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Introduction by the Organisers

The workshop Representations of Finite Groups was organised by Joseph Chuang
(London), Markus Linckelmann (Aberdeen), Gunter Malle (Kaiserslautern) and
Jeremy Rickard (Bristol). It was attended by 55 participants with broad geo-
graphic representation. It covered a wide variety of aspects of the representation
theory of finite groups and related objects like Hecke algebras.

In 23 lectures of 50 minutes each, recent progress in representation theory was
presented and interesting new research directions were proposed. Besides the
lectures, there was plenty of time for informal discussion between the participants,
either continuing ongoing research cooperation or starting new projects.

The talks presented several results which were considered as breakthroughs on
important, long time open problems. In the first talk, Kessar reported on her
solution (joint with Malle) of one direction of the long-standing Brauer height
zero conjecture and the completion of the classification of all blocks of all finite
simple groups. In related development, Navarro among other results announced a



964 Oberwolfach Report 16/2012

reduction (joint with Späth) of the other half of Brauer’s height zero conjecture
to a question on finite simple groups, using a generalization (joint with Tiep)
of the difficult Gluck–Wolf result to non-solvable groups. Späth explained her
reductions of two other famous conjectures of representation theory of finite groups
to statements on finite simple groups: the Alperin-McKay conjecture on characters
of height 0, and the Alperin weight conjecture. Puig announced a reduction of
Alperin’s weight conjecture to quasi-simple k×-groups. These very recent results
gave rise to the feeling that the proofs of several of the long standing conjectures
in this field might finally have come into reach.

Michel, Dudas and Craven reported on various results about properties of ℓ-
adic cohomology of Deligne-Lusztig varieties which, among others, lead to the
determination of some of the few remaining unknown Brauer trees of finite simple
groups and which, according to the talk by Rouquier, might also open the way
to the computation of decomposition matrices even in cases of non-cyclic defect
groups.

Williamson gave an introduction to rational representations of reductive alge-
braic groups in positive characteristic and explained how Lusztig’s conjecture on
the characters of simple representations is related to modular reduction in an in-
tegral version of Bernstein-Gelfand-Gelfand category O (as defined by generators
and relations in joint work with Elias).

Several speakers presented substantially simplified new approaches to key re-
sults in cohomological representation theory. Benson gave a new algebraic ap-
proach to the famous theorem of Mislin (stating that the restriction map in mod
p cohomology to a subgroup H of a finite group G is an isomorphism if and
only if H controls fusion of p-subgroups). Symonds talked about a new, and sur-
prisingly simple, proof of his theorem implying that the symmetric algebra of a
finite-dimensional representation of a finite group contains only finitely many iso-
morphism classes of indecomposable direct summands. Carlson presented a new
approach to the classification of thick subcategories of the stable module category
theory of a finite p-group (due to Benson, Rickard and Carlson) that avoids the
use of infinite-dimensional modules.

Mathas presented a proof that the decomposition numbers of cyclotomic Hecke
algebras and Schur algebras at non-roots of unity are independent of the char-
acteristic, as part of an overview of work with Hu on Khovanov-Lauda-Rouquier
algebras and their quasi-hereditary covers.

Geck presented a generalisation of the Frobenius-Schur indicator to arbitrary
symmetric algebras. As an application, the well-known fact that the number of
involutions in a finite Coxeter groupW is equal to the sum of the character degrees
is refined to a statement involving Kazhdan-Lusztig cells of W .

Sambale gave an overview on classical block invariants using and refining meth-
ods going back to Brauer. He extended in the process the calculations of these
invariants to a number of new families of defect groups whose possible fusion sys-
tems are calculated.
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Tiep described work with Larsen and Shalev on a non-commutative analogue
of the Waring problem, culminating in the statement that every element in a
quasi-simple finite group is a product of two squares.
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Abstracts

Around a theorem of Mislin in the cohomology of finite groups

David Benson

This talk is about joint work I carried out in February and early March of this
year in Copenhagen with Jesper Grodal and Ellen Henke. Let G be a finite group,
p be a prime dividing |G|, k a field of characteristic p and S a Sylow p-subgroup
of G. An element x ∈ H∗(S, k) is said to be stable with respect to G if for all
P , Q ≤ S and g ∈ G with Q = gPg−1 we have resS,P (x) = c∗gresS,Q(x), where
c∗g : H

∗(Q, k) → H∗(P, k) is induced by conjugation. A theorem of Cartan and
Eilenberg from their 1956 book on homological algebra shows that H∗(G, k) is
identified by restriction with the subset of H∗(S, k) consisting of elements which
are stable with respect to G.

A subgroup H ≤ G containing S is said to control fusion of subgroups of S in G
if for all P , Q ≤ S and g ∈ G such that gPg−1 = Q there exists h ∈ H such that
h−1g ∈ CG(P ). In other words, every conjugation in G between subgroups of S
already happens in H . It follows from the theorem of Cartan and Eilenberg that
if H controls fusion of subgroups of S in G then the restriction map H∗(G, k) →
H∗(H, k) is an isomorphism.

Mislin’s theorem is the converse of this. It says that if S ≤ H ≤ G as above,
and the restriction map H∗(G, k) → H∗(H, k) is an isomorphism then H controls
fusion of subgroups of S in G. Mislin’s proof uses Sullivan’s conjecture on maps
between classifying spaces, which had been proved by Haynes Miller in 1984, and a
theorem of Dwyer and Zabrodsky from 1987. Peter Symonds partially algebraised
the proof in 2006. He reduced it to a problem about cohomology of trivial source
modules. Hida and Okuyama independently completed this algebraisation process
in 2007.

Our first theorem provides an independent route to algebraising Mislin’s theo-
rem when p is odd. Namely, we prove that if p is an odd prime and H controls
fusion of elementary abelian p-subgroups of S in G then it controls fusion of sub-
groups of S in G. The proof is purely group theoretic, and makes use of two results
of John Thompson. One is the A×B lemma, and the other is a theorem guaran-
teeing the existence of a characteristic subgroup of a p-group that has exponent p
and detects p′-automorphisms, provided p is odd. This lemma is false for p = 2,
as is easy to see by looking at the quaternion group Q8.

A theorem of Quillen expresses the cohomology variety in terms of the ele-
mentary abelian p-subgroups of G. It is easy to see from Quillen’s theorem that
if H∗(G, k) → H∗(H, k) is an F -isomorphism then H controls fusion of elemen-
tary abelian subgroups of G. Combining this with our theorem not only reproves
Mislin’s theorem for p odd, but also shows that H∗(G, k) → H∗(H, k) is an isomor-
phism if and only if it is an F -isomorphism. It is easy to see that this last statement
is false for p = 2, by looking at the inclusion of Q8 into SL(2, 3) = Q8 ⋊ Z/3.
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Let U be the category of unstable modules over the Steenrod algebra A, and
let Nil be the full subcategory consisting of locally nilpotent modules in U . This
is the same as the localising subcategory generated by suspensions of modules.
More generally, we write Niln for the localising subcategory generated by the n-
fold suspensions of modules. Then an F -isomorphism is the same thing as an
isomorphism in the quotient U/Nil . So what we have proved is that for p odd,
H∗(G, k) → H∗(H, k) is an isomorphism in U if and only if it is an isomorphism in
U/Nil . We have examples to show that for p = 2, given any n > 0 there are groups
H ≤ G with |G : H | odd, such that H∗(G, k) → H∗(H, k) is an isomorphism in
U/Niln but not in U/Niln+1. So the situation for p = 2 is as different as it can
be from p odd.

On the other hand, we prove that if p = 2 and H controls fusion of abelian
2-subgroups of S of exponent at most 4 then it controls fusion of subgroups of S
in G. In particular, for any prime, if H controls fusion of abelian subgroups of S
in G then it controls fusion of subgroups of S in G.

We can combine this statement with the work of Hopkins, Kuhn and Ravenel
(1992/2000) on “character theory” for Morava K(n) theory of BG for the prime
p. Their work implies the following. Suppose that S ≤ H ≤ G as above and
K(n)∗(BG) → K(n)∗(BH) is an isomorphism for n ≥ rp(G). Then H controls
fusion of abelian subgroups of S in G.

This gives us a new topological proof of Mislin’s theorem for any prime, and
indeed it gives the further information that H∗(G, k) → H∗(H, k) is an isomor-
phism if and only if K(n)∗(BG) → K(n)∗(BH) is an isomorphism, provided that
p does not divide |G : H |.

Finally, we prove the following non-obvious group theoretic statement. Let
H → G be a homomorphism of finite groups. Suppose that Hom(A,H)/H →
Hom(A,G)/G is a bijection whenever A is a finite abelian p-group. Then the
kernel has order prime to p, the image has index prime to p (hence contains a
Sylow p-subgroup S of G), and the image controls fusion of subgroups of S in G.
The proof is again entirely group theoretic.

Using this, we can remove the coprime index hypothesis and deduce that for
any subgroup H of G, H∗(G, k) → H∗(H, k) is an isomorphism if and only if
K(n)∗(BG) → K(n)∗(BH) is an isomorphism for n ≥ rp(G). In particular, since
the former implies that p does not divide |G : H |, so does the latter.

The Roquette category of finite p-groups

Serge Bouc

Let p be a prime number. The Roquette categoryRp of finite p-groups is an additive
tensor category with the following properties :

• Every finite p-group can be viewed as an object of Rp. The tensor product
of two finite p-groups P and Q in Rp is the direct product P ×Q.
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• In Rp, any finite p-group has a direct summand ∂P , called the edge of P ,
such that

P ∼= ⊕
NEP

∂(P/N) .

Moreover, if the center of P is not cyclic, then ∂P = 0.
• In Rp, every finite p-group P decomposes as a direct sum

P ∼= ⊕
R∈S

∂R ,

where S is a finite sequence of Roquette p-groups, i.e. of p-groups of nor-
mal p-rank 1, and such a decomposition is essentially unique. Given the
group P , such a decomposition can be obtained explicitly from the knowl-
edge of a genetic basis of P .

• The tensor product ∂P ×∂Q of the edges of two Roquette p-groups P and
Q is isomorphic to a direct sum of a certain number νP,Q of copies of the
edge ∂(P ⋄Q) of another Roquette group (where both νP,Q and P ⋄Q are
known explicitly).

• The additive functors fromRp to the category of abelian groups are exactly
the rational p-biset functors introduced in [1].

This yields a construction of a genetic basis of P ×Q, for finite p-groups P and Q,
knowing a genetic basis of P and a genetic basis of Q. It allows for a quick
computation of the evaluations F (P ) and their faithful part ∂F (P ), when F is a
rational p-biset functor : this applies in particular to the functor RK , where K is
a field of characteristic 0, or to the functor B× of units of Burnside rings ([2]), but
also to the torsion part Dt of the Dade group ([3]).

Another possibly interesting fact is that some non-isomorphic p-groups may
become isomorphic in the category Rp. When p = 2, there are even examples
where this occurs for groups of different orders.

References
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Some questions of equivariance and extendibility in finite groups of

Lie type

Marc Cabanes

(joint work with Britta Späth)

Several important problems relating global and local information on representa-
tions of finite groups have been reduced recently to questions about quasi-simple
groups. Examples are the McKay conjecture about characters of p′-degrees, or
Alperin’s weight conjecture (see [6], [7] respectively, and the talks of this volume
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by Navarro and Späth). The verification to be made is often called the inductive
condition corresponding to that conjecture.

When trying to solve the problems for finite quasi-simple groups of Lie type, at
least three classes of problems arise. Equivariance of correspondences of characters,
extendibility of characters to natural overgroups, and a 3rd class of problems, less
well acknowledged, deriving from the fact that the representation theory of quasi-
simple groups (special linear or unitary groups, for instance) is in poorer shape
than the one of finite groups of rational points of groups with connected center
(general linear groups, for instance).

In this talk we report on recent research by the author, mostly in joint work
with B. Späth (Aachen), on those questions in relation with the McKay conjecture.

In what follows, let G be a reductive group over an algebraically closed field F
of characteristic p > 0, assume it is defined over a finite subfield Fq, thus giving
rise to a Frobenius endomorphism F : G → G. An instance is G = SLn(F) and
F being be the raising of matrix entries to the q-th power or the same composed

with transposition-inversion. Let G ⊆ G̃ = G.Z(G̃) an inclusion into a group with

connected center and same derived group, also defined over Fq. Let G̃
∗ → G∗ the

corresponding dual groups. In the case of G = SLn, one would take G̃ = GLn,

G̃∗ = GLn → G∗ = PGLn.
Define Aut(G, F ) as the set of bijective algebraic group morphisms G → G

commuting with F .
Any parabolic subgroup P of G with Levi decomposition P = Pu ⋊ L satis-

fying F (L) = L gives rise to a Deligne-Lusztig variety {x ∈ G/Pu | g−1F (g) ∈
Pu.F (Pu)} on which GF acts on the left and LF acts on the right, thus allowing
to define Deligne-Lusztig induction

RG

L⊆P : ZIrr(LF ) → ZIrr(GF ).

As a consequence of equivariance of étale cohomology, one has σ.RG

L⊆P =

RG

σL⊆σP.σ for any σ ∈ Aut(G, F ).
Recall

Theorem. (Deligne-Lusztig, 1976) Irr(GF ) =
∐

[s] E(G
F , [s]) where the sum

is over G∗F -conjugacy classes of semi-simple elements s ∈ G∗ss
F and where the

subset E(GF , [s]) gathers all components of characters RG

T
(θ) where T is an F -

stable maximal torus of G with the pair (T, θ) corresponding to a pair (T∗ ∋ s)
by duality.

When s = 1 the elements of E(GF , 1) are called unipotent characters. One has
a Jordan decomposition of characters of GF .

Theorem. (Lusztig, 1984) If Z(G̃) = Z(G̃)◦, s ∈ G̃F
ss, then C

G̃∗(s) is connected
and there is a bijection

E(G̃F , [s]) ↔ E(C
G̃∗(s)

F , 1)

which commutes with Deligne-Lusztig inductions.
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Remark. (C.-Späth, 2011, see [4]) The above can be taken Aut(G̃, F )-equivariant.

Theorem. (Lusztig, 1988) The above Jordan decomposition holds for any reduc-
tive G with compatibility with RG

T
maps and defining E(CG∗(s)F , 1) as the set of

characters of CG∗(s)F lying over an element of E(CG∗(s)◦F , 1).

In the case of type A, Bonnafé has proved more precise statements relating the
above with Weyl groups. Assume G = SLn, s ∈ G∗ss

F .

Theorem. (Bonnafé, 2006 [1], [2]) Let T be an F -stable maximal torus of
CG∗(s)◦, W (s) := (NG∗(T)/T)wsF where ws ∈ NG∗(T) is chosen so that W (s)
has maximal order. Then

(i) There is an explicit bijection Irr(W (s)) ↔ E(GF , [s]) compatible with RG

L

functors on the RHS and ordinary induction on the LHS.
(ii) When GF = GLn(Fq), there is a bijection Irr(W (s)) ↔ E(CG∗(s)F , 1) with

the same kind of compatibilities.

Proposition. (C. 2011 [3]) Point (ii) above is also true for GF = SUn(Fq).

The formulas given by Bonnafé are linear combinations of RG

L
generalized char-

acters, so the equivariance mentioned above allows to prove

Theorem. (C.-Späth 2012 [5]) The above Jordan decomposition of characters
when G = SLn is Aut(G, F )-equivariant.

Application to the McKay conjecture. If (S, ℓ) is a pair consisting of a finite
non-abelian simple group S and a prime ℓ, one says that it satisfies the inductive
McKay condition (iMK) if and only if there is a universal covering 1 → M(S) →
H → S → 1 (where M(S) is the Schur multiplier of S), a Sylow ℓ-subgroup
P ⊆ H , a subgroup N ( H which is Aut(H)P -stable and contains NH(P ), and a
bijection

Ω: {χ ∈ Irr(H) | ℓ ∤ χ(1)} → {ψ ∈ Irr(N) | ℓ ∤ ψ(1)}

which is Aut(H)P -equivariant, preserves characters of M(S) and such that each
pair (χ,Ω(χ)) satisfies a condition (Cohom) as in [8] (see also the talk by B. Späth,
this volume). Recall

Theorem. (Isaacs-Malle-Navarro 2007 [6]) If every finite simple group S is such
that (S, ℓ) satisfies iMK, then the McKay conjecture on character degrees prime
to ℓ holds.

Many simple groups have been shown to satisfy iMK for any prime ℓ. Specifi-
cally types PSL2,

2B2,
2G2 ([6]), alternating groups (Malle). We also show

Theorem. (i) For S = PSLn(q) there is a bijection Ω as in iMK satisfying
equivariance ([5]).

(ii) S = PSUn(q) satisfies iMK ([5]).
(iii) S = 3D4(q), E8(q), F4(q),

2F4(2
2a+1), G2(q) satisfy iMK ([4])
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[3] M. Cabanes, On Jordan decomposition of characters for SU(n, q), preprint (2011)

arXiv:1112.6035.
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Thick subcategories of the bounded derived category

Jon F. Carlson

(joint work with Srikanth B. Iyengar)

Throughout, k denotes a field of characteristic p. Let S = k[x1, . . . , kn] be a
polynomial ring in n variables, and let G be a finite group. For any ring R, the
derived category D(R) is the category consisting of objects which are complexes of
R-modules, with morphisms being chain maps of complexes – except that we invert
any quasi-isomorphism (a chain map that induces an isomorphism on homology).
We let Db(R) be the full subcategory of bounded, finitely generated complexes.

The stable category, stmod(kG), has objects consisting of all finitely generated
kG-modules. If M and N are kG-modules then the set of morphisms from M to
N in the stable category is the group

Homstmod(kG)(M,N) = HomkG(M,N)/PHomkG(M,N),

where PHomkG(M,N) is the set of all homomorphisms from M to N that factor
through a projective module. There is a functor Db(kG) −→ stmod(kG), which
collapses a complex down to a single module concentrated in degree zero.

The derived category and the stable category are triangulated categories, mean-
ing that each has a translation functor τ on the category and the category has trian-
gles. In the case ofDb(R), the translation functor τ is the shift τ(F∗) = F [1], where
F [1]r = Fr−1 and the boundary map on F is multiplied by −1. In stmod(kG),
the translation functor is Ω−1. If M is a finitely generated kG-module, Ω−1(M)
is the cokernel of the inclusion of M in its injective hull.

If S is a subcategory of a triangulated category C, then S is thick if it is
triangulated, closed under finite direct sums (coproducts) and direct summands.

The purpose of this work is to tie together two theorems, which sound the
same, but originally had very different proofs. The first was actually proved more
generally for commutative noetherian rings.
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Theorem 1. (Hopkins [5]) The thick subcategories of Db(S) (or Db(R) for any
commutative noetherian ring R) are determined by the support varieties of the
objects.

The second was proved several years later.

Theorem 2. (Benson-Carlson-Rickard [2]) The (tensor ideal) thick subcategories
of stmod(kG) are determined by the support varieties of the objects. (“Tensor
ideal” means that if M is in the subcategory, then so is M ⊗k N for any module
N .)

While the statements of the two theorems are similar, the proofs were com-
pletely different because the notions of support varieties in the two categories,
seemingly could not be reconciled. The proof in [2] relied on the theory of idem-
potent modules. These are infinitely generated modules associated to thick subcat-
egories and thus, the theorem in [2] which spoke only of finitely generated modules
relied on infinite constructions. One aspect of the current work is that it does not
resort to infinite constructions.

The support varieties for Db(S) are described in the following fashion. Let
Spec(S) denote the spectrum of S, the space of all prime ideals in S with the
Zariski topology. The support of an object F∗ ∈ Db(S) is the variety of the
annihilator of the homology of F∗. Viewed this way, Hopkins’ Theorem says: If S
is a thick subcategory of Db(S), then there exists a subset W ⊆ Spec(S), which
is closed under specialization (if U ⊂ V and V ∈ W , then U ∈ W) such that
S = Db(S)W , the full subcategory of objects whose supports are in W .

For the group algebra the support varieties are defined by way of the cohomol-
ogy ring. Suppose that M is a finitely generated kG-module or bounded complex
of finitely generated modules. Then the ring Ext∗kG(M,M) is a finitely generated
module over the cohomology ring H∗(G, k) ∼= Ext∗kG(k, k). Let J(M) be the anni-
hilator of Ext∗kG(M,M) in H∗(G, k), and let VG(M) be the variety of J(M), the
set of all ideals that contain J(M).

Thus, the theorem of BCR says: If S is a tensor ideal thick subcategory of
stmod(kG), then there exists a subset W ⊆ Spec∗(H∗(G, k)), which is closed
under specialization, such that S = stmod(kG)W , the full subcategory of objects
whose supports are in W .

The thick subcategory generated by an object M , Thick(M), is the smallest
thick subcategory that contains M . In D(S), Thick(S) = Db(S). If G is a p-
group, then in D(kG), Thick(k) = Db(kG).

For the moment, we assume that G = 〈g1, . . . , gn〉 ∼= (Z/2Z)n is an elementary
abelian group of order 2n. (gigj = gjgi, g

2
i = 1.) Note that if zi = gi − 1, then

z2i = g2i −12 = 0. So kG = k[z1, . . . , zn]/(z
2
1 , . . . , z

2
n). Let Λ = Λ(z1, . . . , zn) denote

the exterior algebra generated by z1, . . . , zn. If p = 2, then Λ = kG.
We define a complex J = Λ ⊗ Homk(S, k) with differential δ =

∑n
i=1 zi ⊗ xi.

Let Sn denote the space of homogeneous polynomials of degree n in S. Let Tn =
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Homk(S
n, k). Then J has the form.

. . . // Λ⊗ T2 // Λ⊗ T1 // Λ ⊗ T0 // 0

An easy check shows that this is a Λ-projective resolution of the trivial module k.
Following work of Avramov, Buchweitz, Iyengar and Miller [1] we connect this

with the support varieties for the polynomial ring S. This is accomplished by
regarding S and Λ as differential Graded (DG) algebras with zero differential.
Then J is a DG (Λ ⊗ S)-module. Consider D(Λ) and D(S) as the categories of
DG modules over Λ and S. Define a functor

h : D(Λ) −→ D(S)

M 7→ HomΛ(J,M) = HomΛ(Λ⊗Homk(S, k),M)

Note that h(k) = HomΛ(Λ ⊗ Homk(S, k), k) ∼= S. So h(Db(Λ)) = h(Thick(k)) =

Thick(S) = Df (S).

Theorem 3. [1] The functor h induces an equivalence of categories Db(Λ) →
Df(S).

So define the support of a Λ-module M to be the support of the S-module
h(M) = HomΛ(J,M), which is the annihilator in S of the homology of h(M). Now
because J is a Λ-projective resolution of k, S = h(k) = Ext∗Λ(k, k) which (when
p = 2) is H∗(G, k). Moreover, h(M) = Ext∗kG(k,M). So (p = 2), the support
of h(M) is the subvariety of Spec∗(H∗(G, k)) of the annihilator of ExtkG(k,M).
This is equivalent to the usual definition of VG(M). Hence, if p = 2 and G is
an elementary abelian 2-group, we have Hopkins’ Theorem implies the theorem of
BCR.

If p > 2, then we can prove the same, but we need an intermediate step through
a Koszul algebra whose homology is the exterior algebra Λ as in the work of Benson,
Iyengar and Krause [3]. The functor we get is not an equivalence – but it is good
enough to establish the desired connection of support varieties.

If G is not an elementary abelian p-group, then the theorem that we need is the
following. Its original purpose was to prove that the stable category is generated
by modules induced from elementary abelian p-subgroups. But it relates the stable
and derived categories of kG-modules to those of the elementary abelian subgroups
of G is many ways.

Theorem 4. [4] For M a finitely generated kG-module or complex of kG-modules,
there exists an integer τ , depending only on G, and a finitely generated kG-module
V such that the direct sum M ⊕ V has a filtration

{0} = L0 ⊆ L1 ⊆ · · · ⊆ Lτ =M ⊕ V

with the property that for each i = 1, . . . , τ, there is an elementary abelian subgroup
Ei ⊆ G and a finitely generated kEi-module Wi such that

Li/Li−1 ∼=W ↑Gi .
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Broué’s Conjecture: The story so far

David A. Craven

Broué’s abelian defect group conjecture, posited in 1988, states that a block of a
finite group is derived equivalent to its Brauer correspondent, whenever the defect
group of the block is abelian. It is the most structural of a variety of local-global
conjectures that relate a block and its Brauer correspondent, and remains one of
the most difficult problems in group representation theory.

In this talk I described the new approach started by the author and Raphaël
Rouquier, which started in [3], and which has been expanded in [1] and [2]. This
has as its starting point the geometric version of Broué’s conjecture, which sug-
gests that a particular derived equivalence between the two blocks is given by the
cohomology of a Deligne–Lusztig variety; this version of the conjecture is only
stated for unipotent blocks of finite groups of Lie type, but since these form most
of the finite simple groups, this is a fundamental case that needs to be established.

The approach suggested in [3] is to focus on the derived equivalence given by
the geometric form, without proving that it is actually given by the cohomology of
a Deligne–Lusztig variety. This derived equivalence should be perverse, a special
type of derived equivalence defined combinatorially. Furthermore, the combina-
torial information needed to define a perverse equivalence can (conjecturally) be
extracted from the (specialization of the) cyclotomic Hecke algebra associated to a
given unipotent block; this version of Broué’s conjecture is called the combinatorial
form.

These perverse equivalences have been constructed for various blocks of groups,
in some cases proving new cases of Broué’s conjecture, and so these methods can
be used to prove new instances of Broué’s conjecture.

In [2] I constructed all perverse equivalences between a block with cyclic defect
group and the Brauer tree algebra of the star, which is the Brauer correspondent;
I then prove that the combinatorial form of Broué’s conjecture holds whenever the
Brauer tree of a block with cyclic defect group is known. The collection of Brauer
trees of unipotent blocks that are still not known is becoming ever smaller, and it
is a reasonable goal that soon all Brauer trees for all principal blocks of all finite
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groups will be known, at least except for a small collection of primes corresponding
to large sporadic groups.

I then ended the talk by applying the methods of [2] to construct a sample
Brauer tree corresponding to the non-existent group H3(q) and ℓ | Φ6(q); the
combinatorial Broué conjecture can be described for H3, H4 and I2(n), and so we
can construct, up to Morita equivalence, the unipotent blocks of these ‘groups’.
The mathematical significance behind these objects is still shrouded in mystery.
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Ghost algebras for double Burnside algebras

Susanne Danz

(joint work with Robert Boltje)

Given a finite groupG, the double Burnside ring ofG is defined as the Grothendieck
ring of the category of finite (G,G)-bisets with respect to disjoint unions and the
tensor product of bisets. In recent years, double Burnside rings and the underlying
concept of bisets have developed into objects of great interest, having connections
with modular representation theory of finite groups, with algebraic topology, and
with the theory of fusions systems.

In this talk I focussed on the the rational double Burnside algebra QB(G,G) :=
Q ⊗Z B(G,G). I introduced ghost algebras for QB(G,G), as analogues of the
classical ghost ring of the usual (commutative) Burnside ring, in order to translate
the complicated multiplication in B(G,G) into a more transparent one.

The ghost algebras.

As an abelian group, the double Burnside ring B(G,G) can be canonically
identified with the usual Burnside group B(G × G), by viewing (G,G)-bisets as
left G × G-sets and vice versa. Using this identification and denoting by SG×G
the set of all subgroups of G×G we obtain an embedding of Q-vector spaces

α : QB(G,G) → QSG×G, [X ] 7→
∑

x∈X
StabG×G(x) ,

where X is any (G,G)-biset and [X ] is its image in B(G,G). Every subgroup of
G×G can be interpreted as a relation on G, and the composition of relations turns
SG×G into a monoid. In [1] we defined a 2-cocycle of this monoid, and, denoting
the resulting twisted monoid algebra by A, we showed the following

Theorem 1. There is an idempotent e in the twisted monoid algebra A such that
the map α yields a Q-algebra isomorphism

QB(G,G)
∼
−→ eAe ⊆ A = QSG×G .
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As a set, eAe simply equals the set (QSG×G)G×G of fixed points under the
G×G-conjugation action.

In [1] we also defined a second ghost algebra of QB(G,G), which is obtained
from the one in Theorem 1 by composing α with the Q-vector space isomorphism
ζ : QSG×G → QSG×G, L 7→

∑
L′6L L

′. In fact, the composition ζ ◦ α, viewed

as a Q-linear map QB(G × G) → (QSG×G)G×G, is precisely the classical mark
homomorphism. An important feature of this alternative ghost algebra is the fact
that many products of basis elements are 0.

Application 1 – Simple QB(G,G)-modules.
By Theorem 1 we, can now view the double Burnside algebra as a Schur al-

gebra of the twisted monoid algebra A. As a first application of this result, we
have studied the simple QB(G,G)-modules. From recent work of Linckelmann–
Stolorz [7] on twisted category algebras we first obtained a parametrization of the
isomorphism classes of simple A-modules. By Green’s theory of Schur functors
(cf. [5, Section 6.2]), it is known that there is an injective map from the set of
isomorphism classes of simple eAe-modules into the set of isomorphism classes of
simple A-modules; the isomorphism class of a simple A-module S is contained in
the image of this map if and only if eS 6= {0}. In [1] we have given an explicit
criterion, formulated in terms of character theory of finite groups, for the last con-
dition to be satisfied. This also enabled us to improve an earlier result of Bouc,
given in [3], on the parametrization of simple QB(G,G)-modules.

Application 2 – Double Burnside algebras of cyclic groups.
Another application of our ghost algebra approach concerns the double Burnside

algebra QB(G,G) in the case where G is a finite cyclic group. We have shown that
QB(G,G) is then isomorphic to the (untwisted) category algebra of a finite inverse
category. Thus, invoking work of Linckelmann [6] and Steinberg [8], QB(G,G) is
isomorphic to a direct product of matrix algebras over finite group algebras over
Q. We have determined these matrix algebras as well as an explicit isomorphism
between their product and the algebra QB(G,G).

In this way we, in particular, recover one half of Bouc’s result [3, Prop. 6.1.7],
which states that the double Burnside algebra QB(G,G) is semisimple if and only
if G is cyclic.

Application 3 – Simple biset functors.
Although we have only mentioned our results concerning the double Burnside

ring of a fixed group G here, our theory developed in [1] uses a more general
setup. For any finite groups G, H and K, one defines the double Burnside groups
B(G,H), B(H,K) and B(G,K), and a Z-bilinear tensor product ×H : B(G,H)×
B(H,K) → B(G,K). Following work of Bouc [2], the double Burnside groups
B(G,H) are the morphism sets in a category whose objects are the finite groups,
and the composition of morphisms is the tensor product above. Representation
groups of finite groups can be seen as additive functors (biset functors) on this
category, and these functors in turn form themselves a category, which is equivalent
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to the module category of the algebra
⊕

G,H B(G,H). Generalizing Theorem 1,

in [1] we obtained a description of the category of biset functors (over suitable
commutative rings) as the module category of a Schur algebra of a twisted category
algebra. Moreover, we gained new information on the simple biset functors over
fields of characteristic 0.
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Quotients of Deligne-Lusztig varieties

Olivier Dudas

Let G be a connected reductive algebraic group and F be a Frobenius endomor-
phism defining an Fq-structure on G. The group of fixed points GF = G(Fq) is
a finite reductive group. Examples of such groups are the classical groups GLn(q),
SLn(q), Sp2n(q) and the exceptional groups of Lie type, such as E8(q).

The first approach for studying the representation theory of finite reductive
groups is a variant of the classical induction/restriction for representations of ab-
stract groups. Given an F -stable Levi subgroup L which is the Levi complement
of an F -stable parabolic subgroup P = LU of G one can define a pair of adjoint
functors, called Harish-Chandra induction/restriction functors as follows.

RG

L
: OLF -mod −→ OGF -mod

N 7−→ O[GF /UF ]⊗OLF N

∗RG

L
: OGF -mod −→ OLF -mod

M 7−→ MU
F

.

A key tool for working with these functors is the so-called Mackey formula which
gives the following isomorphism of functors

∗RG

M
◦ RG

L
≃
∑

RL

L∩xM
◦ ∗R

x
M

L∩xM
◦ adx
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where x runs over a set of representatives in LF \GF/MF of elements such that
L ∩ xM contains a maximal torus of G. This can be used for example to prove
that RG

L
and ∗RG

L
do not depend on P (but only on L).

Deligne and Lusztig have generalised this construction to the case where P is no
longer assumed to be F -stable [6]. The permutation moduleO[GF /UF ] is replaced
by the cohomology of a quasi-projective variety YG(U) (with coefficients in a finite
extension of Qℓ, Zℓ or Fℓ). The price to pay is that the new functors RG

L⊂P and
∗RG

L⊂P are no longer defined on the module category but on its bounded derived
category. Furthermore, the naive Mackey formula does not hold for these derived
functors, even though it holds for the morphisms induced on the Grothendieck
groups [6, 1, 2].

The purpose of this note is to explain how to solve this problem in the specific
case where L is any F -stable Levi subgroup and M is a Levi complement of an
F -stable parabolic subgroup Q = MV. In that situation, the composition of
induction/restriction is given by the cohomology of a quotient of the Deligne-
Lusztig variety

∗RG

M
◦ RG

L⊂P ≃ RΓc(V
F \YG(U))⊗LF −

and having a Mackey formula amounts to expressing the cohomology of this quo-
tient in terms of ”smaller” Deligne-Lusztig varieties. This provides an inductive
method for computing the cohomology of Deligne-Lusztig varieties. We will detail
the example of GLn(q) for which the representation theory is well-known.

1. Unipotent ℓ-blocks of GLn(q)

Recall that the unipotent characters of GLn(q) are parametrised by partitions
of n. The trivial character 1 = χ(n) corresponds to the partition (n) whereas
the Steinberg character St = χ(1,...,1) corresponds to the conjugate partition
(1, 1, . . . , 1).

Most of the properties of the unipotent characters (dimensions, restriction/in-
duction. . . ) can be read off from the associated partition. The Nakayama conjec-
tures give the partition of the unipotent characters into ℓ-blocks.

Theorem 1.1 (Brauer-Robinson). Let ℓ be a prime number. Assume ℓ and q are
coprime and let d be the order of q modulo ℓ. Then χλ and χλ′ are in the same
ℓ-block if and only if λ and λ′ have the same d-core.

Examples.

(i) If λ is a d-core, then χλ is the character of a projective module over Zℓ.

(ii) Assume n = 3. Then {1, St, χ(2,1)} is a single 3-block whereas the partition
of unipotent characters into 2-blocks is {1, St}, {χ(2,1)}.

(iii) Assume n = d. Then the unipotent character in the principal block corre-
spond to n-hooks (n− i, 1i).



982 Oberwolfach Report 16/2012

2. Deligne-Lusztig varieties associated with blocks

Let d ∈ {1, . . . , n}. There exists a Deligne-Lusztig variety Xn,d of dimension
2n− d− 1 whose cohomology affords a ”minimal” d-induction [3]. More precisely,
if µ ⊢ n − d, we can form the local system Fµ associated to the representation
χµ of GLn−d(q) and the constituents of the virtual character

∑
(−1)iHi

c(Xn,d,Fµ)
are exactly the unipotent characters χλ where λ is obtained from µ by adding a
d-hook. In particular, if µ is a d-core, the cohomology of Xn,d with coefficients in
Fµ gives the unipotent characters in the ℓ-block associated to µ.

Although there are general methods for computing the alternating sum of the
cohomology (such as Lefschetz trace formula), it is a difficult problem to determine
each individual cohomology group. When µ is trivial, the cohomology of Xn,d has
only been determined when d = n [10], d = n − 1 [7] and n = 2 [8]. Craven has
formulated in [5] a conjecture giving the degree in the cohomology where a given
unipotent character should appear. Using a good quotient of Xn,d one can prove
the following.

Theorem 2.1 (2011 [9]). Craven’s formula holds for Xn,d when µ is trivial. Fur-
thermore, Craven’s formula holds for any unipotent local system if it holds for
d = 1.

The case d = 1 corresponds to the Deligne-Lusztig variety X(π) associated
with the central element π = w0

2 of the Braid group. A precise conjecture for
the cohomology of this variety was already formulated in [4].

3. Quotients of Xn,d

In this section we assume that M = GLn−1(Fq) is the standard Levi subgroup
of G. The Harish-Chandra restriction ∗RG

M
of a unipotent character χλ is given by

the usual branching rule for representations of the symmetric group. In particular,
if λ is obtained from µ by adding a d-hook, then the restricting χλ amounts to

• restricting µ to obtain a character χλ′ which occurs in the cohomology of
Xn−1,d with coefficients in the restriction of Fµ;

• restricting the d-hook (in general in two different ways) to obtain a char-
acter χλ′′ which occurs in the cohomology of Xn−1,d−1 with coefficients in
Fµ.

To understand geometrically why two copies of χλ′′ should occur we use Lusztig’s
result on the case d = n. He showed in [10] that the quotient VF \Xn,n is iso-

morphic to F
×
q × Xn−1,n−1. The cohomology of F

×
q is given by two copies of the

coefficient ring in two consecutive degrees. Note that this part does not contribute
to the alternating sum as the two terms cancel out.

Theorem 3.1 (2011 [9]). Assume d ≥ 2. There is a decomposition of the quotient
VF \Xn,d = U ∪ Z into a disjoint union of LF -subvarieties such that

• Z is a closed subvariety whose cohomology is given by

Hi
c(Z,Fµ|Z) ≃ Hi−2

c (Xn−1,d,FResµ)(1)
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• U is an open subvariety whose cohomology is given by

Hi
c(U,Fµ|U ) ≃ Hi−2

c (Xn−1,d−1,Fµ)(1)⊕Hi−1
c (Xn−1,d−1,Fµ)

From this decomposition we obtain a long exact sequence relating the cohomol-
ogy of VF \Xn,d to the cohomology of Xn−1,d and Xn−1,d−1. Together with the
action of the Frobenius this determines completely the cohomology of Xn,d.

The minimal cases correspond to d = n and d = 1. Lusztig solved the first one
in [10]. For the second one, we can only prove that Craven’s formula hold when µ
is the trivial partition. The other cases are work in progress.

4. An example

Assume that Craven’s formula hold for the cohomology of X5,3 and X5,4 with
coefficients in the trivial local system. We give here the cohomology with compact
support; the black boxes in Young diagrams correspond to the partition µ we
started with, that is (2) for X5,3 and (1) for X5,4. The white boxes represent the
d-hook that we have added.

5 6 7 8 9 10 11 12

H•c(X5,3)
��

��
��

H•c(X5,4)
�

�
�

�

Using Theorem 3.1 we write the long exact sequence in cohomology and deduce
the cohomology of X6,5. The groups of degree 10 and 11 are obviously zero, the
group of degree 14 is also easily obtained, and the group of degree 7 follows from
equivariance of the boundary map H7

c(Z) 7−→ H8
c(U). For the remaining ones, we

need to use the action of F together with the fact that the cohomology of VF \X6,5

should be the restriction of unipotent characters of GL6(q).
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7 −→ ⊕ = Res
��

−→ −→

8 ⊕ −→ ⊕ = Res
��

−→ −→

9 −→ = Res �� −→ −→

10 0 −→ 0 −→ 0 −→

11 0 −→ 0 −→ 0 −→

12 0 −→ 0 −→ −→

13 −→ 0 −→ 0 −→

14 −→ = Res �� −→ 0 −→
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Some recent developments in the study of homomorphisms between

Specht modules

Matt Fayers

The Specht modules Sλ are very natural combinatorially defined modules for the
group algebra of the symmetric group over any field. The problem of computing
the homomorphism space HomFSn

(
Sλ, Sµ

)
is an interesting one, and is closely
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connected to the fundamental problem of computing the decomposition numbers
for the symmetric groups.

In the talk I give some history of the problem, beginning with the set-up devel-
oped by Gordon James, and outlining some key results from the last thirty years.
I then highlight three important developments from 2011.

An algorithm for computing HomFSn

(
Sλ, Sµ

)
:

Techniques developed over the last ten years have been used to construct non-
zero homomorphisms between Specht modules in a variety of situations. However,
actually computing the space of all homomorphisms between two Specht modules
has been difficult to do in general. However, a ‘semistandardising’ result of the
speaker [F] yields a fast algorithm for computing HomFSn

(
Sλ, Sµ

)
, provided either

λ is 2-regular or the characteristic is not 2. This has been implemented in GAP
programs available at my web site [F-GAP].

Multi-dimensional homomorphism spaces:

Although examples abound of decomposition numbers greater than 1, it has
been very difficult to find examples of homomorphism spaces HomFSn

(
Sλ, Sµ

)

of dimension greater than 1. This has now been achieved independently and
almost simultaneously by Dodge [D] and Lyle [L]. In Dodge’s case, the Specht
modules lie in Rouquier blocks of symmetric groups. These are unusually well
understood blocks; in particular, the radical filtrations of the Specht modules in
these blocks are known (provided the defect is abelian) [CT], and this enables
Dodge to construct his examples (in characteristic at least 5). Lyle just finds
explicit (much smaller) examples, using the speaker’s GAP calculator. Her first
example for a given characteristic p is

λ = (6p− 5, 4p− 3, 3p− 3),

µ = (4p− 3, 4p− 3, 3p− 3, p− 1, p− 1).

Decomposable Specht modules:

Specht modules can be decomposable in characteristic 2 only, and examples
are hard to find. Remarkably, after a thirty-year hiatus, progress was made by
Dodge and the speaker, who (independently and simultaneously) discovered that
the Specht module S(4,3,1,1) is decomposable in characteristic 2. In joint work
[DF], we have exhibited a new family of decomposable Specht modules of the form
S(a,3,1,1,...,1), using established techniques to construct homomorphisms between
Specht modules to show that certain smaller Specht modules arise as summands
of these decomposables.
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Cells, symmetric algebras, and the Frobenius–Schur indicator

Meinolf Geck

Let W be a finite Coxeter group. It is well-known that all irreducible characters
of W can be realized over R and, hence, the number of involutions in W (that is,
elements w ∈W such that w2 = 1) equals the sum of the degrees of the irreducible
characters. Following a suggestion of Lusztig, we show [2] that the equality “num-
ber of involutions = sum of character degrees” admits a refinement with respect
to left, right and two-sided Kazhdan–Lusztig cells of W (both in the equal and
in the general unequal parameter case). The proof uses a generalisation of the
Frobenius–Schur indicator to symmetric algebras, which may be of independent
interest.

Let H be a finite-dimensional associative algebra over a sufficiently large field
K of characteristic 0. Assume that H is split semisimple and write Irr(H) for the
set of irreducible characters of H . Assume further that H is symmetric with trace
form τ : H → K and write τ =

∑
χ c
−1
χ χ where 0 6= cχ ∈ K for all χ ∈ Irr(H).

Finally, assume that there is an anti-algebra automorphism ∗ : H → H of order
2 such that τ(h∗) = τ(h) for all h ∈ H . Under these assumptions, there exists a
basis B0 of H such that τ(b′b∗) = δb,b′ for all b, b′ ∈ B0. Then it turns out that,
for any χ ∈ Irr(H), the number

νχ :=
1

cχχ(1)

∑

b∈B0

χ(b)2

has properties analogous to the familiar Frobenius–Schur indicator for the charac-
ters of a finite group; for example, we have

νχ ∈ {0, 1,−1} and
∑

χ∈Irr(H)

νχχ(1) = |{b ∈ B0 | b∗ = b}|.

There is also a characterisation in terms of the existence of H-invariant bilinear
forms on a module affording χ. In particular, this shows that νχ does not depend
on the choice of B0; furthermore, if K ⊆ R, then νχ = 1 for all χ ∈ Irr(H).
The proofs are easy adaptations of the original proofs of Frobenius and Schur, as
presented by Curtis [1].

Note that the standard symmetric algebra structure of the group algebra of
a finite group G satisfies the above properties where K = C and g∗ = g−1 for
all g ∈ G. Our application to left cells in a finite Coxeter group W uses the
symmetric algebra structure on the corresponding generic Iwahori–Hecke algebra
and Lusztig’s asymptotic algebra J (see [4]). Marberg [6] noticed that these results
imply a weak version of a conjecture due to Kottwitz [3] which predicts that the
number of involutions in a left cell Γ of W is given by the scalar product of
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the character afforded by Γ with the character afforded by a certain “involution
module” which re-appeared in recent work of Lusztig–Vogan [5].
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Quasi-isolated blocks and Brauer’s height zero conjecture

Radha Kessar

(joint work with Gunter Malle)

We complete the parametrisation of all p-blocks of finite quasi-simple groups by
describing quasi-isolated blocks of exceptional groups of Lie type for bad primes
in terms of generalised e-Harish Chandra theory [2]. Our description is analogous
to that obtained by Cabanes-Enguehard [3],[4] for good primes and by Enguehard
[5] for unipotent blocks and bad primes. Our second main result is the following:

If a p-block of a finite group has abelian defect groups, then the p-parts of the
degree of any two ordinary irreducible characters in the block are equal.

The above statement and its converse were conjectured by Brauer in 1955 and
are known as the height zero conjecture. Our proof relies upon a reduction of (the
relevant direction of) the conjecture by Berger and Knörr [1] to the quasi-simple
groups. We also draw on previous results by several authors proving the conjecture
for special cases.
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Quiver Schur algebras and decomposition numbers

Andrew Mathas

(joint work with Jun Hu)

Building on work of Khovanov and Lauda [14, 13] and Rouquier [16], Brun-
dan and Kleshchev [6] showed that the degenerate and non-degenerate cyclotomic
Hecke algebras of type A are Z-graded algebras. For the Hecke algebras of type B
at a non-root of unity, these algebras were first introduced by Brundan and Strop-
pel [8] in their study of the Khovanov diagram algebras.

Fix an integer e ∈ {0, 2, 3, 4, . . .}. Let Γe be the oriented quiver with vertex
set I = Z/eZ and edges i −→ i + 1, for all i ∈ I. To the quiver Γe we attach
the standard Lie theoretic data of a Cartan matrix (aij)i,j∈I , fundamental weights
{Λi | i ∈ I } and the positive weight lattice P+ =

∑
i∈I NΛi,

For each dominant weight Λ ∈ P+ and each integer n ≥ 0, Brundan and
Kleshchev [6] defined the cyclotomic quiver Hecke algebra RΛ

n by generators
and relations. In the rapidly growing literature about these algebras they are also
often called Khovanov-Lauda-Rouquier algebras.

Remarkably, Brundan and Kleshchev showed that the cyclotomic quiver Hecke
algebra RΛ

n is isomorphic to the corresponding degenerate and non-degenerate
cyclotomic Hecke algebra H Λ

n of type G(ℓ, 1, n). The cyclotomic Schur alge-
bras S DJM

n , introduced in [9, 5], are quasi-hereditary covers of these Hecke al-
gebras. It is natural to ask whether the KLR grading on the cyclotomic Hecke
algebras extends to the cyclotomic Schur algebras.

Theorem 1 (Ariki [1], Hu-M. [10, 12], Stroppel-Webster [17]). Suppose that K

is a field. Then there exists a Z-graded algebra Ṡ Λ
n which is a quasi-hereditary

graded cellular algebra, which has graded standard modules {∆µ | µ ∈ PΛ
n } and

irreducible modules {Lµ | µ ∈ PΛ
n }. Moreover, there is an equivalence of (un-

graded) highest weight categories EDJM
n : Ṡ Λ

n −Mod−→S DJM
n −Mod which sends

standard modules to standard modules and simple modules to simple modules in
the obvious way.

Ariki [1] first constructed these algebras in the special case when e > 3 and Λ =
Λ0, so that S DJM

n is the Dipper-James q-Schur algebra. Stroppel and Webster [17]
constructed their quiver Schur algebras in characteristic zero using the geometry
of quiver varieties. In [12] we use an algebraic construction to show, over an
arbitrary ring, that the KLR grading on R

Λ
n

∼= H
Λ
n induces a grading on the

‘permutation modules’ which are used to define S DJM
n . This naturally induces a

grading on Ṡ Λ
n

∼= S DJM
n . Moreover, we show that the algebras constructed by

Ariki and Stroppel-Webster are canonically isomorphic, as graded algebras, to the
cyclotomic quiver Schur algebras that we obtain.

When e = 0 and e ≥ n, in [10] we gave a very different construction of a cyclo-
tomic quiver Schur algebra S Λ

n which, it turns out, is both a graded subalgebra

of Ṡ Λ
n and graded Morita equivalent to Ṡ Λ

n . These ‘smaller’ cyclotomic quiver
Schur algebras have many remarkable properties. Quite surprisingly, given that
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their definitions are so different, in the special case when Λ is a weight of level 2
at a non-root of unity, S Λ

n is graded isomorphic to the graded quasi-hereditary
algebras introduced by Brundan and Stroppel [8] in their study of the Khovanov
diagram algebras.

In the degenerate case, Brundan and Kleshchev [5] have shown that the blocks
of S DJM

n are Morita equivalent to a sum of blocks OΛ
n of parabolic category O

for the general linear groups. We obtain a non-trivial extension of the main result
of [5] to the graded setting.

Theorem 2 (Hu-M. [10]). Suppose that Λ ∈ P+, e = 0 and K = C. Then there
are graded exact Schur functors FOn :OΛ

n −→ RΛ
n−Mod and FΛ

n :S Λ
n −Mod −→

RΛ
n−Mod and an equivalence of graded categories EΛ

n :OΛ
n −→ S Λ

n −Mod such
that the following diagram commutes:

OΛ
n S Λ

n −Mod

RΛ
n−Mod

EΛ
n

FΛ
n

FOn

In particular, S Λ
n −Mod is Koszul. Moreover, [Sλ : Dµ]q = [∆λ : Lµ]q whenever

Dµ 6= 0, for λ,µ ∈ PΛ
n .

Applying the results of [5], the grading on OΛ
n also induces a grading on the

cyclotomic Hecke algebra H Λ
n . The key to proving Theorem 2 is to show that

the KLR and category O gradings on H Λ
n coincide. We prove this in [10] by arti-

ficially manufacturing a positive grading on the indecomposable prinjective S Λ
n -

modules and then using a delicate counting argument which exploits the rigidity
of the projective modules (since category OΛ

n is Koszul), and the fact that the
graded decomposition numbers of RΛ

n are known through the work of Brundan
and Kleshchev [7]. Ultimately, however, our argument relies on Ariki’s categorifi-
cation theorem [2] and the Koszulity of parabolic category OΛ

n [3, 4], both of which
are proved using geometric machinery.

The direct sum of the Grothendieck groups of finitely generated S Λ
n -modules,

for n ≥ 0, can be identified with the full higher level combinatorial Fock space FΛ.
There are two natural representation theoretically defined ‘bar involutions’ on FΛ.
By Theorem 2 the graded decomposition numbers of S Λ

n are polynomials with non-
negative coefficients, so it follows that the irreducible, projective indecomposable
and tilting modules of S Λ

n correspond to the canonical bases (and dual canonical
bases) determined by these involutions. This allows us to give a very simple LLT-
like algorithm for computing the graded decomposition matrices of the quiver
Schur algebras when e = 0. What is most remarkable about this ‘LLT algorithm’ is
that it quickly computes the entire graded decomposition matrix for S Λ

n , unlike the
LLT algorithm which only computes the (graded) decomposition matrix for H Λ

n

when Λ = Λ0.
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Example The quiver Schur algebra S
Λ
n =

⊕
β S

Λ
β naturally decomposes into a

direct sum of blocks which are indexed by the positive root lattice. Each block
S Λ

β is an indecomposable quasi-hereditary graded cellular algebra with an explicit
grading.

Suppose that e = 0, Λ = 3Λ0 and that β = α−1 + 3α0 + α1 + α2 + α3.
Then S Λ

β is a block of defect 4. The maximal multipartition in PΛ
β is (4, 2|1|0)

so P (4,2|1|0) = ∆(4,2|1|0). Taking µ = (4, 1|1|1) our LLT algorithm says that we
should look at the following four standard tableaux because these tableaux index
a ∆-filtration of a particular graded projective S Λ

n -module Zµ, which has the
projective indecomposable graded module Pµ as a summand:

(
1 2 3 4

5

∣∣∣∣∣
6
∣∣∣∣∣

7
) (

1 2 3 4

5 6

∣∣∣∣∣
-
∣∣∣∣∣

7
)

(
1 2 3 4

5 7

∣∣∣∣∣
6
∣∣∣∣∣

-
) (

1 2 3 4

5 6

∣∣∣∣∣
7
∣∣∣∣∣

-
)

This implies that [Zµ] = [∆(4,1|1|1)] + q[∆(4,2|0|1)] + (q2 + 1)[∆(4,2|1|0)] in the
Grothendieck group of S Λ

β . Applying our LLT algorithm, [Zµ] = [Pµ]+[P (4,2|1|0)].
In general, our results say that there exist bar invariant Laurent polynomials
pλµ(q) = pλµ(q

−1) ∈ N[q, q−1] such that [Zµ] = [Pµ] +
∑

λ⊲µ pλµ(q)[P
λ]. By in-

duction on the dominance order, and Gaussian elimination, this determines [Pµ]
uniquely because

[Zµ] =
∑

λDµ

∑

t∈Stdµ(λ)

qdeg t−deg t
µ

[∆λ],

where Stdµ(λ) = { t ∈ Std(λ) | t D tµ and res(t) = res(tµ) } and tµ is the mini-
mal µ-tableau under dominance. The full graded decomposition matrix of S Λ

β in

characteristic zero (and, in fact, any field) is:

(0| 1 |4, 2) 1
(0|4, 2|1) q 1
(1| 0 |4, 2) q . 1
(1| 1 |4, 1) q2 . q 1
(1| 12 |4) . . . q 1
(1| 4 |12) . . . q . 1
(1|4, 1|1) q2 q q q2 q q 1
(1|4, 2|0) q3 q2 q2 . . . q 1
(12| 1 |4) . . q q2 q . . . 1
(12| 4 |1) . . q2 q3 q2 q2 q . q 1
(4| 1 |12) . . q q2 . q . . . . 1
(4| 12 |1) . . q2 q3 q2 q2 q . . . q 1

(4, 1| 1 |1) q2 q q3 + q q4 q3 q3 q2 . q2 q q2 q 1
(4, 2| 0 |1) q3 q2 q2 . . . . . . . . . q 1
(4, 2| 1 |0) q4 q3 q3 . . . q2 q . q . q q2 q 1

The algebra S Λ
β is one of the smallest examples of a block which has a graded

decomposition number which is not a monomial. ♦
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The graded decomposition numbers of S
Λ
n are the polynomials [∆λ :Lµ]q =∑

z∈Z[∆
λ :Lµ〈z〉]qz. Part of the content of Theorem 2 is that the graded decom-

position numbers are polynomials rather than Laurent polynomials. The coef-
ficients of these polynomials describe the grading and Jantzen filtrations of the
Weyl modules and the projective indecomposable modules. The Kleshchev mul-
tipartitions in this block, which index the simple H

Λ
β -modules, are (0|1|4, 2) and

(1|1|4, 1). If µ is Kleshchev then [∆λ :Lµ]q = [Sλ :Dµ]q.
If Λ is any weight of level ℓ = 2 then it is not too hard to show that | Stdµ(λ)| = 1

and hence that the graded decomposition numbers of S Λ
n are monomials in q. It

follows that, in this case, S Λ
n is a positively graded quasi-hereditary and Koszul

basic algebra. This allows us to give explicit bases for the graded Young modules
and the indecomposable projective S Λ

n -modules. If ℓ > 2 then, in general, S Λ
β is

neither basic nor positively graded.
The next result was announced in [10].

Theorem 3 (Hu-M. [11]). Suppose that e = 0 and that K is a field. Then
the graded decomposition numbers of S Λ

n (and hence of S DJM
n and H Λ

n ), are
independent of the characteristic of K.

Equivalently, this result says that the graded dimensions and the formal char-
acters of the simple S Λ

n -modules are independent of the characteristic of the base
field when e = 0. Applying Theorem 2, this implies that S Λ

n −Mod is Koszul
whenever K is a field.

Using the graded Schur functor from Theorem 2, it follows that the graded
decomposition numbers and the graded dimensions of the simple H Λ

n -modules
are independent of the characteristic when e = 0. This result establishes a special
case of a conjecture of Kleshchev and Ram [15, Conjecture 7.3] for the formal
characters of the KLR algebras of finite type.

Let H aff
n (K, ξ) be the extended affine Hecke algebra of type A defined over

the field K with Hecke parameter ξ. Then Theorem 3, via the last paragraph,
implies that the decomposition numbers and the dimensions of the simple module
of H aff

n (K, ξ) are independent of the characteristic of K, and independent of ξ,
whenever ξ is a non-root of unity in K.
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Parabolic Deligne-Lusztig varieties

Jean Michel

(joint work with François Digne)

The geometric version of Broué’s conjecture for finite reductive groups goes through
Deligne-Lusztig varieties.

Let G be a connected quasi-simple reductive group over the algebraic closure of
a finite field of characteristic p, and let F be an isogeny such that the fixed points
GF are finite. Then GF is called a finite group of Lie type.

Let ℓ 6= p be a prime such that the Sylow ℓ-subgroup S of GF is abelian.
Then L = CG(S) is a Levi subgroup; Broué’s conjecture for the principal block
predicts a derived equivalence between the principal ℓ-block of NGF (S) = NG(L)F

and that of GF . Specifically, there should exist a parabolic subgroup with Levi
decomposition P = LV such that the cohomology complex Hi

c(XV,Zℓ) of G
F ×

LF -bimodules, cut by the principal block of GF (or equivalently by that of LF )
is a tilting complex for the sought derived equivalence, where XV is the variety
{gV ∈ G/V | gV ∩ F (gV) 6= ∅}.

The variety XV is a LF -torsor over XP = {gP ∈ G/P | gP∩F (gP) 6= ∅}, and
the conjecture reflects in the following question:

Conjecture 1.

(1) The modules Hi
c(XP,Qℓ) are pairwise disjoint.

(2) EndGF (⊕iH
i
c(XP,Qℓ)) ≃ QℓWS, where WS = (NG(L)/L)F is a complex

reflection group.

The problem (1) above is quite difficult and was not dealt with in the talk. We
explained how to construct a monoid of GF -endomorphisms of the variety XP,
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which should be a monoid for the braid group of WS , and induce a cyclotomic
Hecke algebra for WS on the cohomology complex.
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On the heights of 2-Brauer characters of symmetric groups

John Murray

Quadratic Forms and Involutions. Let G be a finite group and let F be
a perfect field of characteristic 2. C. Mart́ınez-Perez and W. Willems [MPW]
have noted that if Λ2(FG∗)G is the space of G-invariant symplectic forms on FG,
then the cohomology group H1(G,Λ2(FG∗)G) can be given the structure of a FG-
module, and this module is naturally isomorphic to the involution module of G (the
F -permutation module induced by the conjugation action of G on its elements of
order ≤ 2). Moreover, H1(G,Λ2(FG∗)G) is a quotient of the space of G-invariant
quadratic forms on FG. Earlier [W], Willems used a similar approach to give a
transparent proof of Fong’s Lemma:

Lemma. Suppose that M is a non-trivial self-dual absolutely irreducible FG-
module. ThenM has a symplectic geometry. In particular, M has even dimension.

R. Gow and W. Willems [GW93] used closely related ideas to show that a
principal indecomposable FG-module M affords a quadratic geometry if and only
if there is an idempotent e ∈ FG and an involution t ∈ G such that M ∼= eFG
and et = eo.

Proof of a result of Kiyota, Okuyama and Wada. Let B be a 2-block of a
symmetric group Sn, with weight w. Then n − 2w = k(k + 1)/2 is a triangular
number and the partitions in B are the partitions of n that have 2-core δ =
[k, k − 1, . . . , 2, 1]. Now S2w ×Sn−2w contains the normalizer in Sn of a defect
group of B. The Brauer corresponding block is B0⊗Bδ, where B0 is the principal
2-block of S2w and Bδ is the 2-block of Sn−2w whose 2-core is δ. In particular Bδ

has defect 0. Set eδ as the block idempotent of Bδ.
It is known that the unique irreducible Bδ-module Dδ has a quadratic geometry

(this comes from lifting to characteristic 0). As Dδ is projective, it follows from the
result of Gow and Willems that there exists a primitive idempotent e1 ∈ FSn−2w
and an involution t ∈ Sn−2w such that e1 = e1eδ and et1 = eo1.

Let λ be a 2-regular partition in B. Then Dλ = Sλ/J(Sλ) is an irreducible
B-module, where Sλ is the Specht module and J(Sλ) is the radical of the standard
Sn-invariant form on Sλ. Now Sλeδ ∼= (Sλe1)⊗Dδ, as FS2w ×Sn−2w-modules.
We can use the fact that et1 = eo1 to define an S2w-invariant symmetric bilinear
form on Sλe1. Moreover, this induces a nondegenerate S2w-invariant symmetric
bilinear form on Dλe1.

Suppose that λ is not the most dominant partition in B. Then the FSn−2w-
module HomFSn−2w(FS2w , S

λ∗↓S2w) has no submodule isomorphic to Dλ. Here



994 Oberwolfach Report 16/2012

Sλ∗ is the linear dual of Sλ. This follows from D. Hemmer’s computation [H] of
‘fixed-point functors’ and well-known results about semi-standard homomorphisms
and skew-Specht modules in characteristic 0. It follows that the symmetric bilinear
form on Dλe1 is symplectic.

We can use this approach to give a cleaner and more conceptual proof of a new
result of M. Kiyota, T. Okuyama and T. Wada [KOW]:

Theorem. Let n ≥ 1 and let B be a 2-block of the symmetric group Sn. Then B
has a unique irreducible Brauer character of height zero.
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Cohomology for Finite Groups of Lie Type

Daniel K. Nakano

Let G be a reductive algebraic group scheme defined over Fp, G(Fq) be the
corresponding finite Chevalley group (q = pr), and Gr be the rth Frobenius kernel.
Moreover, let k be an algebraically closed field of characteristic p.

My talk was motivated by two questions that arose during the Cohomology of
Finite Groups meeting in Oberwolfach in 2005. The first question was posed by
Eric Friedlander:

1) In which degree does the first non-trivial cohomology class occur in the coho-
mology, H•(G(Fq), k), of the finite Chevalley group G(Fq)?

The second question was motivated by the seminal cohomological calculations
by Cline, Parshall and Scott [CPS] on H1(G(Fq), L(λ)) where L(λ) is a simple
module of minimal dominant highest weight. These computations were employed
by Wiles in his proof of Fermat’s Last Theorem. One is tempted to ask:

2) Can one compute the first cohomology groups and second cohomology groups
for simple modules with fundamental dominant weight?

In this talk I will present new techniques invented by Bendel, Nakano and
Pillen (cf. [BNP1, BNP2]) for computing cohomology for the finite Chevalley group
G(Fq) directly in terms of cohomology for the ambient algebraic group G and its
associated Frobenius kernels. These methods can be used to answer Question (1)
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above when p is larger than the Coxeter number. For instance, when the root
system is of Type Cn one has a relatively nice statement:

Theorem: Let G be a simple simply connected algebraic group over an algebraically
closed field k of characteristic p > 0. Suppose that the underlying root system is
of type Cn and p > 2n. Then

a) Hj(G(Fq), k) = 0 for 0 < j < r(p− 2)

b) Hr(p−2)(G(Fq), k) ∼= k.

These aforementioned techniques were also utilized to compute the first and
second cohomology group when M is a simple G(Fq)-module. This project was
undertaken by the University of Georgia VIGRE Algebra Group during the aca-
demic years 2009-10 and 2010-11 (cf. [UGA1, UGA2]). A salient feature of these
results is that no twisting of the coefficient module by the Frobenius morphism is
necessary, which enabled calculations to be made for relatively small values of p
and q.

My lecture and abstract are dedicated in honor of Edward T. Cline (1940-2012)
whose career had a profound influence on this work and on the field of algebraic
and finite group representation theory.
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Character Degrees

Gabriel Navarro

Many relevant problems in the Representation Theory of Finite Groups involve
character degrees. If p is a prime and G is a finite group, then the McKay con-
jecture, for instance, counts locally the number of irreducible characters of G of
degree not divisible by p. The Alperin Weight Conjecture counts the number of
irreducible characters of G whose p-part is |G|p, while Dade’s conjecture counts
the number of irreducible characters of G with a fixed p-part pd. But there are
more problems, of course. For instance, we do not know if the knowledge of the set
of the degrees of G determines its solvability, nor if the complex group algebra of
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G determines if G has a normal Sylow p-subgroup. Nor we know if the nilpotent
blocks are the blocks in which all height zero characters have the same degree
([MN]), to mention a more recent problem.

In the first part of our talk we review the different refinements of the McKay
conjecture, some of them leading to a reduction of this conjecture to a problem of
simple groups ([IMN]). These refinements include a relative version with respect
to a normal subgroup; the equivariant version with respect to automorphisms; the
corresponding version where certain Galois automorphisms are acting (Navarro);
blocks (Alperin-McKay); the inclusion of Brauer characters (T. Wolf); of sets of
primes (T. Wolf); or congruences of degrees (Isaacs-Navarro). We also point out
that in groups with a nilpotent Hall π-subgroup H , all the counting conjectures
seem to hold with respect to π. For instance, the number of π′-degree irreducible
characters of G and of NG(H) seem to coincide. (This is a joint observation with
M. Isaacs.)

In the second part of my talk, I consider all these variations (relative to a normal
subgroup, fields, blocks, actions, Brauer characters) in the Itô-Michler theorem, a
fundamental result in the theory of character degrees. The Itô-Michler theorem
asserts that p does not divide χ(1) for all χ ∈ Irr(G) if and only if G has a normal
and abelian Sylow p-subgroup. When introducing fields, for instance, we obtained
that if 2 does not divide the real irreducible character degrees, then the Sylow
2-subgroup of G is normal in G ([DNT]). This result is now generalized to every

prime: if p does not divide χ(1) for all real irreducible characters of G, then O2′(G)
has a normal Sylow p-subgroup ([IN], [T]). Also, if p does not divide the degrees
of the p-rational characters of G, then a Sylow p-subgroup of G is normal ([NT1]).
The Itô-Michler theorem holds for p-Brauer characters (same p), and we mention
that the case p = 2 is due to T. Okuyama and does not involve the classification of
finite simple groups. The Itô-Michler theorem for the principal block is specially
appealing: p does not divide χ(1) for all χ in the principal block of G if and only if
P is abelian. (This is, of course, Brauer’s Height Zero Conjecture for the principal
block.) And we leave for the end the relative version of the Itô-Michler theorem
with respect to a normal subgroup, that states the following: if N ⊳G, θ ∈ Irr(N)
and p does not divide χ(1) for every χ ∈ Irr(G|θ), then a Sylow p-subgroup of
G/N is abelian.

If G/N is p-solvable, this latter result was proved by D. Gluck and T. Wolf
and gave a proof of the Height Zero Conjecture for p-solvable groups ([GW]). To
prove this result for every finite group was one of the major obstacles to obtain
Brauer Height Zero conjecture. Now P. H. Tiep and the author have recently
accomplished this in [NT2], using the recent classification of the groups having a
faithful p-module such that all the orbits have p′-length ([GLPST]).

Finally, using the work of Murai in [M] (inspired by results in [R]), our general-
ized Gluck-Wolf ([NT2]), and the proof of the Brauer Height Zero Conjecture for
quasisimple groups in [KM], then it can be seen that Dade’s Projective Conjecture
implies Brauer Height Zero Conjecture, and also, that if all finite simple involved
in G satisfy the inductive Alperin-McKay condition, then Brauer’s Height Zero
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Conjecture is true ([NS]). This reduces Brauer Height Zero Conjecture to checking
the Alperin-McKay conjecture via the method that is proposed in [S].
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————————————————————————
Equivariant Alperin-Robinson’s Conjecture reduces to almost-simple

k∗-groups

Llúıs Puig

Our reduction result† concerns Alperin’s Conjecture for blocks in an equivariant
formulation which goes back to Geoffrey Robinson in the eighties (it appears in his
joint work [4] with Reiner Staszewski). In the introduction of [2] — from I29 to
I37 — we consider a refinement of Alperin-Robinson’s Conjecture for blocks; but,
only in [3] we really show that its verification can be reduced to check that the
same refinement holds on the so-called almost-simple k∗groups . To carry out this
checking obviously depends on admitting the Classification of the Finite Simple
Groups , and our proof of the reduction itself uses the solvability of the outer
automorphism group of a finite simple group (SOFSG), a known fact whose actual
proof depends on this classification.

†We thank Britta Späth for pointing us a mistake in an earlier version of this paper.
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Our purpose here is, from our results in [2] and [3], to show that the Alperin-
Robinson’s Conjecture for blocks can be reduced to checking the same statement
on any central k∗extension of any finite group H containing a finite non-abelian
simple group S such that H/S is a cyclic p′group and we have CH(S) = {1} ,
and moreover, that it may be still reduced to any central k∗extension of any finite
simple group provided we check an “almost necessary” condition in any finite group
H as above.

Explicitly, let p be a prime number, k an algebraically closed field of character-
istic p , O a complete discrete valuation ring of characteristic zero admitting k as
the residue field, and K the field of fractions of O . Moreover, let Ĝ be a k∗central
extension of a finite group G — simply called finite k∗group of k∗quotient G [2,

1.23] — b a block of Ĝ [2, 1.25] and Gk(Ĝ, b) the scalar extension from Z to O

of the Grothendieck group of the category of finitely generated k∗Ĝbmodules [2,

14.3]. Choose a maximal Brauer (b, Ĝ)pair (P, e) ; denote by F(b,Ĝ) the category —

called the Frobenius P category of (b, Ĝ) [2, 3.2] — formed by all the subgroups of
P and, if Q and R are subgroups of P , by the group homomorphisms F(b,Ĝ)(Q,R)

from R to Q determined by all the elements x ∈ G fulfilling (R, g)ı(Q, f)x where

(Q, f) and (R, g) are the corresponding Brauer (b, Ĝ)pairs contained in (P, e) ; in
particular, we set

F(b,Ĝ)(Q) = F(b,Ĝ)(Q,Q) ∼= NG(Q, f)/CG(Q) .

Recall that the Brauer (b, Ĝ)pair (Q, f) is called selfcentralizing if the image f̄
of f in C̄Ĝ(Q) = CĜ(Q)/Z(Q) is a block of defect zero and then we denote by

(F(b,Ĝ))
sc

the full subcategory of F(b,Ĝ) over the selfcentralizing Brauer (b, Ĝ)pairs

contained in (P, e) .

Recall that an (F(b,Ĝ))
sc

chain is just a functor q : ∆n → (F(b,Ĝ))
sc

from the n-

simplex ∆ considered as a category with the morphisms given by the order relation;
then, the proper category of (F(b,Ĝ))

sc

chains — denoted by ch∗
(
(F(b,Ĝ))

sc)
— is

formed by the (F(b,Ĝ))
sc

chains as objects and by the pairs of ordering-preserving

maps and natural isomorphisms of functors as morphisms [2, A2.8]. Denoting by
Gr the category of finite groups, we actually have a functor [2, Proposition A2.10]

aut(F(b,Ĝ))
sc : ch∗

(
(F(b,Ĝ))

sc)
−→ Gr

mapping the (F(b,Ĝ))
sc

chain q on the stabilizer F(b,Ĝ)(q) of q in F(b,Ĝ)

(
q(n)

)
.More-

over, setting Q = q(n) and denoting by f the block of CĜ(Q) such that (P, e)

contains (Q, f) , it is clear that NĜ(Q, f) acts on the simple kalgebra k∗C̄Ĝ(Q)f̄

and it is well-known that this action determines a central k∗extension F̂(b,Ĝ)(Q) of

F(b,Ĝ)(Q) [2, 7.4]; in particular, by restriction we get a central k∗extension F̂(b,Ĝ)(q)

of F(b,Ĝ)(q) .



Representations of Finite Groups 999

Denoting by k∗Gr the category of k∗groups with finite k∗quotient, in [2, Theo-
rem 11.32] we prove the existence of a suitable functor

âut(F(b,Ĝ))
sc : ch∗

(
(F(b,Ĝ))

sc)
−→ k∗Gr

lifting aut(F(b,Ĝ))
sc and mapping q on F̂(b,Ĝ)(q) ; then, still denoting by Gk the

functor mapping any k∗group with finite k∗quotient Ĝ on the scalar extension
from Z to O of the Grothendieck group of the category of finitely generated k∗Ĝ-
modules, and any k∗group homomorphism on the corresponding restriction, we
consider the inverse limit

Gk(F(b,Ĝ), âut(F(b,Ĝ))
sc ) = lim

←−
(Gk ◦ âut(F(b,Ĝ))

sc ) ,

called the Grothendieck group of F(b,Ĝ) [2, 14.3.3 and Corollary 14.7]; it follows

from [2, I32 and Corollary 14.32] that Alperin’s Conjecture for blocks is actually
equivalent to the existence of an Omodule isomorphism

Gk(Ĝ, b) ∼= Gk(F(b,Ĝ), âut(F(b,Ĝ))
sc )

which actually amounts to saying that both members have the same Orank.

Denote by Outk∗(Ĝ) the group of outer k∗automorphisms of Ĝ and by Outk∗(Ĝ)b
the stabilizer of b in Outk∗(Ĝ) ; on the one hand, it is clear that Outk∗(Ĝ)b
acts on Gk(Ĝ, b) ; on the other hand, an easy Frattini argument shows that the

stabilizer Autk∗(Ĝ)(P,e) of (P, e) in Autk∗(Ĝ)b covers Outk∗(Ĝ)b and it is clear

that it acts on (F(b,Ĝ))
sc

, so that finally Outk∗(Ĝ)b still acts on the inverse limit

Gk(F(b,Ĝ), âut(F(b,Ĝ))
nc ) [2, 16.3 and 16.4]. A stronger question is whether or not

there exists above a Outk∗(Ĝ)bstable isomorphism and in [3, Theorem 1.6] we prove
that it suffices to check this statement in the almost-simple k∗groups considered
above.

Here, we are interested in a weaker form of this question, namely in whether or
not there exists a KOutk∗(Ĝ)bmodule isomorphism

K⊗O Gk(Ĝ, b) ∼= K ⊗O Gk(F(b,Ĝ), âut(F(b,Ĝ))
sc ) ;

as a matter of fact, it is a numerical question since it amounts to saying the
Outk∗(Ĝ)bcharacters of both members coincide and note that they are actually
rational characters. Thus, it makes sense to relate this statement with the old
Robinson’s equivariant condition recalled below. We still need some notation;
for any Brauer (b, Ĝ)pair (Q, f) contained in (P, e) , the group FQ(Q) of inner
automorphisms of Q is a normal subgroup of F(b,Ĝ)(Q) and we set

F̃(b,Ĝ)(Q) = F(b,Ĝ)(Q)/FQ(Q) ∼= NG(Q, f)/Q · CG(Q) ;
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moreover, if (Q, f) is selfcentralizing then FQ(Q) can be identified to a normal

subgroup of F̂(b,Ĝ)(Q) ; then, we also set

ˆ̃F(b,Ĝ)(Q) = F̂(b,Ĝ)(Q)/FQ(Q)

and denote by o(Q,f) the sum of blocks of defect zero of ˆ̃F(b,Ĝ)(Q) ; note that,

since the stabilizer Autk∗(Ĝ)(P,e) of (P, e) in Autk∗(Ĝ)b covers Outk∗(Ĝ)b and

acts on (F(b,Ĝ))
sc

, the stabilizer C(Q,f) in a (cyclic) subgroup C of Outk∗(Ĝ)b of

the G-conjugacy class of (Q, f) acts naturally on Gk

( ˆ̃F(b,Ĝ)(Q), o(Q,f)

)
.

Following Robinson, let us consider the following equivariant condition: (E)

For any cyclic subgroup C of Outk∗(Ĝ)b we have

rankO
(
Gk(Ĝ, b)

C
)
=
∑

(Q,f)

rankO
(
Gk

( ˆ̃F(b,Ĝ)(Q), o(Q,f)

)C(Q,f)

)

where (Q, f) runs over a set of representatives contained in (P, e) for the set of C-

orbits of G-conjugacy classes of selfcentralizing Brauer (b, Ĝ)-pairs and, for such a
(Q, f) , we denote by C(Q,f) the stabilizer in C of the G-conjugacy class of (Q, f) .
We are ready to state our first main result.

Theorem. Assume (SOSFG) and that any block c of any central k∗-extension Ĥ of
any finite group H , containing a finite non-abelian simple group S such that H/S
is a cyclic p′-group and we have CH(S) = {1} , fulfills the equivariant condition

(E). Then, any block b of any central k∗-extension Ĝ of any finite group G fulfills

the equivariant condition (E) and, in particular, we have a KOutk∗(Ĝ)b-module
isomorphism

K⊗O Gk(Ĝ, b) ∼= K ⊗O Gk(F(b,Ĝ), âut(F(b,Ĝ))
sc ) .
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Pseudoweights for finite groups

Geoffrey R. Robinson

Alperin’s weight conjecture (in its non-blockwise version) predicts an equality
between the number of simple and the number of conjugacy classes of weights of
a finite group. Recall that a weight for a finite group is a pair (Q,S), where Q
is a p-subgroup of G and S is a Q-projective simple module for NG(Q). We start
with a naive question: where are all the weights? Clearly, a Sylow p-subgroup of
G gives rise to weights, but are there others we can easily see? A suggestive result
is one of Brauer and Fowler: if p is odd and t is an involution of a finite group
which neither inverts nor centralizes an element of order p, then there is a p-block
of defect 0 of G.

It follows easily from this that if p is odd and we have a pair (Q, t) where t is
an involution of G and Q is a maximal t-invariant p-subgroup of G, then NG(Q)
has a Q-projective simple module so the pair (Q, t) gives rise to a weight. It’s
also possible to show that (Q, x) is a pair such that Q is a maximal x-invariant
p-subgroup of G where x is a p-regular element of Op,p′(NG(Q)), then NG(Q) has
a Q-projective simple module. When p = 2, we are able to prove, using a recent
theorem of John Murray that if (Q, x) is a pair where x is an element of order
3 and Q is a maximal x-invariant 2-subgroup of G, then there is a Q-projective
simple module for NG(Q). The crucial case for the last result is when Q = 1, for
then note that the product of a conjugate of x and a conjugate of x−1 can never
be an involution, otherwise x lies in a subgroup isomorphic to A4 and normalizes
a Klein 4-group.

This motivates the following definition: A p-pseudoweight is a pair (Q, x) where
x is a p-regular element of G,Q is a maximal x-invariant p-subgroup of G and one
or more of the following holds:
i) x ∈ Op,p′(NG(Q)).
ii) p is odd and x is an involution, or:
iii) p = 2 and x has order 3.

Then we are able to prove:

Theorem. The number of conjugacy classes of p-weights for G is greater than
or equal to the number of conjugacy classes of p-pseudoweights.

It might be tempting to assume that the number of conjugacy classes of pairs
(Q, x) such that x is p-regular and Q is a maximal x-invariant p-subgroup of G
would be equal to the number of conjugacy classes of p-weights of G. This is not
true in general. In groups for which Alperin’s conjecture holds, it would force
all maximal x-invariant p-subgroups of G to be CG(x)-conjugate. However when
p = 3 and G = PSL(2, 11) and x is an involution, then all maximal x-invariant
3-subgroups of G have order 3. However, there is one which is inverted by x and
another which is centralized by x, so they are certainly not conjugate via CG(x).
Hence x gives rise to more than one conjugacy class of 3-weights.

For example, letG be a {2, p}-groupwith elementary Abelian Sylow 2-subgroups,
Then we see that the number of p-weights of G is at least as great as the number
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of p-regular conjugacy classes. The fact that Alperin’s weight conjecture holds for
p implies that for each involution t ∈ G, all maximal t-invariant p-subgroups of G
are conjugate via CG(t). This is relatively easy to see group-theoretically. We can
assume that Op(G) = 1, and then G has a normal Sylow 2-subgroup. Let p = 2,
G be a {2, 3}-group with Sylow 3-subgroups of exponent 3. Then the number of
2-weights of G is at least the number of conjugacy classes of 3-elements. Again
this tells us that whenever x has order 3, we should expect all maximal x-invariant
2-subgroups to be conjugate via CG(x) (and this is equivalent to Alperin’s weight
conjecture for such a group). This is not immediately obvious, but we are grateful
to C.W. Parker for providing a direct group-theoretic proof (his proof generalizes
easily to {2, p}-groups whose Sylow p-subgroups do not involve Cp ≀ Cp ).

Perverse equivalences and applications

Raphaël Rouquier

(joint work with Joseph Chuang, David Craven and Olivier Dudas)

Perverse equivalences have been introduced in joint work with Joe Chuang in
2003 [1, 8]. They correspond to a situation where there are two abelian categories
filtered by Serre subcategories and a derived equivalence respecting the filtrations
such that the induced equivalences on each slice of the filtration of the derived
categories comes from a shifted equivalence of the corresponding abelian category
slices. The function recording the shifts is the perversity function. In the case
of blocks of finite groups, the data is encoded in a filtration of the set of simple
modules and a Z-valued function on that set. Given a block together with the
filtration and the perversity function, there is a unique symmetric algebra, up to
Morita equivalence, perversely equivalent to the given block.

We showed that two blocks of symmetric groups with same local structures have
equivalent derived categories through a composition of perverse equivalences (cor-
responding to the reduced decomposition of an element of an affine Weyl group).
Two blocks with cyclic defect and same local structure are related by a perverse
equivalence. For finite groups of Lie type in non-describing characteristic, Broué
conjectures the complex of cohomology of an appropriate Deligne-Lusztig variety
will provide a derived equivalence between a block with abelian defect and its
Brauer correspondent. We conjecture that this equivalence will be perverse.

More recently, in collaboration with David Craven, we started looking system-
atically at perverse equivalences in the setting of Broué’s abelian defect group
conjecture [4]. Recent work of Craven [2] has provided a conjectural description
of the perversity function in the setting of Broué’s conjecture, for finite groups of
Lie type — equivalently, a conjectural description of the degrees of cohomology in
which a given unipotent character of a finite group of Lie occurs in an appropriate
Deligne-Lusztig variety. This opens the way to the study of genericity phenomena
for categories of modular representations of finite groups of Lie type and has led
David Craven and myself to conjectures on independence of q of Green correspon-
dents and images of simple modules under the conjectural derived equivalences.
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This will hopefully lead to the construction of an actual category, depending only
on the multiplicative order e of q modulo ℓ, that gives rise to representations of a
corresponding finite group of Lie type in a given unipotent block.

A first instance of that type of genericity was provided by a conjecture of Hiß,
Lübeck and Malle on Brauer trees for principal blocks, when e is the Coxeter
number. Work of Olivier Dudas [5, 6] and joint work [7] has led to a solution
of that conjecture, as well as a solution of Broué’s geometric conjecture, for such
blocks. This is the first instance where the study of the mod-ℓ cohomology of
Deligne-Lusztig varieties has led to the determination of new decomposition ma-
trices for principal blocks of finite groups. The techniques developed by Dudas
should lead to further progress on the determination of decomposition matrices
and the classification of simple modules for finite groups of Lie type.

The work of Craven [3] on cyclic defect for unipotent blocks of finite groups of
Lie type provides a conjectural description of the perversity function and the com-
patibilities of parametrizations of unipotent characters. In particular, he describes
the expected unknown Brauer trees. Combined with the techniques of Dudas, this
might lead to a determination of all Brauer trees of finite groups of Lie type.
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Survey on invariants of blocks of finite groups

Benjamin Sambale

Many open conjectures in modular representation theory relate the invariants of
a block of a finite group to its defect group. Here we consider a p-block B of a
finite group G with respect to a splitting p-modular system for G. The important
invariants of B are the number k(B) of ordinary irreducible characters of B and the
number l(B) of irreducible Brauer characters. Moreover, the ordinary characters
split in ki(B) characters of height i ≥ 0. Here the height describes the p-part of
the degree of the character. We denote the inertial group of B by I(B) and its
order by e(B) := |I(B)|.

A long standing task in representation theory is the determination of the block
invariants if the defect group is given. In the talk I present a general method in
several steps to complete this task. After that I give a table which lists many cases
in which the block invariants are known (see end of this abstract).
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In cases where the invariants are known one can ask if the conjectures are
satisfied. Sometimes this is even possible if only inequalities are known. In the
last part of my talk I present some general inequalities. For example in [5] we
proved the following.

Theorem 1. Let (u, bu) be a B-subsection such that bu has Cartan matrix Cu =
(cij) up to basic sets. Then for every positive definite, integral quadratic form
q(x1, . . . , xl(bu)) =

∑
1≤i≤j≤l(bu) qijxixj we have

k0(B) ≤
∑

1≤i≤j≤l(bu)
qijcij .

In particular

k0(B) ≤

l(bu)∑

i=1

cii −

l(bu)−1∑

i=1

ci,i+1.

If (u, bu) is major, we can replace k0(B) by k(B) in these formulas.

As a consequence one gets Brauer’s k(B)-Conjecture in some small cases.

Theorem 2. Brauer’s k(B)-Conjecture holds for defect groups which contain a
central, cyclic subgroup of index at most 9.

Theorem 3. Let B be a block with a defect group which is a central extension of
a group Q of order 16 by a cyclic group. If Q is not elementary abelian or if 9
does not divide the inertial index of B, then Brauer’s k(B)-conjecture holds for B.

I also show some results concerning Olsson’s Conjecture and Brauer’s Height
Zero Conjecture for odd primes. Here the following inequality is useful (see [5]).

Theorem 4. Let p > 2, and let (u, bu) be a B-subsection such that l(bu) = 1 and
bu has defect d. Moreover, let |AutF(〈u〉)| = psr where p ∤ r and s ≥ 0. Then we
have

k0(B) ≤
|〈u〉|+ ps(r2 − 1)

|〈u〉|r
pd ≤ pd.

If (in addition) (u, bu) is major, we can replace k0(B) by
∞∑
i=0

p2iki(B).
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p D I(B) classification used? references

any cyclic arbitrary no [2]

any abelian e(B) ≤ 4 no [20, 13, 12]

any abelian S3 no [21]

≥ 7 abelian C4 × C2 no [23]

/∈ {2, 7} abelian C2
3 no [22]

2 metacyclic arbitrary no [1, 11, 13, 16]

2 maximal class ∗ cyclic, arbitrary only for D ∼= C3
2 [6, 19, 14, 15]

incl. ∗ = ×

2 minimal nonabelian arbitrary only for one [17, 3]
family where
|D| = 22r+1

2 minimal nonmetacyclic arbitrary only for D ∼= C3
2 [18]

2 |D| ≤ 16 6∼= C15 yes [7, 10]

2 C4 ≀ C2 arbitrary no [9]

2 D8 ∗Q8 C5 yes manuscript

2 C2n × C3
2 , n ≥ 2 arbitrary yes based on [24, 6, 7]

3 C2
3 /∈ {C8, Q8} no [8, 25]

3 p1+2
−

arbitrary no based on [4]

5 p1+2
−

C2 no based on [4]
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Reduction theorems for blockwise conjectures of Alperin and McKay

Britta Späth

Two old conjectures in the modular representation theory of finite groups are
the Alperin weight and the (Alperin-)McKay conjecture. Both conjectures have
blockwise and non-blockwise versions. By work of Isaacs, Malle, Navarro and Tiep
it has been shown that the non-blockwise versions of the conjectures hold if certain
strong forms of these conjectures are satisfied for all quasi-simple groups. For a
verification of these conjectures it is sufficient to check the inductive McKay or
Alperin weight condition for simple groups.

We discussed how by a generalization of their methods the results can be
adapted to the blockwise version of the conjectures. Starting point is the reformu-
lation of the inductive McKay condition in [Spä10] using projective representations
which leads to a simpler proof of the reduction theorem in [IMN07].

Let us denote by Irr0(G | D) the set of characters that lie in a p-block of the
finite group G with defect group D and have height zero. For a subgroup D ≤ G
we denote by Aut(G)D the group of automorphisms of G that stabilize D. The
inductive Alperin-McKay condition for a simple group S and a prime p is concerned
with the representation theory of the universal covering group G of S. For every
radical p-subgroup D of G there should exists an Aut(G)D-stable group N with
NG(D) ≤ N � G and a bijection

ΩD : Irr0(G | D) → Irr0(N | D),

that is Aut(G)D-equivariant. Furthermore for every χ ∈ Irr0(G | D) the characters
χ and ΩD(χ) satisfy a technical condition on associated projective representations
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that implies that these characters have the “same” Clifford theory in all situations
and the characters χ and ΩD(χ) lie in blocks with a common Brauer correspondent.

These conditions enable explicit constructions of associated projective represen-
tations and imply the following result. For a finite group X with normal subgroup
K and an irreducible character χ of K the set Irr(X | χ) is considered, where
Irr(X | χ) is the set of all irreducible constituents of the induced character χX .

Theorem 1. Let S be a simple non-abelian group, which satisfies the inductive
Alperin-McKay condition. Let X be a finite group, K ⊳X, such that K/Z(K) is
isomorphic to a direct product of simple groups isomorphic to S. Let D ≤ K be a
non-central radical p-subgroup. Then there exist

(a) an NX(D)-stable group N ≤ K with NK(D) ≤ N � K, and
(b) an NX(D)-equivariant bijection

ΩD : Irr0(K | D) → Irr0(N | D),

such that for every χ ∈ Irr0(K | D) and every p-block B of X there exists
a bijection

Ψχ : Irr0(B) ∩ Irr(X | χ) → Irr0(b) ∩ Irr(NNX(D) | ΩD(χ)),

where b is the block of NNX(D) such that B and b have a common Brauer
correspondent.

These bijections are used to prove the following reduction theorem. Recall that
a group S is involved in X if there exist groups H2 ⊳H1 ≤ X such that H1/H2 is
isomorphic to S.

Theorem 2 ([Spä12]). Let X be a finite group and p a prime. Assume that every
simple group involved in X satisfies the inductive Alperin-McKay condition. Then
the Alperin-McKay conjecture holds for X and the prime p.

The starting point of the proof is a first reduction due to Murai. Besides the
bijections from Theorem 1, results about nilpotent blocks are applied to deal with
specific cases.

One can also extend the methods from [NT11] in order to obtain a reduction
theorem for the blockwise Alperin weight conjecture. The inductive blockwise
Alperin weight condition is a refinement of the inductive Alperin weight condition
given by Navarro and Tiep, and enables to establish correspondences between
various sets of Brauer characters as in Theorem 1.

Theorem 3 ([Spä11]). Let X be a finite group and p a prime. Assume that
every simple group involved in X satisfies the inductive blockwise Alperin weight
condition. Then the blockwise Alperin weight conjecture holds for X and the prime
p.

The proof is based on an induction. A central role is played by a relative
version of the blockwise Alperin weight conjecture that is closely related to rela-
tive projective modules. Besides bijections obtained from the inductive blockwise
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Alperin weight condition for all involved simple groups the proof uses also the
Dade-Glauberman-Nagao correspondence.

During the proof the defect group of the considered blocks can be controlled.
Accordingly, we obtain as a offshoot a reduction theorem for blocks with a given
defect group D: the blockwise Alperin weight conjecture holds for all blocks with
defect group D if the inductive blockwise Alperin weight condition holds with
respect to all p-blocks of involved simple groups, whose defect group are involved
in D.

The above results give rise to the question whether the inductive conditions
hold for all simple groups and all primes. As a first step to a general verification
of the conditions we considered cases where the inductive McKay condition or the
inductive Alperin weight condition hold.

Theorem 4 (Breuer, S.). The inductive Alperin-McKay condition holds for S and
p in the following cases

(a) S is one of the sporadic groups,
(b) S is an alternating group, and
(c) S is a simple group of Lie type and p ≥ 5 the characteristic of the under-

lying field.

In analogy to this result one can also check the blockwise Alperin weight con-
dition in several cases using the earlier results on simple groups satisfying the
inductive Alperin weight condition.

Theorem 5 (Breuer, Malle, S.). The inductive blockwise Alperin weight condition
holds for S and p in the following cases:

(a) S is one of the 13 smallest sporadic groups,
(b) S is an alternating group,
(c) S has an abelian Sylow 2-subgroup and p is any prime, and
(d) S is a simple group of Lie type and p ≥ 5 the characteristic of the under-

lying field.
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Local cohomology of rings of invariants and the Cech complex

Peter Symonds

In a paper with Dikran Karagueuzian [1] we gave a structure theorem for a group
action on a polynomial ring. This had various corollaries, among them that only
finitely many isomorphism classes of indecomposable summands occur. Later we
showed how this structure theorem could be used to give a bound on the degrees
of the generators of the invariant subring of n(|G| − 1), where n is the number of
variables and G is the group (provided n, |G| ≥ 2) [2].

However, the proof of the structure theorem is long and complicated. Here we
sketch a more conceptual approach that proves both of these results at the same
time. It also works for a slightly more general class of rings than just polynomial
rings. It works by considering the Cech complex of the polynomial ring with
respect to an invariant system of parameters as a complex of modules for the
group.

Theorem The Cech complex is split as a module for the group in degrees greater
than −n.

By taking invariants, we see that the Cech complex of the ring of invariants is
exact in degrees greater than −n, hence its regularity is at most 0. It is shown in
[2] that this proves the result about degrees of generators. The result about the
indecomposable summands also follows easily.
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Representations of finite quasisimple groups and the Waring problem

Pham Huu Tiep

(joint work with Michael Larsen and Aner Shalev)

A classical result of Lagrange, respectively Wieferich, shows that every positive
integer is a sum of (at most) four squares, respectively nine cubes. The Waring
problem in number theory generalizes this, asking whether there is a function g(k)
such that every positive integer is a sum of (at most) g(k) kth powers. This
problem was solved in the affirmative by Hilbert in 1909.

In the past 15 years non-commutative analogues of the Waring problem have
been considered, and various interesting results have been obtained, with particular
emphasis on finite (non-abelian) simple groups. Martinez and Zelmanov [9], and
independently Saxl and Wilson [10], showed that any element of a finite simple
group G is a product of f(k) kth powers, provided there are non-trivial kth powers
in G.
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Recall that a word w = w(x1, . . . , xd) is an element of the free group Fd on
x1, . . . , xd. Given a word w and a group G we consider the word map wG : Gd →
G obtained by substituting group elements g1, . . . , gd in x1, . . . , xd respectively.
Let w(G) ⊆ G denote the image of this map. For subsets S, T ⊆ G we set
ST = {st : s ∈ S, t ∈ T }; in particular Sk = {s1 . . . sk : s ∈ S}.

More generally, the non-commutative Waring problem asks whether, given a
word w, there is c = c(w) such that w(G)c = G for all finite simple groups G with
w(G) 6= {1}. Extending the aforementioned results on powers and commutators,
Liebeck and Shalev [6] showed in 2001 that such c(w) indeed exists, but no explicit
bounds on c(w) were given.

Later it turned out that, if G is large enough (given w 6= 1), then c(w) does
not depend on w, and is in fact surprisingly small. Indeed Shalev [11] showed that
for any non-trivial word w there exists a number N(w) such that if G is a finite
non-abelian simple group of order at least N(w) then w(G)3 = G.

Building on the results of [11], [2], and [3], we have been able to prove the fol-
lowing theorem in [4], which gives a best possible solution to the non-commutative
Waring problem:

Theorem 1. [4] (i) Let w ∈ Fd be a non-trivial word in the free group on d
generators. Then there exists a constant N = N(w) depending on w such that for
all finite non-abelian simple groups G of order greater than N we have w(G)2 = G.

(ii) Let w1, w2 ∈ Fd be non-trivial words in the free group on d generators. Then
there exists a constant N = N(w1, w2) depending on w1, w2 such that for all finite
non-abelian simple groups G of order greater than N we have w1(G)w2(G) = G.

Our proof of Theorem 1 involves both algebro-geometric and representation-
theoretic tools. In particular, we prove a Chebotarev Density Theorem for word
maps (see [4, Theorem 5.3.2]). We also define the notion of the support of any
element in a finite classical group which measures how far g is from being scalar,
cf. [4, Definition 4.1.1], and prove the following result which is also of independent
interest:

Theorem 2. [4] If G is a finite quasisimple classical group over Fq and g ∈ G is an

element of support at least N , then |χ(g)|/χ(1) < q−
√
N/481 for all non-principal

irreducible characters χ of G.

Extending the aforementioned results to quasisimple groups, we prove in [5]:

Theorem 3. [5] (i) Let w ∈ Fd be a non-trivial word in the free group on d
generators. Then there exists a constant N = N(w) depending on w such that for
all finite quasisimple groups G of order greater than N we have w(G)3 = G.

(ii) Let w1, w2, w3 ∈ Fd be non-trivial words in the free group on d genera-
tors. Then there exists a constant N = N(w1, w2, w3) depending on w1, w2, w3

such that for all finite quasisimple groups G of order greater than N we have
w1(G)w2(G)w3(G) = G.

(iii) Let k > 2 be any integer and let w(x) = xk. Then there are finite qua-
sisimple groups G of arbitrarily large order such that {1} 6= w(G)2 6= G.
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For the non-commutative Waring problem in the case of powers, i.e. when
w(x) = xk, or commutators, i.e. w(x, y) = xyx−1y−1, one can in fact establish
stronger statements. Indeed, the main result of [7] shows that the Ore conjecture
holds for every finite non-abelian simple group G, that is, every element in G is
a commutator. Furthermore, it is proved in [1] that if k > 1 is a power either of
a prime or of 6, then every element in any finite non-abelian simple group G is a
product of two kth powers. (The latter result in the case k 6= 3, 5, 7 is a prime has
been proved independently in [8].)

It turns out that, among all words, the word x2y2 behaves the best in quasisim-
ple groups:

Theorem 4. [5] Every element in any finite quasisimple group G is a product of
two squares.
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Checking Lusztig’s conjecture around the Steinberg weight

Geordie Williamson

Let (R ⊂ X,R∨ ⊂ X∨) be a root datum and G ⊃ T the corresponding split
Chevalley group scheme over Z. Fix an algebraically closed field k. A funda-
mental question in representation theory is to determine the simple rational mod-
ules of Gk. Here “determine” means: Can they be parametrised? What are
their dimensions? What are their characters? Can one give a uniform construc-
tion/description? etc.
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Let p denote the characteristic of k. In characteristic p = 0 there exists a
uniform construction and description. To describe it we choose a system of positive
rootsR+ ⊂ R, a basis ∆ ⊂ R+ and let B ⊂ G be the Borel subgroup corresponding
to the negative roots R− = −R+. To each λ ∈ X one can associate a line bundle
L(λ) := G ×B kλ over the flag variety (G/B)k. Here kλ denotes the B-module
which is obtained by inflation from the one-dimensional T -module given by the
character λ ∈ X of T . If we set

∇(λ) = H0(G/B,L(λ))

then it is known that ∇(λ) is non-zero if and only if λ belongs to the cone of
dominant characters:

X+ = {λ ∈ X | 〈α∨, λ〉 ≥ 0 for all α ∈ ∆}.

Moreover, in the later case ∇(λ) is a simple Gk-module. One obtains in this way
a bijection

X+ ∼
−→ IrrGk

where IrrGk denotes the set of isomorphism classes of simple rational Gk-modules.
Moreover, the characters are given by Weyl’s character formula.

If p > 0 the situation is more complicated. Let us assume for simplicity that k
is an algebraic closure of Fp, the finite field with p elements. It is a priori obvious
that things will be more complicated than (or at the very least different to) the
characteristic zero case. The reason is that we have a Frobenius map

Fr : Gk → Gk

obtained by elevating coordinates to the pth power. Hence given anyGk-module V ,
we can produce another Gk-module V (1) (or in fact infinitely many new modules
V (m) ) by precomposing (m times) with the Frobenius morphism. This operation
is called “Frobenius twist”. It is easy to see, for example, that it preserves simple
modules. It leads to a recursive structure on the category of rational representa-
tions of Gk which is only partly understood, and is a big part of the fascination of
the subject.

In positive characteristic one may still define the modules ∇(λ) as above, but
they are not in general simple. However they contain a unique simple module
L(λ). It turns out that L(λ) still has highest weight λ and hence the above
bijection between simple modules and X+ and IrrGk remains true. However the
dimensions and characters of L(λ) are not known. By Kempf’s vanishing theorem
one still knows the characters of the module ∇(λ) (as in the case p = 0 they
are given by Weyl’s character formula). Much of the recent work on determining
the simple Gk modules focuses on understanding the composition series for the
modules ∇(λ).

A cornerstone of the subject are two theorems of Steinberg. Consider the set

X+
r = {λ ∈ X+ | 〈α∨, λ+ ρ〉 < pr for all α ∈ ∆}
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where ρ = 1
2

∑
α∈R+ α. Steinberg’s tensor product theorem asserts that if we have

weights λ0, λ1, . . . , λm all belonging to X+
1 then the module

L(λ0)⊗ L(λ1)
(1) ⊗ · · · ⊗ L(λm)(m)

is simple (and is hence isomorphic to L(λ0 + pλ1 + · · ·+ pmλm)). Hence, in order
to understand the simple representations of Gk it is enough to understand L(λ)
with λ ∈ X+

1 .
The second important theorem is Steinberg’s restriction theorem. It states that

for any λ ∈ X+
r , the restriction of L(λ) to the finite group G(Fpr ) is simple.

Moreover on obtains all simple kG(Fpr )-modules in this way. This theorem is
probably why we are discussing rational Gk-modules at a conference on finite
groups!

To get to Lusztig’s conjecture we need to recall two more pieces of structure
theory. Consider Wp, the subgroup of all affine transformations of X generated
by reflections in the hyperplanes Hα,pm = 〈α∨, λ + ρ〉 ∈ pm for all α ∈ R+ and
m ∈ Z. The linkage principle is the statement:

Ext1(L(λ), L(µ)) 6= 0 ⇒ λ ∈Wp · µ.

Denote by RepGk the category of all rational representations of Gk. Given
π ⊂ X+ let RepπGk denote the full subcategory of all objects whose composition
factors belong to {L(λ) | λ ∈ π}. The linkage principle implies that we have a
decomposition:

RepGk =
⊕

π∈X/Wp

Repπ∩X+Gk.

Finally, the translation principle states that, as long as p > h (so that 0, the weight
of the trivial module, lies on no hyperplane Hα,pm) we understand all multiplicities
[∇(λ) : L(µ)] as long as we understand the multiplicities [∇(x · 0) : L(y · 0)] for
x, y ∈ Wp with x · 0, y · 0 ∈ X+. Steinberg’s tensor product theorem even allows
us to assume that x · 0, y · 0 ∈ X+

1 .
Lusztig’s conjecture then expresses

[∇(x · 0) : L(y · 0)] for x · 0, y · 0 ∈ X+
1

in terms of an affine Kazhdan-Lusztig polynomial. It is important to note that
the assumption that x ·0, y ·0 ∈ X+

1 is essential: even though the statement makes
sense for any x · 0, y · 0 ∈ X+ it is certainly false in full generality (even though it
will remain true within the “Jantzen region”).

Let us pause to note that even if Lusztig’s conjecture is true this is a slightly
unsatisfactory state of affairs. For weights outside of the X+

1 there is no conceptual
understanding of the situation: in order to calculate a character many iterations
of Steinberg’s tensor product theorem and Lusztig’s conjecture may be necessary.

It is a result due to Andersen, Jantzen and Soergel that Lusztig’s conjecture
is true for large p, and an effective (but enormous) bound has recently been pro-
vided by Fiebig. On the other hand, there is very little experimental evidence for
the validity of Lusztig’s conjecture. It is known in rank 2 (using Jantzen’s sum
formula), for a few rank 3 cases, for a few primes in higher rank ...
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In the late 1990’s Soergel suggested that a useful toy-model for Lusztig’s conjec-
ture would be provided by looking “around the Steinberg weight”. To be precise,
assume from now on that p > h, let W denote the Weyl group of our root system
acting on X in the standard way and let st = (p−1)ρ denote the Steinberg weight
(the extremal vertex of the fundamental box X1). Consider the sets

Ω = {st + xρ | x ∈ W}, ≤ Ω = {λ | λ ≤ pρ} and < Ω =≤ Ω \ Ω.

Now consider the quotient category

Op = Rep≤ΩGk/Rep<ΩGk.

We let

L(x) := L(st + xρ), ∇(x) := ∇(st + xρ)

denote the images in Op. Then Op is a finite length, abelian, highest weight
category and Lusztig’s conjecture predicts

[∇(x) : L(y)] = hw0y,w0x(1)

where w0 denotes the longest element of W and hw0y,w0x ∈ Z[v] is a Kazhdan-
Lusztig polynomial (this time for the finite Weyl group). Let us emphasise that
(as far as we know) the above statement is weaker than the original statement.
As we mentioned above, the above should be thought of as a toy model or “sanity
check” for Lusztig’s original conjecture.

Recently (building on the work of Soergel and Elias-Khovanov) Elias and the
author proved the existence of a Z-algebra A which is a free and finitely generated
over Z such that

i) AC −mod ∼= O0 “principal block of category O” for g = Lie GC.
ii) Ak −mod ∼= Ok “modular category O”.

Moreover, A may be described by generators and relations. Let us make the
following remakes:

a) One can think of A as interpolating between characteristic zero represen-
tation theory (O0 is where Kazhdan-Lusztig polynomials made their first
appearance “in nature”) and modular representation theory. Hence one
can think of the above result as “freeing p”.

b) A admits a grading and hence Op admits a grading Õp. With Riche and
Soergel we have recently proved a “modular Koszul duality”:

Db(Õp) ∼=
˜Db

(B∨
C
)(G
∨
C
/B∨

C
, k)

c) Ak is Morita equivalent to an ext algebra of parity sheaves on G∨
C
/B∨

C
.

d) By results of Fiebig there is also a version of A which controls the full
Lusztig conjecture (related to the affine Weyl group, rather than the finite
Weyl group). It is unclear to the author what this category has to do with
the whole principal block of Rep Gk.
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Following the “freeing p” reasoning, one can also study the representation theory
of A in characteristics below the Coxeter number (where Op stops behaving well).
Consider the statement

(∗)p : the decomposition matrix of A is trivial.

Because of ii) above, Lusztig’s conjecture would imply that (∗)p is true for p > h.
Using the explicit description of A, we can do computer calculations to check

(∗)p in low rank. Here is a summary of the cases where (∗)p holds:

An Bn Dn F4 G2
E6

(partial)

all p for n < 6
p 6= 2 for n = 7

p 6= 2 for n < 6 p 6= 2 for n < 6 p 6= 2, 3 p 6= 2, 3 p 6= 2, 3

The entry p 6= 2 in A7 is due to Braden (2002). The exclusions p 6= 2, 3 in E6 are
due to Polo and Riche. The entries p 6= 3 for F4 and E6 give a counterexample to
Fiebig’s “GKM-conjecture”. Thanks are also due to Jean Michel for help speeding
up my programs significantly.

Recently Polo has found an example to show that (∗)p fails in A4p−1. So the
situation is more complicated than one might have thought ...
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