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Abstract. The earliest work in topology was often based on explicit com-
binatorial models – usually triangulations – for the spaces being studied. Al-
though algebraic methods in topology gradually replaced combinatorial ones
in the mid-1900s, the emergence of computers later revitalized the study of
triangulations. By now there are several distinct mathematical communities
actively doing work on different aspects of triangulations. The goal of this
workshop was to bring the researchers from these various communities to-
gether to stimulate interaction and to benefit from the exchange of ideas and
methods.
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Introduction by the Organisers

The workshop Triangulations, organised by William H. Jaco (Stillwater), Frank H.
Lutz (Berlin), Francisco Santos (Santander) and John M. Sullivan (Berlin) was
held April 29th – May 5th, 2012. The meeting was well attended, with 53 partic-
ipants from 14 countries (including Argentina, Australia and Israel). Besides the
27 lectures, the program included evening sessions on mathematical software and
on open problems. The workshop successfully brought the different communities
of mathematicians interested in triangulations together, resulting in several new
collabortive projects between mathematicians who had never met before.

Triangulations have become increasingly important in both discrete geometry
and manifold topology, but this work has proceeded independently without much
interaction between the communities. Even the word “triangulation” can be a
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source of confusion: for 3-manifolds the most general pseudo-simplicial triangula-
tions (typically with a single vertex) are preferred, but discrete geometers mostly
restrict to simplicial complexes, while in polytope theory and computational ge-
ometry these must be linearly embedded. Thus for instance while Pachner moves
(bistellar flips) are useful to pass from one triangulation to another (as highlighted
in the talks by de Loera and Burton), the moves available and their exact proper-
ties depend on the class of triangulations considered.

The combinatorial approach through 0-efficient triangulations and normal sur-
faces has introduced methods from geometric analysis into the combinatorial study
of 3-manifolds. The resulting enumeration and decision problems are important
and challenging examples in the study of computational complexity (as shown in
the talks by Schleimer and Hass).

Complexity measures for 3-manifolds are well established in the pseudo-simpli-
cial world (see the talks by Matveev, Martelli, Casali and Tillmann), but there is
also a possible analogue in the combinatorial triangulation world (as proposed in
the talk by Swartz).

Within discrete geometry, tools of algebraic topology and even algebraic geome-
try are often essential for answering fundamental questions. For instance, Stanley’s
proof of the g-theorem (characterizing the f -vectors of polytopes) is based on the
cohomology of toric varieties. Recent progress along these lines was reported by
Joswig, Nevo and Swartz.

One example of a technique used in both communities to relate geometry and
combinatorics is putting CAT(0) metrics on triangulations, as mentioned in the
talks by Rubinstein, Benedetti and Adiprasito.

The workshop schedule left plenty of free time for informal interactions, and
many fruitful discussions developed between mathematicians who had just met
for the first time. For instance, knowledge about simplicial decompositions of
the dodecahedron led to new insights on minimal triangulations of the Seifert–
Weber dodecahedral space. As another example, less than two months after the
workshop, Hähnle, Klee and Pilaud posted a preprint (arXiv:1206.6143) on weak
decomposability based on work started at the Oberwolfach workshop.
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Abstracts

3-Manifold Recognizer and 3-Manifold Atlas

Sergei Matveev

(joint work with V. Tarkaev, E. Fominykh, Ph. Korablev, V. Potapov,
E. Sbrodova, A. Kazakov, D. Gorkovez, and other members of the topology

group of Chelyabinsk State University)

3-Manifold Recognizer is a huge computer program for recognizing closed ori-
entable 3-manifolds. It accepts almost all known representations of 3-manifolds:
genuine triangulations, one-vertex triangulations, special spines, representations
by surgeries along framed links, crystallizations, genus two Heegaard diagrams,
and some other representations.

The output of the Recognizer is the name of the given manifold M . Possible
names are: complete information on the Seifert or graph-manifold structure (if
M is Seifert or graph-manifold of Waldhausen [1]), a surgery description of M as
well as a representation of M in the form of a Dehn filling of an elementary brick
from [2]. If M is geometric, we get the type of the geometry, including the volume
(if M is hyperbolic) and the monodromy matrix (if M possesses Sol geometry). If
M is composite, the name is a description of the JSJ-decomposition of M (includ-
ing information about the types of JSJ-chambers and gluing homeomorphisms).
The name Unrecognized is also possible. In all cases we get values of different
invariants of the given manifold: the type of geometry, values of Turaev-Viro in-
variants (up to order 16, if you are patient enough), of course, first homology
group, and some additional information.

The Recognizer works as follows: given M , the computer creates a special spine
P of M . Then it tries to simplify P by different moves, which may change M and
P , but only in controlled manner. For example, the first move may consist of
removing a 2-cell C from P . As the result of this move, we get a simpler manifold
M0 (whose boundary is a torus), and its spine P0 = P \ C. Of course, P0 is not
special anymore, thus the computer have to keep in memory information how P0

can be thickened to M0 and how M can be obtained from M0 by attaching a solid
torus. The crucial advantage of this approach is that after admitting general (not
necessary special) spines we get a big freedom for working with them. Other moves
include cutting M along proper discs and annuli, and corresponding moves on P .
As the result of those moves we get a decomposition of M into a union of several
pieces with boundaries consisting of tori, and information how these pieces can
be assembled into the original manifold M . The pieces are called atoms, and the
information on the assembling is called a molecule. During the assembling process
the program keeps track of the topology of 3-manifolds obtained at each step until
getting the final result. See [3], Chapter 7.

The Recognizer turned out to be a very powerful tool for recognition and tab-
ulation of 3-manifolds. Using it, we composed the following table.
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c ≤ 5 6 7 8 9 10 11 12 13 Total
N 61 74 175 436 1154 3078 8421 23448 66198 103042

Here c is the complexity and N is the number of closed orientable irreducible
3-manifolds of complexity c.

Let us give a non-formal description of the computer program that was used for
creating the table. The computer enumerates all regular graphs of degree 4 with a
given number of vertices. The graphs may be considered as work-pieces for singular
graphs of special spines. For each graph, the computer replaces each vertex by
a butterfly (typical neighborhood of a true vertex of a special polyhedron) and
enumerates all possible gluings of those butterflies along the edges of the graph.
Then 2-cells are attached. If the special polyhedron thus obtained is a spine of
a closed 3-manifold, we send it to the Recognizer and include it into the table,
if the manifold turns out to be a new one. An independent check of the table
by computing Turaev-Viro invariants up to order 16 was very useful for removing
duplicates. Of course, all reasonable tricks for accelerating the process had been
implemented. We used the supercomputer of South-Ural State University (that
time it was the third in Russia and among first 50 in the world). However, the
running time of the program was about a year (with a few interruptions).

3-Manifold Atlas is the interactive site www.matlas.math.csu.ru based on
the above table and equipped with a search function. If you specify information
on a manifold your are looking for, you get the list of all manifolds from the table
which satisfy your criteria. Clicking at any of those manifolds, you get additional
information including all above-mentioned invariants and the standard code of one
of its minimal special spines.

Acknowledgments The topology group of Chelyabinsk State University was
partially supported by Russian Fund of Basic Research, Mathematical and Ural
branches of RAS, and by Institute of Mathematics and Mechanics of Ural branch
of RAS.

We thank Ben Burton for pointing out two errors in the above table.
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On Spaces of Triangulations of Convex Polytopes and Point
Configurations

Jesús A. De Loera

In the late 1980’s and early 1990’s there was a lot of work trying to understand
the structure of the set of all triangulations of a convex polytope (e.g., the unit
cube) or a configuration of points in Rd. The prime example is the set of trian-
gulations of an n-gon, which gives rise to the well-known associahedron. Using a
clever construction Gelfand, Kapranov, and Zelevinsky [1] showed that this exam-
ple generalizes. To all regular subdivisions of a set of n points a1, . . . , an in Rd

one can associate an (n − d − 1)-dimensional convex polytope whose faces are in
bijection with the regular subdivisions of the point set. Its vertices correspond
to the so-called regular triangulations of the point set. The flip graph of a point
configuration is the graph whose vertices are the triangulations of the configura-
tion, and where two vertices are connected by an edge if there exists a bistellar
operation transforming one triangulation into the other. The 1-skeleton of the
secondary polytope is a subgraph of the flip graph induced by the regular triangu-
lations of the point configuration (but recently it has been shown that not all flips
appear as edges [2]). My presentation aimed to introduced the audience to these
ideas (which contrast with the use of triangulations in 3-dimensional topology).
I concluded with several open questions that still motivate active research. We
present this collection of questions here, which is a subset of those presented in
the book [2].

(1) Can we find all the facets of the secondary polytope of the d-cube?
(2) It is well known that in dimension 2 the graph of all triangulations is

connected. But Santos proved [3] that in dimension 5 or higher, there are
point sets with a disconnected graph of triangulations [Santos, 2004]. Are
there disconnected 3-dimensional examples? How about dimension 4?

(3) What is the computational complexity of counting all triangulations? How
to generate a triangulation uniformly at random?

(4) Prove/Disprove that all smooth polytopes have a unimodular regular tri-
angulation.

(5) Prove/Disprove that all matroid polytopes have a unimodular regular tri-
angulation.

(6) Is it true that every 3-dimensional polyhedron has a triangulation whose
dual graph is Hamiltonian?

(7) What are the best bounds for the diameter of a triangulation?
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Pachner Moves, Generic Complexity, and Randomising 3-Manifold
Triangulations

Benjamin A. Burton

(joint work with Murray Elder, Jonathan Spreer and Stephan Tillmann)

1. Introduction

We study the computational complexity of decision problems on triangulated 3-
manifolds. In this setting there has been encouraging initial progress in recent
years, but many important questions remain wide open.

The “simple” problem of 3-sphere recognition and the related problem of unknot
recognition are both known to be in NP, by work of Schleimer [18] and earlier
work of Hass, Lagarias and Pippenger [9] respectively. In recent announcements
by Kuperberg [13] and Hass and Kuperberg [8], these problems are also in co-NP
if the generalised Riemann hypothesis holds. It remains a major open question as
to whether either problem can be solved in polynomial time.

There are very few hardness results for such problems. A notable example due
to Agol, Hass and Thurston is knot genus: if we generalise unknot recognition to
computing knot genus, and we generalise the ambient space from S3 to an arbitrary
3-manifold, then the problem becomes NP-complete [1]. The key construction in
their result can also be adapted for problems relating to least-area surfaces [1, 7].

2. A hardness result: Taut angle structures

Our first result (in joint work with Spreer) is a hardness result. It relates to taut
angle structures on triangulations, as introduced by Lackenby [14]. Taut angle
structures are simple and common combinatorial objects; in the right settings
they can lead to strict angle structures [11], which are richer objects that in turn
can point the way towards building complete hyperbolic structures.

We use the nomenclature of Hodgson et al. [10]: a taut angle structure assigns
interior angles {0, 0, 0, 0, π, π} to the six edges of each tetrahedron of a triangula-
tion, so that the two π angles are opposite in each tetrahedron, and so that around
each edge of the overall triangulation the sum of angles is 2π. Note that this re-
quires the triangulation to be ideal, with torus or Klein bottle vertex links. These
structures are slightly more general than the taut structures of Lackenby [14], who
also requires consistent coorientations on the 2-faces of the triangulation.

The decision problem that we study is a simple one:

Problem 1 (taut angle structure). Given an orientable 3-manifold triangu-
lation T as input, determine whether there exists a taut angle structure on T .

This decision problem explicitly asks about the geometry of the input triangu-
lation, not the underlying manifold. Our main result is the following:

Theorem 1. taut angle structure is NP-complete.
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The proof uses a reduction from monotone 1-in-3 sat, which was shown
by Schaefer to be NP-complete in the 1970s [17]. In monotone 1-in-3 sat we
have boolean variables x1, . . . , xt and clauses of the form xi ∨ xj ∨ xk, and we
must determine whether the t variables can be assigned true/false values so that
precisely one of the three variables in each clause is true.

For any instance M of monotone 1-in-3 sat, we build a corresponding tri-
angulation that has a taut angle structure if and only if M is solvable. The
triangulation is built by hooking together three types of gadgets: (i) variable gad-
gets, each with two choices of taut angle structure that represent true or false
respectively for a single variable xi of M; (ii) fork gadgets that allow us to prop-
agate this choice for xi to several clauses simultaneously; and (iii) clause gadgets
that connect three variable gadgets and support an overall taut angle structure
if and only if precisely one of the three corresponding variable choices is true.
These gadgets have 2, 21 and 4 tetrahedra respectively, and were constructed with
significant assistance from the software package Regina [2, 5].

This result offers a new framework for proving NP-completeness by building
up concrete 3-manifold triangulations, and it is an ongoing project to see how far
we can push this framework towards key decision problems such as 0-efficiency
testing, 3-sphere recognition, and unknot recognition.

3. Towards an easiness result: 3-sphere recognition

We turn our attention now to 3-sphere recognition. Here we offer a framework (in
joint work with Elder and Tillmann), supported by empirical evidence, for solving
3-sphere recognition in polynomial time for generic 3-sphere triangulations.

The current state of the art for 3-sphere recognition is outlined in [3] (a cumula-
tion of many results by many authors), and has a running time of O(7n ·poly(n)) in
the worst case [6] (Casson describes an O(3n ·poly(n)) solution, but his method is
not practical because the 3n factor is largely unavoidable). Nevertheless, practical
implementations are extremely fast in practice: Regina takes just 0.25 milliseconds
on average to recognise a 3-sphere triangulation with n = 10 tetrahedra.

The key to this speed is simplification: Regina will first try to greedily reduce
the input triangulation to a small number of tetrahedra using Pachner moves (bis-
tellar flips) [15, 16]; for most 3-sphere triangulations this yields a one-tetrahedron
triangulation that can be recognised immediately without running the expensive
O(7n · poly(n)) algorithm at all.

We seek to capture this behaviour using generic complexity [12], which allows us
to exclude rare pathological inputs from consideration. Let In denote all possible
inputs of size n. A set of inputs S is called generic if |S ∩ In|/|In| → 1 as n → ∞;
in other words, the inputs excluded from S become “infinitesimally rare”.

We analyse the census of all 31, 017, 533 one-vertex 3-sphere triangulations with
n ≤ 9 tetrahedra, and measure paths of Pachner moves between them [4]. Let pn,k
denote the probability that a random n-tetrahedron one-vertex 3-sphere triangu-
lation cannot be simplified in ≤ k such moves. Empirically pn,k falls very fast, at
a rate that appears comfortably O(1/αnk) for fixed α > 1.
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Under the right “approximate independence” assumptions, this would allow us
to simplify generic one-vertex 3-sphere triangulations to a known two-tetrahedron
3-sphere triangulation in polynomial time. The key idea is “aggressive simplifica-
tion”: as our triangulation shrinks we gradually increase the number of allowed
moves, allowing us to “jump past” smaller difficult cases as n → ∞, but maintain-
ing an overall polynomial running time of bounded degree in n.

This work ties into the study of random 3-manifold triangulations, where very
little is known. Understanding random triangulations—and how to effectively
randomise a triangulation of an arbitrary 3-manifold—is an ongoing challenge
with significant implications for topological algorithms and complexity.
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Triangulations of Products of Simplices with a View Towards Tropical
Geometry

Michael Joswig

(joint work with Sven Herrmann, David Speyer)

One goal of tropical geometry is to address certain problems in algebraic geometry
by means of geometric combinatorics. Conversely, classical problems in combina-
torial optimization receive a natural geometric interpretation. Here we give an
example of this relationship related to the structure of the tropical Grassmannians
introduced by Speyer and Sturmfels [6]. On the combinatorial level this approach
works via lifting subdivisions of products of simplices to matroid decompositions
of hypersimplices.

Let ∆d−1 be a (d−1)-dimensional simplex. The actual shape does not matter.
The triangulations of the prism ∆d−1× [0, 1] have a particularly simple structure.
If we label the vertices of ∆d−1 by the elements in the set [d] := {1, 2, . . . , d} then
any triangulation Γ of ∆d−1 × [0, 1] correspond to the permutations of the set [d].
Moreover, Γ is always regular, and the dual graph is a path on d nodes; see [1,
§6.2]. In fact, the normal fan of the permutahedron

conv { (ω(1), ω(2), . . . , ω(d)) | ω ∈ Sym(d)} ⊂ Rd

is the secondary fan of the prism ∆d−1× [0, 1]; that is, this fan stratifies the lifting
functions by combinatorial type of the induced subdivision. Here Sym(d) denotes
the set of permutations of the set [d].

Products of simplices occur in tropical geometry via a result of Develin and
Sturmfels [2]: The dual polytopal complex (also called tight span) of the regular
subdivision of ∆d−1 × ∆n−1 induced by the lifting function V ∈ Rd×(n−d) is
isomorphic to the natural polytopal subdivision of the tropical convex hull of the
columns (or rows) of the matrix V . Triangulations correspond to matrices which
are sufficiently generic. We want to relate the secondary fan of ∆d−1×∆n−d−1 to
the tropical Grassmannian GrK(d, n). The latter is defined as the tropical variety
of the Plücker ideal in the polynomial ring K[xσ|σ ∈

(
n
d

)
] over some field K.

Notice, that for products of simplices other than prisms the precise structure of
the secondary fans is rather involved and unknown, except for a few special cases.

By Ed we denote the tropical identity matrix of rank d (the d×d-matrix with 0
on the diagonal and coefficients equal to ∞ otherwise). For a matrix V ∈ Rd×(n−d)

we let V̄ = (Ed|V ) be the d×n-matrix arising by block column concatenation of Ed
and V . Each d-element subset σ ⊆ [n] specifies a d×d-submatrix V̄σ by selecting
the columns of V̄ whose indices are in σ. We are interested in the map

(1) τV :

(
[n]

d

)
→ R , σ 7→ tdet(V̄σ).

Here

(2) tdet(A) = min
ω∈Sym(d)

a1,ω(1) + a2,ω(2) + · · ·+ ak,ω(k)

denotes the tropical determinant of the matrix A = (aij)i,j ∈ Rd×d.
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It is readily verified that the map τV is a tropical Plücker vector or, equivalently,
a lifting function of the hypersimplex

∆(d, n) = conv

{
eσ

∣∣∣∣ σ ∈
(
[n]

d

)}
⊂ R

(
n
d

)

which induces a matroid decomposition [3]; here eσ is the 0/1-vector of length
n whose d ones correspond to the elements of σ. A matroid decomposition is a
polytopal subdivision of ∆(d, n) such that the vertices of each cell correspond to
the bases of a matroid. Equivalently, it is a subdivision of ∆(d, n) without new
edges. Moreover, τV is the tropicalization of a classical Plücker vector, whence it
is contained in GrK(d, n). Notice that this is independent of the field K.

Theorem 1 ([4]). The map τ : V 7→ τV is a piecewise-linear embedding of the
secondary fan of ∆d−1 ×∆n−d−1 into GrK(d, n) which preserves the tight spans.

A few remarks are in order. First, this is a strengthening of a result of Kapra-
nov [5, 4.1.4]. Second, the embedding is into GrK(d, n) as a set ; that is, we do
not fully control how τ behaves with respect to any fan structure on the trop-
ical Grassmannian. Third, a similar result has been obtained independently by
Rincón1. Fourth, our result generalizes to non-regular subdivisions of products
of simplices: They, too, lift to (non-regular) matroid subdivisions of the suitable
hypersimplex.

We conclude by returning to the initial discussion of the triangulations of prisms.
In this case (where n = d + 2) our theorem above says the following. Suppose
V ∈ Rd×2 is a generic lifting function on the prism ∆d−1 × [0, 1]. Then τV is a
lifting function of ∆(d, d+2) which induces a matroid subdivision whose tight span
is a path of length d. This tight span coincides with the tropical convex hull of the
two columns of the matrix V , a tropical line segment. The tropical Grassmannian
GrK(2, n) is the space of all trivalent trees with n labeled nodes. The image of
the map τ in GrK(d, d+ 2) ∼= GrK(2, d+ 2) is the set of caterpillar trees.
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Triangulations and Subdivisions in the Geometry of Numbers

Frank Vallentin

1. Classical theory

The classical theory of triangulations and subdivisions in the geometry of numbers
goes back to G.F. Voronoi (1868–1908) and B.N. Delaunay = B.N. Delone =
B.N. Delone (1890–1980). It can be seen as a predecessor of Gel’fand, Kapranov,
Zelevinsky’s theory of regular triangulations.

In the classical theory one considers periodic regular subdivisions whose ver-
tex set is the lattice Zn and where the lifting function which defines the regular
subdivision is coming from a positive semidefinite matrix Q ∈ Sn�0: The lifting
function

lQ :

{
Zn → Rn × R≥0
v 7→ (v, vTQv)

defines (by taking the convex hull of lQ(Z
n) and projecting its lower part onto Rn)

the Delone subdivision Del(Q).
The secondary cone of a Delone subdivision Del(Q) (traditionally called L-type

domain) is the set of all Q′ for which the subdivision stays constant to Del(Q),

C◦(Del(Q)) = {Q′ ∈ Sn�0 : Del(Q′) = Del(Q)}.
It is a relatively open polyhedral cone. Cones of full dimension correspond to
triangulations. The secondary fan is the infinite face-to-face tiling of Sn�0 by
secondary cones. Two Delone triangulations whose secondary cones share a facet
differ by flip.

The group GLn(Z) acts on Sn�0. The following finiteness result is the basis of
Voronoi’s reduction theory.

Figure 1. S2
�0/GL2(Z).
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Theorem 1. There are only finitely many Delone triangulations under the GLn(Z)-
action, so secondary cones give a fundamental domain of Sn�0/GLn(Z).

2. Applications and extensions

In a series of papers [1–5] we applied and extended Voronoi’s reduction theory
to make progress on the lattice sphere covering problem. This problem asks for
finding a lattice L = AZn, with A ∈ GLn(R), so that the density of the sphere
covering given by L (spheres of equal size are centered at the lattice points with a
radius chosen so they just cover every point in space) is minimized. Going from A
to Q = AAT ∈ Sn≻0 one can formulate the lattice sphere covering problem as the
following optimization problem (see [2]):

min
T

max
T ≤Del(Q)

log detQ











4 vT1Qv1 vT2Qv2 . . . vTnQvn
vT1Qv1 vT1Qv1 vT1Qv2 . . . vT1Qvn

...
...

...
...

vTnQvn vTnQv1 vTnQv2 . . . vTnQvn











� 0, T = conv{0, v1, . . . , vn} ⊆ T ,

where we minimize over all Delone triangulations T . We have one LMI (linear
matrix inequality) for every simplex T which describes the condition that the
circumradius of the simplex is at most 1. The inner maximization optimization
problem is equivalent to a semidefinite optimization problem and thus one can
solve it efficiently.

Some words about the complexity of the lattice sphere covering problem: In
every Delone triangulation there are up to n! simplices in Del(Q)/Zn. Further-
more computing |Del(Q)/Zn| for given Q is #P-hard (see [4]). However, as usual,
symmetry helps : In [3] we developed and used an equivariant theory for Q’s with
prescribed automorphism group and we found new record breaking lattice cover-
ings.

Another way of using symmetries is based on spherical t-designs. These are
finite point sets on the unit sphere Sn−1 so that

∫

Sn−1

f(x)dω(x) =
1

|X |
∑

x∈X

f(x)s

holds for all polynomials of degree ≤ t.
Using this we proved in [1] that the Leech lattice Λ24 provides a locally op-

timal sphere covering. To prove this we remember that Conway, Parker, Sloane
(1982) classified Delone polytopes of Λ24 with maximum circumradius

√
2 and

among them there is the non-regular simplex of type A25 where circumcenter and
barycenter coincide. Now by dualizing the convex optimization problem and relax-
ing (only simplices T of type A25 are taken into account) and using the spherical
2-design property of the vectors of Λ24 of given length one can solve this relaxation
by hand, proving local optimality of Λ24.

On the other hand, somewhat unexpected, many highly symmetric lattices do
not give a good sphere covering as we showed in [5]. In fact, if the covering radius
is attained only at non-simplices and if the vertices (after a suitable congruence
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transformation) of such a Delone polytope form a spherical 2-design, then almost
all perturbations of the lattice improves the covering density. If they form a
spherical 4-design, then all perturbations improve the covering density. In Table1
we list the covering property of the most prominent lattices.

lattice covering density

Z global minimum
A2 global minimum
D4 almost local maximum
E6 local maximum
E7 local maximum
E8 almost local maximum
K12 almost local maximum
BW16 local maximum
Λ24 local minimum

Table 1. Covering property of prominent lattices.
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[2] A. Schürmann, F. Vallentin, Computational approaches to lattice packing and covering
problems, Discr. Comp. Geom. 35 (2006), 73–116.
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Veering Triangulations and the Cannon–Thurston Map

François Guéritaud

Hyperbolic mapping tori. Let S be an oriented surface with at least one punc-
ture, and ϕ : S → S an orientation-preserving homeomorphism. Define the map-
ping torus M := S × [0, 1]/ ∼ϕ, where ∼ϕ identifies (x, 0) with (ϕ(x), 1). The
topological type of the 3-manifold M depends only on the isotopy type of ϕ.

In what follows, we shall assume that ϕ is pseudo-Anosov, a technical condi-
tion meaning that the isotopy class [ϕ] preserves no finite system of curves on S.
A landmark result of Thurston’s [6] is that M then admits a (unique) complete
hyperbolic metric: M ≃ Γ\H3 for some discrete group of isometries Γ. An impor-
tant step towards this is the existence of a transverse pair of [ϕ]-invariant singular
foliations λ+, λ− of S into lines (called leaves).

In [1], Agol described a canonical way of triangulating a mapping torus M ,
provided all singularities of the foliations λ+, λ− occur at punctures of the fiber S.
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These (ideal) triangulations enjoy a combinatorial property called veeringness. In
[5] and [4], veering triangulations are shown to admit positive angle structures : this
is a linearized version of the problem of finding the complete hyperbolic metric on
M (endowed with a geodesic triangulation).

Combinatorics of the veering triangulation. I first presented an alternative
construction of Agol’s triangulation, which can be summarized as follows. Endow
S with a flat (incomplete) metric for which the lines of the measured foliations
λ+ and λ− are vertical and horizontal, respectively. Look for all possible maximal
rectangles R ⊂ S with edges along leaf segments. By maximality, such a rectangle
R contains one singularity in each of its four sides. Connecting these four points
and thickening, we get a tetrahedron ∆R ⊂ S × [0, 1]. It only remains to check
that the tetrahedra ∆R glue up to yield a triangulation of S × [0, 1] (naturally
compatible with the equivalence relation ∼ϕ since the foliations λ+, λ− are [ϕ]-
invariant).

Unlike Agol’s original definition, this does not rely on any auxiliary choices (e.g.
of train tracks). One upshot is that it allows a detailed description of the induced
2-dimensional triangulations T of the vertex links (which are tori). The details do
not matter, but each torus turns out to be decomposed into an even number of
parallel annuli, with each triangle of T having its basis on a boundary component
of some annulus, and its tip on the other boundary component.

The Cannon–Thurston map. Next, I showed that the combinatorics of a veer-
ing triangulation are also related to the hyperbolic geometry ofM via the Cannon–
Thurston map, which we now define. Let D (a disk) be the universal cover of the
fiber S. The inclusion S → M lifts to a map ι : D → H3 between the universal
covers, which turns out to extend continuously to a boundary map ι : S1 → S2.
Cannon and Thurston [3] proved the surprising fact that ι is a (continuous) surjec-
tion from the circle to the sphere. The endpoints of any leaf of λ± have the same
image under ι, and this in fact generates all the identifications occurring under ι.

The connection with the veering triangulation and T is as follows. Choose an
ideal vertex of the ideal triangulation ofM ; call it∞. The hyperbolic metric gives a
natural identification between S2−{∞} and the universal cover of the toroidal link
of ∞ in M . This universal cover (a plane Π) receives a topological triangulation

T̃ , lifting T , in which the annuli of T become infinite vertical strips. (The vertices

of T̃ are well-defined points with algebraic coordinates in R2, although higher

skeleta of T̃ are only defined up to isotopy.) It turns out that the surjection
ι : S1 → Π ∪ {∞} fills out Π by filling out in ordered succession a Z2-collection of
topological disks, column by column, with columns being travelled alternately up
and down. Each column corresponds to the interface A between adjacent infinite

strips of T̃ , and each topological disk δ corresponds to a basis β ⊂ A of a triangle

of T̃ , with ∂β ⊂ ∂δ. Two consecutive disks intersect at exactly one point, a vertex

of T̃ . Arbitrary disks intersect only (if at all) along their Jordan-curve boundaries,

and the disks meet four at each vertex of T̃ .
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Although describing the full combinatorics requires a more elaborate dictionary
between the foliations λ±, the triangulation T , and the Cannon–Thurston map ι,
we can state the first entry of this dictionary as follows.
Theorem. Suppose the hyperbolic 3-manifold M is a pseudo-Anosov mapping
torus such that all singularities of the invariant foliations λ± occur at punctures

of the fiber S. Let T̃ be the topological (doubly periodic) triangulation of the plane
arising from the veering triangulation of M , and D = {δi}i∈I be the decomposition
of the plane into topological disks arising from the Cannon–Thurston map. Then

T̃ and D have the same vertex set.
This connection was previously known for the punctured torus by work of Can-

non and Dicks [2].
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Lens Space Recognition is in NP

Saul Schleimer

(joint work with Marc Lackenby)

We prove the following.

Theorem 3. The recognition problem for lens spaces lies in NP.

1. History

One way to begin the story of decision problems in three-manifolds is Haken’s so-
lution to the unknotting problem; he gave an algorithm [5] to decide if a polygonal
loop in R3 is isotopic to the unknot. Haken introduced normal surfaces, a PL
analogue of minimal surfaces. Jaco and Oertel [8], using Haken’s techniques, gave
an algorithm to decide if a closed, orientable, irreducible three-manifold contains
a two-sided incompressible surface.

The three-sphere recognition problem was first shown to be decidable by Ru-
binstein [12], using almost normal surfaces, a PL analogue of index one minimal
surfaces. His solution was improved upon by Thompson [15], using thin position:
this is a mini-max principle (for knots in three-manifolds) due to Gabai [4]. Later,
Casson [3] showed that the problem lies in EXPTIME. His proof introduced the
concept of crushing triangulations along normal two-spheres. This reduces the



1422 Oberwolfach Report 24/2012

number of tetrahedra monotonically and avoids the cutting procedure used in the
earlier proofs.

Hass, Lagarias, and Pippenger [6] showed that the unknotting problem lies in
NP; given an unknot of length n there is a normal spanning disk (provided by
Haken) that can be checked in polynomial time. One delicate point is checking that
the disk is connected. In the other direction, Agol, Hass, and Thurston [2] gave
one of the first lower bounds, showing that determining the genus of a knot in an
arbitrary manifold is NP-complete. Among other tools, they gave a polynomial-
time algorithm to count the number of components of a normal surface. The
second author [13] used their techniques, and a new polynomial-time algorithm
to normalize almost normal surfaces, to show three-sphere recognition lies in NP.
Ivanov [7] gave another solution, more in the spirit of [6].

Agol [1] announced a proof, using sutured manifold hierarchies, that the unknot
recognition problem lies in co-NP. Very recently, Kuperberg [9] showed that the
generalized Riemann hypothesis implies the same result, using several striking
results from three-manifold topology, algebraic geometry, and complexity theory.

2. Background

Recall that the three-sphere is given by

S3 = {(z, w) ∈ C2 : |z|2 + |w|2 = 1}.
The recognition problem for the three-sphere is the following. Given a triangulated
three-manifold (M,∆) determine if M is homeomorphic to the three-sphere.

Suppose that p, q ∈ N are given so that 1 ≤ q ≤ p and gcd(p, q) = 1. Define
ζ = exp(2πi/p) and define

L(p, q) = S3
/
(z, w) ∼ (ζz, ζqw).

This is the lens space corresponding to the ordered pair (p, q). The recognition
problem for lens spaces is the following. Given a triangulated three-manifold
(M,∆) determine if M is homeomorphic to a lens space.

Note for any fixed (p, q) the recognition problem for L(p, q) reduces to the
recognition problem for S3. This follows from the following covering trick. To
certify a three-manifold M is a lens space it suffices to give a cover ρ : N → M
and to certify

• N is a three-sphere and
• the deck group Deck(ρ) is isomorphic to Z/pZ.

However, this does not solve the lens space recognition problem stated above,
because p may be exponentially large in terms of the given triangulation ∆.

Let Lz = {(z, w) ∈ S3 | w = 0} and Lw = {(z, w) ∈ S3 | z = 0} be the z and
w–axes in S3. Then C = {(z, w) ∈ S3 : |z| = |w|} is the Clifford torus separating
Lz from Lw. Let Vz and Vw be the components of S3 − n(C) containing Lz and
Lw, respectively. Then each of Vz and Vw are solid tori ; they are homeomorphic to
S1×D2. We say that the triple (C, Vz , VW ) is a splitting of S3. If ρ : S3 → L(p, q) is
the standard covering map, then the images T = ρ(C), V = ρ(Vz), andW = ρ(Vw)
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are again a torus and solid tori, respectively. Thus (T, V,W ) is a splitting of
L(p, q). It is not hard to show that the lens spaces (and S1 × S2) are the only
three-manifolds admitting such splittings.

3. Almost normal splittings

Suppose that (M,∆) is a triangulated three-manifold. For every tetrahedron τ ∈ ∆
we have a map πτ : τ → M that is an embedding on interior(τ) and sends faces to
faces. If X ⊂ M then define Xτ = π−1τ (X). A surface S ⊂ M , transverse to the
skeleta of ∆, is normal if for every tetrahedron τ all components of Sτ are normal
disks. See the left-hand side of Figure 1.

Figure 1. Two of the seven normal disks are shown on the left.
The almost normal octagon is shown on the right.

The surface S is almost normal if all components of all preimages are normal
disks, except for perhaps one component which is either an almost normal octagon
(shown in Figure 1, on the right) or an almost normal annulus. The latter is
obtained by connecting a pair of normal disks in τ by a tube parallel to an arc of
the one-skeleton τ (1). We can now state a result of Rubinstein and of Stocking.

Theorem 1. [11, 14] Suppose that p ≥ 2. For any triangulation ∆ of L(p, q) the
splitting torus T can be isotoped to be almost normal. �

4. Short core curves

Suppose that V = S1 × D2 is a solid torus. Any simple closed curve α ⊂ V ,
isotopic to S1 × {pt}, is called a core curve. Suppose that ∆ is a triangulation of
V . We say α is straight with respect to ∆ if

• α is transverse to the skeleta of ∆ and
• for every tetrahedron τ ∈ ∆, the preimage ατ is a collection of Euclidean
arcs.

We can now state a result of the first author.

Theorem 2. [10] Suppose that ∆ is a triangulation of V = S1 ×D2. Then there
is a straight core curve α ⊂ V so that |ατ | ≤ 18, for every tetrahedron τ ∈ ∆. �
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5. Recognizing lens spaces

We are now equipped to state our main theorem.

Theorem 3. The recognition problem for lens spaces lies in NP.

Proof sketch. Suppose (M,∆) is a triangulated lens space, other than S3. Let
(T, V,W ) be an almost normal splitting ofM . Note that V inherits a cell structure,
by gluing together the three-cells of Vτ , as τ ranges over the tetrahedra in ∆.

Unfortunately we do not have a good upper bound on the number of three-cells
in V . Instead we find a much smaller cell structure on V by amalgamating the
parallel pieces : the components of Vτ cobounded by normal disks of Tτ of the same
type. The remaining pieces of Vτ are called core pieces. Each such union is called a
parallelity bundle because it naturally has the structure of an orientable I–bundle
over a surface (typically with boundary). There are at most a linear number (in
|∆|) of core pieces in V and, similarly, of parallelity bundles in V .

After a further amalgamation step we arrange matters so that all but perhaps
one of the parallelity bundles are trivial I–bundles over disks and annuli. The
final bundle, if it exists, is an orientation I–bundle over a Möbius band. If this
appears we call it a central bundle. There are certain subtleties that arise when
both V and W have central bundles. Modulo such details, we next use a variant
of Theorem 2 to obtain a core curve α ⊂ V that spends at most a linear amount
of length in the parallelity bundles. Thus the total length of α is at most linear in
|∆|.

Now, given α, let V ′ = V − n(α). Thus V ′ ∼= I × T and so M ′ = M − n(α) =
W ∪ V ′ ∼= S1 ×D2 has a linear-sized triangulation.

So, to prove Theorem 3 it suffices to present α and then certify that M ′ is a
solid torus by, say, appealing to the results of [13]. �
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[6] Joel Hass, Jeffrey C. Lagarias, and Nicholas Pippenger. The computational complexity of

knot and link problems. J. ACM, 46(2):185–211, 1999. arXiv:math/9807016.
[7] S. V. Ivanov. The computational complexity of basic decision problems in 3–dimensional

topology. Geom. Dedicata, (131):1–26, 2008.
[8] William Jaco and Ulrich Oertel. An algorithm to decide if a 3-manifold is a Haken manifold.

Topology, 23(2):195–209, 1984.
[9] G. Kuperberg. Knottedness is in NP, modulo GRH. arXiv:1112.0845.

[10] M. Lackenby. Core curves of triangulated solid tori. arXiv:1106.2934.
[11] J. Hyam Rubinstein. Polyhedral minimal surfaces, Heegaard splittings and decision problems

for 3-dimensional manifolds. In Geometric topology (Athens, GA, 1993), pages 1–20. Amer.
Math. Soc., Providence, RI, 1997.



Triangulations 1425

[12] Joachim H. Rubinstein. The solution to the recognition problem for S3, 1992. Lectures in
Haifa, Israel.

[13] Saul Schleimer. Sphere recognition lies in NP. In Low-dimensional and symplectic topology,
volume 82 of Proc. Sympos. Pure Math., pages 183–213. Amer. Math. Soc., Providence, RI,
2011, arXiv:math/0407047.

[14] Michelle Stocking. Almost normal surfaces in 3-manifolds. Trans. Amer. Math. Soc.,
352(1):171–207, 2000.

[15] Abigail Thompson. Thin position and the recognition problem for S3. Math. Res. Lett.,
1(5):613–630, 1994.

The Complexity of Recognizing the 3-Sphere

Joel Hass

(joint work with Greg Kuperberg)

Algorithms for topological problems in 3-manifold theory go back at least to Dehn.
The analysis of the running times or computational complexity of such algorithms
is more recent. Some early results in this direction are in [3], which analyzed the
complexity of problems such as determining if a curve is unknotted, or more gen-
erally determining its genus. In particular, it was shown in [3] that unknotting,
the problem of determining whether a curve in the 3-sphere represents the trivial
knot, lies in the complexity class NP. Very recently Greg Kuperberg established
that unknotting also lies in coNP, assuming the Generalized Riemann Hypoth-
esis. A major remaining question is whether problems such as unknotting have
an algorithm with polynomial running time, or whether they are NP-Complete.

In recent work with Greg Kuperberg we have shown that given a triangulated
3-manifold, the problem of recognizing whether it is homeomorphic to the 3-sphere
lies in the complexity class NP intersect coNP, assuming the Generalized Riemann
Hypothesis.

Specifically, we address the problem

Problem: 3-sphere recognition
Instance: A triangulated 3-dimensional manifold M .
Question: Is M homeomorphic to the 3-sphere?

An algorithm that recognizes the 3-sphere was given by Rubinstein [10] and by
Thompson [12]. Casson gave an exponential upper bound on the running time of
such an algorithm, and Schleimer [11] showed that it lies in NP.

We prove the following.

Theorem 3-sphere recognition is in the complexity class coNP, assuming
the Generalized Riemann Hypothesis.

The class of problems that lie in both NP and coNP, but are not known to
be polynomial, is fairly limited. These results can be viewed as presenting some
evidence that problems such as unknotting and 3-sphere recognition are
polynomial. The results serve as stronger evidence that they are not NP-complete,
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as if they were then certain widely believed conjectures in complexity theory or
number theory are false.

The proof proceeds by pursuing different strategies depending on the identity
ofM . Given that M is not a 3-sphere, it falls into one of the following (overlapping)
classes:

(1) H1(M ;Z) 6= 1,
(2) π1(M) is finite,
(3) M is a Seifert fibered space,
(4) M is hyperbolic,
(5) M contains an incompressible torus,
(6) M is a connect edsum.

In each case, we certify that M is not the 3-sphere in polynomial time, either by
giving a non-trivial homomorphism from π1(M) to a finite group or by showing
that π1(M) has a subgroup isomorphic to Z ⊕ Z. As with Kuperberg’s argument
in [8], our methods are based on those of [7] and [9]. An application of techniques
in [1] and the 3-manifold structure results of [6] and [4] allow for the polynomial
time certification of Z ⊕ Z subgroups.
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[2] M. Dehn, Über die Topologie des dreidimensionalen Raumes Math. Annalen, 69, 137–168,
(1910).

[3] J. Hass, J. C. Lagarias and N. Pippenger, The computational complexity of Knot and Link
problems, Journal of the ACM, 46, 185–211 (1999).

[4] W. Jaco and P. Shalen, Seifert Fibered Spaces in 3-Manifolds , Mem. A.M.S. 21, 1979.
[5] W. Jaco and J. L. Tollefson, Algorithms for the complete decomposition of a closed 3-

manifold, Illinois J. Math., 39 (1995) 358–406.
[6] K. Johannson, Homotopy Equivalence of 3-Manifolds with Boundary, Lecture Notes in

Mathematics 761, Springer Verlag, 1979.
[7] P. Koiran, Hilbert’s Nullstellensatz is in the polynomial hierarchy, J. Complexity 12, DI-

MACS TR 96-27, Special issue for FOCM, 273–286 (1996).
[8] G.Kuperberg, Knottedness is in NP, modulo GRH, arXiv:1112.0845 (2011).
[9] Jeffrey C. Lagarias and Andrew M. Odlyzko, Effective versions of the Chebotarev density

theorem, Algebraic number fields: L- functions and Galois properties. (Proc. Sympos., Univ.
Durham, 1975), Academic Press, 409–464 (1977).

[10] J.H.N. Rubinstein An algorithm to recognize the 3-sphere, Proceedings of the International
Congress of Mathematicians, Vol. 1, 2 (Zurich, 1994) 601–611, Basel, 1995. Birkhauser.

[11] S. Schleimer, Sphere recognition lies in NP, arXiv:math/0407047.
[12] Abigail Thompson, Thin position and the recognition problem for the 3-sphere, Math. Res.

Lett., 1 613–630, 1994.



Triangulations 1427

Face Enumeration on Manifolds

Ed Swartz

This talk was a survey of results over the last few years involving the face numbers
of triangulations of manifolds. We consider two types of triangulations: simplicial
complexes and semi-simplicial complexes. Like simplicial complexes, the closed
cells of semi-simplicial complexes are combinatorially simplices, however, there
may be more than one cell for a given set of vertices. We indicate the first by
using a subscript c, as in ∆c. To indicate a semi-simplicial complex we use a
subscript ss as in ∆ss. If there is no subscript, then our statement applies to both
types of complexes.

Throughout we will assume that ∆ is a connected (d− 1)-dimensional manifold
with or without boundary. In either case the main combinatorial invariant under
consideration is the f -vector of ∆, (f−1, f0, . . . , fd−1), where fi is the number of
i-dimensional faces. In particular f−1 is always one representing the empty face.
It turns out that it is easier to study a linear transformation of the f -vector known
as the h-vector. The h-vector is (h0, h, . . . , hd) and is defined so that the following
generating equation holds.

d∑

i=0

fi−1(t− 1)d−i =
∑

hit
d−i.

From this it is easy to see that (f−1, . . . , fi−1) determines (h0, . . . , hi) and vice
versa. Some simple to check formulas are

h0 = 1, h1 = f0 − d, h2 = f1 −
(
d− 1

1

)
f0 +

(
d

2

)
, hd = (−1)d−1χ̃(∆),

where χ̃(∆) is the reduced Euler characteristic of the complex.
The first motivation for introducing the h-vector is the following generalization

of the Dehn-Sommerville relations for manifolds due to Klee.

Theorem 1. [4] If ∆ is a manifold without boundary, then

hd−i − hi = (−1)i
(
d

i

)
[χ(∆)− χ(Sd−1)].

An amusing consequence of the result is that if d is even, setting i to d/2 proves
that the Euler characteristic must be zero. It has been a folk theorem for over
40 years that these are the only linear relations among the fi. Since knowledge
of h0, . . . , h⌈d/2⌉ determines the entire h-vector (and hence the f -vector), it has
become common to encode the information in the g-vector which is given by

gi = hi − hi−1 for 0 ≤ i ≤ d/2.

Inequalities have been much harder to come by. Most recent results involve a
heavy dose of commutative algebra. One of the few results before the introduction
of this tool is due to Brehm and Kühnel.
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Theorem 2. [2] Let ∆c be a PL-manifold. If π1(∆c) is not trivial and d ≥ 4,
then f0 ≥ 2d+ 1.

This theorem is optimal as for every d ≥ 4 there is a nonsimply-connected PL-
manifold ∆c with exactly 2d + 1 vertices. Later, Bagchi and Datta showed that
these complexes are the unique simplicial complexes with these properties [1].

In the 70’s Richard Stanley, building on work of Hochster and Reisner, revolu-
tionized the subject of face enumeration with the use of the face ring, also known
as the Stanley-Reisner ring, for simplicial complexes. Later he introduced a similar
algebraic gadget for semi-simplicial complexes [12]. All of the following upper and
lower bounds depend on these tools.

1. Upper bounds

Let C(n, d) be the cyclic d-polytope with n vertices, n ≥ d + 1. While we only
state the following for odd-dimensional manifolds, it is known to hold for many
even-dimensional manifolds.

Theorem 3. (Novik) [9] If ∆c is an odd-dimensional manifold without boundary,
then for all i, fi(∆c) ≤ fi(C(f0(∆c), d)).

A sequence (a0, . . . , ad) of nonnegative integers is an M-sequence if it is the
degree sequence of an order ideal of monomials. See [11, Theorem II.2.2] for a
nonlinear arithmetic characterization of M-vectors.

Theorem 4. (S. ’12) If ∆c is a closed manifold with d ≥ 6, then

(1, g1, g2 −
(
d+ 1

2

)
β1, max[0, g3 +

(
d+ 1

3

)
β1])

is an M-vector.

2. Lower bounds

Theorem 5. (Novik - S. ’09) [10] Let ∆c be a manifold without boundary with

d ≥ 4. Then f1−df0+
(
d+1
2

)
= g2 = h2−h1 ≥

(
d+1
2

)
β1, where β1 = dimkH1(∆c; k).

For semi-simplicial complexes more is known. In order to state the results,
define h′′i for 0 < i < d by

h′′i (∆) = hi(∆) +

(
d

i

)[
−βi−1 + βi−2 − · · ·+ (−1)i−1β1

]
.

Theorem 6. (Novik - S. ’09) [10] Let ∆ss be a manifold without boundary and
d ≥ 4. Then

h′′i ≥ 0.

This result, a parity result similar to Masuda’s proof of Stanley’s conjectured
characterization of h-vectors of semi-simplicial complexes homeomorphic to spheres
[6, 12], and some imaginative constructions have allowed Murai to give complete
characterizations of h-vectors of semi-simplicial complexes homeomorphic to prod-
ucts of spheres [8].
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3. Complexity

Now suppose M is a manifold with boundary with d ≥ 4. Define

Γ(M) = min
|∆c|=M

h2 − hd−1 − d · hd = min
|∆c|=M

h2 − # interior vertices.

Kalai proved that Γ(M) ≥ 0 and equals zero if and only if M is a ball [3].

Theorem 7. (S. ’11) Fix d and G ≥ 0. Then the number of PL-homeomorphism
types of (d− 1)-dimensional M with Γ(M) ≤ G is finite.

As in Matveev complexity [7], for closed M , define Γ(M) = Γ(M − Bd). For
closed manifolds, the above theorem is a generalization of [13]. It was observed
in [5] that there are positive constants A,B such that for closed irreducible three-
manifolds M not equal to RP 3, S2 × S1 or L(3, 1),

c(M) ≤ A · Γ(M) and Γ(M) ≤ B · c(M),

where c(M) is the Matveev complexity of M . How far does the analogy go? Is
Γ(M1#M2) = Γ(M1) + Γ(M2)?
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(1964), 517–531.
[5] F. Lutz, T. Sulanke and E. Swartz, f-vectors of 3-manifolds, Electronic J. Comb. 16(2)

(2009), R13.
[6] M. Masuda, h-vectors of Gorenstein* simplicial posets, Adv. in Math. 194 (2005), 332–344.
[7] S. Matveev, Algorithmic Topology and the Classification of 3-Manifolds, Springer, 2007.
[8] S. Murai, Face vectors of simplicial cell decompositions of manifolds, arXiv:1010.0319.
[9] I. Novik, Upper bound theorems for homology manifolds, Isr. J. Math. 108 (1998), 45–82.

[10] I. Novik and E. Swartz. Socles of Buchsbaum modules, complexes and posets, Adv. in Math.
222 (2009), 2059–2084.

[11] R. Stanley, Combinatorics and Commutative Algebra, 2nd. ed., 1996, Birkhäuser.
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On the Generalized Lower Bound Conjecture for Polytopes and
Spheres

Eran Nevo

(joint work with Satoshi Murai)

Background and results The study of face numbers of polytopes is a classical
problem. For a simplicial d-polytope P let fi(P ) denote the number of its i-
dimensional faces, where −1 ≤ i ≤ d − 1 (f−1(P ) = 1 for the emptyset). The
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numbers fi(P ) are conveniently described by the h-numbers, defined by

hi(P ) =

i∑

j=0

(−1)j−i
(
d− j

i− j

)
fj−1 for 0 ≤ i ≤ d.

The Dehn-Sommerville relations assert that hi(P ) = hd−i(P ) for all 0 ≤ i ≤ ⌊d2⌋,
generalizing the Euler-Poincaré formula.

In 1971, McMullen and Walkup [11] posed the following generalized lower bound
conjecture (GLBC), generalizing Barnette’s lower bound theorem (LBT) [2, 3].

Conjecture 1. (McMullen–Walkup) Let P be a simplicial d-polytope. Then

(a) 1 = h0(P ) ≤ h1(P ) ≤ · · · ≤ h⌊ d
2
⌋(P ).

(b) For an integer 1 ≤ r ≤ d
2 , the following are equivalent:

(i) hr−1(P ) = hr(P ).
(ii) P is (r − 1)-stacked, namely, there is a triangulation K of P all of

whose faces of dimension at most d− r are faces of P .

Around 1980 the g-theorem was proved, giving a complete characterization of
the face numbers of simplicial polytopes. It was conjectured by McMullen[10],
sufficiency of the conditions was proved by Billera–Lee [4] and necessity by Stan-
ley [14]. Stanley’s result establishes part (a) of the GLBC, using the hard Lefschetz
theorem for projective toric varieties.

As for part (b), the implication (ii) ⇒ (i) was shown in [11]. The implication
(i) ⇒ (ii) is easy for r = 1, and was proved for r = 2 as part of the LBT [2]. Our
main goal is to sketch a proof of the remaining open part of the GLBC. Further, we
generalize it to homology spheres admitting the weak Lefschetz property (WLP,
to be defined later).

McMullen [9] proved that, to study Conjecture 1(b), it is enough to consider
combinatorial triangulations. Thus we write a statement in terms of simplicial
complexes. For a simplicial complex ∆ on the vertex set V and a positive integer i,
let

∆(i) := {F ⊆ V : skeli(2
F) ⊆ ∆},

where skeli(2
F) is the i-skeleton of the simplex defined by F , namely the collection

of all subsets of F of size at most i+ 1.
For a simplicial d-polytope P with boundary complex ∆, we say that a simplicial

complex K is a triangulation of P if its geometric realization is homeomorphic to
a d-ball and its boundary is ∆. A triangulation K of P is geometric if in addition
there is a geometric realization of K whose underlying space is P .

Theorem 1. (Murai–N.) Let P be a simplicial d-polytope with the h-vector
(h0, h1, . . . , hd), ∆ its boundary complex, and 1 ≤ r ≤ d

2 an integer. If hr−1 = hr
then ∆(d − r) is the unique geometric triangulation of P all of whose faces of
dimension at most d− r are faces of P .

Note that the uniqueness of such a triangulation was proved by McMullen [9].
Moreover, it was shown by Bagchi and Datta [1] that if Conjecture 1(b) is true
then the triangulation must be ∆(d− r).
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Theorem 2. (Murai–N.) Let ∆ be a homology (d − 1)-sphere having the WLP
over a field k of characteristic 0, (h0, h1, . . . , hd) the h-vector of ∆, and 1 ≤ r ≤ d

2
an integer. If hr−1 = hr then ∆(d − r) is the unique homology d-ball with no
interior faces of dimension at most d− r and with boundary ∆.

We say that ∆ has the WLP over k if for generic linear forms θ1, · · · , θd, ω
in the face ring k[∆], Θ = (θ1, · · · , θd) is an l.s.o.p. and the multiplication maps
×ω : (k[∆]/(Θ))i → (k[∆]/(Θ))i+1 are either injective or surjective for any i (it
follows they are injective for i < d/2 and surjective for i ≥ d/2).

Note that an algebraic formulation of the g-conjecture (for homology spheres)
asserts that any homology sphere has the WLP, see e.g. [15, Conjecture 4.22] for
a stronger variation. If this conjecture holds, then Theorem 2 will extend to all
homology spheres. Indeed, the case r = 2 in Theorem 2 was proved by Kalai [7],
without the WLP assumption, as part of his generalization of the LBT to homology
manifolds and beyond. Further, note that for r ≤ d/2, if a homology (d−1)-sphere
∆ satisfies that ∆(d − r) is a homology d-ball with boundary ∆, then ∆ satisfies
all the numerical conditions in the g-conjecture (including the nonlinear Macaulay
inequalities), as was shown by Stanley [13].

Sketch of proof of Theorem 1: Denote ∆′ = ∆(d − r), and let conv(F)
denote the convex hull of a subset F of Rd.

Step 1 : show that {conv(F) : F ∈ ∆′} is a geometric realization of ∆′, denoted
||∆′||. The argument is geometric, using Radon’s theorem, and reminds results by
McMullen [9] and Bagchi-Datta [1]. Thus, ||∆′|| ⊆ P .

Step 2 : assume by contradiction that ||∆′|| 6= P . Use Alexander duality to

show it implies H̃d−1(||∆′||;Q) 6= 0. Thus, by Reisner criterion we will be done by
the next step:

Step 3 : show that the face ring Q[∆′] is Cohen-Macaulay (CM) of Krull dimen-
sion d + 1 over Q. The first thing to observe here is that the WLP of ∆ implies
∆(d − r) = ∆(r − 1), as was shown by Kalai [8] and Nagel [12]. Thus, the face
ideals satisfy I∆′ = (I∆)≤r = the ideal generated by the minimal generators of
degree at most r in I∆. Other ingredients include passing to the generic initial
ideal and using Green’s crystallization principle [6].

Sketch of proof of Theorem 2:
Step 1 : as before, show k[∆′] is CM of dimension d+1. Thus, by Reisner crite-

rion, all homology groups of face links in ∆ vanish except maybe in the dimension
of the face link.

Step 2 : by Hochster formula and the local duality theorem, for any F ∈ ∆′,
the face link satisfies dimk H̃d−|F |(lk∆′(F); k) = dimk(Ωk[∆′])eF where Ω denotes
the canonical module, with Zn-grading (n is the number of vertices in ∆′) and eF
is the sum of standard basis element ei = (0, · · · , 0, 1, 0, · · · , 0) with i ∈ F .
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Step 3 : show that Ωk[∆′]
∼= I∆/I∆′ , using some defining properties of the

canonical module. To conclude, observe that for F ∈ ∆′,

dimk(I∆/I∆′)eF = {1 F /∈∆,0 F∈∆.

Last step – Uniqueness : again, the proof uses Alexander duality, and is inspired
by Dancis [5].

Concluding remarks: 1. What more can be said on (r−1)-stacked polytopes
for r > 1? McMullen [9] speculated that they are regular, and Bagchi-Datta [1]
pointed out that even if they are shellable is not known.

2. In Theorem 2, suppose that ∆ is a topological sphere / PL-sphere. Does it
follow that ∆′ is a topological ball / PL-ball?
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Triangulations of n-Manifolds

J. Hyam Rubinstein

(joint work with Marcel Bökstedt, Craig D. Hodgson, Henry Segerman and
Stephan Tillmann)

1. Introduction

This report concerns three different projects. The first one is with Hodgson,
Segerman and Tillmann on the topic of essential triangulations. The second
project with Tillmann is on triangulations, where all codimension two faces are
of even order, which we will refer to as even triangulations. The final project
with Bökstedt and Tillmann is on Cartan–Hadamard metrics on even triangula-
tions satisfying lower bound conditions on the degrees of codimension two faces.
Cartan–Hadamard metrics coming from even triangulations can be viewed as a
generalisation of Gromov’s CAT(0) structures on manifolds with cubings.

2. Essential triangulations

In the joint project with Hodgson, Segerman, Tillmann we studied essential tri-
angulations. In the case of closed n-manifolds, such a triangulation is assumed
to have a single vertex and all edges are therefore loops. The property of being
essential is that any edge loop is non-contractible. For n-manifolds which are the
interiors of compact manifolds with boundary, triangulations are assumed to be
ideal, i.e. all the vertices are ‘at infinity’ so are deleted from the manifold. In the
ideal case, add in a copy of the boundary to compactify the manifold. Edges are
then arcs which have ends on one or two boundary components. An ideal trian-
gulation is essential if no edge with ends on a single boundary component can be
homotoped into this boundary component, keeping its ends on the boundary.

Next, a triangulation of a closed manifold is called strongly essential if it is
essential as above and moreover, any two edge loops are not homotopic. In the
ideal case, no two edge loops are homotopic keeping their ends on the boundary.
We give a number of key constructions.

If a closed Riemannian n-manifold has non-positive curvature then it has an
essential triangulation. If the manifold admits a hyperbolic metric, it has a strongly
essential triangulation. Conversely any straight one-vertex triangulation of a closed
manifold with a non-positively curved metric is strongly essential. (A straight
triangulation has the property that all the edges of the simplexes are geodesics.
For the special case of constant curvature zero or −1, geometric triangulations are
defined by the property that all the faces of the simplices are totally geodesic).

In dimension 3, both closed and ideal hyperbolic triangulations are strongly
essential. So this is an interesting property which is required to find a geometric
hyperbolic triangulation.

It is conjectured that every hyperbolic 3-manifold with torus boundary compo-
nents has a decomposition into positive volume ideal hyperbolic tetrahedra. Such
geometric triangulations were introduced by Thurston [10].
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Next, we show that a closed 3-manifold M with H1(M,Z2) 6= 0 admits an
essential triangulation.

Finally, we show that Haken 3-manifolds admit strongly essential triangula-
tions, which are ‘dual’ to hierarchies. A Haken 3-manifold is P 2-irreducible (i.e.
has no embedded 2-sided projective planes and any embedded 2-sphere bounds
a 3-ball) and has a hierarchy, i.e. a system of embedded surfaces which are all
incompressible and boundary incompressible, which cut the manifold up into 3-
cells. (An incompressible surface Σ satisfies π1(Σ) → π1(M) is one-to-one and a
boundary incompressible surface Σ is incompressible and properly embedded so
that π1(Σ, ∂Σ) → π1(M,∂M) is one-to-one.)

Note that to form a one-vertex triangulation in the closed case or an ideal
triangulation in the bounded case, a careful argument is required. With suitable
homological conditions, such a triangulation can be found dual to the hierarchy.
However in general, crushing of part of the triangulation in the sense of [6] is
needed.

3. Even triangulations

In joint work with Stephan Tillmann, we have obtained sufficient conditions for
a 3-manifold to admit a triangulation, where all the edges have even order. The
most interesting cases are where there are either one or two vertices, for closed
3-manifolds. Similarly for the interior of compact 3-manifolds with tori boundary
components, one or two such components is also the most interesting case. The
reason is that it is elementary to build even triangulations for all 3-manifolds, with
many vertices in the closed case or many boundary tori in the non-empty boundary
case. These sufficient conditions are also shown to be very close to being necessary.

Such triangulations have interesting properties and many explicit even triangu-
lations can be constructed for bundles, open book decompositions and one- and
two-sided Heegaard splittings. In particular, there is a symmetry representation
of the fundamental group of the manifold into the symmetry group on n+1 letters
associated with an even triangulation of an n-manifold. The covering manifolds
corresponding to the kernels of various induced representations corresponding to
partitions of n + 1 contain special embedded normal submanifolds with useful
properties. (A normal submanifold meets each simplex in a collection of simple
properly embedded (n − 1)-cells). In dimension 3 these normal surfaces consist
entirely of quadrilaterals, one for each tetrahedron. The surfaces give either one-
or two-sided Heegaard splittings of the 3-manifold.

Even triangulations have been studied extensively in [5, 7, 8, 9, 11], where they
are called foldable triangulations.

4. Triangulations admitting Cartan–Hadamard metrics

In the project with Bökstedt and Tillmann, singular Riemannian metrics of non-
positive curvature are induced on triangulated closed n-manifolds. Such metrics
are often called Cartan–Hadamard since the manifolds have the same property as
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the Cartan–Hadamard theorem, namely their universal coverings are homeomor-
phic to Rn. See [2] for a general treatment of Cartan–Hadamard spaces.

In [3], Gromov pointed out the importance of cubical complexes and cubical
decompositions of manifolds, giving Cartan–Hadamard metrics or locally CAT(0)
structures. In [1], a number of constructions of cubical decompositions of 3-
manifolds giving such metrics were given.

In our project, the key idea is to decompose a regular Euclidean n-cube into n!
congruent n-simplices. Each of these simplices, denoted ∆, has all edge lengths of
the form 1,

√
2, . . . ,

√
n and dihedral angles between codimension one faces equal

to one of πk , for k = 2, 3, 4.
It is straightforward to see that given a closed n-manifold M with an even tri-

angulation T , lifting to the covering space M̃ corresponding to the representation
of the fundamental group into the symmetric group on n letters, the simplices of
the lifted triangulation T̃ can be given the structure of the ∆ so that the faces all
glue together isometrically. However in general there will be cone type singulari-
ties at the codimension two faces. However, with the simple restriction that the
appropriate families of codimension two faces have degrees at least 4, 6, 8 corre-
sponding to the dihedral angles of ∆ being π

k , for k = 2, 3, 4, the induced metric
is Cartan–Hadamard.

This construction can be viewed as a generalisation of locally CAT(0) cubical
structures on manifolds, since all such examples also have triangulations of the
above type, by subdividing the cubes into copies of ∆. However there are many
new examples which can be obtained by this technique. As one example, in [1] it is
shown that any branched covering of the 3-sphere over the figure 8 knot so that all
the components of the branch set have degrees at least 3 has a Cartan–Hadamard
metric, using objects called flying saucers. It is very natural to divide these flying
saucers into copies of ∆ giving a triangulation with a Cartan–Hadamard metric.
Note in [4] it is proved that the figure 8 knot is universal, i.e. every closed orientable
3-manifold is a branched covering of the 3-sphere over it.

This work was supported by Australian Research Council grant DP1095760.
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Simplicial Complex Models for Arrangement Complements

Günter M. Ziegler

(joint work with Pavle V. M. Blagojević)

1. Why do we care?

1.1. Arrangements and configuration spaces. The configuration space of n
labeled distinct points on a manifold

F (X,n) := {(x1, . . . , xn) ∈ Xn : xi 6= xj for i < j}
appears in diverse contexts in topology (providing, for example, embedding in-
variants and models for loop spaces), knot theory, and physics (KZ equation,
renormalization); see e.g. Vassiliev [20] and Fadell & Husseini [8]. In particular,
the space

F (Rd, n) = {(x1, . . . , xn) ∈ Rd×n : xi 6= xj for i < j}
has been studied in great detail. It is the complement of an arrangement of linear
codimension d subspaces in Rd whose intersection lattice (with the customary
ordering by reversed inclusion) is the partition lattice Πn of rank n − 1. The

cohomology is free, with Poincaré polynomial
∏n−1
i=1 (1+ i td−1); see e.g. Björner[4],

Goresky & MacPherson [13, Part III].
In particular, for d = 2 the space F (C, n) = F (R2, n) appears in work by

Arnol’d related to Hilbert’s 13th problem, continued in papers by works by Fuks,
Deligne, Orlik & Solomon, and many others. It is a key example for the theory of
(complex) hyperplane arrangements; see e.g. Orlik & Terao [17].

The space F (Rd, n) is the complement of a codimension d subset in Rd×n, so
in particular it provides a (d− 2)-connected space on which the symmetric group
Sn acts freely. Thus the inclusions F (R2, n) ⊂ F (R3, n) ⊂ · · · can be used to
compute the cohomology of Sn; see Giusti & Sinha [12] for recent work, which is
based on the Fox–Neuwirth stratification [11] of the configuration spaces F (Rd, n).

1.2. Cell complex models. A problem by R. Nandakumar and N. Ramana
Rao [16] asks whether every bounded convex set P in the plane can be divided
into n convex pieces that have equal area and equal perimeter. In [18] the same
authors prove this for n = 2k in the case where P is a convex polygon. Blagojević,
Bárány & Szűcs [2] established the problem for n = 3.
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Karasev [15] and Hubard & Aronov [14] observed that a positive solution for the
problem would — via optimal transport (cf. Villani [21]) and generalized Voronoi
diagrams (cf. Aurenhammer et al. [1]) — follow from the non-existence of an
equivariant map

F (R2, n) −→Sn
S({(y1, . . . , yn) ∈ Rn : y1 + · · ·+ yn = 0}) ≃ Sn−2.

A d-dimensional and more general version of the problem, to partition any suffi-
ciently continuous measure on Rd into n pieces of equal measure that also equalize
d− 1 further continuous functions, could be solved by the non-existence of

F (Rd, n) −→Sn
S({(y1, . . . , yn) ∈ R(d−1)×n : y1+ · · ·+yn = 0}) ≃ S(n−1)(d−1)−1.

In the cited works by Karasev and Hubard & Aronov this is approached via
(twisted) Euler class computations on the one-point compactification of F (Rd, n)
(which is not a manifold), which leads to the non-existence of these maps if n is a
prime power.

Here we report about an alternative approach, via Equivariant Obstruction
Theory (as developed by tom Dieck [7, Sect. II.3]). For this we need an equivariant
cell complex model for F (Rd, n).

2. A method

We rely on a method developed in Björner & Ziegler [5] to obtain a compact
cell complex model for the complements of linear subspace arrangements. For
this let A be a finite arrangement of linear subspaces in a real vector space RN .
Each k-dimensional subspace F of the arrangement is embedded into a complete
flag of linear subspaces F = Fk ⊂ Fk+1 ⊂ · · · ⊂ RN . The union of these flags
yields a stratification of RN into relative-open convex cones. These cones are not
usually pointed, but their faces are unions of strata. The barycentric subdivision
of the stratification yields a triangulation of a star-shaped neighborhood of the
origin in RN , which as a subcomplex contains a triangulation of the link of the
arrangement. Its Alexander dual is the barycentric subdivision of a regular CW
complex, realized as a geometric simplicial complex that is a strong deformation
retract of the complement. Moreover, if the arrangement has a symmetry, and the
flags are chosen to be compatible with the symmetry, then the resulting complex
carries the symmetry of the arrangement.

3. Examples

Implementing the construction from [5] yields the Fox–Neuwirth stratification on
the complement F (Rd, n) of the arrangement, but indeed our construction and
proof uses the stratification on the full ambient space Rd×n.

Theorem 1. There is a regular cell complex F(d, n) of dimension (n− 1)(d− 1)
that has n! vertices and n! facets (maximal cells), with a free cellular action of the
symmetric group Sn that is transitive on the vertices as well as on the facets.

The barycentric subdivision sdF(d, n) has a geometric realization in F (Rd, n)
as an equivariant strong deformation retract.
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Based on this model, our Equivariant Obstruction Theory calculation gives a
complete answer to the equivariant map problem, and thus a simple combinatorial
proof for the prime power case of the Nandakumar & Ramana Rao conjecture:

Theorem 2 ([6]). An equivariant continuous map

F (Rd, n) −→Sn
S({(y1, . . . , yn) ∈ R(d−1)×n : y1+· · ·+yn = 0}) ≃ S(n−1)(d−1)−1.

does not exist if and only if n is a prime power.

At the combinatorial core of our calculation lies the fact, apparently first proved
by B. Ram in 1909 [19], that gcd{

(
n
1

)
,
(
n
2

)
, . . . ,

(
n
n−1

)
} equals p for any prime power

n = pk, and equals 1 otherwise.

4. Further Examples

In view of further applications to geometric measure partition problems, there
is interest in constructing and analyzing cell complex models for spaces such as
F (Sd, n) (see Feichtner & Ziegler [9] and Basabe et al. [3]) as well as F±(S

d, n)
(see [10]).
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[5] A. Björner & G. M. Ziegler, Combinatorial stratification of complex arrangements, J. Amer.
Math. Soc. 5 (1992), 105–149.
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The Diameter of Polytopes and Abstractions

Nicolai Hähnle

1. The polynomial Hirsch conjecture

Let V ⊆
(
[n]
d

)
be a set system with an adjacency structure given by an undirected

graph G = (V,E) such that the induced subgraph G[star(F, V )] is connected for
every F ⊆ [n] = {1, . . . , n}. As usual, we let star(F, V ) = {H ∈ V : H ⊇ F}.
This definition generalizes strongly connected pure (d− 1)-dimensional simplicial
complexes, which have a natural adjacency structure given by their dual graph.
Our definition allows more freedom in the definition of adjacency.

We use this combinatorial structure to study the polynomial Hirsch conjecture,
which is motivated by the question of computational complexity of the Simplex
Method for linear programming. The conjecture claims that the diameter of the
vertex-edge graph of every d-dimensional polytope (or polyhedron) with n facets
is bounded by a polynomial in d and n. We can restrict the question to simple
polytopes without loss of generality.

From a polar perspective, the question becomes the following. Given a simplicial
d-dimensional polytope P with n vertices, can we give bounds on the diameter
of its facet-ridge graph in terms of n and d? The boundary of P is a strongly
connected (d − 1)-dimensional simplicial complex, and so it is natural to ask the
same question in the more general combinatorial setting defined initially.

The best known upper bound for the diameter of polytopes is n1+log d [5], where
log d is the base-2 logarithm. Furthermore, we know that the diameter of polytopes
is linear in fixed dimension, in fact diam(P ) ≤ 1

32
d−2(n−d+ 5

2 ) for d ≥ 3 [1, 7]. We
show that these results also hold in the combinatorial setting we define, with one
caveat: the linear upper bound becomes 2d−1n. The difference is easily explained:
the proof uses induction on the dimension, and an upper bound of 2

3n for 3-
dimensional polytopes follows from geometric arguments that do not apply in the
combinatorial setting.

On the other hand, we construct a family of purely combinatorial examples
with d = n/4 and diameter Ω(n2/ logn) using Lovász’ Local Lemma [4]. This
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is in contrast to the best known geometric constructions, whose diameter is only
linear. In particular, Santos recently found a family of polytopes with diameter
(1 + ε)n for a small constant ε in sufficiently high but fixed dimension [9]. A
(non-polytopal) family of simplicial complexes with slightly larger but still linear
diameter can be constructed based on the Mani–Walkup sphere [8]. Whether in
the geometric or the abstract combinatorial case, the gap between constructions
and upper bounds is huge. See the surveys [6] for additional background on the
Hirsch conjecture and [3] for the wider perspective of linear optimization.

2. Connected layer families

For the purpose of both upper bound proofs and combinatorial constructions, it
is convenient to fix an x0 ∈ V and label all v ∈ V by their distance to x0. This

suggests the definition of connected layer families as partitions of a set V ⊆
(
[n]
d

)

into layers L0, . . . , Lℓ such that for every i < j < k and for every v ∈ Li and
w ∈ Lk there exists a u ∈ Lj such that u ⊃ v ∩ w. That is, if some set of less
than d symbols appears in layers Li and Lk, then it must also appear on every
layer in between. We say that ℓ is the diameter of the connected layer family.
One easily shows that this definition is equivalent to the initial definition as far
as the diameter question is concerned. Let f(d, n) denote the maximum diameter
of a connected layer family with parameters d and n. The key results mentioned
in the previous section can be summarized as f(d, n) ≤ min{n1+log d, 2d−1n} and
f(n/4, n) ≥ Ω(n2/ logn).

Let us generalize our definition to allow multisets of [n] and denote by f̃(d, n)
the maximum diameter given this further relaxation. One can easily show that
f(d, n) ≤ f̃(d, n) ≤ f(d, dn). The first inequality is trivial, and for the second
inequality we replace multi-subsets of X by subsets of {xi : x ∈ X, 1 ≤ i ≤ d} by
replacing e.g. the 5-element multiset xxyyy by the 5-element set x1x2y1y2y3 (we
omit braces from the notation to reduce visual noise). Hence the two definitions
are polynomially equivalent in the sense that if f(d, n) is polynomially bounded

then so is f̃(d, n), and vice versa.
In the multiset setting, there is an easy construction to obtain the inequality

f̃(d, n) ≥ d(n− 1), e.g. for d = 3:

000− 001− 011− 111− 112− 122− 222− 223− 233− 333− . . .

We will sketch proofs that d(n− 1) is in fact an upper bound on the diameter of
connected layer families if we require certain additional extremal properties.

The first case is when every layer contains only a single element v ∈ V , as in
the example given above. We use a “non-revisiting” argument. Fix a layer Li.
Since every layer contains only one multiset, there is some symbol x that appears
k-fold on layer Li, but strictly less than k-fold on layer Li+1. By the definition of
connected layer families, the symbol x cannot appear k-fold on any layer Lj with
j > i, that is, x cannot be “revisited” with multiplicity k.

The second case is when V is complete in the sense that it contains every possible
d-element multiset that can be built from the n symbols available. We use the
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fact that for every multiset F , the collection of multisets containing F induces a
connected layer family with the same layer structure but of dimension d−|F |. This
allows us to proceed by induction. Take some u ∈ L0 and v ∈ Lℓ. Take any x ∈ u
and any y ∈ v. Then by completeness, the multiset v\{y}∪{x}must be present on

some layer Lj, and induction on the dimension yields j ≤ f̃(d−1, n) ≤ (d−1)(n−1)

and ℓ− j ≤ f̃(1, n) ≤ (n− 1), hence ℓ ≤ d(n− 1).
Note that a diameter of d(n − 1) can also be achieved when V is complete.

Use symbols {0, 1, . . . , n− 1} and label every d-element multiset by the sum of its
elements. It is easy to verify that the layer structure indicated by this labelling
satisfies the definition of a connected layer family.

3. Questions and a Conjecture

The main open question is of course the polynomial Hirsch conjecture. Further-
more, the fact that d(n − 1) is tight for the diameter in these extremal cases

prompts us to conjecture that f̃(d, n) = d(n − 1). This is known to be true for
d ≤ 2 and n ≤ 3. We have also verified the conjecture for additional small values
of d and n on a computer using state of the art satisfiability solvers.

Note, however, that when we further relax the definition and replace multisets
by ordered tuples, there exists a connected layer family with d = 3, n = 6 and
diameter 16. This example was found by a satisfiability solver.

One logical next step would be trying to understand the case d = 3 better. In
the abstract setting, we know that 3(n− 1) ≤ f̃(3, n) ≤ 4n− c, where the second
inequality follows from a Barnette–Larman style argument. Can our conjecture
be proved for this special case, or can we find a counter-example?

What if we restrict to simplicial complexes that arise as triangulations of a
surface? Using Barnette–Larman style arguments with an appropriate base case
for the induction, we can show upper bounds of 2n and n for surfaces with and
without boundary, respectively. Are these upper bounds tight? Recall that an
upper bound of 2

3n holds for the boundary of a 3-dimensional polytope, so there
is room for improvement or, possibly, the construction of non-polytopal surfaces
with higher diameter.

We also mention the recent joint work with Bonifas et al. [2] in which we bound
the diameter of polyhedra by a function depending on the subdeterminants of the
coefficient matrix A of the system Ax ≤ b defining the polyhedron. This suggests a
different approach to the diameter question by bounding the diameter of polyhedra
in terms of other parameters than just n and d.
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Expansion properties of random simplicial complexes

Matthew Kahle

1. Random graphs and simplicial complexes

1.1. Random graphs. Define G(n, p) to be the probability space of graphs on
vertex set [n] = {1, 2, . . . , n}, where each edge has probability p, jointly inde-
pendently. An important early theorem in probabilistic topology is the following
result of Erdős and Rényi.

Theorem 1 (Erdős–Rényi, 1959). Let ǫ > 0 be fixed, and G ∈ G(n, p).

(1) If

p ≥ (1 + ǫ) logn

n
,

then

Pr[G is connected] → 1,

(2) and if

p ≤ (1− ǫ) logn

n
,

then

Pr[G is connected] → 0,

as n → ∞.

There are now several results for random simplicial complexes which provide
higher-dimensional analogues of Theorem 1. A few of these are briefly surveyed in
the following.
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1.2. Random 2-complexes. Define Y (n, p) to be the probability space of 2-

dimensional simplicial complexes with vertex set [n], edge set
(
[n]
2

)
, and such that

every 2-dimensional face has probability p, jointly independently.
Linial and Meshulam provided a cohomological analogue of Theorem 1.

Theorem 2. (Linial–Meshulam, 2006) Let ǫ > 0 be fixed and Y ∈ Y (n, p). Then

Pr[H1(Y,Z/2) = 0] →
{

1 : p ≥ (2 + ǫ) logn/n,
0 : p ≤ (2 − ǫ) logn/n.

A group G is said to have Property (T) if the trivial representation of G is an
isolated point in its unitary dual equipped with the Fell topology. Informally, G
has (T) if whenever it acts unitarily on a Hilbert space and has almost invariant
vectors, it has a nonzero invariant vector.

Theorem 3. (Hoffman–K.–Paquette, 2012) Let ǫ > 0 be fixed and Y ∈ Y (n, p).
Then

Pr[π1(Y ) has property (T)] →
{

1 : p ≥ (2 + ǫ) logn/n,
0 : p ≤ (2 − ǫ) logn/n.

Both Theorem 3 and 2 imply that the threshold for vanishing of H1(Y,Q) is
2 logn/n.

Our main tool is the following theorem of Żuk.

Theorem 4. (Żuk) If ∆ is a finite, connected, pure 2-dimensional simplicial com-
plex, such that for every vertex v, the link lk∆(v) is connected and has spectral gap
of normalized Laplacian satisfying λ2[lk∆(v)] > 1/2, then π1(∆) has property (T).

We also require new results for the spectral gap of G ∈ G(n, p), as in the
following.

Theorem 5. (Hoffman–K.–Paquette, 2012) Fix k ≥ 0 and ǫ > 0, and let G ∈
G(n, p). Let 0 = λ1 ≤ λ2 ≤ · · · ≤ λn ≤ 2 be the eigenvalues of the normalized
Laplacian of G. There is a constant C = C(k) so that when

p ≥ (k + 1) logn+ C
√
logn log logn

n
is satisfied, then

λ2 > 1− ǫ,

with probability at least 1− o(n−k).

1.3. Random flag complexes. A different sort of random simplicial complex is
the random flag complex. Let G ∈ G(n, p) be an Erdős-Rényi random graph (on
n vertices with each edge having probability p, independently). Let X ∈ X(n, p)
be the clique complex (or flag complex) of G ∈ G(n, p), i.e. the maximal simplicial
complex compatible with G.

It should be emphasized that every simplicial complex is homeomorphic to a
flag complex, e.g. by barycentric subdivision, so X(n, p) puts a measure on a wide
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range of topologies.

Topological properties of this kind of random simplicial complex were studied
earlier in [2]. The new result in [3] is the following. Note that the Erdős–Rényi
Theorem corresponds to k = 0.

Theorem 6. (K., 2012) Let k ≥ 1 and ǫ > 0 be fixed, and X ∈ X(n, p).

(1) If

p ≥
(
(k/2 + 1 + ǫ) logn

n

)1/(k+1)

,

then Pr[Hk(X,Q) = 0] → 1,
(2) and if

n−1/k+ǫ ≤ p ≤
(
(k/2 + 1− ǫ) logn

n

)1/(k+1)

,

then Pr[Hk(X,Q) = 0] → 0, as n → ∞.

In proving this, the main tool is the following theorem of Ballman–Światkowski
[1]. It is illustrative to compare Theorem 7 to Theorem 4.

Theorem 7. (Garland, 1973; Ballman–Światkowski, 1997) If ∆ is a pure k-
dimensional simplicial complex, such that the link lk∆(σ) of every (k − 2)-face σ
is connected and has spectral gap satisfying

λ2[lk∆(σ)] > 1− 1/k,

then Hk−1(∆,Q) = 0.

Applying universal coefficients, and together with several earlier results on ran-
dom flag complexes, we have the following.

Corollary 1. Fix d ≥ 0, and let X ∈ X(n, p) be a random flag complex, where

n−2/d ≪ p ≪ n−2/(d+1).

Then w.h.p. X is d-dimensional and H̃i(X,Q) = 0 unless i = ⌊d/2⌋.
I.e. almost all d-dimensional flag complexes have all their (reduced, rational)

homology in middle degree.

2. Open problems

So far we don’t know much about how to handle torsion in homology of random
complexes. I conjecture however that torsion is vanishing w.h.p., for a fairly wide
range of p.

Conjecture 1. If X ∈ X(n, p) is a random flag complex with

n−2/d ≪ p ≪ n−2/(d+1),

and if d ≥ 6, then w.h.p. X is homotopy equivalent to a wedge of ⌊d/2⌋-spheres.
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Stable Complexity and Simplicial Volume of Manifolds

Bruno Martelli

(joint work with Stefano Francaviglia, Roberto Frigerio)

As customary in low-dimensional topology we define a triangulation of a closed
PL manifold Mn to be a realization of M by a simplicial face-pairing of a finite
set of n-dimensional simplexes. Let the complexity c(M) be the minimal number
of simplices in a triangulation of M . Such a quantity is clearly submultiplicative
with respect to finite coverings, that is we have

c(M̃) ≤ d · c(M)

for every degree-d covering M̃
d→ M of closed manifolds. Following Milnor and

Thurston [1] we may promote this quantity to a multiplicative one by defining

c∞(M) = inf
M̃

d
→M

{
c(M̃)

d

}
.

We call this new quantity the stable complexity of M . Stable complexity is now

multiplicative under finite coverings, that is we have c∞(M̃) = d · c∞(M) for

any degree-d covering M̃
d→ M . A quantity which is multiplicative under finite

covering was called a characteristing number by Milnor and Thurston [1]: two
famous characteristic numbers are the Euler characteristic χ(M) and Gromov’s
simplicial volume ‖M‖.

We briefly recall the definition of ‖M‖. Every real homology group Hk(X,R)
of any topological space X is equipped with a semi-norm defined as follows:

‖α‖ = inf
{
|λ1|+ . . .+ |λk|

∣∣ α = λ1σ1 + . . .+ λkσk
}

where the infimum is taken on all the representations of the cycle α ∈ Hk(X,R) as
a linear combination λ1σ1 + . . .+ λkσk of singular simplexes with real coefficients
λi ∈ R. The simplicial volume ‖M‖ of a closed oriented connected n-manifold M
is defined as the norm of its fundamental class [M ] ∈ Hn(M,R), that is:

‖M‖ = ‖[M ]‖.
We are interested in the relation between the two characteristic numbers c∞(M)

and ‖M‖. Since every triangulation gives rise to a fundamental cycle, it is imme-
diate to prove that

‖M‖ ≤ c∞(M).
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It is natural to ask whether the two quantities are actually equal on some inter-
esting manifolds. It is reasonable to look first at aspherical manifolds, and more
precisely at hyperbolic manifolds. It turns out, slightly surprisingly, that the two
equalities are distinct for higher dimensional manifolds.

Theorem 1. In every dimension n ≥ 4 there is a constant Cn < 1 such that
‖M‖ ≤ Cnc∞(M) for every closed hyperbolic n-manifold M .

Sketch of the proof. The main idea is actually simple. On a hyperbolic manifoldM
there is a well-known equality

Vol(M) = vn‖M‖
where vn is the largest volume of a simplex in hyperbolic space Hn, realized pre-
cisely by the ideal regular n-simplex. It is easy to check that the dihedral angle
of a hyperbolic regular ideal n-simplex does not divide 2π when n ≥ 4, and this
implies that it is not possible to construct a triangulation of M such that “most”
of its simplexes straighten to “big” simplexes, whose volumes are close to vn. Some
accurate estimates then show that we need more than C−1n Vol(M)/vn simplexes
to triangulate M , for some Cn < 1 that depend only on the dimension n. �

In dimension 2 we obviously have ‖M‖ = c∞(M) for any hyperbolic surfaceM .
The question for hyperbolic 3-manifolds is as far as we know still open: we do not
know a single closed hyperbolic M for which c∞(M) > ‖M‖, and we do not know
a single closed hyperbolic manifold M for which c∞(M) = ‖M‖. By replacing
triangulation with spines – and hence taking Matveev complexity c(M), which is
a nice invariant defined on any compact M (possibly with boundary) – we can
however prove the following.

Theorem 2. The stable complexity c∞ on 3-manifolds is additive on connected
sums and on the pieces of the JSJ decomposition.

Note that the simplicial volume is also additive on connected sums and JSJ
decompositions (although the proof of this fact is certainly non trivial). It is easy
to prove that c∞(M) = ‖M‖ = 0 on any geometric non-hyperbolic (i.e. Seifert or
Sol) manifold M : this implies in particular that c∞(M) = ‖M‖ = 0 on any graph
manifold. The hyperbolic case is thus indeed the only interesting one.

We ask here a question that, if answered positively, would imply that ‖M‖ =
c∞(M) on a closed hyperbolic 3-manifold M .

Question 3. Does M virtually cover S3 branching over the figure-eight knot with
arbitrarily high degree?

We mean the following: does for any L > 0 exist a finite covering M̃ → M and

a branched covering p : M̃ → S3 with branching locus the figure-eight knot K,
such that the ramification index on each component of p−1(K) is greater than L?
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Delaunay Mesh Generation of Surfaces

Tamal K. Dey

In this talk we focus on how to compute digital representation of a smooth surface
in three dimensions with Delaunay meshes. For a given point set, it is known that
Delaunay triangulations optimize various geometric properties and lend itself to
systematic theoretical analysis. It is mainly because of these two reasons, Delaunay
triangulations and their dual Voronoi diagrams have found their use in producing
meshes with theoretical guarantees about shape and approximation qualities. We
consider two versions of the problem that occur in various applications: (i) surface
reconstruction, and (ii) mesh generation.

(i) Surface Reconstruction: In this problem, the input is a finite point set
P ⊂ Σ sampled from a smooth compact surface Σ ⊂ R3 without any boundary.
Notice that Σ is not available as input. The task is to compute a simplicial
complex K whose vertices are in P and whose underlying space |K| ⊂ R3 has the
same topology of Σ and a geometry that approximates Σ. Amenta and Bern [1]
proposed the first algorithm that provably computes a Delaunay subcomplex which
is a 2-manifold and approximates the geometry of Σ. In this pioneering work, they
introduce the important concepts of local feature size, ε-samples for surfaces, and
connected them with the concept of restricted Delaunay triangulations.

Definition 1. Local feature size is a function f : Σ → R where f(x) is the
Euclidean distance of x to the medial axis of Σ.

Definition 2. A point sample P ⊂ Σ is called an ε-sample of Σ if every point
x ∈ Σ has a sample point p ∈ P so that ‖p− x‖ ≤ εf(x).

Definition 3. Let DelP denote the Delaunay triangulation of P ⊂ R3. The
restricted Delaunay triangulation of P with respect to Σ, denoted DelP |Σ, is the
subcomplex of DelP where a simplex σ ∈ DelP belongs to DelP |Σ if and only if
its dual Voronoi face intersects Σ.

Amenta and Bern proved that if P is an ε-sample of Σ for a sufficiently small
ε < 1, the underlying space of restricted Delaunay triangulation DelP |Σ becomes
homeomorphic to Σ. Since Σ is not given, one cannot compute DelP |Σ. The
challenge is to compute a complex that mimics DelP |Σ. The crust algorithm
of Amenta and Bern [1] outputs such a complex with the guarantee that it is a
2-manifold and is Hausdorff-close to Σ with respect to the sampling density. How-
ever, the algorithm requires two computations of Delaunay triangulations and the
proof of homeomorphism between output surface and Σ was missing. In a subse-
quent work, Amenta, Choi, Dey, and Leekha [2] gave a modified algorithm called
Cocone that outputs a Delaunay mesh which requires computing the Delaunay
triangulation only once. Furthermore, the output is proved to be homeomorphic
to the sampled surface. The precise statement is:

Theorem 4. Let P be an ε-sample of a smooth, compact, boundary-less surface
Σ ⊂ R3. A Delaunay subcomplex K ⊂ DelP with vertex set P can be computed in
O(|P |2) time with the following properties for ε ≤ 0.05:



1448 Oberwolfach Report 24/2012

(1) The underlying space |K| is homeomorphic to Σ (actually, there is an
ambient isotopy taking |K| to Σ).

(2) Every point in |K| has a point x ∈ Σ so that ‖p−x‖ ≤ O(ε)f(x). Similarly,
every point x in Σ has a point p in |K| so that ‖p− x‖ ≤ O(ε)f(x).

(3) Each triangle t ∈ K has a normal making an angle O(ε) with the normal
to the surface Σ at any of its vertices.

The software Cocone based on the Cocone algorithm and its variants is publicly
available from the author’s web-page.

(ii) Mesh generation: Unlike surface reconstruction, in this problem, the input
is a smooth surface Σ, and we are asked to sample Σ and connect these sample
points to create a surface mesh approximating Σ. The surface Σ may be input as
an implicit equation, or by some polygonal approximation.

The introduction of the sampling theory for surface reconstruction lent to the
development of provable algorithms for meshing smooth surfaces and volumes
bounded by them. Cheng, Dey, Edelsbrunner, and Sullivan [5] showed how the
Delaunay refinement of Chew [8] can be used to sample a surface so that a topo-
logical condition called Topological Ball property(TBP) [9] is satisfied. If TBP
is satisfied, the restricted Delaunay triangulation becomes homeomorphic to the
sampled surface. The result of Amenta and Bern says that if the sample is dense
enough, the TBP is satisfied. Therefore, if one samples the surface Σ with lo-
cally furthest points until all triangles have small circumradius (that is, sample is
dense), one is guaranteed to terminate with a surface mesh that is homeomorphic
to Σ.

Cheng et al. [5] applied the above strategy to a specific type of smooth surface
called skin surface. Boissonnat and Oudot [3] showed how the above strategy
can be applied to the more general smooth surfaces. In doing so, they also put
forward several results for surface sampling. The only drawback of their algorithm
is that the user needs to compute the local feature sizes at sampled points. These
are not easily computable in general. Cheng, Dey, Ramos, and Ray [6] proposed
a different strategy that directly seeks for TBP violations to sample new points.
This, however, needs to compute critical points of certain functions on the surface,
which may not be easily computable. However, in a recent book on Delaunay
mesh generation, Cheng, Dey, and Shewchuk have suggested a strategy that is
more practical which leverages on both algorithms of Boissonnat and Oudot [3],
and Cheng et al. [6]. We have the following result with this new algorithm:

Theorem 5. There is a Delaunay refinement algorithm that runs with a parameter
λ > 0 on an input smooth, compact, boundary-less surface Σ with the following
guarantees:

(1) The output mesh is a Delaunay subcomplex and is a 2-manifold for all
values of λ.

(2) If λ is sufficiently small, then the output mesh has similar guarantees with
respect to the input surface Σ as in Theorem 4.
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A more precise statement of the above theorem is available from Chapter 14 of
the book [7]. Oudot, Rineau, and Yvinec [10] extended the algorithm of Boisson-
nat and Oudot to meshing of volumes bounded by smooth surfaces. An improved
version of this algorithm with new analysis is also available from [7]. The more
difficult input such as piecewise smooth surfaces, and even piecewise smooth com-
plexes have also been considered, and provable algorithms exist for them [4]. It
is not possible to cover the substantial literature that have been developed for
Delaunay mesh generation in this short abstract. We recommend the readers to
the recent book on this topic [7].
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Relative Torsion in Homology Computations

Anil N. Hirani

(joint work with Tamal K. Dey, Bala Krishnamoorthy)

We describe a polynomial time algorithm for finding a smallest integer-valued
chain homologous to a given chain. The size of the chain is measured as

∑
i wixi

where wi ≥ 0 is a real number which is the weight of simplex number i and xi is
the value of the chain x on simplex i. If wi > 0 then

∑
iwixi can be written more

succinctly as ‖x‖1, the 1-norm of the chain x.
Some computations in topology start with first simplifying the given complex

or the topological space. This is done in a way that preserves the invariants or
classification outcome that is eventually sought. This methodology of simplifying
first is very useful for algorithms, such as normal surface based algorithms. With-
out the simplification some algorithms would be prohibitively expensive for large
complexes. Simplification has also proved to be a good heuristic even for problems
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where eventually a polynomial time algorithm is applied after simplification. An
example of this class is Betti number computation.

In contrast, for the problem addressed here an answer is sought in a given
simplicial complex. It is an optimization problem with a topological constraint.
The problem statement is as follows:

Given a simplicial complex K and a chain c ∈ Cp(K;Z), find a p-
chain x homologous to c such that x has the smallest total weight.

We call this the optimal homologous chain problem (OHCP). What makes this
problem particularly interesting is that if Z is replaced by Z2 the above problem
was shown to be NP-hard [1]. In fact, Chen and Freedman showed that it is NP-
hard even to find an approximate solution to within any given constant factor.
In [2] we showed that when integer homology is used, a polynomial time algo-
rithm can be given for OHCP for a class of complexes. For example all orientable
manifolds and d-dimensional complexes embedded in Rd are included in this class.

We found this class of complexes by finding a precise characterization of com-
plexes for which the boundary matrix is totally unimodular (TU). (An integer
matrix with entries in {0, 1,−1} is TU if every square submatrix has determinant
0,1, or −1.) From the early days of integer linear programming the importance
of the TU property has been well-known. When the constraint matrix in a linear
program is TU, the polytope is integral for any integral right hand side of the
constraint. That is, if a matrix A is TU and b an integral vector, the polytope
{x ∈ Rn |Ax ≥ b} is integral. In particular, this means that its vertices have
integer coordinates. Thus the linear programming relaxation of the harder inte-
ger linear program results in an integer solution. Since linear programming has a
polynomial time algorithm, this means that any linear program with a TU con-
straint matrix and integer b be solved in polynomial time while yielding an integer
solution. This is relevant to OHCP because the constraint of x being homologous
to c can be written as x = c+ ∂p+1y. Thus the boundary matrix ∂p+1 being TU
is important here.

Our main theorem in [2] is that a boundary matrix is totally unimodular if and
only if the complex is relatively torsion free. The precise statement is as follows:

For a finite simplicial complex K of dimension greater than p,
the boundary matrix ∂p+1 is totally unimodular if and only if
Hp(L,L0) is torsion-free, for all pure subcomplexes L0, L in K
of dimensions p and p+ 1 respectively, where L0 ⊂ L.

Intuitively, relative homology is relevant because when testing for total unimodu-
larity, one is selecting submatrices. For the proof and more details see [2]. Besides
solving the optimal homologous chain problem our result has some other unex-
pected consequences. For example, suppose one wants to check the presence of
relative torsion in Hp(L,L0) for all pure subcomplexes L0 ⊂ L of dimension p and
p + 1. The naive algorithm for this is clearly exponential time since one has to
select all possible subcomplexes. The test for whether Hp(L,L0) has torsion for
a given pair is polynomial time. However the test over all subcomplexes would
ostensibly require exponential time. But our result along with [3] implies that the
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test for presence or absence of relative torsion in Hp(L,L0) over all pure subcom-
plexes can be done in polynomial time. This is because [3] showed that there is a
polynomial time algorithm to test whether a given matrix is TU or not.
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Solving Thurston’s Equation Over a Commutative Ring

Feng Luo

Given a triangulated oriented 3-manifold or pseudo-3-manifold (M, T ), Thurston’s
equation associated to T is a system of integer coefficient polynomial equations
defined on the triangulation. These polynomial equations are derived from the
basic properties of the cross ratio. William Thurston introduced his equation
in the field C of complex numbers in order to find hyperbolic structures. Since
then, there has been much research on solving Thurston equation over C in the
work of Choi, Neumann–Zagier, Petronio–Weeeks, Tillmann, Yoshida and others.
Since the equations are integer coefficient polynomials, one could attempt to solve
Thurston equation in a ring with identity. The purpose of this talk (based on the
preprint [1]) is to show that interesting topological results about the 3-manifolds
can be obtained by solving Thurston equation in a commutative ring with identity.
For instance, one sees easily that Thurston equation is solvable in the field Z/3Z
of three elements if and only if each edge of the triangulation has even degree.

Main theorem. Suppose (M, T ) is an oriented connected closed 3-manifold with
a triangulation T and R is a commutative ring with identity. If Thurston equation
on (M, T ) is solvable in R, then there exists a homomorphism ρ from π1(M) to
PGL(2, R) so that ρ([e]) 6= id for each edge e ∈ T which is a loop. In particular,
if T contains at most three vertices, then M is not simply connected.

We remark that the existence of an edge which is a loop cannot be dropped
in the theorem. Indeed, it is easy to see that for simplicial triangulations T ,
there are always solutions to Thurston equation over C. The main theorem for
R = C was first proved by Segerman–Tillmann in [2]. A careful examination of
the proof of [2] shows that their method also works for any field R. However, for
a commutative ring with zero divisors, the geometric argument breaks down. We
prove the main theorem by introducing a homogeneous Thurston equation and
studying its solutions. The main theorem prompts us to introduce the universal
construction of a Thurston ring of a triangulated 3-manifold. One can rephrase
the main theorem in terms of the Thurston ring.



1452 Oberwolfach Report 24/2012

As a consequence of the main theorem, one obtains a result of Rubinstein and
Tillmann that a closed 1-vertex triangulated 3-manifold is not simply connected if
each edge has even degree. Solving Thurston’s equation over a finite commutative
ring produces many interesting combinatorial properties of the triangulation. For
instance, Thurston’s equation is solvable over the field of four elements if and only
if one can color each tetrahedron red or black so that for each edge e, the number
of red tetrahedra adjacent to e plus twice the number of black tetrahedra adjacent
to e is divisible by 3.

Motivated by the main theorem, we propose the following two conjectures.

Conjecture 1. If M is a compact 3-manifold and γ ∈ π1(M)− {1}, there exists
a finite commutative ring R with identity and a homomorphism from π1(M) to
PSL(2, R) sending γ to a non-identity element.

A weaker form of the conjecture is,

Conjecture 2. If M 6= S3 is a closed oriented 3-manifold, then there exists a
1-vertex triangulation T of M and a finite commutative ring R with identity so
that Thurston equation associated to T is solvable in R.
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A Combinatorial Version of Homotopy for Simplicial Complexes

Jonathan A. Barmak

(joint work with Elias Gabriel Minian)

It is well known that we can associate a simplicial complex with any finite poset X .
The simplices of the order complex K(X) are the non-empty chains of X . Con-
versely, given a finite simplicial complex K, there is a poset X (K), the face poset
of K, which is the poset of simplices of K ordered by inclusion. A poset X can be
thought of as a topological space whose points are the elements of X and whose
open sets are the down-sets (sets closed by taking smaller elements). In fact such
finite spaces are T0 meaning that any two points can be separated with an open
set. Moreover, any finite T0 space is a poset in the way described above. A map
between two posets is continuous if and only if it is order preserving. There is
also a nice characterization of homotopies in this context due to Stong [9]. Two
maps f, g : X → Y between finite spaces are homotopic if and only if there exists
a sequence f = f0 ≤ f1 ≥ f2 ≤ . . . fn = g of maps from X to Y . Here, f0 ≤ f1
means that the inequality holds pointwise.

The connection between posets and complexes is not just combinatorial but
topological. A result of McCord [6] shows that there are weak homotopy equiva-
lences K(X) → X and K → X (K), and, in particular a finite space and its order
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complex have the same homotopy and homology groups and the same is true for a
complex and its face poset. If two finite spaces are homotopy equivalent, their or-
der complexes are weak homotopy equivalent and then, being CW-complexes, they
are homotopy equivalent. However, Whitehead’s Theorem fails for finite spaces
and there are examples of homotopy equivalent complexes with non homotopy
equivalent face posets. In this talk I will introduce a new notion of homotopy for
simplicial complexes and some results of a joint work with Gabriel Minian [1]. The
strong homotopy types are the analogous of homotopy types but for the more re-
strictive notion of homotopy given by contiguity classes of simplicial maps. Strong
homotopy types correspond exactly to homotopy types of finite spaces.

Theorem. If X and Y are homotopy equivalent finite spaces, then K(X) and
K(L) are strong homotopy equivalent. On the other hand, if two complexes have
the same strong homotopy type, their face posets are homotopy equivalent finite
spaces.

Alternatively, strong homotopy types can be described, similarly to Whitehead’s
simple homotopy types, through a notion of collapse. A strong collapse is a se-
quence of deletions of vertices whose links are simplicial cones. Strong collapses
preserve the strong homotopy type. A subcomplex L of a complex K is called a
core of K if K strong collapses into L and the latter cannot be strong collapsed
into a proper subcomplex. Using ideas similar to Stong’s description of homotopy
types of finite spaces, we proved the following:

Theorem. The core of a complex is unique up to isomorphism and two complexes
have the same strong homotopy type if and only if their cores are isomorphic.

This result highlights an essential difference between strong and usual homotopy
types. The contractibility of a finite simplicial complex is a problem which is
algorithmically undecidable. However, there does exist an algorithm for deciding
whether two complexes have the same strong homotopy type.

It is easy to see that strong collapses are particular cases of simplicial collapses
and of non-evasive reductions, and as in those cases, strong collapsibility depends
on the triangulation. The boundary of the 3-dimensional cross polytope minus
a facet is a non strong collapsible triangulation of a 2-simplex. However, a big
advantage of this new notion is the uniqueness of cores. There are examples of
collapsible complexes, in the usual sense, which collapse to subcomplexes that are
not collapsible. In contrast, if a strong collapsible complex strong collapses into
a subcomplex, this one will also be strong collapsible. The uniqueness of cores is
proved also in a purely combinatorial note by Matoušek [5].

We mention also connections between strong homotopy types and two important
open conjectures. Recall that a complex K is said to be vertex homogeneous if
for any two vertices v, w ∈ K there exists a simplicial automorphism of K that
maps v to w. A simplex is an example of a vertex homogeneous complex which
is contractible. There exist contractible vertex homogeneous complexes which are
not simplices [2, 3, 4]. The Evasiveness conjecture for simplicial complexes states
that if we replace contractibility by non-evasiveness, then, there are no examples
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other than simplices. We proved that if we strengthen the hypothesis a little more,
the statement is true.

Theorem. If a complex is strong collapsible and vertex homogeneous, then it is
a simplex.

The second open problem we consider is Quillen’s conjecture on the poset of
p-subgroups of a group. If G is a finite group, Sp(G) denotes the poset of non-
trivial p-subgroups of G ordered by containment. If G has a non-trivial normal
p-subgroup, then the order complex K(Sp(G)) is contractible. Quillen conjectures
in [8] that the converse is true. Using the notion of strong collapsible complex, we
proved that the following is a restatement of Quillen’s conjecture.

Restatement of Quillen’s conjecture. If K(Sp(G)) is contractible, then it is
strong collapsible.
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Towards Algebraic Theory of Polytopes

Joseph Gubeladze

This research focuses on the category of convex polytopes and affine maps. While
not exactly brand new, the line of research has potential to shed new light on
some of the central concepts in polytope theory and propose natural extensions,
reminiscent to the triangulations vs. homology dichotomy in topology.

Understanding hom-polytopes (a.k.a. mapping polytopes) – the polytope of all
affine maps between two given polytopes – is the first step in the proposed cate-
gorial analysis. The software polymake has a special module for computing these
polytopes. But explicit computations become increasingly more difficult as the
combinatorics of polytopes in question gets richer. The challenge here is to un-
derstand the vertices of hom-polytopes. But, currently, even the case of general
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regular source and target polygons seems to be out of reach. The first system-
atic analysis of the vertex sets of hom-polytopes in various settings is done in [2].
This includes polytopal analogs of the rank-nullity theorem and generic or regular
source/target polygons.

One quickly runs into paradigmatic challenges when the next natural step in
the direction outlined above is attempted. Below are details.

The Billera–Sturmfels notion of fiber polytopes [1], which plays an important
role in the theory of triangulations, is expected to be the right kernel object in
the category of polytopes. But it is not quite clear what the appropriate formal
framework should be. One possibility (proposed by Eric Katz) is to prove that
there is a natural isomorphism

(1) Hom(P,Σf) = ΣHom(P, f),

where P is a polytope and f is an affine map between two polytopes. (One needs
to formally extend the fiber construction to not necessarily surjective maps.) This
would mimic the universal equality in a general category

(2) Hom(a, lim
←

D) = lim
←

Hom(a,D),

a being an object and D a diagram. While the expected isomorphism (1) is
interested in its own right, more important is that it suggests an approach to
quotient polytopes – the conjectural dual objects to the fiber polytopes. In fact,
(2) dualizes as

(3) Hom(lim
→

D, a) = lim
←

Hom(D, a),

and the polytopal version of (3) should look like

(4) Hom(Cokerf, P ) = ΣHom(f, P ),

where f : Q → R is an affine map and Cokerf is the corresponding enigmatic
cokernel/quotient object. To put in plain polytopal terms, even though we do
not know how to construct quotient polytopes, categorial analysis suggests what
the hom-polytope – an actual polytope – from the quotient to any polytope P
should be. Now, this almost certainly puts the quotient polytopes outside of the
category of genuine polytopes because the contravariant functor Hom(Cokerf,−)
is unlikely to be representable. But the ‘abstract nonsense’ machinery provides
with a recipe for approximating (as a universal limit) Cokerf by actual polytopes.
A way to keep track of concrete polytopal consequences this constructions can
have is to relate it to triangulations, much like the fiber construction relates to
regular triangulations.

The universal approach we are advocating here consists of the two steps:

• Construct a functor from polytopes to sets with properties reminiscent of
those the functor, represented by the conjectural object, should have;

• Explicate this functor as limit of functors, representable by genuine poly-
topes.
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Such an approach is rather robust: should (1) fail, there is a dual setup for
introducing Cokerf , independent of a prerequisite equality. The idea is to intro-
duce hom-sets from actual polytopes to the quotient polytopes. These sets are real
algebraic varieties in a natural way, and they have been studied already in the
totally different context of conditional independence in statistics [3].
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Metric Geometry and Random Discrete Morse Theory

Bruno Benedetti

(joint work with Karim Adiprasito, Frank Lutz)

The exposition is in two parts. In the first part, I sketch the main result of the
recent preprint [1] on metric geometry and collapsibility (with Karim Adiprasito).
In the second part, I present a possible computational approach (with Frank Lutz).

1. Metric geometry on simplicial complexes

How to put a metric on a given simplicial complex? One way is to declare all
edges to have unit length, and to regard all triangles as equilateral triangles in
the Euclidean plane. This yields the equilateral flat metric, also known as regular
metric. Many other options are possible; for example, one can assign different
lengths to the various edges. The metric is called acute (resp. non-obtuse) if all
dihedral angles in each simplex are less than 90 degrees (resp. at most 90 degrees).
Clearly, equilateral implies acute, which in turn implies non-obtuse.

CAT(0) spaces. Once endowed with such metric, a simplicial complex becomes
a geodesic space, i.e. a locally compact metric space in which distances can be
measured along shortest paths. A geodesic space is called CAT(0) if any triangle
formed by three shortest paths looks not fatter than the “corresponding” triangle
(=with same edge lengths) in R2. For example, the cylinder S1 × [0, 1] is not
CAT(0): Any non-degenerate triangle formed by three points on S1 ×{0} and by
the shortest paths connecting them, is fatter than the corresponding Euclidean
triangle. (Spaces where every point has a CAT(0) neighborhood, like the cylinder,
are called non-positively curved.) All CAT(0) spaces are contractible. Apart from
dimension one, the converse is false, as shown by the Dunce Hat.
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Collapsible complexes. A well known combinatorial strengthening of contracti-
bility was introduced in 1939 by Whitehead. A free face in a complex is a face
properly contained only in one other face. (Not all complexes have free faces.) A
complex is called collapsible if it can be reduced to a point by recursively deleting
a free face. The deletion of a free face (and of the other face containing it) is topo-
logically a deformation retract. Hence, all collapsible complexes are contractible.
Apart from dimension one, the converse is false, as shown by the Dunce Hat.

It is easy to see that the stellar subdivision of a triangle is collapsible. However,
it is not CAT(0) with the equilateral flat metric, basically because of the central
degree-3 vertex. In 2008, Crowley found a first non-trivial relation between the
aforementioned properties:

Theorem 1 (Crowley). Every 3-dimensional simplicial pseudomanifold that is
CAT(0) with the equilateral flat metric, is collapsible.

It turns out that a more general fact is true:

Main Result 1 (Adiprasito–B. [1]). Every d-dimensional polytopal complex that
is CAT(0) with a metric for which all vertex stars are convex, is collapsible.

Under the equilateral flat metric, it is easy to see that all vertex stars are
convex. Actually, even in any non-obtuse flat metric, all vertex stars are convex.
This simple observation has three main consequences. Recall that CAT(0) cube
complexes are CAT(0) spaces obtained from cubical complexes by giving each cube
the metric of a regular Euclidean cube.

Consequence 1. All CAT(0) cube complexes are collapsible.

Consequence 2. There is a smooth 5-manifold (with boundary) M so that
(i) M is not homeomorphic to the d-ball.

Hence, every PL triangulation of M is not collapsible.
(ii) M is homeomorphic to a (compact) CAT(0) cube complex.

Hence, some non-PL triangulation of M is collapsible.

Consequence 3. Discrete Morse inequalities may be sharper than (smooth) Morse
inequalities, in bounding the homology of a manifold. Also, non-PL structures may
be more efficient than PL structures, from a computational point of view.

2. A computational approach: Random discrete Morse theory.

After proving that not all collapsible manifolds are balls, a natural question is
whether it is possible to construct one example explicitly. This raises complexity
issues. In principle, collapsibility is algorithmically decidable; one could just try
all possible sequences of free-face-deletions. However, already for 3-balls with, say,
20 facets, the number of all possible sequences is beyond the computational limit.

A related problem is how to tell whether a triangulation is ‘nice’, and how to
quantify its nastyness. If we decided to regard collapsible (or shellable) balls as
the nicest triangulations, what is ‘far from being nice’?
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A possible statistic approach is what we sketch below, called random discrete
Morse theory [3]. The idea is elementary, and consists of the following algorithm:

Input: An arbitrary simplicial complex C, given by it list of facets (or by its face
poset). Initialize c0 := 0, c1 := 0, . . . , c dimC := 0.
(1) Is the complex empty? If yes, stop the algorithm; otherwise, go to (2).
(2) Are there free codimension-one faces? If yes, go to (3); if no, go to (4).
(3) (Elementary Collapse): Pick one free codimension-one face uniformly at

random and delete it. Then go back to (1).
(4) (Storage of Critical Face): Pick one of the top-dimensional faces uni-

formly at random and delete it from the complex. If i is the dimension of the
deleted face, increment ci by 1 unit; then go back to (1).

Output: the “discrete Morse vector” (c0, c1, c2, . . . , c dimC). By construction, ci
counts critical faces of dimension i.

This algorithm requires no backtracking, and ‘digests’ the complex very rapidly.
The output (1, 0, 0, . . . , 0) is a certificate of collapsibility. If the output is differ-
ent, the complex could still be collapsible with a different sequence of free-face
deletions. Every sequence has some positive probability to be the one picked up
by the algorithm; unfortunately, this probability can be arbitrarily small. Never-
theless, when the certificate of collapsibility is not reached, the algorithm outputs
something meaningful, namely, the f -vector of a homotopy equivalent cell com-
plex. Intuitively, if this vector is close to (1, 0, 0, . . . , 0), we could still say that the
complex is ‘close to be collapsible’.

Since the output arrives quickly, we can re-launch the program, say, 10000 times,
possibly on separate computers (independently). The distribution of the obtained
outcomes yields an approximation of the discrete Morse spectrum, which is the
distribution of all possible outcomes. This allows an empirical analysis of how
complicated the complex is. For example, here is the data collected by running
the algorithm 10000 times on Hachimori’s triangulation nc-sphere [6]:

Z-homology = (Z, 0, 0,Z), π1 = (0) (1, 1, 1, 1): 7902
f -vector = (381, 2309, 3856, 1928) (1, 2, 2, 1): 1809

(1, 3, 3, 1): 234
Time employed: (1, 4, 4, 1): 25
3.228 seconds (Hasse diagram) (1, 0, 0, 1): 12
+0.470 seconds per run (2, 3, 2, 1): 9

(1, 6, 6, 1): 3
(2, 4, 3, 1): 3
(2, 5, 4, 1): 2
(1, 5, 5, 1): 1

The optimal Morse vector appears in 0.12% of cases, so nc-sphere minus a
facet is somewhat ‘barely collapsible’. In fact, our non-deterministic algorithm
is the first to find a collapsing sequence for it. In contrast, on many polytopal
3-spheres (and also for Barnette’s non-polytopal, shellable 3-sphere) the Morse
vector (1, 0, 0, 1) appears basically 100% of the times.

This way we obtained optimal discrete Morse functions for many triangulations
of various topologies and dimensions, among which Kühnel et al.’s triangulations
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of the K3 surface [4, 8] and of CP2, or the Csorba–Lutz triangulation of the Hom-
complex Hom(C5,K5) [5]. The spectra which one can intuit experimentally seem
interesting per se; we hope future theoretical work can justify them. Here is the
largest example on which the algorithm was successful:

Main Result 2 (Adiprasito–B.–Lutz [2]). There is a collapsible 5-manifold dif-
ferent from the 5-ball with f -vector (5013, 72300, 290944, 495912, 383136, 110880).

The construction is as follows. Start with the 16-vertex triangulation of the
Poincaré sphere; remove the star of a vertex; take the product with an interval;
cone over the boundary; form a one-point suspension to achieve a non-PL 5-sphere
with 32 vertices; take the barycentric subdivision; take the collar of the PL singular
set. The resulting manifold is homeomorphic to the one in [1, Thm. 4.12].
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Barycentric Subdivisions, Shellability and Collapsibility

Karim Alexander Adiprasito

(joint work with Bruno Benedetti)

We report on recent results from the papers [1, 2].

1. Shellability and collapsibility of convex sets, applications

Shellability is one of the earliest notions in combinatorial topology. It is deeply
connected to the theory of convex polytopes, via Bruggesser–Mani’s result that
the boundary of any convex polytope, as a polytopal complex, is shellable. Col-
lapsibility is a notion due to Whitehead, and lies at the core of simple homotopy
theory. In this talk, we investigate a question going back to Lickorish:

Problem 1 (Lickorish cf. [6, 13]). Let C be a linear triangulation of a convex ball
in Euclidean space. Is it true that C is collapsible?
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This was verified up to dimension 3 by Chillingworth [6]. A linear triangulation
will from now on be called a subdivision. A motivation for this question is the
problem of whether collapsibility is preserved under subdivisions.

Problem 2 (Variant of Problem 1, cf. [11]). Assume that C is some simplicial
complex that collapses to a subcomplex C′. If D is some subdivision of C such that
D restricts to a subdivision D′ of C′, is it true that D collapses to D′?

A positive answer to Problem 1 does not immediately imply a positive answer
to Problem 2. Problem 2 is equivalent to requiring the stronger conclusion of
endo-collapsibility (that means boundary critical collapse, cf. [3]) in Problem 1.

The naive approach of shelling along a linear functional, does not work: In fact,
there are linear triangulations of convex sets that are not shellable, as famously
displayed by Rudin in 1957 [15]. Rudin’s ball is a subdivision of a tetrahedron
that is not shellable. We provide the following reconciliation:

Theorem 1 (A.–Benedetti 2012 [1, 2]). If C is a subdivision of a convex d-ball,
– the barycentric subdivision of C is constructible, and in particular endocollapsible

and collapsible, and
– the (d− 2)-fold barycentric subdivision of C is shellable.

In particular, any linearly triangulated convex 3-ball (e.g. Rudin’s Ball) becomes
shellable after a single barycentric subdivision. As a corollary, we obtain that
collapsibility is almost preserved under subdivisions:

Corollary 2 (A.–B. [2]). Let C be a simplicial complex that collapses to a sub-
complex C′. Let D be a subdivision of C that restricts to a subdivision D′ of C′.
The barycentric subdivision of D collapses to the barycentric subdivision of D′.

Corollary 3 (A.–B. [2]). Let C be a PL d-ball. Then some r-fold barycentric
subdivision of C is shellable, and in particular collapsible.

This allows us to give a simple proof of the fact [4, 9] that discrete Morse Theory
is as perfect as smooth Morse Theory. More precisely, if M is a closed smooth
manifold and f a Morse function on M with ci critical points of index i, then there
exists a discrete Morse function on some PL triangulation of M that has at most
ci critical faces of dimension i. Combined with a fact in [1], this gives a surprising
result: Discrete Morse Theory is not only at least as perfect as smooth Morse
Theory, but in many cases even better: There exist, for example, contractible
smooth manifolds which allow only a nontrivial handle decomposition, but that,
at the same time, allow a triangulation that is collapsible.

Finally, we apply our methods to an old result by Dierker, Lickorish and Cohen:

Theorem 2 (Dierker [8], Lickorish [14], Cohen [7]). If C is any contractible sim-
plicial d-complex, some subdivision of C × Imax(5,2d) is collapsible.

We investigate whether one can strengthen this theorem by concluding that
C × Imax(5,2d), as polytopal complex, is (polytopally) collapsible. First, we use
knot theory to provide a negative answer
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Proposition 1 (A.–B. [2]). For every nonnegative integer n, there exists a con-
tractible simplicial 2-complex C such that C × In is not collapsible.

Still, using the methods of Theorem 1, we can prove:

Theorem 3 (A.–B. [2]). Let C be a contractible simplicial complex. Then, for
some n, the polytopal complex C × In becomes collapsible.

This confirms a conjecture of Bob Oliver. In particular, we obtain a simple con-
struction method for counterexamples to a conjecture of Kahn, Saks and Sturte-
vant, which is originally due to Oliver:

Corollary 4 (Oliver ’84, A.–B. [2]). Some collapsible simplicial complexes, differ-
ent than the simplex, have symmetry group that act transitively on their vertices.

2. CAT(1) metrics and the Hirsch conjecture

The shellability property is related to diameter condition, as in the Hirsch bound.
The connection goes back to a famous result of Provan and Billera [5]:

Theorem 4 (Provan & Billera ’79). Let C be any simplicial d-complex on n
vertices (d ≥ 1).
– If C is vertex-decomposable, then C satisfies the Hirsch conjecture, i.e. the di-

ameter of its dual graph is bounded above by n− d− 1.
– if C is shellable, then the barycentric subdivision of C is vertex-decomposable.

In particular, the barycentric subdivision of a connected shellable simplicial
complex satisfies the diameter bound conjectured by Hirsch for polytopes. Using
methods from metric geometry, we generalize this result to all simplicial complexes
satisfying a natural connectivity assumption that is much weaker than shellability.

Recall that a length space is called CAT(1) if, roughly speaking, any triangle
formed by three shortest paths is “not fatter” than the corresponding spherical
triangle in the unit sphere. We wish to study simplicial complexes which allow a
CAT(1)-metric.

Theorem 5 (Gromov [10, Theorem 4.2.A]). For a simplicial complex C, the
following are equivalent:
(i) C is CAT(1) with the all-right metric;
(ii) C is flag, that is, its minimal non-faces are edges.

Here we present an application of Gromov’s theorem to the Polynomial Hirsch
Conjecture. Recall that a complex is superstrongly connected if the link of every
face (of codimension at least 2) in it is strongly connected.

Conjecture 2 (Polynomial Hirsch Conjecture). Consider the family Fn,d of super-
strongly-connected d-dimensional simplicial complexes with n vertices. There is a
polynomial P in two variables such that the diameter of the dual graph of any
complex in Fn,d is at most P (n, d).

What we achieve is a proof of this conjecture for flag complexes:
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Theorem 6 (A.–B. [1]). Let C be a superstrongly connected d-complex with n
vertices.
(i) If C is flag, then the diameter of the dual graph of C is at most n− d− 1.
(ii) If all minimal non-faces of C have dimension ≤ i, then the diameter of the

dual graph of C is at most i!
(
n
i−1

)
+ n− d− 1.
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Centrally Symmetric Polytopes with Many Faces

Isabella Novik

(joint work with Alexander Barvinok, Seung Jin Lee)

A polytope is the convex hull of a set of finitely many points in Rd. A polytope
P ⊂ Rd is centrally symmetric (cs, for short) if P = −P . The question we
are interested in is “What is the maximum number of k-dimensional faces that
a centrally symmetric d-dimensional polytope with N vertices can have?” We
denote this number by fmaxk(d,N).

Our interest in this question stems from a variety of reasons. One of them is
that while the answer in the class of all polytopes is classic by now [7], very little is
known in the centrally symmetric case. Another one comes from the desire to find
new minimal triangulations of manifolds: many known minimal triangulations of
manifolds (see [8], [6]) were constructed as subcomplexes of the boundary complex



Triangulations 1463

of the cyclic polytope; this makes one hope that cs polytopes with many faces will
give rise to new constructions of centrally symmetric triangulations of manifolds.
(Here by a cs triangulation of a manifold M we mean a simplicial complex with a
fixed point free involution whose geometric realization is M). Yet another moti-
vation comes from work of Donoho and his collaborators (see [4]) who discovered
that centrally symmetric polytopes with many faces have implications in problems
of sparse signal reconstruction.

While we are still very far from understanding the exact value of fmaxk(d,N),
we have established the following bounds on it:

Theorem 1. The maximum possible number of edges in a cs polytope satisfies
(
1− 4

(
√
3)d

)(
N

2

)
≤ fmax1(d,N) ≤

(
1− 1

2d

)
N2

2
,

and the maximum number of (k − 1)-dimensional faces satisfies
(
1− k2

(γk)d

)(
N

k

)
≤ fmaxk−1(d,N) ≤

(
1− 1

2d

)(
N

k

)
· N

N − 1
,

where γk = 23/20k
22k for 3 ≤ k ≤ d/2.

The upper bounds in the above theorem were obtained in [1] using the volume
trick. The lower bounds are very recent [3] and are obtained via explicit construc-
tion. In the rest of this presentation we provide a sketch of this construction.

Recall that the 2k-dimensional cyclic polytope with N vertices, C2k(N), is de-
fined as the convex hull of N distinct points on the trigonometric curve

Mk : R −→ R2k, Mk(t) = (cos t, sin t, cos 2t, sin 2t, . . . , cos kt, sin kt) .

Since

Mk(t) = Mk(t+ 2π) for all t,

from this point on, we consider Mk(t) to be defined on the unit circle S = R/2πZ.
The celebrated Upper Bound Theorem [7] asserts that among all 2k-dimensional
polytopes on N vertices, the cyclic polytope simultaneously maximizes all the face
numbers.

In an attempt to construct a centrally symmetric analog of the cyclic polytope,
consider the symmetric moment curve Uk : S −→ R2k defined by

Uk(t) = (cos t, sin t, cos 3t, sin 3t, . . . , cos(2k − 1)t, sin(2k − 1)t) .

Observe that Uk(t+π) = −Uk(t), and so the convex hull of Uk, Bk := conv(Uk(t) :
t ∈ S), is a cs convex body. The curve U2 and its convex hull B2 were originally
considered by Smilansky [9].

For an integer m ≥ 1, consider the curve

Φm : S −→ R2(m+1), Φm(t) :=
(
cos t, sin t, cos 3t, sin 3t, . . . , cos(3mt), sin (3mt)

)
.

Note that Φ1 = U2.
The lower bound on the maximum possible number of edges in a cs polytope

of Theorem 1 is a consequence of the following construction/result. We say that a
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cs polytope is 2-neighborly if every two of its vertices that are not antipodes form
the vertex set of an edge.

Theorem 2. Fix integers m ≥ 2 and s ≥ 2. Let Am ⊂ S be the set of 2(3m − 1)
equally spaced points:

Am =

{
π(j − 1)

3m − 1
: j = 1, . . . , 2(3m − 1)

}
,

and let Am,s ⊂ S be the set of 2(3m − 1) clusters of s points each, chosen in
such a way that for all j = 1, . . . , 2(3m − 1), the j-th cluster lies on an arc of

length 10−m that contains the point π(j−1)
3m−1 , and the entire set Am,s is centrally

symmetric. Then

(1) The polytope conv(Φm(t) : t ∈ Am) is a centrally symmetric 2-neighborly
polytope of dimension 2(m+ 1) that has 2(3m − 1) vertices.

(2) The polytope conv(Φm(t) : t ∈ Am,s) is a centrally symmetric 2(m + 1)-
dimensional polytope with N := 2s(3m − 1) vertices and such that every
two of its vertices that do not lie in a pair of opposite clusters form the
vertex set of an edge. In particular, this polytope has at least

N(N − s− 1)/2 >
(
1− 3−m

)(N
2

)

edges.

We refer our readers to [3] for the proof of Theorem 2. Here we only mention
that one of the main ingredients of the proof is a result of Smilansky [9] asserting
that for every two points t1, t2 ∈ S that lie on an open arc of length 2π/3, the line
segment [U2(t1), U2(t2)] is an (exposed) edge of B2.

Our construction of cs polytopes with many (k − 1)-dimensional faces is more
complicated, but utilizes similar ideas. The details can be found in [3]. Here we
only note that this construction is based on the curve Ψk,m : S −→ R2k(m+1)

defined by

Ψk,m(t) :=
(
Uk(t), Uk(3t), Uk(3

2t), . . . , Uk(3
mt)

)

instead of Φm, and on the set of points V (F) ⊂ S (clusters, resp.) associated with
a large k-independent family F of subsets of [m] := {1, 2, . . . ,m} instead of Am
(Am,s, resp.). A family F is called k-independent if for every k distinct subsets
I1, . . . , Ik of F all 2k intersections

k⋂

j=1

Jj , where Jj = Ij or Jj = Icj := [m] \ Ij , are non-empty.

The crucial component of our construction is a deterministic construction of k-

independent families of size larger than 2m/5(k−1)2
k

given in [5]. Another compo-
nent is a result from [2] asserting that for every s ≤ k and every choice of s points
t1, . . . , ts ∈ S that lie on a closed arc of length π/2, the set {Uk(t1), . . . , Uk(ts)} is
the vertex set of an exposed face of Bk.



Triangulations 1465

Remark 3. The lower bounds of Theorem 1 become non-trivial only when k =
O(log d). For higher values of k the following simple construction provides cs
d-polytopes with N vertices and what appears to be the current record number of
(k−1)-dimensional faces: let D ⊂ S be a cs set of four clusters of about N/4 points
each with the j-th cluster lying on a small arc around πj/4 for j = 0, 1, 2, 3. Define
P (d,N) to be the convex hull of (U⌊d/2⌋(t) : t ∈ D) if d is even and the bipyramid
over P (d− 1, N − 2) if d is odd. Then every k vertices of this polytope that belong
to the union of two neighboring clusters form the vertex set of a (k − 1)-face. In
particular, P (d,N) has at least

4

(
N/2

k

)
− 4

(
N/4

k

)
≈

(
1

2k−2
− 1

4k−1

)(
N

k

)

(k − 1)-dimensional faces for all k < d/2.
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Not all Simplicial Polytopes are Weakly Vertex-Decomposable

Steven Klee

(joint work with Jesús A. De Loera)

Due to its relevance to the theoretical performance of the simplex method of
linear programming, a lot of effort has been invested in bounding the diameters
of convex polyhedra. The 1957 Hirsch conjecture for polytopes became one of the
most important problems in combinatorial geometry. For simple polytopes, the
Hirsch conjecture stated that any two vertices in a simple d-polytope with n facets
can be connected by an edge path of length at most n−d. We will work in the polar
setting where the Hirsch conjecture for simplicial polytopes asserts that if P is a
simplicial d-polytope with n facets, then any pair of facets in P can be connected
by a facet-ridge path of length at most n − d. The Hirsch conjecture remained
open until 2010 when Santos [10] constructed a 43-dimensional counterexample to
the Hirsch conjecture with 86 vertices.
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Despite this great success the best known counterexamples to the Hirsch conjec-
ture have diameter (1+ ǫ)(n−d), while the best known upper bounds on diameter
are quasi-exponential in n and d [2] or linear in fixed dimension but exponential
in d [1, 7]. Today we do not even know whether there exists a polynomial bound
on the diameter of a polytope in terms of its dimension and number of vertices.
Thus studying diameters of simplicial spheres and polytopes is still the subject of
a great interest. In this report, which is a summary of the results in [4], we outline
an approach of Provan and Billera [9] that can be used to give diameter bounds for
so-called (weakly) k-decomposable simplicial complexes. After introducing these
complexes, we will provide explicit examples of simplicial polytopes that are not
even weakly vertex-decomposable which arise naturally as the polars of certain
simple 2× n transportation polytopes.

1. Decomposability of simplicial complexes

One approach to trying to establish polynomial diameter bounds is to study de-
compositions of simplicial complexes. Provan and Billera [9] defined a notion of
k-decomposability for simplicial complexes and showed that k-decomposable com-
plexes satisfy nice diameter bounds.

Definition 1. ([9, Definition 2.1]) A simplicial complex ∆ of dimension d − 1 is
k-decomposable if ∆ is pure and either

(1) ∆ is a simplex, or
(2) there is a face τ ∈ ∆ with dim τ ≤ k such that

(a) ∆ \ τ is (d− 1)-dimensional and k-decomposable and
(b) lk∆(τ) is (d− |τ | − 1)-dimensional and k-decomposable.

Theorem 2. ([9, Theorem 2.10]) Let ∆ be a k-decomposable simplicial complex
of dimension d− 1. Then

diam(∆) ≤ fk(∆)−
(

d

k + 1

)
,

where fk(∆) denotes the number of k-dimensional faces in ∆.

In particular, a 0-decomposable complex (also called vertex-decomposable) sat-
isfies the Hirsch bound. One approach to trying to prove the Hirsch conjecture
would be to try to show that any simplicial polytope is vertex-decomposable. In his
thesis, Lockeberg [8] constructed a simplicial 4-polytope on 12 vertices that is not
vertex-decomposable (see also [6, Proposition 6.3]), though the diameter of Locke-
berg’s polytope still satisfies the Hirsch bound. Of course Santos’ counterexample
to the Hirsch conjecture also is not vertex-decomposable. In addition, Provan and
Billera define a weaker notion of k-decomposability that does not require any con-
dition on links but still provides bounds on the diameter of a simplicial complex.

Definition 3. A simplicial complex ∆ of dimension d − 1 is weakly k-decom-

posable if ∆ is pure and either

(1) ∆ is a simplex, or
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(2) there is a face τ ∈ ∆ with dim τ ≤ k such that ∆\ τ is (d−1)-dimensional
and weakly k-decomposable.

Theorem 4. ([9, Theorem 4.2.3]) Let ∆ be a weakly k-decomposable simplicial
complex of dimension d− 1. Then

diam(∆) ≤ 2fk(∆).

Again, we say that a weakly 0-decomposable complex is weakly vertex-decom-
posable. Based on the hope that diameters of simplicial polytopes have linear
upper bounds, it would be natural to try to prove that any simplicial d-polytope is
weakly vertex-decomposable (see Sections 5, 6, and 8 in [6] for additional discussion
on decomposability and weak decomposability). In the next section, we will give a
counterexample to this conjecture by introducing a family of simple transportation
polytopes whose polars are not even weakly vertex-decomposable.

2. Transportation polytopes

For fixed vectors a = (a1, . . . , am) ∈ Rm and b = (b1, . . . , bn) ∈ Rn, the classical
m× n transportation polytope P(a,b) is the collection of all nonnegative
matrices X = (xi,j) with

∑m
i=1 xi,j = bj for all 1 ≤ j ≤ n and

∑n
j=1 xi,j = ai for

all 1 ≤ i ≤ m. The vectors a,b are often called the margins of the transportation
problem.

There is a natural way to associate a complete bipartite graph Km,n with
weighted edges to each matrix X ∈ P (a,b) by placing a weight of xi,j on the
edge (i, j) ∈ [m] × [n]. We summarize the properties of transportation polytopes
that we will use in the following theorem. These results and their proofs can be
found in [5].

Theorem 5. Let a ∈ Rm and b ∈ Rn with mn > 4.

(1) The set P (a,b) is nonempty if and only if
∑m

i=1 ai =
∑n
j=1 bj .

(2) The dimension of P (a,b) is (m− 1)(n− 1).
(3) The transportation polytope P (a,b) is nondegenerate (hence simple) if and

only if the only nonempty sets S ⊆ [m] and T ⊆ [n] for which
∑
i∈S ai =∑

j∈T bj are S = [m] and T = [n].

(4) If P (a,b) is simple, the set

Fp,q = Fp,q(a,b) := {X ∈ P (a,b) : xp,q = 0},
is a facet of P (a,b) if and only if ap + bq <

∑m
i=1 ai.

(5) If P (a,b) is simple, the matrix X ∈ P (a,b) is a vertex of P (a,b) if and
only if the edges {(i, j) ∈ Km,n : xi,j > 0} form a spanning tree of Km,n.

Our study focuses on a certain family of simple 2× n transportation polytopes
whose polars are not weakly vertex-decomposable. One might hope that these
polytopes might also provide natural counterexamples to the Hirsch conjecture
since they are not weakly vertex-decomposable. This is not the case, however, since
Kim [3, Theorem 3.5.1] showed that any classical 2 × p transportation polytope
satisfies the Hirsch conjecture.
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Theorem 6. ([4, Theorems 3.1, 3.2]) For all d ≥ 4, there exists a simplicial
d-polytope that is not weakly vertex-decomposable:

(a). For all n ≥ 2, the simplicial polytope P∆(a,b) with a = (2n + 1, 2n+ 1)
and b = (2, 2, . . . , 2) ∈ R2n+1 is not weakly vertex-decomposable.

(b). For all n ≥ 3, the simplicial polytope P∆(a,b) with a = (2n − 1, 2n+ 1)
and b = (2, 2, . . . , 2) ∈ R2n is not weakly vertex-decomposable.

We conclude with some questions related to decomposability of simplicial com-
plexes that we feel are interesting both in their relation to the polynomial Hirsch
conjecture and in their own right.

It is obvious that any k-decomposable simplicial complex is also (k+1)-decom-
posable; and Provan and Billera [9, Theorem 2.8] prove that a (d− 1)-dimensional
simplicial complex is (d− 1)-decomposable if and only if it is shellable.

Question 7. Any simplicial d-polytope is shellable, but there exist simplicial poly-
topes that are not (weakly) 0-decomposable. What can be said about the minimal
value k = k(d) such that all simplicial d-polytopes are (weakly) k-decomposable,
but there exist simplicial d-polytopes that are not (weakly) (k − 1)-decomposable?
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Catalogues of PL-Manifolds and Complexity Estimations via
Crystallization Theory

Maria Rita Casali

1. Abstract

Crystallization theory is a graph-theoretical representation method for compact
PL-manifolds of arbitrary dimension, with or without boundary, which makes use
of a particular class of edge-coloured graphs, which are dual to coloured (pseudo-)
triangulations. These graphs are usually called gems, i.e. Graphs Encoding Man-
ifolds, or crystallizations if the associated triangulation has the minimal number
of vertices.

One of the principal features of crystallization theory relies on the purely combi-
natorial nature of the representing objects, which makes them particularly suitable
for computer manipulation.
The present talk focuses on up-to-date results about:

- generation of catalogues of PL-manifolds for increasing values of the vertex
number of the representing graphs;

- definition and/or computation of invariants for PL-manifolds, directly
from the representing graphs.

2. Cataloguing PL-manifolds via crystallization theory

Tables of crystallizations have been obtained in dimension 3, and are in progress
in dimension 4: the main tool for their generation is the code, a numerical “string”
which completely describes the combinatorial structure of a coloured graph, up
to colour-isomorphisms [12]. Afterwards suitable moves on gems, translating the
PL-homeomorphism of the represented manifolds, are applied to develop a clas-
sification procedure which allows to detect crystallizations of the same manifold;
this is the starting point toward the identification of the manifolds represented
in the catalogues (see [7] and related C++ programs – jointly elaborated with
P. Cristofori – whose codes have been recently parallelized in order to obtain a
better performance1).

It is worthwhile noting that in dimension 3 the above automatic partition into
equivalence classes succeeds to distinguish topologically all manifolds represented
by the generated catalogues. This allows to classify the 110 (resp. 16) closed prime
orientable (resp. non-orientable) 3-manifolds having a coloured triangulation with
at most 30 tetrahedra. The obtained results comprehend the JSJ-decomposition of
all involved manifolds, together with the computation of their Matveev complexity
and geometry: see [8] and [9] for the orientable case and [4], [5] and [1] for the
non-orientable one.

1We expect to succeed in significantly extending crystallization catalogues, both in dimension
three and in dimension four, by optimizing the code and by exploiting high-powered computers,
in virtue of the Italian Supercomputing Resource Allocation (ISCRA) project “Cataloguing PL-
manifolds in dimension 3 and 4 via crystallization theory”, supported by CINECA.
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Experimental data from these catalogues also yield interesting information in
order to compare Matveev complexity with the so-called gem-complexity of a closed
3-manifold M , which involves the minimum order of a crystallization of M [2].2

As far as dimension 4 is concerned, the generation of manifolds catalogues
implies the previous generation of all gems (not necessarily crystallizations) repre-
senting 3-dimensional spheres up to a fixed order; moreover, suitable sequences of
combinatorial moves realizing the PL-classification of the represented 4-manifolds
have to be chosen and implemented (see [3] and [17]).

The initial segment of 4-dimensional crystallizations catalogue allows to:

- characterize S4 (resp. CP2) (resp. S1 × S3 and S1×̃S3) among closed 4-
manifolds by means of gem-complexity 0 (resp. 3) (resp. 4);

- check that no other closed handle-free 4-manifold exists with gem-complexity
at most 5;

- check that RP4 has gem-complexity 7 and no other closed non-orientable
handle-free 4-manifold exists with gem-complexity at most 9; 3

- check that the manifolds S2 × S2, CP2#CP
2 and CP

2#(−CP
2) have gem-

complexity 6 and any other closed orientable handle-free 4-manifold with
gem-complexity k, 6 ≤ k ≤ 9, is TOP-homeomorphic to one of them.

Note that the PL-classification of the elements of our catalogue might provide
interesting examples of different PL 4-manifolds triangulating the same topological
4-manifold. In fact, known properties of crystallizations, combined with the up-
to-date topological classification of simply connected PL 4-manifolds (see [15], [14]
and [16]), allow to prove that:
If M4 is a simply connected closed PL 4-manifold with gem-complexity k ≤ 65, then
M4 is TOP-homeomorphic to either (#rCP

2)#(#r′ −CP
2) with r+r′ = β2(M

4)
or #s(S

2 × S2) with s = 1
2β2(M

4).

3. Complexity estimations

By making use of the strong connection existing in dimension 3 between gems and
Heegaard diagrams, a 3-manifold invariant based on crystallization theory – called
GM -complexity – has been introduced and proved to be an upper bound for the
Matveev complexity of each compact 3-manifold (see [5], [6] and [8] for the closed
case and [10] for the boundary case).

Experimental results concerning 3-manifolds admitting a crystallization with
“few” vertices (namely less than 32), suggests the sharpness of this bound for all
closed 3-manifolds.

The notion of GM -complexity, combined with the widely investigated rela-
tionships between crystallization theory and other representation methods for 3-
manifolds, has allowed to obtain direct estimations of the Matveev complexity for

2The gem-complexity of a closed n-manifold Mn is the non-negative integer k(Mn) = p− 1,

2p being the minimum order of a crystallization of Mn.
3Actually, the standard order 16 crystallization of RP4 turns out to be the unique non-

bipartite 5-coloured graph, within the catalogue of all rigid crystallizations lacking in dipoles up
to 20 vertices.
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several classes of manifolds, significantly improving former results: this happens,
in particular, for two-fold branched coverings of S3, for three-fold simple branched
coverings of S3, and for 3-manifolds obtained by Dehn surgery on framed links in
S3 (see [6]).

Moreover, GM -complexity has been proved to coincide with the so called modi-
fied Heegaard complexity, another 3-manifold invariant introduced in [13] (by mak-
ing use of generalized Heegaard diagrams) as an approach to Matveev complexity
computation: see [11].
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Triangulations of Hyperbolic 3-Manifolds Admitting Strict Angle
Structures

Henry Segerman

(joint work with Craig D. Hodgson and J. Hyam Rubinstein)

It is conjectured that every hyperbolic 3-manifold with torus boundary components
has a decomposition into positive volume ideal hyperbolic tetrahedra (a geometric
triangulation). Such a decomposition can be very useful and has been studied by
many authors, starting with Thurston [6], who introduced his gluing equations,
describing conditions on shapes of positive volume ideal hyperbolic tetrahedra so
that they fit together properly in a geometric triangulation.

Epstein and Penner [1] showed that every cusped (i.e. non-compact with finite
volume) hyperbolic 3-manifold has a canonical decomposition into convex ideal
polyhedra. In many cases (for example punctured torus bundles and 2-bridge
knot complements, see Guéritaud and Futer [2]) the polyhedra of this canonical
decomposition are tetrahedra, and we get a geometric triangulation. However,
in general the polyhedra may be more complicated than tetrahedra. The obvious
approach to try to get a geometric ideal triangulation is to subdivide the polyhedra
into tetrahedra. The difficulty is that the subdivision induces triangulations of the
polygonal faces of the polyhedra, and these triangulations may not be consistent
with each other where two polygonal faces are glued to each other. This can be
fixed by inserting flat hyperbolic tetrahedra in between the two polyhedra, building
a layered triangulation on the polygon that bridges between the two triangulations.
The cost paid is the addition of the flat tetrahedra, and the resulting triangulation
is not geometric.

Experimental evidence from SnapPea [8] supports the conjecture that every
cusped hyperbolic 3-manifold has a geometric triangulation. Wada, Yamashita
and Yoshida [7, 9] have proved the existence of such triangulations given certain
combinatorial conditions on the polyhedral decomposition, and Luo, Schleimer
and Tillmann [4] show that such triangulations exist virtually, but the general
problem remains unsolved.

We investigated an easier problem, that of finding an ideal triangulation with
a strict angle structure, which can be thought of as a solution to the rotational
part of Thurston’s gluing equations. To be precise, a generalised angle structure
is an assignment of real numbers (“angles”) to the edges of each tetrahedron so
that opposite edges within each tetrahedron get the same angle, the sum of the
six angles within each tetrahedron is 2π, and the sum of the angles around each
edge of the triangulation (after gluing the tetrahedra together) is 2π. A semi-angle
structure has all angles in [0, π], and a strict angle structure has all angles in (0, π).
The space of semi-angle structures is then a convex polytope.

The existence of a strict angle structure on a triangulation is a necessary but
not sufficient condition for the triangulation to be geometric. Casson showed that
a manifold with an ideal triangulation that admits a strict angle structure also ad-
mits a complete hyperbolic structure, although this is an existence result that uses
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Thurston’s hyperbolization theorem and so is not constructive. However, a strict
angle structure determines an ideal hyperbolic shape for each tetrahedron, and so
a volume for each tetrahedron. Using this, one can define a volume functional on
the space of strict angle structures by adding up the volumes of the tetrahedra.
The volume functional extends continuously to the semi-angle structure polytope,
and is concave down on this polytope. Casson and Rivin showed that if the max-
imum of the volume functional is achieved at a strict angle structure (rather than
on the boundary of the semi-angle structure polytope), then the corresponding
ideal hyperbolic tetrahedra fit together to give a geometric triangulation.

This then gives a possible strategy to finding a geometric triangulation: we
find a triangulation that admits a strict angle structure, and then hope that the
volume functional is maximised at a strict angle structure.

Our main result is:

Theorem. Assume that M is a cusped hyperbolic 3-manifold homeomorphic to
the interior of a compact 3-manifold M with torus or Klein bottle boundary com-
ponents. If H1(M ;Z2) → H1(M,∂M ;Z2) is the zero map then M has an ideal
triangulation with a strict angle structure.

Corollary. If M is a hyperbolic link complement in S3, then M admits an ideal
triangulation with a strict angle structure.

Proof. For a link L ⊂ S3, the peripheral elements generateH1(M), where M is the
complement of an open regular neighbourhood of L in S3. This can be seen using
a Mayer-Vietoris sequence, or just by observing that if we kill all of the meridian
curves by filling in disks then we obtain S3 minus a number of 3-balls, which has
zero first homology. Therefore, the map to H1(M,∂M) is the zero map. �

Unfortunately, the triangulations we find are not generally geometric.
The idea of the construction is similar to the outline above of a method to

find an ideal triangulation from the Epstein-Penner polyhedral decomposition:
we carefully choose a subdivision of the polyhedra into ideal tetrahedra, using a
“coning” procedure, and then insert flat tetrahedra to bridge between the identified
faces of polyhedra that do not have matching induced triangulations. This gives
a triangulation with a natural semi-angle structure (which is not a strict angle
structure because of the inserted flat tetrahedra). One approach to the result
would be to try to deform the semi-angle structure into a strict angle structure,
opening out the flat tetrahedra so that each one has positive volume. However,
instead of trying to deform the angle structure directly, we use work of Kang and
Rubinstein [3] and Luo and Tillmann [5] which tells us that a strict angle structure
exists if and only if certain “vertical” normal surface classes in the triangulation
do not exist.

Our construction gives us a large amount of control over how a vertical normal
class can be arranged in the polyhedra and in the bridge regions. It can only have
non-zero quadrilateral coordinates in the bridge regions, where we inserted flat
tetrahedra, and in fact only in bridge regions at polygonal faces of the polyhedra
with either 4 or 6 sides. We proceed by replacing the quadrilaterals in the bridge
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regions with certain twisted disk surface parts to convert the normal surface so-
lution class into an embedded closed surface. A parity argument shows that a
fundamental, non-peripheral component of the surface must have an odd number
of twisted disk parts in some bridge region. Our coning procedure for subdividing
the polyhedra can be chosen so that we can construct a loop that passes through
this bridge region and no others, and this loop gives a contradiction to the homol-
ogy condition, ruling out the possibility of the vertical normal surface class and
thereby proving the theorem.

This work was supported by Australian Research Council grant DP1095760.
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Structure of 0-Efficient or Minimal Triangulations

Stephan Tillmann

(joint work with William Jaco and J. Hyam Rubinstein)

1. Complexity of 3-manifolds

In this report, all 3-manifolds are assumed to be closed, irreducible, orientable and
connected. The complexity of the 3-manifold M , denoted c(M), is the minimum
number of tetrahedra in a (pseudo-simplicial) triangulation of M. This number
agrees with the complexity defined by Matveev [8] unless the manifold is S3, RP 3

or L(3, 1). It follows from the definition that the complexity is known for all closed,
irreducible manifolds which appear in certain computer generated censuses. The
largest published census of closed orientable 3-manifolds at the time of writing is
due to Matveev [12] and goes up to complexity 12, and Matveev [13] has announced
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the completion of the census of complexity 13. Some interesting facts about the
census are the following:

(1) If c(M) ≤ 5, then M is spherical. The manifolds of complexity one are S3,
L(4, 1) and L(5, 2). The Poincaré homology sphere has complexity 5.

(2) If c(M) ≤ 8, then M is a graph manifold.
(3) If M is euclidean, then c(M) = 6.
(4) If M is hyperbolic, then c(M) ≥ 9. There are four hyperbolic manifolds of

complexity 9, including the Fomenko–Matveev–Weeks’s manifold.

Matveev uses spines to represent 3-manifolds. Independently, Burton [1] has
produced a census of all minimal triangulations of the manifolds of complexity up
to 11. These censuses of minimal spines or minimal triangulations are as useful
as the tables of small knots and links for low-dimensional topologists. However,
hyperbolic examples only appear from complexity 9 and are sparse amongst these
low complexity manifolds (see [11] for an analysis). Moreover, determining the
complexity of a given manifold is in general difficult. For instance, for the com-
plexity of the Weber–Seifert dodecahedral space we have a lower bound of 14
due to the latest census [13], and an upper bound of 23 due to 3 inequivalent
triangulations [2], but the exact value is not known.

2. Towards vertical sections of the census

Given the difficulty of determining the complexity of a 3-manifold, one is often
content to find upper and lower bounds. Whilst an upper bound arises from
the presentation of a manifold via a spine, a Heegaard splitting or a triangulation,
Matveev [9] states that the problem of finding lower bounds is quite difficult. Lower
bounds using homology groups or the fundamental group are given by Matveev
and Pervova [14], and lower bounds using hyperbolic volume are given by Matveev,
Petronio and Vesnin [15]. These bounds are only known to be sharp for a few
examples, and often the known census will provide a better lower bound for a given
manifold. For some classes of manifolds, one has natural spines or triangulations
that lead to a conjectured minimal complexity:

Conjecture (Matveev, Jaco–Rubinstein). The complexity of the lens space L(p, q)
is E(p, q)− 3, where (p, q) = 1, p > q > 0, p > 3, and E(p, q) is the sum,

∑
ni, of

the “partial denominators” in the continued fractions expansion of p/q :

p

q
= n0 +

1

n1 +
1

n2 +
1

n3 +
1

. . .

= [n0, n1, n2, n3, . . . ].

In joint work with Jaco and Rubinstein, this conjecture was verified for an
infinite family of lens spaces with even fundamental group (see [4] for an explicit
description of those lens spaces). This is the first infinite family of closed 3-
manifolds for which the complexity is known. Using covering spaces (see [5] and
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Sec. 4), we were able to boot-strap this result to produce more families of minimal
triangulations, and in particular obtained the following result about the census of
all minimal triangulations:

(5) For all n ∈ N there exist at least two spherical manifolds of complexity n,
which have unique minimal triangulations.

A guiding principle in our approach has been to try to not only determine
the complexity of a manifold, but also to know all minimal triangulations real-
ising it. The combinatorial structure of a minimal triangulation is governed by
0-efficiency [3] and low degree edges [4]. From this one can extrapolate building
blocks for minimal triangulations. Understanding how they fit together under ex-
tra constraints on the manifold is fundamental in our work. We hope that one can
effectively understand vertical sections of the census which pick up a finite cover
of every manifold. Especially with view towards infinite families of minimal tri-
angulations of closed hyperbolic 3-manifolds, this seems to be the most promising
approach to date as we still have little insight into additional structure of minimal
triangulations of closed hyperbolic 3-manifolds.

3. Bounds from Thurston norm

Let M be a closed, orientable, irreducible, connected 3-manifold, and let S be
a properly embedded surface dual to a given ϕ ∈ H1(M ;Z2). An analogue of
Thurston’s norm [16] can be defined as follows. If S is connected, let

χ−(S) = max{0,−χ(S)},
and otherwise let

χ−(S) =
∑

Si⊂S

max{0,−χ(Si)},

where the sum is taken over all connected components of S. Note that Si is not
necessarily orientable. Define:

|| ϕ || = min{χ−(S) | S dual to ϕ}.
The surface S dual to ϕ ∈ H1(M ;Z2) is said to be Z2-taut if no component of S
is a sphere and χ(S) = −|| ϕ ||. As in [16], one observes that every component of
a Z2-taut surface is non-separating and geometrically incompressible.

Theorem 1 (Thurston norm bounds complexity). Let M be a closed, orientable,
irreducible, atoroidal, connected 3-manifold with triangulation T , and denote by
|T | the number of tetrahedra. If H ≤ H1(M ;Z2) is a subgroup of rank two, then:

|T | ≥ 2 +
∑

06=ϕ∈H

|| ϕ ||.

A characterisation of triangulations realising the above lower bound is given
in the next result. Let T be a triangulation of M having a single vertex. Place
three quadrilateral discs in each tetrahedron, one of each type, such that the
result is a (possibly branched immersed) normal surface. This surface is denoted
Q and called the canonical quadrilateral surface. Suppose Q is the union of three
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embedded normal surfaces. Then each of them meets each tetrahedron in a single
quadrilateral disc and is hence a one-sided Heegaard splitting surface. It defines a
dual Z2-cohomology class and H1(M ;Z2) has rank at least two.

Theorem 2. Let M be a closed, orientable, irreducible, atoroidal, connected 3-
manifold with triangulation T . Let H ≤ H1(M ;Z2) be a subgroup of rank two.
Then the following two statements are equivalent.

(1) We have

|T | = 2 +
∑

06=ϕ∈H

|| ϕ ||.

(2) The triangulation has a single vertex and the canonical quadrilateral sur-
face is the union of three Z2-taut surfaces representing the non-trivial el-
ements of H.

Note that (1) implies that T is minimal by Theorem 1. Moreover, (2) implies that
each non-trivial element of H has a Z2-taut representative, which is a one-sided
Heegaard splitting surface, and that each edge has even degree.

The proofs of the theorems are based on a refinement of the methods of our
result for lens spaces [4]. The twisted layered loop triangulation of S3/Q8k, k any
positive integer, satisfies the equivalent statements in Theorem 2.

4. Bounds from covering spaces

Suppose M is a 3-manifold having a connected double cover, M̃. A one-vertex

triangulation, T , of M lifts to a 2-vertex triangulation, T̃ , of M̃. Because there
are two vertices, the lifted triangulation will, in general, not be minimal. Choosing
an edge, ẽ, joining the two vertices, one may be able to crush ẽ and the tetrahedra

incident with it to form a new one-vertex triangulation T̃ ∗ of M̃. If t(ẽ) denotes the

number of tetrahedra incident with ẽ, then c(M̃) ≤ 2|T |−t(ẽ). If the complexity of

M̃ is known, this line of argument can be used to show that a given triangulation
of M must be minimal.

Theorem 3. Let M be a closed, orientable, connected, irreducible 3-manifold,

and suppose M̃ is a connected double cover of M. If c(M) ≥ 2, then it follows that

c(M̃) ≤ 2 · c(M)− 3.

Theorem 4. Let M be a closed, orientable, connected, irreducible 3-manifold, and

suppose M̃ is a connected double cover of M. If c(M̃) = 2 · c(M)− 3, then either

(1) M̃ = S3 and M = RP 3, or

(2) M̃ = L(2k, 1) for some k ≥ 2 and M has a unique minimal triangulation
and is the lens space L(4k, 2k − 1) or the generalised quaternionic space
S3/Q4k.

Fact (5) stated in Sec. 2 follows from this result and our previous work [4], which
shows that L(2k, 1) has a unique minimal triangulation and complexity 2k − 3.
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Minutes of the Open Problem Session

1. Frank Lutz. Benedetti in his talk described an algorithm for finding random
discrete Morse functions on a simplicial complex. Starting with the boundary of
a polytope, we can ask how likely it is to get a perfect Morse function with just 2
critical points (min and max). (Equivalently, after removing one facet at random,
how likely is it that a random collapsing sequence will collapse the rest to a point?)
For the boundary of a 7-simplex the answer is not 100%, since we could get stuck
on an 8-vertex dunce hat, but simulations show it is close to 100%. What can
be said about the complicatedness (the expected complexity of a random Morse
function) of boundaries of d-simplices? What happens under repeated barycen-
tric subdivisions? (Note: since the meeting, Karim Adiprasito has answered the
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last question, showing that the complicatedness of r-fold barycentric subdivisions
grows at least exponentially in r.)

2. Ben Burton. There are finitely many closed 3-manifold triangulations with
N tetrahedra. Is there a polynomial-time algorithm to pick one at random? What
if we restrict to 3-spheres? Note that N. Dunfield and D. Thurston showed (2006,
Inventiones) that the probability that a random gluing of tetrahedra produces a
manifold goes to 0 for large N , making the obvious approach infeasible. Simi-
larly, it is not clear whether applying random bistellar flips from a fixed starting
sphere can work: the best known upper bound for the number of flips needed to

connect two N -tetrahedron triangulations of S3 is eO(N2) by A. Mijatović (2003,
Pacific J. Math.).

3. Joseph Gubeladze. Oda asked the following: do any two linear triangula-
tions of the d-simplex have a common stellar refinement? (It is known that the
triangulations can be connected by a sequence of stellar refinements and their
inverses.)

4. John Sullivan. We have mainly discussed two types of triangulations of 3-
manifolds: simplicial complexes, and the more general triangulations arising from
face-pairings. Of course any triangulation becomes simplicial after two levels of
barycentric subdivision. But are there closer relations between the complexity
measures used in the two worlds? As mentioned in Swartz’s talk, the Γ invariant
(Γ(∆) = h2 − h3 − 4h4 for a simplicial 3-manifold with boundary) is within a
constant factor of the Matveev complexity, and is perhaps additive under connect
sums.

5. Alex Engström. In a random graph model G(n), a probability is assigned
to each graph on n vertices. If the probability is invariant under permutation of
vertices, and the restriction from n to m vertices gives the model G(m), then it is
an exchangable random graph model. These models are frequently studied in the
emerging area of graph limits, but the foundational general theory is due to Aldous
and Hoover long ago and the probability theory can be found in Kallenberg’s
textbooks. Using Boij–Söderberg theory, it was shown by Anderson Forsman and
Engström that the homology of clique complexes of exchangable random graph
models becomes concentrated as the number of vertices increases. The most rigid
and basic class of exchangable random graphs models is the Erdős–Renyi model,
and for those clique complexes Kahle presented sharp thresholds. For homotopy
theory, Boij–Söderberg does not apply, and for another random model, Babson,
Hoffman and Kahle showed that homology and homotopy vanishes at different
points. How do the homotopy groups for clique complexes of exchangable random
graphs behave? Are these random objects universal in any respect?

6. Bruno Benedetti. The total number of triangulations of S3 with N tetra-
hedra is completely unknown, even asymptotically, but there are reasons to sus-
pect that it is superexponential. Exponential upper bounds are known for many
classes of 3-spheres, e.g. for shellable spheres or even locally constructible spheres.
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Ehrenborg and Hachimori showed (2001, Eur. J. Comb.) that shellable spheres
are tame, in the sense that no cycle of less than b edges forms a knot of bridge
index b. Conjecture: there are only exponentially many tame spheres.

7. Steve Klee. A PS-sphere is a join of simplex boundaries; a PS-ball is the join
of a simplex with a PS-sphere. A simplicial complex is called PS-ear-decomposable
if ∆ = Σ0 ∪ Σ1 ∪ · · · ∪ Σt, where Σ0 is a PS-sphere, the other Σj are PS-balls,
and Σj ∩ (Σ0 ∪ · · · ∪ Σj−1) = ∂Σj. M. Chari (1997, Trans. AMS ) showed the
complex of independent sets in any matroid is PS-ear-decomposable. Question: is
it possible to extend a notion of shifting to PS-ear-decomposable complexes? This
is interesting because the h-vector of a PS-decomposable complex is very easy to
compute, and this might help give a new approach to solving Stanley’s conjecture
that the h-vector of a matroid complex is a pure O-sequence.

8. Carlo Petronio. If M3 is a cusped hyperbolic manifold, does it admit a tri-
angulation into geometric ideal tetrahedra (with positive volume)? (The answer
would be yes if we allowed flat tetrahedra of volume zero.) F. Luo, S. Schleimer
and S. Tillmann (2008, Proc. AMS ) have shown this is true virtually, i.e., for some
finite cover. It also seems true experimentally. A related question is whether all
minimal triangulations (having one vertex in each cusp and a minimal number of
tetrahedra) are geometric. (Jaco suggests looking at the two known minimal tri-
angulations of the (−2, 3, 7) pretzel knot complement, one of which may be known
to be non-geometric.)

9. Paco Santos. Let f(d, n) denote the maximal (dual) diameter of a closed sim-
plicial d-manifold with n vertices, f̄(d, n) the same for a manifold with boundary.
Further let f̄ψ(d, n) and fψ(d, n) denote the same for pseudomanifolds with and
without boundary.. Since f̄ψ(2, n) = Θ(n2), via repeated joins we get f̄ψ(d, n) ≥
Ω(n2d/3). On the other hand, the polynomial Hirsch conjecture says f(d, n) ≤
(n− 1)(d+ 1). For surfaces (d = 2) we know f(2, n) ≤ n− 3 and f̄(2, n) ≤ 2n. Is
it true that for surfaces with boundary we have f̄(2, n) ≤ n− 3?

10. Christian Haase. Does every smooth lattice polytope have a unimodular
triangulation? Smooth here means that the polytope is simple and the d edge
vectors from any vertex to its neighbors have determinant ±1, i.e., form a basis for
Zd. Unimodular means that each simplex has volume 1/d! (the minimum possible).
What about the normal smooth reflexive 7-polytope given by the following 11
facets:

x2 − 2x6 − x7 ≤ 1, 2x6 − x1 − x2 ≤ 1,

2x1 − x2 − x3 − x4 − x5 + x6 ≤ 1, x2 − x6 ≤ 1,

and xi ≤ 1 for i = 1, . . . , 7? (It has 52 vertices and contains 6233 lattice points.)
Does it have a (regular) unimodular triangulation? Is its toric ideal generated by
quadrics?
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11. Ulrich Brehm. Let T be a simplicial (d − 1)-sphere linearly embeddable in
Rd. We say that a simplicial d-ball U with boundary ∂U = T is universal for T
if every linear embedding of T in Rd can be extended to a linear embedding of U .
Is there a nice characterization of universal triangulations? Is there an algorithm
to construct a universal ball U with prescribed boundary T ? Is there a bound on
how big U must be? (Note that Brehm has settled the case d = 2 but nothing is
known in higher dimensions.)

12. Karim Adiprasito. Recently we have shown any manifold with a CAT(0)
polyhedral metric admits a collapsible triangulation. Are there collapsible sim-
plicial manifolds whose underlying space does not admit any CAT(0) polyhedral
metric? Note that any collapsible PL triangulation is homeomorphic to a ball, by
the work of Whitehead (1939), so examples would necessarily be non-PL. (Note
that all collapsible triangulations are contractible, but B. Mazu1961, Ann. Math.)
gave a contractible (PL) 4-manifold which is not homeomorphic to a ball and thus
cannot admit any collapsible triangulation.)

13. John Sullivan. Consider the edge valences in a triangulation of a 3-manifold.
Their average is always less than 6 and F. Luo and R. Stong (1993, Trans. AMS )
showed the average can be less than 4.5 only for spherical manifolds. If all edges
have valence less than 6, then curvature considerations show again the manifold is
spherical. But N. Brady, J. McCammond and J. Meier showed (2004, Proc. AMS )
that any orientable 3-manifold can be built with valences {4, 5, 6}. Can this be
tightened, for instance to {5, 6}?

14. Tamal Dey / Uli Wagner. The maximum number of facets of a k-dimen-
sional simplicial complex on n vertices is obviously

(
n
k+1

)
, which for fixed k is

Θ(nk+1). Now let fdk (n) denote the maximum over k-complexes that admit piece-
wise linear embeddings into Rd. The cyclic polytopes show that

fdk (n) = Ω
(
nmin(k+1,⌈d/2⌉)

)
.

Conjecturally, this power is sharp. Indeed, a more precise conjecture is that the
number fj(X) of j-faces of an embeddable complex X satisfies

fj(X) ≤ Cd,jf⌈d/2⌉−1(X),

for some constant Cd,j depending only on d and j. Sarkaria claimed this in 1992,
but his proof had errors; T. Dey and H. Edelsbrunner (1994, Discr. Comp. Geom.)
proved it for d = 3. Note that by old theorems of E. van Kampen (1939,
Abh. Math. Sem. Uni. Hamburg) and A. Flores (1933, Ergeb. Math. Kolloq.) a
complex embeddable in dimension d = 2k cannot contain the (k+1)-fold join of a
discrete 3-point set as a subcomplex. By forbidden subhypergraph arguments of
P. Erdős and M. Simonovits (1983, Combinatorica) it follows that such a complex

has at most nk+1−3−k

faces. For instance for a 2-complex embedded in four-space
we get

f4
2 (n) = O

(
n3− 1

9

)
.
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