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Introduction by the Organisers

The study of actions of semigroups and groups on C∗-algebras as well as the
study of individual endomorphisms and automorphisms of C∗-algebras is of central
importance in operator algebra theory and has a long tradition in the subject. An
important basis for this is the fact that one can associate a C∗-algebra, the crossed
product, to such an action which reflects the dynamical behaviour of the action
and of the algebra. This construction is an inexhaustible source of interesting
examples of C∗-algebras. Whilst for automorphic actions the concept of a crossed
product is well understood and established, the theory of crossed products by
endomorphisms is much more subtle and has been subject of research in the past
30 years. There are many related constructions in the literature, such as Pimsner
algebras, which can be regarded as crossed products by correspondences, and the
intensively studied class of graph algebras.
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Recently there is a renewed interest in the study of endomorphisms of C∗-
algebras and in related constructions such as crossed products by semigroups or the
C∗-algebras associated with the left or right regular representation of a semigroup.
This new interest is mainly due to many intriguing explicit examples provided
by structures from other fields such as number theory or ergodic theory. In a
recent development the dilation theory for such semigroup crossed products made
it possible to use the Baum-Connes conjecture to determine the K-theory of such
semigroup crossed products in many cases.

Many of these constructions produce examples of interesting C∗-algebras which
tend to be purely infinite simple as well as nonsimple and thus provide important
potential examples for the classification of simple and non-simple purely infinite
C∗-algebras.

There have also been remarkable advances in the study of individual endomor-
phisms and automorphisms as well as groups and subgroups of the automorphism
group of special C∗-algebras in particular Cuntz algebras and other related C∗-
algebras such as graph algebras.

As a mostly new development during the past decade, algebraists study alge-
braic counterparts of the constructions of C∗-algebras listed above. They have
extended K-theory computations from the realm of C∗-algebras to this algebraic
setting. An interesting line of investigations is to find out to what extent the clas-
sification of the C∗-algebraic constructions via K-theory prevails in this purely
algebraic setting. Many further developments in this and the previously men-
tioned areas are to be expected in the near future.

The workshop gave the unique opportunity to bring together experts from dif-
ferent areas to discuss and lecture about all these different developments. It is
a pleasure to thank the Mathematisches Forschungsinstitut Oberwolfach for pro-
viding this opportunity and a fantastic environment for this meeting with an ever
smooth organisation and support. Special thanks go to the very competent and
helpful staff of the institute and to the chef de cuisine.

It is also a pleasure for the organisers to thank all participants of the workshop
for their contributions in lectures held at the workshop and the stimulating dis-
cussions following or in between the lectures, which made this workshop an ample
success.
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Abstracts

Dilations and full corners

Marcelo Laca

This is a summary of the contents of my two talks at the workshop. The main
results discussed here have appeared in [5] and in further recent work [6, 9, 7, 2, 3].
The first section corresponds roughly to the first talk and consists of general facts
about crossed products by semigroups of endomorphisms and their relation to
crossed products by groups of automorphisms. Via this relation, much of the
powerful machinery available for group crossed products can be used on semigroup
crossed products. Several examples of such applications are given in the second
section, which corresponds, roughly again, to the second talk.

By a monoid or a semigroup (with identity) we mean a multiplicatively closed
subset of a group. Such a subset defines a left and a right partial orders on the
group. When the group G acts on a C*-algebra B by automorphisms, the role of
the semigroup can be assimilated by considering a distinguished subalgebra A ⊂ B
that is invariant under the action restricted to S; alternatively, one may simply
consider the endomorphic action of S on the subalgebra A (by injective endomor-
phisms). We shall see that under some assumptions, these two points of view are
equivalent. When one cuts down to the invariant subalgebra and restricts the at-
tention to the action of the positive cone in the left order, automorphisms become
endomorphisms. The process is reversed by a localization-type construction that
enlarges the C*-algebra A and extends the endomorphisms to automorphisms.

These results are also valid for projective isometric representations and twisted
crossed products with circle-valued multipliers. Indeed, one of the original mo-
tivations was the problem of extending multipliers from a semigroup to a group,
following work of Arveson and Dinh on twisted units of product systems. For
simplicity, twists are not discussed here; those details are to be found in [5].

1. Semigroup crossed products

1.1. Covariant representations. Suppose A is a unital C*-algebra and let
α be an action of the semigroup S by endomorphisms of A (not necessarily
unit-preserving). A covariant representation of the semigroup dynamical system
(A,S, α) on a C*-algebra C is a pair (π, V ) in which

(1) π is a unital homomorphism of A to C,
(2) V : S → C is a representation of S by isometries in C, i.e., VsVt = Vst,

V ∗
s Vs = I and

(3) the covariance condition π(αt(a)) = Vtπ(a)V
∗
t holds for every a ∈ A and

t ∈ S.

The (semigroup) crossed product associated to (A,S, α) is a C*-algebra A⋊α S
together with a unital homomorphism iA : A → A⋊α S and a representation of S
by isometries iS : S → A⋊α S such that
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(1) (iA, iS) is a covariant representation for (A,S, α),
(2) for any other covariant representation (π, V ) there is a representation π×V

of A⋊α S such that π = (π × V ) ◦ iA and V = (π × V ) ◦ iS , and
(3) A⋊α S is generated by iA(A) and iS(S) as a C*-algebra.

This definition was originally motivated by (and tailored for) the study of
Toeplitz algebras [4]. Specifically, if S is a cancellative semigroup with identity,
the C*-algebra generated by the left regular representation can often be realized
as a semigroup crossed product BS ⋊S where BS is an abelian (diagonal) algebra
generated by certain projections in ℓ∞(S).

1.2. Ore semigroups. A classical result of Ore asserts that a monoid S embeds
in a group G with S−1S = G iff S is cancellative and Ss ∩ St 6= ∅ for every pair
s, t ∈ S, i.e. S is an Ore monoid. In this case, the group G is determined by
S, and every monoid morphism ϕ of S to a group G extends uniquely to a group
homomorphism ϕ̃ : G → G defined by ϕ̃(x−1y) = ϕ(x)−1ϕ(y). An equivalent form
of the Ore condition is that the right (partial) order defined by

s �r t if t ∈ Ss

is cofinal in the sense that for every pair x, y ∈ S there exists z ∈ S such that
x �r z and y �r z.

1.3. Examples. Various Ore monoids that appear in the context of semigroup
actions include: subsemigroups of abelian groups; pullbacks of positive cones from
totally ordered quotients; normal semigroups (i.e those for which xS = Sx for all
x ∈ S); semidirect products such as the “ax + b” (or affine) semigroup R ⋊ R×

with R the ring of algebraic integers in a number field; integer matrices with
positive determinant; and Artin groups of finite type (i.e. those with finite Coxeter
quotients) as introduced by Brieskorn and Saito and by Deligne. In contrast,
nonabelian free monoids, and more generally, Artin monoids of rectangular type
do not satisfy the Ore condition.

It is immediate that the monomials v∗xavy with a ∈ A, and x, y ∈ S, generate
the crossed product A⋊S as a C*-algebra, but when S is an Ore semigroup these
monomials are closed under multiplication. Specifically, given y and r there exist
t and z in S such that ty = zr, hence

v∗xavyv
∗
rbvs = v∗xavyv

∗
tyvzrv

∗
rbvs = v∗xavyv

∗
yv

∗
t vzvrv

∗
rbvs

= v∗xv
∗
t αt(aαy(1))αz(αr(1)b)vzvs = v∗txαt(aαy(1))αz(αr(1)b)vzs.

The linear span of such monomials is thus a dense *-subalgebra of A⋊ S.

1.4. Dilations and extensions. The first main result is a dilation theorem for
semigroups of isometries and the second one is an extension of endomorphisms
to automorphisms. Then a dilation of the covariant representations leads to the
realization of the semigroup crossed product as a corner. The proofs rely on
(twisted) direct limit constructions of the relevant structures.
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Theorem 1. Suppose S is an Ore semigroup and let G = S−1S. Let {Vs : s ∈ S}
be an isometric representation of S on a Hilbert space H. Then there exists a
unitary representation of G on a Hilbert space H containing a copy of H such that

(i) Us leaves H invariant and Us|H = Vs; and
(ii)

⋃
s∈S U∗

sH is dense in H.

Moreover, U and H are unique up to canonical isomorphism.

Let us recall that if p is a projection in a C*-algebra A then the algebra pAp is a
corner in A; the projection p is said to be full if the linear span of ApA is dense in
A. The most relevant feature of full corners is that if pAp is a full corner in A, then
pA is a full Hilbert bimodule implementing the Morita equivalence, in the sense of
Rieffel, of pAp to A. This Morita equivalence allows one to transfer the technology
of crossed products by group actions to the semigroup crossed products.

There are two steps in realizing a semigroup crossed product as a corner in a
crossed product by a group action. The first one is the extension of a semigroup of
(injective) endomorphisms to a group of automorphisms, and the second one is the
corresponding dilation-extension of covariant representations from the semigroup
dynamical system to the dilated system. This generalizes results from [10].

Theorem 2. Assume S is an Ore monoid and let G = S−1S. Let α be an action
of S by injective endomorphisms of the unital C*-algebra A. Then

(1) there exists a C*-dynamical system (B,G, β), unique up to canonical iso-
morphism, consisting of an action β of G by automorphisms of a C*-
algebra B and an embedding i : A → B such that
(a) β dilates α, that is, βs ◦ i = i ◦ αs for s ∈ S, and
(b) (B,G, β) is minimal, that is,

⋃
s∈S β−1

s (i(A)) is dense in B;
(2) the projection i(1A) is full in B ⋊β G;
(3) the semigroup crossed product A⋊α S is canonically isomorphic to the full

corner i(1A)(B ⋊β G)i(1A).

The system (B,G, β) characterized by conditions (1)(a) and (1)(b) in the the-
orem is called the minimal automorphic dilation of (A,S, α). The crossed product
B ⋊β,µ G of this minimal automorphic dilation is thus Morita equivalent to the
semigroup crossed product A⋊α,λ S.

Without the injectivity assumption it is still possible to carry out the above
constructions; however, the resulting homomorphism i : A → B may not be an
embedding any more, e.g. see Example 2.1(a) of [11] where the limit algebra B is
trivial. As in [11, Proposition 2.2] which deals with the case S = N, we conclude
that the crossed product A⋊α S is nontrivial if and only if B 6= {0}. Clearly, this
is the case when, for instance, the endomorphisms are injective.

2. Examples and Applications

2.1. Integral adeles under multiplication by N×. It follows from [8, Corollary
2.10] that the Bost-Connes Hecke C*-algebra CQ is canonically isomorphic to the
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semigroup crossed product C(Z) ⋊ N× where Z :=
∏

p Zp is the ring of integral

adeles, and the endomorphisms αn consist of ‘division by n’ in
∏

p Zp:

αn(f)(x) =

{
f(x/n) if x ∈ nZ
0 otherwise.

The diagonally embedded natural numbers N× →֒ Z form a multiplicative set
with no zero-divisors, so we may localize Z at N×, obtaining a locally compact
ring (N×)−1Z in which division by an element of N× is always possible. This allows
us to extend the endomorphism αn to an automorphism βn. Clearly (N×)−1Z is
the locally compact ring Af of finite adeles, which has Z as its maximal compact
open subring, and there is an action β of Q∗

+ = (N×)−1N× by automorphisms of
C0(Af ) arising from the diagonal embedding Q∗

+ →֒ Af :

βr(f)(a) = f(r−1a), a ∈ Af , r ∈ Q∗
+.

Since Z is compact and open, its characteristic function 1Z is a projection in
C0(Af ) and there is an obvious embedding i of C(Z) as the corresponding ideal
of C0(Af ), namely, for f ∈ C(Z), let

i(f)(a) =

{
f(a) if a ∈ Z
0 if a /∈ Z.

A direct application of Theorem 2, using uniqueness, gives the following.

Theorem 3. The system (C0(Af ),Q
∗
+, β) is the minimal automorphic dilation

of (C(Z),N×, α). Hence the Bost-Connes algebra CQ is (isomorphic to) the full
corner of C0(Af )⋊β Q∗

+ determined by the projection 1Z .

Since the discrete multiplicative group Q∗
+ acts by homotheties on the locally

compact (additive) group Af , and since the self-duality of Af satisfies 〈rx, y〉 =
〈x, ry〉 for r ∈ Q∗

+, then C∗(Af ) is covariantly isomorphic to C0(Af ) and hence
C0(Af )⋊Q∗

+
∼= C∗(Af )⋊Q∗

+
∼= C∗(Af ⋊Q∗

+). Hence CQ is a full corner also in the
group C*-algebra of Af⋊Q∗

+, corresponding to the Fourier transform eZ ∈ C∗(Af )
of 1Z ∈ C0(Af ).

2.2. Neshveyev’s approach to uniqueness and type of KMS states. Each
KMSβ state of the BC algebra CQ gives a probability measure on Z through the
unital embedding C(Z) →֒ C(Z)⋊ N× ∼= CQ. Using the scaling property of KMS
states this probability can be uniquely extended to an (infinite) positive measure
µβ on Af quasi-invariant under Q∗

+. For each of these measures µβ , the (mea-
sure theoretic) dynamical system (Af ,Q

∗
+,Mult., µβ) determines a von Neumann

algebra crossed product L∞(Af , µβ)⋊Q∗
+. These are examples of the Murray-von

Neumann group-measure space construction, for which there are known criteria
of factoriality and type. In [9] Neshveyev showed that for β ∈ (0, 1] the dilated
action of Q∗

+ is ergodic with respect to µβ since µβ is quasi invariant but has no
atoms and no equivalent invariant measure, the associated KMSβ state of the full
corner is unique and a factor of type III. Further analysis of the action of Q∗

+ on
the full adeles show that the type is III1, providing a simplification of the original
proof of Bost and Connes.
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2.3. Affine monoids of rings. Let R be the ring of integers in an algebraic
number field, and let R× := R \ {0} be the nonzero elements. In [2] we studied
the C*-algebra T (R⋊R×) generated by the left regular representation of R⋊R×.
Note that S−1S is a group but SS−1 is not, so the C*-algebras of the left and the
right regular representations of S are quite different. We show that T (R ⋊ R×)
is semigroup crossed product of the form C(ΩR) ⋊ (R ⋊ R×). To construct the

compact space ΩR, we first let R̂ be the profinite completion of R under the
projective system R/bR → R/aR when a−1b ∈ R (this projective limit is the

space of integral adeles over K; e.g. it yields R̂ =
∏

p Zp when K = Q). Next take

R̂× R̂ modulo the equivalence relation

(3.1) (r, a) ∼ (s, b) ⇐⇒ aR̂∗ = bR̂∗ and s− r ∈ aR̂,

where R̂∗ denotes the group of units (i.e. invertible elements) in R̂. The resulting
compact space ΩR has an obvious action of R⋊R× given by

(x, k) · ωr,a = ωx+kr,ka (x, k) ∈ R⋊R×.

It is now easy to find a good candidate for the minimal dilation. Let Af be the
locally compact, totally disconnected ring of finite adeles over K, which can be
regarded as the localization (R×)−1R̂ of the ring R̂ at the multiplicative set R×.
The space ΩA is the quotient of Af ×Af by (3.1), now with r, a, s, b in Af . If we
denote the class of (r, a) ∈ Af × Af by ωr,a, then the group K ⋊K× acts on ΩA

in the obvious way by (x, k) · ωr,a = ωx+kr,ka, and Theorem 2 yields

Theorem 4 (cf. [2]). T (R⋊R×) ∼= 1ΩR
(C(ΩA)⋊K ⋊K×)1ΩR

The primitive ideal space of (R ⋊ R×) can be described using this full corner
realization.

Theorem 5 (cf. [3]). Let 2P denote the power set of the set of prime ideals of R
with the power-cofinite topology, in which the basic open sets are indexed by finite
sets G ⊆ P and are given by UG = {T ∈ 2P : T ∩G = ∅}. For each subset A of P
let IA be the kernel of the compression to T (R⋊R×) of the induced representation
corresponding to a point ωr,a with A = {p ∈ P : ap = 0} and trivial stabilizer.
Then the map A 7→ IA is a homeomorphism of 2P to PrimT (R⋊R×).

2.4. Further research. Similar dilation and full corner results have been ob-
tained in [1] at the purely algebraic level and it is very likely that more general
versions and further applications lie ahead. Current work of X. Li on the realiza-
tion of the C*-algebras associated to general cancellative semigroups also points
to generalizations that go beyond Ore semigroups.
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Endomorphisms, transfer operators, interactions and interaction

groups

Ruy Exel

The purpose of this two-lecture presentation is to describe a new concept of
crossed-products introduced in [2] (see also [1], [3], [4], [5] and [6]). Given a
unital C*-algebra A and a discrete group G, we say that the triple (A,G, V ) is an
interaction group [2, Definition 3.1] if V is a positive linear map

V : G → B(A),

where B(A) refers to the set of all bounded linear maps on A, such that, for every
g and h in G, one has

i) V1 = idA,

ii) Vg−1VgVh = Vg−1Vgh,

iii) VgVhVh−1 = VghVh−1 ,

iv) Vg(1) = 1,

v) Vg(ab) = Vg(a)Vg(b), for every a in A and every b in the range of Vg−1 .

If V : G → Aut(A) is an action of G by automorphisms of A, then evidently
(A, V,G) is an interaction group. Besides this intensively studied class of examples,
interaction groups are meant to generalize group actions to situations in which the
dynamical system involves irreversible processes. Perhaps the most basic example
to include the idea of irreversibility originates from transfer operators.

*Partially supported by CNPq.
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Recall from [1] that, given a unital endomorphism α of a C*-algebra A, we say
that a transfer operator for α is a positive, unital, linear map

L : A → A

such that L(aα(b)) = L(a)b, for all a and b in A.
Once such a transfer operator is given, define, for every n in Z,

Vn : A → A,

by

Vn =

{
αn, when n ≥ 0, and

L−n, when n < 0.

It is an easy exercise to check that V provides an interaction group.
Other interesting examples are obtained as follows: Let X be a compact space

and let T, S : X → X be surjective local homeomorphisms which commute. As
in [6, Definition 10.1] we say that T and S *-commute if, whenever T (x) = S(y),
there exists a unique z in X such that x = S(z) and y = T (z). Let us therefore
assume that T and S satisfy this property.

To simplify we will also assume that the number of inverse images of any point
in X under T is constant, and that the same holds for S (see [6, section 13] for the
general case). For each n ∈ Z, let Vn be the linear transformation of C(X) given
by

Vn(f)|y =





1

#(Tn)−1(y)

∑

Tn(x)=y

f(Sn(x)) , if n ≥ 0,

1
#(Sm)−1(y)

∑

Sm(x)=y

f(Tm(x)), if m := −n > 0,

for every f ∈ C(X), and y ∈ X . Assuming that neither T nor S are injective, this
example of interaction group is interesting because Vn is not an endomorphism for
every n. Please see [6, section 13] for more details.

Given an interaction group (A,G, V ), one may prove that the range of each
Vg is a closed *-subalgebra of A and that VgVg−1 is a conditional expectation
onto Vg(A). When all such conditional expectations are faithful, we say that the
interaction group is faithful.

Let us assume from now on that (A,G, V ) is a given faithful interaction group.

1. Definition. [2, Definition 4.1] A covariant representation of (A,G, V ) in a
unital C*-algebra B is a pair (π, v), where π : A → B is a unital *-homomorphism
and v : G → B is a *-partial representation, meaning that for every g and h in G,

i) v1 = 1,

ii) (vg)
∗ = vg−1 ,

iii) vg−1vgvh = vg−1vgh, and moreover such that

vgπ(a)vg−1 = π
(
Vg(a)

)
vgvg−1 ,

for every a ∈ A.
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2. Definition. [2, Definition 5.1] The Toeplitz algebra of (A,G, V ), denoted
T (A,G, V ), is the universal unital C*-algebra generated by the set

A ∪ {vg : g ∈ G}

subject to the relations making the standard maps a 7→ a, and g 7→ vg, a covariant
representation.

By the universal property of T (A,G, V ), its representations correspond bijec-
tively to the covariant representations of (A, V,G).

One rather uninteresting example of covariant representation is obtained by tak-
ing any *-homomorphism π : A → B, and setting vg ≡ 0. As already mentioned,
this uninteresting representation will give rise to a representation of T (A,G, V )
into B. One should interpret this as saying that T (A,G, V ) is too big, allowing
for too many representations. Therefore, should we want to construct a manage-
able algebra, the excess fat of T (A,G, V ) should be modded out. This is precisely
the motivation for introducing the concept of redundancies, which we shall now
describe.

Let α = (g1, g2, . . . , gn) be a finite sequence of elements of G. Working within
T (A,G, V ), let

Zα = span{a0vg1a1vg2a2 . . . vgnan : a0, a1, . . . , an ∈ A},

and

Mα = span{avg1vg2 . . . vgnb : a, b ∈ A}.

If β = (h1, h2, . . . , hm) is another finite sequence of elements of G, one may
prove [2, proposition 4.9] that

ZβMα ⊆ Mα, (†)

whenever

(i) h1h2 . . . hm = 1, and

(ii) µ(β) ⊆ µ(α),

where µ(α) is the set of all products of initial segments of α, namely

µ(α) = {1, g1, g1g2, g1g2g3, . . . , g1g2g3 . . . gn},

and similarly for µ(β).
For a fixed α, defineKα to be the closed sum of all Zβ , for β satisfying conditions

(i) and (ii) above. By [2, proposition 4.7], one has that Kα is a closed *-subalgebra
of T (A,G, V ). In addition, by (†) one clearly has that

KαMα ⊆ Mα.

3. Definition. [2, Section 6]

a) By an α-redundancy we shall mean any element k ∈ Kα, such that

kMα = {0}.
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b) The redundancy ideal is the ideal of T (A,G, V ) generated by all α-redundancies,
for all finite sequences α of elements of G.

c) The crossed product of A by G under V , denoted A ⋊V G, is the C*-algebra
obtained by taking the quotient of T (A,G, V ) by the redundancy ideal.

Should the reader be unimpressed by the notion of redundancies, there is a
special case in which an alternate and much more elementary construction of
A ⋊V G may be obtained. The special case we have in mind is characterized by
the existence of a faithful state φ on A which is invariant under V , in the sense
that

φ
(
Vg(a)

)
= φ(a), ∀g ∈ G, ∀a ∈ A.

Once φ is given, let π be the GNS representation of A associated to φ. Denoting
by H the representation space and by ξ the standard cyclic vector, one may prove
that, for each g in G, the correspondence

π(a)ξ 7→ π
(
Vg(a)

)
ξ

extends to a bounded linear map on H , which we shall denote by vg.
It may then be proved [2, proposition 11.4] that (π, v) is a covariant represen-

tation of (A,G, V ), which therefore extends to T (A,G, V ). In fact, this represen-
tation is strongly covariant in the sense that it vanishes on the redundancy ideal
and hence factors through the crossed product A⋊V G. In many cases this repre-
sentation is faithful, but not always. The reason it should not always be expected
to be faithful is quite elementary: if our interaction group consists of a true group
action, and should this action happen to be the trivial action, the above represen-
tation will clearly not be faithful, not least because one would then have vg = I,
for all g.

Fortunately there is a simple way to fix this. Let λ be the left regular represen-
tation of G on ℓ2(G).

4. Theorem. [2, Theorem 11.7] If φ is a V -invariant state as above, then (π ⊗
1, v⊗λ) is a covariant representation of (A,G, V ) on H⊗ ℓ2(G). Assuming that G
is amenable, the kernel of the associated representation of T (A,G, V ) is precisely
the redundancy ideal. Therefore A⋊V G is isomorphic to the closed *-subalgebra
of B

(
H ⊗ ℓ2(G)

)
generated by

{π(a)⊗ 1 : a ∈ A} ∪ {vg ⊗ λg : g ∈ G}.

In other words, this means that one may use the above to define the crossed
product algebra without worrying about redundancies at all!

To conclude, let us mention another interesting class of examples for which we
may describe the crossed product algebra in a very concrete way.

Given a compact space X , consider the semigroup End(X) formed by all sur-
jective, local homeomorphisms from X to itself. Suppose we are moreover given
a subsemigroup P of a group G, and a right action of P on X , meaning an anti-
homomorphism of semigroups

θ : P → End(X).
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By the standard process of dualization we get a left semigroup action

α : P → End
(
C(X)

)
,

where, this time, End
(
C(X)

)
refers to the semigroup of *-endomorphisms of C(X).

If P is such that P−1P ⊆ PP−1, one may prove [6, section 3] that the set

G = {(x, g, y) ∈ X ×G×X : ∃n,m ∈ P, g = nm−1, θn(x) = θm(y)}

is a groupoid under the operations

(x, g, y)(y, h, z) = (x, gh, z), and (x, g, y)−1 = (y, g−1, x).

One may make G an étale groupoid by introducing the topology generated by the
sets

Σ(n,m,A,B) = {(x, nm−1, y) ∈ A×G×B : θn(x) = θm(y)},

where A and B are open subsets of X , and n,m ∈ P . This groupoid is called the
transformation groupoid for θ.

Returning to our interaction groups, it is a delicate problem to determine under
which conditions the semigroup action α above extends to an interaction group
defined on the whole of G, but under suitable conditions this may be achieved [6,
Corollary 8.8]. Assuming these conditions are met we have:

5. Theorem. [6, Theorem 6.6] Under the conditions set forth in [6, 4.1], and
moreover assuming G to be amenable, the crossed product A⋊V G is isomorphic
to the groupoid C*-algebra of G.

I would like to express my deepest gratitude to the organizers of the Mini-
Workshop on Endomorphisms, Semigroups and C*-Algebras of Rings, held in
Oberwolfach in the spring of 2012, for their kind invitation and also for the oportu-
nity to experience the excelent research environment found at the Mathematisches
Forschungsinstitut Oberwolfach.
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Semigroup C*-algebras

Xin Li

This is a very brief summary of the talks. The reader may find the details,
concrete examples and more references in [3], [4] and [1] (and also [2]).

1. Constructions

The first talk was about the construction of reduced and full semigroup C*-
algebras.

1.1. Reduced semigroup C*-algebras. Let P be a left cancellative semi-
group (with identity element). On ℓ2(P ) with the canonical orthonormal basis
{εx: x ∈ P}, we define for every p ∈ P an isometry Vp by setting Vpεx = εpx.
As in the group case, we simply take the C*-algebra generated by the left regular
representation of our semigroup:

Definition 1.1. C∗
r (P ) := C∗ ({Vp: p ∈ P}) ⊆ L(ℓ2(P )).

1.2. Towards full semigroup C*-algebras. Unfortunately, the most obvious
construction of the universal C*-algebra

C∗
Mur(P ) := C∗

(
{vp: p ∈ P}

v∗pvp = 1
vpvq = vpq

)

leads to intractable objects. Indeed, Murphy observed that for the semigroup
N0 × N0, the C*-algebra C∗

Mur(N0 × N0) is not nuclear, and hence, the canonical
homomorphism C∗

Mur(N0×N0) → C∗
r (N0×N0) cannot be an isomorphism. This is

a problem because this semigroup is abelian, so that we would expect its semigroup
C*-algebra to have nice properties. So we need more relations besides the canonical
ones which define C∗

Mur(P ).
A first step in this direction is due to Nica. He considers positive cones in so-

called quasi-lattice ordered groups. A pair (G,P ) consisting of a subsemigroup P
of a group G is a quasi-lattice ordered group if P ∩ P−1 = {e} where e is the unit
element in G, and for every g ∈ G,

(QL) P ∩ (g · P ) is either empty or of the form pP for some p ∈ P .

Nica then defines the full semigroup C*-algebra of P as the universal C*-algebra

C∗
Nica(P ) := C∗

(
{vp: p ∈ P}

v∗pvp = 1
vpvq = vpq

& (NICA)

)

where Nica’s relation is

(NICA) vpv
∗
pvqv

∗
q =

{
vrv

∗
r if pP ∩ qP = rP for some r ∈ P,

0 if pP ∩ qP = ∅.

Note that it follows from (QL) that there are only these two possibilities pP ∩qP =
rP for some r ∈ P or pP ∩ qP = ∅.

It turns out that Nica’s construction leads to tractable C*-algebras. So Nica’s
idea was to impose extra relations which make the range projections of our isome-
tries reflect the ideal structure of our semigroup. Nica only looks at quasi-lattice
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ordered pairs because in that case, it is enough to consider principal ideals. The
question remains what to do for general semigroups.

1.3. Full semigroup C*-algebras. The idea is to impose extra relations in the
definition of full semigroup C*-algebras which should reflect the ideal structure of
our semigroup. First, let us introduce the ideals we will take into account.

Definition 1.2. Let J be the smallest family of right ideals of P such that

• ∅, P ∈ J ;
• J is closed under left multiplication and pre-images under left multiplica-
tion (X ∈ J , p ∈ P ⇒ pX, p−1X ∈ J ).

The ideals in J are called constructible (right) ideals of P .

This family J is automatically closed under finite intersections.

Definition 1.3.

C∗(P ) := C∗


{vp: p ∈ P} ∪ {eX: X ∈ J }

vp are isometries
and eX are projections
satisfying I, II and III.




with the following relations:

I. vpq = vpvq;
II. e∅ = 0, eP = 1, eX1∩X2

= eX1
· eX2

;
III. vpeXv∗p = epX .

These relations are satisfied by the concrete isometries Vp and projections EX ,
where EX is the orthogonal projection onto ℓ2(X) ⊆ ℓ2(P ).

However, there is another extra relation which we will need later on and which
might not be automatic from these three relations defining C∗(P ). So we have to
modify our construction.

Definition 1.4. Let P be a subsemigroup of a group G. We let C∗
s (P ) be the

universal C*-algebra

C∗
s (P ) := C∗


{vp: p ∈ P} ∪ {eX : X ∈ J }

vp are isometries
and eX are projections

satisfying Is, IIs and IIIs.




with the following relations:

Is. vpq = vpvq,
IIs. e∅ = 0,
IIIs. whenever p1, q1, . . . , pm, qm ∈ P satisfy p−1

1 q1 · · · p−1
m qm = e in G, then

v∗p1
vq1 · · · v

∗
pm

vqm = e[q−1

m pm···q−1

1
p1P ].

These relations are satisfied by the concrete operators Vp and EX so that we
obtain a canonical homomorphism λ : C∗

s (P ) → C∗
r (P ). We call λ the left regu-

lar representation. Moreover, the relations Is, IIs and IIIs are stronger then the
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relations I, II and III we had before. This means that there is a canonical homo-
morphism C∗(P ) → C∗

s (P ) which sends generators to generators. The situation
can be summarized in the following commutative diagram:

C∗(P )

�� $$■
■

■

■

■

■

■

■

■

C∗
s (P )

λ // C∗
r (P ).

It is not known for which semigroups the canonical homomorphism C∗(P ) →
C∗

s (P ) is an isomorphism. But for quasi-lattice ordered P ⊆ G, both of these
constructions coincide with the one by Nica.

1.4. Independence.

Definition 1.5. We call J independent (or we also say that the constructible right
ideals of P are independent) if whenever X =

⋃n
i=1 Xi holds for X,X1, . . . , Xn ∈

J , then we must have X = Xi for some 1 ≤ i ≤ n.

Here is why this condition is useful. Let D(P ) = C∗({eX : X ∈ J }) ⊆ C∗
s (P )

and Dr(P ) = C∗({EX : X ∈ J }) ⊆ C∗
r (P ) denote the canonical commutative

subalgebras. The left regular representation restricts to a homomorphism from
D(P ) to Dr(P ).

Lemma 1.6. λ : D(P ) → Dr(P ) is an isomorphism if and only if J is indepen-
dent.

1.5. The Toeplitz condition. The full semigroup C*-algebra C∗
s (P ) consists of

two ingredients, the isometries vp and the projections eX . Another way of saying
this is that C∗

s (P ) is built out of the semigroup dynamical system given by P acting
on D(P ) by conjugation with the vps. Now our semigroup sits inside a group G.
Our goal is to find a group dynamical system for G so that C∗

s (P ) embeds as a full
corner into a the corresponding crossed product by G. This would then allow us to
apply known results about group crossed products to our semigroup C*-algebras.

It turns out that in our specific situation, there is a canonical candidate for the
dilated system. The idea is to look at the reduced case first. As above, let P be a
subsemigroup of a group G.

Definition 1.7. We let DP⊆G be the smallest sub-C*-algebra of ℓ∞(G) ⊆ L(ℓ2(G))
which is G-invariant and contains Dr(P ).

Here we let G act on ℓ∞(G) by left translations. As for Dr(P ), we know that
DP⊆G is a C*-algebra generated by projections: DP⊆G = C∗({EY : Y ∈ JP⊆G})
where JP⊆G is the smallest family of subsets of G which contains J and which is
closed under left translations by group elements as well as finite intersections. The
reduced crossed product DP⊆G ⋊r G can be realized on ℓ2(G) with DP⊆G acting
by multiplication operators and G acting through its left regular representation.
Moreover, the projection EP is by construction a full projection in DP⊆G ⋊r G.
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And because we have for all p ∈ P that Vp = EPλ
G
p EP (λG denotes here the left

regular representation of G), we always have that C∗
r (P ) ⊆ EP (DP⊆G ⋊r G)EP .

Definition 1.8. We say that P ⊆ G satisfies the Toeplitz condition (or sim-
ply that P ⊆ G is Toeplitz) if for every g ∈ G with EPλ

G
g EP 6= 0, there exist

p1, q1, . . . , pn, qn in P such that EPλ
G
g EP = V ∗

p1
Vq1 · · ·V

∗
pn
Vqn .

The Toeplitz condition implies that C∗
r (P ) = EP (DP⊆G ⋊r G)EP .

1.6. Alternative descriptions of semigroup C*-algebras. Now we can come
to alternative descriptions of semigroup C*-algebras. First, the *-semigroup S :={
v∗p1

vq1 · · · v
∗
pn
vqn : pi, qi ∈ P

}
∪ {0} ⊆ C∗

s (P ) is an inverse semigroup of partial
isometries. The reason why we need the extra relation IIIs in the definition of
C∗

s (P ) is that it ensures that the left regular representation restricts to an isomor-
phism (of inverse semigroups) λ : S → λ(S). We obtain the following

Theorem 1.9. Let P be a subsemigroup of a group G. Assume that J is inde-
pendent and that P ⊆ G satisfies the Toeplitz condition. With Ω := SpecDr(P )
and ΩP⊆G := Spec (DP⊆G), we obtain the following commutative diagram:

C∗
s (P )

λ
−−−−→ C∗

r (P )
y∼= ∼=

y

C∗(S) −−−−→ C∗
r (S)y∼= ∼=

y

C∗((ΩP⊆G ⋊G)ΩΩ) −−−−→ C∗
r ((ΩP⊆G ⋊G)ΩΩ)y∼= ∼=

y

EP (DP⊆G ⋊G)EP −−−−→ EP (DP⊆G ⋊r G)EP .

All the horizontal arrows are given by the regular representations.

Here C∗(S) is the universal C*-algebra for *-representations of S which send
0 ∈ S to 0. Moreover, C∗

r (S) is the reduced C*-algebra of S, i.e. the C*-algebra
generated by the left regular representation of S on ℓ2(S×) where S× = S \ {0}.
The transformation groupoid ΩP⊆G ⋊G is built out of the action of G on DP⊆G

by left translations. The Toeplitz condition allows us to identify Ω with a subspace
of ΩP⊆G in a canonical way, and the restriction of ΩP⊆G ⋊G to this subspace is
(ΩP⊆G ⋊G)ΩΩ.

2. Structure

The second talk was about the structure of semigroup C*-algebras. The first
result expresses amenability of semigroups in terms of semigroup C*-algebras.

Theorem 2.1. Let P be a subsemigroup of a group G and assume that P has
independent constructible ideals. Then the following are equivalent:
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• P is left amenable,
• the left regular representation λ : C∗

s (P ) → C∗
r (P ) is an isomorphism and

there exists a non-zero character on C∗
s (P ),

• C∗
s (P ) is nuclear and there exists a non-zero character on C∗

s (P ).

It turns out that amenability is a very strong assumption on the semigroup
which interesting examples do not satisfy. So we really would like to characterize
nuclearity of semigroup C*-algebras and faithfulness of left regular representations
independently from the existence of non-zero characters.

Theorem 2.2. Let P be a subsemigroup of a group G and assume that P has
independent constructible ideals as well as that P ⊆ G is Toeplitz. Then the
following are equivalent:

• C∗
s (P ) is nuclear,

• C∗
r (P ) is nuclear,

• whenever given a G-action α on a C*-algebra A, the canonical homomor-
phism λ(A,P,α) : A⋊a

α,s P → A⋊a
α,r P is an isomorphism,

• G acts amenably on ΩP⊆G.

Here A⋊a
α,sP stands for the universal C*-algebra generated by a copy of A and

a copy of C∗
s (P ) such that the commutation relation vpa = αp(a)vp is satisfied

for all a ∈ A and p ∈ P . And A ⋊a
α,r P is the reduced crossed product which is

constructed in the same way as in the group case.
Furthermore, every semigroup C*-algebra has a distinguished quotient, the so-

called boundary quotient. For example, in the case of the free semigroup N∗n
0 , the

C*-algebra C∗
s (N

∗n
0 ) is canonically isomorphic to En, the universal C*-algebra gen-

erated by n isometries with pairwise orthogonal range projections. The boundary
quotient of C∗

s (N
∗n
0 ) is isomorphic to the Cuntz algebra On. We now construct

the boundary quotient in the general case.

Lemma 2.3. Let P be a left cancellative semigroup with independent constructible
ideals. Then we can identify Ω with the set of non-empty J -valued filters by
sending a character χ to {X ∈ J : χ(EX) = 1}.

Definition 2.4. Let P be a left cancellative semigroup with independent con-
structible ideals. We set Ωmax as the subset of Ω corresponding to the
set of maximal J -valued filters under the identification in the lemma above,
and ∂Ω := Ωmax ⊆ Ω. The vanishing ideal is given by V (∂Ω) =
{d ∈ D(P ): χ(λ(d)) = 0 for all χ ∈ ∂Ω}. And finally, the boundary quotient is
C∗

s (P )/ 〈V (∂Ω)〉.

Theorem 2.5. Assume that P is a subsemigroup of a countable group G such
that P has independent constructible ideals and that P ⊆ G is Toeplitz. Let G0 :={
g ∈ G: (g · P ) ∩ (pP ) 6= ∅ and (g−1 · P ) ∩ (pP ) 6= ∅ for all p ∈ P

}
. If P 6= {e},

if G acts amenably on (∂Ω) · G ⊆ ΩP⊆G and if G0 acts topologically freely on
(∂Ω) · G, then the boundary quotient C∗

s (P )/ 〈V (∂Ω)〉 is a unital UCT Kirchberg
algebra.
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Note that by the Toeplitz condition, we can embed Ω canonically in ΩP⊆G.
Therefore, we can form (∂Ω) ·G in ΩP⊆G.

In the case of the free semigroup N∗n
0 , the proof of this theorem gives a new

description of On as a full corner in a group crossed product of a commutative
C*-algebra by the free group Fn. This description then gives a new explanation
why On is a UCT Kirchberg algebra.

3. K-theory

The third talk was about joint work with J. Cuntz and S. Echterhoff on the
K-theory for semigroup C*-algebras. We start with a general result:

Theorem 3.1. Suppose that τ is an action of a (discrete, countable) group G on a
commutative C*-algebra D. Further assume that D is generated by a family of non-
zero commuting projections {ei: i ∈ I} such that {ei: i ∈ I}∪{0} is multiplicatively
closed. Here I is a countable index set. Moreover, we assume that there exists a
G-action on I such that τg(ei) = eg·i. If we have

• whenever e =
∨n

i=j ej holds for projections in {ei: i ∈ I}, then we must
have e = ej for some 1 ≤ j ≤ n,

• G satisfies the Baum-Connes conjecture for c0(I) and D,

then ⊕

[i]∈G\I

K∗(C
∗
r (Gi)) ∼= K∗(D ⋊τ,r G).

Here Gi = {g ∈ G: g · i = i}.
Applying this general statement to our situation of semigroup C*-algebras (i.e.

D = DP⊆G and I = J ×
P⊆G := JP⊆G \ {∅}), we obtain

Theorem 3.2. Let P be a subsemigroup of a countable group G such that P has
independent constructible ideals and that P ⊆ G is Toeplitz. If G satisfies the
Baum-Connes conjecture for c0(J

×
P⊆G) and DP⊆G, then

⊕

[X]∈G\J×
P⊆G

K∗(C
∗
r (GX)) ∼= K∗(C

∗
r (P )).

Here GX = {g ∈ G: g ·X = X}. Moreover, there is also a version of this result
involving coefficients.
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Endomorphisms of the Cuntz algebras

Roberto Conti

(joint work with J. H. Hong, J. Kimberley, M. Rørdam, W. Szymański)

This is a partial report on recent work [10, 9, 7, 8, 15, 2, 3, 5, 6] (see also the
announcements/overviews [18, 4, 11]) aimed at studying in detail the properties
of certain endomorphisms and automorphisms of the Cuntz algebras On (with n
finite), [12], as explained below. The talk was mostly focused on combinatorial
and enumerative aspects as well as the construction of notable examples, other
more conceptual issues like actions on shift spaces (cf. [14]) being addressed in the
companion report by W. Szymański (and generalized to graph algebras, mutatis
mutandis).

In [13] it was pointed out that the study of the automorphism group of On

displays intriguing analogies with the theory of semisimple Lie groups. However,
at that time very few examples of automorphisms of On were known, especially for
n = 2, cf. [1, 16], and many natural questions could not be answered. Following
the ideas pioneered by Cuntz we defined certain Weyl groups of the Cuntz alge-
bras, namely the restricted Weyl group, the Weyl group and their outer compan-
ions, constructed new nontrivial examples of automorphisms to identify concretely
elements in these groups and even started a classification program based on combi-
natorial datas. Indeed calculations in the reduced Weyl group boil down to solving
certain polynomial equations on symmetric groups of exponentially increasing size
and can be further analyzed by an ingenious technique based on careful analysis of
certain n-tuples of labeled rooted trees. In the case of O2, twelve new outer classes
of automorphisms were discovered (associated to permutations over a set with 16
elements), and their relations were partly computed, showing e.g. the existence
of infinite dihedral subgroups in the reduced Weyl group of Aut(O2). We also
investigated some more conceptual aspects, especially in connection to symbolic
dynamics, thus obtaining deep structural results for these Weyl groups.

All in all, our results provide a new insight into the structure of Aut(On) (as
well as of Out(On)) and its interplay with the automorphisms of the canonical
MASA Dn and of the core UHF subalgebra Fn.

In the talk we have also discussed notable explicit examples of endomorphisms
and automorphisms associated to elements in the Higman-Thompson subgroup of
U(On) [17], that is those unitaries that can be written as finite sums of words in the
canonical generating isometries of On and their adjoints. Finally, we remarked the
existence of a recently discovered new powerful algorithmic criterion for deducing
when such endomorphisms are surjective on the diagonal, i.e. they provide home-
omorphisms of the full n-shift space, thereby establishing a bridge with dynamics
on Cantor sets. This is an important necessary condition for a complete character-
ization of elements in the Weyl group. It has been also shown that the outer Weyl
group strictly contains the outer reduced Weyl group. As a consequence, Aut(On)
does not admit a decomposition as Ad(U(On))Aut(On,Fn), leaving however open
whether such decomposition may be achieved by replacing Fn with Dn.
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Comparing Leavitt path algebras with graph C∗-algebras

Gene Abrams

Introduction. Motivated in part by the construction of graph C∗-algebras, in
2004 the definition of a Leavitt path algebra of a graph was presented in [2] and
[9]. Striking, not-fully-understood similarities between the structure of Leavitt
path algebras and graph C∗-algebras became legion during the initial years of the
investigation. Recently, however, some significant differences in the two theories
have emerged. We describe some of these here.

Work supported by Simons Foundation Collaboration Grants for Mathemati-
cians Award #208941 - Abrams
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Throughout this note K always denotes a field. Let E = (E0, E1, r, s) be
a (directed) graph with vertex set E0, edge set E1, and range (resp., source)
functions r and s. The path algebra KE is the K-algebra with basis {pi} consisting
of the directed paths in E (vertices are paths of length 0). Multiplication is defined
by setting, for paths p, q, p · q = pq if r(p) = s(q), 0 otherwise. In particular,

s(e) · e = e = e · r(e) for e ∈ E1. We construct the double graph Ê, gotten from E
by inserting, for each e ∈ E1, a new edge e∗ having s(e∗) = r(e) and r(e∗) = s(e).

We then construct the path algebra KÊ, and consider these relations in KÊ:
(CK1) e∗e = r(e) for all e ∈ E1; f∗e = 0 for all f 6= e ∈ E1.
(CK2) v =

∑
{e∈E1|s(e)=v} ee

∗ (for v ∈ E0 having 0 < |{e ∈ E
1 | s(e) = v}| < ∞)

Definition. The Leavitt path algebra of E with coefficients in K is

LK(E) = KÊ/〈(CK1), (CK2)〉.
Standard algebras arising as Leavitt path algebras include Mn(K), K[x, x−1],

and LK(1, n), the “Leavitt K-algebra of order n” [15]. We let C∗(E) denote the
well-studied graph C∗-algebra of E, which is the universal C∗-algebra generated
by mutually orthogonal projections {Pv | v ∈ E0} and partial isometries
{Se | e ∈ E1}, subject to the well-known Cuntz-Krieger E-family relations.

Proposition: The ∗-subalgebraA = spanC{Pv, SµS
∗
ν | v ∈ E0, µ, ν paths in E}

of C∗(E) has LC(E) ∼= A as ∗-algebras.
Consequently, C∗(E) may be viewed as the completion (in operator norm) of

LC(E). In particular, the Cuntz algebra On [13] is the completion of LC(1, n). So
it’s perhaps not surprising that there are some close relationships between LC(E)
and C∗(E).

Section 1: Similarities. Since any graph C∗-algebra can be considered both
as a ring with and without a topology, one can in general consider ring-theoretic
properties of a graph C∗-algebra in two different ways. Let P be some property of
rings, and let G be some graph-theoretic property. A number of theorems of the
following form have been established.

Theorem. The following five statements are equivalent for any finite graph E.
1. LC(E) has property P .
2. LK(E) has property P for any field K.
3. C∗(E) has (topological) property P .
4. C∗(E) has (algebraic) property P .
5. E has property G
For instance, the properties P = ”simple” ([2] and [18]), ”purely infinite simple”

([3] and [12]), ”exchange” ([10] and [16] with [8]), ”primitive” ([4] and [11]), and
”finite dimensional” each fit into a theorem of the above form. Additional simi-
larities between the two types of algebras when E is finite include, for instance,
that K0(LK(E)) = K0(C

∗(E)) [9], and that each of the algebras satisfies a version
of the Cuntz-Krieger uniqueness theorem ([20] and [18]). It is of interest that in
each case in which a theorem of this form has been established, the analysts show
that statements (3) and (5) are equivalent, while, using completely different tools,
the algebraists show that statements (2) and (5) are equivalent. Specifically, in
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none of these cases has there been a direct relationship established between the
two algebraic statements (1) / (2), and the two C∗-algebraic statements (3) / (4).

Section 2: Differences. Given the similarities observed above, one might
suspect that there is some sort of Rosetta Stone which connects the two types of
structures. However, there are significant differences; we point out two such here.

The graph E is called downward directed in case for each pair v, w ∈ E0, there
exists u ∈ E0 and paths p, q inE for which s(p) = v, s(q) = w, and r(p) = r(q) = u.
For any field K and graph E, LK(E) is prime if and only if E is downward directed
[4]. On the other hand, any separable C∗-algebra is (topologically, equivalently,
algebraically) prime if and only if it is (topologically) primitive [14]. So in partic-
ular for finite E, C∗(E) is prime precisely when C∗(E) is primitive, so that C∗(E)
is prime if and only if E is downward directed and satisfies Condition (L) [11]. So
for example LC( • dd ) ∼= C[x, x−1] is prime, but C∗( • dd ) ∼= C(T) is not prime.

Here is a second distinction between the two theories. It is well known that
O2 ⊗ O2

∼= O2. On the other hand, in early 2011 three different proofs (by Ara
/ Cortiñas [7]; Dicks; Bell / Bergman) were given which show that the two C-
algebras LC(1, 2)⊗ LC(1, 2) and LC(1, 2) are not isomorphic.

Section 3: Similar or Different? We conclude this short note by presenting
some properties for which we do not currently know whether these yield similarities
or differences between the structure of LC(E) and the structure of C∗(E).

Most basically, does a ring isomorphism between two Leavitt path algebras
LC(E) and LC(F ) imply an isomorphism between C∗(E) and C∗(F ) as C∗-algebras,
and conversely? Using tools from the Kirchberg-Phillips Classification Theorem
[17], we can show that if E and F are finite graphs for which LC(E) and LC(F )
are simple and for which LC(E) ∼= LC(F ), then C∗(E) ∼= C∗(F ) [6]. The question
remains open in the general case.

Perhaps the most interesting outstanding question in this context is the follow-
ing. Suppose E and F are finite graphs for which C∗(E) and C∗(F ) (equivalently,
LC(E) and LC(F )) are purely infinite and simple. It is well-known (and deep) that
if there is an isomorphism ϕ : K0(C

∗(E)) → K0(C
∗(F )) for which ϕ([1C∗(E)]) =

[1C∗(F )], then C∗(E) ∼= C∗(F ) ([19] or [17]). On the algebra side, if there is an
isomorphism ϕ : K0(LC(E)) → K0(LC(F )) for which ϕ([1LC(E)]) = [1LC(F )], and if
in addition the signs of det(I −AE) and det(I −AF ) are equal (where AE denotes
the usual incidence matrix of E), then LC(E) ∼= LC(F ) [1]. It is currently not
known whether the hypothesis on the sign of the determinants is necessary.

Two additional outstanding questions on which the author and others are work-
ing are: (1) Do the necessary and sufficient conditions for the primitivity of the
Leavitt path algebra of an arbitrary graph given in [4] also apply to graph C∗-
algebras? (2) Do the criteria for the simplicity of the Lie algebra [LK(E), LK(E)]
given in [5] apply to the simplicity of the Lie algebra [C∗(E), C∗(E)]?

References

[1] G. Abrams, A. Louly, E. Pardo, C. Smith, Flow invariants in the classification of Leavitt
path algebras, J. Algebra 333 (2011), 202-231.



Mini-Workshop: Endomorphisms, Semigroups and C*-Algebras of Rings 1207

[2] G. Abrams, G. Aranda Pino, The Leavitt path algebra of a graph, J. Algebra 293 (2005),
319-334.

[3] G. Abrams, G. Aranda Pino, Purely infinite simple Leavitt path algebras, J. Pure Appl.
Algebra, 207 (2006), 553-563.

[4] G. Abrams, J. Bell, K.M. Rangaswamy, On prime non-primitive von Neumann regular
algebras, to appear, Trans. Amer. Math. Soc.

[5] G. Abrams, Z. Mesyan, Simple Lie algebras arising from Leavitt path algebras, to appear,
J. Pure Applied Algebra.

[6] G. Abrams, M. Tomforde, Isomorphism and Morita equivalence of graph algebras, Trans.
Amer. Math. Soc 363(7) 2011, 3733-3767.
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Classification of Graph C
∗-algebras and Leavitt path algebras.

Mark Tomforde

In the past few years there have been a number of efforts to classify Leavitt
path algebras associated with directed graphs. Many of these efforts have been
modeled on the classification of C∗-algebras — particularly graph C∗-algebras and
Cuntz-Krieger algebras — and there have been varying levels of success importing
these techniques to the algebraic setting.

Cuntz and Krieger introduced a class of C∗-algebras [5, 4] constructed from
square matrices with entries in {0, 1}, and showed that the structure and many
of the invariants of OA may be read off from A. If A is an n × n matrix with

*This work was supported by a grant from the Simons Foundation (#210035 to Mark
Tomforde)
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entries in {0, 1}, then OA is simple if and only if A is irreducible. In addition,
K0(OA) ∼= Zn/(I − At)Zn and K1(OA) ∼= ker(I − At). In particular, K0(OA) ∼=
Z/d1Z⊕ . . .⊕ Z/dkZ⊕ Zn−k and kerOA

∼= Zn−k, so that K1(OA) is equal to the
free part ofK1(OA), and all of the K-theory information is contained in K0-group.

In classification of C∗-algebras one typically wishes to obtain two classifications:
A classification up to Morita equivalence; and a classification up to isomorphism.
One of the first classifications up to isomorphism was obtained in 1981 by Enomoto,
Fujii, and Watatani [6]. They showed that all simple Cuntz-Krieger algebras of
3× 3 matrices are classified by (K0(OA), [1]); i.e., the K0-group together with the
position of the unit. They accomplished this classification by describing moves
on matrices that preserve the isomorphism class of the associated Cuntz-Krieger
algebra.

In their original paper, Cuntz and Krieger proved that if A and B are irreducible
{0, 1} matrices and XE is flow equivalent to XF , then OA is Morita equivalent
to OB. They gave two ways to prove this: (1) By realizing OA ⊗ K as a crossed
product; and (2) By using the fact flow equivalence is generated by the Strong Shift
Equivalence moves plus the Parry-Sullivan move, and showing these matrix moves
preserve the Morita equivalence class of the associated Cuntz-Krieger algebra.

In 1984 Franks proved his famous theorem in symbolic dynamics, which states
that ifA andB are irreducible square {0, 1}matrices, with coker(I−A) ∼= coker(I−
A) and det(I−A) = det(I−B), thenXA is flow equivalent toXB. SinceK0(OA) ∼=
coker(I −At) ∼= coker(I −A) and det(I −At) = det(I −A), we may combine this
with Cuntz and Krieger’s result to obtain the following fact: If A and B are
irreducible with K0(OA) ∼= K0(OB) and det(I − At) = det(I − Bt), then OA

is Morita equivalent to OB. For a number of years it was wondered whether the
determinant condition was necessary, and in 1995 Rørdam proved it is superfluous.
In particular, if A is a matrix, we define the “Cuntz splice” of A to be the matrix

A− :=




0 0

A
...
...

1 0
0 ··· 1 1 1
0 ··· 0 1 1


 .

IfO2 is the Cuntz algebra, and O2− is the corresponding Cuntz-Krieger algebra ob-
tained by performing the Cuntz splice, then Cuntz proved that O2

∼= O2− implies
that OA is Morita equivalent to OA−

for all irreducible A. In 1995 Rørdam proved,
using KK-theory, that indeed O2

∼= O2− , and hence it is true that OA
∼= OA−

for
all irreducible A [8]. Since the Cuntz splice changes the sign of the determinant
(i.e., det(I − At) = − det(I − At

−), it follows from Rørdam’s result that if A and
B are irreducible with K0(OA) ∼= K0(OB), then OA is Morita equivalent to OB

and one can turn A into B via a sequence of flow equivalence moves plus the
Cuntz splice move. In addition, using a result of Huang, which states that an au-
tomorphism on the Bowen-Franks group is induced by a flow equivalence, Rørdam
showed in [8] that if A and B are irreducible and (K0(OA), [1]) ∼= (K0(OB), [1]),
then OA

∼= OB.
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In 1997, generalizations of Cuntz-Krieger algebras, known as graph C∗-algebras
were introduced. The Cuntz-Krieger algebras coincide with the C∗-algebras of
finite directed graphs with no sinks or sources. If AE is the vertex matrix of E,
then K0(C

∗(E)) ∼= coker(I − At
E) and K1(C

∗(E)) ∼= ker(I − At
E). Unlike with

the Cuntz-Krieger algebras, when the graph E is not finite the K1-group of C∗(E)
is not determined by the K0-group. There have been attempts to extend the
Cuntz-Krieger classification results to the graph C∗-algebras and their algebraic
counterparts, the Leavitt path algebras [3].

Purely algebraic classifications for the Leavitt path algebras were first initiated
in the late 2000’s. Interestingly, the development has been very similar to the
classification of Cuntz-Krieger algebras. In 2008, Abrams, Ánh, Louly, and Pardo
proved that (K0(LK(E)), [1]) is a complete isomorphism invariant for simple Leav-
itt path algebras of graphs with 3 vertices and no parallel edges [1]. (This may be
though of as an analogue of the result of Enomoto, Fujii, and Watatani for Cuntz-
Krieger algebras of 3 × 3 matrices.) They proved this result by exhibiting moves
on the graphs that preserve the isomorphism class of the Leavitt path algebras.

In 2011, Abrams, Louly, Pardo, and Smith undertook a classification of Leav-
itt path algebras of finite graphs, in analogy with Rørdam’s results for Cuntz-
Krieger algebras. They were able to show that when the flow equivalence moves
are performed on finite graphs, they preserve the Morita equivalence class of the
associated Leavitt path algebra. Thus, using Franks’ result, they prove that if E
and F are finite graphs with no sinks and with simple Leavitt path algebras, then
K0(LK(E)) ∼= K0(LK(F )) and det(I−At

E) = det(I−Bt
E) implies LK(E) is Morita

equivalent to LK(F ). Also, by applying Huang’s result and using an argument
similar to Rørdam’s, they have shown that (K0(LK(E)), [1]) ∼= (K0(LK(F )), [1]),
then LK(E) ∼= LK(F ). However, in all of the Leavitt path algebra results it is
unknown if the determinant condition is necessary. As with Cuntz-Krieger alge-
bras, one can perform a Cuntz splice move to a graph. Abrams, Louly, Pardo, and
Smith have shown that if L2

∼= L2− and this isomorphism lifts to an isomorphism
of certain subalgebras of the endomorphism rings, then it follows that the Cuntz
splice preserves Morita equivalence for all finite graphs with no sinks that have
simple Leavitt path algebras (see [2, Hypothesis on p.224] for a precise statement).
Unfortunately, no one has been able to determine whether L2 and L2− are isomor-
phic, much less whether there exists an isomorphism lifting to the subalgebras of
the endomorphism rings. It remains an open and important question as to whether
the determinant is a Morita equivalence invariant for Leavitt path algebras, and in
particular whether the Cuntz splice preserves Morita equivalence of Leavitt path
algebras.

Very recently, Sørensen has shown that if one uses the flow equivalence moves
on graphs with finitely many vertices and infinitely many edges, then one does
not need the Cuntz splice [9]. In particular, Sørensen has proven a Franks-type
theorem that says the following: If E and F are each graphs with a finite number of
vertices, an infinite number of edges, no sinks, and have graph C∗-algebras that are
simple, and if K0(C

∗(E)) ∼= K0(C
∗(F )) and K1(C

∗(E)) ∼= K1(C
∗(F ), then there
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is a sequence of “flow equivalence moves” from E to F , each of which preserves
Morita equivalence of the associated graph C∗-algebra. In particular, this implies
that (unlike in the finite graph case) when there are an infinite number of edges,
the Cuntz splice may be obtained by a sequence of “flow equivalence moves”
on the graph. Using these results, Ruiz and the author have shown that the
“flow equivalence moves” described by Sørensen also preserve Morita equivalence
of the Leavitt path algebras, and if E and F are each graphs with a finite number
of vertices, an infinite number of edges, no sinks, and their associated Leavitt
path algebras are simple, and if K0(LK(E)) ∼= K0(LK(F )) and K1(LK(E)) ∼=
K1(LK(F ), then there is a sequence of “flow equivalence moves” from E to F ,
and hence LK(E) and LK(F ) are Morita equivalent. This shows that in this
case the determinant is not a Morita equivalence invariant and the Cuntz splice is
unnecessary in the classifying moves. It also implies that L∞ is Morita equivalent
to L∞−

.
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Purely infinite C
∗-algebras arising from actions of groups on Cantor

sets

Mikael Rørdam

The Elliott classification program has made it an important task to find natural
ways of constructing simple nuclear C∗-algebras. In particular, with the classifica-
tion of the Kirchberg algebras in the UCT class by Kirchberg and Phillips, [4, 6],
one is interested in finding (many) models of Kirchberg algebras. (Recall that a
Kirchberg algebra is a separable, nuclear, simple, purely infinite C∗-algebra.) One
natural source of (simple, nuclear) C∗-algebras comes from dynamical systems.
There is an extensive literature on the structure and classification of C∗-algebras
arising from a dynamical systems Γ y X with a group Γ acting on a space X ,
often with the group Γ being Z or Zn. There are also several papers describing
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ways of obtaining Kirchberg algebras as crossed products C(X)⋊redΓ with Γ being
a (necessarily) non-amenable group acting amenably on X , see for example [5].

Let us first recall some well-known facts about the structure of crossed product
C∗-algebras. Archbold and Spielberg proved in [2] that if Γ is a discrete group
acting on a locally compact Hausdorff space X , then C0(X)⋊fullΓ is simple if and
only if the action Γ y X is minimal, topologically free and regular. (The latter
means that the canonical epimorphism C0(X)⋊fullΓ → C0(X)⋊redΓ is injective.)
Anathraraman-Delaroche introduced in [1] the notion of amenable actions and
proved that any amenable action is regular. She also proved that C0(X)⋊red Γ is
nuclear if and only if the action of Γ on X is amenable. This shows that:

Proposition 1 (Archbold–Spielberg, Anatharaman-Delaroche). Let Γ be a dis-
crete group acting on a locally compact Hausdorff space X. Then C0(X)⋊red Γ is
simple and nuclear if and only if the action of Γ on X is minimal, topologically
free and amenable.

One can combine the results (and method of proof) by Laca and Spielberg in [5]
with the proposition above to obtain:

Proposition 2. Let Γ be a countable discrete group acting on a metrizable, locally
compact, totally disconnected space X. Then C0(X)⋊red Γ is a Kirchberg algebra
in the UCT class if and only if the action of Γ on X is minimal, topologically
free and amenable, and each non-zero projection in C0(X) is properly infinite in
C0(X)⋊red Γ.

The latter condition is somewhat unpleasant because it is not directly expressed
in terms of the dynamical system.

Definition 3. An action of a group Γ on a (totally disconnected) locally compact
Hausdorff space X is said to be purely infinite if the following holds: For every
compact-open subset E of X there are pairwise disjoint compact-open subsets
E1, . . . , En+m of E and t1, . . . , tn+m ∈ Γ such that

E =

n⋃

j=1

tj.Ej =

n+m⋃

j=n+1

tj .Ej .

It is easy to see that the last condition in Proposition 2 is satisfied if the action is
purely infinite. Moreover, if the last condition in Proposition 2 holds, then there
is no non-zero invariant Radon measure on X . It is not known if the action is
purely infinite if and only if there is no non-zero invariant Radon measure in the
case where X totally disconnected, which would imply that all three conditions
are equivalent.

Let us also recall the following well-known facts about the Roe algebra ℓ∞(Γ)⋊red

Γ associated with a discrete group Γ:

Proposition 4. (1) Γ always acts freely on ℓ∞(Γ).
(2) (Ozawa) Γ y ℓ∞(Γ) is amenable if and only if Γ is exact.
(3) The unit of ℓ∞(Γ) ⋊red Γ is properly infinite if and only if Γ is non-

amenable.
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The latter statement was strengthened in [7] where it was shown that if E ⊆ Γ,
then 1E is properly infinite in ℓ∞(Γ) ⋊red Γ if and only if E is paradoxical in Γ.
This observation was one of the key ingredients in the proof of the following:

Theorem 5 (R.-Sierakowski, [7]). Let Γ be a countable discrete exact non-amenable
group. Then Γ admits a minimal free amenable action on the Cantor set X such
that C(X)⋊ Γ is a (unital) Kirchberg algebra in the UCT class.

It is well-known that a group Γ is amenable if and only if whenever it acts on a
compact Hausdorff space, then there is an invariant probability measure. The situ-
ation is quite different if we instead consider actions of groups on locally compact
non-compact Hausdorff spaces. Here we need to consider the so-called supra-
menable groups first considered by Rosenblatt in [8]. A discrete group Γ is said to
be supramenable if it has no paradoxical subsets.

Monod observed that a group is supramenable if and only if whenever it acts co-
compactly on a locally compact Hausdorff space, then there is a non-zero invariant
Radon measure. This result can be sharpened as follows:

Theorem 6 (Kellerhals, Monod, R., [3]). Let Γ be an exact non-supramenable
countable discrete group. Then Γ admits a minimal free amenable purely infinite
action on the locally compact, non-compact Cantor set Y . In particular, C0(Y )⋊Γ
is a (non-unital) Kirchberg algebra in the UCT class.
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Entropy and invariant abelian subalgebras for endomorphisms of

Cuntz algebras

Adam Skalski

Topological entropy for a continuous transformation of a compact space (see
[Wal]) is a numerical invariant which in a sense measures the degree of ‘mixing’ or
‘chaotic’ behaviour of the dynamical system in question. In [Voi] it was extended
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by Voiculescu to automorphisms of (nuclear) C∗-algebras, with the definition based
on the growth of sizes of suitable completely positive approximations.

Let A be a nuclear (or exact) C∗-algebra, α ∈ End(A) and let htα denote the
Voiculescu’s topological entropy of α. The usual method of computing htα is
based on two steps. First one produces an explicit or semi-explicit approximating
net for A through matrix algebras whose rank can be controlled and thus provides
an estimate of the htα from above. Then, to obtain a lower bound, one looks
for α-invariant commutative C∗-subalgebras C ⊂ A in order to exploit the mono-
tonicity of entropy with respect to passing to subalgebras and the fact that α|C is
induced by a homeomorphism T of the spectrum of C and it was shown in [Voi]
that htα|C = htop(T ). The general difficulty in understanding how the positive
Voiculescu entropy is produced is reflected in the fact that there is no direct proof
of the inequality htα|C ≥ htop(T ), (the corresponding argument in [Voi] exploits
the properties of the dynamical state entropy and classical variational principle).

On the other hand we have the following result.

Theorem ([Sk1]). There exist pairs (A, α) (certain bitstream shifts) such that

htα > htc α := sup{htα|C : C is an α− invariant commutative subalgebra of A}.

The above discussion leads to two natural questions related to the computations
of the Voiculescu entropy:

• given an endomorphism of a C∗-algebra what are the (maximal) abelian
subalgebras it leaves globally invariant?

• what other techniques, not based on the existence of invariant abelian
subalgebras, yield lower bounds for the Voiculescu entropy?

Below we present some results related to these questions in the context of the
endomorphisms of Cuntz algebras.

Let ON denote the Cuntz algebra generated by N -isometries S1, . . . , SN whose
range projections are orthogonal and sum to 1 ([Cu1]). We use the symbol µ
to denote a {1, . . . , N}-valued multiindex and let Sµ := Sµ1

Sµ2
. . . Sµk

, if the
length of µ, denoted by |µ|, is k. The Cuntz algebra contains a so-called diagonal
masa (maximal abelian subalgebra) CN := Lin{SµS

∗
µ}, isomorphic to the algebra

of continuous functions on a Cantor set (equivalently, a full Markov shift on N

letters). Moreover, if we write Fk
N = Lin{SµS

∗
ν : |µ| = |ν| ≤ k} ≈ M⊗k

N , FN =
limk→∞ Fk

N , we obtain natural inclusions

CN =

∞⊗

n=1

DN ⊂
∞⊗

n=1

MN = FN ⊂ ON .

By ‘changing coordinates’ inMN and replacing diagonalsDN by U∗DNU (U ∈ MN

- a unitary) we can construct other, so-called standard masas in ON .
In [Cu2] it was shown that there is a bijective correspondence between unitaries

in ON and unital endomorphisms of ON , given by the formulas

ρU (Si) = USi, i = 1, . . . , N
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and

Uρ =

n∑

i=1

ρ(Si)S
∗
i .

This correspondence makes the endomorphisms of ON particularly amenable to
study (see [CoS] and references therein). From the point of view of the entropy
we have the following result.

Theorem ([SkZ]). Let k ∈ N and U ∈ U(Fk
N ). Then

ht(ρU ) ≤ (k − 1) logN.

The above estimate is, perhaps surprisingly, analogous to the bounds on index
appearing in the work of Doplicher, Longo, Roberts, Conti, Pinzari and others.

The canonical shift, implemented by the flip unitary F =
∑N

i,j=1 SiSjS
∗
i S

∗
j ∈

F2
N gives an easy example of the bound being achieved (its Voiculescu entropy,

equal to logN , was computed in [Cho], using the fact that the canonical shift leaves
CN invariant and the corresponding restriction is dual to the usual shift transfor-
mation on the full shift of N -letters). Note that for Bogolyubov automorphisms,
i.e. automorphisms associated with unitaries U ∈ F1

N ≈ MN we have ht ρU = 0.
The standard masas can be alternatively described as images of CN with respect
to Bogolyubov automorphisms.

In [SkZ] we present an example of an endomorphism ρ of O2 induced by a
unitary in F2

2 , which leaves the diagonal masa invariant, but htρ = log 2, and
htρ|C2

= 0. In fact ρ leaves all standard masas invariant, and in some of them
reduces again to the (dual of the) classical full shift.

In [HSS] we analyse in detail the endomorphisms which ‘look the same’ in all
standard masas, i.e. commute with all Bogolyubov automorphisms. Moreover we
develop there several sufficient (and necessary) conditions for an endomorphism
to preserve a given standard masa. Here we just sample some of the interesting
examples:

• if U ∈ NCN
:= {U ∈ U(ON ) : UCNU∗ = CN}, then ρU leaves CN invariant;

• there exists a unitary U /∈ NC2
such that ρU leaves C2 invariant;

• there exists ρ ∈ End(O2) which leaves C2 invariant, but no other standard
masa;

• there exists ρ ∈ End(O2) which leaves invariant each standard masa, but
does not commute with all Bogolyubov automorphisms.

Results of [HSS] and [Sk2] show also that there exists ρ ∈ End(O2) (originally
studied in [Izu] in relation toWatatani indices of the subalgebras of Cuntz algebras)
which leaves no standard masa invariant, but whose Voiculescu entropy is non-zero.
The entropy computation is related to the following general facts.

Let H be a (finite-dimensional) Hilbert space. A multiplicative unitary is a
unitary V on H ⊗ H satisfying the following relation (on H ⊗ H ⊗ H) (in the leg
notation, so for example V12 := V ⊗ IH):

V12V13V23 = V23V12.
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It is called irreducible if it cannot be non-trivially written as ‘V1 ⊗ IH1
’ for some

other multiplicative unitary V1.

Theorem ([Sk2]). Let V be an irreducible multiplicative unitary on H⊗H, where
H ≈ CN ; view V as a matrix in MN ⊗MN and further via the usual isomorphism
MN ⊗MN ≈ F2

N as a unitary in ON . Let F be the flip unitary in MN ⊗MN . The
topological entropy of ρV F ∈ End(ON ) is equal to logN .

The proof of the above theorem is based on the von Neumann algebraic tech-
niques: one first identifies a certain extension of ρV F with a canonical endomor-
phism of the Longo type, then passes to certain finite von Neumann subalgebras,
views the respective restricted endomorphism as the Ocneanu canonical shift for
the tower of subfactors and finally uses some computations of the CNT entropy
([NSt]) in terms of the index due to Hiai ([Hia]).
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[HSS] J.H.Hong, A. Skalski and W. Szymański, On Invariant MASAs for Endomorphisms of the
Cuntz Algebras, Indiana University Mathematics Journal 59 (2010), no. 6, 1873–1892.

[Izu] M. Izumi, Subalgebras of infinite C∗-algebras with finite Watatani indices I. Cuntz alge-
bras, Comm.Math. Phys. 155 (1993), no. 1, 157–182.

[NSt] S.Neshveyev and E. Størmer, “Dynamical entropy in operator algebras,” Ergebnisse der
Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics,
50. Springer-Verlag, Berlin, 2006.

[Sk1] A. Skalski, Noncommutative topological entropy of endomorphisms of Cuntz algebras II,
Publ. RIMS 47 (2011), 887–896.

[Sk2] A. Skalski, On automorphisms of C*-algebras whose Voiculescu entropy is genuinely non-
commutative, Ergodic Th.Dynam. Systems 31 (2011), 951–954.

[SkZ] A. Skalski and J. Zacharias, Noncommutative topological entropy of endomorphisms of
Cuntz algebras, Lett.Math. Phys. 86 (2008), no. 2-3, 115–134.

[Wal] P.Walters, “An introduction to ergodic theory, Graduate Texts in Mathematics,” 79.
Springer-Verlag, New York-Berlin, 1982.

[Voi] D.Voiculescu, Dynamical approximation entropies and topological entropy in operator
algebras, Comm.Math. Phys. 170 (1995), no. 2, 249–281.



1216 Oberwolfach Report 20/2012

C
∗-algebras geneated by two operations

Yasuo Watatani

We study some relations among C∗-algebras of rings by Cuntz and Li, C∗-algebras
generated by Toeplitz operators and composition operators on a Hardy space, and
C∗-algebras associated with complex dynamical systems. They are all generated
by two operations.

1. C∗-algebras of rings

Cuntz [2] introduced C∗-algebras associated with the ax+ b semigroup over N
.The algebra is gnerated by addition operators and multiplication operators The
algebra contains Bost-Connes algebra construced in [1]. Cuntz and Li [3] extend
the construction to an arbitary commutative ring R without zero divisors (an
integral domain). Consider a Hilbert space ℓ2(R) with a natural basis {δk | k ∈ R}.
For r ∈ R, define an addition operator Ur on ℓ2(R) by

Urδk = δr+k.

For n ∈ R× := R \ {0}, define a multiplication operator Sn on ℓ2(R) by

Snδk = δnk.

Then the reduced C∗-algebra Ar[R] of an ring (integral domain) R is the C∗-
algebra generated by the addition operators {Ur | r ∈ R} and the multiplication
operators {Sn | n ∈ R×} on ℓ2(R).

A close relationship of the C∗-algebra Ar[R] of an ring R to classfield theory
over the rational numbers is given in terms of KMS states. The aim of this note
is to show that a similar situation occurs for C∗-algebras associated with complex
dynamical sistems.

2. Toeplitz-composition C∗-algebras

Let L2(T) denote the square integrable measurable functions on T with respect
to the nomalized Lebesgue measure. The Hardy spaceH2(T) is the closed subspace
of L2(T) consisting of the functions whose negative Fourier coefficients vanish. We
put H∞(T) := H2(T) ∩ L∞(T).

The Hardy space H2(D) is the Hilbert space consisting of all analytic functions
g(z) =

∑∞
k=0 ckz

k on the open unit disk D such that
∑∞

k=0 |ck|
2 < ∞. The inner

product is given by

(g|h) =
∞∑

k=0

ckdk

for g(z) =
∑∞

k=0 ckz
k and h(z) =

∑∞
k=0 dkz

k.
We identify H2(D) with H2(T) by a unitary U : H2(D) → H2(T). We note

that g̃ = Ug is given as

g̃(eiθ) := lim
r→1−

g(reiθ) a.e.θ
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for g ∈ H2(D) by Fatou’s theorem. Moreover the inverse f̌ = U∗f is given as a
Poisson integral.

Let PH2 : L2(T) → H2(T) ⊂ L2(T) be the projection. For a ∈ L∞(T), the
Toeplitz operator Ta on H2(T) is defined by Taf = PH2af for f ∈ H2(T).

Let ϕ : D → D be an analytic self-map. Then the composition operator Cϕ on
H2(D) is defined by Cϕg = g ◦ϕ for g ∈ H2(D). By the Littlewood subordination
theorem, Cϕ is always bounded.

For an analytic self-map ϕ : D → D, we denote by T Cϕ the C∗-algebra generated
by the Toeplitz operator Tz and the composition operator Cϕ on H2(D). The C∗-
algebra T Cϕ is called the Toeplitz-composition C∗-algebra with symbol ϕ. Since
T Cϕ contains the ideal K(H2(D)) of compact operators, we define a C∗-algebra
OCϕ to be the quotient C∗-algebra T Cϕ/K(H2(D)) in [5] and [4]

3. C∗-algebras associated with complex dynamical systems

We recall the construction of Cuntz-Pimsner algebras. Let A be a C∗-algebra
and X be a Hilbert right A-module. We denote by L(X) the algebra of the
adjointable bounded operators on X . For ξ, η ∈ X , the operator θξ,η is defined by
θξ,η(ζ) = ξ(η|ζ)A for ζ ∈ X . The closure of the linear span of these operators is
denoted byK(X). We say thatX is a Hilbert C∗-bimodule (or C∗-correspondence)
over A if X is a Hilbert right A-module with a *-homomorphism φ : A → L(X).
We always assume that X is full and φ is injective. Let F (X) =

⊕∞
n=0 X

⊗n be
the full Fock module of X with a convention X⊗0 = A. For ξ ∈ X , the creation
operator Tξ ∈ L(F (X)) is defined by

Tξ(a) = ξa and Tξ(ξ1 ⊗ · · · ⊗ ξn) = ξ ⊗ ξ1 ⊗ · · · ⊗ ξn.

We define iF (X) : A → L(F (X)) by

iF (X)(a)(b) = ab and iF (X)(a)(ξ1 ⊗ · · · ⊗ ξn) = φ(a)ξ1 ⊗ · · · ⊗ ξn

for a, b ∈ A. The Cuntz-Toeplitz algebra TX is the C∗-algebra acting on F (X)
generated by iF (X)(a) with a ∈ A and Tξ with ξ ∈ X .

Let jK |K(X) → TX be the homomorphism defined by jK(θξ,η) = TξT
∗
η . We

consider the ideal IX := φ−1(K(X)) of A. Let JX be the ideal of TX generated
by {iF (X)(a) − (jK ◦ φ)(a) ; a ∈ IX}. Then the Cuntz-Pimsner algebra OX is
defined as the quotient TX/JX . Let π : TX → OX be the quotient map. We set
Sξ = π(Tξ) and i(a) = π(iF (X)(a)). Let iK : K(X) → OX be the homomorphism
defined by iK(θξ,η) = SξS

∗
η . Then π((jK ◦ φ)(a)) = (iK ◦ φ)(a) for a ∈ IX .

Next we introduce the C∗-algebras associated with complex dynamical systems
as in [7] and [8]. Let R be a rational function of degree at least two. The sequence
(Rn)n of iterations of composition by R gives a complex dynamical system on the

Riemann sphere Ĉ = C∪{∞}. The Fatou set FR of R is the maximal open subset

of Ĉ on which (Rn)n is equicontinuous (or a normal family), and the Julia set JR
of R is the complement of the Fatou set in Ĉ. We denote by e(z0) the branch

index of R at z0. Let A = C(Ĉ) and X = C(graph R) be the set of continuous
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functions on Ĉ and graph R respectively. Then X is an A-A bimodule by

(a · ξ · b)(x, y) = a(x)ξ(x, y)b(y), a, b ∈ A, ξ ∈ X.

We define an A-valued inner product ( | )A on X by

(ξ|η)A(y) =
∑

x∈R−1(y)

e(x)ξ(x, y)η(x, y), ξ, η ∈ X, y ∈ Ĉ.

Since the Julia set JR is completely invariant under R, i.e., R(JR) = JR =
R−1(JR), we can consider the restriction R|JR

: JR → JR. The C∗-algebra

OR(Ĉ) on Ĉ is defined as the Cuntz-Pimsner algebra of the Hilbert bimodule

X = C(graph R) over A = C(Ĉ). We also define the C∗-algebra OR(JR) on the
Julia set JR similarly.

4. relations among these C∗-algebras

These algebras are simple and purely infinite C∗-algebras in many cases. These
algebras are also generated by two operations. In fact, the reduced C∗-algebra
Ar[R] of an ring (integral domain) R is the C∗-algebra generated by the addition
operators {Ur | r ∈ R} and the multiplication operators {Sn | n ∈ R×} on ℓ2(R).
The Toeplitz-composition C∗-algebra T Cϕ with symbol ϕ is generated by the
Toeplitz operator Tz and the composition operator Cϕ on H2(D). The Cuntz-
Toeplitz algebra TX is the C∗-algebra generated by coeffcient operators iF (X)(a)
with a ∈ A and the creation operators Tξ with ξ ∈ X on the Fock space F (X). If we
consider the case R(z) = zn, then these operators have natural correspondences.
The structure of KMS states on these C∗-algebras like phase transition describes
some properties in number theory or complex dynamical systems [6].
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C
∗-algebras associated with endomorphisms of compact abelian groups

Joachim Cuntz

This talk is based on the first part of a recent joint preprint with A.Vershik [5].
Let H be a compact abelian group. Let α be a surjective endomorphism of H . For
Haar measure on H , the transformation α will define an isometric operator sα on
the Hilbert space L2H . We can form the C*-algebra C∗(sα, C(H)) generated in
L(L2H) by sα together with C(H) acting as multiplication operators on L2H . In
this talk we analyze the structure of such C*-algebras and study their K-theory.
We will always assume that α is surjective with finite kernel and exact (i.e. the
union of the kernels of the αn is dense).

In fact, to study C∗(sα, C(H)), most of the time it is more useful to work, rather

than with α, with the dual endomorphism ϕ = α̂ of the dual groupG = Ĥ . Fourier
transform transforms C∗(sα, C(H)) isomorphically into the C*-algebraA[ϕ] acting
on ℓ2G. As in [9] and [2], but still somewhat surprisingly, this C*-algebra A[ϕ]
which is originally defined by a concrete representation, can also be characterized
as a universal algebra given by generators and relations. The structure of A[ϕ]
(and thus of C∗(sα, C(H))) is governed by two “complementary” maximal abelian
subalgebras, one being the algebra of continuous functions on H , the other one the
algebra of continuous functions on a compactification (with respect to ϕ) of G. The
algebras A[ϕ] all have a similar structure, in particular they are simple, nuclear
and purely infinite. They therefore belong to a very well understood class of C*-
algebras. In particular by the Kirchberg-Phillips classification they are completely
determined by their K-theory.

We derive a Pimsner-Voiculescu type formula that can be used to determine
the K-theory of A[ϕ]. We prove that there is an exact sequence of the form

(5.1) K∗C(H)
1−b(ϕ)// K∗C(H) // K∗A[ϕ]jj

We should point out that b(ϕ) is not simply the map induced by α, even though
it is related to this map by a simple equation. In many cases b(ϕ) is determined by
this equation, but in some examples its determination requires extra work. Since
K∗C(H) is always torsion-free, the exact sequence (5.1) is particularly useful for
computations. It can be used to explicitly determine the K-theory of A[ϕ] for
many examples, including the case of endomorphisms of Tn, of

∏
k Z/n and of a

solenoid group.
We mention that in [1] the K-theory of the left regular semigroup C*-algebra

C∗
λ(G⋊N) is shown to be isomorphic to K∗(C

∗(G)). The algebra A[ϕ] is a natural
quotient of C∗

λ(G⋊N) (it is generated by a representation of the semigroup G⋊N

on ℓ2G rather than on ℓ2(G⋊N)). It can be shown that the exact sequence (5.1)
is exactly the long exact sequence associated with this extension of A[ϕ].

Algebras such as A[ϕ] have been studied by quite a few authors. The simplicity
of the algebra A[ϕ] and its description as a universal algebra has been established
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already in [9] even in a more general setting. Constructions along the same lines
are considered in the thesis of F.Vieira, [10]. As pointed out to us by R.Exel, the
simplicity of A[ϕ] could also be established using an approach as in [7] and [6].
One virtue of our approach here is its simplicity together with the fact that it
reveals interesting structural properties of A[ϕ] and its canonical subalgebras.

Special cases of the algebra A[ϕ] for H = Tn or for H =
∏

k Z/p had also
occurred before in [2, 3, 4], where again it was shown that in these examples A[ϕ]
is purely infinite simple and its K-theory was partially computed. Our proof here
that A[ϕ] is purely infinite simple is very similar to that in [2]. For the case of
an endomorphism of Tn, an algebra which is easily seen to be isomorphic to A[ϕ]
has been described as a Cuntz-Pimsner algebra in [8], using Exel’s concept of a
transfer operator [7]. In this paper, it was also proved that, for an expansive
endomorphism of Tn, the algebra is simple purely infinite and its K-theory was
determined (using Pimsner’s extension which leads to a sequence similar to (5.1)).
Our computation of the K-theory is somewhat simpler and more general.
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On the positive Rokhlin property for dynamical systems

Joachim Zacharias

The Rokhlin property is a dynamical property of a group action α on a C∗-
algebra A saying roughly that the action can be approximated by shifts. The
motivation to study this property comes from the famous Rohklin Lemma for
aperiodic measure preserving transformations of Lebesgue space, which shows in
particular that such transformations can be approximated w.r.t. a generic topology
on the automorphism group by cyclic shifts ([1]). There are different versions of
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the C∗-Rokhlin property in literature, mostly for actions of finite groups and Z

(i.e. single automorphisms) but also for amenable groups. Rokhlin actions play
an important role in the classification programme, not least because they often
produce simple crossed products. In fact, the Rokhlin property is a strong form
of outerness.

Our original motivation was to study the Rokhlin property in connection with
noncommutative topological dimension, that is, decomposition rank and nuclear
dimension. There are still no good general results about decomposition rank and
nuclear dimension of crossed products. We show that nice estimates can be ob-
tained for Rokhlin actions of finite groups and single automorphisms.

However, the current C∗-Rokhlin properties can only hold in fairly restrictive
settings ([3]). For instance A must have many nontrivial projections. We thus
introduce a new Rokhlin property involving several Rokhlin towers of positive
elements rather than projections. The number of towers can be thought of as a
Rokhlin dimension. Here is the definition for actions of finite groups and single
automorphisms.

Definition 1. Let G be a finite group and A a unital C∗-algebra. An action
α : G → Aut(A) has the positive Rokhlin property (with Rokhlin dimension k) if

for any F ⊂ A finite, ε > 0 there are positive elements f
(l)
g ∈ A, l = 0, . . . , k,

g ∈ G with

• ‖f
(l)
g f

(l)
h ‖ < ε (g 6= h in G, all l)

• ‖
∑

l,g f
(l)
g − 1‖ < ε

• ‖[f
(l)
g , a]‖ < ε (a ∈ F , all g, l)

• ‖αg(f
(l)
h )− f

(l)
gh ‖ < ε, (all l, g, h ∈ G).

Definition 2. α ∈ Aut(A) has the positive Rokhlin property (with Rokhlin dimen-

sion k) if for any n > 0, F ⊂ A finite ε > 0 there are positive elements f
(l)
r,i ∈ A,

l = 0, . . . , k, r = 0, 1, i = 0, . . . , n with

• ‖f
(l)
r,i f

(l)
s,j‖ < ε ((r, i) 6= (s, j), all l)

• ‖
∑

l,r,i f
(l)
r,i − 1‖ < ε

• ‖[f
(l)
r,i , a]‖ < ε (a ∈ F , all r, i, l)

• ‖α(f
(l)
r,i )− f

(l)
r,i+1‖ < ε, (all l, j = 0, . . . , n− 2 + r)

• ‖α(f
(l)
0,n−1 + f

(l)
1,n)− f

(l)
0,0 − f

(l)
1,0‖ < ε.

The cases k = 0 (Rokhlin dimension 0) are equivalent to the usual Rokhlin prop-
erties involving projections. For k > 0 our positive Rokhlin property is much more
flexible. For instance irrational rotations on the circle verify the positive Rokhlin
property with k = 1. In fact we have a topological density result which shows
show that the positive Rokhlin property is fairly prevalent. Equip Aut(A) with
the topology of pointwise convergence, more precisely, define basic neighborhoods
by

VF,ε(α) = {β ∈ Aut(A) | ‖α(a)− β(a)‖, ‖α−1(a)− β−1(a)‖ < ε∀a ∈ F}.
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If A is separable then Aut(A) with this topology is a complete metric space.

Theorem 3. If A is separable and Z-stable then the set of automorphisms of A
satisfying the positive Rokhlin property is Gδ in the above topology.

We have good estimates for the nuclear dimension of crossed products.

Theorem 4. Let be a finite group. If α : G → Aut(A) has the positive Rohklin
property with Rokhlin dimension k then

nd(A⋊α G) ≤ (nd(A) + 1)(k + 1)− 1.

Theorem 5. If α ∈ Aut(A) has the positive Rohklin property with Rokhlin di-
mension k then

nd(A⋊α Z) ≤ 8(nd(A) + 1)(k + 1)− 1.

Here nd(A) denotes the nuclear dimension of A. Moreover we can show that
Z-stability is preserved under taking crossed products with the positive Rokhlin
property Our main result shows that every minimal homeomorphism of a compact
metric space of finite covering dimension defines an automorphism of finite Rokhlin
dimension.
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Fractional skew monoid rings

Enrique Pardo

Paschke [7] gave a construction of a C∗-algebraic crossed product A⋊αN associated
to a not necessarily unital C∗-algebra endomorphism α on a C∗-algebra A, which
has been generalized to other semigroups, see e.g. [5] and [6]. Here, we develop a
purely algebraic analog with respect to monoid actions on rings: for a monoid T
acting on a unital ring A by endomorphisms and a submonoid S of T satisfying
the left denominator conditions, a fractional skew monoid ring Sop ∗α A ∗α T is
constructed, which satisfy a universal property analogous to the one for the skew
group ring. A general interesting result is provided in Section 2. Namely, assume
that G is a group acting on a ring A by automorphisms, and that there are a
submonoid S of G such that G = S−1S and a non-trivial idempotent e in A such
that αs(e) ∈ eAe for all s ∈ S. Then the corner ring e(A ∗α G)e of the skew group
ring A ∗α G is isomorphic as a G-graded ring to a fractional skew monoid ring
Sop ∗α′ (eAe) ∗α′ S (Proposition 2.2). Under the standing assumption that S acts
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by corner isomorphisms, we prove that all Sop ∗α A ∗α S can be exhibited in the
form e(A ∗α G)e (Theorem 2.5).

This is a joint work [1] with P. Ara, K.R. Goodearl and M.A. González-Barroso.

1. The general construction

1.1. Let A be a (unital) ring, and Endr(A) the monoid of not necessarily unital
ring endomorphisms of A. Let T be a monoid and α : T → Endr(A) a monoid
homomorphism, written t 7→ αt. For t ∈ T , set pt = αt(1), an idempotent in A.
Let S ⊆ T be a submonoid satisfying the left denominator conditions, i.e., the left
Ore condition and the monoid version of left reversibility: whenever t, u ∈ T with
ts = us for some s ∈ S, there exists s′ ∈ S such that s′t = s′u. Then there exists
a monoid of fractions, S−1T , with the usual properties (e.g., see [2, §1.10] or [3,
§0.8]). If S is cancellative and S = T , then left Ore condition trivially implies the
left reversibility property. But S can satisfy left denominator conditions and not
be cancellative (see e.g. [8, Example 1.5(2)]).

Definition 1.2. The label Sop∗αA∗αT stands for a (unital) ring R equipped with
a (unital) ring homomorphism φ : A → R and monoid homomorphisms s 7→ s−
from Sop → R and t 7→ t+ from T → R, universal with respect to the following
relations:

(1) t+φ(a) = φαt(a)t+ for all a ∈ A and t ∈ T ;
(2) φ(a)s− = s−φαs(a) for all a ∈ A and s ∈ S;
(3) s−s+ = 1 for all s ∈ S;
(4) s+s− = φ(ps) for all s ∈ S.

1.3. The existence of such a ring follows from a classical arguments. The con-
struction above also applies when A is an algebra over a field k or a ∗-algebra and
the ring endomorphisms αt for t ∈ T are k-linear or ∗-homomorphisms. Also, if s−
is an isometry for all s ∈ S, then (2) can be replaced by “s+φ(a)s− = φαs(a) for
all a ∈ A and s ∈ S”, (3-4) become redundant, and hence we extends the covariant
representation property for semigroup crossed products (see e.g. [4]).

Then we have the following:

Proposition 1.4.

(1) R =
∑

s∈S, t∈T s−φ(A)t+ =
∑

s∈S, t∈T s−φ(psApt)t+.

(2) The ring R has an S−1T -grading R =
⊕

x∈S−1T Rx where each Rx =⋃
s−1t=x s−φ(A)t+.

Now assume that S is left saturated in T : whenever s ∈ S and t ∈ T such that
ts ∈ S, we must have t ∈ S. Under this additional hypothesis, we can show the
following result:

Proposition 1.5.

(1) Let s ∈ S, t ∈ T , and a ∈ A. Then s−φ(a)t+ = 0 if and only if psapt ∈
ker(αs′) for some s′ ∈ S. In particular, ker(φ) =

⋃
s′∈S ker(αs′).
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(2) The ideal I = ker(φ) satisfies α−1
s (I) = I for all s ∈ S and αt(I) ⊆ I for

all t ∈ T .
(3) α induces a monoid homomorphism α′ : T → EndZ(A/I), and α′

s is in-
jective for all s ∈ S.

(4) Sop ∗α A ∗α T = Sop ∗α′ (A/I) ∗α′ T .

1.6. As Proposition 1.5 shows, we can reduce the problem to the case where αs

is injective for all s ∈ S. In that case, φ is injective by Proposition 1.5(a), and so
we can identify A with the unital subring φ(A) ⊆ R.

2. Fractional skew monoid rings versus corners of skew group rings

Paschke [7] has shown that a C*-algebra crossed product by an endomorphism
corresponds naturally to a corner in a crossed product by an automorphism. In
other words, the C*-algebra versions of fractional skew monoid rings Z+op

∗αA ∗α
Z+ are isomorphic to corners e(B ∗α′ Z)e in certain skew group rings. We prove
that Sop ∗α A ∗α S appear as corner rings e(B ∗ G)e, where B ∗ G is some skew
group ring over the group G = S−1S. We will assume that all the morphisms are
injective, and that the action is given by corner isomorphisms.

2.1. Let A be a unital ring, G a group, and α : G → Aut(A) an action. Assume
that S is a submonoid of G with G = S−1S (thus, S is cancellative and satisfies
the left Ore condition), and let R = A∗αG. Suppose that there exists a nontrivial
idempotent e ∈ A such that αs(e) ≤ e for all s ∈ S.

Proposition 2.2. Under the above assumptions, the following hold:

(1) The action α restricts to an action α′ : S → Endr(eAe) by corner isomor-
phisms.

(2) There are natural monoid morphisms Sop → eRe, given by s 7→ es−1, and
S → eRe, given by t 7→ te, satisfying the conditions (1)–(4) in Definition
1.2 with respect to α′ and the inclusion map φ : eAe → eRe.

(3) Under the assumptions of (2.1), the rings Sop∗α′ (eAe)∗α′S and e(A∗αG)e
are isomorphic as G-graded rings.

Now we go in the reverse direction, looking for a representation of a fractional
skew monoid ring Sop∗αA∗αS as a corner ring of a skew group ring. Our approach
used ideas in the work of Picavet [8].

2.3. Suppose that α : S → Endr(A) is an action of S on A by corner isomorphisms.
We construct a ring S−1A as in [8], but with some changes of notation to fit our
situation. First, define a relation ∼ on S × A as follows: (s1, a1) ∼ (s2, a2) if and
only if there exist t1, t2 ∈ S such that t1s1 = t2s2 and αt1(a1) = αt2(a2). This is
an equivalence relation [8, Lemma 2.1], and we write [s, a] for the equivalence class
of a pair (s, a). Let S−1A = (S×A)/∼ be the set of these equivalence classes. The
left Ore condition guarantees “common denominators” in S−1A. By [8, Lemma 2.2
ff.], there are well-defined associative multiplication and addition on S−1A. For,
given any [s1, a1], [s2, a2] ∈ S−1A, choose t1, t2 ∈ S such that t1s1 = t2s2, and set:
(i) [s1, a1] · [s2, a2] = [t1s1, αt1(a1)αt2(a2)]; (ii) [s1, a1] + [s2, a2] = [t1s1, αt1(a1) +
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αt2(a2)]. The distributive law is also routine, and so S−1A becomes a non-unital
ring. This procedure can be seen as a different way for obtaining Laca’s dilation
construction [4]. Next, we extend α to an action of S on S−1A.

Proposition 2.4.

(1) The action of α on A extends to an action α : S → Aut(S−1A). Con-
cretely, given any s ∈ S and [t, a] ∈ S−1A, set α̂s([t, a]) = [s′, αt′(a)] for
s′, t′ ∈ S such that s′s = t′t.

(2) The rule a 7→ [1, a] defines an S-equivariant ring embedding φ : A → S−1A
with image [1, 1] · S−1A · [1, 1].

Theorem 2.5. Let G be a group and S a submonoid of G such that G = S−1S.
Let α : S → Endr(A) be an action of S on A by corner isomorphisms. Then

Sop ∗α A ∗α S ∼= [1, 1]((S−1A) ∗α̂ G)[1, 1]

(as G-graded rings).
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Endomorphisms of graph C*-algebras

Wojciech Szymański

(joint work with Roberto Conti, Jeong Hee Hong)

A graph C∗-algebra C∗(E) is a universal C∗-algebra generated by partial isome-
tries {Se} with mutually commuting domain and range projections satisfying nat-
ural relations encoded in the underlying directed graph E, [13]. In the case of
finite graphs the class of graph C∗-algebras coincides with Cuntz-Krieger algebras
based on finite 0-1 matrices, [9], and thus contains the Cuntz algebras On ([7]),
2 ≤ n < ∞, as particularly important examples.

In this talk we discuss recent advances in the study of endomorphisms of graph
C∗-algebras (i.e. unital ∗-homomorphisms from C∗(E) into itself). Our motivation
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comes from numerous applications of such endomorphisms, including semigroup
crossed products, index theory ([11]), and symbolic dynamics. Until now, it was
the theory of endomorphisms of the Cuntz algebras On that attracted most of
attention, starting with Cuntz’s seminal paper [8] and up to recent works on com-
binatorial approach to localized endomorphisms, [6], and exotic endomorphisms
preserving the core UHF-subalgebra, [5]. In [4], we lay foundation for a systematic
development of an analogous theory of endomorphisms of graph C∗-algebras and
Cuntz-Krieger algebras.

In the case of On, it is well-known that every unital ∗-endomorphism arises
via λu(Si) = uSi, i = 1, . . . , n, for some unitary u, [8]. For graph algebras only
those endomorphisms which fix the vertex projections arise this way, and the
corresponding untaries commute with the vertex projections, [4]. In addition,
each graph automorphism extends to an automorphism of C∗(E) (the subgroup of
these automorphisms of C∗(E) we denote Aut(E)) and of course there are inner
automorphisms around. We denote by λ(PE)

−1 the group of those automorphisms
λu of C∗(E) which correspond to unitaries u which permute paths of certain fixed
length (and fix the vertex projections).

Denote by FE the core AF-subalgebra of C∗(E) and by DE the canonical di-
agonal MASA. Let Aut(C∗(E),DE) = {α ∈ Aut(C∗(E)) : α(DE) = DE} and
AutDE

(C∗(E)) = {α ∈ Aut(C∗(E)) : α|DE
= id}. Let E be a finite graph without

sinks, in which every loop has an exit. We also assume that the center of the corre-
sponding graph C∗-algebra C∗(E) is trivial. Then, analogously to the case of On

studied by Cuntz in [8], AutDE
(C∗(E)) ∼= U(DE) is a maximal abelian subgroup

of Aut(C∗(E)), and the quotient AutDE
(C∗(E))/AutDE

(C∗(E)) is a countable
discrete group, called the Weyl group of C∗(E), [4].

The subgroup of the Weyl group corresponding to those automorphisms which
in addition globally preserve FE is called the restricted Weyl group of C∗(E), and
its image in Out(C∗(E)) the restricted outer Weyl group of C∗(E). The subgroup
〈λ(PE)

−1,Aut(E)〉 of Aut(C∗(E)) generated by permutative automorphisms and
graph automorphisms embeds into the restricted Weyl group. Furthermore, if an
element of this subgroup has infinite order in Aut(C∗(E)) then it automatically
has infinite order in Out(C∗(E)), [4].

Say a unital ∗-endomorphism α : DE → DE eventually commutes with the shift
if there exists a positive integer m such that αϕm and ϕ commute. (Here ϕ :
DE → DE is the usual shift: ϕ(d) =

∑
e∈E1 SedS

∗
e .) We denote by AE the group

of those α ∈ Aut(DE) that both α and α−1 eventually commute with the shift.
Let E be a finite graph without sinks and sources in which all loops have exits. In
addition, suppose that the center of FE is trivial. Then the restriction map gives
rise to an embedding of the restricted Weyl group of C∗(E) into AE , [4]. This
result provides a far reaching generalization of the known fact (cf. [9, 2, 12]) that
automorphisms of a one-sided subshift of finite type extend to the corresponding
Cuntz-Krieger algebra. In the special case of On this embedding is surjective,
[3]. Further, there exists an embedding of the restricted outer Weyl group of On

into the quotient by its center of the automorphism group of the full two-sided
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n-shift, and this embedding is an isomorphism for n prime, [3]. This provides a
new perspective on the much studied group of shift automorphisms, [10].

If a unitary u ∈ C∗(E) belongs to the algebraic part of the core AF-subalgebra
FE then the endomorphism λu of C∗(E) is called localized. Such endomorphisms
may be viewed as maps on the Leavitt path algebra corresponding to graph E,
[1]. Thus many of our results about localized endomorphisms of C∗(E) may be
applied in this purely algebraic context as well.
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