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Introduction by the Organisers

This Arbeitsgemeinschaft was organized by Artur Avila (Paris 7 and IMPA Rio
de Janeiro), David Damanik (Rice), and Svetlana Jitomirskaya (UC Irvine) and
held April 1–7, 2012. There were 31 participants in total, of whom 26 gave talks.

The objective was to discuss quasiperiodic Schrödinger operators of the form

[Hψ](n) = ψ(n+ 1) + ψ(n− 1) + V (n)ψ(n)

with potential V : Z → R given by V (n) = f(ω + nα), where ω, α ∈ Tk =
Rk/Zk, λ ∈ R and α = (α1, . . . , αk) is such that 1, α1, . . . , αk are independent
over the rational numbers, and f : Tk → R is assumed to be at least continuous.
H acts on the Hilbert space ℓ2(Z) as a bounded self-adjoint operator. The

associated unitary group {e−itH}t∈R describes the evolution of a quantum particle
subjected to the quasiperiodic environment given by V . For any t ∈ R and n ∈ Z,
|〈δn, e−itHψ〉|2 is the probability of finding the particle, whose initial state at time
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zero is given by the ℓ2-normalized ψ, at time t at site n. The long-time behavior
of these probabilities is of interest and many relevant questions about them can be
studied by means of spectral theory (i.e., by “diagonalizing” the operator H). The
spectral theorem for self-adjoint operators associates a measure µψ with the initial
state ψ. Roughly speaking, the more continuous the measure µψ is, the faster
e−itHψ spreads. For this reason, one wants to determine the spectral type of H .
For example, H is said to have purely absolutely continuous (resp., purely singular
continuous or pure point) spectrum if every µψ is purely absolutely continuous
(resp., purely singular continuous or pure point). Again roughly speaking, the
absolutely continuous case corresponds to transport, whereas the pure point case
typically corresponds to the absence of transport (“dynamical localization”), while
the singular continuous case corresponds to intermediate transport behavior. In
the case where not all spectral measures have the same type, one collects all
those states whose measures have the same type in a single subspace, restricts the
operator to the resulting three subspaces, and the spectra of these three restrictions
are then called the absolutely continuous, singular continuous, and pure point
spectrum of H , respectively.

In the recent past, the spectral analysis of quasiperiodic Schrödinger operators
has seen great advances. It was the goal of this Arbeitsgemeinschaft to present
many of these advances.

It is useful to regard quasiperiodic potentials as being dynamically defined in
the sense that they are obtained by sampling along the orbit of an ergodic transfor-
mation with a real-valued sampling function. Concretely, if we consider the map
T : Tk → Tk, ω 7→ ω +α, it is invertible and has normalized Lebesgue measure as
its unique invariant Borel probability measure. Then, the potential V may be ob-
tained as V (n) = f(T nω). More generally, whenever we have such a dynamically
defined situation with an ergodic (Ω, T, µ) and a (bounded) measurable f : Ω→ R,
several fundamental results hold. Namely, the spectrum, as well as the absolutely
continuous spectrum, the singular continuous spectrum, and the point spectrum,
of H are µ-almost surely independent of ω and are denoted by Σ,Σac,Σsc,Σpp.
Moreover, the density of states dk, given by∫

Ω

〈δ0, g(H)δ0〉 dµ(ω) =
∫

R

g(E) dk(E)

and the Lyapunov exponent

L(E) = lim
n→∞

1

n

∫

Ω

log ‖AnE(ω)‖ dµ(ω),

where

AnE(ω) =

(
E − f(T n−1ω) −1

1 0

)
× · · · ×

(
E − f(ω) −1

1 0

)
,

are defined and determine Σ and Σac as follows,

Σ = supp dk, Σac = {E ∈ R : L(E) = 0}ess.
These two fundamental results can be considered classical and have been known
since the early 1980’s.
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Note that L(E) ≥ 0 and hence one naturally distinguishes between the two
cases L(E) = 0 and L(E) > 0. The result quoted above shows that the first case
is connected to the absolutely continuous part, whereas the general tendency is
for the second case to be connected to the pure point part. Indeed, among the
major recent advances are ways to go from positive Lyapunov exponents to pure
point spectral measures (and more, such as exponentially decaying eigenfunctions,
dynamical localization, etc.) in the quasiperiodic case with sufficiently regular
sampling function f and for most α. Another major recent development is that
in the case k = 1 (i.e., α, ω ∈ Ω = T), the regime of zero Lyapunov exponents
has been studied in a global sense and it has been shown for analytic f , that
one typically has purely absolutely continuous spectrum there. As a consequence,
one now understands the typical spectral type of a one-frequency quasiperiodic
Schrödinger operator with analytic sampling function.
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Abstracts

Schrödinger operators and quantum dynamics

Ilya Kachkovskiy

1. Quantum Dynamics. The main object of study during this Arbeitsgemein-
schaft is the 1-dimensional discrete Schrödinger operator H = ∆+ V defined by

(Hψ)(n) = ψ(n+ 1) + ψ(n− 1) + V (n)ψ(n)

in a Hilbert spaceH = l2(Z). Here V : Z→ R is a bounded function. The operator
H is a bounded self-adjoint operator in H and is the energy operator of a quantum
particle with wave function ψ.

The time-evolution of the wave function is described by the Schrödinger equa-
tion {

i∂tψ(t) = Hψ(t)

ψ(0) = ψ0.

It can be immediately solved by ψ(t, n) = (e−itHψ0)(n). In the first part of the talk
we discuss the relations between the behaviour of e−itH and spectral properties of
H .

By spectral theorem, we have

e−itH =

∫

R

e−itλ dEH(λ),

where EH is the projector-valued spectral measure of H . The support of this
measure is the spectrum σ(H). The Hilbert space H can be uniquely decomposed
into H = Hpp ⊕Hac ⊕Hsc such that the corresponding projectors commute with
H , and for each f ∈ Hα the Borel measure δ 7→ (EH(δ)f, f) has the following
type — pure point, absolutely continuous or singular continuous. This gives us
the classification of types of spectra: σα(H) = σ(H |Hα

), α = pp, ac or sc, see

[3]. The set σpp(H) admits a direct characterization as the closure of the set of all
eigenvalues

σpp(H) = {λ ∈ R : ∃ψ ∈ H, ψ 6= 0 such that Hψ = λψ}.
We now proceed to the dynamical characterization of spectra. The first result

of this kind is RAGE Theorem, see [4] Let

(χLψ)(n) =

{
ψ(n), |n| ≤ L
0, |n| > L

Theorem 1 (RAGE).

Hc = {ψ ∈ H | lim
L→∞

1

T
lim
T→∞

T∫

0

‖χLe−itHψ‖ dt = 0}
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Hpp = {ψ ∈ H | lim
L→∞

lim
T→∞

1

T

T∫

0

‖(1− χL)e−itHψ‖ dt = 0}.

This result is a characterization of the type of the spectrum in terms of the “aver-
age” behaviour of e−iHt. From this theorem, it follows that the projector Pc onto
Hc = Hac +Hsc can be expressed as the following weak limit,

(Pcϕ, ψ) = lim
L→∞

lim
T→∞

1

T

T∫

0

((1 − χL)e−iHtϕ, e−iHtψ) dt.

The next few results are regarding the asymptotic behaviour of e−iHtψ. If
ψ ∈ Hpp, then the scalar product (e−iHtψ, ψ) gets close to ‖ψ‖2 infinitely many
times for arbitrarily large t, which is an example of dynamical localization. On the
contrary, if ψ ∈ Hac, then (e−iHtψ, ψ) → 0 as t → ∞ which simply follows from
Riemann-Lebesgue lemma. Another important notion here is the phenomenon of
ballistic transport behaviour which happens when

t−2
∑

n∈Z

|n|2|ψ(t, n)|2 6→ 0, t→∞.

This physically corresponds to the particle moving to infinity with constant speed.
Theorem (Simon, 1990). Let σ(H) = σpp(H). Let ψ0 be a localized state (i. e.
finitely supported on Z). Then

lim
t→∞

t−2
∑

n∈Z

|n|2|ψ(t, n)|2 = 0,

therefore there is no ballistic transport for this initial data. The power of t cannot
be improved.

The last set of results is related to the behaviour of the solutions of the eigen-
function equation

(1) ψ(n+ 1) + ψ(n− 1) + V (n)ψ(n) = Eψ(n).

Theorem (Schnol, see [1, Section 2.4]). Let there exist a polynomially bounded
solution of (1). Then E ∈ σ(H).

The last result concerning the characterization of spectra is as follows. For
simplicity, let us study the solutions of (1) for n ∈ N. A solution ψ is called
subordinate, if

lim
L→∞

‖χLψ‖
‖χLϕ‖

= 0

for any other solution ϕ. For details, see, for example, [2].
Theorem (Gilbert-Pearson). For the discrete Schrödinger operator H on N, the
measure Eac(H) is essentially supported on the set of energies for which there exist
no subordinate solutions.

2. Ergodic operators. We are going to study a special class of potentials
related to dynamical systems. See, for example, [1, Ch. 9] for details. Let (Ω, P )
be a probability space. A measure-preserving bijection T : Ω→ Ω is called ergodic,
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if any T -invariant measurable set A ⊂ Ω has either P (A) = 1 or P (A) = 0. By a
dynamically defined potential we denote a family Vω(n) = f(T nω), ω ∈ Ω, where
f : Ω→ R is a measurable function. The corresponding family of operators Hω is
called an ergodic family.

A very important case of such families is almost periodic operators. Here Ω = S1

— a unit circle, the map T is a rotation over an angle α /∈ 2πQ, so

(Hωψ)(n) = ψ(n+ 1) + ψ(n− 1) + V (nα+ ω)ψ(n),

where v : R→ R is a continuous 2π-periodic function.
Even though the family Hω depends on a random parameter, it makes sense

to speak about certain typical behaviour. The most famous result of this type is
Pastur’s theorem which, informally speaking, says that the spectra of the operators
Hω are not random.
Theorem (Pastur). There exists a set Ω0 ⊂ Ω and Σ,Σpp,Σac,Σsc ⊂ R such that
for all ω ∈ Ω0 we have σ(Hω) = Σ, σα(Hω) = Σα, α = pp, ac, sc.

The idea of the proof is based on the fact that if f(Tω) = f(ω) a. e. on Ω for
a measurable f , then f is a constant almost surely. A slightly more strong result
holds for almost periodic operators — for Σ, we may take Ω0 = Ω by a simple
continuity argument (which, however, does not work for Σα). It can also be shown
that a single E is an eigenvalue of Hω with zero probability, but it does not imply
that the point spectrum may not be typical.

The last notion we want to introduce is density of states. Informally, it is a
continuous analogue of the normalized eigenvalue counting function. In general,
it’s a measure dK(E) which may be defined as

∫

∆

dk(E) = lim
L→∞

1

2L+ 1
dimRan(χLEHω (∆)χL).

in the weak sense. The limit exists and is equal to
∫
f(E) dk(E) = E(f(Hω)e0, e0)

The function k(E) =
∫
(−∞;R)

dk(E) is called integrated density of states.

Theorem (Avron-Simon). Almost surely supp(dk) = σ(Hω).
Theorem (Craig-Simon (d = 1), Avron-Souillard (d ≥ 2)). The integrated density
of states k(E) is a continuous function of E.

The last result cannot be significantly improved.
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Basic properties of SL(2,R) cocycles and connections to spectral
theory

William N. Yessen

All of what we discuss below can be followed in detail in [1, 2] and in [3, Chapters
V and VI].

The setup. Let S1 denote the unit circle, and for α ∈ R, let fα : S1 → S1 be
rotation by α; that is,

fα(x) = x+ α mod 1.

Notice that if α /∈ Q, then fα is uniquely ergodic, with the ergodic measure being
the Lebesgue measure on S1; moreover, the dynamical system (fα, S

1) is minimal
(i.e. the orbit under fα of each x ∈ S1 is dense in S1). We shall need these facts
later, either in this presentation or in those that follow, or both.

Now let A : S1 → SL(2,R) of class Cr, with r ∈ N ∪ {0,∞, ω}. The SL(2,R)
cocycle (of class Cr) over fα, (α,A) : S

1 × R2 ←֓ , is given by

(α,A)(x, v) = (fα(x), A(x)v),

with (α,A)n(x, v) given by, respectively for n > 0 and n < 0,
(
fnα (x),

[
0∏

k=n−1

A(fkα(x))

]
v

)
and

(
fnα (x),

[
0∏

k=n+1

A(fkα(x))

]
v

)

(and f0
α(x) = x, A0 = I, the 2× 2 identity matrix, (α,A)0(x, v) = (x, v)).

Thus (α,A) defines an invertible dynamical system on S1 × R. Notice that if
α ∈ Q, then the corresponding cocycle (α,A) is periodic and the dynamics of the
cocycle is trivial.

By abuse of notation and terminology, we shall denote the cocycle (α,A) simply
by A (keeping dependence on α implicit), and define An(x, v) := (α,A)n(x, v) (or
simply An(v) when emphasis on x isn’t necessary). In the literature, α is called
the frequency, and x is referred to as the phase.

Motivation. Let V : S1 → R be of class Cr, r ∈ N ∪ {0,∞, ω}. Define the
potential {Vn}, for x ∈ S1 and α ∈ R, by Vn = V (fnα (x)) for n ∈ Z. Now for λ >
0, the so-called coupling constant, define the Schrödinger operator Hα,x,λ : ℓ2 ←֓
by

(Hα,x,λφ)n = φn−1 + φn+1 + Vnφn.

This operator is called periodic provided that α ∈ Q, and quasiperiodic otherwise
(notice that if α ∈ Q, then the sequence {Vn}n∈Z is q–periodic, where α = p/q,
gcd(p, q) = 1). Obviously Hα,x,λ is bounded and self-adjoint. It is also known that
the spectrum of this operator consists of those energies E ⊂ R, for which

Hα,x,λθ = Eθ
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is satisfied, with {θn} ∈ ℓ2 not diverging exponentially at ±∞. On the other hand
one can easily verify that the last equation is equivalent to

(
θn+1

θn

)
= AEn

(
θ1
θ0

)
, where AE =

(
E − V (x) −1

1 0

)

is the Schrödinger cocycle (the recursion above is given for n > 0; a similar re-
cursion holds with n < 0 by inverting the cocycle AE as in the previous section).
Notice that AE is of the same smoothness class as V , and AE ∈ SL(2,R). If
α ∈ Q, then the cocyle is periodic (as in the previous section). By Floquet theory,
in this case the spectrum of Hα,x,λ, σ(Hα,x,λ), is a finite union of compact inter-
vals. In general, as should now be apparent, dynamics of AE plays a central role
in determination of the spectrum of Hα,x,λ (and even spectral type, as discussed
briefly below, and in detail in the other presentations).

Notions of hyperbolicity and Lyapunov exponents. We shall say that a
cocycle A is uniformly hyperbolic provided the following.

• There exist sections S± : S1 → PR2, with S+⊕S− = R2, such that for any
x ∈ S1 and v ∈ S±(x), A(x, v) ∈ S±(fα(x)) and A−1(x, v) ∈ S±(f−1

α (x));
• there exist constants C > 0 and 0 < γ < 1 such that for any x ∈ S1 and
v ∈ S±(x), we have, for n ∈ N, ‖A±n(x, v)‖ ≤ Cγn‖v‖.

A theorem of Johnson from 1986 gives

Theorem. The Schrödinger cocycle AE is uniformly hyperbolic if and only if E
is not in the spectrum of the corresponding Schrödinger operator.

Define

UH := {E ∈ R : AE is uniformly hyperbolic}.
Then we have σc(Hα,x,λ) = UH. Next, let us give a characterization of σ in terms
of the dynamics of the cocycle AE .

For a given cocycle A, we define the Lyapunov exponent of A by

L(A) := inf
n

1

n

∫

S1

log ‖An(x, ·)‖dµ = lim
n→∞

1

n

∫

S1

log ‖An(x, ·)‖dµ ∈ [0,∞)

(equality follows by subadditivity, and the inclusion on the right follows since
A ∈ SL(2,R); µ is the Lebesgue measure). Moreover (assuming α /∈ Q), by the
subadditive ergodic theorem, we have L(A) = limn→∞

1
n log ‖An‖ almost every-

where in x ∈ S1. Now define

NUH := {E ∈ R : L(AE) > 0 and E /∈ UH} and Z := {E ∈ R : L(AE) = 0}.
Obviously σ = NUH⋃Z. NUH stands for non-uniformly hyperbolic.

Kotani theory, σac = Zess
(this is discussed in more detail in later presenta-

tions).
A fundamental relation between the spectrum (or, more precisely, the integrated

density of states measure on the spectrum) and the Lyapunov exponent is given
by the Thouless formula (first rigorously proved by Avron and Simon):
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Thoerem. For every z ∈ C,

L(AE) =
∫

R

log |E − z|dk(E)

where k is the density of states measure.

Conjugacy and reducibility. As is apparent from the previous section, dynam-
ics of AE completely determines σ(Hα,x,λ). To investigate AE , it is desirable to
find another cocyle, which is easier to analyze, whose dynamical properties concide
with those of AE . This brings us to the concept of conjugacy and reducibility.

We say that two Cr cocycles A1, A2 are Cr
′

conjugate (with r′ ≤ r) if there

exists B : S1 → SL(2,R) of class Cr
′

such that B(fα(x))A1 = A2B(x). Then all

dynamical information of A1 (in the Cr
′

category) is contained in A2. We say that
a cocycle A is reducible if it is conjugate to a constant cocycle.

Remark. Sometimes it is required to take B ∈ PSL(2,R). For example, there
are cocycles which are reducible with B ∈ PSL but not with B ∈ SL.
The question of conjugacy, reducibility and in general dynamics of cocycles is
a very deep one, and this area of research has enjoyed tremendous progress in
recent years, owing to contributions of Avila, Damanik, Krikorian, Jitomirskaya,
Bourgain, and many others (this is discussed in detail in the other presentations,
and the reader should follow the references therein).

The rotation number. Assume that A is a continuous cocycle homotopic to the
identity (for example, the Schrödinger cocycle AE); then the same holds for the
map

F : (x, v) 7→
(
fα(x),

A(x)v

‖A(x)v‖

)
.

Hence F above can be lifted to a continuous map F̃ : S1 × R → S1 × R of the

form F̃ (x, v) = (fα(x), x+ g(x, v)) with g(x, v + 1) = g(x, v) and π(v + g(x, v)) =
A(x)π(v)/‖A(x)π(v)‖, where π(v) = ei2πv. Since fα is uniquely ergodic when
α /∈ Q, for such α we can employ a theorem of Herman and Johnson-Moser:

Theorem. For every (x, v) ∈ S1 × R, the limit

lim
n→±∞

1

n

n−1∑

k=0

g(F̃ k(x, v))

exists, is independent of (x, v) and the convergence is uniform in (x, v). We call
this limit the rotation number of A. This limit, modulo Z, is independent of the
choice of the lift.

We conclude with the following relationship between the rotation number, call it
ρ, and the density of states measure.

Theorem. With k denoting the density of states for Hα,x,λ, we have k(E) =
1− 2ρ(AE).
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Kotani theory: Lyapunov exponents and the absolutely continuous
spectrum

Florian Metzger

1. Introduction

The aim of this talk is to discuss the link between the absolutely continu-
ous spectrum and the Lyapunov exponents associated to the eigenvalue problems
Hωψ = Eψ of an ergodic family of Schrödinger operators (Hω)ω∈Ω for Ω = T

endowed with the measure µ = Leb and a µ-invariant ergodic transformation T
(namely an irrational rotation x 7→ x+ α), and to see which consequences on the
Lebesgue measure of the spectrum can be obtained.

2. The main theorem

The main result is the Ishii-Pastur-Kotani theorem:

Theorem 2.1. Σac = {E ∈ R : L(E) = 0}ess =: Z
ess

where Σac denotes the
almost surely constant absolutely continuous part of the spectrum of (Hω) and
L(E) = L(E,ω) for µ-a.e. ω, the Lyapunov exponent for Hωψ = Eψ.

2.1. The inclusion Σac ⊆ Z
ess

. It is a result of Ishii and Pastur and is based on
classical arguments. The main proposition which gives the result is the following:

Proposition 2.1. Suppose that L(E) > 0 for Lebesgue almost every E ∈ (a, b),
then Eac

(a,b)(H) = 0 where Eac
(a,b)(H) denotes the spectral projection on the absolutely

continuous part.

The Fubini theorem ensures that for µ-a.e. ω and Leb-a.e. E, L(E,ω) > 0. Then,
using Berezansky’s theorem which states that ρ-a.e. E ∈ R – where ρ denotes
a spectral measure for the operator – is a generalized eigenvalue, and Oseledets’
theorem, one can see that the only generalized eigenfunctions are exponentially
localized, so in ℓ2, but there are only countably many such E’s since ℓ2(Z) is
separable. So, splitting (a, b) into parts where H has generalized eigenfunctions
or where L(E,ω) = 0 for a.e. ω, Eac

(a,b)(Hω) = 0 can be easily proved for a.e. ω.

A simple argument then gives: (Z
ess

)c ⊆ (suppEac(Hω))
c = (supp ρac)c = Σac

c.
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2.2. The converse inclusion Σac ⊇ Z
ess

. This one is due to Kotani for the
continuous case and has been generalized for the discrete one by Simon. It requires
a deeper analysis and uses results on Herglotz functions, i.e., analytic functions
mapping the semi upper plane onto itself. The main proposition is the following:

Proposition 2.2. For ℑz > 0, denote m±(z, ω) the Weyl functions (invariant
sections associated to the cocycle), b(z, ω) = m+(z, ω)+m−(z, ω) + z− Vω(0) and
n±(z, ω) = ℑm± + 1

2ℑz. Then, if E denotes the expectation on ω:

• E

{
1

n±(z, ω)

}
≤ 2L(z)

ℑz

• E

{(
1

n+
+

1

n−

)
(n+ − n−)2 + (ℜb)2

|b|2
}
≤ 4

(
L(z)

ℑz −
∂L(z)

∂ℑz

)

The key lies in the fact that, due to the Thouless formula:

∀ℑz > 0 L(z) =

∫

Σ

log |z − t|dk(t)

the opposite of the derivative of the Lyapunov exponent is the Borel transform of
the integrated density of states, a particular case of Herglotz function. From that
and Herglotz theory these major theorems can be deduced:

Theorem 2.2. (1) If L(E) = 0 for E ∈ A ⊂ R with Leb(A) > 0 then for a.e.
ω, Eac

A (Hω) 6= 0.
(2) If L = 0 a.e. on I = (a, b) ⊂ R, then for a.e. ω the spectral measures ν0ω

(associated to δ0) are absolutely continuous on I.

Then it is straightforward to prove (Z
ess

)c ⊆ Σac
c, which is the desired inclusion.

3. Consequences on the Lebesgue measure of the a.c. spectrum

3.1. Inequalities. Then, once this major result is set up one can prove that

Theorem 3.1. For all a < b ∈ R, Leb {E ∈ [a, b] : L(E) = 0} ≤ 4.

The conclusion on the Lebesgue measure of the a.c. spectrum is then similar.
This result is an easy consequence of the following main estimation:

Proposition 3.1. For a.e. E ∈ Z, −4 sin
(
2πρ(E)

)
ρ′(E) ≥ 1

where ρ(E) is the fibered rotation number of the Schrödinger cocycle on Ω× R2

(T, SE,V ) : (ω, v) 7−→ (Tω, SE,Vωv) where SE,V =

(
E − V −1

1 0

)

ρ is related to the I.D.S. via Johnson-Moser’s theorem : k(−∞, E) = 1 − 2ρ(E),
so it’s decreasing from 1

2 at −∞ to 0 at +∞ (and so its derivative exists for a.e.
E ∈ R). The above proposition can be established using some properties of ζ(z) =∫
Σ
log(z − t)dk(t) for ℑz > 0 and the behavior of the complex rotation number

β(z) = ℑζ(z) as ℑz → 0+, and a fundamental lemma from harmonic analysis:

Lemma 3.1. For all ℑz > 0, 2 sin{β(z)} sinh{L(z)} ≥ ℑz.
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3.2. Dealing with equalities. Interestingly, equalities in most of the inequalities
stated before imply that the potential is constant. The first useful result is that if
the I.D.S. verifies k = k0 = kV=0, then V = 0. Using

lim
ε→0

β(E + iε) = 2πρ(E) for a.e.E ∈ R

just one ℑz0 > 0 such that 2 sin{β(z0)} sinh{L(z0)} = ℑz0 is needed for the
potential to be constant: indeed, harmonic function theory shows that there exists

E0 ∈ R s.t. if we set ζ̃ = ζ(· + E0) then eζ̃ solves the caracteristic equation for

the free cocycle, namely X2− zX+1 = 0. Consequently ζ̃ = ζV=0 is the free one,
which implies the result with Johnson-Moser’s theorem and the first result above.

Thanks to more Herglotz theory it is possible to prove the following :

Corollary 3.1. If 4 sin
(
2πρ(E)

)
ρ′(E) = −1 for all E ∈ S ⊂ R with Leb(S) > 0

s.t. L(E) = 0, then V is constant.

Conversely, if V = c is constant then it is straightforward with a Fourier trans-
form to see that the spectrum of HV is purely absolutely continuous with a spec-
trum Σ = [−2 + c, 2 + c], which is obviously of Lebesgue measure 4.

4. Constancy of the a.c. spectrum

Finally, we mentioned the results of Last and Simon which give explicit sup-
ports for the absolutely continuous part of the spectral measure of almost periodic
Schrödinger operators. Let H+ be the restricted operator on ℓ2{n > 0} with
boundary condition u(0) = 0, TE(m,n) its the transfer matrix from n to m and

S :=
{
E ∈ R : lim inf

n→+∞
1

n

n∑

k=1

‖TE(k, 0)‖2 < +∞
}

then S is an essential support of the a.c. part of the spectral measure for H+ and
µs(S) = 0 where µs is the singular part of the measure. Additionnaly, if (mi), (kj)
are sequences in N∗ going to infinity, then another support of the a.c. part of the

spectral measure is S1 :=
{
E ∈ R : lim inf

i→+∞
‖TE(mi, ki)‖ < +∞

}
.

This result is a first step to establish the constancy of the absolutely continuous
spectrum not only for almost every ω, but for all such parameter in this particular
context of almost periodic potentials. The precise result of Simon and Last is :

Theorem 4.1. For V an almost periodic potential on Z, let us consider H the
operator on ℓ2(Z) and Hω the operator for Vω in the hull of V . Then Σac(Hω), an
essential support of the a.c. part of the spectral measure, is independent of ω ∈ Ω.

Thus, Pastur’s theorem of almost surely constant a.c. spectrum is extended.
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Positivity of the Lyapunov exponent at large coupling

Nils Schippkus

This talk covered two results by Herman and Sorets-Spencer regarding estimates
for the Lyapunov Exponent L(E) of Schrödinger cocycles in terms of a coupling
constant λ. It introduced some foundational work of the field and provided the
important method of subharmonicity estimates that became important in future
works and which saw use in various later talks of this conference. Consider as
usual the discrete Schrödinger operator (Hψ)n = ψn+1 + ψn−1 + λVn(ω)ψn on
l2(Z), where Vn(ω) = V (ω + nα) and V : T → R is a real analytic potential on
the 1-d Torus, ω ∈ T, α ∈ R \ Q is an irrational number and λ ∈ R+. Let AEn (ω)
denote the associated n-th iterate of the cocycle. The Lyapunov Exponent L(E)
is then defined as L(E) = limn→∞

1
n

∫
T
log||AEn (ω)||dω.

The first result presented was of Herman and concerned the special case
Vn(ω) = 2 cos(2π(ω + nα)), the Almost-Matthieu Operator (AMO). It reads as
follows.

Theorem: For the supercritical AMO ( λ > 1 ) , and every energy E, we have:

L(E) ≥ log(λ)

independent of α.

The proof uses the analycity of the potential. V has a complex analytic extension
to C and consequently AEn (ω) extends to an analytic function AEn (z) on C as
well. Using subharmonicity of log||AEn (z)||, one can estimate the integral over
T = S1 ⊂ C by the value at the center of the disc, proving the theorem.

Sorets-Spencer generalized this result to arbitrary real analytic potentials.
Theorem: Let V : T → R real analytic. Then there exists λ0 := λ0(V ), such that
for every λ > λ0 and every energy E, we have the estimate:

L(E) ≥ 1

2
log(λ)

independent of α.
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The proof is a generalization of the subharmonicity argument. For general real
analytic potentials V , one will have a complex analytic extension not to the disc,
but merely some annulus in the complex plane C, determined by the regularity of
V . The subharmonicity estimate can therefore only be done on that annulus. A
generalized Jensen’s formula provides this estimate. The main technical difficulty
of the proof is to determine a good circle of radius less than one on which the
estimate will yield positivity of L(E). To do so, one has to avoid the zero set of
the potential. The talk covered this argument in full detail and concluded with
the mention of an analogous result by Bourgain for the higher dimensional case.
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Regularity of the Lyapunov exponent I

Christian Seifert

We present preliminary results for proving Hölder continuity of the Lyapunov in
energy for Diophantine frequency and joint continuity of the Lyapunov exponent
in energy and frequency (which will be done in the second part).

Let T := R/Z. For α, ω ∈ T and v : T → R we consider the one-frequency
Schrödinger operator

[Hψ](n) = ψ(n+ 1) + ψ(n− 1) + v(ω + nα) (n ∈ Z)

on ℓ2(Z). For E ∈ R we consider the eigenvalue equation Hψ = Eψ and the
associated N -step transfer matrix

ANE (ω) :=

1∏

j=N

(
v(ω + jα)− E −1

1 0

)
.

We prove the following large deviation theorem estimating the probability that

uN(ω) :=
1

N
log ‖ANE (ω)‖

is ”far away” from its average LN (E) =
∫
T
u(ω) dω (which actually is the N -step

Lyapunov exponent).

Theorem 0.2 ([1, Theorem 5.1]). Assume α ∈ T satisfies Diophantine condition

‖kα‖ := dist(kα,Z) > c
1

|k(| log(1 + |k|))3 (k ∈ Z \ {0}.
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Let v : T→ R be real analytic, ANE (ω) the N -step transfer matrix and LN(E) the

N -step Lyapunov exponent. Then, for κ > N−1/10 and N large

mes

{
ω ∈ T;

∣∣∣∣
1

N
log ‖ANE (ω)‖ − LN (E)

∣∣∣∣ > κ

}
< Ce−cκ

2N .

The theorem actually states that
∣∣uN −

∫
T
uN dx

∣∣ > κ will be a rare event
(and the probability decays exponentially). The proof of this theorem rests on
a bound of the Fourier coefficients (û(k))k∈Z of a bounded one-periodic function
with bounded subharmonic extension to some strip R× (−̺, ̺) of the form

|û(k)| ≤ C

|k| (k ∈ Z \ {0}),

see [1, Corollary 4.7].
There are different versions of large deviation theorems in the literature. One

can weaken the Diophantine condition and still obtains exponential decay for suit-
able chosen κ and N .

Lemma 0.1 ([2, Lemma 4]). Let
∣∣∣∣α−

a

q

∣∣∣∣ <
1

q2
, (a, q) = 1

Let κ ∈ (0, 1). Then, for N > Cκ−2q,

mes

{
ω ∈ T;

∣∣∣∣
1

N
log ‖ANE (ω)‖ − LN (E)

∣∣∣∣ > κ

}
< e−cκq.

The second main ingredient for proving the continuity properties is the so-called
Avalanche principle. It relates norms of n-fold products of unimodular matrices
with the product of the norms of these matrices. This will later (i.e., in part II)
be applied to obtain bounds on the Lyapunov exponents on different scales of N .
Before actually stating the Avalanche principle, we need some definitions.

Definition 0.1. Let K be a unimodular 2× 2-matrix. Let u+K, u−K be the normal-

ized eigenvectors of
√
K∗K = |K|. Then Ku+K = ‖K‖v+K and Ku−K = ‖K‖−1v−K ,

where v+K · v−K = 0 and ‖v+K‖ = ‖v−K‖ = 1.
Let M,K be unimodular 2× 2-matrices. Let

b(+,+)(K,M) := v+K · u+M ,

where the quantity is certainly defined only up to a sign.

Proposition 0.1 (Avalanche Principle, see [3, Proposition 2.2]). Let A1, . . . , An
be unimodular 2× 2-matrices satisfying

(i) min1≤j≤n ‖Aj‖ ≥ µ > n,
(ii) max1≤j<n (log ‖Aj+1‖+ log ‖Aj‖ − log ‖Aj+1Aj‖) < 1

2 logµ.
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Then
∣∣∣∣∣∣
log ‖An · · ·A1‖ −

n∑

j=1

log ‖Aj‖ −
n−1∑

j=1

log |b(+,+)(Aj , Aj+1)|

∣∣∣∣∣∣
< C

n

µ
,

∣∣∣∣∣∣
log ‖An · · ·A1‖+

n−1∑

j=2

log ‖Aj‖ −
n−1∑

j=1

log ‖Aj+1Aj‖

∣∣∣∣∣∣
< C

n

µ
.

The Avalanche principle is related to the methods developped in [4]. Thinking
of ‖Aj‖ ≈ λ for all j Young obtained 1

n log ‖An · · ·A1‖ ≈ logλ.
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Regularity of the Lyapunov exponent II

Mircea Voda

The object of this talk was to sketch the proofs of the following two regularity
results for the Lyapunov exponent. Note that in what follows the potential is
real-analytic and the underlying dynamics are given by the shift on T.

Theorem 1. (Goldstein, Schlag [4]) If α satisfies a Diophantine condition of the
form

‖nα‖ > Cα
n (1 + logn)

a , a > 1,

and L (E) > γ > 0 for E ∈ I = (E′, E′′), then

|L (E1)− L (E2)| ≤ C |E1 − E2|σ , E1, E2 ∈ I,

where σ = σ (γ).

Theorem 2. (Bourgain, Jitomirskaya [1]) L (α,E) is jointly continuous at every
(α0, E0) with irrational α0.

Note. If α0 is rational then L (α0, E) is Hölder-1/2 continuous in E, but we don’t
necessarily have joint continuity.
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Using the Mean Value Theorem it is easy to see that LN (α,E) is jointly con-
tinuous, in fact

|LN (α1, E1)− LN (α2, E2)| ≤ CN (|α1 − α2|+ |E1 − E2|) .
Since L (α,E) = infN LN (α,E), we automatically get that L is jointly upper semi-
continuous. To obtain better regularity for L we need to compare it to LN in a
controlled way. This can be done by first using the Avalanche Principle to obtain
estimates comparing LN ’s at different scales, and then by iterating this estimates.

We proceed by giving a brief overview of the proof of the Hölder continuity,

following [2, Chapter 7]. Using the factorization ANE (ω) =
∏m−1
j=0 AN0

E (ω + jN0α)

we can apply the Avalanche Principle, with Aj = AN0

E (ω + jN0α), to get

|LN + LN0 − 2L2N0 | < Ce−c0γ
2N0 ,

where N = mN0, m ∈ N∩
[
1
4e
c1γ

2N0 , ec1γ
2N0

]
, andN0 satisfies certain restrictions.

To make sure the hypotheses of the Avalanche Principle are satisfied (up to a
small set in ω) one uses a large deviations estimate from the previous talk and
the assumption that L > γ > 0. The Diophantine restriction on the frequency
ensures that as the scale increases the estimates become better (due to the large
deviations estimate). Iterating the previous estimate yields

|L+ LN0 − 2L2N0| < Ce−cγ
2N0 .

The Hölder continuity follows from the fact that we can write the above estimate
for E1, E2 ∈ I with N0 ∼ −σ log |E1 − E2|, for an appropriate σ ∈ (0, 1).

Since L is upper semi-continuous, we get continuity for free at points (α0, E0)
such that L (α0, E0) = 0. Indeed

0 ≤ lim inf
n

L (αn, En) ≤ lim sup
n

L (αn, En) ≤ L (α0, E0) = 0.

Hence, to prove continuity one can restrict to the case L (α0, E0) > γ > 0, and
try to use the same approach as in the proof of Hölder continuity. The first step
is almost the same. The only difference comes from the fact that one needs to use
a modified large deviations estimate (see [1, Lemma 4]) since the frequency isn’t
necessarily Diophantine. More precisely, if q is an approximant of the frequency
then

|LN + LN0 − 2L2N0| < C exp (−c0γq) ,
where N = mN0, m ∈ N∩

[
1
4e
c1γq, ec1γq

]
, and N0 & q satisfies certain restrictions.

Since this estimate doesn’t improve as N increases, we can only iterate it a finite
number of times before we lose the control. However, the next approximant of
the frequency, call it q′, can be arbitrarily far from q. Dealing with the situation
when q′ ≫ eq is the main difference between the proofs for continuity and for
Hölder continuity. For this one needs an extension of the Avalanche Principle
(see [1, Lemma 5]) that allows for the comparison of two scales N = mN0, with
m arbitrarily large. Furthermore, the hypotheses of the Avalanche Principle are
satisfied only up to an exceptional set coming from the large deviations estimate,
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so another problem when m is large, is to control the size of the exceptional
set. This is done by taking advantage of the assumption that q′ ≫ eq (through
|α− p/q| < 1/ (qq′)) and by using a complexity bound for the exceptional sets (see
the proof of [1, Lemma 8]). In the end one is able to build a sequence of scales and
approximants q0 < N0 < q1 < . . . < Ns < qs+1 < Ns+1 < . . ., starting with any
sufficiently large approximant (recall that we are assuming that α0 is irrational),
so that, by the same iteration procedure as before, one gets

|L (α0, E0) + LN0 (α0, E0)− 2L2N0 (α0, E0)| < Ce−cγq0 .

Making sure that the above holds for any (αn, En) sufficiently close to (α0, E0)
(with the same q0 and N0), one immediately gets that

lim sup
n
|L (αn, En)− L (α0, E0)| < Ce−cγq0 .

Letting q0 →∞ it follows that L (α0, E0) = limn L (αn, En), as desired.
Finally, we mention what is known in the case when the underlying dynamics

are given by the shift on Td, d > 1. Instead of Hölder continuity one gets a weaker
result:

|L (E1)− L (E2)| < C exp (−c (log |E1 − E2|)σ)
under the assumption that ‖α · k‖ > Cǫ |k|−(d+ǫ)

, k ∈ Zd \{0} (see [4]). However,
the continuity still holds. More precisely, continuity in E holds for any α0 ∈ Td,
and joint continuity holds provided α0 · k 6= 0, k ∈ Zd \ {0} (see [3]).
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Classical KAM theory

Peter Gmeiner and Marcello Seri

1. Hamiltonian Setting

Consider integrable systems on a symplectic 2n-dimensional manifold. Due
to the Liouville-Arnold Theorem it is enough to consider such systems on a n-
dimensional torus Tn := (Rn/Zn).

For G ⊂ Rm open and bounded let H0 ∈ Cω(G) an integrable Hamiltonian
function and define a perturbed Hamiltonian function

Hǫ(I, ϕ) := H0(I) + ǫH1(I, ϕ),
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for some |ǫ| < ǫ0, ǫ0 > 0 and H1 ∈ Cω(G× Tn). As usual we get the Hamiltonian
differential equations

(1)

{
İ = −ǫD2H1(I, ϕ)
ϕ̇ = ω(I) + ǫD1H1(I, ϕ)

with a frequency ω := DH0 : G → Rn. In general such a perturbed system is no
more integrable, but we will show that under some conditions such systems are
actually integrable. To make this more precise we need to define the frequencies
of diophantine type.

Definition 1.1. A frequency α ∈ Rn is called diophantine, if there exists a
β ≥ 0 and a constant Cβ > 0 such that for all k ∈ Z\{0}

|〈k, α〉| ≥ Cβ
|k|n+β ,

where 〈k, α〉 :=
n∑

i=1

kiαi, |k| := sup
i
|ki| and ‖x‖ := inf

p∈Z

|x̃+p|, x̃ is a lift of x on R.

We need some further notation to formulate a first version of the KAM-Theorem.
Let PC := Cn×Tn

C
, where Tn

C
:= (C/Z)n. For some s > 0 we define complex phase

spaces

Ps := {(I, ϕ) ∈ PC : ‖(I, ϕ)‖P ≤ s},
with ‖(I, ϕ)‖P := max

1≤k≤n
max(|Ik|, |Imϕk|). For U, V ⊂ Cn the space of real an-

alytic functions g ∈ C(U, V ) is denoted by A(U, V ). The space of Hamiltonian-
functions is denoted by Hs := A(Ps,C) which is a Banach-space with the norm
|H |s := sup(I,ϕ)∈Ps

|H(I, ϕ)|. Ks,ω := {H ∈ Hs : DH |P0 = (ω, 0)} is the space of
integrable Hamiltonian functions.

Theorem 1.1 (KAM, Kolmogorov 1954, [5]). Let ω be a diophantine frequency,
H0 ∈ Kt,ω and ∫

Tn

D2
1H0(0, ϕ)dϕ ∈Mat(n,R)

regular. Then all Hamiltonian functions H ∈ Ht in a small neighborhood of H0

have an invariant torus with frequency ω (i.e. Hǫ is integrable).

2. Measure of KAM-tori

There is a more global version of the KAM-Theorem. Define Ω := ω(G) and
with Ψ : Ω × Tn → G × Tn given by (ŵ, ϕ) 7→ (w−1(ŵ), ϕ) we write Hǫ :=
Hǫ ◦Ψ : Ω×Tn → R. Furthermore we denote with ΩCβ

the set of all diophantine
frequencies in Ω.

Theorem 2.1. With the assumptions of Theorem 1 there exists a diffeomorphism
Tǫ : Ω× Tn → Ω× Tn which transforms (1) on Ω√

ǫ × Tn into a system

d

dt
ŵ(t) = 0,

d

dt
ϕ(t) = ŵ(t),
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with λn(Ω√
ǫ,n∩Ω) = λn(Ω)(1−O(√ǫ) (where λn(.) is the n-dimensional Lebesgue

measure).

For a more specific version of the KAM-Theorem we need some notation. For
r ≥ 0, r = ∞ or r = ω we denote the space of r-times differentiable functions
with Cr(Tn) if r is an integer and the space of Hölder-continuous functions if
it is not an integer. Diffr(Tn) is the group of diffeomorphisms on the torus of
class Cr and Diffr+(T

n) := {f ∈ Diffr(Tn) : f is Cr isotope to the identity}.
Furthermore we define Dr(Tn) := {f ∈ Diffr(Tn) : f = Id + ϕ, ϕ ∈ Cr(Tn,Rn)}
and Dr(Tn, 0) := {f ∈ Dr(Tn) : f(0) = 0}.
Theorem 2.2 (Herman, 1983). Let α ∈ Rn be diophantine. Let

Θ =

{
n+ β if β 6= 0 and β /∈ Z

n+ β + ǫ if β = 0 or β ∈ Z, ǫ > 0

Then there exists a neighborhood V 2Θ
Rα

of a rotation Rα : Tn → Rn in D2Θ(Tn) and

a mapping s : V 2Θ
Rα
→ Rn×DΘ

+(T
n, 0) such that s is continuous and if s(f) = (λ, g)

then f = Rλ ◦ g ◦Rα ◦ g−1.

3. KAM Theorem corollaries for cocycles close to a constant

Let A : Tn−1 → SL(2,R) be a continuous application homotopic to the identity,
then the same can be said for the linear cocycle associated to A

(α,A) := F : Tn−1 × S1 → Tn−1 × S1, F (θ, w) :=

(
θ + α,

A(θ)w

‖A(θ)w‖

)

and thus it admits a continuous lift

F̃ : Tn−1 × R→ Tn−1 × R, F̃ (θ, x) := (θ + α, x+ f(θ, x))

with f(θ, x + 1) = f(θ, x) and π(x + f(θ, x)) = A(θ)π(x)/‖A(θ)π(x)‖ where π is
just the canonical projection on the circle π : R→ S1. Such a map is independent
from the choice of the lift up to the addition of an integer.

Definition 3.1. The fibered rotation number [4, Section 5] is the topological
invariant

(2) ρf (A) := lim sup
n→∞

1

n
f
(
F̃n(θ, x)

)
(mod1) ∈ T1.

If α is irrational, ρf (A) is independent on (θ, x) and converge uniformly with
respect to (θ, x), moreover ρf is a continuous non-increasing function of A ∈
C0
(
Tn−1, SL(2,R)

)
.

Definition 3.2. We will say that two cocycles maps associated to A, A1 are
conjugated if there exists a continuous map B : Tn−1 → SL(2,R) (conjugacy
matrix) such that

A1(θ) = B(θ + α)A(θ)B−1(θ), ∀θ ∈ Tn−1.

Definition 3.3. A cocycle is said reducible if it is PSL-conjugated to a rotation.



1058 Oberwolfach Report 17/2012

The iterations of F are also linear cocycles (α,A)n = (nα,An) with An(θ) =
A(θ+(n− 1)α) · · ·A(θ). If, moreover, (α,A) is reducible to some constant matrix
C, then An(θ) = B(θ + nα)CnB−1(θ) where B is the conjugacy matrix.

In [4, Sections 5.11, 5.12 and 5.14] it is proved that the KAM-Theorem im-
plies the reducibility for cocycles (α,A) close to a constant fulfilling a diophantine
condition on α and on the fibered rotation number of A.

Theorem 3.1. Let (α, β) ∈ Tn−1 × T1 be diophantine. Then there exist a neigh-
borhood Vα,β ⊂ C∞ (Tn−1, SL(2,R)

)
of Rβ such that if A ∈ Vα,β is close to a

constant with ρf (A) = β, then (α,A) is C∞ PSL-conjugate to a constant rotation
(α,Rβ).

In the proof of this theorem the main step is to show the existence of a constant
C > 1 such that for all x ∈ Tn−1 and for all k ≥ 0

(3) ‖Ak(θ)‖ ≤ C.

4. Application to Schrödinger cocycle

Given a potential V ∈ C0(T1,R), α ∈ R \ Q and θ ∈ T1, we consider the
operator

(4) (Hθψ)n = ψn+1 + ψn−1 + V (θ + nα)ψn

in ℓ2(Z). Then we can study the spectrum of (4) through the fact that u is a
solution of the difference equation un+1 + un−1 + V (θ + nα)un = Eun iff

(
un
un−1

)
= AnE,V

(
u0
u−1

)
, AE,V (θ) :=

(
E − V (θ) −1

1 0

)
.

Moreover the spectrum Σ is independent of θ ∈ T1. AE,V is called Schrödinger
cocycles. If AE,V is close to a constant, then it is possible to use Theorem 3.1
to prove the presence of absolutely continuous spectrum for some Schrödinger
operators similarly as in [1, Theorem 8].

Theorem 4.1. Let α ∈ T1 be diophantine. Then there exist a set A ⊂ R of
positive Lebesgue measure such that if V ∈ C∞(T1,R) and E0 ∈ R are such that
(α,AE0,V ) is C∞ PSL-conjugate to a rotation (α,Rβ) for some β ∈ A, then the
associated Schrödinger operator presents absolutely continuous spectrum.

The key ideas are setting A := {β ∈ T1 | (α, β) diophantine} and R := {E ∈
R | (α,AE,V ) conjugate to a constant rotation} and use the following theorem of
Last and Simon [6, Theorem 1] with the remark that being A conjugated to a
rotation, we can apply the estimate (3).

Theorem 4.2. Let H+ be the operator (4) on ℓ2(N) with u(0) = 0 boundary
conditions. Let

S =

{
E
∣∣∣ lim inf

L→∞

1

L

L∑

k=1

∥∥AkE,V
∥∥2 <∞

}
.
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Then S is an essential support of the absolutely continuous part of the spectral
measure for H+ and S has zero measure with respect to the singular part of the
spectral measure.
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Publ. Math. IHES 49 (1979), 5–233
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KAM theory for Schrödinger operators I

Xuanji Hou

In this talk, we consider a quasi-periodic Schrödinger operator

(Ly)(t) = −y′′

(t) + q(θ + ωt)y(t),(1)

where the potential q : Td → R is analytic. The Schrödinger equations

(Ly)(t) = −y′′

(t) + q(θ + ωt)y(t) = Ey(t)(2)

(E ∈ R is called energy) is closely related to systems (x ∈ R2)




ẋ =

(
0 1

q(θ)− E 0

)
x

θ̇ = ω
(3)

More generally, we consider Sys.(ω,A) defined as
{
ẋ = A(θ)x

θ̇ = ω
,(4)

where A : Td → sl(2,R) is analytic, and the frequency ω ∈ Rd is irrational. Let
Φtω,A(θ0) denotes the basic solution of (4) begin with θ = θ0, i.e.,

d

dt
Φtω,A(θ0) = A(θ0 + ωt)Φtω,A(θ0), with Φ0

ω,A(θ0) = Id.(5)

We define the rotation number of Sys.(ω,A) as ( 0 6= x ∈ R2)

ρ = lim
t→+∞

arg(Φtω,A(θ0)x)

t
,(6)
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where arg denotes the angle. It is well-defined and is independent of θ0 and x. ρ
is said to be rational w.r.t. ω if ρ = 1

2 < k0, ω > for some k0 ∈ Zd. Otherwise, we
call it irrational w.r.t. ω.

We call that Sys.(ω,A) and Sys.(ω, Ã) are conjugate if there exists analytic
B : Td → sl(2,R), s.t.

∂ωB = AB −BÃ.(7)

If Sys.(ω,A) and Sys.(ω,C) are conjugate, with C being a constant, we call that
it is reducible. Usually, we also say a system is reducible if it can be conjugated to
a constant one via a B defined on 2Td = Rd/2Zd. It is a basic problem that when
a system is reducible. Naturally, one can consider such a problem in local sense,
i.e., a systems close to a constant (in analytic sense). As for Schrödinger case,
the local usually denotes the small potential or high energy. For one can always
conjugate such a Schrödinger system to a local one via a constant B.

Even for local case, the reducibility is not trivial. The frequency and the rotation
number also play an important role. In [4], Dinaburg and Sinai proved that a
system is reducible if the perturbation is small enough (in analytic sense) provided
that ω is Diophantine and the rotation number ρ is Diophantine w.r.t. ω, i.e.,

|〈k, ω〉| ≥ ν−1

|k|σ , |〈k, ω〉 ± 2ρ| ≥ γ−1

|k|τ , 0 6= k ∈ Zd(8)

for some constants ν, σ, γ, τ . Such a reducibility result indicates the existence of
absolutely spectrum for quasi-periodic Shrödinger operator with small analytic
potential (or analytic potential together with high energy). Note that here the
smallness of the perturbation depends on ν, σ, γ, τ . Some years later, in [8], Moser
and Poschel extended such a result to rational rotation number case.

Note that all results in [4, 8] holds only for positive measure of rotation number.
It is H.Eliasson, who firstly proved in [5] that: in fact, for analytic local systems
with Diophantine fixed frequency, reducibility holds for full measure rotation num-
ber. In other words, he proved that a system is reducible if the perturbation is
small enough provided that ω is Diophantine and the rotation number ρ is Dio-
phantine or rational w.r.t. ω, but the smallness dose not depends on the rotation
number. Furthermore, by using the full-measure reducibility result together with
some detailed estimates, Eliasson has proved that for quasi-periodic Shrödinger
operator with small analytic potential (or analytic potential together with high
energy), the spectrum is purely absolutely continuous. It is rather a nice result!
Besides these, in [5], Eliasson also proved that the cantor spectrum holds for
generic small analytic potential (or generic analytic potential with enough high
energy), and the smallness does not depend on the rotation number.

Eliasson’s reducibility result is proved through a non-standard KAM iteration.
We give a rough introduction here. Let us consider a system Sys.(ω,A0+F0) with
A0 being constant and F0 being analytic and small in |Imθ| < h0 (h0 > 0). As
the first trial, we ant to find B = eY with Y : Td → sl(2,R) being small conjugate
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Sys.(ω,A0 + F0) to a constant one, i.e.,

∂ωe
Y = (A0 + F0)e

Y − eY C(9)

with C ∈ sl(2,R). However, we usually solve a linearized equation

∂ωY − [A0, Y ] = −(F0 − [F0])(10)

instead. It can be represented by using Fourier expansion as
∑

06=k∈Zd

i〈k, ω〉Ŷ (k)− [A0, Ŷ (k)〉 = −F̂0(k).(11)

As we solve such a linear equation, there is small divisor of the form:

〈k, ω〉 and 〈k, ω〉 ± 2ρ0(12)

with the assumption that A0 =

(
0 ρ0
−ρ0 0

)
(without lose of generality).

Firstly, with the Diophantine assumption of ω, after a conjugation closing
to identity, one can remove all terms with |k| ≤ N0 = C ln 1

ε0
, where ε0 =

sup|Imθ|<h0
‖F0(θ)‖ is small enough, except the non-diagonal part of k0 term as

〈k0, ω〉 ± 2ρ0 is small (one can prove that there is only one such k0 at most until
|k| > N0).

Secondly, we use a rotation Q(θ) =

(
cos 〈k0,θ〉

2 − sin 〈k0,θ〉
2

sin 〈k0,θ〉
2 cos 〈k0,θ〉

2

)
defined on 2Td

to remove the non-diagonal part of k0 term. Note that the rotation is large in
analytic sense but it does not impact the smallness of the perturbation after a
diminishment of h0. Now there is no small divisors until |k| > N0. We then use a
conjugation closing to identity to remove all terms with |k| ≤ N0.

Thus we complete a step of KAM to obtain a system Sys.(ω,A1+F1) with the
new perturbation much more smaller (one also needs to decrease h0 ). More pre-
cisely, let ε0 = sup|Imθ|<h0

‖F0(θ)‖, there is ε1 = sup|Imθ|<h1
‖F1(θ)‖ ≤ ε1+σ0 with

some σ ∈ (0, 1). As we repeat the process, we obtain a sequence of Sys.(ω,An+Fn)

with a decrease sequence of hn and εn = sup|Imθ|<hn
‖Fn(θ)‖ ≤ ε

(1+σ)n

0 . How-
ever, if we furthermore assume that the rotation number is Diophantine or rational
w.r.t. ω, one will not need to use rotations and all conjugation is close to identity
after finite step of iterations. For such cases, the composition of all conjugation
converges together with hn decrease to a positive number and the reducibility
follows. As the composition fails to converge, one obtains the so-called almost
reducibility.

Eliasson’s KAM scheme gives a unified method to deduce all rotation numbers
when ω is Diophantine. Such a scheme also works for discrete case [2, 6]. In
the end, we remark that one can also apply KAM to some systems with non-
Diophantine frequency [1, 3, 7], etc..
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KAM theory for Schrödinger operators II

Darren C. Ong

Avila, Fayad and Krikorian have developed a new KAM scheme that applies
to SL(2,R) cocycles with one frequency, irrespective of any Diophantine condition
on the base dynamics. The precise statement of the main theorem is as follows:

Theorem 0.3. For every τ > 0, 0 < ν < 1/2, ǫ > 0, h∗ > 0. there exists η > 0
depending on τ, ν, ǫ with the following property. Let h > h∗ and let A be a real-
symmetric analytic SL(2,R) valued function from the torus T whose domain is the
complex strip ∆h = {|ℑz| < h}. Furthermore, assume sup∆h

||A − R|| < η for
some rotation matrix R, and that the fibered rotation number ρ satisfies a certain
positive-measure condition depending on τ, ν, ǫ and α. Then there must exist real
symmetric B : ∆h−h∗ → SL(2,C) and φ : ∆h−h∗

→ C such that B is ǫ-close to
the identity, and φ is ǫ-close to ρ on the strip ∆h−h∗

, and B(x + α)A(x)B(x)−1

is equal to rotation by φ(x).

We note that since the Almost Reducibility Conjecture has been established,
it is possible to replace the positive measure condition on ρ with a full measure
condition.

In the special case of Schrödinger cocycles, this theorem has the following two
implications:

Theorem 0.4. Let the potential v : T→ R be analytic and close to constant. For
every α ∈ R, the set X(v, α) of all energies E ∈ R for which the corresponding
Schrödinger cocycle is conjugate to a cocycle of rotations has positive Lebesgue
measure. Indeed the Lebesgue measure of this set X(v, α) converges to 4 as v
converges to a constant.

Theorem 0.5. Let α be irrational and v : T → R be analytic. Then for almost
every energy E ∈ R the corresponding Schrödinger cocycle has either Lyapunov
exponent 0, or is analytically conjugate to a cocycle of rotations.
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The proof of the first theorem begins by establishing a subsequence {Qk} of the
sequence of denominators of the fractional approximants of α. This subsequence
has the property that if the cocycle (α,A) is close to a constant rotation, then the
iterated cocycle (Qkα,A

Qk ) is close to a constant rotation as well. We then apply
a series of inductive estimates on (Qkα,A

Qk ) and use the fact that (Qkα,A
Qk)

and (α,A) commute to reach conclusions about the dynamical properties of (α,A)
and arrive at the desired conjugacy.
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Renormalization I

Qi Zhou

In this talk, we consider the global reducibility results for one frequency analytic
quasiperiodic Schrödinger cocycles (α, Sv,E) where

Sv,E(θ) =

(
E − v(θ) −1

1 0

)
∈ SL(2,R).

If the cocycle is close to constant, reducibility results are both verified in Dio-
phantine and Liouvillean context [2, 5]. If the cocycle is not close to constants,
we will talk about the following results, which are due to Avila-Krikorian [3] and
Avila-Fayad-Krikorian [2]:

Let α ∈ R\Q, v : R/Z → R be a Cω potential. Then we have the following:
If α is recurrent Diophantine, then for Lebesgue almost every E, the Schrödinger
cocycle (α, Sv,E) is either nonuniformly hyperbolic or Cω reducible; If α ∈ R\Q,
then for Lebesgue almost every E ∈ {E : |L(α, Sv,E) = 0}, the Schrödinger cocycle
(α, Sv,E) is rotations reducible.

We will follow the approach of Herman’s celebrated work on linearization to
prove the main result. We define a renormalization operator, under some as-
sumptions, the renormalization admits a ”linear attractor” (constant cocycle),
this allows one to obtain ”global” results by reducing to the ”local case” of nearly
constant cocycle, then we apply local reducibility results to finish the proof.

The concept of renormalization arises in many forms through mathematics and
physics, a great reference from the dynamical side is [1]. The renormalization
operator consists two steps: inducing and scaling. Inducing usually means we
consider the first return map of the given dynamics, after inducing, we need a
scaling procedure, so that the dynamics considered occur at a fixed spatial scale.
Simple example is the renormalization of rigid rotation of the circle, it can be
shown that renormalization just means the Gauss map.

If we apply renormalization principle directly to one frequency Cr cocycle, the
questions arises in the following: if we consider the first return map to the annulus
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[x0, x0 + qnk
] × R/Z, where we identify the boundary circles via (x, u) 7→ (x +

qnα,A(x) · u), then we cannot get a Cr cocycle, since we lose the smoothness the
cocycle. A possible way to deal with this question is that we can look at the
cocycle in another way, considering

(α,A) R× R2 → R× R2

(x, u) 7→ (x + α,A(x)u).

then if (α,A) commutes with (1, id), then (α,A) is a cocycle. This observation
allows us to introduce the concept of Z2 action Φ, a homomorphism from Z2 to
Ωr(subgroup of Diff r(R×R2)). There is nice relationship between Z2 action and
cocycle, if Φ(1, 0) = (1, id), then Φ(0, 1) = (α,A) can be viewed as a Cr-cocycle.
Given a Cr-cocycle (α,A), α ∈ [0, 1], we associate a Z2 action Φα,A by setting
Φα,A(1, 0) = (1, id), Φα,A(0, 1) = (α,A).

We can do the renormalization operations for Z2 action other than for cocycles.
The operation consists two steps: base change and rescaling, base change just
means we consider the iteration of the cocycle. It can be shown that reducibil-
ity is invariant under renormalization, and Φα,A is Cr-reducible (resp. rotations
reducible) if and only if (α,A) is Cr-reducible (resp. rotations reducible). This
gives us some convince when we are deal with reducibility results.

The renormalization sequence takes the form

R
n(Φ)(1, 0) = (1, A(−1)n−1qn−1

(βn−1x)),

R
n(Φ)(0, 1) = (αn, A(−1)n−1qn(βn−1x)),

where Φ = Φα,A. However, R
n(Φ)(0, 1) is not a cocycle. So we need the normal-

ization step, which means for any Z2 action Φ : Z2 → Ωr with Π1(Φ(1, 0)) = 1,
then it can be Cr conjugated to Φ(1, 0) = (1, id), r ∈ N ∪∞, ω.

The next question arises, when does the renormalization sequences converges?
Usually it is called ”a prior estimate”. If (α,A) has positive Lyapunov exponent,
then it is easy to see that the renormalization sequence diverges. What is in
fact the basin of the renormalization attractor? Of course it has zero Lyapunov
exponent, by Bourgain-Jitomirskaya’s result [4], it is closed, however, the basin of
a local attractor is by nature open. In fact, the main result shows that for Lebesgue
almost every E ∈ {E : |L(α, Sv,E) = 0}, the Schrödinger cocycle (α, Sv,E) can be
renormalized to near constant cocycle.

The good starting point is Kotani’s theory, for Lebesgue almost every E ∈ {E :
|L(α, Sv,E) = 0}, the cocycle (α, Sv,E) is L

2 conjugated to a cocycle in SO(2,R),
then an explicit estimate allows us to control the derivatives of iterates of the
cocycle restricted to certain small intervals. This is just the ”prior estimate” what
we needed.
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Renormalization II

Raphaël Krikorian

As was explained in the previous talk by Qi Zhou, renormalization is a useful
tool to prove “global” reducibility results (i.e. non perturbative ones) by reducing
them to local (i.e. perturbative) ones. A typical application of this technique for
SL(2,R)-valued cocycles is the a.e. dichotomy obtained in [3]: given a recurrent
diophantine α ∈ T (which means that infinitely many iterates of α under the
Gauss map satisfy a fixed diophantine condition), and V : T → R a smooth or
real analytic potential, then for Lebesgue a.e. E ∈ R, either LE(α, SE−V ) > 0
or the cocycle (α, SE−V ) is smoothly or real analytically reducible (conjugated
to a constant elliptic matrix in SL(2,R)). Since Kotani’s theory tells us that for
a.e E where LE(α, SE−V ) = 0, the cocycle (α, SE−V ) is L2-rotations-reducible
(which means conjugated to an SO(2,R)-valued cocycle by an L2 conjugation), it
is indeed enough to prove the following differentiable rigidity theorem: if a smooth
or real analytic cocycle with a recurrent diophantine frequency is L2-rotations-
reducible, and has a fibered rotation number which is diophantine with respect
to α, then it is smoothly or real analytically reducible. The proof of the previous
result relies on the convergence of the renormalization scheme to SO(2,R)-valued
cocycles (Z2-actions) which are not necessarily constant, convergence which in turn
heavily relies on a priori estimates. Let us describe what these a priori estimates
are designed for. Roughly speaking, to understand the n-th iterate of a cocycle
(α,A) under the renormalization operator it is enough to understand the iterates
(α,A)qn on some interval [x∗, x∗ + qnα] ⊂ T (as ususal qn is the n-th denominator
of the continuous fraction expansion of α). One has to keep in mind that the
n-th renormalized cocycle is related to the dilated cocycle (αn, A

(qn)(β−1
n−1(· −

x∗))) on the interval [0, 1], where x∗ is some point at which dilation is made. In
order to be able to prove that renormalization “converges”, a first step is to prove
that the preceding cocycles have reasonable Ck-norms, which in our case means
bounded. A first step in that direction is to prove that these cocycles have bounded
Lispchitz norms. The main technical tool is then the following: Let A(·) : T →
SL(2,R) be Lipschitz, B(·) : T → SL(2,R) such that

∫
T
‖B(x)‖2dx < ∞ and

B(· + α)−1A(·)B(·) is SO(2,R)-valued. Denote by φ : T → R the L1-function

φ(·) := ‖B(·)‖2 and by S(x) := supn≥1
1
n

∑n−1
k=0 φ(x + kα). By the Maximal

Ergodic Theorem, for a.e. x0 ∈ T one has S(x0) < ∞ (and in fact S satisfies
a weak-type inequality). We can now state the main Lemma: for every x0 ∈ T
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where S(x0) <∞ one has

‖An(x0)−1(An(x)−An(x0))‖ ≤ en|x−x0|‖A‖C0Lip(A)S(x0)φ(x0) − 1

and

‖An(x)‖ ≤ en|x−x0|‖A‖C0Lip(A)S(x0)φ(x0)(φ(x0)φ(x0 + nα))1/2

Using this lemma one can prove a higher differentiability version: if A is of class
Ck

‖(∂rAn)(x)‖ ≤ Crnrφ(x0 + nα)1/2
(
c1(x0)e

nc2(x0)|x−x0|
)r+ 1

2

‖∂rA‖C0

where c1(x0) = φ(x0)S(x0)‖A‖2C0 , c2(x0) = 2S(x0)φ(x0)‖A‖C0‖∂A‖C0 and C is
a universal constant. This last lemma joined with the L2-rotation reducibility
assumption is the key to proving the convergence of renormalization to SO(2,R)-
valued cocycles. More precisely, using a measurable continuity argument, one can
prove the following : with the same assumptions as before, for a.e. x∗ ∈ T, there
exists K > 0 such that for every d > 0, ǫ > 0 and for every n > n0(d, ǫ), if ‖αn‖T ≤
d/n then ‖∂rAn(x)‖ ≤ Kr+1nr‖A‖Cr provided |x − x∗| ≤ d/n; furthermore, the
matrix B(x∗)−1An(x)B(x∗) is ǫ-close to SO(2,R) for |x− x∗| ≤ d/n. This result,
applied to Aqn instead of An, shows that there exists a point x∗ such that the n-
th iterates of (α,A) under the renormalization operator (centered at x∗) become
closer and closer to SO(2,R) and their Ck -norms stay bounded. In case α is
recurrent diophantine, infinitely many times, αn, the n-th iterate of α under the
Gauss map, will be in some fixed diophantine class. Then, naturally associated
to (α,A) one gets a SO(2,R)-valued smooth or real analytic cocycle (α∞, Ã(∞))
which can easily be conjugated to a constant one (α∞, R) (α∞ being diophantine).
Stopping the renormalization procedure at some large step n, one is reduced to
the following: decide whether a cocycle of the form (αn, Re

Fn(·)) is reducible,
where R is a constant, Fn is small in Ck (or real analytic) norm and αn is in
a fixed diophantine class. But this is a local situation and in that case one has
a local theorem that gives the answer, namely Eliasson’s Theorem: the cocycle
(αn, Re

Fn(·)) is reducible provided its fibered rotation number is diophantine with
respect to αn. By Kotani theory, this last condition is fulfilled for a.e. E such
that LE(α, SE−V ) = 0.

Let us mention that the preceding a.e. dichotomy can be extended to the case
where α is any irrational number on T (see [2]) provided the notion of reducibility
is replaced by the more general one of rotations-reducibility (meaning conjugation
to SO(2,R)-valued cocycle): Given any irrational α ∈ T, and V : T→ R a smooth
or real analytic potential, then for Lebesgue a.e. E ∈ R, either LE(α, SE−V ) > 0
or the cocycle (α, SE−V ) is smoothly or real analytically rotations-reducible i.e.
conjugated to an SO(2,R)-valued cocycle.The proof uses as before Kotani’s theory
to reduce the result to an L2-differentiable rigidity result but here it is important to
prove the convergence of L2-rotations-reducible cocycles (homotopic to the iden-
tity) to constant cocycles. We are thus reduced to the following situation: given
(αn, Re

Fn(·)), where R is an elliptic constant in SO(2,R), Fn is small in Ck (or real
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analytic) norm, what can be said about its rotations-reducibility? To answer this
question an important tool is the so-called “cheap trick” introduced in [6] and [2].
The basic idea underlying this technique is that when αn is too small to give in-
formations from a classical KAM point of view, algebraic conjugation of ReFn(·) to
a cocycle of rotations (or equivalently rotations-reducibility of (0, ReFn(·))) trans-
lates to a dynamical conjugation, conjugating (αn, Re

Fn(·)) to a cocycle which is
closer to a cocycle of rotations, how close now depending on the size of αn; notice
that this procedure can be iterated a finite number of time which allows usable es-
timates. The implementation of this idea gives a (semi-) local result which can be
seen as an extension of the classical Dinaburg-Sinai result: there exists a smallness
condition, depending on some arithmetic condition imposed to the fibered rotation
number of (αn, Re

Fn(·)) (with respect to αn), but not on the arithmetic properties
of αn, such that if Fn satisfies this smallness condition, the cocycle (αn, Re

Fn(·))
is rotations-reducible.
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The metal-insulator transition for the almost Mathieu operator

Roman Schubert

The topic of this talk is to discuss Anderson localisation for the almost Mathieu
operator (AMO) in the supercritical regime, following [1]. The almost Mathieu
operator on l2(Z) is given by

(1) [Hψ](n) = ψ(n+ 1) + ψ(n− 1) + 2λ cos(2π(ω + nα))ψ(n)

and we are interested in properties of eigenfunctions of H , i.e. Hψ(n) = Eψ(n).
On says that the operator displays Anderson localization if it has pure point spec-
trum and any eigenfunction decays exponentially for large |n|.

We will assume that the frequency α satisfies a Diophantine condition

(2) α ∈ DC ↔ | sin(πjα)| ≥ c(α)

|j|r(α)
, for some c(α) > 0 , 1 < r(α) <∞

and the phase ω is non-resonant:

(3) ω /∈ R := {ω| | sin(2π(ω + kα/2))| ≤ exp(−k 1
2r(α) ) for infinitely many k ∈ Z}
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The main result we discuss is then

Theorem [1] Assume λ > 1, α ∈ DC and ω /∈ R. Then H displays Anderson
localization.

Remarks:

(a) For a history of the many partial results known before we refer to [1].
(b) The AMO is Aubry dual to itself with λ replaced by 1/λ, see the following

talk. Therefore the theorem implies that for λ < 1 the spectrum is abso-
lutely continuous. Hence we have at λ = 1 a transition from absolutely
continuous to pure point spectrum, i.e, a transition from a conducting
metal to an insulator.

(c) The conditions on α and ω are close to being sharp, in more recent papers
by Avila and Jitomirskaya it was studied what happens if one relaxes them.

– One says that ω is ε-resonant (ε > 0) if there exist infinitely many
integers nj , j = 1, 2, · · · , such that ||2ω − njα||R/Z ≤ e−|nj|ε. In [4]
it is shown that if α ∈ DC and ω is ε-resonant then eigenfunctions
localise around the resonances nj , but are exponentially decaying
away from them. This is called almost localisation.

– In [3] the case of more general α is considered. Let pn/qn be the
continued fractions approximates for α and set

β := lim sup ln(qn+1)/qn .

If α ∈ DC, then β = 0. If α is irrational, β <∞ and ω is non-resonant
then eigenfunctions are localised for λ > e16β/9. It is expected that
for non-resonant ω Anderson localisation holds for λ > eβ but not for
λ < eβ , see [3].

Let us now describe some elements of the setup of the proof. One says that ψ is a
generalised eigenfunction if ψ(n) satisfies Hψ(n) = Eψ(n) and |ψ(n)| ≤ C(1+|n|),
and to show Anderson localisation it is enough to show that every generalised
eigenfunction is exponentially decaying.

The main tool will be estimates on Greens functions. Let I = [x1, x2] ⊂ Z be an
interval and let (HI −E) be the restriction of H−E to I with Dirichlet boundary
conditions ψ(x1 − 1) = ψ(x2 + 1) = 0. This is a band matrix of the form

(4) (HI − E) =




VE(x1) 1 0 0 · · · 0
1 VE(x1 + 1) 1 0 · · · 0
0 1 VE(x1 + 2) 1 · · · 0
...

...
...

. . .
...

0 · · · · · · 0 1 VE(x2)




where VE(x) = 2λ cos(2π(ω + xα)) − E and the Greens function is defined as its
inverse

GI(x, y) = (HI − E)−1(x, y) .
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Let

Pk(ω) := det(H[0,k−1] − E) ,

and A(k, ω) be the standard cocycle associated with the AMO, then we have the
following identities

(d) A(k, ω) =

(
Pk(ω) −Pk−1(ω + α)
Pk−1(ω) −Pk−2(ω + α)

)

(e) |G[x1,x2](x1, y)| =
|Px2−y(ω+(y+1)α)|

|Pk(ω+x1α)| and |G[x1,x2](y, x2)| =
|Py−x1 (ω+x1α)|
|Pk(ω+x1α)|

where k = x2 − x1
(f) If Hψ(n) = Eψ(n) and x ∈ I, then

ψ(x) = −GI(x1, x)ψ(x1 − 1)−GI(x2, x)ψ(x2 + 1) .

The first relation follows, e.g. by induction from Pk+1(ω) = V (k)Pk(ω)−Pk−1(ω),
which in turns follows by Laplace expansion in the last row of H[0,k−1] − E. The
second one follows by Cramer’s rule and the last one from (H[0,k−1] − E)ψ(n) =
−ψ(x1 − 1)δn,x1 − ψ(x2 + 1)δn,x2.

Now if λ > 1 then

(5) L := lim
k→∞

∫
ln ||A(k, ω)||

ln k
dω > 0 ,

in fact L = lnλ if α is irrational [2]. Therefore we expect that for large enough k
and most ω we have ||A(k, ω)|| ∼ eLk and hence by (d)

(6) Pk(ω) ∼ eLk .
This would imply |G[x1,x2](x1, y)| ∼ e−L|x1−y| (by (e)) and therefore any eigen-
function which satisfies |ψ(n)| ≤ C(1 + |n|) has to be exponentially decaying (by
(f)). So localisation follows if (6) holds, and this is where the Diophantine con-
dition on α and the non-resonance condition on ω are used. Let us give some
indication how these conditions come into play.

A point y is called (m, k)-regular if there exist an interval I = [x1, x2] with
y ∈ I and k = x2 − x1 + 1 such that for i = 1, 2

|G[x1,x2](y, xi)| ≤ e−m|y−xi| , dist(y, xi) ≥ k/5
Otherwise y is called (m, k)-singular.

(g) We have by (4) that Pk(ω) = Qk(cos(ω + (k − 1)α/2)) where Qk(z) is a
polynomial of degree k.

(h) There is a uniform (in ω) upper bound |Pk(ω)| = |Qk(z)| ≤ e(L+ǫ)k for k
large enough, see [1].

(i) If y is (L− ǫ, k)-singular, and k is sufficiently large, then one can produce
a sequence of ∼ k/2 points

zj = cos(ω + (x+ j + (k − 1)/2)α) ,

where x ∼ y−3k/4, such that Qk(zj) is small, i.e, ≤ e(L−ǫ′)k. This follows
from the definition of (L − ǫ, k)-singular together with (e) and the upper
bound in (h) on Qk(z).
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(j) If both 0 and y are (L − ǫ, k)-singular and a distance k apart, then the
previous observation applied to 0 and y produces altogether k points zj
on which Qk is small. Now by (5) there exist an z0 with Qk(z0) ≥ ekL,
applying Lagrange interpolation to the polynomial Qk gives then

Qk(z0) =

k∑

j=1

Qk(zj)
∏

l 6=j

z0 − zl
zj − zl

.

Now by assumption Qk(z0) is large, but Qk(zj) is small for j = 1, · · · , k if 0 and
y are (L− ǫ, k)-singular. The Diophantine conditions on α and the non-resonance
conditions can now be used to analyse the size of the terms

∏

l 6=j

z0 − zl
zj − zl

.

It turns out that these are small enough to produce a contradiction (the dis-
tribution of the zj is sufficiently uniform). Hence 0 and y cannot be both be
(L− ǫ, k)-singular, and this implies that eigenfunctions are localised.
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Duality and the almost Mathieu operator

Christoph A. Marx

The special form of the almost Mathieu operator (AMO) implies a symmetry
with respect to Fourier transform, known as Aubry duality [1]. Since, taking
a Fourier transform physically corresponds to a change to “momentum states”,
Aubry duality is heuristically understood as a correspondence between localized
and “extended states”.

Several approaches that formulate this correspondence rigorously exist in the
literature, ranging from the very first one [5] to the most recent one [13], Section
8 therein. In this talk we introduce duality from two view points: a “classical”
spectral theoretic approach and a more recent dynamical formulation in terms of
Schrödinger cocycles. Even though originally discovered for the AMO, the concept
is general to any Schrödinger operator Hα,θ,

(1) (Hα,θψ)n := ψn+1 + ψn−1 + v(αn+ θ)ψn ,

where v ∈ C(T,R) and α ∈ T is allowed to be both rational or irrational.
The following spectral theoretic approach is based on an elegant formulation

for the AMO due to [7], further developed to the general setting given by (1) in
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[13]. Within this framework duality is formulated as a unitary equivalence on

the constant fiber direct integral, H′ :=
∫ ⊕
T

l2(Z)dθ. Hα,θ naturally lifts to a

decomposable operator on H′ given by H ′
α :=

∫ ⊕
T
Hα,θdθ.

Consideration of H′ is not unexpected from a physics point of view. In solid
state physics, quasi-periodic operators arise from the description of two dimen-
sional crystal layers immersed in a magnetic field of flux β acting perpendicular
to the lattice plane. An interpretation of duality in terms of the corresponding
two-dimensional magnetic model can be found in [14], Sec. 2-3 therein.

Duality is mediated by the unitary [7],

(2) (Uψ)(η,m) :=
∑

n∈Z

∫

T

dθe2πimθe2πin(mα+η)ψ(θ, n) ,

on H′, which defines the dual operator of H ′
α by U−1H ′

αU =: H̃ ′
α. H̃ ′

α is itself
decomposable and acts on the fibers according to1

(3) (H̃α,θψ)n = 2 cos(2π(θ + αn))ψn + (v̌ ∗ ψ)n .

A speciality of the AMO is that up to energy rescaling, its dual lies within the

almost Mathieu family, i.e. H̃α,θ,λ = λHα,θ,λ−1 . In particular, duality relates the
sub(λ < 1)- and super-critical (λ > 1) regime. The critical point λ = 1 is self dual.

When formulating duality as unitary equivalence between operators, preserva-
tion of spectral properties becomes immediate. In this respect, we mention the
union spectrum S+(α) := ∪θ∈Tσ(Hα,θ), analogously defined for the dual operator

(S̃+(α)). Note that for α ∈ R \Q, S+(α) = σ(Hα,θ) =: Σ(α) for all θ ∈ T.

Theorem 0.6. For any α ∈ T, we have S+(α) = S̃+(α). Moreover, if α ∈ R \Q,
the density of states is invariant under duality i.e.

(4) k({Hα,θ}; ∆) = k({H̃α,θ}; ∆) ,

for ∆ ⊆ R Borel.

Invariance of S+ for general, continuous v(x) is proven in [13]. A first rigorous
proof of the moreover statement was obtained in [14]; within the present framework
a proof can be found in [10] .

As an application of invariance of the density of states, we mention an alter-
native proof of Herman’s bound for the Lyapunov exponent (LE) [14] : Using
Thouless formula, one obtains

(5) L(α,AEλ ) = L(α,A
E/λ
λ−1 ) + logλ ,

relating the LE in the dual regimes. In particular, L(α,AEλ ) ≥ logλ, which yields
positivity for λ > 1.

Whereas above approach easily yields the spectral invariances formulated in
Theorem 0.6, the following dynamical point of view very transparently formulates
the heuristic correspondence between localized and extended states.

1We denote by φ̂(x) :=
∑

nZ
φne2πinx the Fourier-transform on l2(Z) with inverse written as

f̌ , for f ∈ L2(T).
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To this end, suppose 0 6= ψ ∈ l2(Z) such that H̃α,θψ = Eψ, for some θ. As
shown in [2] this produces an L2-semi-conjugacy of the Schrödinger cocycle (α,AE)

to the constant rotation Rθ := ( e
2πiθ 0
0 e−2πiθ ),

(6) AE(x)C(x) = RθC(x + α) , C(x) =

(
ψ̂(x) ψ̂(x)

ψ̂(x− α)e−2πiθ ψ̂(x − α)e−2πiθ

)
.

For all but countably many phases, this semi-conjugacy is in fact a conjugacy:

Proposition 0.1. [2, 3] Suppose θ ∈ T such that αZ+ 2θ ∩ Z = ∅, then for some
c ∈ R \ {0}, detC(x) = ic a.e. x.

In particular, we conclude L(α,AE) = 0 if αZ + 2θ ∩ Z = ∅ 2. The fact that
point spectrum for the dual operator implies zero LE was first proven in [8] by
non-dynamical means. There, the argument was used to conclude absence of point-
spectrum for the subcritical AMO, using positivity of the LE in the supercritical
regime.

The L2-conjugacy obtained in Proposition 0.1 already implies a bound of the
n-step transfer matrices in L1-norm. This bound can be improved to one holding
uniformly on T, if the eigenvector ψ decays sufficiently fast.

For example, for the AMO, Anderson-localization in the supercritical regime is
known:

Theorem 0.7. [12] Let λ > 1 and α Diophantine with ‖αk‖ ≥ κ(α)
|k|r(α) for k ∈

Z \ {0} and κ(α) > 0, r(α) > 1. If θ 6∈ R, Hα,θ,λ has only pure point spectrum
with exponentially localized eigenfunctions. Here,

(7) R = {θ ∈ T : ‖αk + 2θ‖ < e−k
1

2r(α)
i.o.} .

Thus for E ∈ ∪θ∈T′σpt(λHα,λ−1) =: Σ0(λ), one concludes ‖AEn ‖∞ = O(1), for
all n ∈ N. Here, T′ is the full-measure set of non-resonant phases, in addition
satisfying αZ+ 2θ ∩ Z = ∅.

Since Σ0(λ) = Σ(α, λ), joint continuity of the LE in E and α [6] yields L(α,AEλ ) =
0 for all irrational α and E ∈ Σ(α, λ). Together with (5), this proves the Aubry-
André formula for the LE of the AMO, L(α,AEλ ) = log+(λ), for all α ∈ R \Q and
energies in the spectrum.

It is interesting that this dynamical formulation of duality can even be used to
obtain statements about the self-dual point:

Theorem 0.8. [3] If θ satisfies αZ+2θ∩Z = ∅, Hα,θ,1 has empty point spectrum.

Zero measure spectrum at λ = 1 for all irrational α [4] in particular yields,

Corollary 0.1. For all but countably many θ, the spectrum of Hα,θ,1 is purely
singular continuous.

2We mention that a dynamical description for the remaining countable set of θ not covered
by (0.1) can be given [2].
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We conclude this talk by giving two results illustrating the necessity of the
arithmetic conditions on α and θ in Theorem 0.7. In view of necessity of the
Diophantine condition on the frequency, we call α ∈ T Liouville with constant
c > 0, if there exists a sequence of rationals pn

qn
→ α such that |α − pn

qn
| < e−cqn .

For every c > 0, Liouville numbers with constant c form a dense Gδ.

Theorem 0.9. [9] Let v ∈ Lipr(T,R). There exists c = c(v) > 0 such that for
every Liouville α with constant c, Hα,θ has empty point spectrum for all θ ∈ T.

To state necessity of the condition on the phase, assume v ∈ Lipr(T,R) is
reflection symmetric about some point expressed by v(Rθ) = v(θ), θ ∈ T. For
c > 0, define the set of c-resonances, R(c) := {θ : ‖T 2kθ − Rθ‖ < e−ck , i.o.},
where T : θ 7→ θ + α on T. As before, given α ∈ R \Q, for each fixed c > 0, R(c)
forms a dense Gδ.

Theorem 0.10. [11] There exists c = c(v) > 0 such that for α ∈ R \Q, Hα,θ has
empty point spectrum for all θ ∈ R(c).

We mention that in [11] this Theorem is proven for the general almost periodic
setup.
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Measure of the spectrum of the almost Mathieu operator

Rajinder Mavi

We continue the discussion of the almost Mathieu operator,

(1) Hα,ω,λu(n) = u(n+ 1) + u(n− 1) + 2λ cos (2π(nα+ θ))

for α, θ, λ ∈ R, begun in the previous two lectures. Our concern in this talk
is the spectrum σ (Hα,ω,λ), which is invariant under the reflection of the coupling
parameter λ→ −λ so we will assume λ ≥ 0. In particular we discuss the Lebesgue
measure of the spectrum S(α, λ) = |σ (Hα,ω,λ)| for irrational α, (the spectrum
does not depend on the phase ω for irrational frequency α). It is useful to specify
related sets for all α, σ+(α, λ) = ∪ωσ (Hα,ω,λ) ; σ−(α, λ) = ∩ωσ (Hα,ω,λ) ; and
S±(α, ω, λ) = |σ+(α, ω, λ)|. A conjecture of Aubry and André’s[1] states that the
Lebesgue measure of the spectrum at irrational frequencies is given by the formula

S(α, λ) = 4 |1− λ| .
In this talk we will demonstrate the proof of this conjecture. The duality proper-
ties of (1), discussed in the previous lecture, simplify the proof of the Aubry-André
conjecture. We use the formula which follows from duality of the integrated den-
sity of states, Avron and Simon [4], S+(α, λ) = λS+(α, λ

−1) and for irrational
frequencies α, S(α, λ) = λS(α, λ−1). The problem therefore divides into dual sub-
critical 0 < λ < 1 and supercritical regimes λ > 1, where proving the conjecture
in one case implies the other; the critical self dual point λ = 1 is a special case.

In all but a zero measure set of frequencies at the critical coupling the method
of proof is by approximation of the measure of spectra at rational frequencies and
then approximating spectra at irrational frequencies by rational frequencies. Con-
tinuity of σ+(·, λ) in the Hausdorff metric is shown in [4, 9], however, S+(·, λ)
is discontinuous at rational values. It is therefore necessary to obtain stronger
statements of continuity and use numerical properties of irrational numbers, par-
ticularly the continued fraction expansion

α = a0 +
1

a1 +
1

a2 +
.. .

≡ [a0; a1, a2, . . .]

with ai ∈ N, ai > 0. A truncation [a0; a1, a2, . . . , an] ≡ pn
qn
, with pn, qn ∈ N and

(pn, qn) = 1 is known as a rational approximant.
Avron, Mouche and Simon [3] computed the measure of the spectra at rational

frequency and obtained S−(α, λ) = 4|1− λ| for 0 < λ < 1 directly. S+ is bounded
above in [3] by controlling the difference σ+(α, λ)\σ−(α, λ). S−(α, λ) is calculated
using cocycles of the transfer matrices, which were introduced in the second talk,
and truncated Hamiltonians. Chamber’s formula [6] is used at rational α = p

q to

obtain, a q degree polynomial in E to be the trace of the q length cocycle. The
formula for a fixed rational α is 1

2Tr(α,ω,λ)(E) = ∆α,λ(E) + λq cos(qω). Where

∆α,λ is a polynomial of degree q. Therefore, σ−(α, λ) is ∆−1
α,λ([−1 + λq , 1 − λq]),
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thus it suffices to compute the total size of these intervals. For this the periodic,
corresponding to ∆α,λ = 1−λq, and antiperiodic, corresponding to ∆α,λ = −1+λq,
truncated Hamiltonians are used to compute the total length of these intervals.
The energies in both cases are ordered to alternately correspond to even and odd
vector subspaces of the truncated space, starting with even on top. The total
length therefore is the sum of the even periodic trace and odd antiperiodic trace
less the sum of the odd periodic trace and the even antiperiodic trace. To control
σ+\σ−, we turn to cocycle dynamics and use the formula 1

2Trλ,ω=0 = (−1)q cos(qr)
for the rotation number r(E) of the cocycles on the spectrum. Avron, Mouche
and Simon use the formula of Deift and Simon [8] that on the spectrum dr

dE ≥ 1/2,

this obtains S+ ≤ S− + Cλq/2 for some C > 0.
In the case of critical λ the bound of S+ above is not effective. Instead the

following formula shown by Last [15] is used
∑

1≤ν≤q
1

∆′

p/q,1
(Eν)

= 1
q where Eν

enumerate the zeros of ∆p/q,1. To bound S+, we bound above the distance of a

point in ∆−1
p/q,1(±2) to the nearest point in ∆−1

p/q,1(0) by its trigonometric behavior

and the above formula obtains S+ < Cq−1 for some C < ∞. Using duality, we
have for all α, λ the limit limp/q→α S+(p/q, λ) = 4|1 − λ|; thus, we require only
continuity for some sequence of rationals p/q → α to conclude the proof.

In [3] the authors show 1
2−Hölder continuity of σ+(·, λ) in the frequency. The

method for any E ∈ σ+(α, λ) is construction of a sequence fn ∈ ℓ2(Z) for any
nearby frequency α′ and properly chosen θ′ so that ‖(E −Hα′,θ′,λ)fn‖ < C|α −
α′|1/2. The variation principle implies there is an E′ ∈ σ(α′, θ′, λ) so that |E −
E′| < C|α − α′|1/2. The sequence for the new frequency is constructed out of
the Weyl sequence of the original operator at E by multiplying each function
by a properly centered cutoff function. The 1

2−Hölder is an improvement over
1
3−Hölder continuity shown by Chui, Elliot and Yui [7] made possible by an im-
proved choice of cutoff function. As briefly discussed above, σ+(pn/qn, λ) consists
of at most qn intervals, the edges of which have 1/2−Hölder continuity. The con-
tinuity of S+ was demonstrated by Last [14] as a corollary of the results in [3],
using the Hölder continuity of the bands of the spectrum and the general prop-

erty
∣∣∣α− pn

qn

∣∣∣ < 1
qn+1

. Because qn+1 = anqn + qn−1 it is exactly the irrationals

with an unbounded sequence of continued fraction coefficients ai for which we
can conclude the conjecture. Finally, for irrationals so that ai are bounded Jito-
mirskaya and Krasovsky [13] show almost Lipshitz continuity of the spectra in the
Hausdorff metric when λ > 1, (in fact this result holds for analytic potentials and
Diophantine irrationals).

The completion of the Aubry-Andre conjecture is listed as problem five in Simon
[16], at that time it only remained to solve the problem at critical coupling with
frequencies α with continued fraction coefficients ai bounded. This was solved by
Avila and Krikorian in [2] (the method in this paper applies to a full measure set
of Diophantine frequencies). From Bourgain and Jitomirskaya [5] it is known that
the Lyapunov exponent is zero at the critical coupling, and thus by a result in
[2] the transfer matrix is reducible, that is analytically conjugate to a constant
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cocycle, for almost every energy in the spectrum. But a result of Elliasson [10]
states that cocycles near a reducible cocycle are uniformly hyperbolic or have zero
Lyapunov exponent. By continuity of the spectrum, a reducible cocycle at λ = 1 in
the spectrum would imply existence of energies in the spectrum at coupling λ > 1
with zero Lyapunov exponent, but this contradicts positivity of the Lyapunov
exponent in this case, as discussed in the previous lecture. It follows that the
spectrum in this case has measure zero.

Beyond the conjecture we remark that approximation of the measure of the
spectrum at irrational frequencies by rational frequencies extends to analytic func-
tions [11] and even 1/2 + ǫ−Hölder continuous functions in the case of positive
Lyapunov exponent [12].
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Non-perturbative localization for analytic potentials

Michael Goldstein and Kai Tao

We consider the Schrödinger equations

(1)
[
H(x, ω)ϕ

]
(n) ≡ −ϕ(n− 1)− ϕ(n+ 1) + V (T nω (x))ϕ(n) = Eϕ(n), n ∈ Z

where Tω is a shift ,Tω : Tν → Tν , Tω(x) = x + ω, x, ω ∈ Tν . In the regime of
of positive Lyapunov exponents. The goal of this talk is to explain how the large
deviations theorems for the norm of the transfer-matrix can be combined with
the fundamental ideas of localization of eigenfunctions introduced by Frölich and
Spencer. The implementation of these ideas goes through the elimination of the
spectral parameter from the double resonance events. The major technical tool
for this elimination process consists of the analysis of ”thin” semi-algebraic sets
coming from the large deviation theorem.

We always assume that V (x) is a real-analytic function on Tν . Let H[a,b](x, ω)
be the restriction of H(x, ω) to the finite interval [a, b] with zero boundary con-
ditions ψ(a− 1) = 0, ψ(b+ 1) = 0. By f[a,b](x, ω,E) we denote the characteristic
polynomial det(H[a,b](x, ω)−E). Let M[a,b](x, ω,E) be the transfer-matrix of the
equation and L(ω,E) be the the Lyapunov exponent. Recall that

(2) M[1,N ](x, ω,E) =

[
f[1,N ](x, ω,E) −f[2,N ]

(
x, ω,E

)

f[1,N−1](x, ω,E) −f[2,N−2]

(
x, ω,E

)
]

The first fundamental idea of Frölich and Spencer on the localization is as follows.
Any solution of the equation

(3) −ψ(n+ 1)− ψ(n− 1) + v(n)ψ(n) = Eψ(n) , n ∈ Z ,

obeys the relation

(4) ψ(m) = G[a,b](E)(m, a−1)ψ(a−1)+G[a,b](E)(m, b+1)ψ(b+1), m ∈ [a, b].

where G[a,b](E) =
(
H[a,b] − E

)−1
is the Green’s function, H[a,b] is the linear oper-

ator defined by (3) for n ∈ [a, b] with zero boundary conditions.
By Cramer’s rule

(5)
∣∣(H[a+1,a+N ](x, ω)− E

)−1
(k,m)

∣∣ =
∣∣f[a+1,k]

(
x, ω,E

)∣∣ ∣∣f[m+1,a+N ]

(
x, ω,E

)
|∣∣f[a+1,a+N ]

(
x, ω,E

)∣∣
a+ 1 ≤ k < m ≤ a+N . Heuristically,

log |f[a+1,a+n]

(
x, ω,E

)
| ≈ log ‖M[1,n](x, ω,E)‖ ≈ nL(ω,E),

log
∣∣(H[a+1,a+N ](x, ω)− E

)−1
(k,m)

∣∣ ≈ −(m− k)L(ω,E)
(6)

which leads to exponential decay of the eigenfunctions due to (4). Obviously, given
x, ω the previous argument does not apply to some intervals [a + 1, a+ N ]. The
collection of the ideas one borrows from Fröhlich and Spencer to address this issue
is as follows.
• The heuristic (6) fails if and only if E is extremely close to the spectrum of

H[a+1,a+N ](x, ω). The latter event is called a simple resonance or just a resonance.
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• For a fixed E the chances of a resonance to happen are very small. In other
words the total measure of corresponding x, ω is very small. In the context of
random Scrödinger operator this statement is the fundamental Wegner estimate.
We explain what is the quasi-periodic counterpart of this estimate.
• The chances that some E is very close to the spectrum of H[a+1,a+N ](x, ω)

and to the spectrum H[a+N+T+1,a+T+2N ](x, ω) with T ≫ N are so small that
E can be eliminated from such events via crude partition of the domain of the
parameter E. The latter event is called double resonance.

In contrast with the random case the estimate for the double resonance to occur
in quasi-periodic setting comes not from statistical independence of the two simple
resonances involved but on the ”transversality” of the corresponding two sets in
the space of x, ω. The large deviation theorem says that the measure that the
log |f[a+1,a+n]

(
x, ω,E

)
| ≈ log ‖M[1,n](x, ω,E)‖ ≈ nL(ω,E) fails is small. So, for

any given E the resonance sets are ”thin”. A very important feature here is that
one can replace these sets by some ”thin” sets of the following form

(7) P (x, ω,E) > 0

where P is a polynomial which degree is not to high. This is due to the assump-
tion that the potential is analytic. Sets which can be defined via inequalities like
(7) and more general ones including several polynomials are called semi-algebraic.
The most important feature of the semi-algebraic sets in Rn is the estimate on the
number of connected components which comes from the Bezout theorem combined
with implicit function theorem from multivariate calculus. This combination al-
lows to analyze semi-algebraic sets by covering them via a union of smooth images
of ”nice sets” in Rk.

References

[1] J. Bourgain, Green’s function estimates for lattice Schrödinger operators and applications.,
Annals of Mathematics Studies, 158. Princeton University Press, Princeton, NJ, 2005.

[2] Bourgain, J., Goldstein, M. On nonperturbative localization with quasi-periodic potential.
Ann. of Math. (2) 152 (2000), no. 3, 835–879.
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The absence of non-perturbative results in higher dimensions

Yiqian Wang

Recently non-KAM methods have been developed to obtain non-perturbative re-
sults in quasi-periodic Schrodinger operators.
In the study of Almost Mathieu operator

(H(x)φ)n = λ cos 2π(x+ nω)φn + φn−1 + φn+1, φ ∈ l2(Z),
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Jitomirskaya (1999, [7]) proved that for any Diophantine ω and a.e. x, it holds
that

(i) if λ > 2, then H has only pure point spectrum with Anderson localization;
(ii) if λ = 2, then H has purely singular continuous spectrum;
(iii) if λ < 2, then H has purely absolutely continuous spectrum.

Then Bourgain and Goldstein (2000, [1]) proved that with d ≥ 1 and a general
nonconstant analytic potential v(x), x ∈ Td, for the operator

(1) (H(x)φ)n = λv(x+ nω)φn + φn−1 + φn+1, φ ∈ l2(Z),
it holds that for fixed x0, there exists λ1(v) > 0 such that for λ > λ1 and a.e. ω,
H has Anderson localization.
Later for d = 1 Bourgain and Jitomirskaya (2002, [3]) proved that there exists
λ2(v) > 0 such that if λ < λ2, then for a.e. x and any Diophantine ω, H in (1)
has purely absolute continuous spectrum.

The common feature of non-perturbative results is that they holds true for ω in
full measure and λ is independent on ω (see the constants λ = 2, λ1, λ2 as above).

For the case d > 1 , we have the following classical perturbative results on the
existence of absolute continuous spectrum.
Theorem 1 (Eliasson 1992 [6], Chulaevsky and Sinai 1993 [5], Bourgain 2002 [2])
For d ≥ 1 and ǫ > 0, there exists λ3(v, ǫ) > 0 such that if λ < λ3, then there is a
set Ω1 with a measure > 1 − ǫ such that for any ω ∈ Ω1 and a.e. x, the operator
H in (2.2) has purely absolute continuous spectrum.

Then a natural question is: can we have a nonperturbative result of the existence
of purely absolute continuous spectrum when d > 1?

Bourgain gave a negative answer for the question with d = 2, thus the nonper-
turbative result of [3] has no a multi-frequency counterpart.
Theorem 2 (Bougain 2002, [2]) Let v = v(x1, v2) be a trigonometric polynomial
on T2 with a nondegenerate local maximum. Fix (x1, x2). For any λ 6= 0, there
exists a set Ω2 of positive measure such that if ω ∈ Ω2, then H in (1) has some
point spectrum and mes(Σpp(H)) > 0.

Remark 1 ω in Theorem 2 will be chosen too small for Theorem 1 to apply, so
there is no contradiction.
Remark 2 In [2], Bourgain also constructed examples of the form

(H(x)φ)n = (λ1 cos(x1 + nω1) + λ2 cos(x2 + nω2))φn + φn−1 + φn+1,

such that for ω in a set of positive measure, Σac(H) 6= ∅ and mes(Σpp(H)) > 0.

For simplicity, we will focus on the special potential v = cosx1 + cosx2.
Using the standard duality technique [5] based on Fourier transform, the model

(2) (H(x)φ)n = λ(cos(x1 + nω1) + cos(x2 + nω2))φn + φn−1 + φn+1, φ ∈ l2(Z)
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is dual to

(3) H̃(θ) = 2 cos(θ + n · ω)δnn′ +
λ

2
∆,

where ∆ is the 2-dimensional discrete Laplacian. We have the following dual
results for H̃ from Theorem 1 and 2.
Theorem 3 (Eliasson 1992 [6], Chulaevsky and Sinai 1993 [5], Bourgain 2002 [2])

For d ≥ 1 and ǫ > 0, there exists λ̃3(v, ǫ) > 0 such that if λ < λ̃3, then there is a

set Ω̃1 with a measure larger than 1− ǫ such that for any ω ∈ Ω̃1 and a.e. x, the
operator H̃ in (3) has Anderson localization.

Theorem 4 (Bougain 2002, [2]) Fix θ. For any λ 6= 0, there exists a set Ω̃2

of positive measure such that if ω ∈ Ω̃2, then H̃ in (3) has some absolute contin-
uous spectrum.

Remark 3. Theorem 3 implies that the 1D non-perturbative results in [7, 1]
have no Z2 counterpart.
Remark 4. For the case x ∈ T2 and n ∈ Z2, Bourgain, Goldstein and Schlag
obtained a perturbative result for the occurrence of Anderson Localization, see [4].

Fix λ 6= 0. Let ω = (ω1, ω2) be Diophantine with |ω| ≪ 1. The sketch of the
proof for Theorem 2 is as follows.

First, we will find an interval I of length c0λ > 0 near the edge of the spectrum
set(⊂ [−2− |v|, 2 + |v|]) such that

(4) mes(I
⋂
spec(H)) ≈ |I|

and

(5) mes(I
⋂
L+(H)) ≈ |I|,

where L+(H) = {E|L(E) > 0} with L(E) the Lyapunov exponent of cocycles
corresponding to the operator in (2) and the energy E.

Obviously, (4) and (5) imply that

(6) mes(Σsc(H)
⋃

Σpp(H)) > mes(I
⋂
spec(H)

⋂
L+(H)) > 0.

Then we will prove Anderson localization if L(E) > 0 and E corresponds to an
extended state, which combining with (6), implies

(7) mes(Σpp(H)) > 0.

The proof of (4)–(7) will be inductively obtained from exponentially decay es-
timate on Green functions and eigenfunctions. It is worthy to note that the proof
essentially depends on the fact that for multi-frequency situation, we have more
freedom to choose suitable phases than in 1-frequency situation. For example,
for d = 1 we cannot find similar interval satisfying (4) and (5) if λ is small. On
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the contrary, in multi-frequency situation, we can prove the existence of such an
interval by choosing suitable frequencies from higher dimensional base space.
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Global theory of one-frequency Schrödinger operators I

Julie Déserti

Let us consider one-dimensional Schrödinger operators with an analytic one-
frequency potential that is

H = Hα,v : ℓ
2(Z)→ ℓ2(Z) given by (Hu)n = un+1 + un−1 + v(nα)un

where v : R/Z → R is an analytic function (the potential) and α ∈ R \ Q (the
frequency). Denote by Σ = Σα,v the spectrum of H . For any energy E in R let us
define

(1) A(x) = A(E−v)(x) =

[
E − v(x) −1

1 0

]
, An(x) = A

(
x+(n−1)α

)
. . . A(x)

which are analytic functions with values in SL(2,R). They are relevant to the
analysis of H because a formal solution of Hu = Eu satisfies

[
un
un−1

]
= An(0)

[
u0
u−1

]
.

The Lyapunov exponent at energy E is denoted by L(E) and given by

(2) lim
n→+∞

1

n

∫

R/Z

ln ||An(x)|| dx ≥ 0.

Energies E ∈ Σ can be

• supercritical if L(E) > 0;
• subcritical if there is a uniform subexponential bound ln ||An(x)|| = o(n)
through some band |ℑz| < ε;
• critical otherwise.
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Progress has been made mainly into the the understanding of the behavior in
regions of the spectrum belonging to two regimes with behavior characteristic of
”large”, resp. ”small” potentials; but until [1, 2] there was no global theory of
such operators and the transition between the two regimes was not understood.
In general subcritical and supercritical regimes can coexist in the spectrum of the
same operator ([5]). However to go from one regime to the other it may not be
necessary to pass through the critical regime since we usually expect the spectrum
to be a Cantor set.

Lyapunov exponent of SL(2,C) cocycles. In the dynamical approach the un-
derstanding of the Schrödinger operator is obtained through the detailed descrip-
tion of a certain family of dynamical systems.

A (one-frequency, analytic) quasiperiodic SL(2,C) cocycle is a pair (α,A), where

α ∈ R A : R/Z→ SL(2,C) is analytic,

understood as defining a linear skew product acting on R/Z × C2 by (x,w) 7→
(x + α,A(x) · w). The iterates of the cocyles are given by (nα,An) where An is
given by (1). The Lyapunov exponent L(α,A) of the cocycle (α,A) is given by
the left hand side of (2). Let UH ⊂ Cω

(
R/Z, SL(2,C)

)
denote the set of A such

that (α,A) is uniformly hyperbolic. If (α,A) belongs to UH then L(α,A) > 0.
Uniform hyperbolicity is a stable property: UH is open and A 7→ L(α,A) is
analytic over UH (regularity properties of the Lyapunov exponent are consequence
of the regularity of the unstable and stable directions which depend smoothly on
both variables). If L(α,A) > 0 but (α,A) 6∈ UH then we say that (α,A) is
nonuniformly hyperbolic and denote it by NUH.

Most important examples are Schrödinger cocycles and L(E) = L
(
α,A(E−v)).

One of the most basic aspects of the connection between spectral and dynamical
properties is that E 6∈ Σα,v if and only if

(
α,A(E−v)) is UH.

If A ∈ Cω
(
R/Z, SL(2,C)

)
admits a holomorphic extension to |ℑz| < δ then

for |ε| < δ we can define Aε ∈ Cω
(
R/Z, SL(2,C)

)
by Aε(x) = A(x + iε). The

Lyapunov exponent L(α,Aε) is a convex function of ε. We can thus introduce the
function acceleration defined by

ω(α,A) = lim
ε→0+

1

2πε

(
L(α,Aε)− L(α,A)

)
.

Since the Lyapunov exponent is a convex and continuous function the acceler-
ation is an upper semi-continuous function in R \ Q × Cω

(
R/Z, SL(2,C)

)
. The

acceleration is quantized ([1]):

(♣) If (α,A) is SL(2,C)-cocycle with α ∈ R \Q, then ω(α,A) is an integer.

A direct consequence is the following:

The function ε 7→ L(α,Aε) is a piecewise affine function of ε.

It is thus natural to introduce the notion of regularity. A cocycle (α,A) in
R\Q×Cω

(
R/Z, SL(2,C)

)
is regular if L(α,Aε) is affine for ε in a neighborhood of

0. In other words (α,A) is regular if the equality L(α,Aε)−L(α,A) = 2πεω(α,A)
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holds for all ε small, and not only for the positive ones. Regularity is equivalent
to the accceleration being locally constant near (α,A). It is an open condition in
R \ Q × Cω

(
R/Z, SL(2,C)

)
. The following statement gives a characterization of

the dynamics of regular cocycles with positive Lyapunov exponent ([1]):

Assume that L(α,A) > 0. Then (α,A) is regular if and only if (α,A) is UH.
It thus follows that:

(♠) for any (α,A) in R \Q× Cω
(
R/Z, SL(2,C)

)
there exists ε0 such that

• L(α,Aε) = 0 (and ω(α,A) = 0) for every 0 < ε < ε0,
• or (α,Aε) ∈ UH for every 0 < ε < ε0.

Stratified analyticity of the Lyapunov exponent (consequence of the
quantization). Let (α,A) ∈ R \ Q × Cω

(
R/Z, SL(2,C)

)
such that ω(α,A) =

j > 0. According to (♠) there exists a small deformation (α,Aε) of (α,A) that
belongs to UH and satisfies ω(α,Aε) = j. The Lyapunov exponent is analytic in
that deformation; moreover using (♣) we obtain that L(α,A) = L(α,Aε)− 2πjε.
Hence the Lyapunov exponent is analytic in ”the stratum” of cocycles (α,A) with
acceleration j. In other words Avila establishes the following result ([1]):

Let α be in R \Q and let v be any real analytic function. Then the Lyapunov
exponent is a C∞-stratified function of the energy.

Boundary of nonuniform hyperbolicity & acriticality. Let Cωδ (R/Z,R) ×
R be the real Banach space of analytic functions from R/Z to R admitting a
holomorphic extension to |ℑz| < δ.

Let (α,A) ∈ R\Q×Cωδ
(
R/Z, SL(2,C)

)
be a critical cocycle with acceleration j.

Then there exists 0 < δ′ < δ such that

(α,Aδ′ ) ∈ UH, ω(α,Aδ′) = j and Lδ,j(α,A) = 0

where Lδ,j(α,A) = L(α,Aδ′)− 2πjδ′. Moreover if A is SL(2,R)-valued, criticality
implies that the acceleration is positive. So the locus of critical SL(2,R)-valued
cocycles is covered by countably many analytic sets L−1

δ,j (0). The Lδ,j are non-

degenerate hence one has the following statement ([1]):

(⋆) For any α in R \Q the set of potentials and energies (v, E) such
that E is a critical energy for Hα,v is contained in a countable union

of codimension-one analytic submanifolds of Cωδ (R/Z,R)× R.
In particular a typical operator H has at most countably many critical energies.

This yields to the following conjecture ([1]):

(♦) Conjecture — For a typical operator H, the spectrum measures
have no singular continuous component.

According to (⋆) a typical operator H has at most countably many critical
energies: this is the starting point of the proof of the following statement which
says that the critical set is typically empty ([2]). Let us say that H is acritical if
no energy E in Σ is critical.

(△) Let α be in R \Q; then for a typical v in Cω(R/Z,R)
the operator Hα,v is acritical.
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Let us give an idea of the proof. Given a Schrödinger operator Hα,v the accel-

eration ω at energy E ∈ R is given by ω(E) = ω
(
α,A(E−v)). Then E is critical

if and only if L(E) = 0 and ω(E) > 0; if ω(E) = k we say that E is a critical
point of degree k. Avila constructs a foliation by monotonic curves ([4]) in the
hypersurface Lδ,k = 0. Using renormalization ([4]) he shows that the measure of
the critical points of degree k is zero; so these points can be destroyed by a small
perturbation of the potential. He then iterates the process.

Stability of the different regimes. Supercritical energies E in Σ are usually
calledNUH. TheNUH regime is stable: if we perturb α in R\Q, v in Cω(R/Z,R)
and E in R (but still belonging to the perturbed spectrum) we stay in the same
regime (continuity of the Lyapunov exponent [7]).

Critical regime is unstable (consequence of (⋆)). More precisely the critical
regime equals to the boundary of the NUH regime ([2]).

Subcritical regime is also stable ([1]): regularity is an open condition in R \
Q × Cω(R/Z,R) (and subcriticality is equivalent to regularity and being in the
spectrum). The subcritical energies are also said to be away from NUH.

The role of (△) in the Spectral Dichotomy Program. Statement (△) re-
duces the spectral theory of a typical one-frequency Schrödinger operator H to
the separate ”local theories” of (uniform) supercriticality and subcriticality so it
is a key step to establish the spectral dichotomy: the decomposition of a typical
operator in a direct sum of operators with the spectral type of ”large-like” and
”small-like” operators (large potentials fall into the supercritical regime [9]; small
potentials fall into the subcritical regime [7, 8]).

Almost Reducibility Conjecture and some consequences. Statements (⋆)
and (△) give further motivation to the research on set of regular cocycles with zero
Lyapunov exponent, i.e. on subcritical cocyles. In that direction let us mention
the Almost Reducibility Conjecture ([1]):

Regularity with zero Lyapunov exponents implies almost reducibility. More
precisely assume that L(α,Aε) = 0 for a < ε < b. Then for every n there exists a

holomorphic map Bn :
{
a+ 1/n < |ℑz| < b− 1/n

}
→ SL(2,C) such that

∣∣∣∣Bn(z + α)A(z)B(z)−1 − id
∣∣∣∣ < 1/n for a+ 1/n < ℑz < b− 1/n.

Subcriticality is strongly related to the concept of almost reducibility which by
definition generalizes the scope of applicability of the theory of small potentials.
Almost Reducibility Conjecture would at once provide a precise understanding
of subcriticality. The results of [3, 6] and a proof of the Almost Reducibility
Conjecture would give a proof of (♦) (see [2]).
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Global theory of one-frequency Schrödinger operators II

Paul Munger

By a one-frequency Schrödinger operator, we mean an operator on ℓ2(Z) of the
form (Hψ)(n) = ψ(n−1)+ψ(n+1)+v(nα)ψ(n), where v is an analytic function on
the unit circle and α is the irrational frequency. In [1], Artur Avila shows that the
Lyapunov exponent of such an operator, which is poorly behaved in some ways, is
quite regular in a stratified way: if we break the space of possible potentials v into
certain natural strata, the Lyapunov exponent is in fact analytic on each stratum
(a stratification of a topological space is a decomposition into nested closed subsets
with empty intersection). This constitutes a new point of view on the Lyapunov
exponent.

The previous talk, Global Theory of One-Frequency Schrödinger Operators I,
exposited this point of view and some of the ramifications of the results in [1],
while this talk gave detailed proofs of two theorems from [1].

The first of these is Theorem 3, which states that if X is any real analytic
manifold and v : X −→ Cω(R/Z,R) is an analytic function (giving a family of
potentials v(λ)) then the Lyapunov exponent is Cω-stratified in λ and the energy
E. We stratify the parameter space R×X using a function ω, as follows. At this
point it becomes more natural to deal with SL(2,C) cocycles; their correspondance
with Schrödinger operators is well explained in many previous talks. We then say
the the acceleration ω(A,α) of a uniformly hyperbolic cocycle A at frequency α is

lim
ǫ→0+

1

2πǫ
(L(α,Aǫ)),

where L is the Lyapunov exponent and Aǫ is the cocycle A(x+ iǫ).
It happens that (Theorem 5 of [1]) ω is always an integer. Therefore X × R

is stratified according to whether the cocycle is uniformly hyperbolic or not, and
if not, according to increasing ω. By considering how L looks when restricted
to cocycles with a fixed acceleration, [1] shows L is analytic on each stratum. A
little more precisely, define Ωδ,j to be the set of cocycles that extend analytically
to |ℑ(z)| < δ, and such that there is a δ′ < δ such that (α,Aδ′ ) is uniformly
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hyperbolic with acceleration j. Then we may define the function Lδ,j : Ωδ,j −→ R
by Lδ,j(α, j) = L(α,Aδ′) − 2πjδ′. For uniformly hyperbolic cocycles, this is the
same as the Lyapunov exponent. Each Lδ,j is C

∞. The proof is finished by relating
the sets Ωδ,j to the strata.

We say a cocycle is critical if it has L = 0 and it is non-regular, in that
L(α,Aǫ) is not affine at 0. The second theorem the talk dealt with says that the
set of critical SL(2,R) cocycles is covered by finitely many sets L−

δ,j1(0), and these

are analytic submanifolds of the space of cocycles (the previous talk discussed the
implications of this theorem). The only thing to prove is the analyticity, i.e. that
Lδ,j is a submersion. To prove this, Avila introduces the derivative of the Lyapunov
exponent for uniformly hyperbolic cocycles: by considering the stable and unstable
directions of the cocycle, one gets a formula for d

dtL(α,Ae
tw) for w ∈ sl(2,C).

This is used to prove by contradiction that Lδ,j must be a submersion (by looking
at what the implications for the stable and unstable directions must be if the
derivative vanishes).
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Global theory of one-frequency Schrödinger operators III

Nikolaos Karaliolios

This talk was the third part of a three-part talk on the global theory of one-
dimensional Schödinger operators, as it was founded in [1] and [2], and our interest
was centered in the explication of the setting, the importance, and the basic points
of the proof, of the main theorem obtained in the second article. We refer to these
articles for a more extended bibliography on the subject and the results that
preceded the formation of this theory.

Introduction We therefore consider a one-frequency quasiperiodic Schrödinger
operator H : ℓ2 ←֓ given by

(Hu)n = un−1 + un+1 + v(nα)un

where α ∈ T\Q and v ∈ Cω(T,C), where T = R/Z is the one-dimensional torus.
We denote by Σ = Σα,v ⊂ R its spectrum.

The study of the spectral properties of such operators is closely related to the
dynamics of SL(2,R) cocycles

(α,A(·)) : T× R2 → T× R2

(x, y) 7→ (x+ α,A(x)y)
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where, for any energy E ∈ R,

A(·) = A(E−v)(·) =
(
E − v(·) −1

1 0

)
∈ Cω(T, SL(2,R))

The connection of the two objects is due to the fact that a formal solution of the
equation Hu = Eu, where u is not necessarily in ℓ2, satisfies

(
un
un−1

)
= An(0)

(
u0
u−1

)

where An(·) is the mapping defining the n-th iterate of (α,A(·)):
(α,A(·))n = (nα,An(·))

An(·) = A(·+ (n− 1)α)...A(·)
An advantage of this point of view is that, given the analyticity of the potential, one
can consider complex values of the dynamical variable x : for a given potential
v ∈ Cω there exists δ > 0 such that v is defined and analytic in |Imz| < δ.
One can therefore consider analytic deformations of a general analytic SL(2,R)
cocycle (α,A(·)) defined by (α,A(ε)(·)) = (α,A(· + εi)) for ε small enough. The
corresponding cocycles in T× C

2 have nice properties already exploited in, say,
[3], and the passage to the limit ε → 0 is the key to the study of certain aspects
of the dynamics of real-analytic cocycles in T× SL(2,R).

The context of the main theorem Given a Schrödinger operator, we define
its Lyapunov exponent at energy E, denoted by L(E), as

L(E) = lim
n→∞

1

n

∫
log ‖An(·)‖

where the norm typically chosen is the supremum norm on the coefficients of the
matrix. The classification of energies in the spectrum resulting from this dynamic
invariant is as follows: the energy E ∈ Σ is

(1) supercritical if L(E) = L((α,A(E−v)(·))) > 0, in which case the dynamics
of the corresponding cocycle are non-uniformly hyperbolic (NUH)

(2) subcritical if there exists ǫ > 0 such that, for |ε| < ǫ,

lim
n→∞

1

n

∫
ln‖A(v,ε)

n (·)‖ = 0

(3) critical otherwise

Subcriticality has replaced the notion of almost reducibility and has the advan-
tage of being dynamically defined. The two properties are in fact conjectured to
be equivalent, and the case of Diophantine frequencies has recently been settled by
A. Avila, as announced in [2]. On the other hand, energies outside the spectrum
are known to be associated to cocycles with uniformly hyperbolic (UH) dynamics,
so that for E 6∈ Σ, L(E) > 0. In fact, in [1] it was shown that a cocycle (α,A(v)(·))
is UH if, and only if, the Lyapunov exponent of (α,A(v,ε)(·)) is locally constant
and positive.
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Therefore, critical energies are exactly those satisfying the property that L(E) =
0, but ω(E) 6= 0, where

ω(E) = lim
ε→0+

1

2πε
(L((α,A(E−v,ε)(·))) − L((α,A(E−v)(·))))

is the acceleration at energy E. In [1] it was proved that ω(E) ∈ N. Therefore,
if we denote by Ck the sets of potentials such that (α,A(v)(·)) has acceleration
k ∈ N∗, by A0 the set of non-critical potentials and by Ak = A0 ∪ (∪1≤i≤kCi), the
union of Ak equals Cω . An operator is acritical if E + v(·) ∈ A0 and critical of
degree k if max(i, E + v(·) ∈ Ci for someE ∈ R) = k.

Since supercriticality, subcriticality and UH are open conditions with respect
to perturbations of the potential, it is reasonable to conjecture that the existence
of critical energies in the spectrum is rare in Cω, which is actually the main result
of the paper:

Theorem (A. Avila) Let α be an irrational frequency. Then, for a measure
theoretically typical potential, the operator Hα,v is acritical.

This theorem allows to split the spectrum of a typical Schrödinger operator into
a finite number of disjoint pieces Σi = Σ ∩ (ai, bi), where ai < bi < ai+1 < bi+1

and the energies in Σi alternate between sub- and super-critical, as i increases.
Moreover, the Lyapunov exponent is uniformly bounded away from 0 in the su-
percritical regime, while the ǫ > 0 in the definition of subcriticality can be chosen
uniformly in the subcritical one. Finally, acriticality is an open condition jointly
in the (irrational) frequency and the potential.

The precise definition of what is a typical potential used in the article is based
on the notion of prevalence, a substitute for the absence of a translation-invariant
measure in non-locally compact spaces. More precisely the compact embedding
of DN (D ⊂ C is the unit disk) DN ∋ (tn) 7→

∑
ε(n)ℜ(tne2iπn·) ∈ Cω, where

ε : N → R∗
+ is exponentially decreasing, was considered. This embedding induces

a measure on its image S, which is the space of admissible perturbations, by the
push forward of the Lebesgue measure, and a property is said to be typical if for
every v ∈ Cω , and for a.e. w ∈ S, v + w satisfies this property. The notion of
typicality used in the statement is related to the choice of a fixed such function ε,
although the proof implies a stronger statement.

Idea of the proof In what follows, α ∈ T \ Q, v ∈ Ck and δ > 0 such that v
is defined in |ℑ(z)| < δ are to be considered fixed.

The first step in the strategy of the proof is to use the fact that the measure
on S sees all finite dimensional subspaces of Cω, and most importantly trigono-
metric polynomials. We denote by Pn the space of real-symmetric trigonometric
polynomials of degree at most n, and by Pn(ε) the ball of radius ε centered at 0
in the same space.

Theorem 1 For every v ∈ Ck there exist n ∈ N∗ and ε > 0 for which the
following property holds. The w ∈ Pn(ε) such that, v + z ∈ Ck−1 is of 2n − 1-
dimensional Hausdorff measure 0.
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The first step in the proof of Theorem 1 is the use of the fact that the differential
of

Lξ0,k(α,A
(v)) = L(α,A(v,ξ0))− 2πkξ0

is of rank 1 at v ∈ Ck, proved in [1], and this gives a trigonometric polynomial w1

such that

DLξ0,k(
d

dλ
(α,A(v+λw1))|λ=0) 6= 0

which implies that for λ small v+λw1 6∈ Ck−1. In order to obtain a second direction
w2 ∈ ker(DLξ0,k) such that v+λw2 6∈ Ck−1 for a.e. λ small enough (which implies
the theorem), the notion of monotonicity with respect to parameters, introduced
in [4], was used.

Definition 2 An analytic family of potentials λ 7→ vλ is called monotonous
with respect to λ if (A(vλ))−1 d

dλA
(vλ)|λ=0 (which is a sl(2,R)-valued mapping)

has positive determinant for all x ∈ T.
The positive-determinant matrices in sl(2,R) are the infinitesimal rotations,

which means that the projective action of A(vλ) is monotonous in the sense of [4].
The key result which establishes the importance of monotonicity is the following
theorem, whose proof uses renormalization and therefore strongly depends on the
fact that (α,A(v)) is a one-frequency cocycle.

Theorem 3 If vλ is a monotonic family of potentials, for a.e. λ small enough ,
ω(α,A(vλ)) = 0.

Since monotonicity is not a dynamic invariant, one need only show the existence
of an analytic potential w ∈ ker(DLξ0,k) such that the family (α,A(v+λw)) can be

conjugated to (α,A(vλ)) which is monotonous. Since monotonicity is an open

condition, one can approximate dvλ
dλ by a trigonometric polynomial and obtain

Theorem 1.
The existence of such a potential is granted by the following theorem.
Theorem 4 If v is a critical potential, thenDL(α,A(v)) is not a signed measure.
The proof of this theorem is obtained by using the fact that (α,A(v,ε)) is UH for

all ε > 0 and small enough. Then, the formula for the derivative of the Lyapunov
exponent, obtained in [1] is used in order to pass to the limit ε→ 0+.

Finally, a consequence of Theorem 4 and the fact that DLξ0,k is of rank 1 is
the following:

Theorem 4 If E − v is a critical potential, then there exists a trigonometric
polynomial w such that E − v + tw is supercritical for arbitrarily small t.

In other terms, the critical regime is the boundary of the supercritical one.
Acknowledgements The writer would like to thank Raphaël Krikorian, Artur

Avila and Julie Déserti for their time and help in the preparation of this talk.
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Quantitative duality

Igor Krasovsky

The authors consider quasiperiodic Schrödinger operators H = Hλv,α,θ on ℓ2(Z)
given by

(1) (Hu)n = un+1 + un−1 + λv(nα+ θ)un, n = . . . ,−1, 0, 1, . . .
where v : R/Z → R is analytic, θ, λ ∈ R, and the frequency α is Diophantine,
α ∈ DC:

DC = ∪κ,τ>0DC(κ, τ), α ∈ DC(κ, τ) : |α− p/q| ≥ κq−τ , p, q ∈ Z, q 6= 0.

In [1], the authors obtain extensive results in the nonperturbative metallic regime,
i.e., for 0 < |λ| < λ0(v), where λ0 is sufficiently small depending on v only.

The main example of such operators is the almost Mathieu operator that cor-
responds to v(x) = 2 cos(2πx). In this case λ0 = 1.

Consider the dual to (1) operator on ℓ2(Z) given by

(2) (Ĥû)n =
∑

k

λv̂kûn−k + 2 cos 2π(nα+ θ)ûn, n = . . . ,−1, 0, 1, . . .

where v̂k are the Fourier coefficients of v(x) =
∑
k v̂ke

2πikx.

By Aubry duality, it is known that the localization for Ĥ (exponentially de-
caying eigenfunctions) corresponds to the reducibility for H . This is a very useful
property, however, it has a serious limitation: it does not hold for all energies
in the spectrum. In the paper, the authors overcome this difficulty by showing
that for all ’bad’ energies a weaker almost localization still holds, which by a new
quantitative version of Aubry duality, also obtained in the paper, corresponds to
the almost reducibility for H . This important improvement of the duality allows
the authors to obtain immediate consequences for spectral properties of H solving
several long-standing problems.

Fix α ∈ DC, θ ∈ R, ε > 0. A number k is called ε-resonance if ||2θ− kα||R/Z ≤
e−|k|ε. The number θ is called ε-resonant if the set of resonances is infinite. If θ
is non-resonant with resonances n1, . . . , nj, set formally nj+1 = ∞. The family

{Ĥλv,α,θ}θ∈R is said to exhibit almost localization if there exist positive constants

C0, C1, ε0, ε1 such that for every solution û of Ĥû = Eû satisfying û0 = 1 and
|ûk| ≤ 1 + |k|, and for every C0(1 + |nj |) < |k| < C−1

0 |nj+1|, we have |ûk| ≤
C1e

−ε1|k|, where nj , nj+1 are the neighboring ε0-resonances of θ, and k is between
them.

The first main statement of the paper is

Theorem 1 If v : R/Z → R is analytic and |λ| < λ0(v) then {Ĥλv,α,θ}θ∈R is
almost localized for every α ∈ DC. For v(x) = 2 cos 2πx, we have λ0 = 1.
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The method of the proof is based on the earlier papers by Jitomirskaya and
Bourgain.

For each energy E in the spectrum of H (the spectrum is independent of θ),

one can find θ(E) such that there exists a solution to Ĥλv,α,θû = Eû with û0 = 1,
|ûn| ≤ 1. Assume the conditions of Theorem 1, fix θ(E) as above, and let nj be
its ε0-resonances. Let

A(x) =

(
E − λv(x) −1

1 0

)
.

Let C, c be various positive constants independent of E and θ. For a bounded
analytic function f on a strip |ℑz| < ε, let ||f ||ε = sup|ℑz|<ε |f(z)|.

Then the following 2 versions of the quantitative almost reducibility/Aubry
duality are proved in the paper.

Theorem 2 Fix some n = |nj | + 1 < ∞ and let N = |nj+1|. Then there exists
Φ : R/Z→ SL(2,C) analytic with ‖Φ‖cn−C ≤ CnC such that

Φ(x + α)A(x)Φ(x)−1 =

(
e2πiθ 0
0 e−2πiθ

)
+

(
q1(x) q(x)
q3(x) q4(x)

)
,

with

‖q1‖cn−C , ‖q3‖cn−C , ‖q4‖cn−C ≤ Ce−cN

and

‖q‖cn−C ≤ Ce−cn(ln(1+n))−C

.

Theorem 3 Fix some n = |nj | + 1 < ∞ and let N = |nj+1|. Let L−1 = ‖2θ −
njα‖R/Z, and assume that 0 < L−1 < c. Then there exists W : R/Z → SL(2,R)

analytic such that | degW | ≤ Cn, ‖W‖c ≤ CLC and ‖W (x + α)A(x)W (x)−1 −
R∓θ‖c ≤ Ce−cN , where

Rθ =

(
cos 2πθ − sin 2πθ
sin 2πθ cos 2πθ

)
.

The last theorem gives, in the case N = ∞, the quantitative version of the
usual reducibility.

The proof of the above Theorems 2,3 in the paper uses ingenuous Fourier anal-
ysis and Lagrange interpolation arguments.

The authors then obtain the following important corollaries of these results.
It follows from Theorem 3 that θ(E) as defined above is resonant (for some ε) if
and only if the rotation number ρ(α,E) is resonant (for a possibly different ε).
A consequence is a solution of the Dry Ten Martini problem for the non-critical
case |λ| 6= 1 of the almost Mathieu operator with Diophantine frequencies, i.e. the
statement that all possible gaps in the spectrum are open. It is known that the
integrated density of states at possible gap boundaries has the form N(E) = αk
mod 1, k ∈ Z . The authors thus prove
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Theorem 4 Let v(x) = 2 cos 2πx, and let |λ| 6= 0, 1, α ∈ DC. If E is in the
spectrum Σ of H and such that N(E) ∈ αZ+Z then E belongs to the boundary of
a component of R \ Σ.

Another important result is a corollary of Theorem 2.

Theorem 5 Let v : R/Z → R be analytic, |λ| < λ0(v), α ∈ DC. Then the
integrated density of states for H is 1/2-Hölder.

This result is the best possible in this generality, as is clear from known facts
in the case of the almost Mathieu operator.

Furthermore, almost reducibility implies the following characterization of the
spectral measures, so-called phase stability.

Theorem 6 Let v : R/Z→ R be analytic, |λ| < λ0(v), α ∈ DC. Then the singular
spectrum is the same for all phases θ ∈ R (and empty).

Theorems 4,5,6 complete or greatly extend many partial results on these ques-
tions obtained previously in the literature.
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The absolutely continuous spectrum of the almost Mathieu operator

Zhenghe Zhang

This talk is concerned with the almost Mathieu operator H = Hλ,α,θ defined on
l2(Z)

(Hu)n = un+1 + un−1 + 2λ cos[2π(θ + nα)]un

where λ 6= 0 is the coupling, α ∈ R \Q is the frequency and θ ∈ R/Z is the phase.
Let (α, Sλ,E) be the Schrödinger cocycles, µλ,α,θ be the spectral measure and

Σ = Σλ,α,θ be the spectrum.
We would like sketch a rough idea about the proof of the following main result

in [1]:
Main Theorem. The spectral measures of the almost Mathieu operator are ab-
solutely continuous if and only if |λ| < 1.

It settles the Problem 6 of Barry Simon’s list of Schrödinger operator problems
for the twenty-first century.

Let pn
qn

be the continued fraction approximants to α and let

β = β(α) = lim sup
n→∞

ln qn+1

qn
.

The proof will be divided into two parts: β = 0 (the subexponential regime) and
β > 0 (the exponential regime).

Let’s first consider the subexponential regime, of which the starting point is the
following:
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Theorem 1. Let B be the set of E ∈ R such that the cocycle (α, Sλ,E) is bounded.
Then µλ,α,θ|B is absolutely continuous for all θ ∈ R/Z.

We show that µλ,α,θ(Σ \ B) = 0 for all θ. Instead of considering B, we consider
R, where R is the set of E such that (α, Sλ,E) is reducible. It will be sufficient to
show that µλ,α,θ(Σ \ R) = 0 for all θ. Because R \ B is a countable set and there
is no eigenvalue in R.

In [2], the authors show that the dual operator, Ĥλ,α,θ, of Hλ,α,θ satisfies some
strong localization estimates. Using a quantitative version of Aubry duality, which
is first developed in [2], the authors then obtain several sharp estimates for the
dynamics of Schrödinger cocycles (α, Sλ,α). These lead to some good estimates
for the integrated density N = Nλ,α and some Lipschitz estimates on spectral
measure µλ,α,θ.

On the other hand, for E ∈ Σ\R, the fibred rotation number ρ(α,E) of (α, Sλ,E)
is characterized by some resonant condition in [1]. This means that ρ(α,E) will
be sufficient close to kα, k ∈ Z.

Now we consider some suitable cover, Km, m ∈ N, of Σ \ R satisfying

Σ \ R ⊂ lim supKm.

[1] is able to show that N(Km) can be covered by some open intervals Jm,s, 1 ≤
s ≤ Nm such that: by resonance, the number Nm and length of each Jm,s can be
controlled; by the good estimates on N and spectral measures, N−1(Jm,s), 1 ≤
s ≤ Nm becomes a desirable cover of Km. Which finally leads to the estimate that

∞∑

m=0

µ(Km) <∞.

By Borel-Cantelli lemma, this implies the proof of the subexponential regime.

Now we turn to the exponential case. In this case, the starting point is in the
following. Let H be the upperhalf plane in C, mλ,α(θ, E) ∈ H be the invariant

section of the dynamics (α, Sλ,E) and φ : H → R be the function φ(z) = 1+|z|2
2ℑz .

Then by Kotani theory, [1] shows that

d

dE
µλ,α,θ(E) =

1

π
φ(mλ,α(θ, E))

for all θ and almost all E ∈ Σ.
In [3], by periodic approximation, the authors show that

∫

Σ

∫

R/Z

φ(mλ,α(θ, E))dθdE = 2π,

which is equivalent to say that
∫

Σ

d

dE
N(E)dE = 1.

This obviously implies thatN is absolutely continuous. Then by Fubini’s Theorem,
µλ,α,θ is absolute continuous for Lebesgue almost every θ.



1094 Oberwolfach Report 17/2012

To prove the Main Theorem in exponential regime, it’s sufficient to improve∫
Σ

d
dEN(E)dE = 1 to ∫

Σ

φ(mλ,α(θ, E))dE = 2π

for all θ ∈ R/Z. Combined with the results in [3], the above equality is achieved
in [1] by some cancellation lemmas.

Roughly speaking, [1] observes that the following equality holds:

1

s

s−1∑

k=0

φ(B · Rrk/s · z) = φ(z)φ(B · i),

where Q ∋ s
r 6= 1

2 , B0 ∈ SL(2,R), z ∈ H, Rθ ∈ SO(2,R) is rotation by the angle
θ and B · z is the Möbius transformation.

Starting from this equality for rational rotation s
r , passing to some inequality for

irrational rotation and applying the inequality to φ(mλ,α(θ, E)) and φ(mλ, pnqn
(θ, E)),

[1] proves the following:
If ∫

Σ

φ(mλ,α(θ, E))dE < 2π

for some θ, then

1

b

b−1∑

k=0

∫

Σ

φ(mλ,α(θ + kqnα,E))dE > 2π,

which is obviously a contradiction. Hence this completes the proof of the Main
Theorem.
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Progress towards the Almost Reducibility Conjecture

Jake Fillman

We consider one-frequency cocycles of the form T : T × R2 → T × R2 given by
T (ω, v) = (ω+α,A(ω)·v), where α ∈ T\Q and A ∈ Cω(T, SL2(R)). Iterates of this
map obey T n(ω, v) = (ω + nα,Aαn(ω) · v), with Aαn(ω) = A(ω + (n− 1)α) . . . A(ω)
for n ∈ Z+. From the perspective of hyperbolic dynamics, one is interested in
the presence or absence of exponential growth of ‖Aαn(ω)‖ as n → ∞, which is
measured by the Lyapunov exponent, defined by

L(T ) = lim
n→∞

1

n

∫

T

log ‖Aαn(ω)‖dω.
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We shall divide cocycles into four distinct regimes: uniformly hyperbolic, nonuni-
formly hyperbolic, subcritical, and critical. If the cocycle iterates ‖Aαn(ω)‖ grow
exponentially in n and uniformly on T, one calls the cocycle T uniformly hyper-
bolic. One notices that uniform hyperbolicity of T immediately implies positivity
of the Lyapunov exponent, but the converse of this is not true - there exist cocycles
T which are not uniformaly hyperbolic and yet L(T ) > 0. We refer to such cocy-
cles as supercritical or nonuniformly hyperbolic. One calls the cocycle T subcritical
if the cocycle iterates ‖Aαn(z)‖ are uniformly subexponentially bounded in some
strip {z ∈ C||Im(z)| < ǫ} (one identifies A : T → SL2(R) with the corresponding
1-periodic map A : R → SL2(R) in the natural manner). One sees that subcriti-
cality implies vanshing of the Lyapunov exponent, but again, the converse fails -
those cocycles which are not subcritical and yet have vanishing Lyapunov expo-
nent are called critical. Finally, we call T almost reducible if there exist ǫ > 0 and
a sequence B(n) ∈ Cω(T,PSL2(R)) such that each B(n) admits a bounded, analytic
extension to the common strip {z ∈ C||Im(z)| < ǫ} and B(n)(z+α)A(z)B(n)(z)−1

converges uniformly to a constant on the same strip.

The hope of the almost reducibility conjecture is that subcriticality implies almost
reducibility, so that one could then apply the well-understood dynamical analysis
of cocycles close to constant to subcritical cocycles. In this talk, we shall establish
the almost reducbility conjecture for an explicit generic set of frequencies, namely

exponentially Liouville α, i.e. those α whose continued fraction approximants
pn
qn

obey lim
n→∞

log(qn+1)

qn
> 0. Once one has proven this, one can deduce as corollaries

two significant facts, namely the almost reducibility of cocycles close to constant
and the global stability of almost reducibility.
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Beyond analyticity I: C0-generic singular continuous spectrum

Jacob Stordal Christiansen

Let d ≥ 1 and suppose f : Td → R is continuous. Then the potential

V (n) = f(ω + nα), ω, α ∈ Td

is almost periodic (in Bohr/Bochner sense). We consider the Schrödinger operator

Hω,α = ∆+ V

on ℓ2(Z). The main result to be presented is the following:
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Theorem ([1], [2]). Suppose the translation ω 7→ ω + α is minimal on Td. Then
there is a dense Gδ set SC ⊂ C0(Td,R) such that for every f ∈ SC and Lebesgue
a.e. ω ∈ Td, the operator Hω,α has purely singular continuous spectrum.

Recall that translation by α is minimal if the orbit n 7→ ω + nα is dense in
Td for all ω. This holds if and only if the coordinates of α and 1 are rationally
independent. Recall also that a Gδ set is a countable intersection of open sets.

The idea of the proof is to show

i) generic absence of absolutely continuous spectrum

ii) generic absence of point spectrum

To establish i), we follow Avila and Damanik [1]. Let Lf be the Lyapunov
exponent and define

M(f) := |{E ∈ R : Lf (E) = 0}|
where | · | is Lebesgue measure. Then Hω,α has empty a.c. spectrum (for a.e. ω) if
and only if M(f) = 0. We shall show that the set

Mδ = {f :M(f) < δ}
is open and dense in C0(Td,R). Hence {f : M(f) = 0} =

⋂
nM1/n is a dense

Gδ set. The crucial step is to approximate by sampling functions s that only
take finitely many values and for which the potentials W (n) = s(ω + nα) are
not periodic for a.e. ω. As observed by Kotani [4], the operator ∆ +W has no
a.c. spectrum (for a.e. ω).

For ii), we follow Boshernitzan and Damanik [2]. Recall that if there are positive
integers qk →∞ and C > 0 such that

max
1≤n≤qk

|V (n)− V (n± qk)| ≤ Ck−qk

then V is called a Gordon potential. As proven in [3], operators with such poten-
tials have no eigenvalues. We shall construct a dense Gδ set F ⊂ C0(Td,R) such
that f(ω + nα) is a Gordon potential for all f ∈ F and generic ω (i.e., for all ω
in a dense Gδ set Ωf ⊂ Td). It is more involved to obtain the result for generic f
and Lebesgue a.e. ω. The reader is referred to [2] for details.

Generic absence of absolutely continuous spectrum

The first step is a technical lemma that reads

Lemma. For every r > 0, the map f 7→ M(f) is upper semi-continuous on
L1(Td) ∩ {f ∈ L∞(Td) : ‖f‖∞ < r} with respect to ‖ · ‖1.

As an immediate consequence, the set Mδ is open. We shall merely sketch the
proof which goes by contradiction.

Proof. Suppose there were a sequence {fn} of functions such that

1) fn → f in L1 and pointwise a.e.
2) ‖fn‖∞, ‖f‖∞ ≤ C <∞
3) lim infM(fn) ≥M(f) + ε for some ε > 0
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We show that 1)− 2) implies lim supM(fn) ≤M(f) + ε/2, contradicting 3).
As all the potentials are bounded, we can restrict our attention to some bounded

interval I. The key is to prove that

(∗)
∫

I

min{Lfn(E)− Lf (E), 0} dE → 0 as n→∞.

With ε as in 3), choose δ > 0 so small that |{E ∈ I : Lf (E) < δ}| < M(f) + ε/4.
By (∗), we have |{E ∈ I : Lfn(E) < δ/2 and Lf(E) ≥ δ}| → 0 as n → ∞. So for
n large enough, there is a set Yn of measure < ε/4 such that Lfn(E) ≥ δ/2 for all
E ∈ I \ Yn with Lf (E) ≥ δ. But then lim supM(fn) ≤M(f) + ε/2.

It remains to show that (∗) holds. By 1) − 2), it follows that Lfn converges
pointwise to Lf in the upper half-plane H. Let Φ be a conformal mapping of the

unit disk D onto the interior of the equilateral triangle T ⊂ H with sides I, J , and
K. Then∫ 2π

0

[
Lfn

(
Φ(eiθ)

)
− Lf

(
Φ(eiθ)

)]dθ
2π

= Lfn
(
Φ(0)

)
− Lf

(
Φ(0)

)
→ 0

as the integrand is bounded and harmonic on D. By a change of variables,∫

∂T

[
Lfn(E)− Lf(E)

]
Φ′(Φ−1(E)

)−1
dE → 0

and we arrive at (∗) by first noting that
∫
J+K

. . . goes to zero. Then consider the

integral over {E ∈ I : Lfn(E)−Lf (E) ≥ 0} and use the fact that Φ′ has constant
sign inside I. �

To establish the denseness of Mδ, we rely on the fact that the set of functions
s taking finitely many values and for which s(ω + nα) is not periodic for a.e. ω is
dense in L∞(Td).

Lemma. For every f ∈ C0(Td,R) and for all ε, δ > 0, there exists g ∈ C0(Td,R)
such that ‖f − g‖∞ < ε and M(g) < δ.

Proof. Let s be a finite range function as above with ‖s− f‖∞ < ε/2. Recall that
M(s) = 0 by Kotani [4]. Choose a sequence {fn} of continuous functions such
that ‖fn − s‖∞ < ε/2 for all n and ‖fn − s‖1 → 0 as n → ∞. By the technical
lemma above, lim supM(fn) ≤ M(s) = 0. Take N so large that M(fN) < δ and
set g = fN . This completes the proof. �

Generic absence of point spectrum

We now explain how to construct a denseGδ set F ⊂ C0(Td,R) such that f(ω+nα)
is a Gordon potential for all f ∈ F and generic ω. Since the shift by α is minimal,
there is a sequence qk → ∞ such that αqk is closer to 0 than αn for 1 ≤ n < qk.
By passing to a subsequence, if necessary, we may assume that

dist(αqk, 0) < 1/k.

For k ≥ 1, pick a radius rk so small that

B(α, rk), B(2α, rk), . . . , B(4qkα, rk)
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are pairwise disjoint and so that
⋃3
l=0B

(
(j + lqk)α, rk

)
is contained in a ball of

radius 4/k for each j = 1, . . . , qk. Define

Ck :=
{
f : f is constant on

⋃3
l=0 B

(
(j + lqk)α, rk

)
for j = 1, . . . , qk

}

and let Fk be the open k−qk -neighborhood of Ck in C0(Td,R) (i.e., g ∈ Fk if and
only if ∃f ∈ Ck : ‖f − g‖∞ < k−qk). Note that

⋃
k≥m Fk is open and dense in

C0(Td,R) for every m ≥ 1. Hence

F :=
⋂

m≥1

⋃

k≥m
Fk

is a dense Gδ set.
Take f ∈ F and choose a subsequence kl →∞ such that f ∈ Fkl for all l. Then⋃
l≥m

⋃qkl
j=1 B

(
(j + qkl)α, rkl

)
is open and dense in Td for every m ≥ 1. So

Ωf :=
⋂

m≥1

⋃

l≥m

qkl⋃

j=1

B
(
(j + qkl)α, rkl

)

is a dense Gδ set.
The final step is now to realize that f(ω + nα) is a Gordon potential for all

f ∈ F and all ω ∈ Ωf . By passing to a subsequence, if necessary, we may assume

that ω ∈ ⋃qklj=1 B
(
(j + qkl)α, rkl

)
for each l. Hence

max
1≤n≤qkl

∣∣f(ω + nα)− f(ω + (n± qkl)α)
∣∣ < 2k

−qkl
l .
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Beyond analyticity II: C0-generic Cantor spectrum

James Tanis

This paper was written by Artur Avila, Jairo Bochi and David Damanik [1].
They consider continuous SL(2,R)-cocycles over a generalized skew shift. They
prove that for a genericC0 potential, the spectrum of the corresponding Schrödinger
operator is a Cantor set.

Assumptions: X is a compact metric space, f : X → X is strictly ergodic
homeomorphism (so f is minimal and uniquely ergodic) which fibers over an almost
periodic dynamical system (generalized skew shift). This means there is an infinite
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compact abelian group G and continuous map h : X → G such that h(f(x)) =
h(x) + α. In what follows, we will only consider the case G = T.

For example, X = T2, G = T, f(x, y) = (x+α, x+y), h(x, y) = x is projection
onto the first factor.

1. Some Definitions

An SL(2,R) cocycle is a continuous map (f,A)X × SL(2,R)→ X × SL(2,R)
defined by (f,A)(x, g) = (f(x), A(x)g).

Cocycles (f,A), (f, Ã) are PSL(2,R) conjugate if there isB ∈ C0(X,PSL(2,R))

such that Ã(x) = B(f(x))A(x)B(x)−1 in PSL(2,R). A cocyle (f,A) is reducible
if there if it is PSL(2,R) conjugate to a constant cocycle. For example, A(x) =
B(f(x))−1B(x) is reducible (by the map B : X → PSL(2,R)). (Note reducibility
does not imply conjugate to constant (so B(x) ∈ SL(2,R), equality in SL(2,R)).

Ruth is the set of all A such that (f,A) is reducible up to homotopy: A ∼ Ã

(homotopic), Ã ∼ C(PSL(2,R) conjugate).
Schrodinger cocycles take are those where A takes values in the set

S = {
(
t −1
1 0

)
|t ∈ R}.

Given a potential V ∈ C0(X,R) and x ∈ X , we consider the operator Hx on ℓ2(Z)
defined by

(Hxψ)(n) := ψn+1 + ψn−1V (fnx)ψn.

Solutions u satisfy (
un
un−1

)
= AE,V (x)

(
un
un−1

)
,

where AE,V (x) =

(
E − V (x) −1

1 0

)
.

Notice that Schrodinger cocycles are always in Ruth, so that AE,V (x) is in
Ruth.

2. Outline of proof of Cantor spectrum

It is well known that because f is minimal, the spectrum of Hx is independent
of x. In this case, [2] gives

R/Σ = {E ∈ R|(f,AE,V ) is uniformly hyperbolic }.
The first major theorem is

Theorem 2.1. Uniform hyperbolicity is dense in Ruth.

So S-valued cocycles can be approximated uniformly hyperbolic ones.

Theorem 2.2. Let P be any conjugacy-invariant property of SL(2,R)-valued co-
cycles over f . If A ∈ C0(X,S) can be approximated by SL(2,R)-valued cocycles
with property P , then A can be approximated by S-valued cocycles with property
P .
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Hence, S-valued cocycles can by approximate by S-valued, uniformly hyperbolic
cocycles. With this, we can prove the spectrum is a Cantor set.

Corollary 2.1. For a generic V ∈ C0(X,R), we have R/Σ is dense; that is, the
associated Schrodinger operators have Cantor spectrum.

Proof. For E ∈ R, consider

UHE = {V ∈ C0(X,R); (f,AE,V ) is uniformly hyperbolic}.
Because hyperbolicity is an open condition, we know UHE is open. Next, because
S-valued cocycles can be approximated by S-valued uniformly hyperbolic ones, it
follows readily that UHE is dense in C0(X,R). Now choose any dense countable
subset {En}n∈Z+ ⊂ R. Then ∩nUHEn is a dense Gδ. Then for any V ∈ ∩nUHEn ,
R/Σ is dense. �

3. Some indication of the proof of Theorem 2.1

From the definition, uniformly hyperbolic cocycles are diagonalizable. Hence,
they are contained in Ruth. Now we want to prove that uniformly hyperbolic
cocycles are actually dense in Ruth. There are several steps. We reduce the
problem to proving the following theorem:

Theorem 3.1. If A ∈ Ruth be such that (f,A) is not uniformly hyperbolic. As-
sume A∗ ∈ SL(2,R) is nonhyperbolic (i.e. |trA∗| ≤ 2), then (f,A) lies in the
closure of the PSL(2,R) -conjugacy class of (f,A∗).

Proof of Theorem 2.1 from Theorem 3.1 : The closure of the uniformly hyper-
bolic cocycles contain all constant cocycles (f,A∗) with tr(A∗) = 2. This set also is
invariant under PSL(2,R)-conjugacies. So by Theorem 3.1, (f,A) is in the closure
of the uniformly hyperbolic cocycles. �

Therefore, it suffices to prove Theorem 3.1. The strategy will be to show that
cocycles (f,A) that are not uniformly hyperbolic are the PSL(2,R) closure of

cocycles (f, Ã), where Ã is a constant SO(2,R) valued cocycle. From here it is
not hard to conclude Theorem 3.1. An important first step is the following.

Theorem 3.2. Let A : X → SL(2,R) be a continuous map such that (f,A) is

not uniformly hyperbolic, then there is a continuous Ã : X → SL(2,R), arbitrarily

C0-close to A, such that (f, Ã) is conjugate to an SO(2,R) cocycle.

To prove this, the authors show that they can find an invariant section of a
skew-shift F : X × Y → X × Y . We say a map : x→ y(x) is an invariant section
for F if F (x, y) = (f(x), y(f(x)). Such a result allows them to prove the following.

Lemma 3.1. For every φ ∈ C0(X,R) and every δ > 0, there exists φ̃ ∈ C0(X,R)

such that ‖φ − φ̃‖C0 < δ and there exists w ∈ C0(X,R) and a0 ∈ R such that

φ̃ = w ◦ f − w + a0.
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Finally, we give some indication how Lemma 3.1 and Theorem 3.2 are used
to prove Theorem 3.1. Given Theorem 3.2, we can perturb A to some Aǫ such
that Aǫ is PSL(2,R) conjugate to a SO(2,R) valued cocycle (f,Rφ(x)), where

φ ∈ C0(X,R). Now perturb φ to φ̃ = w ◦ f − w + a0, and it follows that

R ˜φ(x) = Rw◦f(x)Ra0R
−1
w(x),

which of course is conjugate to the constant, SO(2,R)-valued cocycle. from here it
is not hard to prove that this constant SO(2,R)-valued cocycle can be perturbed
then PSL(2,R) conjugated to (f,A∗).
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Beyond analyticity III: Examples of discontinuity of the Lyapunov
exponent

Jiangong You

The purpose of this talk is to present results on discontinuity of the Liapunov
exponent of quasi-periodic SL(2,R)-cocycles in Cl(l = 1, 2, · · · ,∞) topology.

The talk firstly reviewed the results in the analytic topology. In [8] Goldstein
and Schlag proved that if ω is a Diophantine irrational number and v(x) is ana-
lytic, then the Lyapunov exponent L(E) is Hölder continuous. Similar results were
proved in [6] by Bourgain, Goldshtein and Schlag and in [8] for underlying dynam-
ics being a shift or skew-shift of a higher dimensional torus. In 2002, Bourgain
and Jitomirskaya [5] improved the result of [8] by showing that if ω is an irrational
number and the potential v(x) is analytic, then the Lyapunov exponent is jointly
continuous on E and ω. Later, Jitomirskaya, Koslover and Schulteis [9] proved
that the Lyapunov exponent is a continuous function of general (not necessarily
SL(2,R)) analytic quasi-periodic cocycles.

On the contrary, Furman [7] proved that L(A) is not continuous at any non-
uniformly hyperbolic quasi-periodic cocycles in C0 topology. More recently, Bochi
[2, 3] proved that any non-uniformly hyperbolicity cocycles can be approximated
by continuous quasi-periodic cocycles with zero Liapunov exponent. The results
show that, the continuity of the Lyapunov exponent of quasi-periodic cocycles in
C0 topology is completely different from that in Cω topology.

Until very recently, it had however been unclear what happens in Cl-topology.
The missing link is provided by Wang and You [11], who have recently constructed
counter-examples proving discontinuity of the Lyapunov exponent in all of those
intermediate spaces, including C∞. The following is their result.
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Theorem 0.3. Suppose that ω is a fixed irrational number of bounded-type. For
any 0 ≤ l ≤ ∞, there exist cocycles Dl ∈ Cl(S1, SL(2,R)) such that the Lyapunov
exponent is discontinuous at (ω,Dl) in Cl(S1, SL(2,R)).

Remark 0.1. The examples are of the form

(
l 0
0 l−1

)(
cosφ(x) − sinφ(x)
sinφ(x) cosφ(x)

)
,

where φ(x) is either a 2π-periodic function corresponding to a cocycle homotopic to
the identity, or the identity plus a 2π-periodic function corresponding to a cocycle
non-homotopic to the identity. The counter-example in the category of Schrödinger
cocycles can hopefully be constructed by Theorem 0.3.

Remark 0.2. Theorem 0.3 shows that the continuity of Lyapunov exponent in
Cl-topology (l = 1, 2, · · · ,∞) and Cω is different, which illustrated the optimality
of the continuity results for analytic potentials. Avila and Krikorian’s result [1]
shows the continuity of Lyapunov exponent in Cl-topology (l = 1, 2, · · · ,∞) and
C0 is also different. Theorem 0.3 also shows that the monotonicity is Avila and
Krikorian’s paper is necessary.

Remark 0.3. Klein [10] extended the results in [8] to the Gevrey case. More pre-
cisely, he proved that the Lyapunov exponent of quasi-periodic Schrödinger cocycles
in the Gevrey class is continuous at the potential v(x) satisfying some transver-
sality condition. Hopefully, one can also construct examples of discontinuity in
Gevrey topology.

The examples Dl will be constructed by the limit of Cl sequence of {An(x), n =
N,N+1, · · · }. {An(x), n = N,N+1, · · · } possessing degeneracy and some kind of

finite hyperbolic property, i.e., ‖Ar
+
n
n (x)‖ ∼ λr

+
n for most x ∈ S1 where l ≫ 1 and

r+n → ∞ as n → ∞, which gives a lower bound estimate (1 − ε) logλ of the Lya-
punov exponent of (ω,Dl(x)). An is constructed by modifying Young’s method.

Then by modifying {An(x)}∞n=N , we construct another sequence {Ãn(x)}∞n=N such

that Ãn(x)→ Dl(x) in Cl-topology as n→∞. Moreover, for each n, the Lyapunov

exponent of (ω, Ãn(x)) is less than (1 − δ) logλ with 1 > δ ≫ ε > 0 independent
on λ, which implies the discontinuity of the Lyapunov exponent at (ω,Dl(x)).
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