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Introduction by the Organisers

The workshop Diophantische Approximationen (Diophantine approximations), or-
ganised by Yann Bugeaud (Strasbourg) and Yuri V. Nesterenko (Moscow) was
held April 22nd – April 28th, 2012. There have been 26 participants with broad
geographic representation. This workshop gathered researchers with various back-
grounds. Below we briefly recall the topics discussed, thus outlining some of the
modern lines of investigation in Diophantine approximation. We refer the reader
to the abstracts for more details.

Loosely speaking Diophantine approximation is a branch of Number Theory
that can be described as the study of the solvability of inequalities in integers,
though this main theme of the subject is often unbelievably generalized. As an
example, one can be interested in rational approximation to irrational numbers.
A celebrated open problem in this direction is the Littlewood conjecture, which
asserts that, for every real numbers α, β and every positive ε, there exists a positive
integer q such that

q · ‖qα‖ · ‖qβ‖ < ε.
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Here, ‖ · ‖ denotes the distance to the nearest integer. Talks of Badziahin and
Harrap were concerned with this problem and some of its variants. Also, Roy,
Moshchevitin, Laurent, Beresnevich and German have presented new results on
simultaneous homogeneous and inhomogeneous Diophantine approximation.

Another topic of current interest in Diophantine approximation are irrational-
ity and transcendence statements. Major open questions include the status of the
Riemann zeta function evaluated at odd integers and of the values of polyloga-
rithms. New advances on these and related problems were presented by Viola,
Marcovecchio, Zudilin and Hirata-Kohno.

Diophantine approximation in function fields was presented by Corvaja (es-
timates for greatest common divisors) and Adamczewski (diagonal of algebraic
power series).

Various questions on number fields have been discussed by Widmer (counting
algebraic numbers with bounded height and degree), Stewart (counting exceptional
units) and Habegger (Northcott’s property). Amoroso considered overdetermined
systems of lacunary equations from an algorithmic point of view.

Diophantine equations remain a subject of constant interest. Fuchs consid-
ered equations of the form f(x) = g(y). Evertse presented new effective upper
bounds for the size of solutions to classical Diophantine equations over finitely
generated domains. Kovács was interested in fifth powers and almost fifth powers
in arithmetic progressions, a problem motivated by a celebrated result of Erdős
and Selfridge. Bennett explained how a variety of techniques ranging from Dio-
phantine approximation to modular methods allows one to solve certain families
of equations of the form f(x, y) = zp in all four variables, where f(x, y) is an
homogeneous integer polynomial of degree 3, 4, 6 or 12.
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Abstracts

Separated-variables equations and related questions

Clemens Fuchs

In various contexts equations of separated-variables type turn out to be relatively
easy to solve and thus it is reasonable to expect that one can say more than in
the general case also from the Diophantine point of view, i.e. when looking at
f(x) − g(y) = 0, f, g ∈ Z[X ], with x, y ∈ Z. Examples for equations of this type
include integral points on elliptic, hyper- and superelliptic equations, but also
equations of the form

(
x
a

)
= yb for given integers a > 1, b > 1, etc. Observe that

the decidability of the finiteness of the number of solutions was solved by Siegel
in his famous paper.

It is well-known that one has the following explicit criterion to check if a given
equation of separated-variables type has finitely many solutions or not; this state-
ment is known as the [Bilu - Tichy] criterion: Let f, g ∈ Q[X ]\Q. The following
statements are equivalent:

• f(x) = g(y) has infinitely many integral solutions.
• ∃ϕ ∈ Q[X ], λ, µ ∈ Q[X ] linear, f1, g1 ∈ Q[X ] s.t.

1. f = ϕ ◦ f1 ◦ λ, g = ϕ ◦ g1 ◦ µ,
2. f1(x) = g1(y) has infinitely many integral solutions,
3. (f1, g1) or (g1, f1) is one of the following

Type Explicit form of (f, g)
1. (Xq, αXrv(X)q)
2. (X2, (αX2 + β)v(X)2)
3. (Ds(X,α

t), Dt(X,α
s))

4. (α−s/2Ds(X,α),−β−t/2Dt(X, β))
5. ((αX2 − 1)3, 3X4 − 4X3)

where Dn(X+α/X,α) = Xn+(α/X)n are the Dickson polynomials.
In these cases we indeed have infinitely many solutions.

(Very rough) Sketch of the proof : “⇐”: trivial; “⇒”: ∃E(x, y)|f(x) − g(y) irre-
ducible s.t. E(x, y) = 0 has infinitely many solutions ⇒ E is necessarily abso-
lutely irreducible. By Siegel’s theorem it follows that E(x, y) = 0 defines a curve
with genus 0 and at most two points at infinity. By Fried: f = f1 ◦ f2, g =
g1 ◦ g2, deg f1 = deg g1 and ∃e absolutely irreducible s.t. e(x, y)|f1(x) − g1(y)
and E(x, y) = e(f2(x), g2(y)). It follows that deg e ≤ 2 and hence by Bilu
f1 = ϕ1 ◦ f3, g1 = ϕ1 ◦ g3 and either e(x, y) = f3(x) − g3(y), which then is done
by Ritt’s 2nd theorem, or e(x, y)|f3(x) − g3(y) and f3(x) = Dn(x + b, a), g3(y) =
−Dn((cx + d) cos(2π/n), a), which then is done by direct arguments. //

Observe that [Fried]’s input to the proof brings a crucial new idea and that it
is geometric in nature; it says that one should look at the curve f(x) − g(y) = 0
as given by the fiber product of the two covers of P1 defined by f(x)− z = 0 and
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g(y) − z = 0, respectively. In this way one turns the problem into questions in
combinatorics and group theory.

We turn to the following question: Is it true that all but finitely many of the
solutions satisfy f1(λ(x)) = g1(µ(y))? In general the answer is no! However, we
have:

Theorem ([Bilu - F. - Luca - Pinter]). Yes, unless
1. (f1, g1) is of type 1 or 3, ϕ(X) = ϕ(−X) and almost all solutions satisfy
f1(λ(x)) = ±g1(µ(y)).

2. (f1, g1) is of type 1, ϕ(X) = ϕ(a−X) for some a ∈ Q∗ and all but finitely
many solutions satisfy f1(λ(x)) = g1(µ(y)) or f1(λ(x)) + g1(µ(y)) = a.
Moreover, n is odd and (f1, g1) = (X2, (a/4)Dn(X − 2, 1) + (a/2)).

Sketch of the proof : Use Siegel’s theorem to prove that almost all solutions of
ϕ(x) = ϕ(y) satisfy x = y or x+ y = a (then ϕ(X) = ϕ(a−X)). Then use Fried’s
genus formula and Siegel’s theorem to prove that

f1(x) + g1(y) = a

with (f1, g1) a standard pair s.t. f1(x) = g1(y) has infinitely many solutions (and
a 6= 0, deg f1, deg g1 ≥ 3 if (f1, g1) is of 1. or 3. kind) has only finitely many
solutions. Finally consider cases and use properties of Dickson-polynomials. //

This additional information to the Bilu-Tichy criterion turns out to be useful in
applications when one has to exclude standard pairs. In [Bilu - F. - Luca - Pinter]
we have applied it to show that certain combinatorial Diophantine equation in-
volving Stirling numbers have only finitely many solutions in integers.

Another question that arises when applying the Bilu-Tichy criterion is the fol-
lowing: Is there a method (i.e. an algorithm) to find for a given polynomial f all
decompositions? More generally: Is it possible to describe all composite f ’s and
all their decompositions algorithmically?

Here an example to see what one can expect: Given f = X6 + a1X
5 + a2X

4 +
a3X

3 + a4X
2 + a5X + a6 ∈ C[a1, . . . , a6][X ] with f = g ◦ h. Clearly, the degree

d of h is a divisor of 6. Let e.g. d = 3. We need g,Q,R with f = g ◦Q + R s.t.
deg(f−Q2) < deg f/2 = 3 (such g,Q,R always exist and there is a unique choice).
To get a decomposition we must have R = 0 and then all decompositions with
h = Q are of degree 3! Ansatz for Q = X3 + b1X

2 + b2X + b3 ∈ C[b1, b2, b3][X ].
The condition on the degree gives 2b1 = a1, 2b2 = a2 − b21, 2b3 = a3 − 2b1b2.
Thus R = (a4 − 2b1b3 − b22)X

2 + (a5 − 2b2b3)X, g = X2 + a6− b23. R = 0 gives
a4−2b1b3−b22 = 0, a5−2b2b3 = 0. In summary we have (this is a reformulation of a
result of [Bodin]): Given n. There exist (everything effectively computable) J ∈ N

and for all 1 ≤ j ≤ J : Vj ⊆ Atj+n/tj/Q with tj |n and Fj , Gj , Hj ∈ Q[Vj][X ]
with Fj = Gj ◦ Hj and degFj = n s.t.: If f = g ◦ h ∈ C[X ] with deg f = n,
then there is a j and P ∈ Vj(C) with g(X) = Gj(P,X), h(X) = Hj(P,X), and
f(x) = Fj(P,X).



Diophantische Approximationen 1313

The question arises if more is true, e.g. an analogue to polynomials that are
lacunary in the sense that its number of terms is fixed. A positive answer along the
above lines was given by [Zannier]. So does the same hold for rational functions?
A first result in this direction is the following:

Theorem ([F. - Zannier]). Given ℓ and f(X) = g(h(X)) = P (X)/Q(X) with
g, h ∈ C(X), P,Q ∈ C[X ] not necessarily coprime and having ℓ terms. If h(X) 6=
λ(aXn + bX−n), λ ∈ PGL2(C), a, b ∈ C, n ∈ N, then deg g ≤ 2016 · 5ℓ.

Sketch of the proof : We take a “suitable” conjugate y 6= x of x over C(h), i.e.
h(x) = h(y). Since f = g(h) ∈ C(h), we have f(x) = f(y). It follows P (x)Q(y)−
P (y)Q(x) = 0. This is a S-unit equation overK = C(x, y) with “few” terms. After
normalizing we get for z = xmyn:

2δ deg f

63 · 3ℓ ≤ [K : C(z)] ≤
(
ℓ2 − 1

2

)
(|S|+ 2gK − 2) ≤ 2

(
ℓ2 − 1

2

)
δ2

with δ = [K : C(x)]; the lower bound follows by the “suitability” of y (the exis-
tence is proved by using the theory of function fields, Puiseux-expansion, group
and Galois-theory). It follows deg f = deg g deg h≪ℓ deg h and thus deg g ≪ℓ 1.//

The last theorem says that if f = g ◦ h with deg g large and h not “special”,
then f necessarily has many terms; it is a first step toward a classification that we
expect also to hold for composite rational functions.
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On the coefficients of linear forms in polylogarithms

Carlo Viola

If an n-dimensional integral (n≥ 1) of a rational function over the product of n
paths having distinct endpoints in C represents a linear form in zeta-values or
in polylogarithms, then the n-fold contour integral of the same rational function
around the poles yields the leading coefficient of the linear form. Several special
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instances of this principle are known, though we miss a general proof of it. We
quote e.g. the following, partially proved in [4], Theorem 3.1:

For any n ≥ 2 and any non-negative integers h1, . . . , hn; j1, . . . , jn; k such that
hr + k − h1 ≥ 0 (r = 2, . . . , n− 1) we have

(1)

1∫

0

· · ·
1∫

0

xh1
1 (1− x1)

j1 · · ·xhn
n (1− xn)

jn

(
1− (1 − x1 · · ·xn−1)xn

)jn+h1−k+1
dx1 · · · dxn

= a1 + a2ζ(2) + · · ·+ an−1ζ(n− 1) + an(n− 1)ζ(n),

where a1, a2, . . . , an−1 ∈ Q with controlled denominators and an ∈ Z (if n ≥ 3
and hn + jn ≤ j1 + · · ·+ jn−1 + n− 3 then a2 = 0). Moreover the integer an has
the following n-fold contour integral representation:

(2) an =
1

(2πi)n

∮

|x1|=̺1

· · ·
∮

|xn−2|=̺n−2

∮

∣∣xn−1−
1

x1···xn−2

∣∣=̺n−1

∮

∣∣xn−
1

1−x1···xn−1

∣∣=̺n

xh1
1 (1 − x1)

j1 · · ·xhn
n (1− xn)

jn

(
1− (1 − x1 · · ·xn−1)xn

)jn+h1−k+1
dx1 · · · dxn

for any ̺1, . . . , ̺n > 0.
In order to prove the irrationality of ζ(n), suitable Q-linear combinations only

of 1 and ζ(n) are required. Therefore it is desirable to have further information
on the coefficients of ζ(2), . . . , ζ(n− 1) in linear forms such as (1). A difficult and
interesting problem is the search for integral representations of such intermediate
coefficients. This appears to be related with some simultaneous Padé approxima-
tion problems to polylogarithms Lij(1/t) for t → ∞, and to powers of log t for
t → 1. In [1] Beukers proves the existence, for any d ≥ 0, of polynomials P (t),
Q(t) and R(t) of degrees ≤ d such that

(3)

{
P (t) +Q(t) Li1(1/t) +R(t) Li2(1/t) = O(t−d−1) (t → ∞)

−Q(t) +R(t) log t = O
(
(t− 1)d+1

)
(t → 1).

Beukers’ result was extended in [2] by Fischler and Rivoal, who prove the ex-
istence, for any integers n ≥ 2 and d ≥ 0, of polynomials P0(t), P1(t), . . . , Pn(t)
∈ Q[t] of degrees ≤ d satisfying

(4)





P0(t) +

n∑

j=1

Pj(t) Lij(1/t) = O(t−d−1) (t→ ∞)

n∑

j=1

(−1)j−1Pj(t)
logj−1t

(j − 1)!
= O

(
(t− 1)(n−1)(d+1)

)
(t→ 1).

I recently found explicit integral representations for linear forms in polyloga-
rithms Lij(1/t), for polynomials in log t and for their coefficients, related to Padé-
type approximation problems similar to the above. An example connected with
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Beukers’ problem (3) is the following, which can partially be found in [3], Theo-
rem 2.1.

Let t ∈ R, t > 1, and let h, j, k, l,m ≥ 0 be integers. Define four double
integrals (depending on h, j, k, l,m) as follows:

I
(0,0)
t = t−l−m

1∫

0

1∫

0

xj(1− x)h yk(1 − y)l
(
x(1− y) + yt

)j+k−m+1
dxdy,

I
(0,1)
t = t−l−m

1∫

0

(
1

2πi

∮

∣∣y− x
x−t

∣∣=̺

xj(1 − x)h yk(1− y)l
(
x(1 − y) + yt

)j+k−m+1
dy

)
dx,

I
(1,0)
t = t−l−m 1

2πi

∮

|x−t|=σ

( 1∫

0

xj(1 − x)h yk(1− y)l
(
x(1 − y) + yt

)j+k−m+1
dy

)
dx,

I
(1,1)
t = t−l−m 1

2πi

∮

|x−t|=σ

(
1

2πi

∮

∣∣y− x
x−t

∣∣=̺

xj(1− x)h yk(1− y)l
(
x(1 − y) + yt

)j+k−m+1
dy

)
dx,

and let α = max{j + k, k + l, l +m}, β = max{0, k + l − h}. With the above
integrals one can associate the following linear polynomials in log t:

I
(0)
t = I

(0,0)
t − I

(0,1)
t log t, I

(1)
t = I

(1,0)
t − I

(1,1)
t log t.

Then we have

(5) tα(t− 1)βI
(0)
t = P (t) +R(t) Li2(1/t),

where P (t), R(t) ∈ Q[t] are polynomials with controlled degrees and denominators.
Moreover

I
(1,0)
t = 0, R(t) = −tα(t− 1)βI

(1,1)
t ,

so that the leading coefficient R(t) of the linear form (5) has the expected repre-
sentation as a double contour integral. Also

{
tα(t− 1)βI

(0)
t = P (t) +Q(t) Li1(1/t) +R(t) Li2(1/t)

tα(t− 1)βI
(1)
t = −Q(t) +R(t) log t,

with Q(t) = 0, is a solution to a Padé-type approximation problem similar to

(3). By estimating I
(0)
t and I

(1,1)
t , and hence the linear form (5) and its leading

coefficient R(t), one gets the best known irrationality measures of Li2(1/t) for
rational t (see [3]).

The above construction can be extended to polylogarithms. For simplicity I
state it for trilogarithms, with the following theorem.

Let t ∈ R, t > 1, and let h, j, k, l,m, p, q, r, s, w ≥ 0 be integers satisfying
j + s = m + r. Similarly to the above two-dimensional case, define eight triple
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integrals:

I
(δ,ε,η)
t = t−l−q−s

×
∫

[δ]

( ∫

[ε]

( ∫

[η]

xj(1− x)h yk(1 − y)lzp(1− z)q(t− x)w+1

(
x(1 − y) + yt

)j+k−m+1(
x(1 − z) + zt

)j+p−r+1
dz

)
dy

)
dx,

where δ, ε, η are either 0 or 1, and where
∫
[0]

means
∫ 1

0
, and

∫
[1]

· · ·dx (resp. dy, dz)

means 1
2πi

∮
|x−t|=σ · · · dx (resp. 1

2πi

∮
|y−x/(x−t)|=̺ · · · dy, 1

2πi

∮
|z−x/(x−t)|=τ · · · dz),

for any small ̺, σ, τ > 0.
Let α = max{k + q + r, l + q + s, j + k + p, l + m + p, k + l + p + q − w},

β = max{0, k + l+ p+ q − w − h}, and let

I
(0)
t = I

(0,0,0)
t −

(
I
(0,0,1)
t + I

(0,1,0)
t

)
log t+ I

(0,1,1)
t log2t,

I
(1)
t = I

(1,0,0)
t −

(
I
(1,0,1)
t + I

(1,1,0)
t

)
log t+ I

(1,1,1)
t log2t.

Then

tα(t− 1)βI
(0)
t = P (t) +R(t) Li2(1/t) + S(t) 2Li3(1/t),

with P (t), R(t), S(t) ∈ Q[t] polynomials with controlled degrees and denominators.
Moreover

I
(1,0,0)
t = 0, R(t) = −tα(t− 1)β

(
I
(1,0,1)
t + I

(1,1,0)
t

)
, S(t) = −tα(t− 1)βI

(1,1,1)
t ,

so that
{
tα(t− 1)βI

(0)
t = P (t) +Q(t) Li1(1/t) +R(t) Li2(1/t) + S(t) 2Li3(1/t)

tα(t− 1)βI
(1)
t = −Q(t) +R(t) log t − S(t) log2t,

with Q(t) = 0, is a solution to a Padé-type approximation problem similar to (4)
for n = 3.
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Rational approximation to real points on plane algebraic curves

Damien Roy

There are many ways in which one can measure how well a real point ξ =
(ξ1, . . . , ξn) ∈ Rn can be approximated by rational points from Qn. In this re-
port, we deal with the quantity λ(ξ) defined as the supremum of all λ ≥ 0 such
that the system of inequalities

|x0| ≤ X, |x0ξ1 − x1| ≤ X−λ, . . . , |x0ξn − xn| ≤ X−λ

admits a non-zero solution x = (x0, x1, . . . , xn) ∈ Zn+1 for each sufficiently large
X > 1. For such a solution with x0 6= 0, the point (x1/x0, . . . , xn/x0) ∈ Qn is
indeed an approximation to ξ. An application of Dirichlet box principle yields

λ(ξ) ≥ 1/n for any ξ ∈ Rn, while metrical arguments show that λ(ξ) = 1/n for
all ξ ∈ Rn outside of a set of Lebesgue measure zero. So, the points ξ ∈ Rn

with λ(ξ) > 1/n are somewhat exceptional. They are those for which one can do
much better than predicted by the box principle in approximating ξ in the above
sense. A trivial situation in which this happens is when 1, ξ1, . . . , ξn are linearly
dependent over Q. Then, upon denoting by s the dimension of the vector subspace
of R spanned over Q by these numbers, we find that λ(ξ) ≥ 1/(s− 1). Finally, the
exponent λ(ξ) is interesting only when n ≥ 2 because, in the case n = 1, we have

λ(ξ) = 1 for each irrational real number ξ.

Our work is motivated by the following result [1] where γ := (1 +
√
5)/2 =

1.618 . . . stands for the Golden ratio.

Theorem 1 (Davenport and Schmidt, 1969). Let ξ ∈ R with 1, ξ, ξ2, . . . , ξn lin-
early independent over Q. Then

λ(ξ, ξ2, . . . , ξn) ≤ λn :=





1/γ ∼= 0.618 if n = 2,

1/2 if n = 3,

1/⌊n/2⌋ if n ≥ 4.

In [2], M. Laurent showed that this estimate remains true with λn = 1/⌈n/2⌉
for each n ≥ 3. In the case n = 3, the best known estimate up to now is λ3 ≤
(1 + 2γ −

√
1 + 4γ2)/2 ∼= 0.4245 (see [7]). A consequence of Theorem 1 and the

starting point of the paper [1] of Davenport and Schmidt is the fact that, for any
ξ as in Theorem 1 and any τ < 1 + (1/λn), there are infinitely many algebraic
integers α of degree ≤ n + 1 such that |ξ − α| ≤ H(α)−τ where H(α) stands
for the naive height of α namely the largest absolute value of the coefficients of
its irreducible polynomial over Z. Thus, if one could prove for example that the
optimal value for λn is close to 1/n, then the above would hold with τ close to
n and this would represent a major progress towards the problem of Wirsing.
However, at present, we only know that, for n = 2, the value λ2 = 1/γ is optimal
and that, in the corresponding result of approximation by cubic algebraic integers,
the condition τ < 1 + γ cannot be strengthened [4, 5, 6].

The points (ξ, ξ2, . . . , ξn) with ξ ∈ R form an irreducible closed algebraic subset
C of Rn of dimension one defined over Q. The optimal value for λn which we are
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looking for is simply the supremum of λ(ξ, . . . , ξn) over all points (ξ, . . . , ξn) of
C whose coordinates together with 1 are linearly independent over Q. Thus it is
natural to extend the problem to all algebraic curves of that sort, in the hope that,
in the process, we can gain new ideas that will help solve the initial question. Since
it is easier to work with projective curves, we first recall that the above notion
of exponent of approximation extends naturally to points of the projective space
Pn(R). For such a point Ξ = (ξ0 : ξ1 : · · · : ξn), the exponent λ(Ξ) is defined as
the supremum of all λ ≥ 0 such that

‖x‖ ≤ X, ‖x ∧ (ξ0, . . . , ξn)‖ ≤ X−λ

has a solution x ∈ Zn+1 \ {0} for each sufficiently large X ≥ 1. Then, for any
(ξ1, . . . , ξn) ∈ Rn, we have

λ(1 : ξ1 : · · · : ξn) = λ(ξ1, . . . , ξn).

Definition. Let C be a closed algebraic subset of Pn(R) of dimension 1, defined
over Q and irreducible over Q. Suppose that C is not contained in a proper linear
subspace of Pn(R) defined over Q, and let Cli denote the set of points Ξ in C which
admit a set of Q-linearly independent homogeneous coordinates. Then, we set

λ(C) := sup{λ(Ξ) ; Ξ ∈ Cli}.
The first result on which we want to report is the fact that λ(C) = 1/γ for each

conic C in P2(R) that is defined and irreducible over Q. More precisely, we have
the following statement [8].

Theorem 2. Let ϕ ∈ Q[x0, x1, x2] be irreducible and homogeneous of degree 2.
Suppose that the set C of zeros of ϕ in P2(R) is infinite. Then:

(a) λ(Ξ) ≤ 1/γ for any Ξ ∈ Cli,

(b) {Ξ ∈ Cli ; λ(Ξ) = 1/γ} is a countably infinite set.

For example, for ϕ = x0x2 − x21, we find C = {(1 : ξ : ξ2) ; ξ ∈ R}∪ {(0 : 0 : 1)}.
Thus

Cli = {(1 : ξ : ξ2) ; ξ ∈ R, [Q(ξ) : Q] > 2},
and we recover in (a) the result of Davenport and Schmidt mentioned above for
the case n = 2, while (b) is essentially the main result of [6].

Another example is provided by the zero set C of ϕ = 2x20 − x21, for which

Cli = {(1 : ±
√
2 : ξ) ; ξ ∈ R \Q(

√
2)}.

According to Theorem 2, we have λ(C) = 1/γ. However, the main result of [7] is
slightly more precise than Theorem 2 and yields:

(a) For any ξ ∈ R\Q(
√
2), there exists c = c1(ξ) > 0 such that the inequalities

(1) |x0| ≤ X, |x0
√
2− x1| ≤ cX−1/γ , |x0ξ − x2| ≤ cX−1/γ,

have no solution (x0, x1, x2) ∈ Z3 \ {0} for arbitrarily large values of X .

(b) There exists ξ ∈ R\Q(
√
2) and c = c2(ξ) > 0 such that (1) have a solution

for each X ≥ 1. The set of these numbers ξ is countably infinite.
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Theorem 2 exhausts the set of all curves C for which we are able to compute
λ(C) at present. However, the last example suggests the problem of determining

sup{λ(ω1 : · · · : ωn : ξ) ; ξ ∈ R \K}
where K is a number field of degree n over Q and (ω1, . . . , ωn) is a basis of K over
Q. In joint work with Stéphane Lozier [3], we prove the following estimate.

Theorem 3 (with S. Lozier). For any ξ ∈ R such that 1, ξ, ξ3 are linearly inde-
pendent over Q, we have

λ(1 : ξ : ξ3) ≤ 2(9 +
√
11)

35
= 0.7038 . . .

i.e. the cubic C : x20x2 − x31 = 0 in P2(R) has λ(C) ≤ 0.7038 . . . .

The upper bound for λ(1 : ξ : ξ3) in the above result is not optimal and the
method that we describe in [3] allows to reduce it, possibly down to λ(1 : ξ : ξ3) ≤
(1 + 3

√
5)/2 ∼= 0.7007 but we have not been able to go this far.

The proof of Theorem 2 is based on ideas of [1, 6]. A conic as in the statement
of this theorem contains either infinitely many points of P2(Q), or at most one
such point. In the first case, it can be transformed into the conic with equation
x0x2−x21 = 0 by a linear automorphism of P2(R) defined over Q. As the exponent
λ is invariant under such transformation, the conclusion of the theorem follows
immediately from [1, 6] in that case. In the complementary case, some simplifi-
cations occur in the proof of Part (a) due to the finiteness of the set of rational
points on the conic C. However, the construction of “extremal” points for Part (b)
requires additional arguments with respect to [6].

References

[1] H. Davenport, W. M. Schmidt, Approximation to real numbers by algebraic integers, Acta
Arith. 15 (1969), 393–416.

[2] M. Laurent, Simultaneous rational approximation to the successive powers of a real number,
Indag. Math. (N.S.) 11 (2003), 45–53.

[3] S. Lozier and D. Roy, Simultaneous approximation to a real number and to its cube, submit-
ted.

[4] D. Roy, Approximation simultanée d’un nombre et de son carré, C. R. Acad. Sci., Paris, ser.
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Effective results for Diophantine equations over finitely generated
domains

Jan-Hendrik Evertse

(joint work with Attila Bérczes, Kálmán Győry)

Let A = Z[z1, . . . , zq] ⊃ Z be an integral domain which is finitely generated over
Z. Then

A ∼= Z[X1, . . . , Xr]/(f1, . . . , fs),

where f1, . . . , fs is a system of generators for the ideal of f ∈ Z[X1, . . . , Xr] with
f(z1, . . . , zr) = 0. We want to give effective finiteness results for certain classes of
Diophantine equations with unknowns taken from the domain A.

To state our results, we need some terminology. Given a ∈ A, we call ã ∈
Z[X1, . . . , Xr] a representative for a if ã(z1, . . . , zs) = a. There exist algorithms
with which one can decide for given f, f1, . . . , fs ∈ Z[X1, . . . , Xr] whether f ∈
(f1, . . . , fs) (see Simmons [13, 1970], Aschenbrenner [1, 2004]). With the help
of this, one can decide effectively whether two polynomials f, g ∈ Z[x1, . . . , Xr]
represent the same element of A.

For f ∈ Z[X1, . . . , Xr], let deg f denote its total degree and h(f) its logarithmic
height (i.e., the maximum of the logarithms of the absolute values of its coeffi-
cients), and define its size s(f) := max(1, deg f, h(f)). Then we define the size
of x ∈ A by the minimum of the quantities s(x̃), taken over all representatives
x̃ ∈ Z[X1, . . . , Xr] for x.

Notice that if F ∈ A[Y1, . . . , Yt] is a polynomial with coefficients in A, and we are

given F̃ ∈ Z[X1, . . . , Xr][Y1, . . . , Yt] whose coefficients represent those of F , then
in order to determine effectively all solutions of the equation (∗) F (y1, . . . , yt) = 0
in y1, . . . , yt ∈ A, it suffices to give a number C such that maxi s(yi) ≤ C for all
solutions (y1, . . . , yt) of (∗). Indeed, one simply needs to check for all polynomials

ỹ1, . . . , ỹt ∈ Z[X1, . . . , Xr] of size ≤ C whether F̃ (ỹ1, . . . , ỹt) ∈ (f1, . . . , fs).
Recently, Győry and the author [8, 2011] proved the following result on unit

equations over A in two unknowns:

Let a, b, c be non-zero elements of A and let be given representatives ã, b̃, c̃ for a, b, c.

Suppose that f1, . . . , fs and ã, b̃, c̃ have total degrees at most d and logarithmic
heights at most h where d, h ≥ 1. Then for the solutions x, y of

ax+ by = c in x, y ∈ A∗

we have

s(x), s(x−1), s(y), s(y−1) ≤ exp
{
(2d)κ

r

(h+ 1)
}

where κ is an effectively computable absolute constant.

The method of proof of this result can be applied to other classes of Diophan-
tine equations as well. To illustrate this, we give some effective results for Thue
equations and hyper- and superelliptic equations over A, obtained jointly with
Bérczes and Győry. We always use κ to denote an effectively computable absolute
constant, but at each occurrence, its value may be different.
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Let F (X,Y ) = a0X
n + a1X

n−1Y + · · ·+ a0Y
n ∈ A[X,Y ] be a binary form of

degree n ≥ 3 without multiple factors, and let b ∈ A \ {0}. Consider the equation

(1) F (x, y) = b in x, y ∈ A.

Baker [2, 1968] gave in the case A = Z an effective proof that (1) has only
finitely many solutions. This was extended by Coates [7, 1968/69] to the case
A = Z[(p1 · · · pt)−1] where the pi are distinct primes and by Kotov and Sprindzhuk
[10, 1973] to the case that A is the ring of S-integers in a number field. Győry
[9, 1983] extended this effective finiteness result further to integral domains of the
special shape Z[z1, . . . , zq, w, g

−1], where z1, . . . , zq are algebraically independent,
w is integral over A0 := Z[z1, . . . , zq], and g ∈ A0. In his proof, Győry developed a
specialization method, which we managed to extend to arbitrary finitely generated
domains. This led to the following general result for Thue equations. As before,
A is an integral domain containing Z, isomorphic to Z[X1, . . . , Xr]/(f1, . . . , fs).

Theorem 1 (Bérczes, E., Győry). Let ã0, . . . , ãn, b̃ be representatives for the
coefficients a0, . . . , an of F and of b, and assume that these representatives, as well
as f1, . . . , fs, have total degrees ≤ d and logarithmic heights at most h. Then for
the solutions of (1) we have

s(x), s(y) ≤ exp
{
(n!)3n5(2d)κ

r

(h+ 1)
}
.

Now let F (X) = a0X
n + a1X

n−1 + · · ·+ an ∈ A[X ], b ∈ A \ {0}, m ∈ Z≥2 and
consider the hyper-/superelliptic equation

(2) bym = F (x) in x, y ∈ A.

Assume that F has no multiple roots, and that F has degree n ≥ 3 if m = 2
and degree n ≥ 2 if m ≥ 3. Again Baker[3, 1969] was the first to give an effective
finiteness proof for the set of solutions of (2), in the case A = Z. This was extended
by Brindza [4, 1984] to the case that A is the ring of S-integers of a number field,
and further[6, 1989] to the special class of finitely generated domains mentioned
above considered by Győry. In the case A = Z, Schinzel and Tijdeman [12, 1976]
proved that if (2) has a solution x, y ∈ Z with y 6= 0,±1, then m is bounded
above by an effectively computable number depending only on F and b. Brindza
[5, 1987] extended this to the case that A is the ring of S-integers in a number
field, and Végső [14, 1994] to the class of domains considered by Győry.

Theorem 2 (Bérczes, E., Győry). Let ã0, . . . , ãn, b̃ be representatives for the
coefficients a0, . . . , an of F and of b, and assume that these representatives, as well
as f1, . . . , fs, have total degrees ≤ d and logarithmic heights at most h. Then for
the solutions of (2) we have

s(x), s(y) ≤ exp
{
m2n5(2d)κ

r

(h+ 1)
}
.

Further, if (2) has a solution x, y ∈ A with y not equal to 0 or to a root of unity,
then

m ≤ exp
{
n5(2d)κ

r

(h+ 1)
}
.
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We sketch the proof of Theorem 1; the proof of Theorem 2 is essentially
similar. Let as before A = Z[z1, . . . , zr] ⊃ Z be an integral domain. Assume
that z1, . . . , zq are linearly independent, and that zq+1, . . . , zr are algebraic over
K0 := Q(z1, . . . , zq). Choose w ∈ A integral over A0 := Z[z1, . . . , zq] and choose
g ∈ A0 such that A ⊆ B := Z[z1, . . . , zq, w, g

−1]. Assume that w has degree D over
K0. Given u = (u1, . . . , uq) ∈ Zq with g(u) 6= 0, we can define a specialization

homomorphism ϕu : B → Q by mapping zi to ui for i = 1, . . . , q. Then ϕu maps
the Thue equation (1) over A to a Thue equation (1u) over the ring of Su-integers
OSu

in a number field Ku, where both the number field Ku and the set of places
Su may depend on u.

Now let x, y ∈ A be a solution of (1). We can express x as
∑D−1

i=0 Piw
i/Q, where

P0, . . . , PD−1, Q ∈ Z[z1, . . . , zq]. Using Mason’s effective result for Thue equations
over function fields [11, 1984] one can estimate the degrees of P0, . . . , PD−1, Q.
By applying Baker’s method to the Thue equations (1u) for ‘many’ u ∈ Zq , and
then using linear algebra, one can estimate the coefficients of the Pi and Q. Up
to this point, this outlines Győry’s specialization method mentioned above. Using
a recent effective result by Aschenbrenner [1, 2004] for systems of inhomogeneous
linear equations over polynomial rings over Z, one can estimate the size s(x) of x
in terms of the total degrees and heights of the Pi and Q. The size s(y) of the
other unknown is estimated in the same way.

The above method of proof can by applied to various other classes of Dio-
phantine equations. we would like to finish with an open problem. Consider the
Thue-Mahler equation over an arbitrary finitely generated domain A,

(3) F (x, y) ∈ A∗ in x, y ∈ A,

where F ∈ A[X,Y ] is a binary form of degree ≥ 3 without multiple factors. One
can show that (3) has finitely many solutions (x1, y1), . . . , (xl, yl), such that every
other solution of (3) is expressable in the form u(xi, yi) with u ∈ A∗, i ∈ {1, . . . , l}.
Given an arbitrary finitely generated domain A, can one determine such (xi, yi)
effectively?
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On three problems in Diophantine approximation

Nikolay Moshchevitin

We discuss three classes of problems in Diophantine approximation.
The first one is related to W.M. Schmidt’s question concerning Diophantine

approximation with positive integers. Recently we constructed a counterexample
to a conjecture by W.M. Schmidt by proving that there exist two algebraically
independent real numbers θ1, θ2 such that

inf
m1,m2∈Z+

max(m1,m2)
σ · ||m1θ1 +m2θ2|| > 0

with σ = 1.94696+. There are different open questions concerning various in-
equalities involving Diophantine exponents for ordinary and uniform Diophantine
approximations and for approximations with positive integers.

The second class of problems deals with Jarńık’s inequalities for uniform and
ordinary Diophantine exponents ω̂ and ω. Recently W.M. Schmidt and L. Sum-
merer got an important result in Geometry of Numbers. This result enables one
to improve old Jarńık’s theorem in the general case. We have better results in the
case of simultaneous approximations to three real numbers and in the case of one
linear form in three variables.

The third class of problems deals with Minkowski question mark function ?(x).
The simplest problem is as follows. How many solutions has the equation ?(x) = x?

Research is supported by the grant RFBR No. 12-01-00681-a and by the grant
of Russian Government, project 11. G34.31.0053.
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Inhomogeneous approximation and lattice orbits

Michel Laurent

(joint work with Arnaldo Nogueira)

Our starting point is the celebrated Minkowski Theorem on inhomogeneous ap-
proximation.

Theorem 1 (Minkowski). Let ξ be an irrational real number ξ and let y be a real
number not belonging to Zξ + Z. There exist infinitely many pairs of integers p, q
such that

|qξ + p− y| ≤ 1

4|q| .

Minkowski Theorem holds for every real point (ξ, y) as above. An other classical
related result is the following metrical statement due to Cassels which is valid only
for almost every point (ξ, y). Note that no monotony condition is assumed for the
approximating function ψ.

Theorem 2 (Cassels). Let ψ : N 7→ [0, 1/2] be a function such that
∑

ℓ≥1

ψ(ℓ) = +∞.

Then, for almost all pairs (ξ, y) of real numbers there exist infinitely many integer
points (p, q) such that

(1) |qξ + p− y| ≤ ψ(|q|).

The goal of the talk is to discuss similar results where we moreover require that
the pairs of integers p, q be coprime. In this direction, Chalk and Erdős [1] have
proved the following statement:

Theorem 3 (Chalk & Erdős). Let ξ be an irrational real number and let y be a
real number. There exists an absolute constant c such that the inequality

(2) |qξ + p− y| ≤ c(log |q|)2
|q|(log log |q|)2

holds for infinitely many pairs of coprime integers (p, q).

The optimality of the Chalk-Erdős Theorem remains unclear. We address the
following

Problem. Can we replace the approximating function ψ(ℓ) = c(log ℓ)2/ℓ(log log ℓ)2

occurring in (2) by a smaller one, possibly ψ(ℓ) = c ℓ−1 ?

Putting now ψ(ℓ) = cℓ−1/2 and using our results [2] on effective density for
SL(2,Z)-orbits in R2, we construct in [3] pairs of solutions of (1) forming a matrix
of determinant one.
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Theorem 4. Let ξ be an irrational real number and let y be a real number. There
exist infinitely many integer quadruples (p1, q1, p2, q2) satisfying

q1p2 − p1q2 = 1

and

(3) |qiξ + pi − y| ≤ c

max(|q1|, |q2|)1/2
≤ c√

|qi|
, (i = 1, 2),

with c = 2
√
3max(1, |ξ|)1/2|y|1/2.

The estimate (3) is best possible, up to the value of the constant c.
Concerning metrical results analogue to Theorem 2, we obtain in [3] the follow-

ing two theorems.

Theorem 5. Let ψ : N 7→ R+ be a function. Assume that ψ is non-increasing,
tends to 0 at infinity and that for every positive integer c there exists a positive
real number c1 satisfying

ψ(c ℓ) ≥ c1ψ(ℓ), ∀ℓ ≥ 1.

Furthermore assume that ∑

ℓ≥1

ψ(ℓ) = +∞.

Then, for almost all pairs (ξ, y) of real numbers there exist infinitely many primi-
tive points (p, q) such that

|qξ + p− y| ≤ ψ(|q|).
It should be interesting to weaken the hypotheses on the approximation function

ψ occurring in Theorem 5. A question which naturally arises in view of Theorem
5 is to understand what happens on each fiber when we fix either ξ or y. In this
direction, here is a partial result:

Theorem 6. Let ξ be an irrational number and let (pk/qk)k≥0 be the sequence of
its convergents. Assume that the series

∑

k≥0

1

max(1, log qk)

diverges. Then for almost every real number y there exist infinitely many primitive
points (p, q) satisfying

|qξ + p− y| ≤ 2

|q| .
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Symmetry in Legendre-type polynomials and Diophantine
approximation of logarithms

Raffaele Marcovecchio

This research is devoted to the study of Diophantine approximation of numbers
of the form log(1 + 1

k ), where k ≥ 1 is an integer. Legendre polynomials are Padé
approximations to the function log(1 − z) at z = 0, so that they are naturally
related to the Diophantine properties of log(1 + 1

k ). For this reason simple inte-
grals involving Legendre and Legendre-type polynomials have been used by several
authors (Alladi-Robinson [1], Rukhadze [9], Hata [3], ...) in order to find new ir-
rationality measures of log(1 + 1

k ). We recall that µ is an irrationality measure of
the irrational α if for any ε > 0 there exists a positive integer q(ε) such that

∣∣∣∣α− p

q

∣∣∣∣ > q−µ−ε

for all integers q ≥ q(ε) and for all p ∈ Z.
An alternative approach was introduced by Viola [10], making use of Euler’s

integral representation of the hypergeometric function (note that 2F1(1, 1; 2; z) =

− log(1−z)
z ). Since the integrand is a rational function, this representation, together

with a change of variable in this (simple real) integral, induces a permutation
group acting on the integer exponents appearing in this rational function. This
method was extended by Amoroso-Viola [2] to find new approximation measures
of logarithms of algebraic numbers.

In connection with new non-quadraticity measures of log(1+ 1
k ), Hata [4] intro-

duced a family of double complex integrals, again involving Legendre-type polyno-
mials. We recall that ν is a non-quadraticity measure of the non-quadratic number
β if for any ε > 0 there exists a positive integer H0(ε) such that

|β −Q| > H(Q)−ν−ε

for all quadratic numbers Q whose height H(Q) is at least H0(ε).
In [5] I proposed a family of double complex integrals somehow related to Hata’s.

These integrals, however, do not involve Legendre-type polynomials, but instead
are equipped with a permutation group acting on the parameters appearing in the
rational function at the integrand. Just as in Viola’s and Rhin-Viola’s papers some
generators of this permutation group are induced by suitable changes of variables,
some other generators are induced by Euler’s integral representation of the hyper-
geometric function and its symmetry properties, so that the permutation group
has two different kinds of generators. Each permutation is naturally associated
with a certain quotient of factorials. The sets of permutations associated with the
same quotient are exactly the left cosets of the whole permutation group with re-
spect to the subgroup generated by permutations induced by changes of variables
only. For instance, I proved that 3.57455390... is an irrationality measure of log 2,
and 15.65142024... is a non-quadraticity measure of log 2. Recently, Viola and my-
self [6] extended this method to logarithms of algebraic numbers, thus improving
some results by Amoroso-Viola [2].
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In 2010 Nesterenko [7] gave a considerably simplified proof of the above irra-
tionality measure of log 2. His method makes use of integrals of Mellin-Barnes’s
type, as in Nesterenko’s proof in 1996 of Apèry’s theorem on the irrationality
of ζ(3). Along the same lines Polyanskii [8] gave a similar proof of the above
non-quadraticity measure of log 2.

The present research intends to introduce a third approach to the construction of
a sequence of rational approximations to log(1 + 1

k ) yielding the above irrational-
ity measure of log 2. This new construction involves a family of Legendre-type
polynomials with suitable symmetry properties.

Let (p; q) = (p1, . . . , pn; q1, . . . , qn), where pi, qi ≥ 0 are integers. Let Ln(p; q; z)
be the polynomial recursively defined by L0(z) = 1 and

Ln+1(p, pn+1; q, qn+1; z)

= zqn+1(1− z)pn+1Dpn+1+qn+1

(
zpn+1(1 − z)qn+1Ln(p; q; z)

)
,

where Dm = 1
m! (

d
dz )

m. For example

L1(p1; q1; z) = (−z)q1(1 − z)p1 .

The polynomials

L2(p1, p2; q1, q2; z) = (−1)q1zq2(1 − z)p2Dp2+q2

(
zp2+q1(1− z)p1+q2

)

have the property that their coefficients have a large common divisor when p1, p2,
q1, q2 are not all equal, and for this reason they were used in Rukhadze’s and
Hata’s papers. It is not difficult to see that the polynomial

Ln(p1, . . . , pn; q1, . . . , qn; z)
∏

1≤i≤n

(pi + qi)!

is a bisymmetric function of p1, . . . , pn and of q1, . . . , qn. In particular, Ln(p; q; z)
is a symmetric function of (p1, q1), . . . , (pn, qn).

In my talk I discuss how to use the polynomials

L3(p1, p2, p3; q1, q2, q3; z)

= (−1)q1zq3(1− z)p3Dp3+q3

(
zp3+q2(1− z)p2+q3Dp2+q2

(
zp2+q1(1− z)p1+q2

)

to construct the same approximations to logarithms as in my paper [5].
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Almost fifth powers in arithmetic progressions

Tünde Kovács

(joint work with Lajos Hajdu)

A celebrated theorem of Erdős and Selfridge [2] states that the product of con-
secutive positive integers is never a perfect power. A natural generalization is the
Diophantine equation

(1) x(x + d) . . . (x+ (k − 1)d) = byn

in non-zero integers x, d, k, b, y, n with gcd(x, d) = 1, d ≥ 1, k ≥ 3, n ≥ 2 and
P (b) ≤ k. Here P (u) stands for the largest prime divisor of a non-zero integer u,
with the convention P (±1) = 1.

By a conjecture of Erdős, equation (1) has no solutions in positive integers
when k > 3 and b = 1. In other words, the product of k consecutive terms of a
primitive positive arithmetic progression with k > 3 is never a perfect power. The
conjecture of Erdős has recently been verified for certain values of k in a more
general form; see the papers [3], [4], [1], [5].

To explain why the case n = 5 in equation (1) is special, we need to give some
insight into the method of solving (1) for fixed k, in the general case n ≥ 2. One of
the most important tools is the modular method, developed by Wiles. However,
the modular technique works effectively only for ”large” exponents, typically for
n ≥ 7. Thus the ”small” exponents n = 2, 3, 5 must be handled separately. In fact
these cases are considered in distinct sections, or are covered by separate theorems
in the above mentioned papers. Further, the exponents n = 2, 3 has already been
considered in separate papers. For n = 2 and positive x, equation (1) has been
completely solved (up to a few exceptional cases) by Hirata-Kohno, Laishram,
Shorey and Tijdeman [8] for k ≤ 100, and in case of b = 1, even for k ≤ 109. Their
main tools were elliptic curves and quadratic residues. Later, the exceptional
remaining cases have been handled by Tengely [9], by the help of the Chabauty
method. When n = 3, working mainly with cubic residues, however making use of
elliptic curves and the Chabauty method as well, Hajdu, Tengely and Tijdeman [7]
obtained all solutions to equation (1) with k < 32 such that P (b) ≤ k if 4 ≤ k ≤ 12
and P (b) < k if k = 3 or k ≥ 13. Further, if b = 1 then they could solve (1) for
k < 39. The case n = 5 has not yet been closely investigated. In this case (in the
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above mentioned papers considering equation (1) for general exponent n) mainly
classical methods were used, due to Dirichlet and Lebesgue. Apparently, for n = 5
elliptic curves are not applicable. In [6] together with Lajos Hajdu we show that in
this case the Chabauty method (both the classical and the elliptic version) can be
applied very efficiently. As we mentioned, the Chabauty method has been already
used for the cases n = 2, 3 in [1], [9], [7]. However, it has been applied only for
some particular cases and equations. In our results we solve a large number of
genus 2 equations by the Chabauty method, and then build a kind of sieve system
based upon them. The theorems that are proved in our paper are the following
ones.

Theorem 1. The product of k consecutive non-zero terms in a primitive arith-
metic progression with 3 ≤ k ≤ 54 is never a fifth power.

Theorem 2. Equation (1) with n = 5, 3 ≤ k ≤ 24 and P (b) ≤ Pk has only
”small” solutions (that can be listed explicitly) where the values of Pk are given by

k 3 4 5 6 7, 8
Pk 3 5 7 11 13

k 9, 10, 11, 12 13, 14, 15 16, 17 18, 19, 20, 21, 22, 23 24
Pk 17 19 23 29 31

As a simple and immediate corollary of Theorem 2 we get the following state-
ment, concerning the case P (b) ≤ k. We mention that already this result yields
considerable improvement, in particular with respect to the bound for P (b).

Corollary 1. For n = 5 and 3 ≤ k ≤ 36 all nontrivial solutions of equation (1)
with P (b) ≤ k are given by

(k, d) = (3, 7), x ∈ {−16,−8,−6, 2};
(k, d) = (5, 7), x ∈ {−16,−12}.

Theorem 3. Let 4 ≤ t ≤ 8 and z0 < z1 < . . . < zt−1 be a non-trivial primitive
arithmetic progression. Suppose that

z0 = b0x
5
0, zi1 = bi1x

5
i1 , zi2 = bi2x

5
i2 , zt−1 = bt−1x

5
t−1,

with some indices 0 < i1 < i2 < t − 1 such that P (b0bi1bi2bt−1) ≤ 5. Then
the initial term z0 and common difference z1 − z0 of the arithmetic progression
z0, . . . , zt−1 for the separate values of t = 4, . . . , 8 are ”small” and can be listed
explicitly.
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[1] M. A Bennett, N. Bruin, K. Győry and L. Hajdu, Powers from products of consecutive terms
in arithmetic progression, Proc. London Math. Soc. 92 (2006), 273–306.
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Badly approximable points on a plane and generalized Cantor sets

Dzmitry A. Badziahin

In the talk we consider the sets of badly approximable points on the plane:

Bad(i, j) := {(α, β) ∈ R2 | lim inf
q→∞

q ·max{||qα||1/i, ||qβ||1/j} > 0}

where i, j ≥ 0, i + j = 1. One can look at them as the sets of points which coor-
dinates are approximated by rationals in the worst possible way. The parameters
i and j reflect the fact that different coordinates are approximated with different
speed.

The sets Bad(i, j) have quite complicated structure. In the talk we present
known results about it.

1. The “size” of Bad(i, j). We can describe it in terms of Lebesgues measure
and more deeply in terms of Hausdorff dimension. It is described by the following
classical theorems.

Theorem. For each pair i, j ≥ 0, i+ j = 1, |Bad(i, j)| = 0 where |X | denotes the
Lebesgue’s measure of X.

Theorem (Pollington, Velani, [5]). For the same pairs i, j, dim(Bad(i, j)) =
2 = FULL where dim(X) denotes the Hausdorff dimension of X.

Thus shows that sets Bad(i, j) are quite small but not too much small.

2. Relation between sets. There is no straightforward relation between sets
Bad(i, j) for different pairs (i, j). In particular it was not even known until re-
cently that any two of them have nonempty intersection. This problem was firstly
posed by Schmidt in 1980’s in the following way:

Problem (Schmidt). The set Bad(1/3, 2/3)∩Bad(2/3, 1/3) is nonempty.

Later this problem was generalised for an arbitrary pair of parameters (i1, j1)
and (i2, j2). It remained open until 2010 when it was proven in full by D., Polling-
ton and Velani [1]:

Theorem (D., Pollington, Velani). Let (it, jt) be a countable number of pairs
of real numbers satisfying it, jt ≥ 0, it+jt = 1 and let i := sup{it : t ∈ N}. Suppose
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that

(1) lim inf
t→∞

min{it, jt} > 0 .

Then, for any θ ∈ Bad(i) we have that

dim
( ∞⋂

t=1

Bad(it, jt) ∩  Lθ

)
= 1 .

Later in 2012 J. An by developing the ideas of the paper managed to remove
the technical condition (1).

It is worth mentioning that Schmidt’s problem is closely related to another fa-
mous conjecture in Diophantine approximation posed by Littlewood:

Conjecture (Littlewood). For each point (x, y) ∈ R2

lim inf
q→∞

q||qα|| · ||qβ|| = 0

where ||x|| means the distance to the nearest integer.

One can check that any potential counterexample to Littlewood conjecture must
be in every set Bad(i, j). Therefore if someone could find the intersection of
Bad(i, j) which is empty it would have proven the conjecture.

3. The structure of Bad(i, j) on planar curves. The first problem in this direc-
tion was posed by Davenport in 1960’s [4].

Problem (Davenport). there are uncountably many points from Bad(1/2, 1/2)
on the parabola (x, x2).

One countable family of such points on a parabola can be achieved from of Cas-
sels and Swinnerton-Dyer [3]. They showed that if 1, α, β are linearly independent
elements from the same cubic field then (α, β) ∈ Bad(1/2, 1/2).

In full generality Davenport problem was proven in 2012 by D. and Velani [2]

Theorem (D., Velani). Let C be two time continuously differentiable curve such
that its curvature is non-zero at least in one point. Then

dim(Bad(i, j) ∩ C) = 1 = FULL.

If C is a straight line that the result is not true in general. One can find such a
line L that the intersection Bad(i, j) ∩ L is empty. However it can be proven for
lines L with some additional conditions on their coefficients:

Theorem (D., Velani). Let L : y = αx + γ be a line such that ∃ ǫ > 0 which
satisfies

lim inf
q→∞

qmax{1/i,1/j}−ǫ||qα|| > 0.

Then

dim(Bad(i, j) ∩ C) = 1 = FULL.

4. Winning property. Recently J. An managed to prove that the set Bad(i, j)
is α winning for some positive number α. This quite powerful property of the
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sets was firstly introduced by Schmidt [6]. In particular winning sets have the full
Hausdorff dimension and a countable intersection of winning sets is again winning.

All the mentioned results of the speaker and Velani are achieved with help of
generalised Cantor-type sets. They are constructed similarly to the middle-third
Cantor set but in much more general way. It appears that they satisfy some very
nice properties. Firstly one can estimate their Hausdorff dimension (especially its
lower bound). And the intersection of two Cantor-type sets can often be considered
as another Cantor-type set which helps to estimate the “size” of their intersection.
For more information on generalized Cantor sets see [2].
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A generalization of Schanuel’s Theorem

Martin Widmer

(joint work with Christopher Frei)

Let k be a number field, let θ be a nonzero algebraic number, let H(·) denote
the usual multiplicative absolute Weil height on the algebraic numbers, and write
N(θk,X) for the number of α ∈ k with H(θα) ≤ X . For θ = 1 (or what is the
same for θ ∈ k) the quantity N(θk,X) is fairly well understood. For instance, a
classical result due to Schanuel [3] gives the asymptotics

N(k,X) = SkX
2d +O(X2d−1 logX),

as X tends to infinity. Here d is the degree of k, and Sk is defined as

Sk =
hkRk

wkζk(2)

(
2rk(2π)sk√

|∆k|

)2

2rk+sk−1,

where hk is the class number, Rk the regulator, wk the number of roots of unity
in k, ζk the Dedekind zeta-function of k, ∆k the discriminant, rk is the number of
real embeddings of k, and sk is the number of pairs of distinct complex conjugate
embeddings of k.

Evertse was the first to consider the general quantity N(θk,X). The proof of
his celebrated uniform upper bounds [1] for the solutions of S-unit equations over
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k involves a uniform upper bound for N(θk,X). The latter was refined by Schmidt
[4], and further improved by Loher and Masser [2], who showed

N(θk,X) ≤ 68(d log d)X2d,(1)

provided d > 1, and N(θQ, X) ≤ 17X2.
All the proofs of these upper bounds rely in an essential way on the box-principle

which works well for upper bounds but seems inappropriate to produce asymptotic
results. This may have motivated Loher and Masser’s following statement [2,
p.279] regarding their bound on N(θk,X):“It would be interesting to know if there
are asymptotic formulae like Schanuel’s for the cardinalities here, at least for fixed
θ not in k.” Our first theorem responds to this problem. But first we require to
introduce some notation.

Let K = k(θ). For each Archimedean place v of k (or w of K) we choose the
unique absolute value | · |v on k (or | · |w on K) that extends the usual Euclidean
absolute value on Q. We also fix a completion kv of k at v, and we define a set of
points (z0, z1) ∈ k2v by

∏

w|v

max{|θ|w|z0|v, |z1|v}[Kw:kv ] < 1,

where the product runs over all places w of K extending the Archimedean place v
of k. These sets are measurable and have a finite volume which we denote by Vv.
We put

V = V (θ, k) = (2rkπsk)−2
∏

v|∞

Vv.

Let µk be the Möbius function on k, and write Ok for the ring of integers of k. For
a fractional ideal B of k let uB be the smallest fractional ideal of K containing B.
Finally, we use Nk(·) for the norm map on the fractional ideals of k.

Note that N(θk,X) = N(αθk,X) for any nonzero α ∈ k. Thus without loss of
generality we may and will assume θ be integral. Let D = θOK , and D = D∩Ok.
We define

gk(θ) = V
∑

B|D

NK(D, uB)
2

[K:k]

NkB

∑

A|B−1D

µk(A)

NkA

∏

P |AB

NkP

NkP + 1
.(2)

Theorem 1. Let θ be a nonzero algebraic integer, let k be a number field and
denote its degree by d. Then, as X ≥ 1 tends to infinity, we have

N(θk,X) = gk(θ)SkX
2d +O(X2d−1

L),

where L = log(X + 1) if d = 1 and L = 1 otherwise. The implicit constant in the
O-term depends on θ and on k.

The standard inequalities H(α)/H(θ) ≤ H(αθ) ≤ H(α)H(θ), combined with
Schanuel’s result, imply

H(θ)−2d ≤ gk(θ) ≤ H(θ)2d.
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One then may ask if there are uniform (in k or in θ or even in k and θ) lower and
upper bounds for gk(θ). For the lower bound we consider the example θ =

√
p

with p a rational prime, inert in k. Then from (2) we get

gk(θ) = gk(
√
p) =

2pd/2

pd + 1
.

Fixing k and letting p tend to infinity we see that there is no lower bound for gk(θ)
that is uniform in θ. Likewise, fixing p and letting d tend to infinity shows that
there is no lower bound, uniform in d.

On the other hand, from (1) we conclude (for d > 1)

gk(θ) ≤
68d log d

Sk
,

and thus there is also an upper bound that is uniform in θ. But for fixed θ one
would expect that for “most” α ∈ k one has H(αθ) ≥ H(α), and thus one might
even conjecture gk(θ) ≤ 1. Indeed, using a more appropriate representation of
gk(θ) as an Euler-product we have shown that this “conjecture” holds true.

Theorem 2. We have

gk(θ) ≤ 1.
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Exceptional units and cyclic resultants

Cameron L. Stewart

Let α be a non-zero algebraic integer of degree d over Q. Put K = Q(α) and let
OK denote the ring of algebraic integers of K. Let E(α) be the number of positive
integers n for which αn − 1 is a unit in OK . If α− 1 is not a unit define E0(α) to
be 0 and otherwise define E0(α) to be the largest integer n such that αj − 1 is a
unit for 1 ≤ j ≤ n. Let Φn(x) be the n-th cyclotomic polynomial. Define U(α) to
be the number of positive integers n for which Φn(α) is a unit.

We discussed estimates for E0(α), E(α) and U(α). Certainly E0(α) ≤ E(α) ≤
U(α). We have, for example, that there is an effectively computable positive
number c such that if α is a non-zero algebraic integer of degree d over the rationals
then

E0(α) < cd
(log(d+ 1))4

(log log(d+ 2))3
.
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For any positive integer d let us define e(d) by e(d) = max{E0(α)|α an algebraic
integer of degree d}. We showed that e(d) = d for d = 1, . . . , 6, e(7) < 7 and
e(8) ≥ 7. We conjectured that e(d) < d for d ≥ 7.

Greatest Common Divisors of u− 1, v − 1 in positive characteristic
and rational points on curves over finite fields

Pietro Corvaja

(joint work with Umberto Zannier)

This is a report on a joint work with U. Zannier which will be published on the
Journal of the European Mathematical Society.

In the work [2] an upper bound was proved for the gcd(u− 1, v− 1), for S-units
u, v of a function field in characteristic zero. Namely, we proved

Theorem 1. Let κ be an algebraically closed field of characteristic zero, X be a
smooth projective curve over κ, u, v ∈ κ(X) non-constant multiplicatively indepen-
dent rational functions, S ⊂ X(κ) its set of zeros and poles. Then

(1)
∑

ν∈X(κ)\S

min{ν(1 − u), ν(1− v)} ≤ 3
3
√
2(deg(u) deg(v)χ)1/3.

In the above inequality, as in the sequel, ν also stands for the valuation canon-
ically associated to the point ν of a curve. The left-hand side is the function field
analogue of the (logarithmic) Greatest Common Divisor of the regular functions
u− 1, v − 1.

This generalized an analogous bound holding over number fields, proved in [1].
As pointed out by Silverman [5], the exact analogue does not work for function
fields in positive characteristic. Actually, if an affine curve is given by an equation
of the form f(x, y) = 0 over the finite field Fq, then letting u = xq

n−1, v = yq
n−1 it

turns out that the left-hand side above is at least the number of qn-rational points
on the curve. Hence, by Weil’s estimates, it tends to infinity asymptotically as qn,
which, up to a constant, is the degree of u and v.

I shall present a possible extension in the direction of positive characteristic;
it turns out that under suitable assumptions some of the results still hold. For
instance we proved Theorems 2 and 3 below, from which we deduce in particular a
new proof of Weil’s bound for the number of rational points on a curve over finite
fields. When the genus of the curve is large compared to the characteristic, we can
even go beyond it.

What seems a new feature is the analogy with the characteristic zero case, which
admitted applications to apparently distant problems.

Theorem 2. Let X be a smooth projective absolutely irreducible curve over a
field κ of characteristic p. Let u, v ∈ κ(X) be rational functions, multiplicatively
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independent modulo κ∗, and with non-zero differentials; let S be the set of their
zeros and poles, χ = |S|+ 2g − 2 be the Euler characteristic of X \ S. Then

∑

ν∈X(κ)\S

min{ν(1− u), ν(1 − v)} ≤ max

(
3

3
√
2(deg u deg v χ)1/3, 12

deg u deg v

p

)
.

Observe that we recover the same bound of Theorem 1 when

32(deg u deg v)2 ≤ p3χ.

The above theorem admits the following corollary, which can also be deduced
by recent work of Heath-Brown and Konyagin [4]

Corollary 1. Let X ⊂ G2
m be an absolutely irreducible plane curve of Euler char-

acteristic χ, not the translate of a subtorus. Suppose it is defined by an equation
f(x, y) = 0 of bidegree (d1, d2). Denote by µm the group of m-th roots of unity in
Fq

∗.
Then

|X ∩ (µm1 × µm2)| ≤ max

(
3

3
√
2(m1m2d1d2χ)

1/3, 12
m1m2d1d2

p

)
.

The following general result enables us to deduce an estimate for the number of
rational points over Fq2 of a curve defined over Fq which turns out to be sufficient
to recover Weil’s theorem:

Theorem 3. Let κ ⊂ Fq, L be a 1-dimensional function field over κ. Let x, y
be separating elements in L. Let f(x, y) = 0 be the minimal relation between x
and y, with coefficient in κ, where f(X,Y ) ∈ κ[X,Y ] is supposed to be absolutely
irreducible. Let C be a smooth projective model of the function field L and let
S ⊂ C be a finite set containing all the zeros and poles of x, y; we denote by χ the
Euler characteristic of C \ S. Let a = degX f, b = degY f .

Let h, k be positive integers with

(2) ah+ bk < q.

Put u = xzq, v = ywq for some S-units z, w ∈ L∗. Then at least one of the two
alternatives holds:

(1) a ≤ k and b ≤ h,
or

(2)
∑

ν 6∈S min{ν(1− u), ν(1− v)} ≤ q+k−hk
q deg(v) + k

q deg(u) +
q−1
2 χ.

To deduce an upper bound for the number of Fq2 -rational points just take
z = x−q, w = y−q. Then u, v take the value 1 precisely on the Fq2-rational points.
From this fact we deduce a best-possible (up to a constant) upper bound for the
number of rational points over any finite field of type Fq2n . It is well known that
this implies Weil’s theorem (i.e. Riemann hypothesis for the field L over Fq).

While our proof in [2] used Wronskian, in the positive characteristic case we
are forced to use the so-called hyper-Wronskian, associated to the hyper-derivative
operators, as in works of Garcia and Voloch [3].
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Simultaneous approximation with polynomials and their derivatives

Victor Beresnevich

(joint work with G. A. Margulis)

Let n ∈ N. Given a polynomial P (x) = anx
n + · · · + a0 with integer coefficients,

let H(P ) = max0≤i≤n |ai| denote the height of P . It is a well known consequence
of Minkowski’s theorem that for every x ∈ R with |x| ≤ 1/2 there are infinitely
many P ∈ Z[x] with degP ≤ n such that |P (x)| < H(P )−n. Motivated by a
classification of transcendental numbers, in 1932 Mahler [12] conjectured that for
any ε > 0 for almost all real x there are only finitely many P ∈ Z[x] with degP ≤ n
such that

|P (x)| < H(P )−n−ε .

Mahler himself proved such a statement with ε > 3n. Various partial results were
obtained over a period of 30 years and the conjecture was eventually established by
Sprindžuk in 1965 – see [13] for a full account. Subsequent developments include
Diophantine approximation on manifolds and the Khintchine-Groshev type results
see [1, 2, 7, 8, 9, 10, 11, 14]. The crux of establishing the Khintchine-Groshev type
results was the study of systems of Diophantine inequalities that involved both
linear forms and their derivatives. The idea was introduced by Bernik [9] in the
context of polynomials who proved that for any n ∈ N and any ε > 0 for almost
all x ∈ R there are only finitely many P inZ[x] with degP ≤ n satisfying

(1)

{ |P (x)| < H(P )−n,

|P ′(x)| < H(P )1−ε.

Indeed, while establishing Khintchine-Groshev type results, eliminating instances
of approximation with small derivatives such as in (1) leads to a linearizable prob-
lem that is generally deal with much easier.

In recent years, there has also been a growing interest in results that involve
more general systems of inequalities that include derivatives of higher orders. In
particular, the motivation comes from the study of rational points near manifolds
[3], close conjugate algebraic pairs [5] and the distribution of discriminants and
resultants [4, 6].
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The following general results regarding systems of linear forms that involve
all the derivatives of a polynomial of degree n have been recently obtained in
collaboration with Margulis.

Theorem 1. Let n ∈ N and ε > 0. Then, for almost all x ∈ R there are only
finitely many P ∈ Z[x] with degP = n such that

(2)

n∏

i=0

|P (i)(x)| < H(P )−ε .

The condition on ε is clearly optimal. This theorem can also be restated in the
following equivalent form.

Theorem 1′. Let n ∈ N and v0, . . . , vn ∈ R satisfy v0 + · · ·+ vn > 0. Then, for
almost all x ∈ R there are only finitely many P ∈ Z[x] with degP = n satisfying

(3) |P (i)(x)| < H(P )−vi (0 ≤ i ≤ n) .

Mahler’s conjecture essentially corresponds to the case v1 = · · · = vn = −1.
The case v2 = · · · = vn = −1 is proved in [8, §8.3]. Yet another case when
v0, . . . , vm−1 ≥ 0 and vm, . . . , vn ≤ 0 for somem, was considered in [5, Theorem 4].

Theorem 1 is deduced from the following effective result.

Theorem 2. Let n ≥ 1, J ⊂ R be any interval of length 1, θ0, . . . , θn > 0 and

A∗
n(J ; θ0, . . . , θn) =

{
x ∈ J :

∃ P ∈ Z[x] \ {0} such that degP = n and

|P (i)(x)| ≤ θi for all i ∈ {0, . . . , n}

}
.

Then

λ
(
A∗

n(J ; θ0, . . . , θn)
)
≤ 6n(n+ 1)5

(
θ0 . . . θn

)4(n+1)−3

,

where λ denotes Lebesgue measure in R.

The term H(P )−ε can be replaced with
(
logH(P )

)− 1
4 (n+1)3−ε

. Other more
general forms of Theorems 1 and 2 obtained involve results for lacunary polyno-
mials. The proofs make use of a theorem of Kleinbock and Margulis [11] and the
calculous of binomial determinants.
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Overdetermined systems of lacunary equations

Francesco Amoroso

(joint work with Louis Leroux, Mart́ın Sombra)

Let f , g ∈ Z[x] be polynomials of degree ≤ d, of bounded height and having a
bounded number of non zero coefficients. Assuming that at least one of f and g
does not vanish at any roots of unity, Filaseta, Granville and Schinzel [2] proved
that there exists an algorithm which computes the greatest common divisor of f
and g in O(log d) arithmetic operations.

This result heavily relies on a work of Bombieri and Zannier on the intersection
of a subvariety of Gn

m of codimension ≥ 2 with subgroups of dimension 1. This
work appeared for the first time as an appendix of a book of Schinzel [3] by Zannier
and later, in a refined form, in a joint paper of Bombieri, Masser and Zannier [1].
It is a special case of the following open conjecture of Zilber.

Conjecture 1. Let W be an algebraic subset of GN
m. Then there exists a finite

collection UW of codimension 1 torsion cosets (= translates of subtori by torsion
points) of GN

m satisfying the following property. Let T0 ⊂ GN
m be a torsion coset

and let Y be an irreducible component of W ∩ T0 of dimension

dim Y > dimW − codimT0 .

Then there exists T ∈ UW such that Y ⊆W ∩ T .

Assuming this conjecture, we generalize the result of Filaseta-Granville-Schinzel
to overdetermined systems of lacunary equations.
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Theorem 2. Let us assume Zilber conjecture. Let V ⊂ Gn
m be a subvariety defined

over a number field K by a bounded number of equations of degree ≤ d of bounded
height and supported by a bounded number of monomials. Then we can find in at
most

O(log d)

arithmetic operations a finite collection Γ whose elements are sequences

(P1, . . . , PL, Q) with L ≤ n

of Laurent polynomials, such that

V =
⋃

Γ

(Z(P1, . . . , PL)\Z(Q)) .

Moreover, every irreducible component

X ⊆ Z(P1, . . . , PL)\Z(Q)

has codimension L.
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Diagonalization and rationalization

Boris Adamczewski

(joint work with Jason P. Bell)

Given a field K and a multivariate power series

f(x1, . . . , xn) :=
∑

(i1,...,in)∈Nn

a(i1, . . . , in)x
i1
1 · · ·xinn

with coefficients in K, we define the diagonal ∆(f) of f as the one variable power
series

∆(f)(t) :=

+∞∑

n=0

a(n, . . . , n)tn ∈ K[[t]] .

In the case where K = C, diagonalization may be nicely visualized thanks to
Deligne’s formula via contour integration over a vanishing cycle. Formalizing this
in terms of the Gauss–Manin connection and De Rham cohomology groups, and
using a deep result of Grothendieck, one can prove that the diagonal of any al-
gebraic power series with algebraic coefficients is a Siegel G-function that comes
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from geometry, that is, one which satisfies the Picard–Fuchs type equation as-
sociated with some one-parameter family of algebraic varieties. As claimed by
the Bombieri–Dwork conjecture, this is a picture expected for all G-functions.
Diagonals of algebraic power series with coefficients in Q thus appear to be a
distinguished class of G-functions.

When K is a field of positive characteristic, the situation is completely different
as shown the following nice result due to Furstenberg and Deligne: the diagonal of
an algebraic power series in K[[x1, . . . , xn]] is algebraic. Given a prime number p

and a power series f(x) :=
∑+∞

n=0 a(n)x
n ∈ Z[[x]], we denote by f|p the reduction

of f modulo p, that is

f|p(x) :=
+∞∑

n=0

(a(n) mod p)xn ∈ Fp[[x]] .

The Furstenberg–Deligne theorem implies that if f(x1, . . . , xn) ∈ Z[[x1, . . . , xn]] is
algebraic over Q(x1, . . . , xn), then ∆(f)|p is algebraic over Fp(t) for every prime p.
It now becomes very natural to ask how the complexity of the algebraic function
∆(f)|p may increase when p run along the primes. Deligne obtained a first result
in this direction by proving that if f(x, y) ∈ Z[[x, y]] is algebraic, then, for all
but finitely many primes p, ∆(f)|p is an algebraic power series of degree at most

ApB, where A and B do not depend on p but only on explicit geometric quantities
associated with f . He also suggested that a similar bound should hold for the
diagonal of algebraic power series in Z[[x1, . . . , xn]]. In this talk, I will discuss the
following answer to the question raised by Deligne.

Theorem. Let f(x1, . . . , xn) ∈ Z[[x1, . . . , xn]] be an algebraic power series with
degree at most d and height at most h. Then there exists an effective constant
A := A(n, d, h) depending only on n, d and h, such that ∆(f)|p has degree at most

pA and height at most A2pA+1, for every prime number p.

Problems surrounding the mixed Littlewood conjecture for
pseudo-absolute values

Stephen Harrap

(joint work with Alan Haynes)

For x ∈ R let ‖x‖ denote the distance from x to the nearest integer. The Littlewood
Conjecture is the assertion that for every x1, x2 ∈ R,

(1) inf
q∈N

q ‖qx1‖ ‖qx2‖ = 0.

This conjecture has come to light recently because of its connection to measure
rigidity problems for diagonal actions on the space of unimodular lattices. This
connection was exploited by Einsiedler, Katok, and Lindenstrauss [3] to show the
set of pairs (x1, x2) ∈ R2 which do not satisfy (1) has Hausdorff dimension zero.
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More recently de Mathan and Teuliè [8] have proposed a problem which is
closely related to the Littlewood Conjecture. Let D = {nk}k≥0 be an increasing
sequence of positive integers with n0 = 1 and nk|nk+1 for all k. We refer to
such a sequence as a pseudo-absolute value sequence, and we define the D-adic
pseudo-absolute value | · |D : N → {n−1

k : k ≥ 0} by

|q|D = min{n−1
k : q ∈ nkZ}.

In the case when D = {ak}∞k=0 for some integer a ≥ 2 we also write | · |D = | · |a.
If p is a prime then | · |p is the usual p−adic absolute value.

The de Mathan and Teuliè Conjecture, which we will refer to as the Mixed
Littlewood Conjecture, is the assertion that for any D and for every x ∈ R,

(2) inf
q∈N

q |q|D ‖qx‖ = 0.

By employing connections with measure rigidity results in this setting Einsiedler
and Kleinbock [4] proved that when | · |D = | · |a the set of x ∈ R which do not
satisfy (2) has Hausdorff dimension zero.

The case of the Mixed Littlewood Conjecture with more than one pseudo-
absolute value has also been a topic of recent interest. If D1 and D2 are two
pseudo-absolute value sequences it is reasonable to conjecture that for any x ∈ R,

(3) inf
q∈N

q|q|D1 |q|D2‖qx‖ = 0.

Remarkably, it is shown in [4] that the Furstenberg Orbit Closure Theorem [5,
Theorem IV.1] implies that (3) is true whenever D1 = {ak} and D2 = {bk} for
two multiplicatively independent integers a and b. This result was strengthened
by Bourgain, Lindenstrauss, Michel, and Venkatesh [1] who proved a result which
implies (see [2, Section 4.6]) that there is a constant κ > 0 such that for all x ∈ R,

inf
q∈N

q(log log log q)κ|q|a|q|b‖qx‖ = 0.

Their results provide a contrast to the situation of the original Littlewood Con-
jecture, where nothing seems to be gained by adding more real variables.

It was pointed out by Einsiedler and Kleinbock in [4] that the dynamical ma-
chinery used to study these problems does not readily extend to the case of more
general pseudo-absolute values. Our first result demonstrates how recent measure
rigidity theorems can be combined with bounds for linear forms in logarithms to
obtain more general results.

Theorem 1 ([7]). Suppose that a ≥ 2 is an integer and that D = {nk} is a
pseudo-absolute value sequence all of whose elements are divisible by finitely many
fixed primes coprime to a. If there is a δ ≥ 0 with

(4) lognk ≤ kδ for all k ≥ 2,

then for any x ∈ R we have that

(5) inf
q∈N

q|q|a|q|D‖qx‖ = 0.
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Of particular interest is the case when consecutive elements of the sequence D
have bounded ratios (cf. [4, 8]), and we will say thatD and |·|D have bounded ratios
in this case. For the bounded ratios case our theorem gives a quite satisfactory
answer to the problem at hand.

Corollary 1 ([7]). Suppose that a ≥ 2 is an integer and that D is a pseudo-
absolute value sequence with bounded ratios, all of whose elements are coprime to
a. Then for any x ∈ R we have that

inf
q∈N

q|q|a|q|D‖qx‖ = 0.

After establishing Theorem 1 we turn to the problem of determining the almost
everywhere behavior of the quantities on the left hand side of (2). The analogue
of this problem for the Littlewood Conjecture was established by Gallagher [6].
He proved that if ψ : N → R is any non-negative decreasing function for which

(6)
∑

r∈N

log(r)ψ(r) = ∞

then for almost every (x1, x2) ∈ R2

(7) ‖qx1‖ ‖qx2‖ ≤ ψ(q) for infinitely many q ∈ N.

For example this shows that for almost every (x1, x2) ∈ R2 we can improve (1) to

inf
q∈N

q(log q)2(log log q) ‖qx1‖ ‖qx2‖ = 0.

Although Gallagher’s method does not readily apply to the mixed problems that
we are considering, it has recently been shown using other techniques [2] that if p
is a prime, if ψ is as above, and if (6) holds then for almost every x ∈ R,

|q|p ‖qx‖ ≤ ψ(q) for infinitely many q ∈ N.

Here we will show how this result can be extended to non p−adic pseudo-absolute
values |·|D . The quality of approximation that we obtain will necessarily depend on
the rate at which the sequence D grows. For this reason, given a pseudo-absolute
value sequence D we define M : N → N ∪ {0} by M(N) = max {k : nk ≤ N} .
Theorem 2 ([7]). Suppose that ψ : N → R is non-negative and decreasing and
that D = {nk} is a pseudo-absolute value sequence satisfying

(8)

M(N)∑

k=1

ϕ(nk)

nk
≫ M(N) for all N ∈ N,

where ϕ denotes the Euler phi function. Then for almost all x ∈ R the inequality

(9) |q|D ‖qx‖ ≤ ψ(q)

has infinitely (resp. finitely) many solutions q ∈ N if the sum

(10)
∞∑

r=1

M(r)ψ(r)

diverges (resp. converges).
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We also note that when (10) converges the inequality (9) always has finitely
many solutions. When | · |D = | · |p for some prime p we have that M(N) ≍ logN ,
and Theorem 2 reduces in this case to the result from [2]. To see what Theorem 2
means in terms of the infima type expressions that occur in the Mixed Littlewood
Conjecture, if D satisfies (8) then for almost every x ∈ R we have that

inf
q→∞

qM(q)(log q)(log log q) |q|D ‖qx‖ = 0,

while on the other hand for any ǫ > 0 and for almost every x ∈ R,

inf
q→∞

qM(q)(log q)(log log q)1+ǫ |q|D ‖qx‖ > 0.

Furthermore the hypothesis on D in Theorem 2 is not that restrictive in practice.
Although it is possible to chooseD so that (8) does not hold, any reasonably chosen
pseudo-absolute value sequence should satisfy the condition. Examples include
sequences D with bounded ratios or those whose elements of D are divisible only
by some finite collection of primes.
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[8] B. de Mathan & O. Teuliè: Problèmes Diophantiens simultanès, Monatsh. Math. 143 (2004),
229–245.



Diophantische Approximationen 1345

Arithmetic applications of Hankel determinants

Wadim Zudilin

(joint work with Christian Krattenthaler, Tapani Matala-aho, Ville Merilä,
Igor Rochev and Keijo Väänänen)

The second constant, after
√
2, we usually learn to be irrational is

e =
∞∑

n=0

1

n!
,

Euler’s constant. And the trick there is using the “obvious” rational approxima-

tions pn/qn =
∑n−1

k=0 1/k! and the fact

0 < qn

(
e− pn

qn

)
<

2

n
→ 0 as n→ ∞.

Later we realise we can do better with the Padé approximations for ez, producing
a sharp irrationality measure not only for e but also for er, r ∈ Q \ {0}.

It comes as no surprise that the truncations and Padé approximations work well
for a similar series

Eq(z) :=

∞∑

n=0

zn

(q − 1)(q2 − 1) · · · (qn − 1)
,

where for simplicity we assume q ∈ Z, q > 2. Probably more surprising is that the
“obvious” tail approximations lead one to an even stronger conclusion about the
arithmetic of the values of Eq(z)— their nonquadraticity— thanks to an original
method of J.-P. Bézivin [2]. This is a consequence of our recent joint result [3]
with C. Krattenthaler, I. Rochev and K. Väänänen; below I indicate some details
of the construction taking z = 1 to avoid technicalities.

Introduce the normalised sequence of tails to Eq(1),

vn(x) := (q − 1)(q2 − 1) · · · (qn − 1) ·
(
x−

n−1∑

k=0

1

(q − 1)(q2 − 1) · · · (qk − 1)

)

for n = 0, 1, 2, . . . , and the related Hankel determinant

Vn(x) := det
0≤i,j≤n

(
vi+j(x)

)
∈ Z[x],

which is a polynomial of degree at most n+ 1 in x. Then one expects Vn(Eq(1))
to be small, and indeed it can be shown that

log |Vn(Eq(1))|
log q

≤ −1

3
n3 + o(n3) as n→ ∞.

Note that Vn(x) has a huge common factor of its coefficients of the form qn(n
2−1)/6 ×∏

l<n/2(q
l − 1)2(n−2l), where the sharp form of the cyclotomic part in this expres-

sion is due to I. Rochev alone [9]. In other words,

V̂n(x) :=
Vn(x)

qn(n2−1)/6
∏

l<n/2(q
l − 1)2(n−2l)

∈ Z[x],
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and an explicit information about the height of the polynomials together with
their nonvanishing, at x = Eq(1), for infinitely many indices n imply

Theorem 1 ([3]). Eq(1) is neither rational nor a quadratic irrationality.

What is special here about dealing with (Hankel) determinants? First of all,
the determinants are highly structured: the extra powers of q and the cyclotomic
part are extracted using different elementary transformations of both rows and
columns. Secondly, the nonvanishing (infinitely often) of the sequence Vn(λ) for
λ ∈ R is a consequence of Kronecker’s rationality criterion: the property is equiv-
alent to the rationality of the power series

∑∞
n=0 vn(λ)z

n.
The above construction works, although differently, for e and ez (and even

more general entire functions) but the arithmetic results in those cases are already
known.

In our joint project [6] with T. Matala-aho and V. Merilä we extend Bézivin’s
method to the arithmetic study of the p-adic constants γ = γp :=

∑∞
n=0 n! and

related functions. The expected irrationality of γ is tied up with Wilf’s conjec-
ture [7] and Kurepa’s conjecture [4] (a nonfixable gap in the proof given in [1] was
recently observed by Yu. Nesterenko [8]).

In the newer settings, we let

vn(x) :=
1

n!
·
(
x−

n−1∑

k=0

k!

)
for n = 0, 1, 2, . . . ,

and normalise the related Hankel determinant Vn(x) := det0≤i,j≤n

(
vi+j(x)

)
as

follows: V̂n(x) := Vn(x)/Λn = xn+1 + · · · ∈ Z[x], where

Λn := det
0≤i,j≤n

(
1

(i+ j)!

)
= (−1)n(n+1)/2 (n− 1)$n$

(2n)$

by means of the superfactorial notation n$ :=
∏n

k=1 k! . Then the height of the

polynomial V̂n(x) is bounded above by n$ (n+ 1)$. Because all

vn(γ) =
∞∑

k=0

(n+ 1)(n+ 2) · · · (n+ k)

are p-integral, we have ordp Vn(γ) ≥ 0; a careful examination of the Hankel deter-
minant produces a stronger conclusion: ordp Vn(γ) ≥ 2 ordp n$. Gathering all this
information and the nonvanishing of Vn(γ) infinitely often, we are able to show
the following partial arithmetic result.

Theorem 2 ([6]). Let P be a subset of primes such that

lim sup
n→∞

n$2
∏

p∈P

|(2n)$|p < 1.

Given a rational number r, γ is not equal to r for at least one p ∈ P.

Here |λ|p := p− ordp λ denotes the p-adic absolute value of λ ∈ Q. Note that the
hypothesis of the theorem is roughly implied by lim supn→∞ n!

∏
p∈P |(2n)!|p = 0
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which can be then compared with the condition lim supn→∞ 4nn!
∏

p∈P |n!2|p < 1;

the latter may be obtained on using the Padé approximation technique [5].
We also observe (without proof) in [6] that the complex conjugate numbers

0.6971748832 . . .± i 1.1557273498 . . .

are accumulation points of some zeroes of the polynomials Vn(x) as n→ ∞, which
make them plausible archimedean reincarnations of γ, although the literature lacks
of values for the divergent series

∑∞
n=0 n! . In contrast, the series

∑∞
n=0(−1)nn! =

0.596347362 . . . was already summed by Euler, while the explicit expression is due
to Hardy:

∞∑

n=0

(−1)nn! =

∫ ∞

0

e−t dt

1 + t
= e

(
−γ −

∞∑

n=1

(−1)n

n · n!

)
.
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[2] J.-P. Bézivin, Sur les propriétés arithmétiques d’une fonction entière, Math. Nachr. 190
(1998), 31–42.

[3] C. Krattenthaler, I. Rochev, K. Väänänen and W. Zudilin, On the non-quadraticity of values
of the q-exponential function and related q-series, Acta Arith. 136 (2009), 243–269.

[4] D. Kurepa, On the left factorial function !n, Math. Balkanica 1 (1971), 147–153.
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Arithmetic properties of p-adic elliptic polylogarithms and
irrationality

Noriko Hirata-Kohno

1. Introduction

In this report, we introduce a p-adic elliptic polylogarithmic function to give a
lower bound for the dimension of the linear space over the rationals spanned by
1 and values of the function. Our proof uses Padé approximation following the
argument of T. Rivoal [10] and a new criterion due to Yu. V. Nesterenko [7].
We also show an example of the linear space of dimension ≥ 3 over Q generated
by 1 and usual polylogarithms, by adapting a new linear independence criterion
obtained by S. Fischler and W. Zudilin [2].
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Let us recall the polylogarithmic function Lis(z) (s = 1, 2, . . . , ) defined by

Lis(z) =
∞∑

k=1

zk

ks
, z ∈ C, |z| ≤ 1 (z 6= 1 if s = 1).

The function satisfies Li1(z) = − log (1− z) and Lis+1(z) =
∫ z

0
Lis(t)

t dt. Let Q
be the algebraic closure of Q in C, K be a number field of finite degree over Q.
Denote the ring of integers in K by O = OK . We take a prime p ∈ Q. For an
Archimedean v|∞, denote | · |∞ = | · |v, and for a finite place v of K over p, denote
by | · |v the normalized valuation such that |x|v = p−ordp(x) for x ∈ Q. Put Qp the
completion of Q by v|p and Kv be the completion of K by v (v|p or v|∞). Write
nv = [Kv : Qv] the local degree for v (v|p or v|∞). Finally set Cp the completion
of the algebraic closure of Kv by v|p. We denote again by | · |v, the extension of
| · |v on Cp for v|p.

Let E be an elliptic curve defined by y2 = 4x3 − g2x− g3 (g2, g3 ∈ K). Putting
X = x, Y = y/2, V = g2/4,W = g3/4, E is defined by Y 2 = X3 − V X −W .
We may suppose V,W ∈ O; if either V or W 6∈ O, then there exists an integer
c ∈ O such that the elliptic curve E ′ : Y 2 = X3 − V ′X −W ′ with V ′ = c4V ∈ O,
W ′ = c6W ∈ O is isomorphic to E , since the j-invariant remains equal. Denote
by h = h(E) := max{1, h(1, V,W )} the height of E .

Let ℘ (resp. σ) be the Weierstraß elliptic function (resp. sigma function),
associated with the period lattice Λ = ω1Z + ω2Z of E . An elliptic logarithm of
a point P ∈ E →֒ P2 is a complex number u such that P = (σ3(u) : ℘(u)σ3(u) :
℘′(u)σ3(u)).

Definition 1. For a point P = (X,Y, 1) ∈ E, introduce the local parameter at the
origin: t = t(P ) = −X/Y, ω(t) = −1/Y . Define Ω(t) = dx/y = ℘′(z)dz/℘′(z) =
dz and z = z(t) =

∫
Ω(t). Then, z(t) is viewed as a local reversed function of

t = −2℘(z)/℘′(z). We call logE(t) = z(t) an elliptic logarithmic function.

Now we consider elliptic polylogarithmic function by doing a formal integral as
follows.

Definition 2. Let t ∈ C with |t|∞ < 1. Define an s-th elliptic polylogarithmic
function by LiE,1(t) = logE(t) and by

LiE,s(t) =

∫ t

0

LiE,s−1(t)

t
dt (s = 2, 3, . . .).

The Taylor expansion concerning with these functions is estimated as follows:

Lemma 1. At the origin, the Taylor expansion of LiE,s(t) (s = 1, 2, 3, . . .) is given
by

LiE,s(t) =
∑

k≥1

Bk

ks
tk
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where B1 = 1, Bk =
Ck

2
, Ck =

∑

4λ+6µ=k−1,λ,µ≥0

b
(k)
λ,µV

λWµ (k ≥ 1), b
(k)
λ,µ ∈ Z

and

|b(k)λ,µ|∞ ≤ (25 · 3 · 52)k
(k + 2)3(λ+ 1)3(µ+ 1)3

(k ≥ 1).

The height is bounded by h(Ck) ≤ 8.8k + (k − 1)h.

Let us now recall the Lutz-Weil p-adic elliptic function which corresponds to
the p-adic version of the Weierstraß elliptic function ℘.

Put λp = 1/(p− 1) if p 6= 2, and λ2 = 3. We set Cp := {z ∈ Cp : |z|v < p−λp}.
There exist two solutions ϕ and −ϕ to the differential equation (ϕ′)2 = 1−V ϕ4−
Wϕ6 with ϕ(0) = 0, defined and analytic in Cp. The function ϕ(z) is called the
Lutz-Weil p-adic elliptic function.

We then introduce a reversed function.

Definition 3. By writing X,Y in terms of t and ω(t), consider the differential
form Ω(t) = dX/2Y , viewed as a formal power series in t. Define a p-adic elliptic
logarithmic function by logp,E(t) = z(t) =

∫
Ω(t).

It is indeed a reversed function of expp(z) =
(
1/ϕ2(z),−ϕ′(z)/ϕ3(z), 1

)
=

(t,−1, ω(t)).
The p-adic elliptic polylogarithmic function is also defined by a formal integral

as follows.

Definition 4. Let t ∈ Cp with |t|v < 1. Define an s-th p-adic elliptic polylogarith-
mic function by Lip,E,1(t) = logp,E(t) and by

Lip,E,s(t) =

∫ t

0

Lip,E,s−1(t)

t
dt (s = 2, 3, . . .).

We obtain exactly the same estimates as in the Archimedean case for the Taylor
coefficients.

2. Linear independence of p-adic elliptic polylogarithms

We recall latest results concerning with irrationality of the values of (exponential)
polylogarithmic function.

E. M. Nikǐsin [8] and M. Hata [3] investigated sufficient conditions such that for
a rational number α, the values of polylogarithmic functions Li1(α),Li2(α), . . . ,
Lis(α) and 1 are linearly independent over Q.

In 2003, T. Rivoal [10] proved the following result.

Theorem A (Rivoal). Let s be an integer ≥ 2. Let α = a/b ∈ Q with a, b ∈
Z, gcd (a, b) = 1 and 0 < |α| < 1. For any ε > 0, there exists an integer A(ε, a, b) ≥
1 satisfying the following property. If s ≥ A(ε, a, b), we have

dimQ {Q+QLi1(α) + · · ·+QLis(α)} ≥ 1− ε

1 + log (2)
log (s).
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Rivoal proved Theorem A by using Nesterenko’s linear independence criterion
[6]. R. Marcovecchio [5] generalized Rivoal’s result in the case of algebraic number
field.

Now we suppose all the following conditions.

Assumptions: Let K = Q and v = p. Let β = a/b, a, b ∈ Z, gcd(a, b) = 1.
Suppose |β|v < 1 and |V |v = 1, |W |v = 1. Moreover, in the expression

Lip,E,s(t) =
∑

k≥1

Bk

ks
tk,

assume that we have |Bk|∞ = O(k) for all Bk(k ≥ 1).

Theorem B (Nesterenko). Let c1, c2, τ1, τ2 be positive numbers with τ2 ≤ τ1. Let
0 ≤ σ(t) be a monotonically increasing function defined for all t ≥ t0 such that

lim
t→∞

σ(t) = ∞, lim sup
t→∞

σ(t+ 1)

σ(t)
= 1.

Let ξ = (ξ1, . . . ξm) ∈ Cm
p − (0), and let LN (x1, . . . , xm) be a sequence of linear

forms with coefficients ∈ O satisfying for all large N , denoting |LN |∞ = max of
|coefficients|∞ of LN ;

log |LN |∞ < σ(N), c1e
−τ1σ(N) ≤ |LN(ξ)|v

|LN |v
≤ c2e

−τ2σ(N).

Then dimQ {Qξ1 + · · ·+Qξm} ≥ τ1
[K : Q] + τ1 − τ2

.

By adapting Theorem B to the p-adic elliptic polylogarithmic function, we have:

Theorem 1. Suppose all the assumptions above. Then for sufficiently large s, we
have

dimQ {Q+QLip,E,1(β) + · · ·+QLip,E,s(β)} ≥ OE,p,β(1) · log s.

The constant OE,p,β(1) can be explicitly calculated. However, our assumption
for the growth of the coefficients of the Taylor expansion of the p-adic elliptic
polylogarithmic function is indeed very strong.

3. Archimedean polylogarithms

We also present here a slight refinement of linear independence result concerning
with the usual (exponential) polylogarithmic function, relying on a new linear
independence criterion due to S. Fischler and W. Zudilin [2].

Theorem 2 (with H. Okada). Let s ≥ 356. Then for α = a/b ∈ Q, with a, b ∈
Z, gcd (a, b) = 1, 0 < |α| < 1, 1 ≤ |a| ≤ 49, 2 ≤ |b| ≤ 50, we have

dimQ {Q+QLi1(α) + · · ·+QLis(α)} ≥ 3.

A more general statement is as follows.
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Theorem 3 (with H. Okada). Let s be an integer ≥ 2. Let α = a/b ∈ Q with
a, b ∈ Z, gcd (a, b) = 1 and 0 < |α| < 1. Put

M = dimQ {Q+QLi1(α) + · · ·+QLis(α)} − 1.

Let r ∈ Z, 1 ≤ r < M defined by

r = max

{
1,

[
M

(logmax {3,M})ρ
]}

where ρ > 0 arbitrarily chosen and fixed, with [x] the largest integer part ≤ x (floor
function). Then we have

M ≥
log r +

(M − 1)

2
− log |a|

M
− r

M
log r

1 + log 2 +
log |b|
M

+ (
r + 1

M
) log 2 +

r

M
log r

.

We should note that the right-hand side of the conclusion of Theorem 3 contains
M as in the statement in [2]. Indeed, when we subtract M−1

2 from the numerator
of the right-hand side and add this part on the left-hand side, then it gives only
an asymptotic formula for M .
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Infinite Non-Abelian Extensions and Small Heights

Philipp Habegger

Let h(α) denote the absolute, logarithmic Weil height of α ∈ Q, where Q denotes
an algebraic closure of Q. If P = adT

d+ · · ·+ a0 ∈ Z[X ] is the unique polynomial
of minimal degree such that P (α) = 0, the a0, . . . , ad coprime, and ad > 0, then

h(α) =
1

d
log


ad

∏

P (z)=0

max{1, |z|}




where the product runs over all complex roots of P .
For example h(21/n) = (log 2)/n tends to zero as n runs over all positive integers.
A theorem often attributed to Northcott implies that any set of algebraic num-

bers with bounded height and bounded degree is finite. Hence for any number
field K there exists ǫ = ǫK > 0 such that if α ∈ K then either

h(α) = 0 or h(α) ≥ ǫ.

Schinzel [7] proved that Qmr, the composite in Q of all totally real number
fields, admits a similar height gap. More precisely, if α ∈ Qmr with α 6= 0,±1,
then

h(α) ≥ 1

2
log

(√
5 + 1

2

)

and this inequality is sharp.
We will say that a subfield F of Q satisfies the Bogomolov property if there

exists ǫ > 0 such that

if α ∈ F then h(α) = 0 or h(α) ≥ ǫ.

This property was named by Bombieri and Zannier [4]. They showed that if p
is a prime, then any Galois extension of Q that admits an embedding into a finite
extension of the p-adics satisfies the Bogomolov property. Their result can thus
be view as a p-adic version of Schinzel’s Theorem.

Instead of imposing a local restriction, Amoroso and Dvornicich [1] proved that
the maximal abelian extension Qab of Q satisfies the Bogomolov property. They
obtained (log 5)/12 as a lower bound for the gap. In later work, Amoroso and
Zannier [2] showed that the maximal abelian extension of an arbitrary number
field satisfies the Bogomolov property.

The classical Theorem of Kronecker-Weber states that Qab is generated as a
field by all roots of unity. This can be reformulated as stating that Qab is the field
generated by the points of finite order of the algebraic group Gm.

Starting from this interpretation of Qab it seems natural to consider fields gen-
erated by all points of finite order of other commutative algebraic groups. To this
extent let E be an elliptic curve given by a Weierstrass equation y2 = x3 + ax+ b
with rational coefficients a and b. We let Etors denote the group of all points
in E(Q) of finite order. The problem is thus to determine if the field Q(Etors)
generated by the x- and y-coordinates of all non-zero elements in Etors has the
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Bogomolov property. We note that Q(Etors) is an infinite Galois extension of Q.
Indeed, properties of the Weil pairing imply that Q(Etors) contains Q

ab.
If E has potential complex multiplications by an order in an imaginary quadratic

number field K, then Q(Etors) is in the maximal abelian extension on K. In
this case, the result of Amoroso and Zannier implies that Q(Etors) satisfies the
Bogomolov property.

So suppose that E does not have potential complex multiplications. By Serre’s
Open Image Theorem [8] the group Gal(Q(Etors)/Q) is isomorphic to an open

subgroup of GL2(Ẑ), with Ẑ the Prüfer ring. Amoroso and Zannier’s result is

not applicable to Q(Etors) as GL2(Ẑ) does not contain an open abelian subgroup.
Moreover, neither Schinzel’s Theorem nor Bombieri and Zannier’s p-adic analog
may be applied. But Q(Etors) ⊃ Qab and so both fields have unbounded ramifi-
cation above all primes.

In my talk I presented the following result [6].

Theorem 1. The field Q(Etors) satisfies the Bogomolov property.

I then gave a short overview of the proof which makes use of the following
theorem of Elkies [5]. There exist infinitely many primes whereE has supersingular
reduction. This remarkable result is currently not known to hold for elliptic curves
defined over an arbitrary number field.

In order to show that Q(Etors) satisfies the Bogomolov property we must fix one
supersingular prime p which is sufficiently large with respect to E. For example, we
require the natural modulo p Galois representation attached to E to be surjective.
Serre’s Theorem guarantees this for all sufficiently large p. The proof of the height
lower bound is then based on a local metric argument at places above p using,
among other things, Lubin-Tate Theory. The argument makes essential use of
supersingularity. Roughly speaking, the product formula can be used to combine
the non-Archimedean estimates above p with estimates at Archimedean places
coming from Bilu’s Equidistribution Theorem [3]. After a descent argument this
leads to a proof that Q(Etors) satisfies the Bogomolov property.
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Diophantine exponents and parametric geometry of numbers

Oleg N. German

Let Θ be an n ×m real matrix. The supremum of the real numbers γ such that
the inequality

(1) |Θx− y| 6 |x|−γ

has infinitely many non-zero solutions in z = (x,y) ∈ Zm ⊕ Zn is called the
(regular) Diophantine exponent of Θ and is denoted by β(Θ).

Substituting (1) by the inequalities

(2) |x| 6 t, |Θx− y| 6 t−γ

and requiring (2) to have a non-zero solution z = (x,y) ∈ Zm ⊕ Zn for all suffi-
ciently large t, gives us the uniform analogue of β(Θ), which is called the uniform
Diophantine exponent of Θ and is denoted by α(Θ).

These two quantities measure how well the space

L =
{
z = (x,y) ∈ Rm+n

∣∣∣Θx = y
}

of solutions to the system Θx = y can be approximated with one-dimensional
rational subspaces of Rm+n.

Our aim is to discuss two ways of generalizing the quantities β(Θ), α(Θ) to the
case of approximating L by p-dimensional rational subspaces. One way is to require
(2) to have p linearly independent solutions. This immediately gives us exponents
βp(Θ) and αp(Θ). Another way is to estimate the order of approximation in terms
of the height of the approximating subspace. This approach gives us exponents
bp(Θ) and ap(Θ). Namely, bp(Θ) is the supremum of the real numbers γ such that
the inequality

(3) max
L∈∧1+k(L)

|L|=1

|L ∧ Z| 6 |Z|−γ

has infinitely many nonzero solutions in Z ∈ ∧p(Zm+n), where k = max(0,m− p).
The exponent ap(Θ) is obtained by substituting (3) with

(4) |Z| 6 t, max
L∈∧1+k(L)

|L|=1

|L ∧ Z| 6 t−γ

and requiring (4) to have a non-zero solution Z ∈ ∧p(Zm+n) for all t large enough.
It was shown in [1] that b1(Θ) = β1(Θ) = β(Θ) and a1(Θ) = α1(Θ) = α(Θ),

so the exponents βp(Θ), αp(Θ), bp(Θ), ap(Θ) are indeed a generalization of β(Θ)
and α(Θ).

A very useful point of view at these phenomena is provided by so called para-
metric geometry of numbers devised lately by W.M. Schmidt and L. Summerer
[2], [3]. It connects Θ to a certain one-parametric family of parallelepipeds B(s)
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and studies the asymptotic behaviour of their successive minima with respect to
an appropriately chosen lattice. In order to describe it let us introduce certain
notation.

Let d = m+ n, let Bd
∞ be the unit ball in the sup-norm in Rd, let

B(s) =




eτ1(s) 0 · · · 0

0 eτ2(s) · · · 0
...

...
. . .

...
0 0 · · · eτd(s)


Bd

∞,

where τ1(s) = . . . = τm(s) = s, τm+1(s) = . . . = τd(s) = −ms/n, and let

Λ =

(
Em 0
Θ En

)−1

Zd,

where En, Em are corresponding unity matrices.
Schmidt–Summerer’s exponents are defined as

ψ
p
(Θ) = lim inf

s→+∞

ln(λp(B(s)))
s

, ψp(Θ) = lim sup
s→+∞

ln(λp(B(s)))
s

and

Ψp(Θ) = lim inf
s→+∞

ln

(
p∏

i=1

λi(B(s))
)

s
, ψp(Θ) = lim sup

s→+∞

ln

(
p∏

i=1

λi(B(s))
)

s
,

where λi(B(s)) is the i-th successive minimum of B(s) with respect to Λ.
It was shown in [1] that Schmidt–Summerer’s exponents are connected to the

intermediate Diophantine exponents by the relations

(1 + βp(Θ))(1 + ψ
p
(Θ)) = (1 + αp(Θ))(1 + ψp(Θ)) = 1 +m/n,

(1 + bp(Θ))(κp +Ψp(Θ)) = (1 + ap(Θ))(κp + ψp(Θ)) = 1 +m/n,

where κp = min(p, mn (m+ n− p)).
Our ultimate goal is to describe the existing inequalities between the interme-

diate Diophantine exponents (and hence between Schmidt–Summerer’s exponents)
obtained byW.M. Schmidt in [4], by M. Laurent, Y. Bugeaud in [5], W.M. Schmidt,
L. Summerer in [3] and by the author in [1]. One of the remarkable features of those
inequalities is that they refine in many ways well known transference theorems,
which connect the Diophantine exponents of Θ and Θ⊺.

Among such inequalities are

(d− p− 1)(1 + bp+1(Θ)) > (d− p)(1 + bp(Θ)),

(d− p− 1)(1 + ap+1(Θ)) > (d− p)(1 + ap(Θ))
(5)

holding for p > m, and

(d− p− 1)(1 + bp(Θ))−1
> (d− p)(1 + bp+1(Θ))−1 − n,

(d− p− 1)(1 + ap(Θ))−1
> (d− p)(1 + ap+1(Θ))−1 − n

(6)
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holding for p < m− 1, which refine Dyson’s transference inequality

b1(Θ
⊺) >

nb1(Θ) + n− 1

(m− 1)b1(Θ) +m
.

We also mention the inequalities

b2(Θ) >
b1(Θ) + a1(Θ)

1− a1(Θ)
, a2(Θ) > (1− a1(Θ))−1 − n− 2

n− 1

holding for m = 1 (for the former we must also suppose that L ∩ Zd is not one-
dimensional) and

b2(Θ) >





a1(Θ)− 1

2 + b1(Θ)− a1(Θ)
, if a1(Θ) 6= ∞,

1− a1(Θ)−1

b1(Θ)−1 + a1(Θ)−1
,

and

a2(Θ) >





n− 1

−n− (d− 2)(1− a1(Θ))−1
, if a1(Θ) 6 1,

m− 1

n+ (d− 2)(a1(Θ)− 1)−1
, if a1(Θ) > 1

holding for m > 2. These inequalities combined with (5) and (6) give

b1(Θ
⊺) >





(n− 1)(1 + b1(Θ))− (1 − a1(Θ))

(m− 1)(1 + b1(Θ)) + (1− a1(Θ))
, if a1(Θ) 6= ∞,

(n− 1)(1 + b1(Θ)−1)− (a1(Θ)−1 − 1)

(m− 1)(1 + b1(Θ)−1) + (a1(Θ)−1 − 1)

and

a1(Θ
⊺) >





n− 1

m− a1(Θ)
, if a1(Θ) 6 1,

n− a1(Θ)−1

m− 1
, if a1(Θ) > 1.

Finally, we turn to Schmidt and Summerer’s inequalities

αp 6
βp

1 + β1 − βp
and βp >

αp

1 + αd − αp
.
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The generalized superelliptic equation

Michael A. Bennett

(joint work with Sander Dahmen)

If F (x, y) ∈ Z[x, y] is an irreducible binary form of degree k ≥ 3 then a theorem
of Darmon and Granville implies that the generalized superelliptic equation

F (x, y) = zl

has, given an integer l ≥ max{2, 7−k}, at most finitely many solutions in coprime
integers x, y and z. In our talk, we describe how this result can be extended
to the case where the parameter l is now taken to be variable, for large classes
of cubic forms (and certain forms of higher degree). In the case of irreducible
cubic forms, this provides the first examples where such a conclusion has been
proven. The method of proof combines classical invariant theory, modular Galois
representations, and properties of elliptic curves with isomorphic mod n Galois
representations. In the course of constructing an infinite family of cubic forms
with this property, we are led to explicitly solve an infinite family of Thue-Mahler
equations.
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