show that these discontinuous functions do
reduce the total energy of the bent beam. We give also the estimation of the
number of polygons depending on the radius of curvature of the bent beam.
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Second gradient homogenization framework

Darby J. Luscher

(joint work with David L. McDowell, Curt A. Bronkhorst)

The second gradient homogenization framework is part of a hierarchical multiscale
approach for modeling microstructure evolution developed by Luscher et al. [1, 2]
that places special focus on scale invariance principles needed to assure physical
consistency across scales. Within this multiscale framework, the second gradient
is used as a nonlocal kinematic link between the deformation of a material point
at the coarse scale and the response of a neighborhood of material points at the
fine scale contained with the volume Ω. In particular, the deformed position, y,
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of points within the fine scale volume element are given by the truncated Taylor
series

(1) y = F (xo) · yo +
1
2G (xo) : yo ⊗ yo + h (yo) ,

where F is the coarse scale deformation gradient, G is the second gradient of the
coarse scale displacement field, h is a fine scale fluctuation field defined over the
referential fine scale coordinates, yo. Kinematic consistency between two scales
demands that the fluctuation field have zero net projection onto coarse scale vari-
ables. Additionally, independence of coarse scale variables results in requirements
for constraints on the fluctuation field leading to the definition of specific sets of
generalized fine scale boundary conditions, (cf. [3]), based upon the orthogonality
condition

(2)

∫

Ω

fT · fdΩ = 0 ,

where f is the fine scale deformation gradient. A distinct feature of boundary
conditions satisfying this requirement is a constraint on the volume average of the
fine scale fluctuation field for non-zero second gradient modes of deformation. This
aspect of higher-ordered boundary conditions, absent from previous literature,
gives rise to an internal body force field, b. The principle of virtual velocities
(PVV) is applied to the fine scale volume element to weaken the fine scale linear
momentum balance, accordingly

(3)

∫

Γ

t · δvdΓ +

∫

Ω

ρob · δvdΩ =

∫

Ω

p : δḟT dΩ +

∫

Ω

ρov̇ · δvdΩ ,

where t are tractions on the volume element boundary, Γ, v is the fine scale
velocity field, δ reflects virtual quantities, ρo is fine scale mass density, and p is the
fine scale nominal stress. Substitution of the multiscale kinematic decomposition
and fluctuation field constraints into this PVV leads to definition of coarse scale
nominal stress, P, coarse scale second order stress Q, an extended dynamic second
order Hill-Mandel condition, and the variational power used for developing the
coarse scale global momentum balance solution. The results from this step differ
from previous approaches in the accounting of distributed body forces (important
considering internal fluctuation constraints) and microinertial fields (important
considering dynamic cases). For example, contrast with Kouznetsova et al. [4,
5]. A multiscale internal state variable (ISV) constitutive theory is developed
that is couched in the coarse scale intermediate configuration and from which
an important new concept in scale transitions emerges, namely scale invariance
of dissipation. The coarse scale Helmholtz free energy is postulated as a state
function of elastic strain, Ee, elastic second order strain, Γe, temperature, T, and
a set of k internal state variables ξ1, ξ2, ..., ξk, i.e.,

(4) ψ̄ = ψ̄
(
Ee,Γe, T, ξ̄1, ξ̄2, ..., ξ̄k

)
.
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The separate quantities of elastically recoverable and stored free energy and dissi-
pated energy are required to be equal at the fine and coarse scales. These condi-
tions lead to constraints on potential constitutive equations, for example,

(5) ˙̄ψs = 〈ψs〉+P : ḞT
in +Q

...Γ̇in − 〈p : ḟTin〉 ,
where the subscripts s and in denote stored and inelastic quantities, respectively;
thus the rate at which energy is stored at the coarse scale consist of a term re-
flecting volume averages (denoted by 〈·〉) of sub-fine scale dissipation, e.g. energy
stored in lattice strain around dislocations, and a term reflecting the inelastic in-
compatibility of the fine scale intermediate configuration. Currently, the fine scale
material is treated as a classical coaxial Cauchy continuum, for example, mod-
eled using a finite element solution of fine scale momentum balance. The coarse
scale problem is solved using a mixed-field finite element implementation of the
second-gradient continuum and constitutive equations.

Future work on this framework should include the identification of length scale
parameters from carefully integrated modeling and experimental work, the exten-
sion of the fine scale material description to include higher-ordered generalized
continuum descriptions, e.g. micromorphic crystal plasticity, and extension of
strategies for developing meaningful kinematic ISVs, free energy functions, and
the associated evolution kinetics.
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Goal oriented adaptivity for phase-field simulation

Rolf Mahnken

For the simulation of arbitrary microstructures phase-field models have become a
flexible tool. They allow the incorporation of different energy types, such as free
energy, interfacial energy, elastic-strain energy, magnetic energy and electrostatic
energy. Different microstructural processes such as phase transformations, elastic
and inelastic deformations and long range diffussion within an diffuse-interface can
be considered. As a main advantage of phase-field models, the interfaces are free
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boundaries with high gradients. Then, with the help of order parameters they can
vary smoothly in space during a microstructure evolution. From this viewpoint
phase field models are also referred as diffuse-interface models, [1], and are in
contrast to a sharp interface description.

In general the theory of phase-field models renders a set of parabolic differential
equations, which in most applications are solved with the finite-difference-method
for equally refined grids, both in space and in time. Typically its solutions are
highly nonhomogenous, and therefore, non-equally refined grids with dense meshes
at interfaces between different phases and coarse meshes in homogenous regions
would be more advantageous. Consequently, in this paper we concentrate on a
general framework for adaptive simulations based on goal-oriented error estimates,
as proposed in [2].

Adaptive simulations in general are based on computable a posteriori error
estimates, where the energy norm is a common choice. In [4] an important in-
gredient for derivation of an a posteriori estimate is the Galerkin-orthogonality,
which means that the error eu = u − uh between the exact solution u and the
discrete solution uh is orthogonal on the discrete test space with respect to the
related bilinear form. For phase field simulations control of an error quantity Q(.)
of physical significance, such as a phase field variable or a temperature at specific
points can be of interest. Furthermore, for an arbitrary goal functional Q(.) a dual
problem is defined, which, by use of the Galerkin-orthogonality, is evaluated for
an error representation Q(eu). In order to account for nonlinearity of the varia-
tional equations we introduce a secant form for the dual problem, see [3], which
for practical purposes is approximated by a tangent form. We also point out the
analogous procedure for spatial and temporal goal oriented adaptive refinement.
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Topics in multiscale modeling

S. Dj. Mesarovic

Two fundamental problems of multiscale modeling are:

• the theoretical problem: Mathematically consistent definition of the coarse-
scale model, on the basis of the fine-scale model, and,
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• the computational problem: Boundary/Interface conditions between do-
mains.

In this talk, two examples of addressing the theoretical problem are considered.

1) Particles to continuum
We use numerical simulations to uncover the (1) micromechanism of dilatancy

and critical state, (2) the intrinsic length scale that characterizes shear bands in
granular materials.

Dense granular materials exhibit a peculiar behaviour termed dilatancy, i.e.
a volume increase when sheared under constant pressure. More precisely, when
sheared under constant pressure, their volume either dilates or decreases, depend-
ing on the combination of pressure and porosity. The critical state is the boundary
between dilating and compacting states when material shears at constant volume.
The set of critical state points in the pressure-porosity space forms the critical
state line. The phenomenological Critical State Theory, based on such observa-
tions, and its modifications, are at the core of modern geomechanics. Yet, current
understanding of dilatancy and critical state is purely empirical. The fundamental
question: what are the micromechanisms that produce dilatancy and compaction?
This has not been answered, except in a vague manner. The classic simplistic
answer that nearly rigid particles must climb over each other to accommodate the
imposed shear, only brings about other questions: Why do other materials not
dilate as the rigid sphere model of atoms would predict? Why does the critical
state depend on pressure?

We show that the key to this distinct granular behaviour is the presence of
intrinsic stress, the existence of which has been postulated earlier, but its phys-
ical nature has remained conjectural. We use the graph theory representation of
particles assemblies, first to provide the micromechanical definition of the intrinsic
stress, then to quantify its effect on the change of volume under shear.

Persistent shear bands in granular materials occur at later stages of deforma-
tion. Typically, widths of shear bands are about 10-20 particle diameters. What
determines this length? Strain localization in the form of shear bands is accom-
panied by accompanied by massive rolling of particle. On a single contact level,
rolling is favored over frictional sliding, as a mechanism for rearrangement of par-
ticles. Yet, on a level of an assembly, rolling is constrained by neighbors. The
result is a characteristic rolling correlation length. Our numerical simulations,
specifically designed for this problem, indicate that the transmission of rotations
depends on direction. Specifically, it depends on the strength of the force chain
branch in that direction. The maximum propagation distance is comparable to
observed widths of shear bands.

2.) Dislocations to continuum crystal plasticity
Plasticity in heterogeneous materials with small domains (e.g., polycrystals) is

governed by the interactions/reactions of dislocations at interfaces. These include
reactions of existing dislocations, as well as the nucleation of dislocations at an
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interface. The rational for interface dominated plasticity is simple: dislocations
glide through the single crystal domain with relative ease, but pile up at interfaces,
so that interface reactions become a critical step in continuing plastic deformation.

While the details of dislocation reactions at interfaces take place at the atomic
scale, and the behavior of dislocations in bulk is most accurately modeled by
discrete dislocation dynamics, both of these models are much too expensive and
impractical for analyzing the resulting bulk behavior. The need for a contin-
uum framework for describing the plasticity across crystal interfaces, including
the ubiquitous size effects, is acute.

Recently developed size-dependent crystal plasticity theory employs the repre-
sentation of the singular part of dislocation pile-up boundary layers as superdis-
location boundary layers, or equivalently, as jumps in slip at the boundary, but
internal to the crystal. These boundary superdislocations exist on two sides of an
interface and react or combine to lower the total energy under certain conditions.

In this paper, we develop the continuum framework for interactions of disloca-
tions at interfaces. The framework includes continuum kinematic description of
dislocation reactions across an interface, geometrical and thermodynamic condi-
tions for reactions, energy dissipation in interface reactions, as well as the kinetic
barriers thresholds for the reactions.

We analyze the problem of single and double-slip shear of a thin film, and
compare the results of continuum model with dislocation dynamics simulations.

Explicit forms of the entropy production and the degree of

irreversibility for Navier-Stokes and Bingham fluids

Wolfgang H. Müller

(joint work with B. Emek Abali)

1) The entropy inequality, normally known as the 2nd Law of Thermodynamics,
is able to provide a measure of irreversibility. In here we consider an irreversible
process, namely the flow of a non-linear viscous fluid in a two-dimensional channel,
and use it in order to calculate the corresponding production of entropy as a
function of classical material parameters, such as viscosity and heat conduction.
2) Thermodynamics of Irreversible Processes (T.I.P.) can be used to define a bal-
ance of entropy [1] with a strictly positive production term Σ ≥ 0 by starting from
the balance of internal energy (1st Law of Thermodynamics):

ρ
du

dt
= − ∂qi

∂xi
+ σij

∂vi
∂xj

,(1)

employing the stress tensor in decomposed form σij = 1
3σkkδij + σ〈ij〉 and by

assuming that the specific internal energy (per mass) u = u(p, v) solely depends
on the thermodynamical pressure p and the specific volume v, such that Eqn. (1)
can be recast with the Gibbs’ equation:

ds

dt
=

1

T

( du

dt
+ p

dv

dt

)
,(2)



Mechanics of Materials 927

into the balance of entropy:

d

dt

∫

V (t)

ρs dV = −
∮

∂V (t)

qi
T

dai +

∫

V (t)

ΣdV ,

Σ = qi
∂1/T

∂xi
+ σ〈ij〉

∂v〈i
∂xj〉

+
1

T

(1
3
σkk + p

) ∂vi
∂xi

,(3)

where absolute temperature T > 0 and mass density ρ are the primary variables
and the heat flux qi as well as the stress tensor σij need to be specified in terms
of those by constitutive relations. The first term on the right hand side may be
interpreted as the flux of entropy across the boundaries of the thermodynami-
cal system. Moreover the second term represents a production term, where the
integrand Σ is always positive and reflects the 2nd Law.
3) The constitutive relations must be in agreement with the latter condition. In
order to see this more clearly, we rewrite the production term slightly:

Σ = − qi
T 2

∂T

∂xi
+ σ〈ij〉

∂v〈i
∂xj〉

+
1

T

(1
3
σkk + p

) ∂vi
∂xi

.(4)

It is now obvious that linear relations as proposed in [2], namely Fourier’s law

qi = −κ ∂T
∂xi

and σ〈ij〉 = µ
∂v〈i
∂xj〉

by putting κ > 0, µ > 0 guarantee a non-negative

production in case of an incompressible flow ∂vi
∂xi

. In particular we use for stress

tensor a velocity dependent variable viscosity as in [3]:

σij = −pδij + 2µ(d(2))dij , dij =
∂v(i

∂xj)
, d(2) =

1

2
dijdij ,

µ = µ0 +
1

π

k√
d(2)

arctan
(√d(2)

b

)
.(5)

The three parameters µ0, k, b are positive material constants. The first parameter
µ0 is the usual viscosity. If k vanishes the well-known Navier-Stokes relation
for fluid matter results. Another limit case is obtained for vanishing b, so that
the stress relation assumes a Bingham-type form. Then dij ’s different from zero
lead to an additional stress k, which can be interpreted in terms of a yield stress,
known from solid matter. For this case it is even possible to find an analytical
solution, which is briefly shown below.
4) Consider a two-dimensional finite channel filled with a viscous fluid, expressed in
Cartesian coordinates with the horizontal x1 and vertical x2 axes. If the left and
right ends of the channel experience a pressure gradient fluid motion will result.
Also, if the top and bottom walls of the channel move at different speeds a velocity
field in the fluid is created. We assume that both cases happen simultaneously and
the flow process reaches a stationary state. If the fluid is pumped with a pressure
gradient and sheared with moving walls, we assume that the motion occurs only
in the horizontal direction depending on the height between the walls. This is
generally the case for viscous fluids and can be represented by the semi-inverse
ansatz vi = (v1(x2), 0). By using the aforementioned stress, heat flux relations for
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the stationary case, the balance of momentum, introducing normalized quantities:

x̄ =
x2
R
, v̄ =

v1
v0
, v0 =

|p′|R2

µ0
, σ̄ = v̄′ ∓ k̄ , k̄ =

k

|p′|R , σ̄ij =
σ21
|p′|R ,(6)

the velocity field reads:

v̄(x̄) =











1

2

(

1− x̄2
)

− ξ (1 + η) (1− x̄) + vtop , ∀x̄ : ξ + ηξ ≤ x̄ ≤ 1

const. , ∀x̄ : −ξ + ηξ ≤ x̄ ≤ ξ + ηξ
1

2

(

1− x̄2
)

− ξ (1− η) (1 + x̄) + vbottom , ∀x̄ : −1 ≤ x̄ ≤ −ξ + ηξ.

(7)

From the balance of internal energy:

−κ d2T

dx22
= σ21

dv1
dx2

, T̄ =
T

T0
, p̄ =

|p′|R
k

, κ̄ =
κT0
kv0R

,

T̄ =
p̄

12κ̄

(
1− x̄4 − 2(x̄3 ± 1)α+ 6(x̄2 + 1)β

)
+ c(x̄∓ 1) + 1 ,(8)

α = 2ηξ ± 2ξ ∓ k̄ , β = ξ2(1 + η2)± 2ηξ2 − k̄ξ(1± η) ,(9)

we obtain a temperature distribution for the case of identical temperatures at the

boundaries T |±1 = T0, identical heat fluxes in the transition points κ̄ dT̄
dx̄ |ξη+ξ =

κ̄ dT̄
dx̄ |ξη−ξ = κ̄c, and the same thermal conductivities in both regimes. Finally

we obtain for the entropy production or rather for the dissipation function Φ
mentioned in [3]:

Σ =
κ

T 2

(
dT

dx2

)2

+
1

T
σ21

dv1
dx2

, Σ̄ =
T0R

kv0
Σ(10)

Φ = T̄ Σ̄ =
κ̄

T̄

(
dT̄

dx̄

)2

+
1

k̄

(
dv̄

dx̄

)2

∓ dv̄

dx̄
.(11)

This function can be considered as a measure of irreversibility. It consists of two
coupled parts, a mechanical and a thermal one. Although we start with a mechani-
cally driven system, the calculation shows that the induced temperature field adds
an important amount to the dissipation function. Hence, as the dissipation func-
tion with its mechanical and thermal parts for a flow with velocity field can be
seen in Fig. 1, even in a purely mechanically driven viscous flow, one shall not
neglect the thermal dissipation out of the system.
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(a) (b)

Figure 1. (a) Velocity profile, (b) Dissipation function (purple)
with its mechanical (red) and thermal (blue) parts.

Material instability: Implications for extracting material response

from specimen measurements

Alan Needleman

(joint work with Shelby B. Hutchens, Nisha Mohan, Julia R.Greer)

Vertically aligned carbon nanotubes (VACNTs) have shown promising mechanical
properties for use in a variety of applications, for example, energy absorption, com-
pliant thermal interfaces and biomimetic dry adhesives. In some cases VACNTs
have displayed high recoverability after significant strain while other in other cases
permanent deformations have been observed. In particular, Hutchens et al. [1]
have observed large permanent deformations in compression of micron scale pillars
that deform by progressive buckling. The relative density of the pillars (pillar den-
sity/fully dense material) is about 13% so these materials are highly compressible.
The overall response that is obtained from such a test is a “structural” response in
that the response depends on the pillar geometry and the loading (and support)
conditions. One would like to be able to extract a material property from this
response where by a material property is meant a parameter value or a function
that can be used to predict the response of the material under other loading con-
ditions. Of course, what constitutes a property depends on the constitutive theory
used to describe the material response.

Calculations in [2] showed that a simple rate dependent elastic-viscoplastic con-
stitutive relation with a hardening-softening-hardening form of the flow strength
as a function of plastic strain that also accounted for plastic compressibility could
at qualitatively, and in some aspects quantitatively, represent the main observed
features. A microstructurally motivation for this constitutive description is given
in [3].

The analyses in [2] raise the question of how to extract material properties from
tests on materials exhibiting this type of constitutive response. To explore this
we consider the response of a compressible elastic-viscoplastic solid with the four
flow strength relations shown in Fig. 1 subject to: (i) uniaxial tension, (ii) uni-
axial compression and (iii) indentation with a sharp indenter. Material A, which
exhibits softening, is representative of the flow strength description used in [2].
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Figure 1. Plot of the various hardening functions considered.

One question addressed is which loadings, if any, exhibit a qualitative difference
between a hardening (or ideally plastic) relation and a softening relation. The nu-
merical results show that compressibility has a large effect on the relation between
indentation hardness and material flow strength but that there is no qualitative
difference between the indentation response of softening and non-softening mate-
rials. A more complete desciption of the modeling formulation and the numerical
results is given in [4].
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A statistical physics approach describing martensitic phase

transformations

Eduard Roman Oberaigner

(joint work with Mario Leindl)

The martensitic phase transformation is a structural or displacive phase transfor-
mation, where single crystals jump within a very short time from the austenitic
into the martensitic phase or backwards. The nonlinear geometric theory can
describe in the stress-free case many features very well. The situation, however,
becomes in the case of applied stress and/or internal eigenstress especially in the
polycrystalline case very complicated.
One main research interest of the author of this research report is the behaviour
of polycrystalline shape memory alloys (SMAs) by using concepts of statistical
physics.
So far there exist different approaches to attack the problem of understanding the
thermomechanical behaviour of polycrystalline SMAs. One approach is, to make
assumptions on the internal variables like martensitic volume fraction or transfor-
mation strain, another approach is to start with assumptions on driving forces and
thresholds, again others are based upon the Landau or Landau-Devonshire model
to describe ferromagnets, the Ginzburg-Landau model to describe superconduc-
tivity, or the phase-field method, which was adapted in material science first to
describe dendritic growth.
Within each approach there exist several models of many authors (for an overview
see, e.g., [1, 2, 3, 4]). The approach of the author is different from the mod-
els presented so far in literature. Starting point is the idea, that in the phase-
transformation regime and its vicinity, a physical system (magnet, fluid, ferroelec-
tric material, crystalline solid, etc.) exhibits a self-similar behaviour over many
orders of magnitudes in the length scale, and the so-called correlation length be-
comes very large, in case of crossing a critical point theoretically even infinitely
large. Therefore, one can in the mathematical description of a phase-transforming
material start, e.g., in a ferromagnetic spin system, with blocks of spins and at-
tribute to such a block so-called block-spin properties (Hamiltonians), which can
be derived via a renormalisation procedure from a single-spin system. In such a
way one derives also effective interaction Hamiltonians. From these, one can de-
rive the partition function of the physical system and, from there the Helmholtz
or the Gibbs free energy, resp., and finally from, there, within the concepts of
irreversible thermodynamics, other physical quantities. The author of this report
started to adapt this procedure, together with colleagues, to the polycrystalline
SMAs. This idea was first formulated in [5] and with computational results in [6].
One starts with a representative volume element (RVE), which is large enough,
that an averaging or homogenisation makes sense, but still small enough com-
pared to a specimen (the scaling problem is discussed in [7]). Due to the small
size of such a RVE, one can assume, that in such a small region within a short
time there exists thermodynamic equilibrium. Of course, a neighbouring RVE is
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in general in a different thermodynamic equilibrium state, and this leads to fluxes
between such RVEs. In irreversible thermodynamics, this approach is called “local
thermodynamic equilibrium concept”. This way allows to use within an RVE the
mathematical apparatus of equilibrium statistical mechanics, which is much easier
to handle then that of non-equilibrium statistical mechanics.
The RVE is divided in this approach into (not necessarily equisized) cells, which
contain single crystals, which are either in the austenitic or martensitic phase.
Such cells correspond to crystallites. If a RVE contains n cells, which can be in m
different phases (here, one austenitic phase and a certain number of martensitic
variants, depending on the point group of the material), then there are mn dif-
ferent thermodynamic states for the RVE possible, each with a (mostly different)
probability.
If one has, e.g., one austenitic phase and three martensitic variants, then there
exist in case of plane RVE with four 4×4 cells 416 possible thermodynamic states,
effectively one can show that one needs only up to 8 cells leading maximal to 48

thermodynamic states. Each state ν is described by an analytical function Hν , the
Hamiltonian of the state. Let Hi denote the Hamiltonian of a cell, which can be
in this example either HA or HMj

(j ǫ {1, 2, 3}), Mj denotes the j-th martensitic
variant, HMj

the Hamiltonian of the j-th martensitic variant, HA the Hamiltonian
for an austenite, each one of these depending on the actual stress and tempera-
ture). Within this notation, Hν is given by Hν =

∑n
i=1(Hν i + Hν Ii,i+1). Hν i

denotes for the ν-th state the Hamiltonian of the i-th cell, Hν Ii,i+1 denotes for
the ν-th state the interaction Hamiltonian between the i-th and the (i+1)-th cell.
The neighbour of the n-th cell is the first cell (cyclic boundary condition). This
makes sense, since all RVEs are of the same structure, and the actual neighbour
of the n-th cell in RVE is the first cell in the neighbouring RVE in a linear chain.
In two and three dimensions this can be organised accordingly. Besides, cyclic
boundary conditions have an essential computational advantage. With given Hν ,
the partition function reads

Z =
∑

ν

e−βHν with β :=
1

kT
,

k denotes the (renormalised) Boltzmann constant, T the absolute temperature.
In case of applied stress one gets for the polycrystalline RVE under constant stress
and temperature the Gibbs free energy

G(σij , T ) = −kT lnZ

σij denotes the effective Cauchy stress within the considered RVE (sum of applied
stress and eigenstress). Since G is a thermodynamic state function, it contains the
whole information of the considered thermodynamic system. Once gets, e.g., the
total strain via

εij =
∂g

∂σij
,
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if g denotes the Gibbs free energy per mole. Most thermodynamical quantities
can be gained via an ensemble average to

< A >=
1

Z

∑

ν

Aν exp(−βHν) .

Applied to the total volume VT of the RVE this reads

< VT >=
1

Z

∑

ν

Vν exp(−βHν) .

The total average mole density is then

< ηT >=
NT

< VT >
,

where NT is the total mole number of the system. Since the mole number of the
RVE remains constant and mostly not the total volume, the block-spin approach
from statistical physics can be considered as a finite mole method (FMM). With
< ηT >, one gets the martensitic volume fraction ξM according to [6] via

< ξM >=
ηA− < ηT >

ηA − ηM
,

where ηA and ηM denote mole densities of the austenitic and martensitic single
crystal phase, resp. The elastic strain is derived accordingly via

< εelij >=
1

Z

∑

ν

εelij ν exp(−βHν),

analogously the thermal strain < εthij >. The transformation strain εtrij is then

εtrij = εij− < εelij > − < εthij > .

The rates are gained via, e.g.,

ξ̇M =
∂ξM
∂σij

∂σij

∂t
+
∂ξM
∂T

∂T

∂t
.

In most experiments one uses one or two components and leaves the temperature
and the other components constant resp., and vice verse. In case one changes a
component of σij or T , one does this mostly with a constant rate. Then in the
above formula most derivatives with respect to time are zero and one (or two)
is (are) constant, and thus there remains just a factor besides the temperature
and stress derivatives of ξM . Those aspects are discussed in more detail in [8].
In the just mentioned and in a series of further publications of the author and
colleagues, e.g., [9, 10, 11] a series of further results are discussed and presented also
graphically. Further on, the block-spin approach has been shown to be applicable
in practical computations such as stress-wave propagation and damping with the
help of induced phase transformations.
Ongoing work shows, that this approach is also applicable to understand phase
transformations in other materials such as polymers and ceramics better, or even
the phenomenon of crystal plasticity.
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Boundary migration during low temperature plastic deformation

Reinhard Pippan

(joint work with Anton Hohenwarter, Andrea Bachmaier, Georg Rathmayr,
Martin Rester, Christian Motz, Daniel Kiener)

The main goal of this presentation is to show that in two very different subjects
in the area of plastic deformation – severe plastic deformation and indentation –
boundary migration plays a dominant role. Heavy plastic deformation at relatively
low homologous temperatures, usually called Severe Plastic Deformation (SPD),
is an efficient method in producing ultrafine grained or nanocrystalline structure
in materials. Plastic deformation in coarse grained materials leads to the forma-
tion of dislocation structures, at first to dislocation cells and then to cell block
with larger misorientation between the cell blocks. The cell block and dislocation
cell structure, which are characteristic features at “small and medium” SPD, are
transformed to a uniform ultrafine or nanocrystalline granular structure. These
phenomena are very general for materials which deform predominately by disloca-
tion glide [1], however even in materials where twinning or phase transformation
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are the most important deformation mechanism the processes controlling the de-
velopment of the steady state are similar [2]. The most important facts observed
in many different metals and alloys can be summarized as follows

• SPD leads to a refinement of a coarse grained into a submicron- and
nanocrystalline microstructure.

• At large strains saturation in the refinement is observed, grain size, fraction
of low and high angle grain boundary and texture do not change with
further deformation.

• Boundary migration is an essential mechanism to explain the saturation
in the structural evolution. The following points support this assumption.

• Temperature, impurities and alloying are the most important parameters
controlling the limitation in refinement.

• Strain rate dependence of the saturation grain size is stronger in the
medium temperature regime than at low temperatures.

• The initial microstructure of a single phase material does not affect the
saturation grain size. A coarse grained single phase material refines and a
finer nanocrystalline material coarsens.

In the past few years, the deformation of miniaturized single-crystal samples was
frequently investigated to examine the processes governing deformation on the mi-
crometer and nanometer length scale. Indentation experiment, bending, tension
and compression experiments have been developed for analyzing the plastic re-
sponse from nanometer regime to the macro regime. Keeping the aforementioned
facts during standard plastic deformation and SPD in mind, it becomes evident
that the size of the investigated sample size covers a wide range of the different
scales of the dislocation structural evolution which occur during the deformation
of single or polycrystalline metals. Special attention is devoted to indentation,
where it is easy to cover all length scales from nm to mm [3]. Detailed analyses of
the deformed volume below the indent indicate that:

• During indentation in single crystals we are far away from self similarity.
In the indentation experiments in single crystals the size of the deformed
volume does not scale with the size of imprint.

• The response in hardness depends on the characteristic length scales of
the generated dislocation structures, which varies significantly with the
contact size.

• The development of deformation induced boundaries requires a certain
deformed volume, the movement of these boundaries is essential for the
size dependence of the hardness on the micro scale.
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A coupled electro-chemo-mechanical framework for diffusion and

deformation in solids

Jianmin Qu

Solid materials used in energy conversion and storage devices are often subjected
to multiple driving forces (electrical, chemical, radiological, thermal, mechanical,
etc.). The interactions among these different driving forces often impact the effi-
ciency, reliability and durability of the devices. Understanding of how the different
driving forces interact requires theories and models that are capable of accounting
for the coupling of multi-physics processes.

In this talk, a framework is presented that couples the mechanical and chem-
ical (or electrochemical) fields in solids via the use of stress-dependent chemical
potentials. To illustrate the development and applications of this coupled electro-
chemo-mechanical theory, two examples of practical interest will be discussed,
namely, solid oxide fuel cells and lithium ion batteries. Our interest is to under-
stand how solid diffusion generates mechanical stresses, and how such mechanical
stresses affect the diffusion. The first example is concerned with the interactions
between mechanical stresses and ionic transport in the electrolyte of a solid oxide
fuel cell. It is found that the non-uniform oxygen vacancy concentration in the
electrolyte can generate significant stresses whose amplitude is comparable to the
thermal mismatch induced stress in the cell stack. More importantly, significant
stress concentration near processing defects (voids and microcracks) occurs due to
the presence of ionic fluxes. The second example is on the insertion of lithium into
silicon in silicon anodes in lithium batteries. Using input from ab initio and molec-
ular dynamic simulations, we investigated the mechanisms of lithium insertion and
how the process is affected by mechanical stresses.

Removal of unphysical arbitrariness in constitutive equations for

elastically anisotropic nonlinear elastic-viscoplastic solids

M. B. Rubin

Constitutive equations for elastically anisotropic nonlinear elastic-viscoplastic solids
are often formulated assuming that the strain energy function Σ per unit mass de-
pends on an elastic deformation gradient Fe and a triad of linear independent
vectors Mi (i = 1, 2, 3), which characterize crystallographic orientations in an
intermediate configuration (see 1).

(1) Σ = Σ(Fe,Mi) .

Moreover, Fe can be determined by integration an evolution equation of the
form
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(2) Ḟe = (L− Lp)Fp ,

where a superposed (·) denotes material time differentiation, L is the velocity
gradient and Lp is a second order tensor that characterizes the rate of relaxation
due to plasticity and viscoplasticity and requires a constitutive equation.

More commonly, the total deformation gradient F and the plastic deformation
gradient Fp are determined by integrating evolution equations of the forms

(3) Ḟ = LF , Ḟp = ΛpFp , Λp = F−1
p LpFe ,

which are consistent with the multiplicative relationship

(4) Fe = FF−1
p .

In [1] constitutive equations for elastic-viscoplastic response were formulated
in terms of a triad of three linearly independent vectors mi, which satisfy the
evolution equations

(5) mi = (L − Lp)mi ,

where Lp is another second order tensor that characterizes the rate of relaxation
due to plasticity and viscoplasticity and requires a constitutive equation. Within
this context, the strain energy function and the Cauchy stress T takes the forms

(6) Σ = Σ(mij) , mij = mimj , T = 2ρ
∂Σ

∂mij
mi ⊗mj ,

where mij is a metric of elastic deformation, ρ is the mass density in the present
configuration, ⊗ denotes the tensor product operator and the usual summation
convention is used for repeated indices.

The objective of this paper is to demonstrate that the elastic Fe, total F and
plastic Fp deformation measures and the vectorsMi used to characterize directions
of material anisotropy contain unphysical arbitrariness which prevents them from
being measured [2].
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Figure 1. Sketch of the mappings between the reference con-
figuration P0, the intermediate configuration Pi and the present
configuration P.

Upscaling defects in steel via Γ-convergence

Lucia Scardia

(joint work with Marc Geers, Ron Peerlings, Mark Peletier)

One of the hard open problems in engineering is the upscaling of large numbers of
dislocations and describing their collective behaviour in terms of a continuum quan-
tity: the dislocation density. This transition has been done mainly phenomeno-
logically and has produced a number of competing dislocation density models
models. These models describe the time-evolution of the density via conservation
laws equipped with constitutive laws both for the velocity of the dislocations and
for their interaction (internal or back-stress) and they differer in the expression of
the internal stress that they propose.

Here comes the essential difference of our approach: We derive a continuum
model for the dislocation density by starting from a more fundamental discrete
dislocation model via a rigorous mathematical approach (Γ-convergence). Our
starting point is the discrete model of an idealised pile-up considered in [2] and
shown in Figure 1. This model describes the equilibrium positions of n dislocation
walls under the influence of an applied stress σ that pushes the walls towards an
impenetrable barrier. The barrier is modelled as a wall of pinned dislocations at
x0 = 0.

The equilibrium equations for the positions of the n walls can be written as

(1) σi
int − σ = 0, i = 1, . . . , n,
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Figure 1. The dislocation configuration

where the discrete internal stress for the i-th wall accounts for the interactions with
all the other walls. One can intuitively imagine that passing to the (continuum)
limit in (1) should give an expression for a continuum version of the internal stress.
Which is exactly the object we want to characterise.

The mesoscopic internal stresses we obtain do not depend on the dislocation
density only, but contain also some more local information about the discrete
arrangement of the dislocations, that the density alone fails to capture. This
additional information can be expressed in terms of an aspect ratio a, defined as
the ratio between the in-plane distance ∆x between two consecutive dislocations
and the in-wall distance h.

The upscaling procedure we adopt focusses on the discrete energy of the system
of dislocations. The discrete-to-continuum upscaling is done by letting the number
of dislocations n become infinitely large. According to the different asymptotic
behaviour of the aspect ratio a (i.e., according to the local distribution of the
dislocations), five different expressions for the continuum energy can be derived;
and, accordingly, five different expressions for the upscaled internal stress (see [1]
and [3]). The results we obtain show that the simplified discrete model taken
as a starting point is not too simple. In fact the internal stresses resulting from
our derivation are more general than many well-known models proposed in the
engineering literature.

The great advantage of our rigorous approach to the upscaling compared to the
phenomenological derivation of the internal stress is that it is exact. This means
that once a discrete model is chosen (with its simplifications and limitations) the
corresponding upscaled continuum model obtained by following our method is
univoquely determined.
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A discrete-to-continuum analysis for crystal cleavage in a 2d model

problem

Bernd Schmidt

(joint work with Manuel Friedrich)

The behavior of brittle materials is of great interest in applications as well as
from a theoretical point of view. Major challenges in the experimental sciences
and theoretical studies are to identify critical loads at which such a body fails and
to determine the geometry of crack paths that occur in the fractured regime.

In crystals under tensile boundary loads fracture typically occurs in the form of
cleavage along crystallographic hyperplanes of the atomic lattice. On the contin-
uum side such behavior can be modelled by anisotropic surface terms which are
locally minimized for these crack geometries. A discrete model has been investiged
by Braides, Lew and Ortiz [2], who assume that fracture can only occur in these
directions and then calculate a limiting continuum energy: a cleavage law. This
assumption leads to an effective one-dimenional problem which is much easier to
analyze. However, all 1d ansatzes discussed in the current literature necessarily
fall short of rigorous arguments that indeed in more than one dimension, if frac-
ture occurs at all, then it is energetically favorable to cleave the specimen along
particular crystallographic hyperplanes. The main goal of this talk is to provide a
rigorous and rather complete study of a two dimensional model problem.

Our model, although a toy model from a physical point of view, retains the
following key features: It is (1) at least two-dimensional with (2) vector-valued
deformations, is (3) fully frame indifferent with (4) with non-degenerate elastic
contributions in the bulk, leading (5) to surface contributions sensitive to the
crack geometry with competing crystallographic hyperplanes: We consider a 2d
strip with atoms on a (generically) rotated triangular lattice interacting via a NN
Lennard-Jones type interactions under uniaxial stretch.

Our main results are sharp energy estimates on minimizers and a complete anal-
ysis on the geometry of limiting configurations, when the number of atoms becomes
large and interatomic distances small: There is a critical boundary displacement
up to which minimizers are homogeneous elastic deformations and beyond which
the body completely cracks along a specific crystallographic line and is asymptot-
ically rigid on two separated bulk parts.

All quantitites describing the limiting optimal configurations, such as the sub-
critical homogeneous strain, crack geometry and critical load are given explicitly



Mechanics of Materials 941

in terms of (1) derivatives of the pair interaction potential at equilibrium, (2) the
behavior of this potential at infinity, (3) the aspect ratio of the body and (4) the
lattice orientation.

More precisely, assume that in the reference configuration the atoms occupy
positions εL ∩

(
(0, l)× (0, 1)

)
, l > 1/

√
3, where

L =

(
cosφ − sinφ
sinφ cosφ

)(
1 1

2

0
√
3
2

)
Z
2, φ ∈

[
0,
π

3

)

(a rotated triangular lattice). We consider lattice deformations y : εL ∩
(
(0, l) ×

(0, 1)
)
→ R

2 satisfying the boundary conditions (tacitly assumed in the sequel)

y1(·, x2) =
{
0 near x1 = 0,

(1 +
√
εa)l near x1 = l

with a ≥ 0. (The scaling with
√
ε is the critical scaling when elastic deformations

and cracked configurations are energetically of the same order.) The atomic energy
of a lattice deformation y is given by

Eε(y) =
ε

2

∑

x,x′∈Lε
|x−x′|=ε

W

( |y(x′)− y(x)|
ε

)
,

where

(i) W ≥ 0 and W (r) = 0 ⇐⇒ r = 1,
(ii) W is C4 near 1 with, say, W ′′(1) = α, W ′′′(1) = α′,
(iii) W (r) = β +O(r−2), β > 0, for r → ∞.

Set γ =
√
3 cosφ
2 + sinφ

2 ∈ [
√
3
2 , 1] and denote the lattice direction with maximal

e2-projection by vγ . For the sake of simpliciy we exclude here the one lattice
orientation leading to non-unique vγ , although our methods are also applicable to
that case.

Theorem 1 (Cleavage law with sharp energy estimates).

lim
ε→0

inf Eε = min

{
al√
3
a2 +

6α+ 7α′ − 2(3α− α′) cos(6φ)

27
√
3

l
√
εa3,

2β

γ

}
+O(ε).

(Note that surface contributions are of order O(ε).)

Theorem 2 (Strong convergence of minimizers). If Eε(id+
√
εuε) = inf Eε+O(ε)

and ũε denotes the piecewise affine interpolation of uε, then there exist ūε : (0, l)×
(0, 1) → R2 with |{x : ūε(x) 6= ũε(x)}| = O(ε) such that:

(i) If a < acrit, then there is a sequence sε ∈ R such that

‖ūε − (0, sε)− F a · ‖H1(Ω) → 0,

where F a =

(
a 0
0 −

a
3

)
.
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(ii) If a > acrit, then there exist sequences pε ∈ (0, l), sε, tε ∈ R such that

(pε, 0)+Rvγ intersects both the segments (0, l)×{0} and (0, l)×{1} and,

for the parts to the left and right of (pε, 0) + Rvγ

Ω(1) := {x : 0 < x1 < pε + (vγ · e1)x2} and

Ω(2) := {x : pε + (vγ · e1)x2 < x1 < l} ,
respectively, we have – possibly after rotating id +

√
εuε by π on Ω(1) or

Ω(2) –

‖ūε − (0, sε)‖H1(Ω(1)) + ‖ūε − (al, tε)‖H1(Ω(2)) → 0.

For the proofs of these results we refer the reader to [1].

References

[1] M. Friedrich, B. Schmidt, From atomistic to continuum theory for brittle materials: A
two-dimensional model problem, preprint available at http://arxiv.org/abs/1108.3696.

[2] A. Braides, A. Lew, M. Ortiz, Effective cohesive behavior of layers of interatomic planes,
Arch. Ration. Mech. Anal. 180 (2006), 151–182.

Consistent anisotropic plate theories and the uniform-approximation

technique

Patrick Schneider

(joint work with Reinhold Kienzler)

In the talk, the uniform-approximation technique is proposed, which is a general
framework for the derivation of theories (partial differential equations with cor-
responding boundary conditions) describing the linear elastic deformation of thin
structures under a given load. The approach does not make use of any (classical)
a priori assumptions and produces hierarchical sets of approximating theories with
increasing accuracy. It is based upon the paradigm to approximate all governing
equations with the same accuracy. In the remainder of the talk, the first- and
second-order theories for homogeneous monoclinic plates with constant thickness
are derived and compared to classical theories.

Under thin structures we understand structures which characteristic length is
in one or two directions small compared to the other directions, like, e.g., beams,
plates or shells. While there is only one theory of three-dimensional linear elastic-
ity, there are plenty of theories for thin structures. Lots of them are, furthermore,
motivated by disputable a priori assumptions. Therefore, we derive theories for
thin structures from the three-dimensional theory by the use of series expansions.

We start from the weak Navier-Lamé formulation of three-dimensional elastic-
ity. It is made dimensionless by the introduction of dimensionless coordinates
and characteristic parameters indicating the relative ”thinness” of the structure.
The unknown displacement field and the test function are developed into series-
expansions in the ”thin” directions with respect to a basis of scaled Legendre
polynomials with fast decreasing L2-Norm. By the use of the variational lemma,
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the equations are separated into an infinite, linear, second-order PDE-system with
an infinite number of unknown displacement variables. Each PDE is a power-series
in the characteristic parameters. This formulation is shown to be an exact one-
or two-dimensional representation of the three-dimensional problem. However, it
is not tractable in practice. By the uniform truncation of the system with respect
to the power of characteristic parameters, finite PDE systems in a finite number
of unknown displacement coefficients are derived. The greatest power of charac-
teristic parameters that is not neglected defines the approximation-order of the
resulting theory. The systems are pseudo-reduced to easier tractable systems by a
pseudo-reduction approach. The key idea of the pseudo reduction is to treat the
PDE system like linear equation systems and apply the methods of linear algebra
to reduce the number of PDEs that have to be solved and the number of variables
in this equations by successive elimination. Partial differentiation behaves like
multiplication by a factor, since the PDEs are linear with constant coefficients.
To avoid a loss of accuracy, different powers of characteristic parameters with the
same displacement variables are formally treated as independent variables during
the pseudo reduction. We overcome the underdetermination of the resulting sys-
tem by generating new, linear independent equations by multiplication of original
equations with powers of characteristic parameters and the retruncation to the
approximation order.

For the example of a monoclinic plate the characteristic parameter is chosen as
c := h√

12a
<< 1 and the n-th basis polynomial bn : R −→ R is selected as

bn(ξ) :=
√
(2n+ 1)cnpn(

1√
3c
ξ),

where pn is the n-th Legendre polynomial. The resulting field equations after
pseudo-reduction are formulated in the two variables w := u03, the mid-plane

displacement, and ψ :=
∂u1

2

∂ξ1
− ∂u1

1

∂ξ2
, a shear measure, where uli is the coefficient of

the displacement field ui with respect to the basis polynomial bl (ui =
∑∞

l=0 u
l
ib

l)
and turn out to be

5c2E3333

(

E2323E1313 − E
2
2313

)

(EαβγδE3333 − Eαβ33Eγδ33)w,αβγδ

+ 6c4ε3αβε3γδEα3γ3 (EβηικE3333 − Eβη33Eικ33) (EδµνϑE3333 − Eδµ33Eνϑ33)w,ηικµνϑ

− 6c4E1212E3333ε3αβEα3γ3 (EδηιβE3333 − Eδη33Eιβ33)ψ,δηιγ

= 5E3333

(

E2323E1313 − E
2
2313

) a

h

(

E3333P
0
3 + c

2
Eαβ33

(

1√
5
P

2
3 +

2

5
P

0
3

)

,αβ

)

+O(c6),

5c2E3333

(

E2323E1313 − E
2
2313

)

ψ

+ 6c4ε3αβEα3γ3 (EδηιβE3333 − Eδη33Eιβ33)w,δηιγ

− 6c4E1212E3333Eα3β3ψ,αβ

= 0 +O(c6).
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Up to now the presented theory is the only consistent second-order theory available
for actual monoclinic materials. By neglecting terms of order O(c4) it is equivalent
to the classical theory for anisotropic plates, mainly developed by M.T. Huber. For
isotropic material it is equivalent to E. Reissner’s plate theory and by neglecting
terms of order O(c4) for isotropic material it is equivalent to Kirchhoff’s plate
theory. A detailed article has been submitted [1].
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Examples for the importance of being curved

Cornelia Schwarz

(joint work with Radan Sedláček, Ewald Werner)

Some highly relevant problems in the field of mechanics of materials on small
length scales can be meaningfully addressed by means of a continuum theory of
dislocations, presumed that a more complete description of the dislocation popu-
lation than possible by the classical Kröner dislocation density tensor is provided.
One typical application field is the modeling of size-effects that can be observed
during plastic deformation of specimens on the micro-scale.
The approach to a feasible continuum theory taken in our research is based on the
scalar dislocation density ρ(x) (= line length per volume) and the notion of single
valued dislocation fields [1, 2]. Thereby it is assumed that the dislocation popula-
tion (in a slip system) is such that in every spatial point all dislocations passing
through that point have the same unit line tangent ξ and orientation ϑ (= angle
enclosed by ξ and the x-axis). This is for example a reasonable assumption for
a dislocation population emanated from only one dislocation source. Within one
such single valued field no loss of information due to averaging takes place. Con-
sidering several such single valued fields allows for a description of more complex
dislocation populations then.

(1)
∂bρ

∂t
= −∂ν(bρV ) , bρ

∂ϑ

∂t
= ∂ξ(bρV )

Evolution equations for the dislocation density and the orientation of the individual
single-valued fields, see Eq. (1), an up-link to a continuum mechanics framework
via the plastic shear rate and a down-link via a yield-function like equation of mo-
tion for the dislocations of the field complete the model. The latter part, defining
the glide velocity V of dislocations in direction ν normal to the dislocation line, in-
troduces a major ingredient for the model to account for size-effects. Including the
self-force, it is taken into account that the dislocation curvature κ = −divν, which
is higher in ‘small-scaled’, confined regions of the material, impedes the motion
of the dislocations, thus strengthening the material. The approach was sharpened
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by a refined consideration of short-range interactions among the dislocations by
including the contribution of a back stress [3].
The continuum dislocation-based model on the basis of single-valued dislocation
fields was applied to several benchmark problems in micro-scale plasticity. Some
interesting problems could be treated in a spatially one-dimensional framework,
e.g. the constrained shearing of a thin film [4], the bending of a free-standing strip
[5], and internal stresses in dislocation cell structures [6]. For the application of
the model to spatially two-dimensional problems, e.g. the response of a simple
composite structure to a shear load [7], some computational challenges had to be
overcome.
Problems to be addressed in the future include the application to the problem
of mechanical annealing observed in compression tests on micro-pillars [8] and
the incorporation of dislocation sources as well as dislocation - grain boundary
interactions, which are required for the application of the model to a multi-crystal.
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Materials design by assembly and topological interlocking

Thomas Siegmund

The motivation for such an investigation arises from observations on natural struc-
tures. I have found inspiration for this investigation in the armor of the armadillo,
and the tesserae of sharks. These structures are hard yet highly deformable, a
characteristic not available in common engineering materials, and both structures
are assemblies of a multitude of identical (or at least similar) unit elements. Pack-
ing and tiling with polyhedra has been of interest to generations of researchers,
and this interest continues until today [1, 2]. Recently, there has also been interest
in obtaining the mechanical properties of polyhedral packing or tiling structures
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[3]. The present work focuses on the mechanical properties of the densest planar
packing of tetrahedra [1]. This packing is of interest as it leads to a structure that
can carry transverse loads [4].

In one research direction, I have investigated the fundamental mechanical prop-
erties of monolayer assemblies of densely packed tetrahedral unit elements. Thereby,
a rigid frame confines the assembly of unit polyhedral. Polyhedra are considered to
no only be dense but also are considered as cellular units. Due to the discontinuous
nature of the assembly load transfer occurs through the formation of distinct force
chains in only few selected cross-section planes. These force chains are activated
sequentially, and thus the overall deformation response emerges as the superposi-
tion of the contribution from individual force chains. Drawing from the thrust line
analysis approach developed in structural mechanics, and recognizing the stati-
cally indeterminate nature of the problem, it is possible to obtain equations that
describe the deformation behavior of the monolayers when subjected to transverse
load. The model predictions are in good agreement with experiments for both
dense and cellular structures.

To demonstrate the material design opportunities inherent to the assembled
materials, we have conducted physical and computational experimentation on
monolayer assemblies made from cellular unit elements. We expand our mod-
els to incorporate considerations on the failure characteristics of the monolayers
and demonstrate the relationships between elastic stiffness, strength and tough-
ness for this novel class of hybrid materials. Our experiments in agreement with
the theory – demonstrate that – in contrast to conventional solid materials - in
this hybrid material, strength and toughness as well as strength and stiffness are
positively correlated. In addition, the cellular nature of the unit elements opens
the door for the creation of multifunctional materials in which polyhedral unit
elements are packed in dense form and create mechanical crystals.
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Deformation and fracture of cortical bone

Vadim Silberschmidt

The mechanical behaviour of cortical bone is defined by its hierarchical structure
as well as by the mechanical properties of its microstructural constituents. These
features also control its fracture process including crack initiation and crack prop-
agation as well as the crack path. Even limiting analysis to two out of known seven
hierarchical levels - the entire cross section and the osteonal level - still presupposes
availability of both mechanical data and microstructure characteristics for specific
parts of the bone (cortex). A non-uniform distribution of osteons in a cortical
bone tissue results in a localization of deformation processes and affects fracture
initiation. Anisotropy (though with a small contrast of around two for longitudi-
nal and transversal directions) and an elasto-visco-plastic behaviour as well as a
difference of responses to tensile and compressive regimes needs significant exper-
imental efforts to quantify the mentioned properties for different cortices. On the
other hand, moving to the microscopic (i.e. osteonal) level, it is also necessary to
study both morphology of cortical microstructure and mechanical properties of its
constituents. Quantification of the properties of cortical bone’s microstructural
constituents can help to accurately model and interpret its fracture and deforma-
tion mechanisms. Hence, our experimental studies of macroscopic specimens with
varying orientations (with regard to the bone’s longitudinal axis) exposed to vari-
ous loading regimes (quasi-static, cyclic and dynamic) [1, 2] were accompanied by
nanoindentation analysis of post-yield behaviour of bone constituents. With these
data, some cases of deformation and fracture of bone can be tackled numerically.
It is well known, that on the one hand, bone can be exposed to impact loading in
situations, such as traumatic falls or sports injuries. On the other hand, cutting
of bone is a standard procedure in orthopaedic surgery. In both cases, the stresses
imposed on a bone can be far higher than its strength and lead to fracture or ma-
terial separation. For an impact loading regime, a number of finite-element models
were developed in order to analyse its deformation and fracture using the extended
finite-element (FE) method implemented into the software package Abaqus 6.11.
Those models included: (1) two- and three-dimensional (3D) FE models to sim-
ulate fracture and deformation of cortical bone tissue at macro-scale level for the
Izod impact test setup [2, 3]; (2) macroscopic 3D FE models for tensile-impact
loading conditions; (3) 2D micro-scale model with direct introduction of bone’s
microstructure. To model cutting of cortical bone, a finite-element model was
developed to simulate the initiation and propagation of damage during tool-bone
interaction combining smooth particle hydrodynamics with a continuum domain.
The developed models provided a deeper insight into deformation and fracture
mechanisms and, most importantly, they adequately reflected the obtained exper-
imental data.
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Fluid saturated porous media with non-classical damping

Holger Steeb

We present a three-phase multi-scale model describing wave propagation phenom-
ena in residual saturated porous media like reservoir rocks. The residual saturated
porous medium is characterized through a wetting pore liquid which rests in the
pore space. These liquid blobs or liquid ensembles (clusters) are pinned at the
pore walls by high capillary forces. In the residual saturation case, blobs and/or
clusters of the wetting fluid are disconnected from each other and each blob or
cluster occupies only a single or several pores. Depending on the pore geometry,
the size of the individual fluid clusters can be widely distributed, for example in
certain heterogeneous reservoir rocks. The acoustic properties (effective phase ve-
locities and attenuation) strongly depend on the distribution of fluid cluster size.
Propagating waves at low seismic frequencies (f < 100 Hz) are not affected by
the discontinuous wetting fluid, because the wavelength is much larger than the
characteristic cluster sizes. On the other hand, a wave propagating through the
continuous solid skeleton or through the continuous non-wetting fluid at higher
frequencies is able to excite the blobs of wetting fluid through an exchange of mo-
mentum. If the liquid clusters are excited, energy is trapped in the discontinuous
phase and the propagating wave is attenuated. The frequency range of this hidden
attenuation mode is related to the (lowest) eigenfrequency of the fluid blob/cluster
and therefore to the microscopical geometry of the liquid phase.

We develop a continuum mixture theory-based model which is able to describe
two continuous phases, i.e. the solid skeleton and the non-wetting pore fluid
(gas), and, in addition, a discontinuous phase, i.e. the wetting fluid (liquid).
Resonance effects of the single liquid bridges and/or liquid clusters are captured
with miscellaneous eigenfrequencies taking into account a viscoelastic restoring
force (pinned oscillations and/or sliding motion of the contact line).

The aim of the current work is to develop and discuss a basic multi-scale mod-
elling framework which takes into account the dynamics of statistically-distributed
phases in a macro-scale continuum approach. It will be shown, that such a three-
phase model allows to study frequency-dependent attenuation due to fluid oscilla-
tions and attenuation with respect to wave-induced flow. Furthermore, the distinct
model could be applied to waves in reservoir rocks in the seismic range (field scale)
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and ultrasound range (lab scale). We will show that the results of the model are
consistent with well-established limits, i.e. the low and high frequency limits of the
biphasic poroelastic Biot model. In addition, we will show that for the quasi-static
limit case the results of the model are identical with the phase velocity obtained
by the Gassmann-Wood limit.
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Thermodynamic variational formulation of dislocation field theory at

large deformation

Bob Svendsen

The purpose of this work is the formulation of field models for continua contain-
ing dislocations via the application of recently developed variational approaches
to the formulation of boundary value problems for continuum thermodynamic
models at large deformation. In the large-deformation context, both spatial and
material representation of the variational formulation are examined. In particular,
whereas the former is based on the Cauchy stress and variations of the intermedi-
ate local configuration, the latter is formulated with the help of the Eshelby stress
and variations of the material local configuration. Assuming further that the lo-
cal inelastic deformation is material isomorphic and/or uniform, further results
ensue. For simplicity, attention is focused in this work on continua containing
static distributions of dislocations; extension to the case of evolving dislocation
microstructure as based on rate-variational methods represents work in progress.
A number of examples will be given, and in particular the reduction of the formu-
lation to small deformation in order to make connection with the recent work of
Groma and colleagues on this subject.
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Thermomechanical modeling via energy and entropy using GENERIC

Marita Thomas

(joint work with Alexander Mielke)

The traditional way of thermomechanical modeling of physical and chemical pro-
cesses is based on the interplay of the universal balance laws and the particular
constitutive laws for the system under consideration. Here we propose an al-
ternative way of modeling that is more adapted to the underlying mathematical
structures and tools. The general evolution of a system will be described as the
sum of a reversible part, a Hamiltonian system driven by the energy, and an ir-
reversible part, a gradient or Onsager system driven by the entropy. The proper
coupling is done in the framework of GENERIC, the General Equation of Non-
Equilibrium Reversible Irreversible Coupling. This approach was developed by
H.C. Öttinger and Grmela [1] for fluid dynamics. Comparably only recently, its
applicability for the modeling in solid mechanics was realized, see e.g. [2] and it
was stated in a more general context [3, 4].

The fundamental ingredients of GENERIC are Hamiltonian systems for re-
versible dynamics and Onsager systems for irreversible dynamics. Both are for-
mulated on a state space Q via a driving potential Φ : Q → R and a geometric
structure. For simplicity, we assume that Q is a Banach space with dual pairing
〈·, ·〉. The driving force is given by the functional derivative DΦ(q)∈Q∗. Moreover,
here we restrict the discussion to thermodynamically closed systems.

Hamiltonian systems (Q, E , J)(Q, E , J)(Q, E , J): In the spirit of Hamiltonian mechanics, a
general Hamiltonian system accounts for reversible dynamics, only. The equations
of motion are given by q̇ = JDE(q). The driving potential of reversible dynamics
is the energy of the system E : Q → R, which may comprise kinetic, mechanical
and thermal energy. Characteristic for a Hamiltonian system is that the associated
geometric structure J, also called a Poisson structure, is symplectic. This means,

(1) J is antisymmetric, J = −J∗, and satisfies Jacobi’s identity,

i.e. {Φ1, {Φ2,Φ3}}+{Φ3, {Φ1,Φ2}}+{Φ2, {Φ3,Φ1}}=0 for all Φi : Q → R. Here,
the Poisson bracket {·, ·} is defined via the dual pairing {Φ1,Φ2} := 〈DΦ1, JDΦ2〉
for all Φ : Q → R. The antisymmetry of J ensures conservation of energy.

As an example we consider an elastodynamic system. The states q = (ϕ, p) are
given by the deformation ϕ : Ω → R3 and the momentum p = ̺ϕ̇ with ̺ as the
mass density and Ω ⊂ R3 as the reference domain. The energy of the system is
composed of the kinetic energy, the stored elastic energy and the energy due to the
external force f, i.e. E(q) :=

∫
Ω
E(ϕ,∇ϕ, p) dx, where the energy density takes the

form E(ϕ,∇ϕ, p) := |p|2/(2̺) +W (∇ϕ)− fϕ. For J =

(
0 I
−I 0

)
the equations

of motion q̇ = JDE(q) read ϕ̇ = δpE = p/̺ and ṗ = −δϕE = div ∂∇ϕW + f.
Onsager systems (Q,S,K)(Q,S,K)(Q,S,K): An Onsager system is related to the dynamics

of irreversible, dissipative effects. The evolution equations read q̇ = K(q)DS(q).
The driving functional is the total entropy S, and the geometric structure is the
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so-called Onsager operator:

(2) K is symmetric, K = K∗, and positive semidefinite, 〈ξ,Kξ〉 ≥ 0 .

While the positive semidefiniteness is a manifestation of the second law of thermo-
dynamcis, the symmetry of K is a generalization of Onsager’s reciprocal relations.

As an example we consider heat conduction in a body Ω. The state is the tem-
perature θ. We postulate the entropy S(θ) =

∫
Ω log θ dx and introduce the Onsager

operator KH(θ) via KH(θ)ξ := − 1
cV (θ) div(θ

2κ(θ)∇ξ), where cV (θ) is the heat ca-

pacity and κ(θ) is the heat conduction coefficent. With this choice the Onsager

system yields the well-known heat equation θ̇ = KHDS(θ) = 1
cV (θ) div(κ(θ)∇θ).

GENERIC systems (Q, E ,S, J,K)(Q, E ,S, J,K)(Q, E ,S, J,K). A GENERIC system is a quintuple
(Q, E ,S, J,K) such that the triple (Q, E , J) is a Hamiltonian system and (Q,S,K)
is an Onsager system. The associated evolution system has the form

(3) q̇ = J(q)DE(q) +K(q)DS(q),
which clearly reveals the reversible and the irreversible part of the dynamics. How-
ever, there is a crucial coupling condition, which we call

(4) noninteraction condition: KDE ≡ 0 and JDS ≡ 0 .

On the one hand, (4) ensures energy conservation and entropy production. On
the other hand, (4) guarantees the validity of the maximum-entropy principle, i.e.
if q∗ maximizes S subject to E(q) = E0, then q∗ is a steady state of (3).

As an example we consider a thermo-viscoelastic system. The states are given
by the the deformation ϕ, the momentum p and the temperature θ. We postulate
the energy density E(ϕ,∇ϕ, p, θ) := |p|2/(2̺) + 1

2∇ϕ : C : ∇ϕ − fϕ + G(θ), the
entropy density S(∇ϕ, θ) := ∇ϕ : C : E+ g′(θ) and the operators KVA := θD : A,
as well as KHA := − 1

∂θE
div(θ2K(∇ϕ, θ)∇(A/∂θE)) with ∂θE = G′(θ) = cV (θ).

Since we now couple reversible and irreverible processes we have to make sure
that (4) holds. For this, we use the Gibbs relation ∂θE = θ∂θS. To preserve the
antisymmetry of the Poisson operator we define JA :=MSJ0M∗

SA with

MS:=





I 0 0
0 I 0

− 1

∂θS
∆ϕS[�] 0 1

∂θS



 , J0 :=





0 I 0
−I 0 0
0 0 0



 , M
∗

S :=





I 0 − �

∂θS
∗δϕS

0 I 0
0 0 1

∂θS



 ,

where α ∗ δaΦ := ∂aΦ− div ∂∇aΦ and ∆aΦ[v] := v∂aΦ+ ∂∇aΦ : ∇v. To preserve
the symmetry of the Onsager operator we set it KVHA := NEK0N

∗
EA with

NE :=




I 0 0
0 − div 0

− 1
∂θE

∆ϕE[�] − 1
∂θE

∇∂pE :� 1



 ,K0 :=




0 0 0
0 KV� 0
0 0 KH



 ,

N∗
E :=



I 0 − �

∂θE
∗δϕE

0 ∇ − �

∂θE
Ḟ

0 0 1


.

One can easily check that J0M
∗
SDS ≡ 0 as well as K0N

∗
EDE ≡ 0, i.e. (4) holds,

and hence we have energy conservation and entropy production. Moreover, using



952 Oberwolfach Report 15/2012

that ∇∂pE = ∇p = Ḟ = ∇ϕ̇ and ∆ϕS[∂θE] = E :C :∇ϕ̇ the system (3) reads

ϕ̇ = ∂pE = p/̺,

ṗ = −∂ϕE + div ∂∇ϕE + θ∂θS − div(θ∂∇ϕS)− divKV(− 1
θ Ḟ )

= div(D :∇ϕ+ C : (∇ϕ − Eθ)) + f,

θ̇ = − 1
∂θS

∆ϕS[∂pE]− 1
∂θE

∇∂pE :KV(− 1
θ Ḟ ) +KH(∂θS)

= 1
cV (θ)

(
∇ϕ̇ :D :∇ϕ̇ − θE :C :∇ϕ̇ + divK(∇ϕ, θ) :∇θ

)
.

For more examples on GENERIC systems in applications, such as Allen-Cahn,
Cahn-Hilliard, Penrose-Fife systems, generalized standard materials, reaction-dif-
fusion processes, mechanochemistry, bulk-interface interaction and applications to
photovoltaics the reader is referred to [3, 4, 5].
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In-situ small scale coupled thermomechanical experiments combined

with first principles calculations based on non-equilibrium Green’s

function

Vicas Tomar

Thermal and strain dependent mechanical properties of materials traditionally
have been considered to be independent of each other. Thermal properties are
attributed primarily to lattice vibrations in ceramics and semiconductors. In the
case of metals electrons are considered as the major contributor to the thermal
properties. On the other hand, the mechanical properties are attributed to larger
scale acoustic loads that lead to lower frequency but larger wavelength deforma-
tion of a lattice. Owing to the larger wavelength and lower frequency of lattice
vibrations in mechanical loading electrons are considered not to contribute me-
chanical properties of a material. Fundamentally, acoustic response of a material
ranges from a time scale of microseconds in shock simulations to at a time scale
of seconds in situations such as fatigue loading. The dominant phononic thermal
vibrations have a maximum time scale of approximately picoseconds. Electronic
vibrations occur at a timescale of femto-seconds. Recently, simultaneous thermal
conductivity and stress measurements have been performed as a function of strain
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in single crystalline Si [1]. It was observed that there is a direct coupling be-
tween measured thermal conductivity and mechanical stress in microscale single
crystalline Si as a function of strain. The shape of the stress-strain curve and ther-
mal conductivity-strain curve were the same for a range of samples. The authors
of [2, 3, 4] observed similar stress-strain-thermal conduction correlation in Si-
Ge superlattices and nanocomposites using classical molecular simulations. Such
correlation, since it involves, multiple timescales is intriguing. Classical molecu-
lar simulations are limited in their capability to analyze fundamental solid state
properties owing to the limitations regarding applicability to analyze electronic
properties, phase transformation, atomic heterogeneity etc. The extent of contri-
bution of the fundamental electron and phonon component to structural strength
needs to be identified using ab-initio simulations in order to be able to present
a complete picture regarding the effect of structural transformation and atomic
heterogeneity on such behavior. This work presents such an understanding using
a combination of small scale in-situ experiments and ab-initio models.
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Computing the rates at which thermally activated deformation

processes occur

D. H. Warner

The prediction of crack growth is one of the most technologically important and
scientifically intriguing problems in mechanics of materials. Yet, despite decades
of research, a comprehensive understanding of the process has remained elusive.
As a quintessential multiscale phenomenon, crack growth is both a chemical and
mechanical process, involving interatomic bond breakage driven by long range
mechanical stress fields. While the advancement of concurrent multiscale modeling
methodologies have opened the door for an atomic scale understanding of crack tip
processes, a disparity in time scales between laboratory conditions and atomistic
modeling remains.

In this talk, we will examine the use of transition state theory (TST) to overcome
the challenge of time scale. Focusing here on dislocation nucleation in Al, we will
examine the utility of five TST-based approaches. Using the finite temperature
string method, we interpret the success/failure of each approach in terms of a
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full energetic analysis of the nucleation processes. After showing that advanced
TST approaches such as variational TST can accurately predict nucleation rates,
we employ variational TST to study dislocation nucleation from a variety of free
surfaces under ordinary laboratory conditions. The predictions (1) demonstrate
that nucleation will only occur under very high stresses at room temperature, (2)
provide an upper bound on the shear strength of Al in dislocation starved contexts,
(3) provide a rate sensitivity signature of the nucleation process, and (4) provide
insight into the role void growth via dislocation nucleation during ductile fracture.

A short note on elastic SH wave scattering in textile reinforced

concrete

Bernd W. Zastrau

(joint work with Wolfgang Weber)

Textile reinforced concrete (TRC) is a composite material used in Civil Engineering
gaining more and more interest in practical application [1, 2]. TRC consists of so-
called fine grained concrete as matrix material and a textile reinforcement made
of carbon or glass fabrics. As no concrete revetment is necessary, the creation of
thin concrete structures is possible. Thus, TRC is very well suited for both the
strengthening or rehabilitation of existing structures as well as the fabrication of
new structural elements.

Whereas the static behaviour of TRC is understood quite well also concerning
the long-term behaviour, there is still a lack of knowledge concerning its behaviour
due to dynamic loads [3]. In this short note an analytical approach for investigating
the reaction of a material clipping of TRC to time-harmonic waves is proposed.
As a first model, the direction of reinforcement is assumed to be uni-directional.
The focus is set on shear waves. The polarization of these shear waves is such that
the direction of particle displacement is parallel to the axes of the reinforcement
elements. Hence, SH waves are at hand [4]. The material behaviour of both
the matrix and the reinforcement material is assumed to be linear elastic and
isotropic. The same holds for the material behaviour of interface layers between
reinforcement elements and the matrix. The problem is described by means of
Navier’s equation without body forces

(1) µ∆u+ (λ+ µ)∇∇ · u = ̺ü

with the Lamé constants µ, λ, Nabla operator ∇, the Laplace operator ∆, and

the displacement field u = (u v w)
T
. For the axes of the reinforcement elements

being parallel to the z-axis, the only non-trivial component of u is w. For time-
harmonic loads this displacement has the form

(2) w (x, y, t) = w0 cos (ωt+ α) = Re
{
φ (x, y) e−ıωt

}
,
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where the complex amplitude φ with |φ| = w0, Re {φ} = w0 cosα satisfies the
Helmholtz equation

(3) ∆φ+
ω2

c2T
φ = 0 = ∆φ+ k2φ ,

which follows from introducing the ansatz (2) into Navier’s equation (1). Herein
the imaginary unit ı, the circular frequency ω, the phase α, and the wave num-
ber k were introduced. Additionally, the wave speed cT for the shear waves dealt
with here can be calculated by cT =

√
µ/̺. In the following the temporal fac-

tor exp {−ıωt} will be omitted.
According to the shape of the reinforcement elements, the Helmholtz equa-

tion (3) has to be solved within a proper coordinate system. For reinforcements
of elliptical cross sections see e. g. [5]. In this contribution, circular cross sections
are dealt with. With the Laplacian in the polar coordinate system equation (3)
yields

∂2φ

∂r2
+

1

r

∂φ

∂r
+

1

r2
∂2φ

∂θ2
+ k2φ = 0 ,(4)

cf. [6]. This equation may be solved for the respective materials of the matrix
and the homogeneous elastic inclusion as done in e. g. [4]. For a layered built-up
of the reinforcement, as it is the case for carbon- or glass-fibres dealt with here,
see [7]. Hereto, equilibrium and compatibility across the interfaces have to be
fulfilled under consideration of in- and outgoing waves within each layer.

Additional enhancements of the analytical model are beneath others the de-
scription of visco-elastic material behaviour, variable thicknesses of single layers
in angular direction, the interaction of several reinforcement elements with each
other, its application to P and SV waves, and the investigation of the influence of
transient loads.

By means of the proposed analytical method deeper insight into the scattering
of elastic waves in composite materials with inhomogeneous reinforcements are
gained. These information may be used in numerical methods as i. e. the FEM,
BEM, SFEM. The results obtained by the analytical approach also are necessary
within a homogenization process in order to adequately model the dynamic prop-
erties of the respective structure. The proposed method is applicable to other
composite materials as they occur in mechanical engineering, too.
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Multiscale dislocation plasticity: Discrete to continuum

Hussein M. Zbib

The miniaturization of structural components to the sub-micrometer scale has
created a significant challenge when attempting to engineer such structures using
conventional models and simulation tools that are based solely on continuum ap-
proaches. Although there has been progress in strain-gradient continuum theories
to model the mechanical behavior of metallic systems at small length scales, these
theories fail to represent the variety of physical mechanisms involved in disloca-
tion motion in small volumes where dislocations are scarce. The major difficulty
in these theories lies in the notion that physical mechanisms which arise from dis-
location motion that occur at the micrometer scale, and are intrinsically discrete
events, can be represented in the form of continuum variables at the macro-meter
length scale. This drastic jump between scales may be statistically meaningful for
relatively large volumes but loses all sense when the volume is so small such that
dislocations become in short supply. This situation, in turn, has brought about
the need to develop novel multiscale material models and simulation tools that
may enable engineers to design and analyze multiscale structures at such small
scales. In parallel, this also necessitates the need to develop novel experimental
techniques to determine and verify mechanical properties at the sub-micrometer
scale for use in such models.

It is our point-of-view that accurate design of submicron systems can only be
achieved by multiscale models that precisely combine microstructural and phys-
ical material properties together with structural dimensions; and that intrinsic
mechanical properties and deformation/design maps for use in multiscale design
and analysis of submicron structures can only be determined from test specimens
that are subjected to homogenous deformation conditions with no (or minimum)
strain gradients and stress concentrations effects as is the case with current testing
methodologies. In our work, we capitalize on undergoing research efforts we have
in the experimental area, higher order continuum theories, molecular dynamics
as well as multiscale dislocation dynamics plasticity modeling of nanostructure
materials. We investigate, using molecular dynamics and discrete dislocation
dynamics analyses, how dislocation mechanisms and interactions contribute to
strength, accumulation of damage and fatigue. Guided by these results, we de-
velop a dislocation-based continuum crystal plasticity model, including dislocation
densities, hardening laws based on dislocation-dislocation interaction, and a set of
mechanisms-based evolution laws. The evolution laws consists of a set of terms
each corresponding to a physical mechanisms that can be explicitly evaluated from
the discrete dislocation analyses, including dislocation growth, annihilation, junc-
tion formation, junction breaking, dislocation-defect interaction and cross-slip. It
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is shown that the discrete events of cross-slip of screw dislocations can be ex-
plicitly incorporated in the continuum theory based on a probability distribution
function defined by activation energy and activation volume of cross-slip, and that
is analogous to the one used for the discrete system. This enables the redistribu-
tion of dislocations and dislocation density patterning due to the effect of stacking
fault energy. The formulation is employed for explaining the cross-slip phenomena
during uniaxial tensile deformation of fcc and bcc single crystals.

Reporter: Ewald A. Werner
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