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Introduction by the Organisers

The topics of this workshop all in some way evolved from the classical theory
of real and complex Lie groups. One of the important mathematical goals during
the 1950’s was to find analogs of the semisimple Lie groups of exceptional type
over arbitrary fields. Chevalley completed the first crucial step by producing
his famous basis theorem for simple complex Lie algebras, and later Steinberg
succeeded in describing these analogs group-theoretically. An important theory
developed by Tits was the theory of groups with a BN -pair and the invention of
buildings; these buildings belong to arbitrary Chevalley groups as naturally as the
projective spaces belong to the special linear groups. Certain S-arithmetic groups
in positive characteristic and the Kac–Moody groups also belong to the class of
groups admitting BN -pairs.

Since then the various disciplines developed into different directions. However,
due to their common origin the different theories often lead naturally to similar
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questions. The discussions during the workshop concerning Kac–Moody symmet-
ric spaces may serve as a suitable example how different approaches and back-
grounds can interact: the absence of a KAK decomposition for real Kac–Moody
groups implies that real Kac–Moody symmetric spaces suffer from the shortcoming
that there exist pairs of points that do not lie in a common flat; an identification of
the set of points of a real Kac–Moody symmetric space with the set of anisotropic
involutions of the corresponding real Kac–Moody group immediately shows that
nevertheless each point of the Kac–Moody symmetric space can be joined with each
point at infinity by a geodesic ray; investigations as to whether KNK (Kostant)
decompositions hold in real Kac–Moody groups will provide insight on whether
a reasonable concept of horospheres exists in Kac–Moody symmetric spaces; con-
nections on real Kac–Moody symmetric spaces arise by abstract means from the
underlying Kac–Moody Lie triple systems.

In total there have been 16 talks by 12 of the participants of the workshop
that gave insight into different aspects of the theory of symmetric spaces, its
generalizations, and neighbouring fields. These 16 talks are represented by the 15
attached reports, the two talks on hyperbolic Kac–Moody geometry having been
subsumed into one report.

We are particularly pleased by the lively interaction between the participants
during the long afternoon breaks (each morning’s lectures finished at 11.30 a.m.
while the afternoon sessions only started at 4 p.m.) and during the evening.
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Abstracts

Real geometric invariant theory and double coset spaces

Gerald W. Schwarz

(joint work with Aloysius G. Helminck)

Let U be a compact connected Lie group and let UC denote its complexification.
Assume that we have a real form G of UC with corresponding real involution ϕ
which preserves U . Assume that we have holomorphic involutions σ and θ of UC,
commuting with ϕ, such that they generate a finite group of automorphisms of
the connected center of UC. Let H denote Gσ, the fixed points of σ, and let K
denote Gθ. We are interested in the space of double cosets H\G/K.

As in our previous work [HelS01], we identify G/K with a submanifold X of G
via the mapping g 7→ β(g) := gθ(g−1). Via this identification, the H action on
G/K becomes the ∗-action on X where h ∗ x := hxθ(h)−1, h ∈ H , x ∈ X . We
show that there is a quotient X//H parameterizing the closed orbits (then one can,
in principal, determine all orbits). We can assume that the Cartan involution δ of
UC commutes with σ and θ. Let G0 denote G ∩ U . Using the results of [HeiS07]
we define a kind of moment mapping on X whose zero set M is H0 := (H ∩ U)-
invariant and has the following properties:

• An orbit H ∗ x is closed if and only if it intersects M.
• For every x ∈ X , the orbit closure H ∗ x contains a unique H0-orbit in M.
• The inclusion M → X induces a homeomorphism M/H0 ≃ X//H .

Now X0 := β(G0) ⊂ G0 has the ∗-action of G0 ⊃ H0. Let A be a (connected)
torus in X . We say that A is (σ,θ)-split if σ(a) = θ(a) = a−1 for all a ∈ A. Now
let A0 be a maximal (σ,θ)-split torus in G0 (so A0 ⊂ X0). Then it follows from
[Mat97] that there is a finite Weyl group W ∗

0 acting on A0 such that the inclusion
A0 → X0 induces a homeomorphism A0/W

∗
0 ≃ X0/H0. The idea is to try to find

a similar result for the H0-action on M.
Let x ∈ X . Then there is a natural submanifold Px of X which is stable

under conjugation by Hx such that Pxx is transversal to the orbit H ∗ x at x. If
H ∗ x is closed, then an Hx-stable open subset of Pxx is a slice for the action of
H . Moreover, Px is a symmetric space for the action of Hx. We say that x is a
principal point if the action of Hx on Sx := TePx is trivial. Let g = g0 ⊕ r0 be
the Cartan decomposition of g. If u ∈ G0, then Su is δ-stable and decomposes
into a compact part Su ∩ g0 and a noncompact part Su ∩ r0. There is a natural
H0-equivariant surjective map π : M → X0 where the fiber of π above u ∈ X0

is exp(Su ∩ r0)u. Thus M fibers over X0 with fiber over u the noncompact part
of the transversal at u. We show that there is a natural and finite stratification
of A0 which is W ∗

0 -stable such that the mapping π is a fiber bundle over each
stratum. This in turn implies that X//H ≃ M/H0 is a fiber bundle over the
images of the strata in A0/W

∗
0 . If u lies in a stratum S of A0, then the fiber

over the image of S in A0/W
∗
0 is exp(Su ∩ r0)/(H0)u. Moreover, for any maximal
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σ-split commutative subspace t of Su∩ r0 there is a finite Weyl groupW (S, t) such
that exp(S ∩ r0)/(H0)u ≃ exp(t)/W (S, t).

There is another way to parameterize the quotient X//H . Let u ∈ A0 and let A
be a δ-stable maximal (σ, θu)-split torus. Here θu denotes θ followed by conjugation
by u. Then Au ⊂ M. We say that A (or Au) is standard if A ∩ U = A ∩ A0.
We say that maximal (σ, θui

)-split tori Aiui, i = 1, 2, are equivalent if there is an
h ∈ H such that h ∗A1u1 = A2u2. Then we show the following:

• For each stratum of A0/W
∗
0 there is at most one associated standard max-

imal Au. Let {Aiui} be a maximal collection of pairwise non-equivalent
tori coming from the strata. Then ∪iAiui → X//H is surjective. If x is a
principal point, then H ∗ x intersects precisely one of the Aiui and Px is
a maximal (σ, θx)-split torus.

• If A1u1 and A2u2 are standard maximal, then they are equivalent if and
only if there is a w ∈W ∗

0 such that w ∗ (A1u1 ∩ A0) = A2u2 ∩ A0.
• If A is a maximal (σ, θu)-split torus, then the group of self-equivalences of
Au is a finite group. This group acts freely on the set of principal points
of Au.

Our results are a natural follow up to [HelS01] where we considered the problem
of determining the quotient Gσ\G/Gθ (the complex case, or more generally the
case of an algebraically closed field of characteristic not 2). Our techniques were
those of invariant theory, i.e., slice theorems, isotropy type stratifications, etc. We
also used these techniques here. The new ingredient is the use of moment-map
techniques from [HeiS07]. The moment map techniques have also been used in
a recent paper of Miebach [Mie07] who works in the setting of Matsuki’s charac-
terization of the double coset spaces. The main novelty of our results is the use
of stratifications of A0/W

∗
0 which help in determining the topological structure of

X//H .
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Cartan decomposition for p-adic symmetric spaces

Vincent Sécherre

1. p-adic reductive symmetric spaces

Let G be a connected reductive group defined over a non-Archimedean locally
compact field k of odd residue characteristic, and let H be an open k-subgroup of
the fixed point subgroup of an involutive k-automorphism σ of G. We write Gk

and Hk for the groups of k-points of G and H, and consider the p-adic reductive
symmetric space X = Hk\Gk. Harmonic analysis on X is the study of the action
of Gk on the space of complex smooth functions on X , that is, complex functions
on X that are invariant under an open subgroup of Gk.

This is related to the study of those representations of Gk that are smooth
(that is, such that any vector has an open stabilizer) and Hk-distinguished (that
is, having a non-zero space of Hk-invariant linear forms).

Connected reductive groups can be considered as reductive symmetric spaces.
Indeed, if G′ is such a group, the map:

σ : (x, y) 7→ (y, x)

defines a k-involution ofG = G′×G′ whose fixed point subgroupH is the diagonal
image of G′ in G, and the symmetric space X = Hk\Gk naturally identifies with
G′

k via the map (x, y) 7→ x−1y. Moreover, if K ′ is a subgroup of G′
k, and if we set

K = K ′ ×K ′, then this map induces a bijective correspondence:

{(Hk,K)-double cosets of Gk} ↔ {K ′-double cosets of G′
k}.

If we choose for K ′ a special maximal compact open subgroup of G′
k, then the

decomposition of X into K-orbits corresponds to the Cartan decomposition of G′
k

with respect to the subgroup K ′.
Now, given X any p-adic reductive symmetric space and K a special maximal

compact open subgroup of Gk, we want to describe the decomposition of X into
K-orbits.

2. Results

In this talk, I will give such a description in the case where the groupG is k-split
(this is joint work with Patrick Delorme [2]). This uses the maximal (σ, k)-split
tori introduced by Helminck [3], that is, the maximal σ-anti-invariant k-split tori
of G. By [4], such tori are all conjugate under Gk, and they have only finitely
many Hk-conjugacy classes.

Let {A1, . . . , AN} be a set of representatives of the Hk-conjugacy classes of
maximal (σ, k)-split tori of G (note that N > 1 in general) and S be a σ-stable
maximal k-split torus of G containing a maximal (σ, k)-split torus A. For each
1 ≤ i ≤ N , we choose yi ∈ Gk such that yiAy

−1
i = Ai.
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Theorem 1. Assume that G is k-split. Let K be the stabilizer in Gk of a special
point in the apartment attached to S in the Bruhat-Tits building of G over k.
Then:

Gk =
⋃

1≤i≤N

HkyiSkK.

In a more general context (k any non-Archimedean locally compact field of odd
characteristic and G any connected reductive group over k), Benoist and Oh [1]
have obtained a polar decomposition for X . In the case where k has odd residue
characteristic and G is k-split, our decomposition is a refinement of Benoist-Oh’s
polar decomposition.

3. Methods

To prove Theorem 1, we make a large use of the Bruhat-Tits theory. First,
let G be any connected reductive group over k and write B for its Bruhat-Tits
building. The latter is endowed with an action of σ. Our first task is to prove that
B is the union of its σ-stable apartments.

Note that in the case where G = G′ × G′ and σ(x, y) = (y, x), the building
B identifies with the product of two copies of the building of G′ over k and this
simply says that two arbitrary points in the building of G′ are always contained
in a common apartment.

When G is k-split, we obtain the following refinement (which is not true in
general for non-split groups).

Proposition 2. Assume G is k-split, and let x be a special point of B. There is a
σ-stable maximal k-split torus S of G such that the apartment corresponding to S
contains x and the maximal σ-anti-invariant subtorus of S is a maximal (σ, k)-split
torus of G.

Note that the disjointness of the various components appearing in the decom-
position of Theorem 1 has been investigated by Lagier [5].
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[2] P. Delorme & V. Sécherre – “An analogue of the Cartan decomposition for p-adic sym-
metric spaces of split p-adic reductive groups”, Pacific J. Math. 251 (2011), no. 1, p. 1–21.

[3] A. G. Helminck – “Symmetric k-varieties”, in Algebraic groups and their generalizations:
classical methods, Proc. Sympos. Pure Math., vol. 56, Amer. Math. Soc., 1994, p. 233–279.

[4] A. G. Helminck & S. P. Wang – “On rationality properties of involutions of reductive
groups”, Adv. Math. 99 (1993), no. 1, p. 26–96.

[5] N. Lagier – “Terme constant de fonctions sur un espace symétrique réductif p-adique”, J.
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Towards hyperbolic Kac–Moody geometry: groups, symmetric spaces,

buildings and beyond

Walter Freyn

1. Kac–Moody geometry: Introduction and state of the art

The classical theory of Kac–Moody algebras emerged in the 1960th indepen-
dently in the work of V. G. Kac [Kac68], R. V. Moody [Moo67, Moo69], I. L.
Kantor [Kan70] and D.-N. Verma (unpublished). These first constructions of Kac–
Moody algebras, and preliminary investigation of their associated group structures,
were algebraic and combinatorial in nature. Similar to the construction of a fi-
nite dimensional simple Lie algebra from a Cartan matrix, Kac–Moody algebras
were constructed from a finite set of generators subject to certain relations derived
from generalized Cartan matrices [Kac90, MP95]. Hence from a structural point of
view, Kac–Moody algebras first appeared as the direct infinite dimensional gener-
alization of simple Lie algebras. This raised natural questions about the geometric
properties of these structures.

Associated to Kac–Moody algebras, Jacques Tits introduced Kac–Moody groups
as the generalization of algebraic groups (resp. Lie groups) to the framework of
Kac–Moody theory. Similar to the theory of algebraic groups, he defined a group
functor on the category of rings and showed the resulting (algebraic) Kac–Moody
groups to allow for the construction of a twin BN-pair. This is the necessary alge-
braic structure for the existence of a twin building associated to the Kac–Moody
group in a similar way as spherical buildings are associated to simple Lie groups via
the BN-pair structure [Tit84]. This construction gives a first hint to a geometric
world hidden behind the algebraic definitions of Kac–Moody theory.

Affine Kac–Moody algebras, a distinguished subclass noted already by V. G.
Kac, R. V. Moody and I. L. Kantor, opened the door to the next steps towards
Kac–Moody geometry. This subclass allows for an explicit description in terms
of extensions of loop algebras. A self-suggesting completion of the loop algebras
with respect to various norms opens the way to the use of functional analytic
methods [Tit89, PS86]. Following this path E. Heintze, R. Palais, C.-L. Terng
and G. Thorbergsson [HPTT95] discovered even closer links between affine Kac–
Moody algebras and infinite dimensional differential geometry around 1980. C.-L.
Terng proved that certain isoparametric submanifolds in Hilbert spaces and polar
representations on Hilbert spaces can be described using completions of Kac–
Moody algebras [Ter89, Ter95]. Furthermore she conjectured the existence of
Kac–Moody symmetric spaces, but pointed out several severe problems that block
the way towards their construction [Ter95].

In [Fre09], building on the work of C.-L. Terng and E. Heintze, the author
solved this longstanding open problem, constructing affine Kac–Moody symmetric
spaces as the global differential geometric objects conjoined to affine Kac–Moody
groups. Thus, associated to affine Kac–Moody groups, there exist three classes
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of differential geometric objects: symmetric spaces, polar actions and isopara-
metric submanifold. Their construction parallels the classical finite dimensional
theory, where the symmetries of polar representations, homogeneous isoparametric
submanifolds and Riemannian symmetric spaces are described by semisimple Lie
groups. A conceptual analysis of these constructions reveals that the restriction
to spherical or affine Kac–Moody groups seems to be not inherent to the geometry
but rather imposed by the techniques used and natural by the classes of examples
studied.

Those developments hint to the conjecture, that there is a rich infinite di-
mensional geometry lurking behind all Kac–Moody algebras and groups, which
parallels the finite dimensional resp. affine theory. The finite dimensional blue-
print serves as a guide in exploring this universe. Thus let us sketch the finite
dimensional theory:

Symmetric spaces are coset spaces G/K where G is a semisimple Lie group
and K an open subgroup of the fixed point set of an involution of G. Polar
representations are representations G : V −→ V of a Lie group G on a vector
space V such that there is a subspace Σ, called a section, meeting each orbit
orthogonally [BCO03]. The spherical buildings we are interested in are certain
simplicial complexes, whose simplices are in bijection to the parabolic subgroups of
some simple Lie group [Ji06, AB08]. Isoparametric submanifolds are submanifold
with flat normal bundle and constant principal curvatures [PT88]. Those classes of
objects are related as follows. Let us start with a symmetric spaceM = G/K. The
isotropy representation of a symmetric space is a polar representation, the converse
being proven by J. Dadok [Dad85]. Principal orbits of polar representations are
isoparametric submanifolds. Conversely a result of G. Thorbergsson [Tho91] shows
any full irreducible isoparametric submanifold of Rn of rank at least three to be
principal orbit of some isotropy representation [BCO03] and references therein.
The boundary of a symmetric space of non-compact type can be identified with a
building. Furthermore the building can be embedded into the unit sphere of the
representation space of the isotropy representation and hence be seen geometrically
in the tangent space of the corresponding symmetric spaces [Ebe96].

Important structural equivalences between those four classes of objects perme-
ate the whole theory: For example, all four classes exhibit collections of “flat”
subspaces, equipped with a structure-preserving action of a finite, discrete reflec-
tion group, the Weyl group. For buildings those “flat” subspaces are subcomplexes,
called apartments; for polar actions they appear as sections, for symmetric spaces
they are maximal flats (subspaces isometric to some Euclidean space) and for
isoparametric submanifolds they appear as the normal spaces. For example via
the isotropy representation of a symmetric space, flats are identified with sections
of the (polar) isotropy representation. Similarly, via the embedding of a building
into the boundary of a noncompact symmetric space, flats of the symmetric space
are identified with apartments of the building.
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By work done during the last 20 years, a similar infinite dimensional picture is
now in central parts well established for the most special class of infinite dimen-
sional Kac–Moody groups, namely the affine Kac–Moody groups. In this setting,
the fundamental differential geometric objects are affine Kac–Moody symmetric
spaces [Fre07, Fre09, Fre11b]. Their isotropy representations are polar representa-
tions on Hilbert spaces. Principal orbits of polar representations are proper Fred-
holm isoparametric submanifolds in Hilbert space [Ter89]. By a result of E. Heintze
and X. Liu [HL99] the converse is true if the codimension is not 1. Furthermore
there are twin cities as the appropriate generalization of buildings [Fre09, Fre11a].

The structural equivalences well-known from the finite dimensional theory carry
over. The “flat” subspaces are still finite dimensional but now equipped with the
action of an affine Weyl group. For example, flats in Kac–Moody symmetric spaces
correspond via the isotropy representation to sections of the polar representation.
Chambers in twin cities correspond to points in isoparametric submanifolds and
the twin city can be embedded equivariantly into the tangent space of a Kac–
Moody symmetric space, thus showing a correspondence between flats and apart-
ments.

For more general Kac–Moody groups, the theory is in progress. While there
is a well-developed algebraic and combinatorial theory of Kac–Moody algebras,
Kac–Moody groups and twin buildings, there are only few recent results about
functional analytic completions or manifold structures. We have constructed those
completions for general Kac–Moody groups. Furthermore, we have some evidence
for the existence of hyperbolic Kac–Moody geometry, having established some
relations similar to the finite dimensional blueprint.

2. The need for hyperbolic Kac–Moody geometry

After Kac–Moody algebras of finite type and affine Kac–Moody algebras, hy-
perbolic Kac–Moody algebras form a third important subclass of Kac–Moody al-
gebras. The Weyl groups of hyperbolic Kac–Moody algebras are hyperbolic re-
flection groups [Fei80, FKN09, FF83]. Hyperbolic Kac–Moody algebras are com-
pletely classified: There are infinitely many hyperbolic Kac–Moody algebras of
rank 2 and a finite number of hyperbolic Kac–Moody algebras of higher rank,
with the maximal possible rank being 10 [CCC+10]. Recent interest in hyperbolic
Kac–Moody algebras arouse because of the conjectured appearance of hyperbolic
Kac–Moody groups and hyperbolic Kac–Moody symmetric spaces in M -theory
and supergravity. Let us sketch two examples:

(1) The Cremmer-Julia symmetry groups: The central idea is to start
with a supersymmetric 11-dimensional theory of gravitation and then in-
vestigate effects of reduction of dimension. In this way reduction of di-
mension on a d-dimensional torus gives a theory in 11 − d dimensions.
The scalar fields of this new theory exhibit symmetries of types En(n), n =
1, . . . , 11, hence leading naturally to non-spherical Kac–Moody groups.

(2) Coset spaces of hyperbolic Kac–Moody groups G/K arise in various con-
jectures that aim to characterize the symmetries of M-theory by studying
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the symmetries of 11-dimensional supergravity [DH01], [DHN02], [Wes01].
These may be summarized briefly as follows.

• E11 conjecture [Wes01] The maximal supergravity theory in 11 di-
mensions has E11 symmetry, which occurs as a nonlinear realization,
that is, as a group coset space E11/K

∗(E11) together with a spacetime
dependence [Wes01].

• E10 conjecture[DKN07] The values of all fields of 11-dimensional
supergravity and their spatial gradients can be mapped to a null
geodesic motion in the infinite dimensional coset space E10/K(E10).

3. Affine Kac–Moody symmetric spaces

The state of the art of affine Kac–Moody geometry around 2006 is summarized
by E. Heintze [Hei06]. The need for Kac–Moody symmetric spaces is described
as one of the central open problems of the theory. In [Fre09] we developed the
theory of Kac–Moody symmetric spaces. Kac–Moody symmetric spaces are infi-
nite dimensional tame Fréchet Lorentz symmetric spaces. Their structure theory
and their classification parallels the one of finite dimensional Riemann symmetric
spaces. To state our main results about the geometry of Kac–Moody symmet-
ric spaces, let us fix some notation: we denote by GC a complex semisimple Lie
group and by G a compact real form of GC. Furthermore let σ be a diagram

automorphism of order n for gC (n = 1 is allowed) and ω := e
2πi

n . We define the
holomorphic loop spaces

MGσ
C := {f : C∗ → GC|f is holomorphic and σ ◦ f(z) = f(ωz)}

and

MGσ
R := {f : C∗ → GC|f(S

1) ⊂ G, f is holomorphic and σ ◦ f(z) = f(ωz)} .

Complex Kac–Moody groups M̂G
σ

C are now constructed as certain (C∗)2-bundles
over MGσ

C
. To simplify notation we omit the superscript σ whenever possible.

Let ρ∗ denote a suitable involution of the second kind [HG09].

Theorem 1 (affine Kac–Moody symmetric spaces of the “compact” type). Both

the Kac–Moody group M̂G
σ

R equipped with its Ad-invariant metric, and the quo-

tient space X = M̂G
σ

R/Fix(ρ∗) equipped with its Ad(Fix(ρ∗))-invariant metric are
tame Fréchet symmetric spaces of the “compact” type with respect to their natural
Ad-invariant metric. Their curvatures satisfy

〈R(X,Y )X,Y 〉 ≥ 0 .
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Theorem 2 (affine Kac–Moody symmetric spaces of the “non-compact” type).

Both quotient spaces X = M̂G
σ

C/M̂G
σ

R and X = H/Fix(ρ∗), where H is a non-

compact real form of M̂G
σ

C equipped with their Ad-invariant metric, are tame
Fréchet symmetric spaces of the “non-compact” type. Their curvatures satisfy

〈R(X,Y )X,Y 〉 ≤ 0 .

Furthermore Kac–Moody symmetric spaces of the non-compact type are diffeomor-
phic to a vector space.

Similarly to finite dimensional Riemannian symmetric spaces Kac–Moody sym-
metric spaces appear in pairs, related by a duality relation. This duality relation
can be defined similar as for finite dimensional Riemann symmetric spaces, yield-
ing a duality between affine Kac–Moody symmetric spaces of the compact type
and affine Kac–Moody symmetric spaces of the non-compact type. Similar to the
finite dimensional case, the classification can be reduced to orthogonal symmetric
affine Kac–Moody algebras (OSAKAS).

4. Twin cities

In Tits’ definition of Kac–Moody groups, he constructed not one group, but
groups at various ”levels” depending on the level of completion of the Kac–
Moody algebra. While the construction of affine twin buildings for “minimal”
affine Kac–Moody groups is well known by work of Jacques Tits and several other
researchers [AB08], any completion of the Kac–Moody group destroys its twin
BN -pair structure — hence this theory fails for all completions. This raises an
obstruction to the development of a full geometric theory associated to the com-
pletion.

It was not until 2009 that this problem was addressed in the author’s work
[Fre09], where this obstruction is removed by introducing a new structure, called
twin cities. A twin city consists of two (usually uncountable) families of buildings,
denoted B+ and B−, in which each building from one family is twinned with
each building from the other family. The family of buildings becomes richer and
richer, the weaker the regularity assumptions used. Thus twin cities also reflect
the regularity of the corresponding affine Kac–Moody group. For minimal Kac–
Moody groups, the two families just reduce to one building each. More precisely,
we have the following result:

Theorem 3 (Twin cities). For each analytic Kac–Moody group G there exists an
associated twin city B = B+ ∪B−, such that

(i) Each connected component ∆± in B± is an affine building.
(ii) Each pair (∆+,∆−) ∈ B+ ∪B−, consisting of a building ∆+ in B+ (“posi-

tive” building) and a building ∆− in B− (“negative” building), is an affine
twin building.

(iii) B = B+ ∪B− has a spherical building at infinity B∞.
(iv) G acts on its twin city B.
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(v) “Small” twin cities, associated to Kac–Moody groups, defined by stronger
regularity conditions, embed into “big” twin cities, associated to Kac–Moody
groups, defined by weaker regularity conditions.

Like the spherical buildings of compact symmetric spaces, one can realize the
twin cities of an affine Kac–Moody symmetric space geometrically in its tangent
space (that is, in the group case in the Kac–Moody algebra). Denote by c a central
element and by d a derivation. We have the following result:

Theorem 4 (Embedding of cities). Denote by Hℓ,r the intersection of the sphere

of radius l ∈ R of a real affine Kac–Moody algebra L̂(g, σ) with the horospheres

rd = ±r 6= 0, where rd ∈ R is the coefficient of d in L̂(g, σ). There is a 2-

parameter family ϕℓ,r, (l, r) ∈ R × R+ of L̂(G, σ)-equivariant immersions of the

twin city B+ ∪B− into L̂(g, σ). It embeds the geometric realization of B into
Hℓ,r. The two parts of the city B+ and B− are immersed into the two sheets of
Hℓ,r described by rd < 0 resp. rd > 0 of the space Hℓ,r.

As a third description, we construct cities in terms of periodic flags in Hilbert
spaces. This approach uses parts of the representation theory of loop groups
on Hilbert spaces, as developed in [PS86]. The cities are described by chains of
subspaces in a generalization of the Sato Grassmannian.

Results along these lines hold also in more general situations: In joint work of
L. Carbone, A. Feingold and the author we study embeddings of buildings of hy-
perbolic type into the s-representations of hyperbolic Kac–Moody algebras. This
is one connection between symmetric spaces and buildings, which we conjecture
to be true also in the general case. In the case of a compact real form of a hyper-
bolic Kac–Moody algebra, the interior of the lightcone in each Cartan subalgebras
corresponds exactly to the Tits cone. Hence an embedding of the building has its
image inside the lightcone of a hyperbolic Kac–Moody algebras with the boundary
corresponding to the light cone. This gives a 1-parameter family of embeddings
equivariant with respect to the action of the compact real form of the hyperbolic
Kac–Moody group.
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Geometry of nilpotent cones in exceptional Lie algebras

Paul Levy

Let G be a simple, simply connected algebraic group over C and let g = Lie(G).
We denote byN (g) (or just N if there is no confusion) the set of nilpotent elements
in g. It is well-known that N is an irreducible Zariski closed G-stable subset of
g of dimension dimG − r, where r is the rank of G. The coordinate ring of
N can be described as C[g]/I, where I is an ideal generated by r algebraically
independent homogeneous G-invariant polynomials. To set the scene, we consider
a few examples:

Example 1: N (sl(2))

The set of nilpotent elements of sl(2) is the set of matrices of the form

(
a b
c −a

)

with a2+bc = 0. This is an irreducible surface which is isomorphic to C2/{±1}: to
see this, we note that the subring of even degree polynomials in C[s, t] is generated
by s2, st, and −t2, which satisfy the equation a2 + bc = 0.

Example 2: the minimal nilpotent orbit in sp(4)
Here we consider not the whole nilpotent cone, but the subset X of symplectic

matrices of rank ≤ 1. It can be shown that any element of X can be written in
the form 



sv tv −uv −v2

su tu −u2 −uv
st t2 −tu −tv
s2 st −su −sv


 , s, t, u, v ∈ C.

In this way we can identify the coordinate ring ofX with the subring of even degree
polynomials in C[s, t, u, v], which is precisely the coordinate ring of C4/{±1}.
More generally, the set of rank ≤ 1 symplectic 2n× 2n matrices is isomorphic to
C2n/{±1}.

Example 3: N in a neighbourhood of a subregular nilpotent element in

sl(3)
Consider the sl(2)-triple {h, e, f} in sl(3), where

h =



1 0 0
0 0 0
0 0 −1


 , e =



0 0 1
0 0 0
0 0 0


 , f =



0 0 0
0 0 0
1 0 0


 .

Since the geometric structure of the whole nilpotent cone of sl(3) is quite compli-
cated, we can consider its geometry in a neighbourhood of f by restricting to the
transverse slice

f + ge =







a b d
0 −2a c
1 0 a


 : a, b, c, d ∈ C





It is straightforward to show that the intersection with N (sl(3)) is the set of such
elements satisfying d = −3a2 and bc = 8a3. It follows that the coordinate ring of
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the intersection is isomorphic to C[s3, st, t3], which is the fixed point subring of
C[s, t] under a group of order 3.

These examples give something of a taste for this topic, but they may be mis-
leading. In particular, all three of the constructions here produce quotient vari-
eties; this will not be true of all of the singularities in which we are interested.

1. Generalities about the geometry of N

In this section we state some well-known facts about N . The set of G-orbits
in N is a finite partially ordered set, where O ≥ O′ if and only if O ⊇ O′. There
is a unique maximal element in this partially ordered set: the G-orbit of regular
nilpotent elements, which we denote Oreg. Moreover, there is a unique maximal
element in (N\Oreg)/G, the subregular nilpotent orbitOsubreg . At the other end of
the poset N/G, there is an obvious minimal element, the zero orbit. Furthermore,
there is a unique minimal element in (N \ {0})/G, the minimal nilpotent orbit,
which is the orbit of a highest root element.

The orbit structure of N is intimately related to its geometry. The smooth
points of N are precisely those of Oreg. More generally, the smooth points of

O are those of the orbit O. We can therefore think of the orbits in terms of a
stratification of N : we have the smooth locus Oreg of N , then the smooth locus
Osubreg of N \ Oreg, and so on. At each stage, the smooth locus of the set that
remains is a disjoint union of orbits.

2. Transverse slices

The geometry of N as a whole (or equivalently, in a neighbourhood of zero) is
in general too complicated to determine in detail. A more manageable question
is to describe the geometry of a nilpotent orbit closure in the neighbourhood of a
point on its boundary. We therefore consider pairs (O′,O) of orbits with O′ ) O,
which are called degenerations; if there is no O′′ with O′ > O′′ > O then (O′,O)
is a minimal degeneration.

One means of studying geometry in a neighbourhood of a point is via transverse
slices. If f ∈ O, then a transverse slice to O at f is an affine linear subvariety
f + v of g such that v ⊕ [g, f ] = g. The transversality ensures that N is locally
analytically isomorphic at f to G · f × ((f + v)∩N ), and similarly for a nilpotent
orbit closure O′ containing f . Thus, questions about the singular structure of N
or O′ near f can be reduced to questions about the intersection with v. This
set-up can be interpreted more abstractly in terms of an equivalence relation on
singularities.

Let f ∈ O be included in an sl(2)-triple {h, e, f}. Then the Slodowy slice

Sf := f + ge is a transverse slice to O at f . For instance, in our Example 3 in the
introduction, N is locally analytically isomorphic at f to a product of a smooth
variety and a quotient of C2/Γ, where Γ is a cyclic subgroup of SL(2,C) of order
3.
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There are two important special cases associated to orbits at either end of the
poset N/G:

The degeneration (Oreg,Osubreg)

Let f ∈ Osubreg, and consider the intersection N ∩ Sf = Oreg ∩ Sf . By a
famous result of Brieskorn [1] (for simply-laced g) and Slodowy [4] (for all g), the
intersection N ∩Sf is isomorphic to a simple, or Kleinian singularity. (Recall that
a Kleinian singularity is a quotient of C2 by the action of a finite subgroup of
SL2(C); such groups are classified, and up to conjugacy they correspond to the
simply-laced Dynkin diagrams.) Our Examples 1 and 3 from the introduction are
therefore special cases of Brieskorn’s theorem.

The degeneration (Omin, 0)
Here we take f = 0, so that Sf is all of g. Then the singularityOmin∩Sf = Omin

is aminimal singularity. For instance, our Example 2 is a minimal singularity of
type C2. In general, a minimal singularity of type Cn is isomorphic to C2n/{±1}.

3. Minimal degenerations in classical Lie algebras

In two papers in the early 1980s [2, 3], Kraft and Procesi established a set
of combinatorial rules for determining the (equivalence class of the) singularity
associated to a degeneration (O,O′) of nilpotent orbits in a classical Lie algebra.
These combinatorial rules can be expressed in a striking way in terms of Young
diagrams. A consequence of their work is that the singularity associated to a
minimal degeneration of nilpotent orbits in classical g is one of:

- a Kleinian singularity;
- a minimal singularity;
- a union X ∪ X of two Kleinian singularities X , meeting transversally at the

common singular point.
Moreover, if O is non-normal then it is non-normal in codimension 2, and the

non-normality is branched. (For the very even classes in so(2n), this last result
requires Sommers’ solution to the normality question.)

4. Minimal degenerations in exceptional Lie algebras

In joint work with Fu, Juteau and Sommers (to appear), we have studied the
singularities associated to minimal degenerations in exceptional Lie algebras. Due
to the absence of combinatorial information classifying the nilpotent orbits, our
approach has been largely case-by-case. In addition to the Kleinian and mini-
mal singularities, we find that with one as-yet unsolved exception, the singularity
associated to a minimal degeneration is one of the following:

- a union of m ≤ 10 Kleinian singularities of the same type, meeting (pairwise)
transversally at the common singular point;

- a union of 2 minimal singularities of the same type (6= A1), meeting transver-
sally at the common singular point;

- C4/Γ, where Γ is a cyclic subgroup of SL4(C) of order 3, with no fixed points;
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- Spec(C[s2, st, t2, s3, s2t, st2, t3]), or equivalently, the image of the diagonal em-
bedding C2 → C2/µ2×C2/µ3, a non-normal surface with normalization isomorphic
to C2;

- the image of the diagonal embedding C4 → C4/µ2 × C4/µ3, a non-normal
variety with normalization isomorphic to C4.

Moreover, we find that non-normality of an orbit closure O may be branched
or unibranch (i.e. the normalization map is a bijection); and O may be normal in
codimension 2, or at a point of any O′ such that (O,O′) is a minimal degeneration.

In addition, we find that if O is special and O′ is the unique minimal orbit in
its special piece, then the singularity associated to (O,O′) is a quotient C2m/Γ
where Γ is Lusztig’s canonical quotient of the component group of e ∈ O. This
can be thought of as a solution to a local version of a conjecture of Lusztig.
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Computations with θ-groups

Willem de Graaf

Let g be a semisimple Lie algebra over C, with adjoint group G. We consider
gradings of g:

g =
⊕

i∈Z/mZ

gi,

where [gi, gj ] ⊂ gi+j . By convention, m = ∞ means that we are dealing with a Z-
grading. The subalgebra g0 is reductive and we let G0 be the connected subgroup
of G with Lie algebra g0. Then G0 acting on g1 is called a θ-group. One interesting
question is to describe the G0-orbits in g1. This has been extensively studied by
Vinberg in the 70’s ([5], [6]). The aim of this talk is to give an overview of recent
work aiming at developing algorithms and computer programs to deal with the
nilpotent orbits of G0. A basic result about these orbits is the following:

• Let e ∈ g1 be nilpotent, then e lies in a homogeneous sl2-triple (h, e, f),
meaning that [h, e] = 2e, [h, f ] = −2f , [e, f ] = h, and h ∈ g0, e ∈ g1,
f ∈ g−1.

• Let (h, e, f), (h′, e′, f ′) be two homogeneous sl2-triples. Then e, e
′ are G0-

conjugate if and only if (h, e, f), (h′, e′, f ′) are G0-conjugate if and only if
h, h′ are G0-conjugate.

Now one approach for classifying nilpotent orbits runs as follows (here h0 is a fixed
Cartan subalgebra of g0):
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(1) From the classification of the nilpotent G-orbits in g we get a finite set
H ⊂ h0 containing all h ∈ h0 that lie in an sl2-triple in g.

(2) Get rid if the G0-conjugates in H. (This is achieved by acting with the
Weyl group).

(3) For each remaining element of H decide whether it lies in a homogeneous
sl2-triple. For the elements that do, compute such a triple.

A second approach is based on Vinberg’s theory of carrier algebras. This asso-
ciates to a nilpotent orbit G0 · e a regular semisimple Z-graded flat and complete
subalgebra of g. Conversely, a subalgebra with these properties yields a nilpotent
orbit. This reduces the problem of classifying the nilpotent orbits to a combina-
torial problem involving root systems, and their conjugacy under the Weyl group.

For more details on both these approaches see [3]. They have been implemented
in the GAP4 ([1]) package SLA ([2]).

Now let g be a real simple Lie algebra with Cartan decomposition g = k⊕p and
adjoint group G. We can apply the above algorithms to the problem of listing the
nilpotent G-orbits in g. This is an ongoing project with Heiko Dietrich. The idea
is to use the Kostant-Sekiguchi correspondence which provides a bijection

{nilpotent G-orbits in g} ↔ {nilpotent KC-orbits in pC}.

Here gC = C ⊗ g and so on. Using the previously indicated algorithms we can
list the nilpotent KC-orbits in pC. In order to use the bijection above, for each
nilpotent KC-orbit in pC we need a complex Cayley triple. That is a homogeneous
sl2-triple (h, e, f) such that σ(e) = f , where σ : gC → gC is the conjugation with
respect to g. Once such a triple is found, the element ih+ e+ f is a representative
of the real orbit. Finding a Cayley triple in the end boils down to solving a system
of polynomial equations. Currently we have performed this method for all real
simple Lie algebras of ranks up to 8.

In a joint work with Vinberg and Yakimova ([4]) we have considered the problem
of deciding whether O′ ⊂ O, where O′, O are two nilpotent orbits of a θ-group.
Let (h′, e′, f ′), (h, e, f) be homogeneous sl2-triples corresponding to these orbits,
with h, h′ ∈ h0. Set V = g1 and

Vk(h) = {v ∈ V | [h, v] = kv} and V≥l(h) =
⊕

k≥l

Vk(h).

Let W0 be the Weyl group of g0 (with respect to h0). For w ∈ W0 set U(w) =
V2(h

′) ∩ V≥2(wh). Then:

• O′ ⊂ O if and only if there is a w ∈ W0 such that U(w) contains a point
of O′.

• Moreover, in that case, U(w) ∩O′ is dense in U(w).

This gives a straightforward probabilistic method to decide whether O′ ⊂ O.
Two main problems remain (and are discussed in the mentioned reference): prove
that U(w) ∩O′ is empty, and loop over W0.
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Orbits of parabolic k-subgroups on symmetric k-varieties

Gerard F. Helminck

(joint work with Aloysius G. Helminck)

Symmetric k-varieties are homogeneous spaces Xk := Gθ
k\Gk. Here G is a reduc-

tive connected algebraic group defined over a field k, char(k) 6= 2, and Gk denotes
the group of k-rational points of G. Further, θ is an automorphism of order two of
G, defined over k, and Gθ is its fixed point group. The k-points of Gθ are denoted
similarly by Gθ

k and the same notation will be used for any algebraic group H
defined over k.

Orbits of parabolic k-subgroups on these varieties occur in various situations.
Our motivating example comes from representation theory where we choose k to
be a local field. A central issue there is the decomposition of natural representa-
tions of Gk related to Xk into irreducible ones. Here one can think of the right
regular representation of Gk on L2(Xk, dx). The building blocks of these decom-
positions are families of intertwining operators from the C∞-vectors of induced
representations from the k-points Pk of a parabolic k-subgroup to C∞(Xk), see
[1]. In order that, these families are nontrivial on open Gθ

k × Pk-orbits, one can
show, see [2], that P has to be θ-split, i.e. P ∩ θ(P ) is the Levi-component of P
and θ(P ). Such a P contains then also a (θ, k)-split torus A, i.e. A is k-split and
θ(a) = a−1 for all a ∈ A, such that the Levi-component L of P is equal to the
centralizer ZG(A) of A in G.

We have a number of structural results for this class of parabolic k-subgroups
that can be used at the actual construction of these intertwining operators. First
of all, we note that minimal θ-split parabolic k-subgroups are described by the
maximal (θ, k)-split tori, as the following result shows:

Proposition 1. Let P be a θ-split parabolic k-subgroup of G and A a θ-stable
maximal k-split torus of P . Then the following conditions are equivalent:

(i) P is a minimal θ-split parabolic k-subgroup of G.
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(ii) P ∩ θ(P ) has no proper θ-split parabolic k-subgroups.
(iii) θ is trivial on the isotropic factor of P ∩ θ(P ) over k.
(iv) A− maximal (θ, k)-split torus of G and ZG(A

−) = P ∩ θ(P ).

In relation to the orbit structure, we found that minimal θ-split parabolic sub-
groups are conjugate under Gθ:

Lemma 2. Let P be a minimal θ-split parabolic k-subgroup of G and P0 a minimal
parabolic k-subgroup of G contained in P . Then we have the following conditions:

(i) (Gθ)0P = (Gθ)0P0.
(ii) (Gθ)0P0 is open in G.

The orbits of Gθ
k on Gk/Pk contained in the open orbit GθP can be described by

Theorem 3. Let {Ai | i ∈ I} be representatives of the Gθ
k-conjugacy classes of

maximal (θ, k)-split tori of G. There is a one to one correspondence between the
Gθ

k×Pk-orbits on Gk contained in (GθP )k and ∪i∈IW (Ai)/WGθ

k

(Ai). In particular

the orbits are characterized by Gθ
knPk with n a representative for W (Ai)/WGθ

k

(Ai)

in NGk
(Ai) (i ∈ I).

We have for general parabolic k-subgroups P a description of the orbitsGθ
k\Gk/Pk.

Details can be found in [3]. For simplicity, we describe the result for k a local field:

Theorem 4. Let k be a local field and P a parabolic k-subgroup of G. The space
Gθ

k\Gk/Pk can be described by multiplets (Q′, Q(1), · · · , Q(r), T1, · · · , Tr), where

Q
′

is a parabolic k-subgroup, conjugate to P under Gk, each Q(i) is a minimal

parabolic k-subgroup in Q
′

containing the maximal θ-stable k-split torus Ti such
that Q

′

k∩G
θ
kQ(i)k is open in Q

′

k and moreover the Q(i) are not Q
′

k∩G
θ
k conjugate.
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Contractions of Lie algebras

Oksana Yakimova

Let g = LieG be a simple (non-Abelian) Lie algebra defined over a field K of
characteristic zero. For safety, assume that K is algebraically closed and G is
connected. Let g = g0⊕g1 be a symmetric decomposition of g induced by an
involution σ. We can contract g to a new (non-reductive) Lie algebra g̃ = g0⋉g1,

where g1 becomes an Abelian ideal. Set G0 = Gσ and G̃ = G0⋉ exp(g1), here

Lie G̃ = g̃. It was conjectured by D.Panyushev [3] that K[g̃∗]G̃ is a polynomial
algebra in ℓ variables, where ℓ = rk g.
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The decomposition g = g0⊕g1 induces a bi-grading on the symmetric alge-
bra S(g). For each H ∈ S(g), let H• be its highest g1-component, i.e., a bi-
homogeneous summand with the highest degree in g1. As can be easily seen, if

H ∈ S(g)G, then H• ∈ S(g̃)g̃. It is known that tr.degK[g̃∗]G̃ = ℓ and if H•
i are al-

gebraically independent for a set of homogeneous generators H1, . . . , Hℓ of S(g)G,

then these highest components generate K[g̃∗]G̃ [3]. For many involutions, such
sets of generators were constructed in the same paper of Panyushev. However,

there are 4 cases, where K[g̃∗]G̃ cannot be generated by the highest components.

Note that S(g1)G0 ⊂ S(g̃)G̃. Let ϕ : K[g]G → K[g1]
G0 be the restriction

homomorphism. Then ϕ(H) is either zero or H•, the latter if and only if H•

is an element of S(g1). According to [1], ϕ is not surjective for the following 4
symmetric pairs (g, g0):

(E6, F4), (E7, E6⊕K), (E8, E7⊕sl2), (E6, so10⊕so2)

and only for them. Here we concentrate on the other “surjective” pairs.

Theorem 1. Suppose that
ℓ∑

i=1

deg
g1
Hi ≤ dim g1, then H

•
i are algebraically inde-

pendent.

Combining Theorem 1 and results of Panyushev [3] we get our main result.

Theorem 2. Suppose that the restriction homomorphism ϕ is surjective. Then

there are generators Hi ∈ S(g)G such that H•
i generate S(g̃)G̃.

The proof of Theorem 1 relies on a certain equality involving the Poisson tensor
π of g. Suppose that dim g = n and choose a basis x1, . . . , xn of g. Let Ω be
a graded skew-symmetric algebra of the differential forms on g∗ with polynomial
coefficients. It is also a free S(g)-module. Let also W be the dual skew-symmetric
algebra, generated by the partial derivatives δi = δxi

. We have Wk ∼= (Ωk)∗. Let
also ω = dx1 ∧ . . . ∧ dxn be the volume form. Then there is an S(g)-linear map

1

ω
: Ωk → (Ωn−k)∗ ∼= Wn−k

such that for f ∈ Ωk and g ∈ Ωn−k, (f/ω)(g) = a, where f ∧g = aω (with a ∈ A).
We have π ∈ W2 and π =

∑
i<j

[xi, xj ]∂i ∧ ∂j . Given k ∈ N, let

Λkπ := π ∧ π ∧ . . . ∧ π︸ ︷︷ ︸
k factors

,

be an element of W2k.
The Kostant regularity criterion [2, Theorem 9], can be expressed as follows.

For any set of homogeneous generators H1, . . . , Hℓ ∈ S(g)G, holds

(1)
dH1 ∧ . . . ∧ dHℓ

ω
= cΛ(n−ℓ)/2π ,

where c is a non-zero constant.
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Let next ψt with t ∈ K
×

be an automorphism of g (as a vector space) such that
ψt is identity on g0 and tid on g1. One can extend ψt to S(g), Ω, and W . Set πt =
ψ−1
t (π). Then for the Poisson tensor π̃ of g̃ holds: π̃ = limt→0 πt. In other words,

g̃ is an Inönü-Wigner contraction of g. It turns out that if
∑

deg
g1
Hi ≤ dim g1,

then actually
∑

deg
g1
Hi = dim g1 and we can contract both sides of Equation (1)

obtaining
dH•

1 ∧ . . . ∧ dH•
ℓ

ω
= cΛ(n−ℓ)/2π̃ 6= 0 ,

the Kostant regularity criterion for g̃.
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Quantum symmetric Kac–Moody pairs

Stefan Kolb

Let g be a symmetrizable Kac-Moody algebra over an algebraically closed field K of
characteristic 0. Following Drinfeld and Jimbo there exists a quantized enveloping
algebra Uq(g) which is a Hopf algebra deformation of the enveloping algebra U(g),
depending on a parameter q such that Uq(g) specializes to U(g) if q tends to 1.
Let, moreover, θ : g → g be an involutive Lie algebra automorphism and g = k⊕ p

the corresponding Cartan decomposition. In this case U(k) is a Hopf subalgebra
of U(g). However, even if both g and k are finite dimensional simple Lie algebras,
the Hopf algebra Uq(k) does generally not embed into Uq(g).

For finite dimensional g this problem was resolved by G. Letzter in her theory
of quantum symmetric pairs [Let99], [Let02]. She constructed subalgebras U ′

q(k)
of Uq(g) which specialize to U(k) as q tends to 1. However, U ′

q(k) is not a Hopf
subalgebra of Uq(g) but only satisfies the weaker (right) coideal property

∆(U ′
q(k)) ⊂ U ′

q(k) ⊗ Uq(g)

where ∆ : Uq(g) → Uq(g) ⊗ Uq(g) denotes the coproduct of Uq(g). The coideal
property appears very naturally if one bears in mind that Uq(g) is obtained from
the Hopf algebra U(g) essentially by deforming the coproduct.

Recently, various examples appeared in the literature of coideal subalgebras of
Uq(g) which are deformations of U(k) for suitable involutions on infinite dimen-

sional g. Let g′ =
◦
g ⊗K[t, t−1]⊕Kc be the derived Lie algebra of an untwisted affine

Kac-Moody algebra. Let
◦

θ :
◦
g→

◦
g be an involutive automorphism of the finite di-

mensional Lie algebra
◦
g. Consider the involutive automorphism θ′ : g′ → g′ given

by θ′(x⊗ tn) = θ(x)⊗ t−n and θ′(c) = −c. In [MRS03] A. Molev, E. Ragoucy, and
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P. Sorba introduced twisted q-Yangians which are quantum analogs of U(k) for the

involution θ′. If
◦

θ is the Chevalley involution of sl2(K) the corresponding quan-
tum algebra appeared under the name q-Onsager algebra in the physics literature
[BK05]. It had previously appeared in Terwilliger’s investigation of tridiagonal
pairs and polynomial association schemes [Ter01]. Another example class are the
quantized GIM Lie algebras introduced by Y. Tan [Tan05].

The aim of this talk is to extend G. Letzter’s theory of quantum symmetric
pairs to the setting of symmetrizable Kac-Moody algebras in such a way that it
contains all the example classes listed above. Let b+ denote the standard Borel
subalgebra of g. An involutive automorphisms θ : g → g is said to be of the second
kind if dim(θ(b+) ∩ b+) < ∞. It was shown in [KW92] that involutions of the
second kind admit a classification in terms of Satake diagrams in a way analogous
to the classification in the finite dimensional case in [Ara62]. In the finite case,
this classification is at the heart of Letzter’s constructions which we extend to the
following result:

Let g be a symmetrizable Kac-Moody algebra and θ : g → g an involutive
automorphism of the second kind. Then there exists an algebra automorphism
θq : Uq(g) → Uq(g) and a right coideal subalgebra U ′

q(k) of Uq(g) which are defor-
mations of θ and U(k), respectively. Moreover, there exists a rich structure theory
for U ′

q(k).

We call the pair (Uq(g), U
′
q(k)) a quantum symmetric Kac-Moody pair. The

structure theory in the above statement consists of Iwasawa decompositions for
Uq(g) and triangular decompositions for U ′

q(k). Moreover, the algebra U ′
q(k) can be

written explicitly in terms of generators and relations. It is straightforward to see
that the q-Onsager algebra and the quantized GIM Lie algebras appear as examples
of quantum symmetric Kac-Moody pairs. Moreover, the algebra U ′

q(k) satisfies a
maximality condition which should make it possible to identify twisted q-Yangians
as quantum symmetric Kac-Moody pairs. In the finite case, all these structural
properties are contained in Letzter’s papers [Let99], [Let02], [Let03], [Let04]. A
more rigorous and extended version of this talk will appear as [Kol].
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The classification of homogeneous compact geometries

Linus Kramer

(joint work with Alexander Lytchak)

In my talk I explained the following two results.

Theorem A (Grundöfer-Knarr-Kramer 1995/1998)

Suppose that ∆̃ is a homogeneous compact connected building whose Coxeter di-

agram is spherical, connected and of rank at least 2. Then ∆̃ is the building
associated to a simple noncompact Lie group S. Topologically, it may be identified
with the boundary at infinity of the Riemannian symmetric space X = S/K, where
K ⊆ S is a maximal compact subgroup.

By a Tits geometry we mean a residually connected thick geometry of type
M , where M is a Coxeter diagram, as in Tits [5]. We call such a geometry ∆
compact if the set of vertices V ert(∆) carries a compact Hausdorff topology, such
that the flag varieties are closed subsets of V ert(∆)k. A 2-covering between two
Tits geometries is a simplicial surjection which is bijective on all codimension 2
links.

Theorem B (Kramer-Lytchak 2011/12)
Suppose that ∆ is a compact connected Tits geometry whose Coxeter diagram is
spherical, connected, and of rank at least 2. Suppose that there is a compact
group acting transitively on the maximal flags of ∆. Then there exists a compact

homogeneous building ∆̃ as in Theorem A and an equivariant 2-covering ∆̃ → ∆,
or ∆ is a unique compact connected homogeneous geometry of type C3 which cannot
be 2-covered by any building.

The exceptional C3-geometry that arises here comes from a polar action of coho-
mogeneity 2 of the group SU(3)× SU(3) on the Cayley plane [6].
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A boundary approach towards 2-spherical Kac–Moody geometry

Tobias Hartnick

(joint work with Ralf Köhl)

The theory of compact connected spherical topological buildings provides an ax-
iomatic framework for the study of boundaries of symmetric spaces. More pre-
cisely, let (W,S) be an irreducible spherical Coxeter system of rank ≥ 2, ∆ a
building of type (W,S). ∆ is called homogeneous if its automorphism group acts
transitively on the set of chambers of ∆. Given such a building we denote by O the
set of pairs of opposite chambers in ∆ and given (c1, c2) ∈ O and s ∈ S we denote
by ps(c1, c2) the projection of c2 onto the s-panel of c1. A Hausdorff topology τ
on the set of chambers of ∆ is called a connected building topology if it satisfies
the following two axioms:

(TB1) The projection maps ps are continuous on O with respect to the topology
induced by τ .

(TB2) Panels are compact and connected.

In this case, τ itself is compact and connected, and there is the following classifica-
tion result, which links topological buildings to the subject of the mini-workshop:

Theorem 1 (Grundhöfer-Knarr-Kramer, [1]). If ∆ is a homogeneous spherical
building of type (W,S) and τ a connected building topology on the set of chambers
of ∆, then the geometric realization |∆| of (∆, τ) is isomorphic to the boundary of
a symmetric space of the non-compact type.

In this talk we presented an extension of this result to the case, where the
underlying Coxeter system (W,S) is no longer assumed to be spherical, but only
two-spherical (and irreducible of rank ≥ 2). For this generalization we consider
homogeneous twin buildings ∆ = (∆+,∆−, δ∗) of type (W,S). Using the twinning
δ∗ the set O of opposite pairs of chambers and the projection maps ps can still
be defined. In complete analogy with the spherical case, a Hausdorff topology τ
on the set of chambers of ∆ will be called a connected twin building topology if it
satisfies axioms (TB1) and (TB2) above.

A major obstruction against the classification of such topologies is provided by
the fact that they are in general not determined by their (combinatorially) local
shape. To make this precise, let us fix base chambers c± in the two halves and
denote by E±

≤w the Schubert varieties of radius w around c±, i.e. the collections
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of chambers of Weyl group distance at most w. Then, at least for certain ∆, their
exist twin building topologies τ, τ ′ such that

(1) ∀w ∈ W : (E±
≤w, τ |E±

≤w

) ∼= (E±
≤w, τ

′|E±
≤w

),

but τ 6= τ ′. Let us call two topologies satisfying (1) Schubert equivalent. If we
do not distinguish between Schubert equivalent twin building topologies, then a
classification becomes feasible:

Theorem 2 (Hartnick-Köhl-Mars, [2]). If ∆ is a homogeneous twin building of
type (W,S) and τ a connected twin building topology on the set of chambers of ∆,
then ∆ is homogeneous under a group G from one of the following classes:

(C) a complex split Kac–Moody group;
(R1) a real split Kac–Moody group;
(R2) a real quasi-split Kac–Moody group, which arises as the fixed point sub-

group of a complex split Kac–Moody group with respect to an involution of
the first kind in the sense of [3].

If we equip G with the final group topology with respect to the Lie group topolo-
gies on its rank one subgroups, then the induced quotient topology is a Schubert
equivalent refinement of τ .

Given a group G of class (C), (R1) or (R2) we also construct a G-homogeneous
kω-space XG, which we refer to as the Kac–Moody symmetric space of the non-
compact type associated with G. This space comes equipped with a distinguished
set of geodesics, which allows us in particular to define the boundary ∂XG. Using
this notion we obtain the following boundary interpretation of topological twin
buildings, which links our classification to the classical result of Grundhöfer, Knarr
and Kramer quoted above:

Theorem 3 (Hartnick-Köhl). If ∆ is a homogeneous twin building of type (W,S)
and τ a connected twin building topology on the set of chambers of ∆, then there
exists a Schubert equivalent refinement τ ′ of τ such that the geometric realization
|∆| of (∆, τ ′) is isomorphic to the boundary of a Kac–Moody symmetric space of
the non-compact type.

The Kac–Moody symmetric spaces appearing in Theorem 3 are not to be con-
fused with the (completed) Kac–Moody symmetric spaces appearing in work of
W. Freyn. In fact, the Kac–Moody symmetric spaces referred to above are ho-
mogeneous spaces of Kac–Moody groups, while Freyn considers spaces, which are
homogeneous under certain functional-analytic completions of such groups. The
precise relation between the two notions is not yet fully understood and deserves
further investigation. First steps in this direction were undertaken during the
present mini-workshop.
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Canonical real structure on spherical varieties

Stéphanie Cupit-Foutou

(joint work with Dmitri Akhiezer)

This report deals with a work obtained jointly with Dmitri Akhiezer ([ACF]).
The ground field is the field of complex numbers C. Let G be a connected

reductive algebraic group. An algebraic G-variety is called spherical if it contains
a dense (open) orbit for a Borel subgroup B of G, equivalently if it has finitely
many B-orbits. Flag varieties, symmetric spaces G/H with Gτ ⊂ G ⊂ NG(G

τ )
with τ an involution of G and nilpotent orbits G.e with (ade)4 = 0 are spherical
varieties.

A real structure on a complex manifold X is an anti-holomorphic involution of
X . Let σ : G → G be be the involution defining the split real form of G. A real
structure µ is called σ-equivariant if it satisfies the following property

µ(g · x) = σ(g) · µ(x) for all g ∈ G and all x ∈ X .

0.1. There always exists a σ-equivariant real structure on an affine smooth spheri-
calG-variety ([A]). However, in the non-spherical case, even ifX isG-homogeneous,
there may not exist any real structure on X ; see [AP] for an example.

Theorem 1. Let X = G/H be spherical with H being self-normalizing in G. Then
there exists a unique (up to G-automorphism) σ-equivariant real structure on X.

This theorem follows essentially from the following statement.

Proposition 2. Under the assumptions of Theorem 1, the assignment gH 7→
σ(g)σ(H) defines a real structure on G/H.

Proof. The main step consists in proving that the subgroups H and σ(H) of G are
conjugate. This is achieved by the uniqueness part of the classification of spherical
homogeneous spaces proved by Losev in [Lo]. �

0.2. A G-variety is called wonderful if it is smooth, complete, with r smooth prime
G-divisors D1, . . . , Dr with normal crossings, such that the G-orbit closures are
exactly all the intersections ∩i∈IDi, for any subset I of {1, . . . , r}.

Note that a wonderful variety has a unique closed G-orbit, that given by taking
the intersection of all the Di’s.

Wonderful varieties are spherical; they encompass the flag varieties and the
De Concini-Procesi compactifications of symmetric spaces. By a result of Knop
([K]), any spherical homogeneous space G/H with H = NG(H) has a wonderful
compactification. Further, such a compactification is unique.
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Thanks to nice properties of the automorphism group of a wonderful variety,
we can prove:

Theorem 3. There are finitely many real structures on a wonderful variety X
(up to an automorphism of X).

As a consequence of Theorem 1, we can obtain the following statement.

Theorem 4. There exists a unique canonical real structure on the wonderful com-
pactification of a spherical homogeneous space G/H with H self-normalizing.

The real structure obtained in the above theorem for a wonderful variety X will
be referred in the following as the canonical real structure of X .

0.3. Given a wonderful G-variety X equipped with a canonical real structure µ,
define its real part as the set

RX = {x ∈ X : µ(x) = x}.

Note that in general, even if a complex manifold has a real structure, it may
have an empty related real part.

Let Gσ
0 denote the identity-component of the fixed point set Gσ.

Proposition 5. (i) RX has finitely many Gσ
0 -orbits.

(ii) RX ∩G · x 6= ∅, ∀x ∈ X.

(iii) The real part of the closed G-orbit of X is Gσ-homogeneous and is the unique
closed Gσ-orbit of RX .

(iv) RX is connected.

Applying the so-called Local Structure Theorem ([BLV]), we obtain an estimate
of the Gσ

0 -orbits of RX in terms of the rank of X , that is the number r of the Di’s.

0.4. The natural question of determining exactly the number of Gσ
0 -orbits of RX

arises. Borel and Ji solve this problem in the case of the DeConcini-Procesi com-
pactification ([BJ]).

Another problem one may address is that of considering more general invo-
lutions than that defining the split real form of G. In the case of the Cartan
involution, one can prove that there is no related equivariant real structure on a
projective space.
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Stable boundary cohomology of locally symmetric spaces

Tobias Hartnick

(joint work with Andreas Ott)

Let X be a symmetric space of the non-compact type with isometry group G and
Γ < G a lattice. Then Γ acts by isometries on X (leading to a locally symmetric
spaceX0 := Γ\X) and this action extends to the Furstenberg boundary ∂FX ofX .
The action of Γ on ∂FX is doubly ergodic and amenable; basic invariants of this
boundary dynamical system are encoded in the cohomology ring H•

L∞(Γ, ∂FX ;R),
which is defined as the cohomology of the cocomplex

Cn := L∞(∂FX
n+1;R)Γ, (n ≥ 0),

with differential given by

df(ξ0, . . . , ξn+1) =

n+1∑

i=0

(−1)if(ξ0, . . . , ξ̂i, . . . , ξn+1).

Gromov’s theory of bounded cohomology provides a natural comparison map

c• : H•
L∞(Γ, ∂FX ;R) → H•(X0;R)

relating the boundary dynamical system to the homotopy type of the locally sym-
metric spaceX0. This talk was concerned with the question under which conditions
this map is an isomorphism, i.e. to which extend the dynamical information com-
ing from the boundery action coincides with the topological information extracted
from the quotient space. We focused on the following result:

Theorem 1. Assume that the real rank of G coincides with the rank of its max-
imal compact subgroup. Then cn : Hn

L∞(Γ, ∂FX ;R) → Hn(X0;R) is surjective,
whenever n is sufficiently small compared to the rank of X.

The theorem applies most notably whenever the symmetric space X admits
an invariant complex structure (Hermitian case), but also more generally when
G is of Hodge type (e.g. G = SO(2p, q)). In view of classical stability results in
cohomology, and corresponding stability results in bounded cohomology (due to
Monod [4]), the theorem is a consequence of the following more general statement:

Theorem 2 (Hartnick-Ott, [3]). Assume that the real rank of G coincides with the
rank of its maximal compact subgroup. Then the natural comparison map yields a
surjection

H•
cb(G;R) → H•

c (G;R),

where H•
cb(G;R), respectively H

•
c (G;R), denotes the continuous bounded, respec-

tively continuous cohomology ring of G.
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Theorem 2 provides a positive answer to an old question of Dupont [1] in the
case where the real rank of G coincides with the rank of its maximal compact
subgroup. The general case remains widely open. The proof of Theorem 2, as
presented at the mini-workshop, proceeds in the following steps:

• Step 1: Observe that if G• denotes the nerve (simplicial space) underlying
G (considered as a topological category), then H•

c (G;R) can be interpreted
as the simplicial sheaf cohomology of G• with coefficients in the sheaf
C of continuous functions. On the other hand, the cohomology of the
classifying space BG coincides with the simplicial sheaf cohomology of G•

with coefficients in the sheaf of locally constant functions. Thus inclusion
of sheaves induces a natural transformation

ι•G : H•(BG;R) → H•
c (G;R).

• Step 2: The image of ιG consists of bounded classes. This is a consequence
of Gromov’s boundedness theorem for primary characteristic classes of
flat bundles [2], combined with standard transfer arguments in continuous
(bounded) cohomology.

• Step 3: In order to identify the image of ιG, we utilize the following main
lemma:

Lemma. Let Gc denote the compact dual group of G, K < G a maximal
compact subgroup and denote by fGc

: Gc/K → BK the classifying map
of the K-bundle Gc → Gc/K. Then under the isomorphisms Hn

c (G;R)
∼=

Hn(Gc/K;R) and Hn(BG;R) ∼= Hn(BK;R) the map ιnG gets intertwined

with (−1)n/2f∗
Gc

.

• Step 4: Combining Steps 1–3 we see that preimages of characteristic
classes of the K-bundle Gc → Gc/K under the isomorphism Hn

c (G;R)
∼=

Hn(Gc/K;R) are bounded. Now the equal rank assumptions of Theorem
2 ensures that Hn(Gc/K;R) is generated by these characteristic classes.
This finishes the proof of Theorem 2.
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Double coset decompositions of Kac–Moody groups

Max Horn

1. Introduction

Let F be a field of characteristic different from 2. Let G be a Kac–Moody
group over F with saturated twin BN -pair (B+, B−, N) of irreducible type (W,S),
|S| > 1. In particular:

• (W,S) is a Coxeter system;
• (B+, N) and (B−, N) are BN -pairs of type (W,S) of G;
• A := B+ ∩B− satisfies A = N ∩B+ = N ∩B−;
• AEN and W ∼= N/A.

If W is finite, then G is a reductive algebraic group. This is also called the
spherical case. B+ and B− are conjugate if and only if G is of spherical type.

Let σ ∈ Aut(F) with σ2 = idF. The norm map of F with respect to σ is

Nσ : F → FixF(σ) : x 7→ xxσ .

The composition θ of the Chevalley involution of G with σ is called σ-twisted

Chevalley involution. Let K be the subgroup of G fixed by θ; we call this
unitary form of G with respect to θ.

Our goal is to better understand the coset space K\G. In the spherical case,
this is a symmetric space (over the reals or complex numbers), respectively a
symmetric variety. A natural question is to ask what happens in the non-spherical
case. In analogy, one might call this a Kac–Moody symmetric space. The
hope is that such spaces carry a sufficiently rich structure to warrant this name.
In this presentation, we present some results on orbit structures on K\G, with the
hope that this will lead towards a better understanding of K\G.

2. B-orbits on K\G

Let B be a Borel subgroup of G, i.e. a subgroup conjugate to B+ or B−. A
maximal torus of G is any conjugate of A.

Parameterizing the B-orbits on K\G is equivalent to studying double coset
space K\G/B. This is in turn equivalent to studying K-orbits on the building
G/B. By exploiting the rich geometric structure of buildings, and the fact that θ
interchanges the two buildings G/B+ and G/B−, one obtains the following:

Theorem 1 ([2]). Let {Ai | i ∈ I} be representatives of the K-conjugacy classes
of θ-stable tori of G, and let B be a Borel subgroup of G. Then

K\G/B ∼=
⋃

i∈I

WK(Ai)\WG(Ai).

In [3], a similar result was shown for spherical G, over arbitrary fields (of char-
acteristic not 2), while in [7] it was shown for split Kac–Moody groups over an
algebraically closed field of characteristic zero.
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Note that with similar methods as were used to prove the Theorem above, one
can also study and parametrize orbits of parabolic subgroups on K\G.

3. Iwasawa decomposition

We now focus on the special case when there is only one B-orbit on K\G, i.e.
G = KB.

Definition 2. A group G with a twin BN -pair admits an Iwasawa decomposi-

tion, if there exist an involution θ ∈ Aut(G) such that θ(B+) = B− and G = KB+

where K := FixG(θ).

Theorem 3 ([1]). Let G be a split semisimple algebraic group or a split Kac–
Moody group over F. Then G admits an Iwasawa decomposition if and only if
there is σ ∈ Aut(F) with σ2 = idF such that

(1) −1 is not a norm,
(2) sums of norms are norms,
(3) G admits a σ-twisted Chevalley involution.

Question 4. What happens if one relaxes the condition θ(B+) = B−?

4. Cartan and polar decompositions

Now that we have some understanding of K-B double cosets on B, the next
natural question is to study K-K double cosets, respectively K-orbits on K\G.
In particular, we would like to find parameterizations for them.

To simplify things, we will from now on assume that θ is the σ-twisted Chevalley
involution on G. Moreover, we will assume G = KB. Hence −1 is not a norm and
sums of norms are again norms.

In the spherical settings, for real or complex algebraic groups, one has the Car-
tan decomposition G = KAK, which is closely related to the polar decomposition
G = τ(G)K, where τ(g) := gθ(g−1). Note that τ induces a bijection between
G/K and τ(G); unfortunately, this is not a group homomorphism.

In the non-spherical case, one can prove the following (for the spherical case,
see [3]):

Proposition 5. Suppose G is spherical, G = KB, and N2
σ(F) = Nσ(F). Then

G = KAK holds if and only if G = τ(G)K and the elements of τ(G) are semi-
simple (i.e. contained in a conjugate of A).

Thus if G = KAK holds, then every element g of G can be written as a product
of an element of K, and a semi-simple element in τ(G). Indeed, τ(g) itself must
be semi-simple. It seems unlikely that this is possible in the non-spherical case.
The following example gives some evidence for this.

Example 6. Consider G = SLn(F[t, t
−1]) for any n ≥ 2, a split Kac–Moody group

of type Ãn−1. For θ we take the Chevalley involution. Then G = KB holds.
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On the matrix level, θ amounts to transposing followed by inversion followed
by interchanging t and t−1. Then the matrix

(
1 t
t 1+t2

)
(suitably extended to a

(n× n)-matrix) satisfies

τ(
( 1 t
t 1+t2

)
) =

( 1 t
t 1+t2

) (
1 t−1

t−1 1+t−2

)
=

(
2 2t−1+t

t−1+2t 3+t−2+t2

)

but the eigenvalues of this matrix are

λ1,2 =
1

2

(
2 + t2 ± t

√
4 + t2

)

which shows that the matrix is not diagonalizable over F[t, t−1]. In fact the semi-
simple elements of G are conjugates of the diagonal matrices in SL2(F), while the
eigenvalues given above are clearly not in F.

More generally, one can ask the following:

Question 7. If G = KAK holds, does it follow that G is spherical?

Note that the requirements for a polar decomposition are weaker than for a
Cartan decomposition.

Question 8. When do we have a polar decomposition? Does SLn(F[t, t
−1]) admit

a polar decomposition?

5. Kostant decomposition

Let U be the unipotent radical of a Borel subgroup B of G. In the spherical
case (at least over the reals and complex numbers) one has G = KUK; indeed, in
[5] on sees that G = KUK, G = KAK, G = KB and G = τ(G)K are essentially
equivalent in the real case.

On the other hand, in the non-spherical case (even over the reals or complex
numbers), G = KB holds, while G = KAK in general does not hold. Still, one
may ask:

Question 9. When does G = KUK hold in the non-spherical case?

As a first step, it would already be interesting to know the following:

Question 10. When does G = KUK hold for SLn(F[t, t
−1])?

The proof in [5] relies heavily on so-called Kostant convexity. For the non-
spherical real and complex case, this convexity result was generalized in [6]. For
another different generalization to the affine case, see [4].

Hence it would be interesting whether one can generalize this further to arbi-
trary non-spherical Kac–Moody groups, ideally replacing Lie algebra methods by
building theoretical methods.

In closing, note that even with a good generalization of Kostant convexity,
some serious obstacles remain in (dis)proving G = KUK; on the other hand, it is
conceivable that one can prove G = KUK without using Kostant convexity.
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Nilpotent Gelfand pairs and spherical functions on them

Oksana Yakimova

(joint work with V. Fischer, F. Ricci)

Let G be a real Lie group,K ⊂ G a compact subgroup, and assume that X = G/K
is connected. Then (G,K) is said to be a Gelfand pair if the algebra D(X)G of
G-invariant differential operators on X is commutative. Equivalently one can
say that L1(K\G/K) is commutative with respect to the convolution or that the
action of G on L2(X) has a simple spectrum. If G/Gσ is a symmetric Riemannian

homogeneous space in the sense of Élie Cartan, then (G,Gσ) is a Gelfand pair.
In case G is compact, this was proved by Cartan himself on a case-by-case basis.
Thirty years later Gelfand gave a conceptual proof that works for non-compact G
as well.

A Gelfand pair is said to be nilpotent if G = K ⋉N , where N is the unipotent
radical, in other words, K is a maximal reductive subgroup of G. Together with
the reductive pairs (meaning that G is reductive), they provide building blocks for
all Gelfand pairs. All Gelfand pairs, nilpotent and not, are classified [3].

Since the algebra D(X)G is commutative, one can consider its common eigen-
vectors. Common eigenfunctions that are K-invariant and normalised by the con-
dition ϕ(eK) = 1 are called spherical functions on X . The name comes from
the case X = SOn+1/SOn, where D(X) is generated by the Laplacian and its
eigenfunctions are known as spherical harmonics.

Suppose that X = N arises from a nilpotent Gelfand pair (G,K). Then
D(N)G ∼= U(n)K , where n = LieN . This algebra is finitely generated, let us
say by the operators D1, . . . , Dd. In this case they can be chosen to be formally
self-adjoint, meaning that Diϕ = λi(ϕ)ϕ with λi(ϕ) ∈ R for any bounded spher-
ical function ϕ. Sending each ϕ to a d-tuple (λ1(ϕ), . . . , λd(ϕ)) we can identify
the set of bounded spherical functions with a subset Σd in Rd, which is called the
Gelfand spectrum of (N,K). The identification is known to be an isomorphism of
topological spaces.
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Let S(N) be the set of Schwartz functions on N . A Gelfand transform of F ∈
S(N)K is a function on Σd defined by: GF (ϕ) =

∫
N

F (x)ϕ(x−1)dx. Fulvio Ricci

has conjectured that G provides an isomorphism between S(N)K and S(Σd) :=
{f |Σd

| f ∈ S(Rd)}. It is known that G is injective and that S(Σd) is contained
in its image. The problem is to show that the image of G is not larger, that any
GF extends to a Schwartz function on Rd.

If N is a Heisenberg Lie group, then the conjecture is known to be true. Our
immediate goal, which is almost achieved, is to establish the conjecture for the
<<Vinberg’s list>> [2], a certain list of 12 Gelfand pairs, which are crucial for
the future considerations. Here already we found some interesting results, for
example, in all the cases the algebra D(N)G is free and can be described explicitly
[1]. Surprisingly, a lot of representation theory technique is used in this analytic
problem, for example, the proof that goes by induction on dim n uses Luna’s slice
theorem.
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Vinberg’s θ-groups in positive characteristic

Paul Levy

Let G be a reductive algebraic group over C, let g = Lie(G) and let θ be an auto-
morphism of G of orderm. Then dθ is a linear automorphism of g with eigenvalues

⊂ {1, ζ, . . . , ζm−1} where ζ = e
2πi

m . Hence there is a direct sum decomposition:

g = g(0)⊕ g(1)⊕ . . .⊕ g(m− 1)

where g(j) = {x ∈ g : dθ(x) = ζjx}.
Moreover, this is a Z/mZ-grading of g, that is, [g(j), g(k)] ⊂ g(j + k) for

j, k ∈ Z/mZ. Let G(0) = (Gθ)◦. Then G(0) is reductive, g(0) = Lie(G(0))
and AdG(0) stabilizes each of the subspaces g(j).

Kostant and Rallis [1] showed that for an involution (i.e. for m = 2), the action
of K = (Gθ)◦ on p has invariant-theoretic properties which generalize known
properties of the adjoint representation. This was extended to the case of arbitrary
m, and the action of G(0) on g(1), by Vinberg in [4].

We will discuss Vinberg’s results and their extension to other base fields; we
recount Kac’s classification of the periodic automorphisms of a simple Lie algebra;
we discuss the classification of the so-called positive rank gradings of a simple Lie
algebra; and we briefly touch on an application to the representation theory of
reductive groups over p-adic fields.
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1. Summary of Vinberg’s results

The AdG(0)-orbit of an element x ∈ g(1) is closed if and only if x is semisimple;
it is unstable (i.e. its closure contains 0) if and only if x is nilpotent. A Cartan
subspace is a maximal commutative subspace of g(1) consisting of semisimple el-
ements. Then any two Cartan subspaces are G(0)-conjugate; any semisimple ele-
ment of g(1) is contained in some Cartan subspace; and given a Cartan subspace c,
any semisimple element of g(1) is conjugate to some element of c. A consequence
of the above facts is the following form of the Chevalley restriction theorem:

Theorem 1 (Vinberg). Let c be a Cartan subspace of g(1). Then restricting from
g(1) to c induces an isomorphism

C[g(1)]G(0) → C[c]Wc ,

where Wc = NG(0)(c)/ZG(0)(c).

Moreover, the group Wc is generated by complex reflections, hence C[c]Wc is a
polynomial ring.

We make a couple of remarks about this theorem. Firstly, a complex reflection
is a linear automorphism of a vector space, of finite order, such that the fixed
point subspace is of codimension one. According to the celebrated theorem of
Shephard-Todd, the ring of invariants for a finite group Γ acting on a vector space
is a polynomial ring if and only if Γ is generated by complex reflections. The
Shephard-Todd theorem is true if the characteristic of the ground field is zero, or
coprime to the order of Γ; if the characteristic divides |Γ| then one has the forward,
but not the reverse implication. A fascinating feature of the theory of θ-groups
is that one obtains many (though not all) of the “exceptional” complex reflection
groups in the Shephard-Todd classification.

Secondly, while the ring of invariants C[c]Wc is naturally the coordinate ring
of the set of orbits c/Wc (that is, the set-theoretic quotient by Wc), there is no
natural way to give the set of G(0)-orbits on g(1) a structure of variety (or scheme).
However, the ring of invariants C[g(1)]G(0) does determine a ‘categorical quotient’,
i.e. a quotient in the category of varieties (or schemes), usually denoted g(1)//G(0).
The points of C[g(1)]G(0) are in correspondence with the closed G(0)-orbits in g(1),
and hence with the orbits of semisimple elements of g(1).

2. Extension to other ground fields

There were three main obstacles to be overcome in generalizing Vinberg’s theory
to other base fields. The first problem is the proof of the first part of the Chevalley
restriction theorem: standard arguments establish that the embedding c → g(1)
determines a bijection c/Wc → g(1)//G(0); but to prove that it is an isomorphism
one needs to know that this morphism is separable. Separability can be established,
under the assumption that chark 6= 2, using some technical arguments broadly
based on a proof by Richardson.

Another problem relates to Vinberg’s argument to show thatWc is generated by
complex reflections, which used (for dim c ≥ 2) the simply-connectedness of c\{0}
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and its quotient byWc. Panyushev showed that one can use étale cohomology this
dependence on simply-connectedness, under the assumption that the characteristic
is zero or is coprime to |Wc|. Hence Panyushev’s theorem extended Vinberg theory
to other (algebraically closed) fields of characteristic zero.

The last main obstacle is the failure of the Shephard-Todd theorem in positive
characteristic. However, in many cases (for example, for exceptional type groups
in good positive characteristic) it can be shown that the order ofWc is not divisible
by p, and hence the Shephard-Todd theorem applies. A case-by-case analysis, in
combination with Panyushev’s theorem, can then be used to establish Vinberg’s
results, under mild conditions on G and k [2].

3. Kac’s theorem

Historically one of the first applications of Kac-Moody Lie algebras was Kac’s
classification of the automorphisms of a simple Lie algebra. We give an account
of the classification for inner automorphisms. Fix a primitive m-th root of unity
ζ ∈ C. Let h be a Cartan subalgebra of g and let ∆ = {α1, . . . , αn} be a basis
of simple roots for g over h. Let α̂ = m1α1 + . . . + mnαn be the highest root
relative to ∆. For any sequence a0, . . . , an of non-negative integers such that
a0 + a1m1 + . . . + anmn = m, there is an inner automorphism θ of g satisfying
θ(eαi

) = ζaieαi
for 1 ≤ i ≤ n; moreover, by construction one then has θ(fα̂) =

ζa0fα̂.
According to Kac’s theorem, any inner automorphism of g of order m is con-

jugate to one of this form, and one then obtains a complete classification of the
periodic automorphisms up to conjugacy. Moreover, one can read off the structure
of g(0) and its module g(1) from the ‘Kac diagram’, which is the affine Dynkin
diagram with the coordinates a0, . . . , an attached to the nodes: g(0) is the pseudo-
Levi subalgebra with basis of simple roots given by the αi such that mi = 0, and
g(1) is a sum of highest weight modules for g(0)′, where the highest weights are
given by the nodes on the diagram such that ai = 1.

Example Let g be of type G2, and consider the automorphism θ of g with Kac
coordinates given by the following diagram, where the node on the right is the
“affine vertex”:

❝❝
❍
✟ ❝

1 0 1

Then θ has order 3 + 1 = 4 and g(0) is isomorphic to gl(2); moreover, g(1) is
isomorphic as a g(0)′ = sl(2)-module to V (3) ⊕ V (1), i.e. to a sum of four-
dimensional and two-dimensional irreducible modules.

4. Positive rank gradings and Popov’s conjecture

The rank of a grading g =
∑

i∈Z/(m) g(i) is the dimension of a Cartan subspace

of g(1). For given g, there are finitely many positive rank automorphisms up to
conjugacy. For G of classical type and k = C, Vinberg classified the positive
rank automorphisms in terms of eigenvalues of θ (for inner automorphisms) or
of θ2 (for outer automorphisms) [4]. This classification was extended to positive
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characteristic in [2]. The author was able to apply this classification to prove the
following conjecture of Popov, for g of classical type over k of characteristic 6= 2:

Conjecture: For any θ, there exists an affine linear subspace v of g(1) such that
the restriction of the quotient morphism to v is an isomorphism.

Such an affine linear subspace is called a Kostant-Weierstrass slice, or KW-
section. The conjecture is trivially true if θ is of rank zero. For exceptional types,
the classification of positive rank gradings is more ad hoc. In [3], we determine the
positive rank gradings of exceptional Lie algebras in zero or good characteristic; we
relate these gradings to representatives of certain elements of the Weyl group of g;
and we determine the little Weyl groupWc in each case. It is then straightforward
to deduce the existence of a KW-section for any grading of an exceptional Lie
algebra.

5. An application to representation theory of reductive groups

over p-adic fields

Let G be a reductive group over the non-archimedean local field K and let k
be the residue field of a maximal unramified extension of K. Kac’s theorem can
be interpreted as a statement about points in the affine building of a simple Lie
algebra, and so one has a natural description in terms of points of the Bruhat-Tits
building of G. To any such point one associates the Moy-Prasad filtration of G;
the quotients in this filtration are the summands gi in the corresponding grading
of the Lie algebra over k. The classification of the positive rank gradings of g can
be used to deduce to the classification of non-degenerate K-types, a long-standing
problem in the representation theory of G.
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