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Introduction by the Organisers

The Conference “Analysis and Geometric Singularities” took place at Oberwolfach
from May 6 to May 12, 2012. The general idea of this and past conferences in this
series has been to bring together a disparate collection of researchers with some
common interests, roughly centered around the theme of geometric analysis on
singular spaces. Each one of these meetings has included a more specific theme,
a field the organizers regard as ripe for further development and meriting special
attention by this community. The theme this year was the study of special metrics
on geometric moduli spaces. This fit comfortably within the broader topics of
interest, which included spectral invariants on singular and noncompact spaces,
new directions in index theory, scattering theory and related topics.
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There is very strong interest in this collection of topics from researchers in a
variety of disciplines, and the organizers were not able to include many who had
expressed interest and had been placed on a waiting list. Particularly heartening
was the participation of quite a few very talented and enthusiastic young mathe-
maticians, whose presence testified to the vitality of this field.

Each day of the conference was loosely organized around a different theme,
centered around a somewhat longer survey talk, which was the first talk of the
morning, prearranged well before the meeting. Wednesday morning was reserved
for several shorter talks by the younger participants. The 25 talks that took place
during the week allowed participants to hear about some of the latest advances
by the senior researchers as well as the research projects of the younger ones,
but still left plenty of time for informal interaction. All indications are that new
collaborations were formed, old collaborations were reinforced, and everyone got
a chance to learn about some promising new directions.

Monday’s survey talk, by Werner Müller, dealt with the asymptotic behaviour
of analytic torsion on locally symmetric spaces, with respect to certain sequences
of representations. This was related to the later talk by Jean-Michel Bismut, who
studied the asymptotic behaviour of analytic torsion on increasingly high powers
of a line bundle and the relationship of this to the theory of Toeplitz operators.
Matthias Lesch reported on his new gluing theorem for analytic torsion on spaces
with conic singularities. Tuesday’s survey talk by Roger Bielawski, presented the
current state of knowledge concerning the monopole moduli spaces, their compact-
ifications, and the asymptotics of the natural hyperKähler metric on it. This led
naturally to Sergey Cherkis’ description of his far-reaching generalization in the
theory of bow moduli spaces. Other talks with a distinctly differential geometric
theme included Bernd Ammann’s talk on the behaviour of the Yamabe invariant
under surgery, Sergiu Moroianu’s report on a joint Cauchy problem for Einstein
metrics and parallel spinors and Gilles Carron’s work on rigidity phenomena asso-
ciated to metrics satisfying curvature pinching measured by integral inequalities.
Also similarly themed were the talks by Frederic Rochon on a regularity theorem
for Kähler-Einstein metrics and Spyros Alexakis’ lecture on bubbling phenomena
for a Willmore energy functional. Some of these lectures were also related to
Thursday’s survey talk, by Colin Guillarmou, describing the renormalized volume
functional on Poincaré - Einstein spaces, with particular attention to the three-
dimensional hyperbolic case which has many close connections with Teichmüller
theory. Robin Graham’s talk gave a new conceptual approach to Juhl’s remark-
able explicit formulas for Q-curvature in higher dimensions. Maxim Braverman’s
gave a talk on regularized cohomology of non-compact asymptotically Kähler G-
manifolds. The final survey talk, on Friday morning, was given by Thomas Schick,
who recalled the subject of coarse index theory and its many geometric applica-
tions. Bunke’s presentation of differential algebraic K-theory outlined what seems
to be a remarkably inclusive general framework for studying many index theo-
rems. The talks by Albin and Banagl gave very different viewpoints, Albin’s being
analytic and Banagl’s very topological, on the subject of signature theorems on
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stratified spaces that do not satisfy the Witt hypothesis. Mendoza brought the
audience back to some classical singular elliptic problems. Xianzhe Dai closed this
very successful meeting with a talk on the Bergman kernel on orbifolds. Mostly
on Wednesday morning, but also interspersed through the week, the junior math-
ematicians Gell-Redman, Lapp, Kottke, Rowlett, Vertman and Waterstraat gave
shorter talks on their current research.

The current running through all these talks is the fascinating way with which
topology, analysis and geometry intertwine in this class of problems and how deep
techniques in each of these areas are now being used to make significant progress
in other areas.
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Abstracts

Analytic torsion of locally symmetric spaces

Werner Müller

(joint work with Jonathan Pfaff)

The purpose of this talk is to discuss some recent results concerning the asymp-
totic behavior of the analytic torsion of compact locally symmetric spaces Γ\G/K
with respect to sequences of representations of Γ which are obtained by restriction
of irreducible representations of G to Γ. This is an extension of the work on which
I reported on the last meeting of this conference. For all details we refer to [5].
The results discussed here are expected to have applications to the cohomology of
arithmetic groups as in [6].

To begin with let me recall the definition of the analytic torsion. Let X be a
compact Riemannian manifold of dimension n and let ρ : π1(X) → GL(Vρ) be a
finite-dimensional complex representation of the fundamental group π1(X) of X .
Let Eρ → X be the associated flat vector bundle. Choose a Hermitian metric in
Eρ. Let ∆p(ρ) be the Laplace operator on the space of Eρ-valued p-forms. Let
ζp(s; ρ), Re(s) > n/2, be the zeta function of ∆p(ρ). It is well known that it
admits a meromorphic extension to C which is regular at s = 0. Then the analytic
torsion TX(ρ) ∈ R+ is defined as

logTX(ρ) =
1

2

n∑

p=0

(−1)pp
d

ds
ζp(s; ρ)

∣∣
s=0

.

We note that if dimX is odd and H∗(X,Eρ) = 0, then TX(ρ) is independent of
the metrics on M and Eρ.

Now let X̃ = G/K be a global Riemannian symmetric space of non-positive
curvature. Thus G is a real connected semisimple Lie group with finite center and
of non-compact type, and K is a maximal compact subgroup of G. Let Γ ⊂ G
be a co-compact lattice in G, i.e., Γ is a discrete subgroup of G such that Γ\G is
compact. For simplicity we assume that Γ is torsion free. Then Γ acts properly
discontinuously and fixpoint free on X̃. The quotient X = Γ\X̃ is a compact
locally symmetric manifold. Let τ : G → GL(V ) be a finite-dimensional complex
representation of G. Let Eτ be the flat vector bundle associated to ρ := τ |Γ. It
is isomorphic to the locally homogeneous vector bundle attached τ |K and can be
equipped with a canonical Hermitian fibre metric. Let TX(τ) denote the analytic
torsion with respect to these choices of metrics on X and Eτ , respectively.

Let g be the Lie algebra of G. Let GC be the simply connected Lie group with
Lie algebra g⊗ C. We assume that G ⊂ GC. Let h ⊂ g be a fundamental Cartan
subalgebra. Let θ : G → G denote the Cartan involution. Let τ be an irreducible
representation of G with highest weight λ ∈ h∗

C
. Denote by λθ the highest weight

of the representation τ ◦ θ. Finally, let δ(X̃) = rankC(G) − rankC(K). Then our
main result is the following theorem.
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Theorem 1. (i) Let X̃ be even dimensional or let δ(X̃) 6= 1. Then TX(τ) = 1 for
all finite-dimensional representations τ of G.

(ii)Let X̃ be odd-dimensional with δ(X̃) = 1. Let λ ∈ h∗
C
be a highest weight with

λθ 6= λ. For m ∈ N let τλ(m) be the irreducible representation of G with highest

weight mλ. There exist constants c > 0 and CX̃ 6= 0, which depends on X̃, and a
polynomial Pλ(m), which depends on λ, such that

(0.1) logTX(τλ(m)) = CX̃ vol(X) · Pλ(m) + O
(
e−cm

)

as m→ ∞. Furthermore, there is a constant Cλ > 0 such that

(0.2) Pλ(m) = Cλ ·m dim(τλ(m)) +Rλ(m),

where Rλ(m) is a polynomial whose degree equals the degree of the polynomial
dim(τλ(m)).

Note that (0.1) provides a complete asymptotic expansion for logTX(τλ(m)).
If one is only interested in the leading term, one can use (0.2) which implies that

there exists a constant C = C(X̃, λ) 6= 0, which depends on X̃ and λ, such that

(0.3) logTX(τλ(m)) = C vol(X) ·m dim(τλ(m)) +O (dim(τλ(m)))

as m→ ∞. Now the coefficient of the highest power can be determined by Weyl’s
dimension formula.

For hyperbolic manifolds, we proved the vanishing result (i) of Theorem 1 in
[3, Proposition 1.7]. In general it was first proved by Bismut, Ma, and Zhang [1].
It extends a result of Moscovici and Stanton [2] who showed that TX(ρ) = 1, if

δ(X̃) ≥ 2 and ρ is a unitary representation of Γ. Our proof is different from the
previous proofs and, as we believe, also simpler. It does not rely on the use of
orbital integrals or the Fourier inversion formula.

Part (ii) is a consequence of the following two propositions. The first one
shows that the asymptotic behavior of the analytic torsion with respect to the
representations τλ(m) is determined by the asymptotic behavior of the L2-torsion.

Proposition 2. Let X̃ be odd-dimensional with δ(X̃) = 1. Let λ ∈ h∗
C
be a highest

weight. Assume that λθ 6= λ. For m ∈ N let τλ(m) be the irreducible representation
of G with highest weight mλ. Then there exists c > 0 such that

(0.4) log TX(τλ(m)) = logT
(2)
X (τλ(m)) +O

(
e−cm

)

for all m ∈ N.
This result was first proved in [3] for hyperbolic manifolds. It was also proved

in [1] in the more general context of this paper (see Remark 7.8). Our method of
proof of Proposition 2 follows the method developed in [3].

The key result on which part (ii) of Theorem 1 relies is the computation of the
L2-torsion. The computation is based on the Plancherel formula. It gives
Proposition 3. Let the assumptions be as in Proposition 2. There exists a

constant CX̃ , which depends on X̃, and a polynomial Pλ(m), which depends on λ,
such that

(0.5) logT
(2)
X (τλ(m)) = CX̃ vol(X) · Pλ(m), m ∈ N.
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Moreover there is a constant Cλ > 0 such that

(0.6) Pλ(m) = Cλ ·m · dim(τλ(m)) + O (dim(τλ(m))

as m→ ∞.
Finally, we note that if one specializes the main result of [1], Theorem 1.1, to

the case of analytic torsion of a locally symmetric space, one can also determine
the leading term of the asymptotic expansion of (0.3). This has been carried out
in [1] in the case of hyperbolic 3-manifolds.

If we consider one of the odd-dimensional irreducible symmetric spaces X̃ with

δ(X̃) = 1 and choose λ to be a fundamental weight, the statements can be made
more explicit.

Let X̃ = Spin(p, q)/(Spin(p) × Spin(q)), p, q odd, and X̃ = G/K. Let n :=
(p + q − 2)/2. There are two fundamental weight ω±

f,n which are not invariant

under θ. One has ω−
f,n = (ω+

f,n)θ. It suffices to consider the weight ω+
f,n. For

m ∈ N let τ(m) be the representation with highest weight mω+
f,n. By Weyl’s

dimension formula there exists a constant C > 0 such that

(0.7) dim(τ(m)) = Cm
n(n+1)

2 +O
(
m

n(n+1)
2 −1

)

as m→ ∞. Let X̃d be the compact dual of X̃. Let

(0.8) Cp,q =
(−1)

pq−1
2 2π

vol(X̃d)

(
n

p−1
2

)
.

Corollary 4. Let X̃ = Spin(p, q)/(Spin(p) × Spin(q)), p, q odd, and X = Γ\X̃.
With respect to the above notation we have

log TX(τ(m)) = Cp,q vol(X) ·m dim(τ(m)) +O
(
m

n(n+1)
2

)

as m→ ∞.
The case q = 1 was treated in [3] and the case p = 3, q = 1 in [4]. In the latter

case we have Spin(3, 1) ∼= SL(2,C). The irreducible representation of Spin(3, 1)
with highest weight 1

2 (m,m) corresponds to the m-th symmetric power of the

standard representation SL(2,C) on C2 and we have

− logTX(τ(m)) =
1

4π
vol(X)m2 +O(m).

The remaining case is X̃ = SL(3,R)/ SO(3).
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The signature operator on Cheeger spaces

Pierre Albin

(joint work with Eric Leichtnam, Rafe Mazzeo, and Paolo Piazza)

The intersection homology theory of Mark Goresky and Robert MacPherson as-
signs to each perversity function p and stratified pseudomanifold X̂ a sequence of
groups

IHp
∗ (X̂)

that are invariant under stratified homotopy equivalences. There is a perversity
function q, dual to p, and a non-degenerate intersection product

IHp
∗ (X̂)× IHq

∗(X̂) −→ Q

that generalizes Poincaré-duality of smooth spaces. For a class of spaces, known
as Witt spaces, the two ‘closest’ dual perversity functions m, n give isomorphic
intersection homology groups

IHm
∗ (X̂) ∼= IHn

∗ (X̂)

which then satisfy Poincaré duality.
Jeff Cheeger gave an analytic approach to these groups. Indeed, for an ‘iterated

incomplete edge’ or iie metric on the regular part X of X̂, there are two natural
de Rham complexes: one involving the minimal domain of the exterior derivative,

Dmin(d) = {ω ∈ L2(X ; Λ∗T ∗X) :

∃η ∈ L2(X ; Λ∗T ∗X), (ωn) ⊆ C∞
c (X ; Λ∗T ∗X) s. t. ωn → ω, dωn → η},

and one involving the maximal domain of the exterior derivative,

Dmax(d) = {ω ∈ L2(X ; Λ∗T ∗X) : dω ∈ L2(X ; Λ∗T ∗X)}.
Both of these complexes have finite dimensional cohomology and Cheeger showed
that the latter is the dual of IHm

∗ (X̂) while the former is the dual of IHn
∗ (X̂). On

a Witt space the exterior derivative has a unique closed extension from smooth
compactly supported forms, so these domains coincide.

The purpose of this talk is to report on work in progress extending the results
of Cheeger to non-Witt stratified pseudomanifolds. If a space X̂ is not Witt then
there is a stratum Y with even-dimensional link Z such that

IHn
∗ (Z) 6= {0}.

At every such stratum we choose a splitting

(IHn
∗ (Z))

∗ =W (Z)⊕W (Z)′
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that is orthogonal with respect to an iie-metric and parallel with respect to a
natural flat connection. If there are two such strata, and their closures intersect,
then we demand that the splittings be compatible at the intersection. We call
a compatible collection of splittings a flat system or mezzoperversity. For spaces
with isolated conic singularities, Cheeger showed that a flat system defined a nat-
ural domain for the de Rham operator and that Stokes’ theorem holds for forms
in this domain. We generalize this result to stratified pseudomanifolds.

Theorem (A.-Leichtnam-Mazzeo-Piazza) Let (X̂, g) be a stratified pseudoman-

ifold with a (suitably scaled) iie-metric. To each flat system L on X̂ there is a
naturally associated domain of the exterior derivative and of the de Rham operator

DL(d), DL(d+ δ).

The latter makes d+δ a self-adjoint operator with compact resolvent and induces a
strong Kodaira decomposition on differential forms, the former induces a Fredholm
complex whose cohomology

H∗
L(X̂) = H∗(d,DL(d))

satisfies a Hodge theorem, is invariant under stratified homotopy equivalences, and
is independent of the choice of iie-metric.

Every flat system has a dual flat system so that the corresponding cohomolo-
gies are in duality. We call a flat system that coincides with its dual a Lagrangian
structure. Note that there are topological obstructions (e.g., the signatures of the
links) to the existence of a Lagrangian structure on a stratified pseudomanifold.
We call those spaces that carry Lagrangian structures Cheeger spaces.

Theorem (A.-Leichtnam-Mazzeo-Piazza) Let (X̂, g) be a Cheeger space with a

(suitably scaled) iie-metric. If L is a Lagrangian structure on X̂ then the domains

DL(d), DL(d+ δ)

are invariant under the action of the Hodge star. Thus the cohomology

H∗
L(X̂) = H∗(d,DL(d))

satisfies Poincaré duality, and its signature is the index of the de Rham operator
d+ δ with the involution induced by the Hodge star and the domain induced by L.

Note that there is a topological approach to Lagrangian structures and Poincaré
duality due to Markus Banagl. In work-in-progress with Banagl we are investigat-
ing the relationship between our analytic definition of Lagrangian structures and
his topological definition.

In further work-in-progress, we establish the Novikov conjecture for Cheeger
spaces whose fundamental groups satisfy the strong Novikov conjecture. We also
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show that the signature of a Cheeger space is independent of the choice of La-
grangian structure, following a proof by Markus Banagl of the corresponding topo-
logical statement.

A gluing formula for the analytic torsion on singular spaces

Matthias Lesch

The Cheeger–Müller Theorem [4, 8, 9] on the equality of the analytic and com-
binatorial torsion is one of the cornerstones of modern global analysis. To extend
the theorem to certain singular manifolds is an intriguing open challenge.

The purpose of this project is to provide a framework for attacking the problem.
The main technical achievement is an analytic proof of a gluing formula for the
analytic torsion in the context of singular manifolds.

Let M be a riemannian manifold (boundaryless but not necessarily compact,
also the interior of a manifold with boundary is allowed) and let P 0 be an elliptic
differential operator acting on the sections Γ∞(E) of the hermitian vector bundle
E. Moreover, we assume P 0 to be bounded below; fix a bounded below self–adjoint
extension P ≥ −C > −∞ in L2(M,E).
e−tP is an integral operator with a smooth kernel kt(x, y) which on the diagonal

has a pointwise asymptotic expansion kt(x, x) ∼tց0

∑∞
j=0 aj(x) t

j−dim M
ord P . This

asymptotic expansion is uniform on compact subsets of M and hence may (only)
be integrated over such subsets. It is therefore a fundamental problem to give
criteria which ensure that e−tP is of trace class and such that there is an asymptotic
expansion

(0.1) Tr
(
e−tP

)
∼tց0

∑

Reα→∞
0≤k≤k(α)

aαk t
α logk t.

Operators with this property will, after Connes and Moscovici [5], be addressed
as having discrete dimension spectrum.

A rather generic description of a singular manifold can be given as follows:
suppose that there is a compact manifold M1 ⊂ M and a “well understood”
model manifold U such that M = U ∪∂M1 M1. Typical examples for U which
are reasonably well understood (or geometrically significant) are cylinders, cones,
cusps, or edges.

Without becoming too technical suppose that for PU = P ↾ U and P1 = P ↾M1

(of course suitable extensions have to be chosen for PU and P1) we have proved
expansions Eq. (0.1). Then in terms of a suitable cut-off function ϕ which is 1 in
a neighborhood of M1 one expects to hold:

Principle 1 (Duhamel’s principle for heat asymptotics; informal version). If PU

and P1 are discrete with trace-class heat kernels then so is P and

(0.2) Tr
(
e−tP

)
= Tr

(
ϕe−tP1

)
+Tr

(
(1 − ϕ)e−tPU

)
+O(tN ), as t→ 0+

for all N .
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Thus although the heat kernel is a global operator its short time asymptotic
expansion behaves in a sense local. Principle 1 is a folklore theorem which appears
in various versions in the literature. In [6, Cor. 3.7] we prove a fairly general
rigorous version of it.

Once the asymptotic expansion Eq. (0.1) is established, the meromorphic con-
tinuation of the ζ–function ζ(P ; s) :=

∑
gl∈spec(P )\{0} gl

−s follows via a Mellin

transform argument.
Let us specialize to the de Rham complex. So suppose that we have chosen

an ideal boundary condition (essentially this means that we have chosen closed
extensions for the exterior derivative) (D, D) for the de Rham complex such that
the corresponding extensions ∆j = D∗

jDj + Dj−1D
∗
j−1 of the Laplace operators

satisfy Eq. (0.1). Then we can form the analytic torsion of (D, D)

(0.3) logT (D, D) :=
1

2

∑

j≥0

(−1)jj
d

ds

∣∣
s=0

ζ(∆j ; s).

In terms of the decomposition M = U ∪∂M1 M1 the problem of proving a CM
type Theorem for the singular manifold M decomposes into the following steps.

(1) Prove that the analytic torsion exists for the model manifold U .
(2) Compare the analytic torsion with a suitable combinatorial torsion for U .
(3) Prove a gluing formula for the analytic and combinatorial torsion and

apply the known Cheeger–Müller Theorem for the manifold with boundary
M1.

A gluing formula for the combinatorial torsion is more or less an algebraic fact
due to Milnor [7, Thm. 3.1/3.2]; cf. [6, Appendix]. The following Theorem which
follows from our gluing formula solves (3) under a product structure assumption:

Theorem 2. Let M be a singular manifold M = U ∪∂M1 M1 as described above
and assume that near ∂M1 all structures are product. Then for establishing a
Cheeger-Müller Theorem for M it suffices to prove it for the model space U of the
singularity.

The Theorem basically says that, under product assumptions, one gets step (3)
for free. Otherwise the specific form of U is completely irrelevant. We conjecture
that the product assumption in Theorem 2 can be dispensed with.

The Theorem is less obvious than it sounds since torsion invariants are global
in nature. However, we will show here that under minimal technical assumptions
the analytic torsion satisfies a gluing formula.

To explain the gluing formula let X be a riemannian manifold (not necessarily
compact or complete!). Furthermore, let (F,∇) be a flat bundle with a (not
necessarily flat) hermitian metric hF . We assume furthermore, that X contains
a compact separating hypersurface Y ⊂ X such that in a collar neighborhood
W = (−c, c) × Y all structures are product. In other words X is obtained by
gluing two manifolds with boundary X± along their common boundary Y where
all structures are product near Y .
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We make the fundamental assumption that

(0.4)
we are given ideal boundary conditions (D±, D±) of the twisted de
Rham complexes (Ω•(X◦,±;F ), d) which have discrete dimension
spectrum over U± := X± \W . We put Xcut := X−∐X+.

Using Duhamel’s principle one then shows that we therefore have the following
Hilbert complexes with discrete dimension spectrum: D•(X±;F ) (absolute bound-
ary condition at Y ), D•(X±, Y ;F ) (relative boundary condition at Y ), D(X ;F )
(continuous transmission condition at Y ).

By construction we have the following exact sequences of Hilbert complexes

(0.5) 0 // D•(X−, Y ;F )
�

� α−
// D•(X ;F )

β
// D•(X+;F ) // 0,

(0.6) 0 // D•(X±, Y ;F )
�

� γ±
// D•(X±;F )

i∗±
// D•(Y ;F ) // 0.

Here α± are extension by 0, β is pullback (i.e. restriction) to X+, γ± is the
natural inclusion of the complex D•(X±, Y ;F ) with relative boundary condition
at Y into the complex D•(X±;F ) with absolute boundary condition, and i± :
Y →֒ X± is the inclusion map.

Each of the complexes (0.5), (0.6) induces a long exact sequence in cohomology.
We abbreviate these long exact cohomology sequences by H((X−, Y ), X,X+;F ),
H((X±, Y ), X±, Y ;F ), resp.

The Euler characteristics of the complexes in Eq. (0.5), (0.6) are denoted by
χ(X±, Y ;F ), χ(X±;F ), χ(X ;F ), χ(Y ;F ) etc.

The following Theorem is our main result. It essentially says that Milnor’s
algebraic gluing formula holds for the exact sequences Eq. (0.5), (0.6) of infinite–
dimensional Hilbert complexes.

Theorem 3. For the analytic torsions of the Hilbert complexes D•(X±, Y ;F ),
D•(X±;F ), D•(X ;F ) we have the following formulas:

logT (D•(X ;F )) = logT (D•(X−, Y ;F )) + logT (D•(X+;F ))(0.7)

+ log τ
(
H((X−, Y ), X,X+;F )

)
− 1

2
log 2 · χ(Y ;F ),

logT (D•(X−;F )) = logT (D•(X−, Y ;F )) + logT (D•(Y ;F ))(0.8)

+ log τ
(
H((X−, Y ), X−, Y ;F )

)
,

The blueprint for our proof is a technique of moving boundary conditions due
to Vishik [10] who applied it to prove the Cheeger-Müller Theorem for compact
manifolds with smooth boundary. We emphasize, however, that the technical part
of the present paper [6] is completely independent of (and in our slightly biased
view simpler than) [10]. Also we work with the de Rham complex coupled to an
arbitrary flat bundle F .

We note here that in the context of closed manifolds gluing formulas for the
analytic torsion have been proved in [10], [1], and recently [2]. In contrast our
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method applies to a wide class of singular manifolds. The details of the material
presented here have been published in [6].
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The Cauchy problem for Einstein metrics and for parallel spinors

Sergiu Moroianu

(joint work with Bernd Ammann, Andrei Moroianu)

We investigate under what conditions a Riemannian manifold (M, g) can be locally
embedded as a hypersurface in an Einstein manifold (Z, gz) with prescribed second
fundamental form. A related problem is extending a spinor from M to a parallel
spinor on Z.

Necessary conditions for the first problem are obtained from the Gauss and
Codazzi equations. Assume that (M, g) ⊂ (Z, gZ) is a hypersurface in an Einstein

manifold satisfying RicZ = λgZ . Denote by ν the unit normal vector field along
M and by W ∈ End(TM) the Weingarten tensor defined by

∇Z
Xν = −W (X), ∀ X ∈ TM.

Then after some manipulations we obtain

dTr(W ) + δgW = 0,(0.1)

Scalg +Tr(W 2)− Tr2(W ) = (n− 1)λ.(0.2)
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By using the normal geodesic flow from M , we can identify a neighborhood of M
in Z with a neighborhood of M ×{0} in the cylinder M ×R with metric dt2 + gt,
where gt is a family of metrics on M such that g0 = g. The time derivative of the
Weingarten tensor satisfies

Ẇt = −g−1
t Ricgt +WtTr(Wt)− 2λId.(0.3)

If we now start with M, g,W satisfying the initial conditions (0.1), (0.2), we
can prove that gt exists for small time such that gZ = dt2 + gt is Einstein, under
the hypothesis that the initial data M, g,W are real-analytic. The proof consists
in solving the evolution equation (0.3) using the Cauchy-Kowalewskaya theorem,
and checking that (0.1), (0.2) remain valid for all time. Note that although every
Riemannian Einstein manifold is real-analytic, hypersurfaces threin clearly are not
forced to be real-analytic.

In Lorentzian setting, the above extension result was known since the work of
Choquet-Bruhat [4], and notably the real-analyticity hypothesis is not necessary.

In our Riemannian setting, the initial conditions (0.1), (0.2) are satisfied for g of
constant scalar curvature andW a constant multiple of the identity. The existence
of an Einstein metric gZ would imply that g itself was analytic, since it would be a
constant mean-curvature hypersurface in an analytic Riemannian manifold. Thus
the Cauchy problem in this particular case has the striking property of having a
solution if and only if the initial data is real-analytic. This phenomenon appears
starting in dimension 3 since in dimension 2 every metric is real-analytic.

Let now Z be a spin manifold with a non-zero parallel spinor Ψ. Then Z is
necessarily Ricci-flat, and the restriction of Ψ to M must be a generalized Killing
spinor, in the sense that its restriction Φ := Ψ|M satisfies

∇M
X Φ = 1

2W (X) · Φ, ∀ X ∈ TM.(0.4)

We prove that conversely, every generalized Killing spinor on M with respect to
some symmetric endomorphism field W can be extended to a parallel spinor on a
Ricci-flat manifold Z, with Weingarten tensorW , provided the initial dataM, g,Φ
are real-analytic. In particular, we note that (0.4) implies the initial constraints
(0.1), (0.2) with λ = 0. This result had been obtained in several special cases: if
the stress-energy tensor W of Φ is the identity [2], if W is parallel [5] and if W is
a Codazzi tensor [3].

These two results are contained in a joint paper with Bernd Amman and Andrei
Moroianu [1]. In a separate paper joint with Andrei Moroianu [6] we examine, in
the particular case of Riemannian surfaces (M, g), the existence problem of tensors
W satisfying the constraints (0.1), (0.2) for λ = 0. This question, asked by Schläfli
in 1875, is not solved near points where the Gaussian curvature of g vanishes. We
specialize to trace-free W , hence g should be embedded as a minimal surface in
R3. A necessary condition for this is

K∆gK + g(dK, dK) + 4K3 = 0,(0.5)

whereK is the Gaussian curvature, and ∆ = δgd is the scalar Laplacian. At points
whereK < 0, this is equivalent to the fact that

√
−Kg is a flat metric. Riemannian



Analysis and Geometric Singularities 1503

surfaces whose Gaussian curvature satisfies (0.5) are called Ricci surfaces. In 1895
Ricci has proved that every point x of a Ricci surface has a neighborhood which
embeds isometrically in R3 as a minimal surface, provided that K(x) < 0. We
prove this result in full generality by showing that a Ricci surface can be locally
isometrically embedded either in R3 as a minimal surface or in the Lorentz space
R2,1 as a maximal surface. In particular, the curvature of Ricci surfaces has only
isolated zeros.

As a corollary we show that every hyperelliptic Riemann surface of odd genus
admits a metric which is locally isometrically embeddable in R3 as a minimal
surface.
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Lower bounds for the Yamabe invariant

Bernd Ammann

(joint work with Mattias Dahl, Emmanuel Humbert)

In this talk I gave an overview over a series of articles [1], [2], [3], [4], joint
work with M. Dahl and E. Humbert, about the (smooth) Yamabe invariant. We
have seen for example that the Yamabe invariant of a simply connected compact
manifold of dimension 5 is between 45 and 79. Similar estimates hold for simply
connected compact manifolds of dimension 6, and for 2-connected compact mani-
folds of dimension at least 7 for which the KO∗-valued index of the Dirac operator
vanishes.

Let us give some more details. The conformal Yamabe constant of a compact
n-dimensional Riemannian manifold (M, g0) is defined as

Y (M, [g0]) := inf
g∈[g0]

∫
M scalg dvg

vol(M, g)
n−2
n

= inf
u≥0,u6≡0

∫
M 4n−1

n−2 |du|2g0 + scalg0 u2 dvg0

‖u‖2Lp(M,g0)

with p = 2n/(n − 2). The second characterization also makes sense for non-
compactM , which will be used below. The smooth Yamabe invariant of a compact
manifold M is then defined as

σ(M) := supY (M, [g0])

where the supremum runs over all conformal classes [g0] on M .
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The invariant σ(M) is positive iffM carries a metric of positive scalar curvature.
On the other hand one sees that Y (M, [g0]) is bounded from above by Y (Sn) =
n(n − 1)vol(Sn)2/n, the value of the standard sphere, and thus the same upper
bounds holds for σ(M). One knows the value for σ(M) for M = RP 3, M =
CP 2, compact quotients of hyperbolic 3-space, and few other spaces. The proofs
use Seiberg-Witten theory, the Penrose inequality from general relativity and the
Ricci-flow. However, in general it is hard to calculate σ(M). One even does not
know any compact manifold M of dimension n at least 5 for which one can prove
0 < σ(M) < σ(Sn), although there are plenty of candidates for which such a value
is expected.

In [1] we have proven a formula that estimates the behaviour of σ(M) under
performing surgery atM , namely ifN is obtained by surgery of dimension k ≤ n−3
from M , then

σ(N) ≥ min{σ(M),Λn,k},
where Λn,k > 0 only depends on n = dimM and k.

If k ≤ n− 4 or if n ≤ 6, then the constants Λn,k > 0 can be defined as

Λn,k = inf
c∈[0,1]

Y (Mc), Mc = Hk+1
c × Sn−k−1

where Hk+1
c is the simply connected complete Riemannian manifold with sectional

curvature −c2, thus it is a rescaled hyperbolic space or Euclidean space. The
definition is a bit more involved in the remaining case k + 3 = n ≥ 7. Such
surgery formulas immediately imply that min{σ(M),Λn,k} is a bordism invariant
in a certain sense. In the case k = 0 the result holds for Λn,0 = Y (Sn), i.e.
σ(N) ≥ σ(M) in this case.

In order to get much information about σ(M) there are several things to carry
out: at first one has to obtain explicit lower estimates for Λn,k for as many pairs
(n, k) as possible. This is mainly a complicated analytical problem. As a second
step one has to find lower bounds for the smooth Yamabe invariant or conformal
Yamabe constant of certain building blocks, see below. Then as a third step one
has use bordism theory to prove that a large class of manifolds is obtained from
these building blocks by a finite number of surgeries of dimension k for which we
know a lower bound for Λn,k.

In [2] we found an efficient method for a lower bound for Y (M1 ×M2, [g1+ g2])
in terms of Y (M1, [g1]) and (M2, [g2]) provided that both factors (Mi, gi) have
dimensions ni ≥ 3 and have positive conformal Yamabe constant. Namely

Y (M1 ×M2, [g1 + g2])
n1+n2 ≥ cn1,n2Y (M1, [g1])

n1Y (M2, [g2])
n2

where cn1,n2 is a constant which is “close” to optimal in a sense that we will not
explain here to be short. This result yields a strong explicit positive lower bound
for Λn,k if 2 ≤ k ≤ n− 4.

Another method was developed in [4] which provides a lower bound for Y (Mc)
in terms of Y (M0) = Y (Rk+1 × Sn−k−1). It relies on the volume preserving
diffeomorphism Hk+1

c → Rk+1 which has in polar coordinates the form (r, φ) 7→
(f(r), φ). This diffeomorphism allows us to use the Yamabe minimizer of Mc —
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which exists due to [6] — as a test function defined on Rk+1 × Sn−k−1. As result
we obtain an explicit positive lower bound for Λn,k as soon as there is an explicit
positive lower bound for Y (Rk+1 × Sn−k−1). Luckily such a lower bound was
calculated in [7] for (n, k) = (4, 1), and we are very grateful to Petean and Ruiz,
that they adapted in [8] their method for (n, k) ∈ {(5, 1), (5, 2), (9, 1), (10, 1)}.
Their method can probably be adapted to all dimensions, but these dimensions
play an important role when we apply bordism theory to draw conclusions.

In the second step one should find lower bounds for the smooth Yamabe in-
variant of simple building blocks. Important buidling blocks are total spaces T
of bundles whose fibers are quaternionic projective planes HP 2. Assume that we
have a sequence of metrics gi on such a fixed T , such that all fibers are isometric for
all basepoints and all i. We also assume that the bundle map (T, gi) → (B, aih) is
a Riemannian submersion, where h is a metric on the base B and where ai ∈ R+

tend to ∞. This is often called an adiabatic limit. Then the conformal Yam-
abe constants Y (T, [gi]) converge to Y (HP 2 × Rn−8) and the latter quantity is
positively bounded from below by Obata’s theorem for n = 8, by further work
of Petean in cases n = 9 and n = 10 and by the product formula explained
above for n ≥ 11. These fiber bundles are important as they generate the spin
bordism classes of simply connected manifolds with vanishing index, see [9]. For
simply connected oriented non-spin manifold, CP 2-bundles play a similar role, see
[5]. Another example of an important building block is SU(3)/SO(3) whose bi-
invariant metric gbi is Einstein, and thus Obata’s theorem determines the value of
Y (SU(3)/SO(3), [gbi]) > 0, As a consequence Obata’s theorem yields an explicit
positive lower bound for σ(SU(3)/SO(3)). This manifold is important as it rep-
resents the only non-trivial class in the oriented bordism group in dimension 5.
Combinded with further arguments, in particular results about possible decom-
positions of bordisms into elementary bordisms which correspond to surgeries, we
finally obtain for instance that σ(M) > 45 for any simply connected manifoldM of
dimension 5. In current work we prove an analogous bound for simply-connected
manifolds of dimension 6.

A similar statement holds for 2-connected manifolds with vanishing KO-index
of dimension different from 4, see [4] for details, in particular Table 2 gives explicit
numbers for dimension at most 11.

There are many other conclusions, for example:

• The set {σ(Σ) |Σ is a homotopy-S7} has at most 4 values.
• For many fundamental groups Γ one can show that there is no strictly
decreasing sequence in

{σ(M) |π1(M) = Γ, dimM = n} ∩ [0,min{Λn,1, . . . ,Λn,n−3}].
• Assume that M is a 5-dimensional manifold with 0 ≤ σ(M) < 45. Then
for relatively prime natural numbers r1 and r2 we have σ(#r1M) = σ(M)
or σ(#r2M) = σ(M).

The last application raises the question whether such an M exists, obviously it
would be not simply-connected. As the explicit calculation of σ(M) is very difficult
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and only possible in very rare cases, no such examples are known. It is conjectured
that M = S5/(Z/m), m ≥ 5, provides such an example, namely it is conjectured
that the supremum in the definition of σ(M) is attained by the round metric which
would imply σ(M) = σ(S5)/m2/5 ≈ 78.996/m2/5.
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Compactifications of monopole moduli spaces

Roger Bielawski

Many gauge-theoretic and algebro-geometric moduli spaces come equipped with
natural Riemannian metrics. Examples include moduli spaces of instantons and
monopoles on asymptotically flat manifolds, moduli spaces of Higgs bundles on a
Riemann surface, moduli spaces of representations of quivers, and many others.
These natural metrics often have connections to physics and lead to interesting
questions connected to Hodge theory. In the case of magnetic monopoles on R3,
the unsolved problem is the Sen conjecture, which predicts the dimension of L2-
cohomology of the moduli space of strongly centred SU(2)-monopoles.

We recall that a magnetic monopole on R3 for a gauge group G is given by
a connection A on a principal G-bundle P over R3 and a section Φ of adP (the
Higgs field), which is a local minimum of the Yang-Mills-Higgs energy

∫

R3

|FA|2 + |DAΦ|2.

The finiteness of the energy implies that the Higgs field at infinity takes values in a
fixed adjoint orbit O of G and the induced homology class Φ∗[S2

∞] ∈ H2(O) gives
the magnetic charges of a monopole. In the case of SU(2), the magnetic charge
is a single positive integer, while in the case of SU(N)-monopoles with maximal
symmetry breaking (i.e. when O is a regular orbit), there are N − 1 magnetic
charges.
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Quotienting the space of monopoles by gauge transformations equal to 1 at in-
finity yields the moduli space of framed monopoles. For SU(N)-monopoles with
maximal symmetry breaking, this moduli space carries a natural hyperkähler met-
ric given by the L2-norm of infinitesimal variations of fields orthogonal to gauge
directions [1]. Topologically, these spaces are spaces of based rational maps from
CP1 to the orbit O. In the case of SU(2)-monopoles of charge n, the asymptotic
region of the moduli space Mn has the following description, due to Atiyah and
Hitchin [1], building on an earlier work of Taubes:

Given an infinite sequence of points of Mn, there exists a subsequence mr, a
partition n =

∑s
i=1 ni with ni > 0, a sequence of points xir ∈ R3, i = 1, . . . , s,

such that

(i) the sequence mi
r of monopoles translated by −xir converges weakly to a

monopole of charge ni with centre at the origin;
(ii) as r → ∞, the distances between any pair of points xir , x

j
r tend to ∞ and

the direction of the line xirx
j
r converges to a fixed direction.

We can think of clusters of charge ni with centres at xir receding from one
another in definite directions. This description remain valid for SU(N)-monopoles
with maximal symmetry breaking, if we take into account the fact that we now
have N − 1 magnetic charges (and consequently N − 1 “centres”).

In this talk I shall describe a natural compactificationMn ofMn, corresponding
to the above description of the asymptotics.

In the first instance, an approximation to ∂Mn is the quotient of a fibration over
the unit sphere S3n−1 ⊂ Rn⊗R3 by the symmetric group Σn. The fibre over a point
of S3n−1 where the action of Σn is free is the torus T n (corresponding to phases
of particles), while over a point with a nontrivial isotropy, it is a torus of smaller
dimension. We construct ∂Mn by successively blowing up fixed point sets in S3n−1

and glueing in moduli spaces of centred monopoles of lower charges, in a way that
the phases match. The resulting manifold with corners can be smoothed out and
the compactificationMn is a manifold with boundary. Keeping track of the corners
results in a stratification of ∂Mn. The different strata correspond to boundaries
of regions of Mn, where there centres xir in (ii) above recede from each other
at different rates of speed. We then show that in each such region the monopole
metric is quasi-isometric (modulo coverings) to the product metric of moduli spaces
of monopoles of lower charge. Our hope is that such an approximation of the
monopole metric will be enough to prove the Sen conjecture.

We have a similar compactification of the moduli space of SU(N)-monopoles
with maximal symmetry breaking and magnetic charges m1, . . . ,mN1 . This time
we look at the quotient of a fibration over S3(m1+···+mN1) by Σm1 × . . .ΣmN−1 and
proceed similarly, blowing up and glueing in moduli spaces of SU(N)-monopoles
with lower charges. The quasi-isometric behaviour of the monopole metric in this
case is a work in progress, but we expect that it does not differ greatly from the
SU(2)-case.
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Asymptotic torsion and Toeplitz operators

Jean-Michel Bismut

(joint work with Xiaonan Ma, Weiping Zhang)

The purpose of the talk is to explain results obtained jointly with Xiaonan Ma and
Weiping Zhang [4, 5] on the asymptotic analytic torsion of a compact manifold,
and on the proper use of Toeplitz operators in this context.

1. Introduction

Let X be a compact manifold, let F be a complex flat vector bundle on X , and
let
(
Ω· (X,F ) , dX

)
be the de Rham complex with coefficients in F , with cohomol-

ogy H · (X,F ). Let λ = detH · (X,F ) be the determinant of the cohomology of
F . Let gTX , gF be smooth metrics on TX,F . Let ‖ ‖ be the Ray-Singer metric
on the complex line λ, that one obtains via a spectral invariant of the associated
Hodge Laplacian �X , the Ray-Singer analytic torsion [17], which we will also call
de Rham torsion.

I will limit myself to the case where X is odd dimensional. Then ‖ ‖λ does
not depend on gTX , gF . Given a triangulation K of X , there is an associated

metric ‖ ‖Kλ on λ, that is called the Reidemeister metric. If F is unitarily flat,
the metric ‖ ‖λ does not depend on K. The Ray-Singer conjecture, established by
Cheeger [10] and Müller [14] says that if F is unitarily flat, the Ray-Singer and
Reidemeister metrics coincide. When F is exact, i.e., H · (X,F ) = 0, this gives the
equality of two real numbers, the Ray-Singer torsion and the Reidemeister torsion.
This result was extended by Müller [15] to the case where F is only unimodular.

In the general case, ‖ ‖Kλ is no longer an invariant. A formula relating ‖ ‖λ and

‖ ‖Kλ was given in Bismut-Zhang [8].
Flat vector bundles have odd Chern classes valued in C/Z = R ⊕R/Z. Here,

we shall be concerned with the R components of such classes. Let F be a flat
vector bundle, and let ∇F be the flat connection. If gF is a Hermitian metric

on F , and if ω
(
∇F , gF

)
=
(
gF
)−1 ∇F gF , for k ∈ N, k odd, Tr

[
ωk
(
∇F , gF

)]
is

a closed form whose cohomology class does not depend on gF . Such forms can
be put together in a series of forms c

(
F, gF

)
, whose cohomology class is denoted

c (F ). As explained in [3], the classes c (F ) are the odd Chern classes that were
described above.

If π :M → S is a proper submersion with fibre X , and if F is a complex vector
bundle on M , then π!F = H · (X,F |X) is a Z-graded flat vector bundle on S.
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Let e (TX) be the Euler class of TX . In [3], Lott and I proved a Riemann-Roch-
Grothendieck formula for the above odd classes,

(1.1) c (π!F ) = π∗ [e (TX) c (F )] .

By transgression, given metrics gTX , gF on TX,F , in [3], even forms T on S were
constructed in [3] such that

(1.2) dT = π∗
[
e
(
TX,∇TX

)
c
(
F, gF

)]
− c

(
H · (X,F |X) , gH

·(X,F |X)
)
.

In (1.2), ∇TX is a metric connection on TX that is canonically attached to the

geometric data, e
(
TX,∇TX

)
is the associated Euler form, and gH

·(X,F |X ) is the
metric on H · (X,F |X) that is obtained by identification with the corresponding
fibrewise harmonic forms. The remarkable fact established in [3] is that the com-
ponent T (0) of degree 0 is just the fibrewise Ray-Singer analytic torsion. If X
is odd dimensional, and H · (X,F |X) = 0, equation (1.2) says that T is a closed
form, whose cohomology class is independent of the metric data.

It follows from the above that analytic torsion, and the analytic torsion forms
are part of a theory of the Euler class. Contrary to the Todd class, which is stable,
the Euler class is unstable, which makes de Rham analytic torsion very different
from holomorphic torsion.

2. A family of flat vector bundles

In [6, 7], Vasserot and myself have studied the asymptotics as p → +∞ of
the holomorphic torsion of Lp, where L is a positive line bundle, and also of the
symmetric powers of a positive vector bundle F . This last example was treated
by the same techniques as in the case of a line bundle, by viewing the symmetric
powers as the direct image of the powers of the canonical line bundle on the
projectivization P (F ∗).

We will adopt the same point of view as in [7] in the context of de Rham torsion.
For simplicity, we will only consider the case of one single odd dimensional compact
fibre X , but the results of [4, 5] also apply to the case of analytic torsion forms.

Let G be a Lie group, let p : PG → X be a flat G-bundle. Let N be a compact
Kähler manifold, let L be a positive line bundle on N . We assume that G acts
holomorphically on (N,L). Let N = P ×G N be the obvious bundle with fibre N
on X , and let q : N → X be the corresponding projection. The line bundle L on
N induces a corresponding line bundle on N , that is still denoted L.

For p ∈ N, G acts on H(0,0) (N,Lp). Set

(2.1) Fp = PG ×G H
(0,0) (N,Lp) .

For any p ∈ N, Fp is a flat vector bundle on X .
Let gL be a Hermitian metric on L over N , so that the corresponding fibrewise

(1, 1) form c1
(
L, gL

)
is positive. The flat connection on PG induces a correspond-

ing flat covariant differentiation operator ∇L
H on L in horizontal directions with

respect to the flat connection on PG. Let ω be the section of q∗T ∗X that is given
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by ω =
(
gL
)−1 ∇L

Hg
L. In the rest of the talk, we will say that gL is nondegenerate

if ω does not vanish on N .
When G is a reductive group, the nondegeneracy assumption takes a simple

form. Let K be a maximal compact subgroup, let g be the Lie algebra of G, and
let g = p ⊕ k be a Cartan decomposition. Let G/K the corresponding symmetric
space. There exists a smooth section of the bundle P ×G G/K on X . Let PK be
the corresponding reduction of P to K. Let θg denote the g-valued connection
1-form on PG, and let θg = θp + θk be its restriction to PK , where θp, θk are the
components of θg in p, k. Then θk is a connection form on PK .

Let U be the compact form of G, and let u = ip⊕k be its Lie algebra. We assume
that U acts holomorphically on N,L and preserves metrics gTN , gL on TN,L. Let
µ : N → u∗ be the associated moment map. If u ∈ u, if LU is the corresponding
Lie derivative operator acting on C∞ (N,L), if ∇L is the holomorphic Hermitian
connection on L, then

(2.2) LU = ∇L
U − 2iπ 〈µ, u〉 .

Under the above assumptions, the line bundle L descends to a Hermitian line
bundle on N , and µ descends to a map µ : N → PK ×K u. Then 〈µ, iθp〉 is a
section of q∗T ∗X . Then gL is nondegenerate if and only if this section does not
vanish on N .

3. Toeplitz operators

Let gTN , gL be Hermitian metrics on TN,L. We still assume that c1
(
L, gL

)
is

positive on N . By Kodaira’s vanishing, for p ∈ N large enough, H(0,i) (N,Lp) van-
ishes for i > 0. We equip C∞ (N,Lp) with the obvious L2 Hermitian product in-
duced by gTN , gL. Let Pp be the orthogonal projection operator from C∞ (N,Lp)

on H(0,0) (N,Lp). If f ∈ C∞ (N,C), set

(3.1) Tf,p = PpfPp.

Operators like Tf,p are called Toeplitz operators. The theory of Toeplitz operators
was developed by Boutet de Monvel and Guillemin in [9].

We equip Fp with the metric gFp induced by the Hermitian metric C∞ (N,Lp).
The following important result was established in [5].

Proposition 3.1. If gL is nondegenerate, then for p ∈ N large enough, H · (X,Fp) =
0. There exist C > 0, C′ > 0 such that if λp is the lowest eigenvalue of the Hodge
Laplacian �X

p acting on Ω· (X,Fp) that is associated with gTX , gFp, then

(3.2) λp ≥ Cp2 − C′.

Proof. We give an idea of the proof, which uses Toeplitz operators. TheWeitzenböck
formula for �X

p can be written in the form

(3.3) �X
p = −∆X,u

p +
1

4

∣∣ω
(
∇Fp , gFp

)∣∣2 + . . . .
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In (3.3), if e1, . . . , en is an orthonormal basis of TX , then

(3.4)
∣∣ω
(
∇Fp , gFp

)∣∣2 =

n∑

i=1

ω2
(
∇Fp , gFp

)
(ei) .

The idea is to express ω
(
∇Fp , gFp

)
as a Toeplitz operator. Observe that C∞ (N,Lp)

is a flat Hermitian vector bundle on X . Then ω
(
∇Fp , gFp

)
can be easily expressed

in terms of ω. Also, one has the easy equation,

(3.5) ω
(
∇Fp , gFp

)
= Tω(∇C∞(N,Lp),gC∞(N,Lp)),p.

When G is reductive, in [5], explicit formulas are given for the composition of two
such operators. In general, results of Ma-Marinescu [11] are used to show that as
p→ +∞,

(3.6)
1

p2

∣∣ω
(
∇Fp , gFp

)∣∣2 = T|ω|2,p +O (1/p) ,

from which the proposition is easily derived. �

4. Asymptotic torsion

Bergeron and Venkatesh [1] have initiated the study of the asymptotics of an-
alytic de Rham torsion under a tower of coverings of a locally symmetric space.
Müller [16] studied the asymptotic torsion of a 3-dimensional locally symmetric
space Γ \ G/K associated with the reductive group G = SL2 (C), equipped with
the family of flat vector bundles Γ \

(
G×K Sp

(
C2
))
, where Sp

(
C2
)
denote the

p-th symmetric power of C2.
Now we will explain the results obtained in [4, 5] on the asymptotics of the

analytic torsion of X , under the same assumptions as in section 3. Also we assume
the metric gL to be nondegenerate. Set n = dimCN . Let o (TX) be the orientation
bundle of TX . Let Tp be the analytic torsion for Ω· (X,Fp). The main result of
[4, 5] is as follows.

Theorem 4.1. There exists an explicitly locally computable smooth section W of
Ωn (o (TX)) such that as p→ +∞,

(4.1) p−n−1Tp =

∫

X

W +O (1/p) .

Observe that since analytic torsion is not sensitive to orientation, W is nec-
essarily a section of o (TX), and has to be related to the Euler class in some
way.

Let us give a formula for W . Let q be the projection N → X . Set θ = − 1
2ω.

Let ∇TX be the Levi-Civita connection on TX . Let T̂X be another copy of TX ,

and let θ̂ be the section of q∗T̂X that corresponds to θ. If m = dimX , let ψ be the

m− 1-form on the total space of T̂X \ 0 that transgresses the Euler form of T̂X.

In the sequel, we view θ as a 1-form on N , and θ̂∗ψ as a m − 1 form on N . Let
∇L be the unitary connection on L over N that coincides with the holomorphic
Hermitian connection along the fibres N , and with the flat connection on L made
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unitary in horizontal directions of N with respect to the flat connection. Let
c1
(
L, gL

)
denote the corresponding first Chern form of L on N .

Then, by [5], we have the identity

(4.2) W = q∗
[
θ
(
θ̂∗ψ

)
exp

(
c1
(
L, gL

))]
.

Equation (4.2) for W does not reveal explicitly the many hidden properties of∫
X
W , which makes this expression compatible to the functorial properties of an-

alytic torsion. In [5], W is obtained by a direct construction, and some of the
hidden properties are verified directly.

In [5], when X = Γ \ G/K is a locally symmetric space associated with a
reductive group G, and the vector bundles Fp come from representations of G,
another approach to the above asymptotics is obtained by evaluating the orbital
integrals that are part of the definition of analytic torsion via heat kernels using the
explicit formulas of [2]. In particular the vanishing results of Moscovici-Stanton
[13] are shown to be still valid for such vector bundles. Moreover, in [5], we show
that the asymptotics of the analytic torsion of X is essentially the same as the
asymptotics of the L2 analytic torsion of G/K with coefficients in vector bundles
like Fp (corrected by the volume of X) up to exponentially small terms. From
the point of orbital integrals, only the orbit of the identity in G is asymptotically
relevant.

Let U be the compact form of G, let λ be a weight for an irreducible represen-
tation of U , and let N be the coadjoint orbit of λ. Let L be the canonical line
bundle on N such that H(0,0 (N,Lp) is just the irreducible representation of U
with maximal weight pλ. Let T, TU be maximal tori in K,U such that T ⊂ TU ,
and let t, tU be their Lie algebras. We may and we will assume that λ ∈ t∗U . Let
WU be the Weyl group of U . It is shown in [5] that gL is nondegenerate if and
only if the image of λ by WU does not intersect t∗.

5. The analysis of asymptotic torsion

The analysis which is needed in [5] to study the asymptotic analytic torsion re-
veals some form of fight between the base X and the fibre N . In this fight, the fibre
wins. While the base has essentially nothing to offer except the Euler form (which
vanishes here. . . ) and its transgression, the fibre N has all the richness associated
with the Todd class, Borel-Weil theory and geometric quantization. Ultimately
Getzler rescaling on the basis introduces the sort of Berezin integrals that appear
in Mathai-Quillen’s construction of the form ψ [12], while the asymptotic analysis
along the fibre ultimately involves the algebra of Toeplitz operators, and a form
of coordinate rescaling along the fibre G of the principal bundle PG. These two
kinds of rescaling fit together nicely.
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Optimal integral curvature pinching

Gilles Carron

(joint work with Vincent Bour)

Our paper [3] is motivated by the following nice result of M. Gursky ([7]):
Theorem :Let (M4, g) be an oriented 4 manifold with positive Yamabe invariant:

i) If
∫
M

|R̊ic|2dvg ≤ 1
12

∫
M

scal2gdvg then either the first Betti number b1(M
n)

of M vanishes or (M, g) is conformally equivalent to a quotient of the
Riemannian product R× S3.

ii) If
∫
M |Wg|2 dvg ≤ 1

24

∫
M scal2gdvg then either the second Betti number

b2(M
n) of M vanishes or (M, g) is conformally equivalent to the complex

projective plane P2(C).
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If (Mn, g) is a Riemannian manifold of dimension n > 2, then its Yamabe
invariant is defined by :

Y (M, g) := inf
ϕ∈C∞

0 (M)

∫
M

[
4(n−1)
n−2 |dϕ|2 + scalgϕ

2
]
dvg

(∫
M
ϕ

2n
n−2 dvg

)n−2
n

When u ∈ C∞(M), then it is well known that Y (M, g) = Y
(
M, e2ug

)
, hence

the Yamabe invariant only depends on the conformal class of the metric: [g] =
{eug, u ∈ C∞(M)} . When M is closed, the Yamabe invariant has been intro-
duced in order to search for a metric with constant scalar curvature in the confor-
mal class of g. The conclusion of the Yamabe program, completed by H. Yamabe,
N. Trudinger, T. Aubin and R. Schoen, is that we can always find a metric g̃ ∈ [g]
conformally equivalent to g such that:

scalg̃ =
Y (Mn, [g])

vol(Mn, g)
2
n

.

and is called a Yamabe minimizer.
In fact in dimension 4, the condition 1

∫

M

|R̊ic|2dvg ≤ 1

12

∫

M

scal2gdvg

is conformally invariant. Indeed in dimension 4, the Q-curvature of Paneitz is
defined by :

Qg =
1

2

(
1

3
∆gscalg +

1

12
scal2g − |R̊ic|2

)

satisfies the following conformal change law: if g̃ = e2ug : Pgu + Qg = Qg̃e
4u;

where Pg = ∆2
g + δ

(
2
3 scalg − Ric

)
d is the Paneitz operator. Because Pg is self

adjoint and Pg(1) = 0 we easily get :
∫

M

Qgdvg =

∫

M

Qg̃dvg̃ ,

hence the curvature condition i) is equivalent to
∫
M Qgdvg ≥ 0.

We have found another proof of this result that does not used the study of
the Paneitz curvature. We give now the main argument of our new proof of the
above result i): assume that the Yamabe invariant is positive, then we can choose
a Yamabe minimizer metric in the conformal class i.e. we suppose that the scalar
curvature is constant

scalg = Y (M, [g])

and the volume is one, in particular ,we get the Sobolev inequality : ∀ϕ ∈ C∞(M):

Y (M, [g])‖ϕ‖2L4 ≤
∫

M

[
6ϕ∆ϕ+ scalgϕ

2
]
dvg

If the first Betti number of M is not zero b1(M) 6= 0, then we can find a non
zero harmonic 1 form ξ: dξ = δξ = 0. Using the Bochner inequality and the

1Recall that the Ricci trace free tensor R̊ic is defined by R̊ic = Ricci− 1

n
scalgg.
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refined Kato inequality ([2],[4]), we know that the function ϕ := |ξ| 23 satisfies the
inequation

∆ϕ ≤ −2

3
Ric−ϕ

Where Ric− is the lowest eigenvalue of the Ricci tensor, by definition

Ric− =
1

4
scalg + λ

where λ is the lowest eigenvalue of the Trace less Ricci tensor R̊ic, and it is easy
to show that

|λ|2 ≤ 3

4
|R̊ic|2

Hence we get

∆ϕ+
1

6
scalgϕ ≤ 1√

3
|R̊ic|ϕ

If we enter this estimate in the above Sobolev inequality, we obtain

Y (M, [g]) ‖ϕ‖2L4 ≤ 6√
3

∫

M

|R̊ic|ϕ2dvg ≤ 2
√
3

(∫

M

|R̊ic|2dvg
) 1

2

‖ϕ‖2L4

But ‖ϕ‖2L4 6= 0 by hypothesis and because g is a Yamabe minimizer with unit
volume, we also have Y (M, [g]) = ‖scalg‖L2 eventually we have obtained :

(∫

M

scal2gdvg

) 1
2

≤
√
12

(∫

M

|R̊ic|2dvg
) 1

2

.

That is to say we have shown that if (M4, g) is a closed Riemannian manifold
with positive Yamabe invariant and non vanishing first Betti number then

∫

M

Qgdvg ≤ 0.

Analyzing the equality case in all the above inequalities, we can show that if
moreover

∫
M
Qgdvg = 0 then (M, g) is conformally equivalent to a quotient of

the Riemannian product R × S3. In fact our argument is quite general and for
example, we obtained the following analogue of the second part of the theorem of
Gursky in dimension 6:
Theorem : If (M6, g) is a compact Riemannian manifold with positive Yamabe
invariant Y (M6, [g]) > 0 and such that

‖Wg‖L3 ≤ 1

2
√
10
Y (M6, [g]),

then

• either its third Betti number b3(M
6) vanishes,

• or M6 is conformally equivalent to a quotient of the product of two 3-
dimensional round spheres: aS3 × bS3.
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In fact, A. Chang, M. Gursky and P. Yang proved in [5, 6] that when
∫

M

|Wg|2dvg +
1

2

∫

M

|R̊icg|2dvg <
1

24

∫

M

scal2gdvg,

then the manifold is diffeomorphic to a quotient of the round sphere S4. The
result of M. Gursky already implied that such a manifold is a rational homology
sphere. In [1], the first author has been able to recover part of this beautiful result
by using the gradient flow of some quadratic curvature functional. In order to
analyze the formation of singularities for such gradient flows, it is necessary to
have integral pinching results for non-compact manifolds. We have obtained the
following extension of the first part of Gursky’s theorem to non-compact manifolds
and we hope that it should be useful to analyze these singularities
Theorem : Let (M4, g) be a complete non-compact Riemannian manifold with pos-
itive Yamabe invariant. Assume that for some p > 2, the lowest eigenvalue of the
Ricci curvature satisfies Ric− ∈ Lp. If∫

M

|R̊ic|2dvg ≤ 1

12
Y 2(M, [g]),

then

• either H1
c (M,Z) = {0} and in particular M has only one end.

• Or (Mn, g) or one of its two-fold covering is isometric to:
(
S3 × R, α cosh2(t)

(
h+ (dt)2

))
.
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Asymptotics of complete Kähler metrics

Frédéric Rochon

(joint work with Zhou Zhang)

This report is on a joint work with Zhou Zhang [6] on the asymptotic behavior at
infinity of complete Kähler metrics on quasiprojective manifolds. We will restrict
our attention to quasiprojective manifolds X taking the form X = X \D, where
X is a smooth projective manifold of dimension n and D is a divisor with normal
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crossings, that is, the irreducible components D1, . . . , Dℓ of D are smooth and
intersect transversely. Let L→ X be a positive holomorphic line bundle and hL be
a choice of Hermitian metric inducing a positive curvature form. For i = 1, . . . , ℓ,
let also si ∈ H0(X ; [Di]) be a choice of section such that s−1

i (0) = Di and let

‖ · ‖Di
be a choice of Hermitian metric for [Di]. From an idea of Carlson and

Griffiths [3, Proposition 2.1], we then know that for ǫ > 0 sufficiently small, the
(1, 1)-form

(0.1)

ω =
√
−1ΘL +

√
−1 ∂∂ log

(
ℓ∏

i=1

(− log ǫ‖si‖2Di
)2

)

=
√
−1ΘL + 2

√
−1

ℓ∑

i=1

(
ΘDi

log ǫ‖si‖2Di

)

+ 2
√
−1

ℓ∑

i=1

(
(∂ log ǫ‖si‖2Di

) ∧ (∂ log ǫ‖si‖2Di
)

(log ǫ‖si‖2Di
)2

)
.

is the Kähler form of a complete Kähler metric gω of finite volume on X . The
metric gω is the prototypical example of an asymptotically tame polyfibred cusp
metric. When KX + [D] > 0, we can take L = KX + [D] to be our positive
holomorphic line bundle. From the work of Yau, Cheng and Yau, Kobayashi,
Tsuji, Tian and Yau and Bando [2], we know that there exists a Kähler-Einstein
metric gKE bi-Lipschitz to gω. The Kähler form of the Kähler-Einstein metric
gKE is of the form ωKE = ω +

√
−1 ∂∂u with the function u obtained by solving

the complex Monge-Ampère equation

(0.2) log

(
(ω +

√
−1∂∂u)n

ωn

)
− u = F,

for some appropriate function F . Alternatively, the Kähler-Einstein metric can be
obtained by using the Ricci flow. Indeed, as shown in [4] or [5, Example 6.18], the
Ricci flow with initial metric gω exists for all time and converges to the Kähler-
Einstein metric gKE.

To study the asymptotic behavior of such metrics, we introduce a compactifi-
cation of X by a manifold with corner. When the divisor D is smooth, we obtain
such a compactification by blowing up D in X in the sense of Melrose,

(0.3) X̂ = [X;D] = X \D
⊔
S(ND),

where S(ND) is the unit normal bundle of D in X. The set X̂ is naturally

a manifold with boundary ∂X̂ = S(ND). In particular, its boundary has an

induced circle fibration Φ̂ : ∂X̂ → D. If ρ ∈ C∞(X̂) is a choice of boundary

defining function for ∂X̂, that is, ρ−1(0) = ∂X̂, ρ is positive on X̂ \ ∂X̂ and the

differential dρ is nowhere zero on ∂X̂, then the compactification we are looking

for, which we call the logarithmic compactification X̃ of X , is obtained by

declaring it homeomorphic to X̂ with ring of smooth functions C∞(X̃) generated

by C∞(X̂) and the function x = −1
log ρ , assuming without loss of generality that
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ρ is always less than 1. The function x ∈ C∞( widetildeX) is then a boundary

defining function for X̃.
On X , we can consider two natural spaces of smooth functions, one being the

restriction of C∞(X̃) to X , and the other being the Cheng-Yau Hölder ring C∞
fc(X)

of bounded smooth functions having their covariant derivatives with respect to the
metric gω bounded on X . Since neither of them is contained in the other, we can
also consider the space given by their intersection,

(0.4) C∞
fc(X̃) = C∞(X̃) ∩ C∞

fc(X).

Since a function in C∞
fc(X̃) is in particular in C∞(X̃), it has a Taylor series at ∂X̃.

The key fact motivating the introduction of the space C∞
fc(X̃) is that requiring the

function to be in C∞
fc(X) forces the Taylor series of f at ∂X̃ to be of the form

(0.5) f ∼
∞∑

k=0

Φ̃∗(ak)x
k, ak ∈ C∞(D),

where x is choice of boundary defining function for ∂X̃ in X̃. As a consequence,

a function f ∈ C∞
fc(X̃) has a well-defined restriction to D and its full asymp-

totic behavior at infinity is completely described by its Taylor series at ∂X̃. The

space C∞
fc(X̃) provides the right framework to describe the asymptotic behavior of

complete Kähler metrics on X bi-Lipschitz to gω.

Using the logarithmic compactification X̃ and the space C∞
fc(X̃), our first result

concerns the evolution of the asymptotic behavior of Kähler metrics under the
Ricci flow, answering a question of [5]. A similar result holds when the divisor D
has normal crossings.

Theorem 4. If gω is an asymptotically tame polyfibred cusp Kähler metric on X
and ω̃t = ωt+

√
−1∂∂u(t, ·), with ωt = −Ric(ω)+ e−t(ω+Ric(ω)), is the solution

to the normalized Ricci flow for t ∈ [0, T ) with

∂u

∂t
= log

(
(ωt +

√
−1∂∂u)n

ωn
0

)
− u, u(0, ·) = 0,

then gω̃t
is an asymptotically tame polyfibred cusp Kähler metric and u(t, ·) ∈

C∞
fc(X̃) for all t ∈ [0, T ).

Our general strategy to prove this result is to restrict the evolution equation of
the potential function to D and solve it to get a candidate uD for what should be
the restriction of u to D. Using a suitable decay estimate proved using a barrier
function and the maximum principle, we then check uD is indeed the restriction
of u to D. We can then proceed recursively in the same fashion to build up the
whole Taylor series of u at D.

From Theorem 4, we would naively expect the Kähler-Einstein metric to be also
an asymptotically tame polyfibred cusp Kähler metric. When dimCX = 1, this is
indeed the case as described in [1]. However, when dimCX > 1 and the divisor D
is smooth, this is no longer the case as our next result shows.
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Theorem 5. Suppose the divisor D is smooth and KX + [D] > 0. Let u be the

solution to the complex Monge-Ampère equation (0.2) so that ωKE = ω+
√
−1∂∂u

is the Kähler form of the Kähler-Einstein metric gKE bi-Lipschitz to gω. Then
there exists an index set E ⊂ [0,∞)×N0 such that u has an asymptotic expansion

at ∂X̃ of the form

u ∼
∑

(z,k)∈E

Φ̃∗(az,k)x
z(log x)k, az,k ∈ C∞(D).

Moreover, the index set E is such that

(z, k) ∈ E, z ≤ 1 =⇒ (z, k) ∈ {(0, 0), (1, 0), (1, 1)}.

We also have a topological criterion determining when such logarithmic term
actually occurs. In complex dimension 2, this criterion is particularly simple to
describe: there is a term x log x in the asymptotic expansion of u if and only if
the (complex) normal bundle of D in X is non-trivial. Thus, an easy example
of a Kähler-Einstein metric with such a logarithmic term is obtained by taking
X = CP2 with D ⊂ CP2 a smooth curve of degree at least 4. This can also be
used to construct an example where D has normal crossings and the solution u to

the complex Monge-Ampère equation is not in C∞
fc(X̃).
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Geometry of Bow Moduli Spaces

Sergey Cherkis

Kronheimer and Nakajima [1] constructed Yang-Mills instantons on Asymptot-
ically Locally Euclidean (ALE) spaces in terms of quivers. The moduli spaces
of such instantons are quiver varieties. We formulate a generalization of this
construction [2] delivering Yang-Mills instantons on Asymptotically Locally Flat
(ALF) spaces. Our construction is formulated in terms of bows. Bows generalize
quivers and provide convenient description of instanton moduli spaces. Each bow
representation has a moduli space. We claim it to be isomorphic to the corre-
sponding moduli space of instantons.
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All ALE spaces were shown by Kronheimer to be hyperkähler resolutions of
orbifolds R4/Γ of the flat four-space (with the finite group Γ ⊂ SU(2)). These
are complete hyperkähler spaces with quartic volume growth. ALF space, on the
other hand, are complete kyperkähler manifolds with cubic volume growth. A
prototypical example of an ALE space is R4, while a prototypical example of an
ALF space is the Taub-NUT space, which has the metric

(0.1) ds2 =
1

4



(
l +

1

|~x|

)
d~x2 +

1(
l + 1

|~x|

) (dτ + ω)2


 .

The Taub-NUT space here is viewed as a circle fibration over R3 ∋ ~x, with τ ∼
τ + 4π being the coordinate along the fiber. The one form ω on the base satisfies
dω = ∗3d 1

|~x| , and the positive real parameter l determines the asymptotic size of

the fiber. (For l = 0 the metric of Eq. (0.1) is the metric on flat R4.)
We associate to the Taub-NUT space a simplest bow of Fig. 1.

b10

b01

−l/2 l/2

Figure 1. A Taub-NUT Bow Diagram.

Instantons on this space are connections on Hermitian bundles with self-dual
curvature and finite action. Each topological type of instantons on the Taub-NUT
space corresponds to a bow representation. An SU(2) instanton, for example,
corresponds to the bow representation of Fig. 2. This bow representation was

IL IR

B10

B01

JL JR

WL WR

−l/2 l/2
−λ λ

Figure 2. The bow representation for an SU(2) Instanton on
the Taub-NUT.
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used to construct all self-dual connections with instanton number one in [3] and
to compute the metric on the instanton moduli space in [4]. This moduli space
metric in fact has a rather simple form:

ds2 =

(
l+

1

2R1

)
d~R2

1 − 4λd~R1d~r ++

(
2λ+

1

r

)
d~r2(0.2)

+

(
1
2dθ − 1

4ωR1

)2

l − 2λ+ 1/r + 1/(2R1)
+

1

4

(dα+ ωr)
2

2λ+ 1/r
,(0.3)

where θ ∼ θ + 4π, α ∼ α+ 4π and the one-forms ωR1 and ωr on the three-spaces

parameterized, respectively, by ~R1 and ~r, satisfy dωR1 = ∗d(1/R1), dωr = ∗d(1/r).
For a most general instanton moduli space, we employ [2] the bow formulation to

compute the asymptotic metric on it using the techniques developed by Bielawski
[5].

Using the (conjectural) geometric Langlands correspondence for complex sur-
faces [6, 7, 8] one can organize of L2 cohomology of the moduli spaces of instantons
with gauge group G into integrable highest weight representations of the Lang-
lands dual affine group LGaff . For instantons on ALF spaces such correspondence
follows from the existence of six-dimensional super-conformal (0,2) field theories
[9]. This gives a prediction for the number of L2 harmonic forms on the instanton
moduli spaces. We verify this prediction for low instanton number moduli spaces.
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Zeta-regularized Determinants of Laplacians on Polygons

Julie Rowlett

(joint work with Clara Aldana and Werner Mueller)

The main result presented here is Theorem 6 which gives an explicit formula for
the variation of the derivative of the spectral zeta function at zero for any convex
polygonal domain. In forthcoming work [1], we shall use this to derive an explicit
formula for the zeta-regularized determinant of the Laplacian. Let Ω ⊂ R2 be a
convex polygonal domain with n sides. The Euclidean Laplacian ∆Ω on Ω with
Dirichlet boundary condition has eigenvalues

0 < λ1 < λ2 ≤ λ3 ≤ . . .

By Weyl’s Law, the spectral zeta function

ζΩ(s) :=

∞∑

k=1

λ−s
k

is holomorphic on the half plane {Rs > 1}. The heat trace

TrHΩ(t) =

∞∑

k=1

e−λkt,

is related to the zeta function by

(0.1) ζΩ(s) =
1

Γ(s)

∫ ∞

0

ts−1TrHΩ(t)dt.

The heat trace admits an asymptotic expansion as time tends to zero computed
in [3]

(0.2) TrHΩ(t) ∼
|Ω|
4πt

− |∂Ω|
8
√
πt

+

n∑

i=1

π2 − α2
i

24παi
+O(e−c/t).

Above, αi is the interior angle at the ith vertex, and |Ω|, |∂Ω| denote respectively
the area of Ω and the length of the boundary ∂Ω. We note that the constant c is
bounded below by a constant computed in [5].

It follows from (0.1), (0.2), and the meromorphic continuation of the Gamma
function that ζ admits a meromorphic continuation to the complex plane which is
regular at 0. The zeta-regularized determinant is defined to be

det(∆Ω) = e−ζ′
Ω(0).

It is straightforward to compute that ζ(0) is the coefficient of t0 in (0.2). Conse-
quently, for λ ∈ (0,∞), the zeta function transforms under scaling of the domain
by λ as follows

ζ′λΩ(0) = ζΩ(0) logλ+ ζ′Ω(0).

The determinant therefore scales by

det(∆cΩ) = c−ζΩ(0) det(∆Ω).
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For smoothly bounded domains, the coefficient of t0 in the small-time asymptotic
expansion of the heat trace is a topological invariant, namely one sixth of the Euler
characteristic [3]. Therefore, the extrema of the determinant are well defined on
convex smoothly bounded domains of fixed area. For polygons, this is no longer
the case.

Lemma 1. Let R be a convex n-gon with all angles equal, and let P be a convex
n-gon whose angles are not all equal. Assume R and P both have unit area. Then,

(1) ∃ a > 0 such that det (∆aR) > det (∆aP ),
(2) ∃ b > 0 such that det (∆bR) < det (∆bP ),
(3) ∃ c > 0 such that det (∆cR) = det (∆cP ).

The proof is a straightforward calculation and is left to the reader. �

We are therefore motivated to define a spectral invariant which is well-defined
on the moduli space of convex n-gons.

Proposition 0.1. Let Mn be the moduli space of convex n-gons, which is the
space of all similarity classes of convex n-gons. Then, the following function is
well defined on Mn.

f(P ) = Z ′
P (0)−

1

2
ZP (0) logArea(P ), P ∈ Mn.

For more details, see [1].

1. Preliminary variational formulae

Consider a conformal variation of the Euclidean metric g 7→ e2σg, where σ is
a smooth function. A computation analogous to those in [4] gives the following
variational formula for ζ′(0),

(1.1) δζ′(0) = −γδζ(0) + C(σ),

where γ is Euler’s constant, γ = Γ′(1), and C(σ) is the constant term in the trace
of 2δσH . The coefficients in the short-time asymptotic expansion of the heat trace
(0.2) can be computed by integrating a corresponding local expansion defined by
the curvature and its derivatives [3]. To compute C(σ), we may integrate the
product of 2δσ with the local heat trace expansion. Since the curvature vanishes
identically away from the corners, only the corners contribute to C(σ). We may
therefore compute the contribution to C(σ) from each vertex and sum over the
vertices.

A fixed half-strip with the standard Euclidean metric,

T = (−∞, 0]x × [0, 1]y, gEucl = dx2 + dy2,

can be conformally mapped onto the sector

S = (0, α−1eλ]r × [0, α]φ, gEucl = dr2 + r2dφ2 = e2σ(dx2 + dy2),

where the coordinates and conformal factor σ are

y =
φ

α
, x =

log(rα) − λ

α
, σ = xα + λ.
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The conformal factor σ is a smooth function of x which depends on the two
parameters, α and λ. The total differential of the conformal factor σ with respect
to the parameters α and λ,

δσ = x dα+ dλ =
log r + logα− λ

α
dα+ dλ.

Formula (2.5) in [5] gives the Green’s function for a sector of opening angle α
(see also [3] p. 44). The inverse Laplace transform, denoted L−1, of the Green’s
function is the heat kernel. Let

C(α) =

∫ ∞

0

r log rdr

∫ α

0

dαL−1

{
1

π2

∫ ∞

0

K2
ix(r

√
s)
sinh(π − α)x

sinhαx
dx

}
,

and let

A(α) := −π logα
12α

− π

12α
− α logα

12π
+

α

12π
− γ

π2 − α2

24πα
.

The angles and side lengths of a convex polygonal domain P cannot be varied
independently, but must satisfy certain constraints. The interior angles {αi}ni=1

must sum to π(n− 2), and the scale factors at each vertex {λi}ni=1 together with
a global scale factor λ0 are related by

λi = λ0 −
∑

j 6=i

(π − αi) log |pi − pj | ,

where the points {pj}nj=1 lie on the unit circle. We then have the following.

Theorem 6. Let P be a convex n-gon in the plane with interior angles {αi}ni=1,
and let A(αi), C(αi), and λi be defined as above. For a conformal variation of P
which maps P onto a Euclidean n-gon, the conformal variation of ζ′P (0) is

n∑

i=1

C(αi)

αi
dα+δ

(
n∑

i=1

A(αi) +

(
πλi
12αi

)
− 1

12π
(αiλi) +

(
1

12π
(1− αi)(λi − λ0)

))
.

In forthcoming work, we use Theorem 1 to compute an explicit formula for
the function f defined in Proposition 1 and study the extrema of this spectral
invariant in the spirit of [4]. We shall also apply our results to surfaces with
conical singularities. Useful ideas for this work were inspired by [2]; the above
result is a correction of a similar formula in [2].
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The index of the Dirac operator on manifolds with perturbed metric

horns

Frank Lapp

We look at the following setting: let (M, g) be a closed manifold that consists
of a compact manifold M1 with boundary N and a smoothly attached singularity
neighborhood U that isometric to

(
(0, ε)r ×N, dr2 ⊕ gN(r)

)

First we look at an example: If gN(r) = r2βgN , the singularities are called cones
(β = 1) or metric horns (β > 1). If M is an even-dimensional Spin manifold,
S = S+ ⊕ S− the Spin bundle split by the complex volume element and D :
C∞(S) → C∞(S) the appropriate Spin Dirac operator, the closed extensions D+

V

of the split Dirac operator D+ = D|S+ are in a one-to-one correspondence to the
subspaces

V ⊂





⊕
λ∈specDN

|λ|< 1
2

ker (DN − λ) cone

kerDN metric horn

where DN is the Spin Dirac operator over N . They are all Fredholm and

indD+
V =

∫

M

Â− 1

2
(ηDN

(0) + dimkerDN ) + dim V.

These results were proved in [Cho85] (cone) and [LP98] (horn).
Using separation of variables it can be shown that a general Dirac operator over
a manifold with singularity as defined above has the form

D+ ≃ ∂

∂r
+ S(r),

where S(r) is a family of self-adjoint operators on a fixed domain. In [Brü92] it
has been shown that if S(r) = r−1S1(r) and S1(r) satisfies certain assumptions
concerning it’s spectrum and it’s strong derivative it extends the index formula in
the cone case. The methods applied there can be used again to prove an analogous
extension of the index formula in the metric horn case.
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A framework for Witten deformation

Chris Kottke

(joint work with Pierre Albin, Rafe Mazzeo)

In [Wit82] Witten suggested an approach to Morse theory through deformation
of the de Rham complex and spectral analysis of the resulting Laplacian. First
proved by [HS85], the result has been extended to Morse-Bott functions (having
critical submanifolds instead of isolated critical points) in [Bis86], [BZ92], [BF97],
[Pro97] and admits many other generalizations. Here I describe the construction
of a uniform resolvent for such a deformed Laplacian which includes the case of
Morse-Bott functions as well as so-called ‘generalized Morse functions’ which allow
for degenerate critical points of birth-death type. Our method produces a detailed
picture of the spectral asymptotics of the Witten Laplacian and should extend to
other interesting situations such as smoothly stratified spaces and group actions.

Recall the basic idea behind Witten’s version of Morse theory. Let (M, g) be a
compact Riemannian manifold, f ∈ C∞(M) a Morse function, and consider the
deformed complex

(L2Ω∗(M), dt := e−tfdetf = d+ t df ∧ ·).
For any t ≥ 0 this complex is isomorphic to the L2 de Rham complex and therefore
has cohomology isomorphic to H∗(M). On the other hand, Hodge theory applies
to each ∆t := (dt+d

∗
t )

2: eigenforms are smooth, span L2, and form subcomplexes
for each eigenvalue. Moreover only the harmonic forms (the subcomplex for λ = 0)
contribute to the cohomology; the other subcomplexes are acyclic.

As t→ ∞, the spectrum of ∆t decomposes into small eigenvalues with O(e−ct)
decay, and large eigenvalues with O(t) growth. Furthermore, there is a finite
basis of small eigenforms spanning the small eigenspace, with a unique form of
degree k concentrating at each critical point of index k. The small eigenforms
therefore form a finite dimensional subcomplex whose cohomology is isomorphic
toH∗(M), and the dimensions of whose chain spaces are determined by the number
of critical points of f with given indices. An immediate consequence is the Morse
inequalities, which estimate the dimensions of the cohomology groups in terms of
these dimensions:

(0.1) Mf (t)− P (t) = (1 + t)R(t), R(t) has ≥ 0 coefficients

where P (t) =
∑
βkt

k, βk = dimHk(M ;R) is the Poincaré polynomial andMf (t) =∑
νkt

k, νk = dimΩk
small(M) = # {p ∈M : dfp = 0, ind(p) = k} is the Morse poly-

nomial.
Recall that a Morse function f is one whose critical set

C := {p ∈M : dfp = 0} ⊂M

consists of discrete isolated points at which the Hessian ∂2fp is nondegenerate. In
contrast, a Morse-Bott function is one for which C = ⊔jCj is a disjoint union of
smooth submanifolds over which which ∂2f restricts to a nondegenerate quadratic
form on the normal bundle NC = N+C ⊕ N−C (which splits according to the
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signature of ∂2f), with the index of a component Cj defined to be the rank of
N−Cj . As a further extension, a generalized Morse function is one for which C
is again discrete and isolated, with both nondegenerate and degenerate critical
points of birth-death type, meaning that f has the local form

f(x) − f(0) = 1/2
(
−x21 − · · · − x2k + x2k+1 + · · ·+ x2n−1

)
+ x3n/3

The theory of such functions goes back to Cerf [Cer70], who proved that any two
Morse functions may be connected through a one-dimensional family of general-
ized Morse functions, birth-death critical points occuring as nearby nondegenerate
critical points meet and annihilate one another.

Witten deformation in the classical and Morse-Bott cases has been considered
in [HS85], [Bis86], [BZ92], [BF97] and [Pro97]. In the latter case, the coefficients
of the Morse polynomial in (0.1) are replaced by

(0.2) νk = dimΩk
small(M) = dimHk

c (N
−C) =

∑

j

dimHk−ind(Cj)
(
Cj ; o(N

−)
)
,

where H∗(Cj ; o(N
−)) denotes cohomology of Cj twisted by the orientation bundle

of N−C. (Observe that this recovers the classical case in which each Cj is an
isolated point.) In the case of generalized Morse functions, some results have been
announced by Goette, Connes, Burghelea and Wai, and it is well-known that only
nondegenerate critical points contribute to Ωk

small(M). In these generalizations,
the small and large eigenvalues of the Witten Laplacian ∆t are supplemented by
a countable collection of ‘medium’ eigenvalues with O(1) asymptotic behavior in
the Morse-Bott case, and ‘medium large’ eigenvalues with O(t2/3) behavior in the
generalized Morse case (the latter coming from the degenerate critical pjjoints).

Part of our project is to build a framework for the construction of a resolvent
(∆1/h−λ)−1 which is ‘uniform’ in an appropriate sense as h := 1/t→ 0, resolving
the singular behavior at h = 0. This framework should extend to more interesting
situations including stratified spaces and group actions. In particular, we prove

Theorem 0.1 (Albin-K-Mazzeo). Given a generalized Morse-Bott function f ,
the resolvent family (∆1/h − λ)−1 is an element of an algebra Ψ∗

W (MW ; Λ∗M) of
pseudodifferential operators, where MW is obtained from M × [0,∞)h by blow-up.
Furthermore, the ‘limit’ (∆1/h − λ)−1 as h→ 0 is given by

Ncf

(
(∆1/h − λ)−1

)
= (∆Cn⊗o(N−) − λ)−1.

Here Ncf(·) denotes the normal operator at a particular boundary face of MW

associated to the critical set at h = 0, Cn denotes the nondegenerate components
of C, and ∆Cn⊗o(N−) is the induced Laplacian on Cn twisted by a flat connection

on the line bundle o(N−).
An immediate consequence of this theorem is a precise characterization of the

small and medium eigenvalues. Indeed, the small eigenvalues are those that limit to
0 ∈ Spec(∆Cn⊗o(N−)), with corresponding eigenspace consisting of the harmonic

forms on Cn (twisted by o(N−), and with a degree shift by the index), from
which (0.2) follows. The medium eigenvalues limit to the nonzero spectrum of
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∆Cn⊗o(N−), and can in principle be computed with multiplicity. The large (resp.
medium large) eigenvalues may be similarly computed by considering ∆1/h − λ/h

(resp. ∆1/h − λ/h2/3).
Our method of proof is to build a pseudodifferential operator calculus associated

to a geometric resolutionMW ofM× [0,∞)h (by inhomogeneous blow-up of C×0)
and construct the resolvent within this calculus. In contrast to previous methods,
the analysis is greatly simplified by the need to consider only certain ‘model’
operators with much simpler behavior than the original, with the need for delicate
estimates completely obviated by the pseudodifferential machinery.
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Yamabe flow on Manifolds with Edges

Boris Vertman

On a compact Riemannian manifold, the Yamabe problem asserts that every
conformal class of metrics contains a representative of constant scalar curvature.
There are now several proofs of this fact. The first proof, commenced by Yamabe
and continued by Trudinger, Aubin and Schoen used the calculus of variations and
elliptic partial differential equations. Another proof uses the geometric Yamabe
flow:

(0.1)

{
∂tg = −scal(g(t)) · g,
g(0) = g0,

(and appropriate normalizations) to converge to constant scalar curvature met-
rics.

It is natural to wonder to what extent the Yamabe problem holds in other
settings. There has been recent work in understanding this problem on singular
manifolds with conic and more general incomplete edge metrics. See the work of
Akutagawa-Botvinnik for the conic case, and Akutagawa-Carron-Mazzeo for the
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Yamabe problem on very general stratified spaces, which attack the problem from
an elliptic PDE point of view.

In a joint work with Eric Bahuaud, we are interested in the Yamabe flow on
spaces with incomplete edge singularities that preserves the singular structure. We
mention that in the setup of isolated conical singularities, existence and regularity
of solutions to the inhomogeneous heat equation has recently been addressed in a
recent preprint of Behrndt. Another approach to estimates for conical singularities
is given in the forthcoming paper by Mazzeo-Rubinstein-Sesum.

Our main result is as follows.

Theorem 0.2. There exists a solution to the Yamabe flow starting within a class of
compact Riemannian spaces with admissible simple edge singularities that remains
asymptotically admissible for a short-time.

To make the statement precise, consider a (feasible) incomplete edge space
(M, g) with a singular neighborhood U ∼= (0, 1]× Y , where

φ : (Y, φ∗gB + κ) → (B, gB)

is a Riemannian submersion with fibres F and κ being a symmetric tensor on Y ,
restricting to (isospectral) Riemannian metrics on fibres. Then g is said to be an
admissible edge metric if g = g0 + h where

g0|U = dx2 + φ∗gB + x2κ,

and |h|g0 = O(x), x → 0.

We consider the Friedrichs extension ∆ of the Laplacian on such a feasible edge
space (M, g). We want to understand mapping properties of e−t∆ on (M, g) acting
via convolution in time on the following Hölder spaces.

Λα,α2 := {u ∈ C(M × [0, T ]) | sup
( |u(p, t)− u(p′, t′)|
dg(p, p′)α + |t− t′|α2

)
<∞},

Λ2+α,1+α
2 := {u ∈ Λα,α2 | ∂tu, ∂xu, ∂yu, x−1∂zu, ∆gu ∈ Λα,α2 },

where y and z are local coordinates on the base and the fibre, respectively.
These non-standard Hölder spaces have recently also appeared in the analysis of
Kähler-Einstein metrics by Donaldson on cones and Jeffres-Mazzeo-Rubinstein on
edges.

We then have the following theorem

Theorem 0.3. The Friedrichs heat kernel on an admissible incomplete edge space
(M, g), convolving in time variable, is a bounded map (α ∈ (0, 1))

e−t∆F : Λα,α2 →
√
tΛ2+α,1+α

2 ,

e−t∆F : Λ2+α,1+α
2 →

√
tΛ2+α,1+α

2 ,

provided the following three conditions on the edge metric g:

(1) |h|g0 = O(x2) as x→ 0.
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(2) Consider the Laplacian ∆Y on (Y, φ∗h + κ). Then for any u ∈ C∞(B),
the function ∆Y φ

∗u is a lift of a function on B.
(3) Any λ ∈ Spec∆κ,y\{0} satisfies λ0 > dimF .

These parabolic Schauder estimates apply to estalish local extence of certain
quasi-linear evolution equations, including the Yamabe flow. Our previous para-
bolic Schauder estimates allow us to set up a contraction mapping on Λ2+α,1+α

2

and prove existence of a fixed point. We obtain the following

Theorem 0.4. Let (Mm, g0) be a feasible edge space such that scal(g0) ∈ Λ2+α.
Then the (transformed) Yamabe flow equation admits a unique solution
u ∈ Λ2+α,1+α

2 for some T > 0 and α ∈ (0, α0).

The index bundle for gap-continuous families and the spectral flow

Nils Waterstraat

Every Fredholm operator L acting on a Hilbert space has an integer valued in-
dex, which is invariant under deformations of the operator. Atiyah and Jänich
constructed a natural extension of this index to families of bounded Fredholm op-
erators which is an element in the K-theory of the parameter space. Both indices
vanish if the considered operators are in addition selfadjoint. Later Atiyah and
Singer showed that a natural index for families of selfadjoint Fredholm operators
can be obtained in the odd K-theory of the parameter space.
The aim of my talk is to introduce a new construction of the index bundle for fam-
ilies of generally unbounded Fredholm operators and to discuss some applications.
Let X be a compact topological space, H a Hilbert space and A : X → C(H) be a
gap-continuous family of Fredholm operators. Our definition of the index bundle
can be sketched along the following lines:

i) Since our operators have varying domains D(Ax), x ∈ X , we turn the
disjoint union of these spaces into a Hilbert bundle D(A) over X .

ii) Next, one can show that the family A defines a Hilbert bundle morphism
A : D(A) → X ×H which is a bounded Fredholm operator in each fibre.

iii) Finally, we extend the construction of the index bundle by Atiyah and
Jänich to Hilbert bundle morphisms (in fact, even to Banach bundle mor-
phisms [4]).

If Y ⊂ X is a closed subspace such that all operators Ax, x ∈ Y , have a bounded
inverse, then the final result of this construction is an element indA ∈ K(X,Y ).
If all operators Ax, x ∈ X , are bounded, then indA coincides with the classical
definition of Atiyah and Jänich.
Along the same lines we associate to a family A of unbounded selfadjoint Fredholm
operators which is invertible on Y an element s-indA ∈ K−1(X,Y ). In the case
X = [0, 1] and Y = {0, 1}, we have an identification K−1(X,Y ) ∼= Z given by the
first Chern number. One now can show that the integer corresponding to s-indA
is the spectral flow of the path A as defined in this generality in [1].
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We now want to present two applications of our index bundle in the selfadjoint
case. The first application is an index theorem that computes the index bundle of
families of symmetric second order ordinary differential operators. More precisely,
let again X be a compact topological space and let S : [0, 1]×X →M(n;R) be a
continuous family of symmetric matrices such that for each fixed x ∈ X , Sx(·) is
smooth. Then for any diagonal matrix J = diag(1, . . . , 1,−1, . . . ,−1) we obtain a
family of selfadjoint Fredholm operators on L2([0, 1],Cn) by

Axu = Ju′′ + Sx(·)u, u ∈ D(Ax) = H2([0, 1],Cn) ∩H1
0 ([0, 1],C

n)

and it is easily seen that A is actually gap continuous. Hence for any choice of a
closed subspace Y ⊂ X such that the operators Ax, x ∈ Y , are invertible, we can
consider the index bundle s-indA ∈ K−1(X,Y ). Our index theorem now states
that this odd K-theory class coincides with [Θ(Cn),Θ(Cn), b], where Θ(Cn) is the
product bundle with fibre Cn over X × R and b : X × R → M(n;C) is a ma-
trix family constructed from the fundamental solutions of the ordinary differential
equations Axu + is · u = 0, where x ∈ X , s ∈ R and i denotes the imaginary
unit. Let us consider again the case X = [0, 1], Y = {0, 1} in which our in-
dices can be identified with integers. Then the index theorem is equivalent to the
semi-Riemannian Morse index theorem [2] which is a generalisation of the classical
Morse index theorem from Riemannian geometry to geodesics in semi-Riemannian
manifolds. A proof of our index theorem in this special case is published in [6] and
the other results mentioned so far can be found in [5].
A more recent application of the selfadjoint index bundle concerns periodic Hamil-
tonian systems. Here we consider families of first order operators

Axu = σu′ + Sx(·)u, u ∈ D(Ax) = H
1
2 (S1,R2n),

where σ is the standard symplectic matrix on R2n and S : [0, 1]×X →M(2n;R)
is a family of symmetric matrices such that Sx(0) = Sx(1) for all x ∈ X . Then
for any closed subspace Y ⊂ X as above, the index bundle s-indA ∈ K−1(X,Y )
is defined. And we can again prove an index theorem which now computes this
odd K-theory class in terms of the monodromy matrices of the family of ordinary
differential equations Axu+is ·u = 0. Let us finally once more consider the special
case X = [0, 1], Y = {0, 1}. Salamon and Zehnder proved in [3] that the spectral
flow of A is given by the Conley-Zehnder index of the path of monodromy matrices
of the homogeneous equations Ax = 0. Our index theorem now introduces in
particular a new integer, which is constructed differently than the Conley-Zehnder
index, but coincides with it.
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Hodge cohomology of some foliated boundary and foliated cusp

metrics

Jesse Gell-Redman

(joint work with Frédéric Rochon)

The Hodge theorem states that for a complete, compact Riemannian manifold
without boundary, the space of L2 harmonic forms – the ‘Hodge cohomology’ –
is isomorphic to the de Rham cohomology. For manifolds that are either not
complete or not compact, no general relationship between the Hodge cohomology
and a topological invariant is known, but there is a wealth of Hodge type theorems
in various settings: on manifolds with cylindrical ends [2], on singular algebraic
varieties [6], on locally symmetric spaces [18], [16], on asymptotically geometrically
finite hyperbolic quotients [11], [12], and the well-known work of Cheeger [5] and
Nagase [13] (see also [4]), which relates the Hodge cohomology of manifolds with
iterated conical singularities with the intersection cohomology groups of Goresky
and Macpherson, [8], [9]. These same intersection cohomology groups appear in the
work of Hausel, Hunsicker, and Mazzeo [10] on the Hodge cohomology of fibred
boundary and fibred cusp metrics, two natural geometries defined on a smooth
manifold whose boundary is diffeomorphic to a fibration.

In this talk, we discuss an extension of the results of Hausel, Hunsicker, and
Mazzeo to the more general case where the boundary is diffeomorphic to a Seifert
fibration. A Seifert fibration is, loosely speaking, a foliation whose space of leaves
is an orbifold. On such manifolds, fibred boundary and fibred cusp metrics have
natural analogues: foliated boundary and foliated cusp metrics as introduced in
[15], and it is these metrics whose Hodge cohomology we study here. Furthermore,
we assume that the Seifert fibration is good, meaning that the space of leaves of
the boundary foliation is the quotient of a smooth compact manifold by a smooth,
properly discontinuous action of a finite group.

Thus, let M be a non-compact manifold inside a compact, smooth manifold
with boundary M, whose boundary ∂M = M −M is the total space of a Seifert
fibration F , for the moment not necessarily good. Let B denote the space of
leaves of F , and let π : ∂M −→ B be the associated projection. Let x be a
boundary defining function (b.d.f.) for ∂M , i.e. x ∈ C∞(M) with x−1(0) = ∂M ,
dx|∂M 6= 0 and x > 0 onM . For small ǫ > 0, the set x−1([0, ǫ)) is diffeomorphic to
∂M× [0, ǫ)x, and we extend the projection π to this neighborhood of the boundary
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in the obvious way. Then an exact foliated boundary metric is a Riemannian
metric which on ∂M × [0, ǫ)x takes the form

(0.1) gF =
dx2

x4
+
π∗h

x2
+ k,

where h is an orbifold Riemannian metric on B and k is a (0, 2)-tensor which
restricts to a Riemannian metric on each leaf of the foliation F . Similarly, an
exact foliated cusp metric is a metric of the form

(0.2) gF−c :=
dx2

x2
+ h+ x2k,

with h and k as above. General (i.e. non-exact) foliated metrics are permitted to
have “cross-terms”. For a choice of foliated boundary or foliated cusp metric g on
M , let L2Hk(M, g) denote the space of L2 harmonic forms of degree k. To relate
L2Hk(M, g) with some topological data, we consider, instead of M , the space X
obtained by collapsing the leaves of the foliation on ∂M onto the space of leaves
B. To be precise, let

(0.3) X :=M/ ∼, where p ∼ q ⇐⇒ p = q or p, q ∈ ∂M with π(p) = π(q).

There is a corresponding collapsing map cπ : M → X which is the identity on M
and is given by the projection π on ∂M . We identify B with cπ(∂M) ⊂ X . The
space X is a (smoothly) stratified space (see for instance [1] or [7] for a defini-
tion), and as such, the intersection homology and cohomology groups of Goresky
and MacPherson [8] can be defined thereon. These groups are not homotopically
invariant like singular homology and cohomology groups, but they are topolog-
ical invariants. They are defined in terms of a perversity function, i.e. a map
p : {0, 1, . . . , n} −→ N satisfying p(ℓ) ≤ p(ℓ + 1) ≤ p(ℓ) + 1, and a stratification,
i.e. is a nested sequence X ⊃ Xn−2 ⊃ · · · ⊃ Xj ⊃ · · · ⊃ X0, where X −Xn−2 is a
smooth manifold and Xj−Xj−1 is either empty or a manifold of dimension j. The
group IHk

p (X) is the kth cohomology group of the complex of cochains defined on
chains which intersect each stratum of codimension ℓ in a set of dimension at most
k − ℓ + p(ℓ). The original intersection homology theory was developed for stan-

dard perversities, i.e. those satisfying the additional condition p(0) = p(1) = 0,
but general perversities are now in common use, see e.g. [10], [14]. For standard
perversities, the group IHk

p (X) turns out to be independent of the stratification.
For more on intersection cohomology, see [3].

Let

n := dimM

b := dimB

f := n− b− 1,

(0.4)

so f is the dimension of a typical leaf of F . X carries a natural stratification
induced by the orbifold structure of the space of leaves, B. In particular, the
spacesXn−2, . . . , Xn−(f+1) are all equal to B. In fact, we show that the intersection
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cohomology of X depends only on p(f + 1). Thus, the following definition makes
sense. For j ∈ N, let

(0.5) IHk
j (X,B) :=





Hk(X −B) if j ≤ −1
IHk

p (X) where p(f + 1) = j. if 0 ≤ j ≤ f − 1
Hk(X,B) if f ≤ j,

c.f. Section 2.2, equation (9) of [10].
Our main theorems are the following

Theorem 7. Let M be a manifold with boundary, ∂M =M−M . Let F be a good
Seifert fibration on ∂M , and let gF be a foliated boundary metric on M . Then for
any degree 0 ≤ k ≤ n, there are natural isomorphisms

L2Hk(M, gF ) −→
{

Im
(
IHk

f+ b+1
2 −k

(X,B) −→ IHk
f+ b−1

2 −k
(X,B)

)
b odd

IHk
f+ b

2−k
(X,B) b even,

with B as in (?) and X as in (0.3).

Theorem 8. Notation and assumptions as in Theorem 7, let gF−c be a foliated
cusp metric on M . Then for 0 ≤ k ≤ n, there is a natural isomorphism

L2Hk(M, gF−c) −→ Im
(
IHk

m(X,B) −→ IHk
m(X,B)

)

where m and m are the lower middle and upper middle perversities.
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Poincaré Duality on non-Witt Spaces

Markus Banagl

Our talk reviewed some fundamental results of [1] and [2] on both local and global
Poincaré duality for general singular spaces. In particular, these spaces do not
have to satisfy Paul Siegel’s Witt condition. Our results are valid on any oriented
topological stratified pseudomanifold X — no assumptions on smoothness of pure
strata, tubular neighborhoods of strata or structure groups are needed. We use
a sheaf-theoretic framework and view differential complexes as objects of the de-
rived category. Let IC•

p̄(X) be Goresky-MacPherson’s intersection chain sheaf for
perversity p̄ and real coefficients. The hypercohomology groups of this complex
are the intersection homology groups IH p̄

∗ . If X is compact and has no boundary,
there is a nondegenerate intersection pairing IH p̄

∗ (X) ⊗ IH q̄
dimX−∗(X) → R, for

complementary perversities p̄, q̄. The pairing is induced by a duality isomorphism
IC•

p̄
∼= D(IC•

q̄)[dimX ], where D denotes the Verdier dualizing functor. There are
two complementary middle perversities, the lower middle (m̄) and the upper mid-
dle (n̄) perversity. Siegel [5] calls X a Witt space, if the middle dimensional, lower
middle perversity rational intersection homology of the links of all odd codimen-
sional strata vanishes. In this case, the canonical morphism IC•

m̄ → IC•
n̄ is a

quasi-isomorphism, so IC•
m̄ is self-dual. Thus one obtains an adequate general-

ization of Poincaré duality to such spaces, and in particular (provided dimX is
even) a signature σ(X) of X , and following the Thom-Milnor program, Hirzebruch
L-classes.

In [1], we have developed methods to extend the above approach to obtain-
ing generalized Poincaré duality and producing invariants for pseudomanifolds to
spaces more general than Witt spaces. Consideration of examples such as the cone
on complex projective space CP2 in the context of bordism invariance of the sig-
nature shows that an attempt to carry out this program will not be meaningful on
the class of all pseudomanifolds. However, note that in this example, the link of
the singularity has nonzero signature. This observation suggests that one should
look at spaces having the property that the links of all singular strata of odd codi-
mension “have signature zero.” This last statement is not well-defined if the link
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is itself non-Witt, as it is not initially clear, in which theory such a signature has
to be computed. Our results give an answer to this question.

If a space X has just one singular stratum, the links are all contained in the
regular part of X , and it is clear what the signature of the links is. If we assume
this signature to be zero, the middle dimensional homology of the links will con-
tain a Lagrangian subspace (which need not be unique). The idea is to make a
continuous choice of Lagrangian subspaces along the singular stratum, and to use
this data in constructing a self-dual perverse sheaf IC•

L that interpolates between
IC•

m̄ and IC•
n̄ via morphisms IC•

m̄ → IC•
L → IC•

n̄. We call such a Lagrangian
subsheaf a Lagrangian structure along a stratum of odd codimension. (The def-
inition that we actually work with is phrased in terms of an algebraic notion of
nullcobordism of sheaves as introduced in [3], as this is better adapted to the tri-
angulated structure of the derived category and to Verdier duality.) Lagrangian
structures can be conveniently organized into a morphism category. For smoothly
triangulated pseudomanifolds equipped with suitable conical metrics, the idea of
trying to employ Lagrangian subspaces in order to obtain self-duality is present
in an L2-cohomology setting as J. Cheeger’s “∗-invariant boundary conditions,”
see e.g. [4]; also cf. P. Albin’s talk at this workshop on his recent joint work with
E. Leichtnam, R. Mazzeo and P. Piazza. The idea is also invoked in unpublished
work of J. Morgan on the characteristic variety theorem.

In [1], we start out by defining the category SD(X) of self-dual perverse sheaves
on X . Our first main theorem gives a Postnikov-tower type decomposition of
SD(X) into a fibered product of categories of Lagrangian structures along the
various strata of odd codimension. More precisely, we construct a functor that
assigns Lagrangian structures to a self-dual sheaf, and another functor that builds
self-dual sheaves from Lagrangian structures. We prove that these functors set up
an equivalence of categories.

The self-duality isomorphism of a given S• ∈ ObSD(X) induces a signature
σ(S•) (the signature of the quadratic form that Borel-Moore duality places on
middle dimensional hypercohomology), but moreover, by a theorem of Cappell
and Shaneson [3], characteristic L-classes Li(S

•) ∈ Hi(X ;Q). In [2] we obtain
the second main theorem on non-Witt spaces: the invariants σ(S•) and L∗(S

•)
are independent of the choice of S• ∈ ObSD(X), that is, independent of the
choice of Lagrangian structures. Consequently, we obtain for pseudomanifolds X
with SD(X) not empty a well-defined bordism invariant signature σ(X) and L-
classes L∗(X). For Witt spaces, these coincide with the previous constructions by
Goresky, MacPherson and Siegel.
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Differential algebraic K-theory

Ulrich Bunke

(joint work with David Gepner)

This is a report on the paper [BG] which is in preparation.

1. Differential algebraic K-theory

We consider a number ring R and form its algebraic K-theory spectrum KR ∈
Sp∞. It represents a sheaf of spectra Sm(KR) ∈ Fundesc(Mfop, Sp∞) on the site
of smooth manifolds Mf with the open covering topology (see [Lur09] for the
set-up). We further define the complex of sheaves ΩKR ∈ Fundesc(Mfop, Ch∞)
of differential forms with coefficients in the graded group π∗(KR) ⊗ R. Using
Borel’s calculation [Bor74] of the latter we identify ΩKR,0(M) with the subspace
of Ω(M × Spec(R)(C))Gal(C/R) of those forms which satisfy:

(1) the degree zero component is constant along Spec(R)(C),
(2) the average over Spec(R)(C)/Gal(C/R) of the degree-one component van-

ishes.

The Eilenberg-MacLane equivalence H : Ch∞
∼→ Mod(HZ) (see [Shi07]) and the

forgetful map Mod(HZ) → Sp∞ induce a map Ch∞ → Sp∞ (also denoted with H).
The Borel regulator b : Sm(KR) → H(ΩKR) is a morphism of sheaves of spectra
which induces an equivalence after realification of KR. In the following we make
b explicit.

A locally constant sheaf V ∈ LocR(M) of finitely generated R-modules nat-
urally induces a class [V ] ∈ KR0(M). We consider V as a sheaf of locally free
pr∗Spec(R) OSpec(R)-modules on M × Spec(R). Its pull-back (over Spec(Z)) is the

sheaf of parallel sections of a Gal(C/R)-equivariant flat complex vector bundle
(write ∇ for the connection) on M × Spec(R)(C). By definition, a geometry on
V is the choice of an invariant hermitean metric hV on that bundle. Using the
transgression of the Chern character form c̃h we define a form

ω̃(hV) := dim(V) + c̃h(∇∗,∇) ∈ ΩKR,0(M)

(in the explicit description of the latter given above). The Borel regulator is then
fixed by the condition that b([V ]) = [ω(hV)] in H0(ΩKR(M)).

Let ΩKR,0
cl ∈ Fundesc(Mfop, Ch∞) denote the sheaf of zero cycles.

Definition:We define the differential algebraic K-theory sheaf

K̂R ∈ Fundesc(Mfop, Sp∞)
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as the homotopy pull-back

K̂R

I

��

R
// H(ΩKR,0

cl )

��

KR
b

// H(ΩKR)

and set K̂R
0
:= π0(K̂R) ∈ Fun(Mfop, Ab).

This is an instance of a general theory of differential extensions of generalized
cohomology theories. The maps R and I induces the usual structure maps of
differential cohomology. Furthermore, we have a transformation a : ΩKR,−1 →
K̂R

0
.

We let LocgeomR ∈ Fun(Mfop, Mon) be the functor which associates to a manifold
the monoid under direct sum of pairs [V , hV ].
Theorem:There exists an additive cycle map

ĉycl : LocgeomR → K̂R
0

such that I(ĉycl[V , hV ]) = [V ] and R(ĉycl[V , hV ]) = ω(hV).

2. Differential Transfer

Let π : W → B be a proper submersion. Then we have a Becker-Gottlieb
transfer [BG75]

π! : KR
∗(W ) → KR∗(B) .

A Riemannian structure g on π consists of a vertical metric and a horizontal
distribution. It gives rise to an Euler form χ(g) ∈ Ωn(W,ΛW/B), where ΛW/B is
the relative orientation bundle and n := dim(W )− dim(B) (see [BGV92], Sec.1.6
and Ch.9). The following works for any differential extension of a generalized
cohomology theory.

Theorem:For a proper submersion equipped with a Riemannian structure g there
exists a differential transfer

π̂! : K̂R
0
(W ) → K̂R

0
(B)

such that

R(π!(x)) =

∫

W/B

χ(g) ∧R(x) , I(π!(x)) = π!(I(x)) ,

and

a(

∫

W/B

χ(g) ∧ α) = π̂!(a(α))

for x ∈ K̂R
0
(W ) and α ∈ ΩKR,−1(W ). The differential transfer is compatible

with pull-backs and compositions in a natural way.
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Definition:We define the topological index indtop : LocgeomR (W ) → K̂R
0
(B) by

indtop := π̂! ◦ ĉycl : LocgeomR (W ) → K̂R
0
(B) .

3. The analytic index and the transfer index conjecture

The metrics g and hV induce, via Hodge theory, L2-metrics hR
iπ∗(V) onRiπ∗(V) ∈

LocR(B) for all i ≥ 0. Furthermore, we have a Bismut-Lott analytic torsion form
T (π, g,V , hV) ∈ ΩKR,−1(B) (see [BL95]) which satisfies

dT (π, g,V , hV) =
∫

W/B

χ(g) ∧ ω(hV)−
∑

i≥0

(−1)iω(hR
iπ∗(V)) .

Definition:We define the analytical index indan : LocgeomR (W ) → K̂R
0
(B) by

indan[V , hV ] :=
∑

i≥0

ĉycl[Riπ∗(V), hR
iπ∗(V)] + a(T (π, g,V , hV))

We can now state the transfer index conjecture (TIC):

Conjecture:We have the equality indtop = indan.

There are many consequences and special cases which can be verified indepen-
dently. All this supports the validity of the TIC.

A consequence of the Dwyer-Weiss-Williams theorem [DWW03] is

Theorem:We have the equality I ◦ indtop = I ◦ indan.

The following is a reformulation of the Bismut-Lott index theorem [BL95]:

Theorem:We have the equality R ◦ indtop = R ◦ indan.

The Cheeger-Müller theorem [Che79], [Mül78] implies

Theorem:If B = ∗ and hV is parallel, then indtop[V , hV ] = indan[V , hV ].

The following is a consequence of the construction by Beilinson of elements with
known regulators in the algebraic K-theory of cyclotomic fields.
Theorem:If π : W → CPn is a U(1)-principal bundle with Chern class pc1,
p ∈ Z+ a prime, R = Z[ξ]/(1+ξ+· · ·+ξp−1), V is one-dimensional with holonomy
ξ, and hV is parallel, then indtop[V , hV ]− indan[V , hV ] is a torsion element.
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The renormalized volume

Colin Guillarmou

1. Abstract

The notion of volume for closed 3-dimensional hyperbolic manifolds is impor-
tant since it carries some topological information. In the case of Einstein manifold,
it turns out that the volume has also some interesting content, we shall discuss in
particular the case of Poincaré-Einstein manifolds appearing in AdS-CFT corre-
spondance.

Let us start with Poincaré-Einsteinmanifolds: an (n+1)-dimensional open man-
ifold (M, g) is Poincaré-Einstein if there exists a smooth manifold with boundary
M such that M is the interior of M , the metric g is such that for any smooth
boundary defining function x of ∂M , x2g extends as a smooth metric on M , and
finally

Ric(g) = −ng.
It turns out that such metrics are complete and have sectional curvature converg-
ing to −1 at ∂M . Particular cases of those are given by hyperbolic space Hn+1

or its quotient by convex co-compact groups of isometries (for instance Schot-
tky or quasi-fuchsian groups in PSL2(C) when n = 2). We now assume n even.
Certain boundary defining functions, called geodesic boundary defining functions,
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have interesting properties: they are those which satisfy |d log(x)|g = 1 near the
boundary, and they parametrize the conformal class of h0 := (x2g)|T∂M (called
conformal infinity of (M, g)) in the sense that for any choice in the conformal class
[h0] on ∂M , there is a (unique near ∂M) geodesic boundary defining function x
such that x2g|T∂M = h0. For such x, the metric has an expansion in normal
coordinates near the boundary induced by x of the form

g =
dx2 + h(x)

x2
, h(x) = h0 + x2h2 + · · ·+ xn log(x)K + xnhn +O(xn+1)

where hj ,K are tensors on the boundary. The tensors hj ,K are all determined
formally and locally by h0 if j < n but hn is formally undetermined when solving
the Einstein equation by Taylor expansion in x at ∂M . In a way, h0 is the Dirichlet
data for Einstein equation and hn is Neumann data.

The renormalized volume was introduced by Henningson-Skenderis [5] and Gra-
ham [1] and is defined by a Hadamard finite part regularization (the volume is
infinite for (M, g))

VolR(M) = FPε→0

∫

x>ε

1 dvolg.

This volume is not intrinsic in the sense that it depends on the choice of x, or
equivalently the choice of conformal representative in the conformal infinity [h0].

In dimension n+ 1 = 3, we can check that as a function on the conformal class
[h0], the renormalized volume satisfies the Polyakov formula

VolR(M, e2ωh0)−VolR(M,h0) = −1

4

∫

∂M

(|∇ω|2h0
+ ω.Scalh0)dvolh0

for ω ∈ C∞(∂M). For genus > 1 surfaces, there is a maximizer in the conformal
class given by the −1 curvature metric (uniformization theorem on surfaces), it is
then a natural choice in dimension n + 1 = 3 to choose define the renormalized
volume with this maximized conformal representative. That way, if we know that
there is a map Φ from conformal classes on ∂M (which amounts essentially to con-
sider Teichmüller space after moding out by action of diffeos) to Poincaré-Einstein
metrics on a given manifold M (in dim n+ 1 = 3), then the renormalized volume
can be seen as a function on Teichmüller space. From Ahflors-Bers theorem, it
is known that for M a topological cylinder (ie. quasi-fuchsian 3-manifolds), such
map Φ exists, and in fact by an extension of Marden, such map Φ exists as long
as M carries one Poincaré-Einstein (here hyperbolic in dimension 3) metric. It
was shown for the quasi-fuchsian case and Schottky cases (M is a handle-body) by
Takhtajan-Teo [8] and Krasnov-Schlenker [6] that VolR(M) is a Kähler potential
for the Weil-Petersson form on Teichmüller space. With S.Moroianu [3], we ex-
tended this result to all Poincaré-Einstein 3-manifolds using Chern-Simons theory:
for each 3-manifoldM admitting a Poincaré-Einstein, there is a Φ given by Marden
from Teichmüller space of the boundary T (∂M) to Poincaré-Einstein metrics on
M , PE(M), and the renormalized volume is a Kähler potential for Weil-Petersson
form. Therefore they all agree modulo pluri-harmonic functions on T (∂M). An-
other feature here is that ends of Poincaré-Einstein manifolds, parametrized by
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(h0, h2− 1
2h0) in dimension n+1 = 3, can be seen as cotangent vectors to T (∂M):

h0 is a hyperbolic metric on ∂M thus a point on T (∂M), and h2 − 1
2h0 turns

out to be trace free and divergence free with respect to h0, thus a tangent vector
to T (∂M) at h0. Now h0 7→ Φ(h0) 7→ h2 − 1

2h0 is a section of T ∗T (∂M), and
Mc-Mullen [7], Krasnov-Schlenker [6] proved that the graph of this section is a
Lagrangian submanifold in T ∗T (∂M) (the symplectic form is the Liouville one),
and generated by the function VolR(M).

In forthcoming work with S.Moroianu and J-M.Schlenker [4], we extend to a
certain point this theory to higher dimensional cases, where the replacement of
Teichmüller space is the set of conformal classes on a given manifold. This becomes
of course infinite dimensional, but certain properties remain true. For instance
the set of Poincaré-Einstein ends parametrized by pairs (h0, hn − F (h0)) for a
certain functional F can still be identified with the cotangent space of conformal
structures, and the renormalized volume, when defined by a particular choice
of conformal representative, is a generator of the Lagrangian space formed by
pairs (h0, hn − F (h0)) such that (h0, hn) correspond to a Cauchy data at infinity
for Einstein equation. The choice in the conformal class has to be with vn =
cst where vn is the n-th term in the expansion of the volume form dvolh(x) =

dvolh0(1 +
∑

j x
2jv2j + o(xn)). Notice that vn is the Q-curvature of Branson

modulo a divergence term (see [2]).
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Regularized cohomology of a non-compact asymptotically Kähler

G-manifold

Maxim Braverman

If E is a holomorphic vector bundle over a campact Kähler manifold, the Dobeault
cohomology H0,•(M,E) is finite dimensional and has a lot of nice properties. If
M is non-compact, H0,•(M,E) is an infinite dimensional space and much less is
known about it. In this talk we consider a Hamiltonian action of a compact Lie
group G on a non-compact manifold M and assume that E is a G-equivariant
holomorphic vector bundle overM . If the moment map µ for this action is proper
and the vector field induced by µ does not vanish outside of a compact subset of
M , we construct a new regularized Dolbeault cohomology space H0,•

reg(M,E). It is
still infinite dimensional. But as a representation of G it decomposes into a direct
sum of irreducible components and each component appears in this decomposition
finitely many times:

(0.1) H0,p
reg(M,E) =

∑

V ∈Irr G

βp
reg,V · V, p = 0, . . . , n.

The alternating sum of the regularized cohomology is equal to the regularized
index of the pair (E, µ) which was introduced in [1] (see also [4]).

The regularized cohomology (0.1) behaves in many respects as the Dolbeault
cohomology of a compact manifold. In [3] we prove an analogue of the Kodaira
vanishing theorem for the regularized cohomology. In [2] we specialize to the
case when G = S1 is a circle group. In this case we prove an analogue of the
holomorphic Morse inequalities of Witten [5] (see also [6]).

0.1. The assumptions. The construction of the regularized cohomology is done
under the following two assumptions:

(1) The moment map µ is proper;
(2) Via a G-invariant scalar product on the Lie algebra g of G, µ induces

a map v : M → g. Let v denote the vector field on M associated to
this map. We assume that this vector field does not vanish outside of a
compact subset K of M .

The assumption (1) above is rather restrictive. It excludes, for example, the
action of the circle group S1 on Cn, which has both positive and negative weights.
Unfortunately it is not clear how to define the regularized cohomology without
this condition for the general compact Lie group G. However, in [2] we consider
the case when G = S1 is a circle group and in this case extend the definition of the
regularized cohomology to the situation when the moment map is not necessarily
proper.

0.2. The construction of the regularized cohomology. We define the reg-
ularized cohomology as the reduced cohomology of a certain deformation of the
Dolbeault differential ∂̄. To construct this deformation we first choose a smooth
strictly increasing function s : [0,∞) → [0,∞). We call such a function admissible
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if it satisfies a rather technical growth condition at infinity. Luckily the cohomol-
ogy of deformed Dolbeault operators constructed using different choices of s are
naturally isomorphic. So the regularized cohomology is essentially independent
of the choice of s. It is important however to know that at least one admissible
function s exists.

We now explain the construction of the regularized cohomology in more details.
Let s:[0,∞) → [0,∞) be an admissible function. Set

φ(x) := s
(
|µ(x)|2/2

)
x ∈M,

and consider the deformed Dolbeault differential

∂̄s = e−φ ◦ ∂̄ ◦ eφ.
We view ∂̄s as a densely defined operator on the space L2Ω

0,p(M,E) of square-
integrable differential forms with values in E and we define the deformed Dolbeault
cohomology H0,•

s (M,E) as the reduced cohomology of ∂̄s:

H0,p
s (M,E) =

Ker
(
∂̄s : L2Ω

0,p(M,E) → L2Ω
0,p+1(M,E)

)

Im
(
∂̄s : L2Ω0,p−1(M,E) → L2Ω0,p(M,E)

) .

We show that for any two admissible functions s1 and s2 the deformed cohomology
is naturally isomorphic. Thus we can define the regularized cohomology H0,p

reg(M,E)

as H0,p
s (M,E) for some admissible function s.

The space H0,p
reg(M,E) decomposes as a sum of irreducible representations of

G. We show that each irreducible representation of G appears in H0,p
reg(M,E) with

finite multiplicity:

H0,p
reg(M,E) =

∑

V ∈Irr G

βp
reg,V · V.

0.3. Kodaira-type vanishing theorem. Let L be a positive G-equivariant line
bundle overM . We prove the following extension of the Kodaira vanishing theorem
to our non-compact setting: for every irreducible representation V of G there exists
a integer k0 > 0, such that for all k ≥ k0 the V -component of the background
cohomology

H0,p
reg,V (M,E ⊗ L⊗k) = 0,

for all p > 0.

References

[1] M. Braverman, Index theorem for equivariant Dirac operators on noncompact manifolds,
K-Theory 27 (2002), no. 1, 61–101.

[2] , Background cohomology of an S1-equivariant holomorphic vector bundle over a
non-compact Kähler manifold, (In preparation).

[3] , Regularized cohomology of a non-compact asymptotically Kähler G-manifold,
(Preprint).
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École Norm. Sup. (4) 36 (2003).
[5] E. Witten, Holomorphic Morse inequalities, Algebraic and differential topology, Grund.

Math. Wiss. 188, Teubner-Texte Math., 70, ed. G. Rassias, Teubner, Leipzig, 1984, pp. 318–
333.



Analysis and Geometric Singularities 1545

[6] S. Wu and W. Zhang, Equivariant holomorphic Morse inequalities. III. Non-isolated fixed
points, Geom. Funct. Anal. 8 (1998), 149–178.

Minimal surfaces in H3: Willmore energy and bubbles.

Spyros Alexakis

(joint work with R. Mazzeo)

This lecture presented the recent joint work of the author with R. Mazzeo, [2].
This study focused on the Willmore energy considered on the space of minimal
suraces on H3. We specificaly investiagate how the finiteness or smallness of this
energy controls the boundary regularity of such surfaces. The optimal classical
norm that can be controlled by this energy turns out to be the C1 norm. We also
investigate the mechanism for loss of convergence in C1 for sequences of surfaces
with energy uniformly bounded above.

The space of minimal surfaces in H3 with a prescribed boundary curve at in-
finity γ ⊂ ∂∞H3 was first studied by M. Anderson [3]. Important early results on
regularity estimates up to the bounday for this Dirichlet problem were obtained
starting with the work of Lin, [5]. Following this early work, a natural notion of
renormalized area for such minimal suraces with smooth enough boundary at infin-
ity was rigorously defined by Graham and Witten [4]. Our work commences with
an observation in [1] that links the renormalized area Ren.Area[Y ] of a minimal
surface Y ⊂ H3 with its total curvature, or Wilmore energy E[Y ] :=

∫
Y |A|2dVY :

Ren.Area[Y ] = −2πχ(Y )− 1

2

∫

Y

|A|2dVY .

The main question we wish to study here is the question of compactness of the
space Mk,g of complete minimal surfaces in H3 with k well-separated asymptotic
ends and genus g, whose Willmore energy is bounded above uniformly. Specificaly,
consider a sequence of suitable normalized surfaces Yn with E[Yn] ≤ M < ∞.
We study the possibility of (sub)convergence of such sequences and examine the
mechanism responsible for lack of convergence in the C1 norm.

The first main result in [2] shows that the Willmore energy of a minimal surface
controls its regularity up to the boundary in the C1 norm: Specifically we prove
that given a portion of a minimal surface which lies in a half ball centered at
P ∈ ∂∞H3 and with radius R > 0, if Y is graphical (via a function u(x, y))
over a vertical half-plane, then the |u|C1 can be made arbitrarily small provided
the energy EB(P,R)[Y ] of Y in that half-ball is correspondingly small. This has an
interesting analytic content: Thought of in terms of the graph function u(x, y), the
condition of small energy for Y is slightly weaker than then smallness of the W 2,2

norm of u. Now, the Sobolev embedding guarantees that W 2,2(D(0, 1)) embeds in
Cα, for all α < 1; however it is well-known that it does not embed into either C1

or C0,1. It is thus interesting that our minimal surfaces (whose graph functions
satisfy a non-linear gedenerate elliptic PDE) exhibit better regularity up to the
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boundary than the Sobolev embedding guarantees. It is difficult to determine
what lies at the heart of this extra regularity. It seems however to be a geometric
non-linear phenomenon, closely tied to the fact that the boundary of our surfaces
lies at infinity.

This culminates in two theorems concerning our main question: A suitable
“global” measure of C0,1 regularity for the boundary curve γ of a given minimal
surface Y ∈ Mk,g is the ζ-Lipschitz radius LipRadζγ(Q) defined at each point
Q ∈ γ; this is properly defined in [2]. We first show

Theorem 9. There is a ζ0, 0 < ζ0 < 1/20 with the property that if ζ ∈ (0, ζ0),
then there exists an ǫ(ζ) > 0 such that if Y ∈ Mk,g and EB(P,R)(Y ) < ǫ(ζ) for
some P ∈ γ = ∂∞Y and R ≤ 1, then

LipRadζγ(Q) ≥ ζ · R− |PQ|
10

for all Q ∈ γ′B(P,R).

Our second result concerns a sequence of suitable normalized surfaces Yn with
E[Yn] ≤ M < ∞ and addresses the second part of the main question. The mech-
anism responsible for lack of convergence in the C1 norm at a given point turns
out to be the invariance of the Willmore energy under Möbius transformations.
We can construct examples of lack of cinvergence as follows: The easiest examples
are Möbius transoformations of a fixed minimal surface, such that the transformed
surfaces converge (in the Cα norms but not in C1) to a totally geodesic halfsphere:
The Möbius transformations “push” the surface towards a chosen point at infinity,
making all its energy disappear in the limit. One can use this idea and a gluing
construction to give exaples of sequences of this loss of energy in the limit at any
finite number of points for suitably constructed sequence of surfaces.

Our second theorem shows that this is the only reason for lack of convergence
of Yn to the limit Y∗ in the C1 norm: At any point in P ∈ ∂∞Y∗ where the
convergence is not in C1, there exists a sequence of blow-ups Ψn such that Ψn(Yn)
converge to a surface Y ♯ with non-zero energy. In other words prior to the blow-
p, the surfaces Yn (locally near P ) resembled a slightly perturbed Y ♯ “shrinking
down” towards the pont P . Specificaly our result is as follows:

Theorem 10. Let Yj be a sequence of minimal surfaces in Mk,g with E(Yj) ≤
M < ∞ and such that Yj → Y∗ where Y∗ is C1 up to γ∗ \ {P1, . . . , PN}. Af-
ter rotation and translation, Yj is a horizontal graph z = uj(x, y) over the half-
disc {x2 + y2 ≤ δ2}, with |∇uj | ≤ 2ζ and uj → u∗ in C∞ away from {x =
0} and in C0,α up to {x = 0}. Finally, suppose that for some y0 ∈ (−δ, δ),
limj→∞ ∂yuj(y0, 0) 6= ∂yu∗(y0, 0). Setting Pj = (0, y0, uj(y0, 0)), then there exists
a sequence of interior points Qj ∈ Y ′

j,B(0,δ) with Qj → Pj such that if Ψj is a hy-

perbolic isometry which maps Qj to (1, 0, 0), then Ψj(Yj) → Y ′
∗ for some complete

minimal surface Y ′
∗ with E(Y ′

∗) > 0.

We close by presenting the main idea in the proof of Theorem 9. We argue by
contradiction: If this were to fail, then one could construct a sequence of minimal
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surfaces, the energies of which vanish in the limit, but such that there is a jump in
the tangent lines in the limit, for a given point on the boundary curves. To reach
our contradiction, we wish to relate the slope of the tangent line at the boundary
to information on a parallel curve in the interior of the surface and then use the
known C∞ convergence in the interior.

The relationship between derivative information in the interior and at the
boundary, i.e. the difference between the ‘horizontal’ derivatives at height 0 and
1, say, is given by integrating the mixed second derivative of the graph function
along a vertical line and showing that this is controlled by the energy. To do this
we must use a choice of ‘gauge’, which is a special isothermal coordinate system
for which we have explicit pointwise control of the conformal factor. Using some
deep results in harmonic analysis, such coordinate systems have been obtained
for related problems, most importantly in a very influential paper by Müller and
Sverak [6], We must modify those arguments to our setting, which requires a
‘preparation’ of our surface in a couple of ways being careful that none of the
alterations we perform change the fact that there is a jump in first derivatives at
the origin. Finally, in these isothermal coordinates, we use the fact that the mixed
component A12 of the second fundamental form is a harmonic function; this is a
special feature of minimal surfaces in constant curvature three-manifolds. This
harmonicity leads, via a monotonicity formula, to the fact that this component
decays somewhat more quickly than was known before, which leads eventually to
partial control of the line integral mentioned above. In this argument there is a
second line integral which it is necessary to control in terms of the energy of Yj
in a half-ball. This second line integral plays a crucial role in the later analysis of
bubbling in the proof of theorem 10.
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Coarse index theory

Thomas Schick

(joint work with Bernhard Hanke, Paolo Piazza)

Coarse index theory uses methods from operator algebras and K-theory to study
index problems in particular on non-compact manifolds and to analyse the geome-
try of such manifolds in this way. It is a beautiful theory, introduced in particular
by John Roe, compare [5].

Given a complete Riemannian spin manifold X , the main players are:

• the pair of coarse C∗-algebras C∗X ⊂ D∗X (C∗X is an ideal in D∗X),
where both algebras are bounded operators on L2(X) of finite propagation
(i.e. operators increasing the support only by a bounded distance). In C∗,
the operators T in addition have to satisfy that Tφ and φT are compact
for each compactly supported multiplication operator φ ∈ Cc(X), whereas
in D∗X the weaker condition of pseudolocality is required, i.e. φTψ has to
be compact whenever φ, ψ ∈ Cc(X) have disjoint support.

• the second main player is the coarse fundamental class

[D] ∈ Km+1(D
∗X/C∗X).

Here, D is the Dirac operator. If m is odd, this is simply defined to be
the class of the projector (χ(D) + 1)/2 for any odd function χ : R → R

with χ(t)
t→±∞−−−−→ ±1 (by homotopy invariance, the resulting K-theory

class does not depend on this choice). By finite propagation speed, χ(D)
is an operator of finite propagation, elliptic regularity implies that χ(D) ∈
D∗(X) and that indeed χ(D)2 − 1 ∈ C∗(X) which implies that [D] really
is a projection in the quotient algebra. For even m, one has to incorporate
the splitting into even and odd spinors to define an interesting unitary
representing [D] ∈ Km+1(D

∗X/C∗X).
• The coarse index indc(D) ∈ Km(C∗X) is the image of [D] under the
boundary map of the six-term exact sequence for the pair C∗X ⊂ D∗X .

• If X has positive scalar curvature, then by the Weitzenböck formula, the
spectrum of D does not contain an interval around zero. One can therefore
choose χ to be constantly equal to ±1 on the spectrum of D, and therefore
χ2(D) = 1 ∈ D∗X . Consequently, the formula for the class [D] canonically
defines a class, the coarse ρ-invariant, ρc(D) ∈ Km+1(D

∗X).
• If a group Γ acts isometrically on X , one restricts to the Γ-invariant parts
C∗XΓ and D∗XΓ and everything above has corresponding generalizations.

• C∗X and D∗X are functorial for coarse continuous maps, in particular for
proper uniformly Lipschitz maps.

Example. If X is compact, C∗X ∼= K(L2(X)), K0(C
∗X) = Z and the above

index is the usual Fredholm index.
If Γ acts freely and cocompactly onX , then C∗XΓ ∼= C∗

redΓ⊗K andK∗(C∗XΓ) =
K∗(C∗

redΓ). In this case, indc(D) ∈ Km(C∗
redΓ) is the Mishchenko-Fomenko index
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of the Dirac operator on the compact quotient, twisted by the Mishchenko line
bundle.

Note that this gives an interesting homomorphism out of C∗
redΓ, namely to

coarse algebra C∗X .
There are many tools for the calculation of the K-theory of the coarse C∗-

algebras, in particular there is a Mayer-Vietoris sequence. Moreover, these groups
vanish for spaces of the form X× [0,∞). It follows that Km(C∗Rn) ∼= Km−n(C) =
Z if m− n even (and zero otherwise).

The talk was designed as an introductory and survey talk. Most of the time
was spent on explaining this introduction.

Finally, two applications of coarse index theory were presented.
Theorem[Main Theorem of [1]] Assume that M is a closed spin manifold of di-
mension n such that the universal covering admits for each ǫ > 0 an ǫ-Lipschitz
map to Sn which is constant outside a compact subset of M̃ and which has non-
zero degree (then M is called enlargeable, this concept was introduced by Gromov
and Lawson).

Then the Mishchenko-Fomenko index ind(M) ∈ Kn(C
∗
redπ1(M)) is non-zero.

For the proof, uses the picture above and shows that even indc(M) ∈ Kn(C
∗M̃)

is non-zero. This, indeed is obtained by manufacturing out of the maps f1/k one
coarse map f to a special coarse space Bn, the balloon space. Using Mayer-Vietoris
arguments one shows that Kn(C

∗Bn) =
∏

k∈N
Z/
⊕

k∈N
Z. Moreover, using a

refinement of Atiyah’s L2-index theorem and a proof of the coarse Baum-Connes
conjecture for the space Bn one shows that the image of indc(M) under f∗ in
Kn(C

∗Bn) is represented by the sequences of degrees of the maps f1/n, therefore
is non-zero i Kn(C

∗Bn).
The second application are certain coarse index theorems, established in [3]. In

particular, one has a delocalized coarse APS-index theorem: If X is a spin
manifold of even dimension m + 1 with boundary Y and Y admits a metric of
positive scalar curvature then (using the invertibility at the boundary) one can
define indc(X) ∈ Km+1(C

∗X). Its image in Km+1(D
∗X) can be though of as a

delocalized part of the index.
On the other hand, the positive scalar curvature metric on the boundary defines

a coarse rho-class ρc(Y ) ∈ Km+1(D
∗Y ).

The theorem now states that the delocalized coarse index is exactly the image
of ρ(Y ) in Km+1(D

∗X), using the inclusion Y → X .
The similar statement holds with Γ-actions and for the Γ-invariant algebras.
This is proved in two steps: using “soft” methods from K-theory of operator

algebras and properties of the functional calculus, one can reduce to a model
situation involving only Y and Y × R. For this model situation, one has to carry
out the calculation explicitly. This is strongly connected to a secondary partitioned
manifold index theorem (a ρc variant of the partitioned manifold index theorem
proved e.g. in [2] or [4], for the Γ-invariant case in [6]. The model calculation is
highly non-trivial, indeed so far only achieved if m is odd. Of course, we expect
that the theorem holds in general.
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The trace bundle of an elliptic wedge operator

Gerardo A. Mendoza

(joint work with Thomas Krainer)

Let Diffm
e (M;E,F ) be the class of edge differential operators of orderm of Mazzeo

[3], associated to a manifold M with boundary N = ∂M and fibration ℘ : N → Y
with typical (compact) fiber Z; E and F are vector bundles over M. Let x be
a defining function for N , positive in

◦

M. Let A ∈ x−mDiffm
e (M;E,F ), m > 0,

be a wedge differential operator. The operator A has a natural principal symbol
wσσ(A) off the zero section of the w-cotangent bundle wπ : wT ∗M → M of M, a
section of Hom(wπ∗E,wπ∗F ), see [1]. Suppose throughout the rest of this note
that A is w-elliptic, which of course means that wσσ(A) is invertible everywhere.
Equivalently, we assume that the principal symbol of xmA is elliptic in the sense
of [3].

Denote by π∧ : N∧ → N the inward pointing normal bundle of N including
the zero section and by ℘∧ the composition N∧ → N → Y, so ℘∧ : N∧ → Y is a
fibration with typical fiber Z×R+. We write x also for the function dx : N∧ → R
determined by the defining function for N . This x is of course a defining function
for ∂N∧, the zero section of N∧.

The indicial operator of P = xmA, an operator in Diffm
e (N∧;π∗

∧E, π
∗
∧F ), com-

mutes with multiplication by elements of ℘∗
∧C

∞(Y) so it can be viewed as a family
of elliptic b-operators bPy on the fibers N∧

y of ℘∧. See [5] for the meaning of b-
operators and the concept of ellipticity in that context, as well as the notion of
boundary spectrum, specb(

bPy), to be used in the statement of the theorem below.
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Pick µ ∈ R arbitrarily. For y ∈ Y let Ty be the space whose elements u are
functions on

◦

N∧
y of the form

u =
∑

σ∈specb(
bPy)

µ−m<Imσ<µ

Nσ∑

ℓ=0

aσ,ℓx
iσ logℓ x, aσ,ℓ ∈ C∞(℘−1(y);E|℘−1(y))

and satisfy bPyu = 0. Define

T =
⊔

y∈Y
Ty, π : T → Y the natural map.

If U ⊂ Y is open and u is a section of T over U (the meaning of which is clear), then
u can be viewed as a section of π∗

∧E over
◦
℘−1
∧ (U) ⊂ N∧\∂N∧. Define B∞(U ; T )

as the space of sections of T which viewed thus are smooth over
◦
℘−1
∧ (U). Then

B∞(U ; T ) is a module over C∞(U), in particular, B∞(Y; T ) is a module over
C∞(Y).

Theorem 11. Suppose that the set

spece(A) = {(y, σ) ∈ Y × C : σ ∈ specb(
bPy)}.

is disjoint from {(y, σ) ∈ Y × C : Imσ = µ, µ −m}. Then T → Y is a smooth
vector bundle whose space of C∞ sections is B∞(Y; T ).

The proof is given elsewhere (see [2]). The relevancy of the theorem lies in
the well known interpretation of the indicial roots of the bPy as being (after
multiplication by the imaginary unit i) the leading powers of the (generalized)
Taylor expansion at x = 0 of solutions of Au = f when u ∈ x−µL2

b(M;E) and
f ∈ x−µL2

b(M;F ). Of course the difficulty of implementing this interpretation
in a general setting lies in the possibility that the indicial roots in the range
µ − m < Imσ < µ vary with y without constant multiplicity (this may even be
the case if the location of the indicial roots is constant). Our theorem, or rather
its proof, is one of the tools we use to handle this difficulty.

Complementing Theorem 11, we also show in [2], under the assumption that
the normal family of A is invertible on its minimal domain (see [1] for the effect of
this hypothesis on the nature of Dmin(A)), how to construct a continuous operator
P : Hm(Y; T ) → Dmax(A) with range complementary to Dmin(A) that admits a
left inverse γ modulo smoothing a smoothing operator. These two tools allow us
to give solid meaning to boundary value problems of the form

{
Au = f ∈ x−µL2

b(M;F ), u ∈ Hm
A ,

Bγu = g

where Hm
A = Dmin(A) ⊕ P(Hm(Y; T )), g is a section of some other given vector

bundle over Y, B is, for instance, a pseudodifferential operator acting on sections
of T , and of course the unkown is u.
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We point out that Mazzeo and Vertman [4] have results starting with a slightly
different set-up concerning boundary value problems for elliptic edge operators but
assuming constancy of the indicial roots.

This work is partially supported by NSF grants DMS-0901173 and DMS-0901202.

References

[1] J. B. Gil, T. Krainer, and G. A. Mendoza, On the closure of elliptic wedge operators, to
appear in J. Geom. Anal.

[2] T. Krainer and G. A. Mendoza, The trace bundle of an elliptic wedge operator, in prepara-
tion.

[3] R. Mazzeo, Elliptic theory of differential edge operators I, Comm. Partial Differential Equa-
tions 16 (1991), 1615–1664.

[4] R. Mazzeo and B. Vertman, personal communication.
[5] R. B. Melrose, The Atiyah-Patodi-Singer index theorem. Research Notes in Mathematics,

4. A K Peters, Ltd., Wellesley, MA, 1993.

New Proof of Juhl’s Formulae for GJMS Operators and Q-curvatures

C. Robin Graham

(joint work with Charles Fefferman)

This is a report on joint work with Charles Fefferman in [2] giving a new proof of
Juhl’s formulae for GJMS operators and Q-curvatures. These remarkable formulae
were discovered and proved by Andreas Juhl in [5], [6], building on previous work
beginning with [4]. Juhl’s approach was based on his theory of residue families
and their factorization identities. The new proof proceeds directly from the orig-
inal construction of [3]. It provides an explanation for the previously mysterious
appearance of both Juhl’s generating function M(r) for his building-block second
order differential operators M2N , and the square root W (r) of the volume ratio
V (r).

Juhl’s formulae are expressed in terms of quantities arising in the expansion
of the Poincaré metric in normal form determined by a given pseudo-Riemannian
metric. Let g be a pseudo-Riemannian metric of signature (p, q), p + q = n ≥ 3,
on an n-dimensional manifold M , and let g+ be a metric on M × (0, ǫ) of the form

g+ = r−2
(
dr2 + hr

)
,

where hr is a smooth 1-parameter family of metrics on M satisfying h0 = g. g+ is
required to satisfy Ric(g+) + ng+ = 0 asymptotically in the sense that if n is odd,
then Ric(g+) + ng+ = O(r∞), while if n is even, then Ric(g+) + ng+ = O(rn−2)
and the tangential trace of r2−n (Ric(g+) + ng+) vanishes at r = 0. (See [1].) Set

V (r) =

√
dethr
deth0

and W (r) =
√
V (r). Let δ denote the divergence operator on vector fields with

respect to g, given by δϕ = ∇iϕ
i. Define a 1-parameter family M(r) of second
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order differential operators on M by

M(r) = δ(h−1
r d)− U(r),

where

U(r) =

[
∂2r − (n− 1)r−1∂r + δ(h−1

r d)
]
W (r)

W (r)

acts as a zeroth order term. Use M(r) as a generating function for second order
differential operators M2N on M defined for N ≥ 1 (and N ≤ n/2 if n is even) by

M(r) =
∑

N≥1

M2N
1

(N − 1)!2

(
r2

4

)N−1

.

The M2N are natural scalar differential operators. Natural scalar invariants W2N

are defined by

W (r) = 1 +
∑

N≥1

W2Nr
2N

for N ≥ 1 (and N ≤ n/2 if n is even).
Juhl’s formulae involve constants nI , mI which are parametrized by ordered

lists I = (I1, . . . , Ir) of positive integers. I is referred to as a composition of the
sum |I| = I1 + I2 + · · ·+ Ir . The constants are:

nI = (|I| − 1)!2
r∏

j=1

1

(Ij − 1)!2

r−1∏

j=1

1(∑j
k=1 Ik

)(∑r
k=j+1 Ik

)

mI = (−1)r+1|I|!(|I| − 1)!
r∏

j=1

1

Ij !(Ij − 1)!

r−1∏

j=1

1

Ij + Ij+1
.

Empty products are interpreted as 1.
Let P2N denote the GJMS operators, with sign convention determined by P2N =

∆N + . . . with ∆ = δ(g−1d). The Q-curvatures are defined in terms of the zeroth

order terms of the GJMS operators: P2N (1) = (−1)N
(

n
2 − N

)
Q2N . The P2N

and Q2N are defined for all N ≥ 1 if n is odd and for 1 ≤ N ≤ n/2 if n is even
(an analytic continuation is involved for Q2N for n even and N = n/2). Iterated
compositions of the P2N and the M2N are denoted by P2I = P2I1 ◦ · · · ◦ P2Ir and
M2I = M2I1 ◦ · · · ◦M2Ir .

There are four formulae: an explicit formula and a recursive formula each for
GJMS operators and for Q-curvatures. All four formulae hold for N ≥ 1 (and
N ≤ n/2 if n is even), and are universal in the dimension.

Explicit formula for GJMS operators:

P2N =
∑

|I|=N

nIM2I .
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Recursive formula for GJMS operators:

P2N = −
∑

|I|=N
I 6=(N)

mIP2I +M2N .

Explicit formula for Q-curvatures:

(−1)NQ2N =
∑

|(I,a)|=N

n(I,a)a!(a− 1)!22aM2I(W2a).

Recursive formula for Q-curvatures:

(−1)NQ2N = −
∑

|(I,a)|=N
a<N

m(I,a)(−1)aP2I(Q2a) +N !(N − 1)!22NW2N .

In the formulae for Q-curvatures, the convention for compositions written in the
form (I, a) is that I is allowed to be empty but a > 0.

The derivation of these formulae in [2] proceeds by first giving direct proofs
of the explicit formulae for GJMS operators and Q-curvatures. This is discussed
below. The recursive formula for GJMS operators follows from the explicit formula
for GJMS operators using an inversion argument due to Krattenthaler presented in
[6]. The recursive formula for Q-curvatures is derived from the explicit formula for
Q-curvatures and the recusive formula for GJMS operators by a more complicated
analogue of this inversion argument.

The explicit formulae are derived via the ambient metric in normal form deter-
mined by g, which is equivalent to the Poincaré metric. The original construction

of P2Nf in [3] applies a power of the ambient Laplacian ∆̃ to a homogeneous am-

bient extension of f . It is shown in [2] that in this construction, ∆̃ can be replaced

by ∆̃v := v1/2 ◦ ∆̃ ◦ v−1/2, where v(ρ) = V (r) with ρ = −r2/2. The introduction

of ∆̃v is motivated by an attempt to find a direct proof in terms of the GJMS
construction of the self-adjointness of the P2N . It turns out that the generating

function M(r) appears naturally when ∆̃v is applied to a homogeneous function
on the ambient space. It is an immediate consequence that P2N can be written as a
linear combination of the compositions M2I . The identification of the coefficients
in the linear combination as the nI reduces to a rather nontrivial combinatorial
identity which is proved in [2]. A direct derivation of the explicit formula for Q2N

is given using a variant of the argument used to derive the explicit formula for the
P2N together with a variant of the combinatorial identity.

This work was partially supported by NSF grants DMS 0901040 and DMS
0906035.
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Asymptotic Expansion of Bergman Kernel for Orbifolds

Xianzhe Dai

(joint work with Kefeng Liu, Xiaonan Ma)

§1. Bergman Kernel and Donaldson Theorem

The Bergman kernel in the context of several complex variables (i.e. for pseu-
doconvex domains) has long been an important subject. Its analogue for complex
projective manifolds is studied by Tian, Zelditch, Catlin, Lu, etc., establishing the
diagonal asymptotic expansion for high powers of an ample line bundle. Moreover,
the coefficients in the asymptotic expansion encode geometric information of the
underlying complex projective manifolds. This asymptotic expansion plays a cru-
cial role in the seminal work of Donaldson where the existence of Kähler metrics
with constant scalar curvature is shown to be closely related to Chow-Mumford
stability.

More precisely, let (X,L) be compact polarized Kähler manifold. That is, X is
a compact Kähler manifold with Kähler form ω and L −→ X a holomorphic line
bundle whose curvature is −2π

√
−1ω. For any p ∈ N, choose an orthonormal basis

sα(x) of H
0(X,Lp), the (diagonal) Bergman kernel is the smooth function

(0.1) Bp(x) =
∑

α

|sα(x)|2.

Donaldson Theorem relates the existence of Kähler metrics with constant scalar
curvature to that of balanced metric, i.e., those with Bergman kernel Bp(x) = c a
constant, which in turn relates to the GIT notion of stability. It is an interesting
question whether analog of Donaldson’s result holds for orbifolds.

§2. Asymptotic Expansion of Bergman Kernel—Agmon Type Estimate

Playing a crucial role in the proof of Donaldson’s theorem is the Tian-Yau-
Zelditch asymptotic expansion for the Bergman kernel. Namely, as p→ ∞,

(0.2) Bp(x) ∼ pn + b1(x)p
n−1 + · · · ,

where the coefficient b1 has been identified by Lu: b1 = 1
8S(ω) is given by the

scalar curvature of ω.
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In [1] we have established a global Agmon type estimate for the off-diagonal
behavior of the Bergman kernel. As a consequence, we derive an asymptotic ex-
pansion for Bergman kernel on orbifolds. Moreover, we gave an explicit description
of the singular behavior as one approaches the singularity.

Our global Agmon estimate is best described in local coordinates Z ∈ X . Let

Dp =
√
2(∂ + ∂

∗
) =

∑
c(ei)∇ei : Ω0,∗(X,Lp) −→ Ω0,∗(X,Lp). Let Pp be the

orthogonal projection from Ω0,∗(X,Lp) onto kerDp, and Pp(Z,Z
′) (Z,Z ′ ∈ X) be

the smooth kernels of Pp with respect to the Riemannian volume form.

Theorem 1 (Dai-Liu-Ma). For any k,m ∈ N, there exist N ∈ N, C > 0, C′ > 0
such that for α, α′ ∈ Nn, |α|+ |α′| ≤ m,

∣∣∣∣∣
∂|α|+|α′|

∂Zα∂Z ′α′

(
1

pn
Pp(Z,Z

′)−
k∑

r=0

P (r)(
√
pZ,

√
pZ ′)κ−1(Z ′)p−r/2

)∣∣∣∣∣

≤ Cp−(k+1−m)/2(1 + |√pZ|+ |√pZ ′|)N exp(−C′√p|Z − Z ′|),
where κ is the ratio of the Riemannian volume element and the Euclidean volume
element, and P (r) is explicitly computable.

Here P (r) is computed via the following rescaling analysis of the local problem.
For a smooth section s(Z), set

(Sts)(Z) = s(Z/t), Lt
2 = S−1

t t2D2
pSt.

Then Lt
2 = L0

2+ tQ1+ t2Q2 + · · · , with Qi second order differential operators. As
L0
2 is essentially a generalized harmonic oscillator, its heat kernel is given by

e
−uL0

2(Z, Z′) =
1

(1− e−4πu)n
exp

(

−
π(|Z|2 + |Z′|2)

2 tanh(2πu)
+

π

〈

e−2
√

−1πuJZ,Z′
〉

sinh(2πu)

)

e
−2uωd,0 ,

where ωd,0 = −∑l,mRL
0 (wl, wm)wm ∧ iwl

. Taking u to infinity, we obtain the
Bergman kernel for the model operator

P(Z,Z ′) = e−
π
2

∑
(|zi|2+|z′

i|2−2ziz̄
′
i).

Now set

(0.3) Jr,u =
∑

(−1)j
∫

u∆j

e−(u−uj)L
0
2Qrje

−(uj−uj−1)L
0
2 · · ·Qr1e

−u1L
0
2du1 · · · duj

where the summation runs over
∑j

i=1 ri = r, ri ≥ 1. Then

(0.4) Jr,u(Z,Z
′) =

∑

|β|+|β′|≤3r

Jr,β,β′(u)ZβZ ′β′

e−uL0
2,C(Z,Z ′).

Finally,

(0.5) P (r)(Z,Z ′) =
∑

β,β′

Jr,β,β′(∞)ZβZ ′β′

P(Z,Z ′).

Now let (X,ω) be a compact Kähler orbifold of real dimension 2n. By definition,
for any x ∈ X , there exists a small neighborhood Ux ⊂ X , a finite group Gx ⊂
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GL(n,C), and Ũx ⊂ Cn an Gx-open set such that Ũx
τx→ Ũx/Gx = Ux and {0} =

τ−1
x (x) ∈ Ũx.

For g 6= id ∈ G we denote Ũg the fixed point set of g. Then Z̃ = Z̃1,g + Z̃2,g

with Z̃1,g ∈ T Ũg, Z̃2,g ∈ Ng (the normal bundle to Ũg in Ũ). Further, the g-action

on L is given by multiplication by e
√
−1θg , with θg being locally constant on Ũg.

Then our Agmon estimate implies the following precise singular behavior of the
Bergman kernel near the orbifold singularity.

sup
|α|≤m′

∣∣∣∣∣
∂|α|

∂Z̃α

( 1

pn
Pp(Z̃, Z̃)−

k∑

r=0

br(Z̃)p
−r(0.6)

−
2k∑

r=0

p−
r
2

∑

16=g∈G

e
√
−1θgpK

(r)

Z̃1,g
(
√
pZ̃2,g)e

−2πp〈(1−g−1)z̃2,g,¯̃z2,g〉
)
∣∣∣∣∣∣

≤ C
(
p−k−1 + p−k+m′−1

2 (1 +
√
pd(Z,X ′))

N
exp (−C′√pd(Z,X ′))

)
.

Here K
(r)

Z̃1,g
is a polynomial in Z̃2,g of degree ≤ 3r and K

(0)

Z̃1,g
(
√
pZ̃2,g) = 1.

§3. Recent Work of Ross-Thomas

In very interesting recent work [5, 6], Ross-Thomas describes a notion of ample-
ness for line bundles on Kähler orbifolds with cyclic quotient singularities which is
related to embeddings in weighted projective spaces. In this case, Ross-Thomas is
able to prove an orbifold version of Donaldson Theorem. They introduced weighted
Bergman kernels on orbifolds, which plays an important role there.

A weighted Bergman kernel is

Borb
p =

∑

i

ciBp+i,

where ci’s are positive constants and i runs over some fixed finite index set of
nonnegative integers.

Let (X,ω) be a compact n-dimensional Kähler orbifold with cyclic quotient
singularities, i.e., the stabilizer group Gx is a cyclic group for any x ∈ X . Let L be
an ample orbifold line bundle on X such that for any x ∈ X , the stabilizer group
Gx acts on Lx̃ as Z|Gx|-order cyclic group.

Let m be the lowest common multiple of the orders of the stabilizer groups of
all points of X . Fix N, r ≥ 0. Consider the ci which are defined by

(zm−1 + zm−2 + · · ·+ 1)N+r+1 =
∑

i

ciz
i.



1558 Oberwolfach Report 25/2012

Theorem 2 (Ross-Thomas, Dai-Liu-Ma). For the above choice of ci, the weighted
Bergman kernel Borb

p admits a global C2r-expansion of order N :

Borb
p =

N∑

j=0

bjp
n−j +OC2r (pn−N−1).

Furthermore b0 =
∑

i ci, b1 =
∑

i ci
(
ni+ 1

8πS(ω)
)
.

This result was first proved by Ross-Thomas [5] and rederived in [2] with a
slight better regularity. The proof of [2] comes directly from (0.6). We would also
like to remark that one can use (0.6) to establish the Berezin-Toeplitz quantization
for orbifolds.
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