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Introduction by the Organisers

The mini-workshop Hypergraph Turán Problem, organised by Penny Haxell (Wa-
terloo), Dhruv Mubayi (Chicago), Oleg Pikhurko (Coventry), and Tibor Szabó
(Berlin) was held 8–14 April 2012. This meeting was attended by 17 participants
from 6 different countries. The purpose of the mini-workshop was to bring together
researchers of different backgrounds and seniority so that they can communicate
about recent developments, share their expertise, and continue or initiate collab-
orative projects. In particular, the organizers invited quite a few researchers who
are early in their careers; for example, for 4 participants it was the first time that
they were at the MFO.

The schedule was designed to give the participants ample free time for collabo-
ration and discussions. There were 15 talks in total (in mornings) and a problem
session (on Monday afternoon). The format of talks varied from a general intro-
duction to some important aspect (such as the 2-part lecture by John Talbot on
flag algebras) to a short communication of a recent result.
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The hypergraph Turán problem is about 70 years old. The basic question here
is to estimate the Turán function ex(n, F ) which is the maximum number of edges
in a hypergraph G on n vertices that does not contain the given forbidden k-graph
F . This fundamental problem, relating global and local parameters, is notoriously
difficult and wide open in general. For example, the famous conjecture of Turán
that ex(n,K3

4 ) = (59 + o(1))
(
n
3

)
, where K3

4 denotes the complete 3-graph on 4 ver-
tices, is still open despite the $1000 prize of Erdős. Nonetheless this area is a great
success if one judges by the wealth of ideas, methods, and connections that were
discovered during the decades of active attempts. The talks presented at the mini-
workshop reflected this variety very well, relating Turán-type questions to Ramsey
theory, quasi-randomness, extremal problems on hypercubes, decomposition the-
orems, matchings, H-factors, and counting independent sets in hypergraphs.

One important general development that was motivated by the hypergraph
Turán problem was the semidefinite method of Razborov built upon his flag alge-
bras framework. A number of new results obtained by this method were presented
at the mini-workhop; also, some participants investigated whether the semidefinite
method may apply to extremal problems for other structures such as permutations
or monochromatic arithmetic progressions.

The mini-workshop was quite active in terms of ongoing and new collaboration.
The joint research projects that were carried out during the workshop included
applying flag algebras to permutation densities (Dan Král’ and Oleg Pikhurko),
co-degree Turán densities (Oleg Pikhurko and Emil Vaughan), hypergraph Ramsey
problems for loose cycles (Alexandr Kostochka and Dhruv Mubayi), tight cycles
(Dhruv Mubayi and Vojtěch Rödl) and extremal hypergraphs for packing and
covering (Penny Haxell and Tibor Szabó).

The mini-workshop was a great success. We are very grateful to the Ober-
wolfach Mathematical Institute for providing such a stimulating and productive
environment.
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Jan Hladký (joint with János Komlós, Diana Piguet, Miklós Simonovits,
Maya J. Stein, Endre Szemerédi)
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Abstracts

Turán densities and stability via Razborov’s flag algebra method

John Talbot

(joint work with Rahil Baber)

If F is a family of r-graphs then we say that an r-graph G is F-free if G contains no
subgraph isomorphic to any member of F . The maximum number of edges in an F -
free r-graph on n vertices is denoted by ex(n,F). Since this is often very difficult to
calculate we introduce the Turán density of F to be π(F) = limn→∞ ex(n,F)/

(
n
r

)
.

Given a family of r-graphs F we would like to be able to compute ex(n,F), or
failing this find π(F). Another related question one can ask is: what structure do
F -free r-graphs with almost the maximum number of edges have? We say that
a sequence of F -free r-graphs {Gn}∞n=1 is almost extremal for F if each Gn is an
F -free r-graph on n vertices and d(Gn) = π(F ) + o(1).

Razborov [4] recently introduced a powerful new tool to aid in the computation
of Turán densities. Using his flag algebra “semidefinite” method he gave the
following induced Turán density result. (We say G is F-induced-free if G has no
induced subgraph isomorphic to a member of F and define exind(n,F) and πind(F)
in the obvious way.)

Theorem 1 (Razborov [4]). Let K
(3)
4 be the complete 3-graph with 4 vertices and

let E1 be the 3-graph with 4 vertices and a single edge. If F1 = {K(3)
4 , E1} then

πind(F1) = 5/9.

A sequence of 3-graphs that are F1-induced-free and asymptotically have den-
sity 5/9 is given by Turán’s construction Tn. (Tn is the 3-graph with vertex set [n]
partitioned into three classes V0, V1, V2 as equally as possible with edges consisting
of all triples meeting each class once or meeting Vi once and Vi+1 twice for some
0 ≤ i ≤ 2.)

Building on Razborov’s result Pikhurko [2] gave the following stability result.
(He then used stability to determine the exact value of exind(n,F1) for sufficiently
large n but our focus here is only on Turán density and stability results.)

Theorem 2 (Pikhurko [2]). If {Gn}∞n=1 is a sequence of F1-induced-free graphs,
|V (Gn)| = n, and d(Gn) = 5/9 + o(1) then we can make Gn isomorphic to Tn by
changing at most o(n3) edges.

Following Pikhurko we now outline how one can often construct a stability result
for an almost extremal F -free sequence of 3-graphs {Gn}∞n=1 given a “flag algebra
proof” determining the Turán density π(F).

Let F be a family of 3-graphs. For any k ≥ 1 define Hk to be the family of
all F -free 3-graphs on k vertices up to isomorphism. If G is a 3-graph of order
at least k let p(H ;G) be the induced density of H in G: this is the probability
that if A ⊆ V (G) is a set of |V (H)| vertices chosen uniformly at random then the
subgraph of G induced by A is isomorphic to H .
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We say that an F -free 3-graph H is F-sharp if there exists an almost extremal
sequence {Gn}∞n=1 for F such that p(H ;Gn) 6= o(1). If an F -free 3-graph H is
not F -sharp we say it is F-negligible. We denote the family of F -sharp 3-graphs

of order k by H#
k .

A flag algebra proof of the Turán density of F also provides us with some
information as to which 3-graphs are F -sharp. Let {Gn}∞n=1 be an almost extremal
sequence for F and let k be fixed. Averaging over k-sets gives

(1) d(Gn) =
∑

H∈Hk

p(H ;Gn)d(H).

If we can find constants cH for each H ∈ Hk such that

(2)
∑

H∈Hk

cHp(H ;Gn) ≥ o(1)

then summing (1) and (2), and using the fact that
∑

H∈Hk
p(H ;Gn) = 1 we obtain

d(Gn) ≤ max
H∈Hk

(d(H) + cH) + o(1).

Thus π(F) ≤ maxH∈Hk
(d(H) + cH). Razborov’s flag algebra semidefinite method

provides a systematic way to find a choice of {cH : H ∈ Hk} that minimises this
upper bound for π(F). In many cases it yields an upper bound that matches the
best lower bound and so determines π(F) exactly. In such cases it is easy to see
that if H ∈ Hk and d(H) + cH < π(F) then H must be F -negligible.

For a 3-graph G let Ik(G) = {G[A] : A ⊆ V (G), |A| = k}. The strong hy-
pergraph removal lemma of Rödl and Schacht [5] tells us that given any almost
extremal sequence {Gn}∞n=1 for F we can produce a new sequence of 3-graphs

{G′
n}∞n=1 by changing at most o(n3) edges in Gn, so that Ik(G′

n) ⊆ H#
k , i.e. all

induced subgraphs of G′
n of order k are F -sharp.

In many cases this observation, together with the information about F -sharp
graphs from a flag algebra proof of the Turán density, is enough to give a stability
result. The reason for this is that many extremal constructions are determined by
their small induced subgraphs (see Lemma 3).

We say that a 3-graph property P is k-induced if Ik(G) ⊂ P =⇒ G ∈ P .
A 3-graph G is complete tripartite if there is a partition V (G) = V0 ∪ V1 ∪ V2

such that the edges of G consist of all triples meeting each class once. A 3-graph
G is complete (2,1)-colourable if there is a partition V (G) = V0 ∪ V1 such that the
edges of G consist of all triples meeting V0 twice and V1 once. A 3-graph G is
complete bipartite if there is a partition V (G) = V0 ∪ V1 such that the edges of G
consist of all triples meeting V0 and V1.

Lemma 3 ([1]). The following 3-graph properties are all 6-induced

PS = {G : G is complete tripartite},
PJ = {G : G is complete (2, 1)-colourable},
PB = {G : G is complete bipartite}.

The following is a sample of the results from [1].
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Theorem 4 (Baber and Talbot [1]). If

F1 = {123, 124, 345, 156}, F2 = {123, 124, 134, 235, 245, 156} and

F3 = {123, 124, 134, 125, 135, 235, 345, 126, 236, 146, 156, 456}

then π(F1) = 2/9, π(F2) = 4/9, π(F3) = 3/4 and π({K(3)
4 , F3}) = 5/9. Moreover

in each case we have stability, e.g if {Gn}∞n=1 is almost extremal for F1 then by
changing o(n3) edges we can make Gn complete tripartite.

In each case the proof proceeds by obtaining a flag algebra proof of the Turán
density and then noting that this also tells us that the only potential F -sharp
3-graphs are those that are found in the corresponding extremal construction.
Lemma 3 then allows us to deduce that we must have stability.
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Turán numbers of expanded hypergraphs

Tao Jiang

(joint work with Axel Brandt, Robert Seiver)

Given an r-graph F on t vertices v1, . . . vt, let HF
p+1, where p+1 ≥ t, denote the

r-graph obtained from F as follows. First, we add new vertices vt+1, . . . vp+1 and

denote the set {v1, . . . , vp+1} by S. Then for each pair {vi, vj} ∈
(
S
2

)
that is not

covered by an edge of F , we add an r-edge Di,j such that Di,j ∩ S = {vi, vj} and
such that the Di,j ’s are pairwise disjoint outside S. For a rather wide family of
r-graphs F , we show that the Turán number ex(n,HF

p+1) equals |T r(n, p)|, where
T r(n, p) denotes the p-partite Turán r-graph on n vertices. This gives an infinite
family of r-graphs whose Turán number is precisely determined and generalizes or
strengthens results in [1, 2, 3, 4, 5, 6]. Our exact results are established based on
the corresponding stability properties.

References
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3, (1983), 341–349.
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Problem Session

1. Complete partite subgraphs in dense hypergraphs (M. Schacht
and V. Rödl)

It is known that any graph G with at least Ω(nℓ) copies of Kℓ already contains
a t-blowup of Kℓ with t = Ω(logn).

For the hypergraphs this question is however wide open:

Conjecture 1. For all ℓ, r and c there exists a γ such that the following holds. If

H is an r-uniform hypergraph containing at least cnℓ copies of K
(r)
ℓ , the complete

r-uniform hypergraph with ℓ vertices, then H contains a complete ℓ-partite graph
Kt,t,...,t (t-blowup of Kℓ) with t ≥ γ(logn)1/(r−1).

The essentially best known bound is t = Ω((log n)1/ℓ), which follows from an
old result of Erdős.

2. Triangles in the union of two boolean lattices (P. Erdős,
D. Gerbner, N. Lemons, D. Mubayi, C. Palmer, and B. Patkos)

Let Gn be the disjointness graph of the boolean lattice, namely, V := V (Gn) =
2[n] and A,B ∈ V form an edge of Gn iff A ∩ B = ∅. Let a, b ≥ 1 and consider
disjoint copies of Ga and Gb. Let f(a, b) be the maximum number of edges that
can be added between Ga and Gb such that in the resulting supergraph of Ga∪Gb,
there are no triangles that intersect both V (Ga) and V (Gb). Improve the bounds

1

3
2a+b ≤ f(a, b) ≤ 3

8
2a+b.

After the talk, Dan Král’ gave a construction showing that as long as one of
a, b ≥ 3, we have

f(a, b) ≥ 22

64
2a+b.

3. Decidability of the density function (O. Pikhurko)

Question 2. Is π(F) ≤ α decidable where the input is a finite family F of r-
uniform hypergraphs and α ∈ Q?
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4. Small Ramsey numbers (V. Rödl)

We write G −→ (F )r if no matter how one colors the edges of G with r colors
there is a monochromatic copy of F in it. It is well-known that K6 −→ (K3)2,
and that there are K4-free graphs G such that G −→ (K3)2 and moreover there
is such a K4-free G with at most 1000 vertices (i.e. and G −→ (K3)2).

Question 3. How about 3 colors? Give good bounds on the order of G such that
G −→ (K3)3.

Daisies

Imre Leader

(joint work with Béla Bollobás, Claudia Malvenuto)

A daisy, or r-daisy, is a certain r-uniform hypergraph consisting of six sets:
given an (r − 2)-set P and a 4-set Q disjoint from P , the daisy on (P,Q) consists
of the r-sets A with P ⊂ A ⊂ P ∪Q. We write this as D, or Dr. Our fundamental
question is: how large can a family A of r-sets from an n-set be if A does not
contain a daisy?
As usual, if F is a family of r-sets, we write ex(n,F) for the maximum size of
a family of r-sets from an n-set that does not contain a copy of F , and π(F)
or πr(F) for the limiting density, namely the limit of ex(n,F)/

(
n
r

)
as n tends to

infinity – a standard averaging argument shows that this limit exists, and indeed
that ex(n,F)/

(
n
r

)
is a decreasing function of n.

Conjecture 1. π(Dr) → 0 as r → ∞.

What is unusual here is that we are not so concerned with the actual values of
πr(Dr) for particular r: our main interest is in the limit of these values.

This problem turns out to be related to the vertex-Turán problem in the hy-
percube, where almost nothing is known.

Since the hypergraph Dr is not r-partite, it follows that π(Dr) ≥ r!/rr , as the
complete r-partite r-graph does not contain a daisy. For r = 2, a daisy is precisely
a K4, and so Turán’s theorem tells us that π(D2) = 2/3. Although even for r = 3
we do not know what the limiting density is, we believe we know what it should
be.

Conjecture 2. π(D3) = 1/2.

To see where this conjecture comes from, note that the 3-graph on 7 vertices
given by the complement of the Fano plane does not contain a daisy. Here, as
usual, the Fano plane is the projective plane over the field of order 2; equivalently,
it consists of the triples {a, a + 1, a + 3}, where the ground set is the integers
mod 7. This gives ex(7,D3) ≥ 28 = 4

5

(
7
3

)
. If we take a blow-up of this, thus

dividing [n] into 7 classes C0, . . . , C6 each of size ⌊n/7⌋ or ⌈n/7⌉ and taking the
7-partite 3-graph consisting of all 3-sets whose 3 classes are not {Ca, Ca+1, Ca+3}
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(with subscripts taken mod 7), we obtain ex(n,D3) ≥ (1+o(1))2449
(
n
3

)
. But now we

may iterate, taking a similar construction inside each class, and so on. This gives
a limiting density of 24/49 times 1+1/49+1/492+ . . ., which is exactly 1/2. This
last conjecture (and the construction that motivates it) was made independently
by Goldwasser.

The size of a hypergraph and its matching number

Po-Shen Loh

(joint work with Hao Huang, Benny Sudakov)

A k-uniform hypergraph is a pair H = (V,E), where V = V (H) is a finite set of

vertices, and E = E(H) ⊆
(
V
k

)
is a family of k-element subsets of V called edges.

A matching in H is a set of disjoint edges in E(H). We denote by ν(H) the size of
the largest matching, i.e., the maximum number of disjoint edges in H . The prob-
lem of finding the maximum matching in a hypergraph has many applications in
various different areas of mathematics, computer science, and even computational
chemistry. Yet although the graph matching problem is fairly well-understood, and
solvable in polynomial time, most of the problems related to hypergraph matching
tend to be very difficult and remain unsolved. Indeed, the hypergraph matching
problem is known to be NP-hard even for 3-uniform hypergraphs, without any
good approximation algorithm.

One of the most basic open questions in this area was raised in 1965 by Erdős [3],
who asked to determine the maximum possible number of edges that can appear
in any k-uniform hypergraph with matching number ν(H) < t ≤ n

k (equivalently,
without any t pairwise disjoint edges). He conjectured that this problem has only
two extremal constructions. The first one is a clique consisting of all the k-subsets
on kt−1 vertices, which obviously has matching number t−1. The second example
is a k-uniform hypergraph on n vertices containing all the edges intersecting a fixed
set of t − 1 vertices, which also forces the matching number to be at most t − 1.
Neither construction is uniformly better than the other across the entire parameter
space, so the conjectured bound is the maximum of these two possibilities. Note
that in the second case, the complement of this hypergraph is a clique on n− t+ 1
vertices together with t− 1 isolated vertices, and thus the original hypergraph has(
n
k

)
−
(
n−t+1

k

)
edges.

Conjecture (Erdős.) Every k-uniform hypergraph H on n vertices with matching
number ν(H) < t ≤ n

k satisfies

e(H) ≤ max

{(
kt− 1

k

)
,

(
n

k

)
−
(
n− t + 1

k

)}
.

In addition to being important in its own right, this Erdős conjecture has several
interesting applications, which we discuss in the concluding remarks. Yet although
it is more than forty years old, only partial results have been discovered so far. In
the case t = 2, the condition simplifies to the requirement that every pair of edges
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intersects, so this conjecture is thus equivalent to a classical theorem of Erdős,
Ko, and Rado [5]: that any intersecting family of k-subsets on n ≥ 2k elements

has size at most
(
n−1
k−1

)
. The graph case (k = 2) was separately verified in [4] by

Erdős and Gallai. For general fixed t and k, Erdős [3] proved his conjecture for
sufficiently large n. Frankl [6] showed that the conjecture was asymptotically true

for all n by proving the weaker bound e(H) ≤ (t− 1)
(
n−1
k−1

)
.

A short calculation shows that when t ≤ n
k+1 , we always have

(
n
k

)
−
(
n−t+1

k

)
>(

kt−1
k

)
, so the potential extremal example in this case has all edges intersecting a

fixed set of t − 1 vertices. One natural question is then to determine the range
of t (with respect to n and k ≥ 3) for which the maximum is indeed equal to(
n
k

)
−

(
n−t+1

k

)
, i.e., where the second case is optimal. Frankl, Rödl, and Ruciński

[7] studied 3-uniform hypergraphs (k = 3), and proved that for t ≤ n/4, the
maximum was indeed

(
n
3

)
−

(
n−t+1

3

)
, establishing the conjecture in that range.

Recently,  Luczak and Mieczkowska [8] resolved the 3-uniform case for all n larger
than a certain absolute constant. For general k ≥ 4, Bollobás, Daykin, and Erdős
[2] explicitly computed the bounds achieved by the proof in [3], showing that the
conjecture holds for t < n

2k3 . Frankl and Füredi [6] established the result in a

different range t <
(

n
100k

)1/2
, which improves the original bound when k is large

relative to n. In this paper, we extend the range in which the Erdős conjecture
holds to all t < n

3k2 .

Theorem For any integers n, k, t satisfying t < n
3k2 , every k-uniform hypergraph

on n vertices without t disjoint edges contains at most
(
n
k

)
−
(
n−t+1

k

)
edges.

To describe the idea of our proof, we first outline Erdős’s original approach
for the case t < n

2k3 . Let v be a vertex of maximum degree. By induction on
t we find t − 1 disjoint edges F1, . . . , Ft−1, none of which contain v. If deg(v)

exceeds k(t− 1)
(
n−2
k−2

)
, which is the maximum possible number of edges containing

v which also meet a vertex in
⋃t−1

i=1 Fi, then we can find t disjoint edges. Otherwise,

the number of edges meeting any of Fi is at most |⋃t−1
i=1 Fi| · k(t − 1)

(
n−2
k−2

)
=

k(t− 1) · k(t− 1)
(
n−2
k−2

)
, which turns out to be less than the total number of edges

when n ≥ 2k3t. Any other edge will serve as the t-th edge in the matching.
To improve Erdős’s bound, we show that in the first part of the argument, we

are already done if the t-th largest degree exceeds 2t
(
n−2
k−2

)
. This puts a tighter

constraint on the sum of the degrees of the k(t − 1) vertices in
⋃t−1

i=1 Fi, allowing
the second stage to proceed under the relaxed assumption n ≥ 3k2t. The fact
that t vertices of degree at least 2t

(
n−2
k−2

)
are enough to find t disjoint edges leads

naturally to the following multicolored version of the Erdős conjecture, which was
also considered independently by Aharoni and Howard in [1].

Conjecture Let F1, . . . ,Ft be families of subsets in
(
[n]
k

)
. If we have |Fi| >

max
{(

n
k

)
−
(
n−t+1

k

)
,
(
kt−1
k

)}
for all 1 ≤ i ≤ t, then there is a “rainbow” matching

of size t: one that contains exactly one edge from each family.
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The k = 2 case of this conjecture was established by Meshulam (see [1]). To
obtain our theorem, we prove an asymptotic version of the above conjecture, by
showing that a rainbow matching exists whenever |Fi| > (t − 1)

(
n−1
k−1

)
for every

1 ≤ i ≤ t.
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8 (1965), 93–95.
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Powers of Hamiltonian cycles in pseudorandom graphs

Yury Person

(joint work with Peter Allen, Julia Böttcher, Hiê.p Hàn and Yoshiharu
Kohayakawa)

The study of quasi-random (a.k.a. pseudorandom) graphs was initiated by
Thomason [5], whose motivation was to understand which properties make a de-
terministic graph to behave as a random one in many respects. Soon thereafter,
a slightly general and less restrictive notion of quasi-randomness was studied by
Chung, Graham and Wilson, who collected and proved in their seminal paper [2]
a theorem that established equivalences of many properties shared by random
graphs, and thus called further on quasi-random properties. Since then many
beautiful results have been proven about quasi-random structures and even more
such structures were found.

In the recent years it became more popular to study random graphs and their
properties by defining (rather) artificial conditions, also called quasi-random, be-
cause they are satisfied by the random graph G(n, p) for the probability p in ques-
tion. Thus, showing that such a quasi-random (hyper-)graph has certain properties
already implies the same statement for the random graph G(n, p). While the prob-
abilities p may be a good way away from optimal thresholds, it can be seen as a
first step in the right direction.

The other theme in the study of quasi-random graphs is that there are known
constructions of quasi-random graphs, most notably so-called (n, d, λ)-graphs or
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expander graphs, for an excellent survey by Krivelevich and Sudakov see [3], where
Ramanujan graphs are most prominent among them.

An (n, d, λ)-graph is a d-regular graph with n vertices, whose second largest
eigenvalue of the adjacency matrix (in the absolute value) is at most λ. The
smaller λ is the “more random” an (n, d, λ)-graph appears. Krivelevich, Sudakov
and Szabó [4] studied under what dependency of λ on d and n, such a graph
possesses a triangle factor. There are however (n, d, λ)-graphs which look like
quasi-random graphs but do not contain a single triangle, as shown by Alon [1].

A Hamiltonian cycle in a graph on n vertices is the set of n edges traversing
all n vertices and a kth power of a graph G is obtained by adding to G all edges
between any two vertices at distance at most k.

In joint work with Allen, Böttcher, Hàn and Kohayakawa, I showed first non-
trivial conditions on (n, d, λ)-graphs to contain a k-th power of a Hamiltonian
cycle. This in particularly implies the conditions for containment of Kk+1-factors
(⌊n/(k + 1)⌋ vertex-disjoint copies of Kk+1s) and improves upon the results of
Krivelevich, Sudakov and Szabó [4]. To obtain our result we introduce a special
notion of quasi-randomness and develop a technique that adapts known tools from
the dense to sparse setting.

In the case of triangle factor our result reads as follows. There is a constant
c > 0 and n0 such that any (n, d, λ)-graph G with n ≥ n0 vertices and

λ ≤ c
d5/2

n3/2

contains a square of a Hamiltonian cycle, and thus a triangle factor if 3|n. This
improves the result of Krivelevich, Sudakov and Szabó [4] who showed a sufficient
upper bound on λ to be O(d3/(n2 logn)). On the other side, Alon [1] constructed
(n, d, λ) graphs with λ = Θ(n1/3) and d = Θ(n2/3) (essentially the best quasi-
random graphs) which are triangle-free. Our result holds for best known (n, d, λ)-

graphs (where λ = Θ(
√
d)) when d ≫ n3/4.
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Hypergraph Ramsey Numbers: Triangles versus Cliques

Alexandr Kostochka

(joint work with Dhruv Mubayi, Jacques Verstraete)

By a k-cycle Ck we mean a hypergraph loose k-cycle, namely the hypergraph
with edges e1, . . . , ek such that for i 6= j, |ei ∩ ej | = 1 if |i − j| = 1 mod k and
ei ∩ ej = ∅ otherwise. In particular, a triangle is a hypergraph consisting of three
edges e, f, g such that |e ∩ f | = |f ∩ g| = |g ∩ e| = 1 and e ∩ f ∩ g = ∅.

An r-graph is an r-uniform hypergraph. An independent set in a hypergraph is
a set of vertices containing no edges of the hypergraph. Let Kr

t denote the t-vertex
complete r-graph, i.e., the t-vertex r-graph whose edges are all r-element subsets of
[t]. We consider the cycle versus complete hypergraph Ramsey numbers R(Ck,K

r
t )

– this is the minimum n such that every n-vertex r-graph contains either a cycle
Ck or an independent set of t vertices. Our main effort will be on the triangle -
complete hypergraph Ramsey number R(C3,K

r
t ). A celebrated result of Kim [3]

together with earlier bounds by Ajtai, Komlós and Szemerédi [1] shows

R(C3,Kt) = Θ
( t2

log t

)
.

This establishes the order of magnitude of these Ramsey numbers for graphs.
Motivated by the triangle-complete graph Ramsey numbers, we determine the
order of magnitude of the triangle-complete Ramsey numbers for triple systems
up to logarithmic factors:

Theorem 1. There exist constants c1, c2 > 0 such that for all t ≥ 1,

c1t
3/2

(log t)3/4
≤ R(C3,K

3
t ) ≤ c2t

3/2.

The lower bound in Theorem 1 comes from a random block construction that
combines randomness and linear algebra. This construction extends in a straight-
forward manner to give lower bounds for R(C3,K

r
t ) for all r ≥ 3:

Theorem 2. Let r ≥ 3. Then for some constant c > 0 and all t ≥ 1,

c
( t

log t

)3/2

≤ R(C3,K
r
t ) ≤ (t + 1)2.

In light of Theorem 1, we make the following conjecture:

Conjecture 1.

R(C3,K
3
t ) = o(t3/2).

A motivation for studying triangle-complete hypergraph Ramsey numbers is
the notorious extremal problem for three-term arithmetic progressions. Let r3(N)
denote the largest size of a subset of integers in {1, 2, . . . , N} containing no three-
term arithmetic progressions. This problem has attracted much attention, starting
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with the original theorems of van de Waerden and Roth. The best known bounds
are as follows: for some constant c > 0,

N

ec
√
logN

≤ r3(N) ≤ N

(logN)1−o(1)
.

The lower bound, which comes from a construction of Behrend [2], is essentially
unchanged for more than sixty years. The upper bound, due to Sanders improves
many earlier results which gave smaller powers of logN in the denominator. Let
RL(C3,K

3
t ) denote the minimum n such that every n-vertex linear triangle-free

r-graph has an independent set of size t. Then RL(C3,K
3
t ) ≤ R(C3,K

3
t ) ≤ c2t

3/2

by Theorem 1. We prove the following:

Theorem 3. For some constants c1, c2 > 0,

t3/2

ec1
√
log t

≤ RL(C3,K
3
t ) ≤ c2

t3/2

(log t)1/2
.

This theorem is perhaps some support for believing R(C3,K
3
t ) = o(t3/2). This

relates to upper bounds on r3(N) as follows: if one is able to show

RL(C3,K
3
t ) = O

(
t3/2

(log t)c+3/4

)

for some c > 0, then we shall see that

r3(N) = O

(
N

(logN)3c

)
.

The random block construction for Theorem 1 extends more generally to give
lower bounds on all cycle-complete hypergraph Ramsey numbers. For all k, r ≥ 3
we give a construction of Ck-free r-graphs with low independence number based
on known results on Ck-free bipartite Ramanujan graphs of Lubotzky, Phillips and
Sarnak [4]. Specifically, we prove the following theorem by a suitable modification
of the random block construction. We write f = O∗(g) to denote that for some
constant c, f(t) = O((log t)cg(t)), and f = Ω∗(g) denotes that g = O∗(f).

Theorem 4. For r, k ≥ 3,

R(Ck,K
r
t ) = Ω∗

(
t1+

1

3k−1

)
.

The key point of this theorem is that the exponent 1+1/(3k−1) of t is bounded
away from 1 by a constant independent of r, and strictly improves for all r, k ≥ 5
the lower bounds given by considering appropriate random hypergraphs, namely

R(Ck,K
r
t ) = Ω∗

(
t1+

1

kr−k−r

)
.

In fact, using more complicated results about the distribution of prime numbers,
we can improve the exponent 1+1/(3k−1) slightly. Theorem 4 can be strengthened
for pentagons:



1164 Oberwolfach Report 19/2012

Theorem 5. For r ≥ 3,

R(C5,K
r
t ) = Ω∗(t5/4).

We suspect the exponent 5/4 above may be tight, and perhaps even more
generally, r(Ck,K

r
t ) = Θ∗(tk/(k−1)) for all r, k ≥ 3.
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On Possible Turán Densities

Oleg Pikhurko

Let F be a (possibly infinite) family of k-graphs (that is, k-uniform set systems).
We call elements of F forbidden. A k-graph G is F-free if no member F ∈ F is
a subgraph of G, that is, we cannot obtain F by deleting some vertices and edges
from G. The Turán function ex(n, F ) is the maximum number of edges that an F -
free k-graph on n vertices can have. This is one of the central questions of extremal
combinatorics that goes back to the fundamental paper of Turán [17]. We refer
the reader to the surveys of the Turán function by Füredi [9], Sidorenko [16], and
Keevash [12].

As it was observed by Katona, Nemetz, and Simonovits [11] the ratio ex(n,F)/
(
n
k

)

is non-increasing in n. In particular, the limit

π(F) := lim
n→∞

ex(n,F)(
n
k

)

exists. It is called the Turán density of F . Let Πk
∞ consist of all possible Turán

densities of k-graphs and let Πk
fin be the set of all possible Turán densities when

finitely many k-graphs are forbidden. Clearly, Πk
fin ⊆ Πk

∞.
For k = 2, the celebrated Erdős-Stone-Simonovits Theorem [7, 6] determines

the Turán density for every family F . In particular, we have

(1) Π2
fin = Π2

∞ =

{
m− 1

m
: m = 1, 2, 3, . . . ,∞

}
.

(It is convenient to allow empty families, so 1 ∈ Πk
fin for every k.)

Little is known about possible Turán densities for k ≥ 3. Brown and Si-
monovits [3, Theorem 1] noted that for every F and ǫ > 0 there is a finite F ′ ⊆ F
with π(F ′) ≤ π(F) + ǫ. It follows that Πk

∞ lies in the closure of Πk
fin. We show

that the set Πk
∞ ⊆ [0, 1] is closed (thus, it is, the closure of Πk

fin.).
Also, we show that, for every k ≥ 3, the set Πk

∞ has cardinality of the continuum.
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Since the number of finite families of k-graphs (up to isomorphism) is countable,
the last result implies that Πk

fin 6= Πk
∞ for k ≥ 3, answering one part of a question

of Baber and Talbot [1, Question 6].
Very few explicit numbers were proved to belong to Πk

fin. For example, before
2006 the only known members of Π3

fin were 0, 2/9, 4/9, 3/4, and 1 (see [2, 5, 10]).
Then Mubayi [13] showed that (m− 1)(m − 2)/m2 ∈ Π3

fin for every m ≥ 4. Very
recently, Baber and Talbot [1] and Falgas-Ravry and Vaughan [8] determined a few
further elements of Π3

fin; their proofs are computer-generated, being based on the
flag algebra approach of Razborov [14]. In all the cases when an explicit element
of Πk

fin is known, this limit density is achieved, informally speaking, by taking a
finite pattern and blowing it up optimally. Here we generalize these results (as far
as Πk

fin is concerned) by showing that every finite pattern where, moreover, we are
allowed to iterate the whole construction recursively inside a specified set of parts
produces a density in Πk

fin.
Chung and Graham [4, page 95] conjectured that Πk

fin consists of rational num-
bers only. We disprove this conjecture for every k ≥ 3. (Note that the conjecture
is true for k = 2 by (1).) Independently, Chung and Graham’s conjecture was
disproved by Baber and Talbot [1] who discovered a family of only three forbidden
3-graphs whose Turán density is irrational. We should mention that our proof re-
lies on the Strong Removal Lemma of Rödl and Schacht [15] so it produces families
F of huge size even for some small concrete pattern P .
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Analogies and differences: colouring elements of Zp and edges of Kn

Julia Wolf

It is a relatively well-known fact that given any 2-colouring of the cyclic group
Zp for p a prime, the number of monochromatic 3-term arithmetic progressions
depends only on the densities of the colour classes R and B. Using discrete Fourier

analysis, specifically the fact that 1̂R(t) = −1̂B(t) for t 6= 0, one easily obtains the
result that the number of monochromatic 3-term progressions in such a colouring
equals (1 − 3α + 3α2)p2, where one of the colour classes, R say, has size αp (see
also [2]). Note that this is precisely the number of 3-term progressions we would
expect if we were to choose the elements of the red colour class independently at
random from Zp with probability α.

While a similar formula holds for solutions to other equations in three variables,
for example Schur triples of the form x + y = z, the same is not true for longer
arithmetic progressions. It is not difficult to see that the number of monochromatic
4-term progressions in a given 2-colouring does not just depend on the density
ratio of the colour classes. Instead, we may ask for the minimum number of
monochromatic 4-term progressions in any 2-colouring of Zp, in the limit as p → ∞.
(We will normalize this quantity by the total number of arithmetic progressions
in the discussion that follows.)

An easy bound can be derived from van der Waerden’s theorem. This primitive
estimate was significantly improved by Cameron, Cilleruelo and Serra [1] to a
fraction of 2

33 . In [13] I improved this further to 1
16 . In the other direction, I

exhibited a 2-colouring of Zp with fewer than a proportion of 1
8 (1 − 1

259200 ) of
monochromatic 4-term progressions, which is slightly less than the proportion
expected in a random colouring. This colouring was based on an example of
Gowers [5], who constructed a set which is uniform in the sense of the Fourier
transform but contains fewer than the expected number of 4-term progressions
and is somewhat “quadratic” in nature. By purely computational efforts, Lu and
Peng [8] recently improved the lower and upper bounds on this problem to 7

96 and
17
150 , respectively. A gap remains.

This situation is very similar to the corresponding problem in graphs. A result
of Goodman [4] states that any 2-colouring of the edges of the complete graph
Kn contains at least the expected number of monochromatic triangles. In a next
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step, one wants to determine the minimum number of monochromatic K4s in any
2-colouring of Kn, a problem which has resisted complete resolution for quite
some time. Giraud [3] proved a lower bound of 1

46 by combinatorial arguments,

recently improved by Sperfeld [10] to 1
35 using flag algebras. On the other hand,

Thomason had disproved a conjecture of Erdős by constructing 2-colourings of
graphs with fewer than the random proportion, namely 1

33 , of monochromatic
K4s. Interestingly, the first such construction also used a quadratic form, while
later improvements were of a computational nature.

We observe that in Zp, a deep theorem from additive combinatorics (the so-
called inverse theorem for the U3 norm, due to Green and Tao [6], which implies
Szemerédi’s theorem for progressions of length 4) tells us that any colouring of
Zp that beats random for 4-term progressions must exhibit some (albeit relatively
weak) quadratic structure. Does a similar statement hold in the case of graphs?

The analogous question in the interval {1, 2, . . . , n} is also of interest. Here the
number of monochromatic 3-term progressions in a 2-colouring does not simply
depend on the density of the colour classes, so even for the shortest progressions
the question of determining the asymptotically minimal number is non-trivial and
has not been resolved (for the best known upper and lower bounds see [9]).
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On a conjecture of Erdős and Simonovits

Peter Keevash

(joint work with Benny Sudakov, Jacques Verstraëte)

Given a family F of graphs, a graph is F-free if it contains no copy of a graph in
F as a subgraph. The Turán number ex(n,F) is the maximum number of edges in
an F -free graph on n vertices. The Zarankiewicz number z(n,F) is the maximum
number of edges in an F -free bipartite graph on n vertices.

Let Ck denote a cycle of length k, and let Ck denote the set of cycles Cℓ, where
3 ≤ ℓ ≤ k and ℓ and k have the same parity. Erdős and Simonovits conjectured that
for any family F consisting of bipartite graphs there exists an odd integer k such
that ex(n,F∪Ck) ∼ z(n,F) – here we write f(n) ∼ g(n) if limn→∞ f(n)/g(n) = 1.
They proved this when F = {C4} by showing that ex(n, {C4, C5}) ∼ z(n,C4).

We extend this result by showing that if ℓ ∈ {2, 3, 5} and k > 2ℓ is odd, then
ex(n, C2ℓ ∪ {Ck}) ∼ z(n, C2ℓ). Furthermore, if k > 2ℓ+ 2 is odd, then for infinitely
many n we show that the extremal C2ℓ ∪ {Ck}-free graphs are bipartite incidence
graphs of generalized polygons. We observe that this exact result does not hold for
any odd k < 2ℓ, and furthermore the asymptotic result does not hold when (ℓ, k)
is (3, 3), (5, 3) or (5, 5). Our proofs make use of pseudorandomness properties of
nearly extremal graphs that are of independent interest.

Quasirandom permutations

Daniel Král’

(joint work with Oleg Pikhurko)

Generally speaking, a combinatorial object is called quasirandom if it has prop-
erties that a random object has (asymptotically) almost surely. This notion has
particularly been studied and developed for graphs. Extending earlier results of
Rödl [19] and Thomason [21], Chung, Graham and Wilson [4] gave seven proper-
ties that a sufficiently large graph has one of them if and only if it has all of them
and such that a random graph posseses them asymptotically almost surely (here,
we consider the model where each edge is included to a graph with probability
1/2 independently of the other edges). These properties include relative densities
of subgraphs, values of eigenvalues of the adjacency matrix or average size of a
common neighborhood of two vertices.

The results of Chung et al. [4] imply that if the number of 2-vertex and 4-vertex
subgraphs of a graph is asymptotically the same as in a random graph, then the
number of all subgraphs is also asymptotically as in a random graph. Specifically,
they show that if the number of edges of an n-vertex graph is (1/4 + o(1))n2 and
the number of induced cycles of length four is (3/64 + o(1))n4, then the number

of induced copies of any k-vertex graph H is (k!2−(k

2)/π + o(1))nk where π is
the number of automorphisms of H . Graham (see [5]) asked whether the same
phenomenon also appears in the case of permutations.
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We now give a precise description of the problem we study. Permutations
are treated as two linear orders on the same set of points and the order of a
permutation is the number of points in the underlying set. Let πj be a sequence
of permutations with orders nj tending to infinity. The sequence is asymptotically
k-symmetric if for every k-point permutation τ , |Prob[πj |k = τ ] − 1/k!| = o(1)
where Prob[πj |k = τ ] is the probability that πj restricted to a randomly chosen
k points is isomorphic to τ . Graham asked whether there exists k0 such that for
every k ≥ k0, every asymptotically k-symmetric sequence is also asymptotically
(k + 1)-symmetric. Cooper [5] defined a stronger notion of asymptotic symmetry
and he resolved the question under this stronger notion.

We answer the original question. We show for k ≥ 4 that every asymptotically
k-symmetric sequence of permutations is also asymptotically (k + 1)-symmetric.
We also give an example that the same statement is not true for k = 3 (the case
k = 1 is trivial and the counterexample for k = 2 has been known).

In the proof of our main result, we employ the recent framework of flag algebras
developed by Razborov [15]. This framework has been applied to many extremal
problems related to graphs [6, 7, 8, 9, 12, 14, 16, 18, 20], hypergraphs [2, 17] or
hypercubes [1, 3]. Our main result asserts that the “limit” of every asymptotically
4-symmetric sequence of permutations is the unique “uniform permutation limit”
(this directly implies the statement). The definition of a permutation limit follows
the lines of work on graph limits by Lovász and Szegedy [13] and it resembles the
concept developed in [10, 11].
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Independent sets in hypergraphs

József Balogh

(joint work with Robert Morris, Wojciech Samotij)

1. Introduction.

A great many questions researched in combinatorics fall into the following gen-
eral framework: Given a finite set V and a collection H ⊂ P(V ) of forbidden struc-
tures, what can be said about sets I ⊆ V that do not contain any member of H?
For example, the celebrated theorem of Szemerédi [12] states that if V = {1, . . . , n}
and H is a collection of k-term arithmetic progressions in [n] = {1, . . . , n}, then
every set I that contains no member of H satisfies |I| = o(n). The archetypal
problem studied in extremal graph theory, dating back to Turán’s theorem [13],
is the problem of characterizing sets I as above when V is the edge set of the
complete graph on n vertices and H is the collection of copies of some fixed graph
H in Kn. In this setting, much more can be said. We now know not only the
maximum size of I that contains no member of H, but also what the largest such
sets look like, how many of them there are, and what the structure of a typical
such set is. Therefore, one might say that a large part of extremal combinatorics
is concerned with studying independent sets in various hypergraphs.

The recently proved general transference theorems of Conlon-Gowers [2] and
Schacht [10], which they used to prove, among other things, sparse random ana-
logues of the classical theorems of Szemerédi [12], Erdős-Stone [5], and Turán [13],
were stated in the language of hypergraphs. Roughly speaking, these transfer-
ence theorems say that the independence number of a hypergraph whose edges
are sufficiently uniformly distributed is ‘well-behaved’ with respect to taking sub-
hypergraphs induced by random subsets of the vertex set with sufficiently large
density. More precisely, given p ∈ [0, 1] and a finite set V , we define the p-random
subset of V , denoted Vp, to be the random subset of V , where each element of V
is included with probability p, independently of all other elements. The results of
Conlon-Gowers [2] and Schacht [10] imply, in particular, that if the distribution
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of the edges of some uniform hypergraph H is sufficiently balanced, then with
probability tending to 1 as v(H) → ∞,

α
(
H[V (H)p]

)
≤ pα(H) + o

(
pv(H)

)
,

provided that p is sufficiently large.
In this work, we give a rough structural characterization of the family of all

independent sets in uniform hypergraphs whose edge distribution satisfies a cer-
tain natural boundedness condition. We prove that the independent sets of each
such hypergraph H exhibit a some type of clustering phenomenon. Our main re-
sult proves that the family I(H) of independent sets in H admits a partition into
relatively few classes such that all members of each class are essentially contained
in a single subset of V (H) that is almost independent, that is, it induces only
a tiny proportion of all the edges of H. This somewhat abstract statement has
surprisingly many deep and interesting consequences.

2. The main theorem.

Definition 1. Let H be a uniform hypergraph with vertex set V , let F be an
increasing family of subsets of V and let ε ∈ (0, 1]. We say that H is (F , ε)-dense
if

e(H[A]) ≥ εe(H)

for every A ∈ F . Denote by I(H) the family of all independent sets in H.

Example 2. Consider the k-uniform hypergraph H1 on the vertex set [n] whose
edges are all k-term arithmetic progressions in [n] and let F1 be the collection of
all subsets of [n] with at least δn elements. Clearly, F1 is an upset and it follows
from the theorem of Szemerédi [12] that H1 is (F1, ε)-dense for some positive ε
depending only on δ and k.

Theorem 3. For every k ∈ N and all positive c, c′ and ε, there exists a positive
constant C such that the following holds. Let H be a k-uniform hypergraph and let
F ⊆ P(V (H)) be an increasing family of sets such that |A| ≥ εv(H) for all A ∈ F .
Suppose that H is (F , ε)-dense and p ∈ (0, 1) is such that pk−1e(H) ≥ c′v(H) and
for every ℓ ∈ [k − 1],

∆ℓ(H) ≤ c · min

{
pℓ−k, pℓ−1 e(H)

v(H)

}
.

Then there exists a family S ⊆
( V (H)
≤Cp·v(H)

)
and functions f : S → F and g : I(H) →

S such that for every I ∈ I(H),

g(I) ⊆ I and I \ g(I) ⊆ f(g(I)).

For proof see [1].
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2.1. The number of sets with no k-term arithmetic progression. The cel-
ebrated theorem of Szemerédi says that for every k, the largest subset of [n] that
contains no k-term arithmetic progression (AP) has o(n) elements. Our first result
can be viewed as a sparse analogue of this statement.

Theorem 4. For every positive β and every positive integer k, there exist con-
stants C and n0 such that the following holds: For every n integer, if n ≥ n0 and
m ≥ Cn1−1/(k−1), then there are at most

(
βn
m

)
m-subsets of [n] that contain no

k-term AP.

Let us remark here that the sparse random analogue of Szemerédi’s theorem,
proved by Conlon and Gowers and independently by Schacht, follows as an easy
corollary of Theorem 4. A set A ⊆ N is (δ, k)-Szemerédi if every subset B ⊆ A
with at least δ|A| elements contains a k-term AP. Recall that [n]p denotes the
p-random subset of [n].

Theorem 5. For every δ ∈ (0, 1) and every k ∈ N, there exists a constant C such
that if p ≥ Cn−1/(k−1), then

lim
n→∞

Pr
(
[n]p is (δ, k)-Szemerédi

)
= 1.

We remark that both theorems are best possible up to the value of the constant
C.

2.2. Turán’s theorem for random graphs. The following result was proved
by Conlon and Gowers (under the assumption that H is strictly 2-balanced1) and,
independently, by Schacht.

Theorem 6. For every graph H with ∆(H) ≥ 2 and every positive δ, there exists
a positive constant C such that if pn ≥ Cn−1/m2(H), then a.a.s.

ex
(
G(n, pn), H

)
=

(
1 − 1

χ(H) − 1
± δ

)(
n

2

)
pn.

Our methods give yet another proof of this theorem in the case when H is
2-balanced. In fact, we deduce from our main result, a version of the general
transference theorem of Schacht, which quite easily implies the above result.

Finally, our methods also yield the sparse random analogue of the famous sta-
bility theorem of Erdős and Simonovits [11].

2.3. The typical structure of H-free graphs. Let H be an arbitrary non-
empty graph. We say that a graph G is H-free if G does not contain H as a
subgraph. For an integer n, denote by fn(H) the number of labeled H-free graphs
on the vertex set [n]. Since every subgraph of an H-free graph is also H-free, it
follows that fn(H) ≥ 2ex(n,H). Erdős, Frankl, and Rödl [3] proved that this crude
lower bound is in a sense tight, namely that

(1) fn(H) = 2ex(n,H)+o(n2).

1A graph H is strictly 2-balanced if m2(H) > m2(H′) for every proper H′ ⊂ H, where

m2(H) = maxF⊂H
e(F )−2
v(F )−1

.
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Our next result can be viewed as a ‘sparse version’ of (1). For integers n and m
with 0 ≤ m ≤

(
n
2

)
, let fn,m(H) be the number of labeled H-free graphs on the

vertex set [n] that have exactly m edges. We remark that the statement below
easily implies (1).

Theorem 7. Let H be a 2-balanced graph and let δ be a positive constant. There
exists a constant C such that for every n, if m ≥ Cn2−1/m2(H), then

(
ex(n,H)

m

)
≤ fn,m(H) ≤

(
ex(n,H) + δn2

m

)
.

Erdős, Kleitman, and Rothschild [4] proved that almost all triangle-free graphs
are bipartite. Our next result is an approximate sparse version of this statement
for an arbitrary 2-balanced graph H . Given a positive real δ and an integer k, let
us call a graph G (δ, k)-partite if G can be made k-partite by removing from it at
most δe(G) edges.

Theorem 8. Let H be a 2-balanced graph with χ(H) ≥ 3 and let δ be a positive
constant. There exists a constant C such that for every n, if m ≥ Cn2−1/m2(H),
then almost all n-vertex H-free graphs with m edges are

(
δ, χ(H) − 1

)
-partite.

3. The K LR conjecture.

For sparse graphs, that is, n-vertex graphs with o(n2) edges, the original version
of the regularity lemma is vacuous as all induced bipartite subgraphs in every
partition of the vertex set of a sparse graph into a bounded number of parts are
ε-regular, provided that n is sufficiently large. It was independently observed by
Kohayakawa [6] and Rödl [9] that the notion of ε-regularity may be extended in a
meaningful way to graphs with density tending to zero. Moreover, with this more
general notion of regularity, they proved an associated regularity lemma which
applies to a large class of sparse graphs.

Given a p ∈ [0, 1] and a positive ε, we say that a bipartite graph between sets
V1 and V2 is (ε, p)-regular if for every W1 ⊆ V1 and W2 ⊆ V2 with |W1| ≥ ε|V1|
and |W2| ≥ ε|V2|, the density d(W1,W2) of edges between W1 and W2 satisfies∣∣d(W1,W2) − d(V1, V2)

∣∣ ≤ εp.

A partition of the vertex set of a graph into r parts V1, . . . , Vr is said to be (ε, p)-
regular if

∣∣|Vi|−|Vj |
∣∣ ≤ 1 for all i and j and for all but at most εr2 pairs (Vi, Vj), the

graph induced between Vi and Vj is (ε, p)-regular. The class of graphs to which
the Kohayakawa-Rödl regularity lemma applies are the so-called upper-uniform
graphs. Given positive η and K, we say that an n-vertex graph G is (η, p,K)-
upper-uniform if for all W ⊆ V (G) with |W | ≥ ηn, the density of edges within W
satisfies d(W ) ≤ Kp. This condition is satisfied in many natural classes of graphs,
including all subgraphs of random graphs of given density p.

Let H be a graph on the vertex set {1, . . . , v(H)}, let ε and p be as above, and
let n and m be integers satisfying 0 ≤ m ≤ n2. Let us denote by G(H,n,m, p, ε)
the collection of all graphs G constructed in the following way. The vertex set of
G is a disjoint union V1∪ . . .∪Vv(H) of sets of size n, one for each vertex of H . For
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each edge {i, j} of H , we add to G an (ε, p)-regular graph with m edges between
the sets Vi and Vj . These are the only edges of G.

Intuitively, one would expect that all graphs in G(H,n,m, p, ε) contain a copy
of H provided that p ≫ n−1/m2(H). It was observed by  Luczak [8] that this is not
the case and for every p = o(1), there are H-free graphs in G(). Still, Kohayakawa,
 Luczak, and Rödl [7] conjectured (hence the name K LR conjecture) that there
are very few such graphs. It has been verified only in some special cases: for all
graphs H which do not contain a cycle, as well as when H = K3, K4, K5 or Cℓ.
Our final result is a proof of the K LR conjecture for all 2-balanced graphs.

Theorem 9. Let H be a fixed 2-balanced graph and let

G∗(H,n,m, p, ε) = {G ∈ G(H,n,m, p, ε) : G ⊃ H}.

Then for any positive β, there exist positive C, n0, and ε such that for all n and
m with n ≥ n0 and m ≥ Cn2−1/m2(H)

∣∣G∗(H,n,m,m/n2, ε)
∣∣ ≤ βm

(
n2

m

)e(H)

.

Note that Theorem 9 easily implies Turán’s theorem in random graphs, and its
stability version.
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[4] P. Erdős, D. J. Kleitman, B. L. Rothschild, Asymptotic enumeration of Kn-free graphs,

Colloquio Internazionale sulle Teorie Combinatorie (Rome, 1973), Tomo II (1986), 19–27.
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Linear trees in uniform hypergraphs

Zoltán Füredi

1. The main result, finding expanded forests in k-graphs

Given a graph H , the k-blowup (or k-expansion), denoted by [H ](k) (or H(k)

for short), is the k-uniform hypergraph obtained from H by replacing each edge
xy in H with a k-set Exy that consists of x, y and k− 2 new vertices such that for
distinct edges xy, x′y′, (Exy − {x, y}) ∩ (Ex′y′ − {x′, y′}) = ∅. If H has p vertices

and q edges, then H(k) has p + q(k − 2) vertices and q hyperedges. The resulting
H(k) is a k-uniform hypergraph whose vertex set contains the vertex set of H .

Given a forest T , define the following

σ(T ) := min{|X | + e(T \X) : X ⊂ V (T ) is independent in T }.
Here T \X is the forest left from T after deleting the vertices of X and the edges
incident to them, e(G) stands for the number of edges of the graph G.

Theorem 1. Given a forest T with at least one edge and an integer k ≥ 4. Then
we have as n → ∞, that

(1) ex(n, T (k)) = (σ(T ) − 1 + o(1))

(
n

k − 1

)
.

Our result, naturally, gives the same asymptotic as Theorem 5.3 in [4] whenever
both can be applied to T (k). We conjecture that (1) holds for k = 3, too.

Let us note that Mubayi [11] and Pikhurko [12] determined precisely (for large
n) the Turán number of the k-expansion of some other graphs, namely for the com-

plete graph Kℓ for ℓ > k ≥ 3. For smaller values of ℓ we know that exk(n,K
(k)
3 ) =(

n−1
k−1

)
for n > n(k), k ≥ 5, a conjecture of Chvátal and Erdős established in [4].

2. Linear paths

Concerning linear paths of two edges for triple systems (k = 3) Erdős and Sós [1]

determined ex3(n,P(3)
2 ) (it is n− 2, or n− 1, or n). For k ≥ 4 they conjectured

exk(n,P(k)
2 ) =

(
n− 2

k − 2

)

for sufficiently large n with respect to k. This was proved by Frankl [2]. The case
k = 4 was finished for all n by Keevash, Mubayi, and Wilson [9].

The case ℓ < k was asymptotically determined in [4].
Since the paper by G. Y. Katona and Kierstead [8] (1999) there is a renewed

interest concerning paths and (Hamilton) cycles in uniform hypergraphs. Most
of these are Dirac type results (large minimum degree implies the existence of
the desired substructure) like in Kühn and Osthus [10], Rödl, Ruciński, and Sze-
merédi [13].
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The present author, Tao Jiang, and Robert Seiver [7] determined exk(n,P(k)
ℓ )

exactly, for all fixed k, ℓ, where k ≥ 4, and sufficiently large n proving

(2) exk(n,P(k)
2t+1) =

(
n− 1

k − 1

)
+

(
n− 2

k − 1

)
+ . . . +

(
n− t

k − 1

)
,

where the only extremal family consists of all the k-sets in [n] that meet some
fixed set S of t elements, and

(3) ex(n,P(k)
2t+2) =

(
n− 1

k − 1

)
+

(
n− 2

k − 1

)
+ . . . +

(
n− t

k − 1

)
+

(
n− t− 2

k − 2

)
,

where the only extremal family consists of all the k-sets in [n] that meet some
fixed set S of t elements plus all the k-sets in [n] \ S that contain some two fixed
elements. ‘Sufficiently large’ n means that (2) and (3) hold when kt = O(log log n).
It is conjectured that they hold for all (or at least almost all) n’s. The method
in [7] does not quite work for the k = 3 case (cf. the remark after Lemma 3 below)
but it is conjectured that still similar results hold for k = 3.

3. The product construction

Given two set systems (or hypergraphs) A and B their join is the family {A∪B :
A ∈ A, B ∈ B}. We denote this new hypergraph by A ⋊⋉ B.

Call a set Y 1-cross-cut of a family C if |Y ∩E| = 1 holds for all E ∈ C. Define
τ1(C) as the minimum size of a 1-cross-cut of C (if such cross-cut exists, otherwise
τ1 := ∞). One can see that every forest T and k ≥ 3 the following holds.

σ(T ) = τ1(T (k)).

Thus σ(T ) is the minimum size of a set Y such that T (k) can be embedded into(
Y
1

)
⋊⋉

(
Z

k−1

)
where Y and Z are disjoint sets, |Z| ≥ kq. This means that in case

of Y := [σ − 1], Z := [n] \ Y the hypergraph
(
Y
1

)
⋊⋉

(
Z

k−1

)
does not contain any

copy of T (k). We obtain the lower bound

ex(n, T (k)) ≥ |{E : E ∈
(

[n]

k

)
, |E ∩ [σ − 1]| = 1}| = (σ − 1)

(
n− σ + 1

k − 1

)
.

4. The graph of 2-kernels, starting the proof with the delta-system
method

Given a family F ⊆
(
[n]
k

)
, the kernel-graph with threshold s is a graph G :=

G2,s(F) on [n] such that ∀x, y ∈ [n], xy ∈ E(G) if and only if deg∗F ({x, y}) ≥ s.
Here deg∗F (W ) stands for the number of pairwise disjoint edges in {F \W : W ⊂
F ∈ F}. The following (easy) lemma shows the importance of this definition.

Lemma 2 (see [7]). Let H be a graph with q edges, s = kq, and let F ⊆
(
[n]
k

)
. Let

G2 be the kernel graph of F with threshold s. If H ⊆ G2, then F contains a copy
of H(k). �



Mini-Workshop: Hypergraph Turán Problem 1177

The delta-system method is a powerful tool for solving set system problems.
Using a structural lemma from [5] and the method developed in [3, 4] the following
theorem was obtained in [7] (see Theorem 3.8 and the proof of Lemma 4.3 there).

Lemma 3 (see [7]). Let F ⊆
(
[n]
k

)
, T a forest of v vertices, s = kv, G2 := G2(F),

and suppose that F does not contain T (k). Then there is a constant c := c(k, v)
and a partition F = F1 ∪ F2 with the following properties.
— |F1| ≤ c

(
n−2
k−2

)
.

— Every edge F ∈ F2 has a center (not necessarily unique) x(F ) ∈ F such that
G2|F contains a star of size k − 1 with center x(F ). In other words, {x(F ), y} ∈
E(G2) for all y ∈ F \ {x(F )}. �

Actually, the delta-system method describes the intersection structure of F in
a more detailed way, but for our purpose this lemma is sufficient. Lemma 3 and
in fact the main result of this talk, Theorem 1 preceded (2)–(3), see [6].

Note that this is the only point where k ≥ 4 is used. Lemma 3 is not true for
k = 3. The 3-graph F3 obtained by joining a matching of size t and t one-element
sets has n = 3t vertices, t2 = n2/9 = Ω(nk−1) edges, it does not contain any linear
tree except stars but G2,s(F3) forms a matching for every s ≥ 2.
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Codegree densities of 3-graphs

Emil R. Vaughan

(joint work with Victor Falgas-Ravry, Oleg Pikhurko)

Given a 3-graph G, the codegree of a pair of distinct vertices {x, y} ∈ V (G) is the
number of 3-edges that contain {x, y}. We define δ2(G) to be the minimum of the
codegree over all pairs. For a forbidden 3-graph F , we define

coex(n, F ) = max {δ2(G) : G is an F -free 3-graph on n vertices} .
The codegree density is defined to be

γ(F ) = lim
n→∞

coex(n, F )

n
.

Mubayi and Zhao [3] showed that this limit always exists. Mubayi [2] showed that
γ(Fano) = 1/2 and Keevash and Zhao [1] showed that for each i ≥ 1 there is a
3-graph F for which γ(F ) = 1 − 1/i.

Nagle [4] conjectured that γ(K−
4 ) = 1/4 and γ(K4) = 1/2, where K−

4 and K4

are the 3-graphs on 4 vertices with 3 and 4 edges respectively.
Let T be a tournament on n vertices. Define C3(T ) to be the 3-graph on n

vertices that has an edge xyz iff {x, y, z} induces an oriented 3-cycle in T . C3(T )
has bipartite link graphs, and so does not contain K−

4 as a subgraph. If the arcs
of T are chosen independently at random, with high probability

δ2(C3(T )) = (1/4 + o(1))n.

Thus γ(K−
4 ) ≥ 1/4. Using a computer and flag algebras, we are able to show the

following:

Proposition 1 (Density). γ(K−
4 ) = 1/4.

We can also show:

Proposition 2 (Stability). If G is K−
4 -free and δ2(G) ≥ (1/4 + o(1))n then there

is a tournament T such that G is at edit distance o(n3) from C3(T ).
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Loebl-Komlós-Sós Conjecture and structure of possibly sparse graphs

Jan Hladký

(joint work with János Komlós, Diana Piguet, Miklós Simonovits, Maya J. Stein,
Endre Szemerédi)

In the talk I outlined a technique to decompose graphs for the purpose of embed-
ding trees. The motivation comes from the following two conjectures:

Conjecture 1 (Erdős-Sós Conjecture (1963, [2])). Let G be a graph of order n
with more than (k − 1)n/2 edges. Then G contains each tree of order k + 1 as a
subgraph.

Conjecture 2 (Loebl-Komlós-Sós Conjecture (1995, [3])). Let G be a graph of
order n with half of its vertices of degrees at least k. Then G contains each tree of
order k + 1 as a subgraph.

The so-called “dense cases” of these conjectures seem to be approachable by
the Szemerédi Regularity Lemma [6], that is when k is linear in n. Indeed, such
a program was carried out in the context of the Loebl-Komlós-Sós Conjecture,
see [5, 4, 1].

Ajtai, Komlós, Simonovits, and Szemerédi announced a solution of the Erdős-
Sós Conjecture for all k > k0 in the early 1990’s. The key to this breakthrough
is a decomposition of possibly sparse graphs which can be utilized for the pur-
pose of embedding trees. In a relatively recent, and yet unpublished joint work
with Komlós, Piguet, Simonovits, Stein, and Szemerédi we proved using a similar
decomposition the following approximate version of the Loebl-Komlós-Sós Conjec-
ture.

Theorem 3. For each ǫ > 0 there exists a k0 such that for each k > k0 and each
graph G which has at least half of its vertices of degrees at least (1 + ǫ)k contains
all trees of order k + 1 as subgraphs.

In the talk I gave a high-level overview of the decomposition of n-vertex graphs
with Θ(kn) edges, a key structural step in attacking the Erdős-Sós Conjecture,
or the Loebl-Komlós-Sós Conjecture. This decomposition — like the Szemerédi
Regularity Lemma — is not perfect, i.e., we allow o(kn) edges to be lost. There are
three main components of the decomposition: vertices of huge degree (≫ k), dense
spots (which are dense graphs of order Θ(k) contained in the host graph), and an
expander-like graph. The dense spots are further regularized using a variant of
the Szemerédi Regularity Lemma. I tried to indicate why is each of these three
components useful for embedding trees.

While this decomposition result is a very general one, it seems to be limited
only to problems involving embeddings of trees. This is not surprising as there
seems not to exist a “canonical” or “ultimate” regularity lemma for general sparse
graphs. It would be of interest to find other applications of this technique, for
example for hypergraphs.
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