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Introduction by the Organisers

The schedule of 18 regular and 4 after dinner talks left plenty of room for dis-
cussions among the 53 participants. The after dinner talks (Monday – Thursday)
were given by PhD students and very recent PhD’s. They were nearly equally well
attended and at least the organizers only heard positive comments. Apart from
the good cake the speakers were the main contributors to the good atmosphere at
the workshop since they all did an excellent job.

Fernando Codá Marques gave two very nice talks on his joint work with André
Neves on the proof of the Willmore conjecture via min-max principles.

Karl-Theodor Sturm showed that the class of metric measure spaces endowed
with the L2-Gromov Hausdorff distance is an Alexandrov space. As a consequence
every semiconvex function on this infinite dimensional Alexandrov space then gives
rise to a flow on the space of metric measure spaces.

Of the 22 talks 7 (including 3 of the after dinner talks) were on or related to Ricci
flow. Richard Bamler gave a very nice overview on the analytic open problems
in the long term analysis of 3 dimensional Ricci flow and gave interesting partial
answers to some of the questions. Esther Cabezas–Rivas established structure re-
sults for the Ricci flow on open manifolds with nonnegative complex curvature.
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Takumi Yokota talked on a gap phenomenon for noncompact gradient Ricci so-
litions related to the reduced volume. Gregor Giesen addressed the uniqueness
question for the instantaneously complete Ricci flow on surfaces with incomplete
initial data. Zhenlei Zhang and Robert Haslhofer considered the moduli space of
gradient Ricci solitons and possible degenerations of Ricci solitons. Hans-Joachim
Hein established so-called ε-regularity of the Ricci flow, which means that cur-
vature bounds in a parabolic neighbourhood of a point can essentially be solely
deduced from a (sufficiently good) lower bound on Perelman’s pointed entropy.

Sebastian Hoelzel gave a simple criterion which allows to decide whether the
class of manifolds satisfying a certain curvature condition is invariant under surgery
with codimension k.

Olivier Biquard and Claude LeBrun talked on four dimensional Einstein mani-
folds. The former gave a criterion that allows to desingularize certain four dimen-
sional Einstein orbifolds. The latter established an analogue of the Hitchin-Thorpe
inequality for Einstein four-manifolds with edge cone singularities. Characteristic
numbers were also at the core of Ursula Hamenstädt’s talk, who showed that for
any surface bundle over a surface the Euler characteristic is bounded below by
three times the signature.

Frank Pacard provided a surprising doubling construction for CMC hypersur-
faces in Riemannian manifolds. Felix Schulze proved uniqueness of certain singu-
larity models for the mean curvature flow. Peter Topping introduced a new flow
for immersed surfaces, which has some advantages over the mean curvature flow.
Sergei Ivanov considered the minimal surface problem in finite dimensional Ban-
nach spaces. He could show that 2-dimensional unit discs (in linear subspaces) are
total minimizers among all surfaces with the same boundary.

Karsten Grove used work of Tits on buildings to classify isometric polar actions
on positively curved manifolds. Marcus Khuri gave a very interesting talk on
general relativity.

Marc Bourdon and Anton Petrunin introduced new constructions in geometric
group theory. The former studied the question for which p the lp cohomology of
the boundary of Gromov hyperbolic groups is nontrivial. The latter gave a rather
surprising construction which shows for example that any finitely presented group
can be realized as the fundamental group of the underlying topological space of a
compact 3-dimensional orbifold.
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Min-max theory and the Willmore conjecture: parts I and II . . . . . . . . . . 1643

Marc Bourdon (joint with Bruce Kleiner)
Some applications of ℓp-cohomology to boundaries of Gromov hyperbolic
spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1644

Claude LeBrun (joint with Michael Atiyah)
Curvature, Cones, and Characteristic Numbers . . . . . . . . . . . . . . . . . . . . . . 1646

Esther Cabezas-Rivas (joint with Burkhard Wilking)
How to produce a Ricci flow via Cheeger-Gromoll exhaustion . . . . . . . . . . 1648

Takumi Yokota
A refinement of a gap theorem for gradient shrinking Ricci solitons . . . . 1651

Richard Bamler
Long-time analysis of 3 dimensional Ricci flow . . . . . . . . . . . . . . . . . . . . . . 1652

Ursula Hamenstädt
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Abstracts

Min-max theory and the Willmore conjecture: parts I and II

Fernando Codá Marques

(joint work with André Neves, Imperial College - UK)

In 1965, T. J. Willmore conjectured that the integral of the square of the mean
curvature of any torus immersed in Euclidean three-space is at least 2π2. In these
talks we will describe a proof of this conjecture that uses the min-max theory of
minimal surfaces.

The Willmore conjecture can be reformulated as a question about surfaces in
the three-sphere because if π : S3 \ {(0, 0, 0, 1)} → R3 denotes the stereographic
projection and Σ ⊂ S3 \ {(0, 0, 0, 1)} is a closed surface, then

∫

Σ̃

H̃2dΣ̃ =

∫

Σ

(1 + H2)dΣ.

Here H and H̃ are the mean curvature functions of Σ ⊂ S3 and Σ̃ = π(Σ) ⊂ R3,
respectively. The quantity W(Σ) =

∫

Σ
(1 + H2) dΣ is then defined to be the

Willmore energy of Σ ⊂ S3. This energy is specially interesting because it has
the remarkable property of being invariant under conformal transformations of
S3. This fact was already known to Blaschke and Thomsen in the 1920s. The
Willmore Conjecture has received the attention of many mathematicians since the
late 1960s.

Our Main Theorem is:

Theorem A. Let Σ ⊂ S3 be an embedded closed surface of genus g ≥ 1. Then

W(Σ) ≥ 2π2,

and the equality holds if and only if Σ is the Clifford torus up to conformal trans-
formations of S3.

To each closed surface Σ ⊂ S3, we associate a canonical 5-dimensional family
of surfaces in S3 with area bounded above by the Willmore energy of Σ. This
area estimate follows from a calculation of A. Ros, based on the Heintze-Karcher
inequality. The family is parametrized by the 5-cube I5, and maps the bound-
ary ∂I5 into the space of geodesic spheres in a topologically nontrivial way if
genus(Σ) ≥ 1. The whole proof revolves around the idea of showing that the Clif-
ford torus S1( 1√

2
) × S1( 1√

2
) ⊂ S3 can be produced by applying min-max theory

for the area functional to the homotopy class of this family. One key point is
that, by a result of F. Urbano, the Clifford torus is the only non-totally geodesic
minimal surface in S3 with Morse index at most 5. After ruling out great spheres
by a topological argument, the proof of Theorem A then reduces to the following
statement about minimal surfaces in the three-sphere, also proven using min-max
methods:
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Theorem B. Let Σ ⊂ S3 be an embedded closed minimal surface of genus g ≥ 1.
Then area(Σ) ≥ 2π2, and area(Σ) = 2π2 if and only if Σ is the Clifford torus up
to isometries of S3.

References

[1] F. C. Marques, A. Neves Min-max theory and the Willmore conjecture, arXiv:1202.6036v1
[math.DG] (2012), 1–96.

Some applications of ℓp-cohomology to boundaries of Gromov

hyperbolic spaces

Marc Bourdon

(joint work with Bruce Kleiner)

In this talk we are interested in quasi-isometry invariant structure in Gromov
hyperbolic spaces, primarily structure which is reflected in the boundary. For some
hyperbolic groups Γ, the topological structure of the boundary ∂Γ alone contains
substantial information: witness the JSJ decomposition encoded in the local cut
point structure of the boundary [1], and many situations where one can detect
boundaries of certain subgroups H ⊂ Γ by means of topological criteria. However,
in many cases, for instance for generic hyperbolic groups, the topology reveals little
of the structure of the group and is completely inadequate for addressing rigidity
questions, since the homeomorphism group of the boundary is highly transitive. In
these cases it is necessary to use the finer quasi-Mobius structure of the boundary
and analytical invariants attached to it, such as modulus (Pansu, metric-measure,
or combinatorial), ℓp-cohomology, and closely related quantities like the conformal
dimension. The seminal work of Heinonen-Koskela [7] indicates that when ∂Γ is
quasi-Mobius homeomorphic to a Loewner space (an Ahlfors Q-regular Q-Loewner
space in the sense of [7]), there should be a rigidity theory resembling that of
lattices in rank 1 Lie groups.

In this talk we restrict our attention to proper Gromov hyperbolic spaces which
satisfy the following two additional conditions:

• (Bounded geometry) Every R-ball can be covered by at most N = N(R, r)
balls of radius r ≤ R.

• (Nondegeneracy) There is a C ∈ [0,∞) such that every point x lies within
distance at most C from all three sides of some ideal geodesic triangle ∆x.

The visual boundary ∂X of such a space X is a compact, doubling, uniformly
perfect metric space, which is determined up to quasi-Mobius homeomorphism by
the quasi-isometry class of X . Conversely, every compact, doubling, uniformly
perfect metric space is the visual boundary of a unique hyperbolic metric space as
above, up to quasi-isometry.

To simplify the discussion of homological properties, we will impose (without
loss of generality) the additional standing assumption that X is a simply connected
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metric simplicial complex with links of uniformly bounded complexity, and with
all simplices isometric to regular Euclidean simplices with unit length edges.

We recall [8, 6, 5] that for p ∈ (1,∞), the continuous (first) ℓp-cohomology
ℓpH

1
cont(X) is canonically isomorphic to Ap(∂X)/R, where Ap(∂X) is the space of

continuous functions u : ∂X → R which have a continuous extension f : X(0) ∪
∂X → R with p-summable coboundary:

‖df‖pℓp =
∑

[vw]∈X(1)

|f(v) − f(w)|p < ∞ ,

and where R denotes the subspace of constant functions. Associated with the
continuous ℓp-cohomology are several other quasi-isometry invariants:

(1) The ℓp-equivalence relation ∼p on ∂X , where x ∼p y iff u(x) = u(y) for
every u ∈ Ap(∂X).

(2) The infimal p such that ℓpH
1
cont(X) ≃ Ap(∂X)/R is nontrivial. We will

denote this by p 6=0(X). Equivalently p 6=0(X) is the infimal p such that ∼p

has more than one coset.
(3) The infimum psep(X) of the p such that Ap(∂X) separates points in ∂X , or

equivalently, psep(X) is the infimal p such that all cosets of ∼p are points.

These invariants were exploited in [4, 5, 2] due to their connection with confor-
mal dimension and the Combinatorial Loewner Property. Specifically, when ∂X
is approximately self-similar (e.g. if ∂X is the visual boundary of a hyperbolic
group) then psep(X) coincides with the conformal dimension of ∂X ; and if ∂X
has the Combinatorial Loewner Property then the two critical exponents p 6=0(X)
and psep(X) coincide, i.e. for every p ∈ (1,∞), the function space Ap(∂X) sepa-
rates points iff it is nontrivial.

The key idea presented here is new constructions of nontrivial elements in the
ℓp-cohomology. The general approach for the construction is inspired by [5], and
may be described as follows. Inside the Gromov hyperbolic complex X , we identify
a subcomplex Y such that the relative cohomology of the pair (X,X \ Y ) reduces
– essentially by excision – to the cohomology of Y relative to its frontier in X .
Then we prove that the latter contains an abundance of nontrivial classes. This
yields nontrivial classes in ℓpH

1
cont(X) with additional control, allowing us to make

deductions about the cosets of the ℓp-equivalence relation.

As an illustration of these ideas we obtain the following results, see [3] for more
details.

Theorem 1. Suppose A,B are hyperbolic groups, and we are given malnormal
quasiconvex embeddings C →֒ A, C →֒ B. Suppose that there is a decreasing
sequence {An}n∈N of finite index subgroups of A such that ∩n∈NAn = C, and set
Γn := An ⋆C B.

(1) If psep(A) < psep(B) then, for all p ∈ (psep(A), psep(B)] and every n large
enough, the ℓp-equivalence relation on ∂Γn possesses a coset different from
a point and the whole ∂Γ. In particular for n large enough, ∂Γn does not
admit the CLP.
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(2) If psep(A) < p 6=0(B) then, for p ∈ (psep(A), p 6=0(B)) and every n large
enough, the cosets of the ℓp-equivalence relation on ∂Γn are single points
and the boundaries of cosets gB, for g ∈ Γn. In particular, for large n,
any quasi-isometry of Γn permutes the cosets gB, for g ∈ Γn.

Theorem 2. Let X be a simply connected hyperbolic 2-complex. Assume that X
is a union of 2-cells, where 2-cells intersect pairwise in at most a vertex or edge.
If the perimeter of every 2-cell is at least n ≥ 7 and the thickness of every edge
lies in [2, k], then one has

psep(X) ≤ 1 +
log(k − 1)

log(n− 5)
.

We notice that examples of such 2-complexes are provided by the Davis com-
plexes of Coxeter groups with all exponents mij ≥ 4.
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Curvature, Cones, and Characteristic Numbers

Claude LeBrun

(joint work with Michael Atiyah)

Recall that a Riemannian manifold (M, g) is said [2] to be Einstein if it has constant
Ricci curvature. This is equivalent to requiring that the Ricci tensor r of g satisfy
r = λg for some real number λ, called the Einstein constant of g. While one usually
requires g to be a smooth metric on M , it is sometimes interesting to consider
generalizations where g is allowed to have mild singularities. In the Kähler case,
beautiful results [3, 4, 7] have recently been obtained regarding the situation in
which g has specific conical singularities along a submanifold of real codimension
two. Interesting self-dual 4-dimensional examples have also been constructed by
Hitchin [6] and Abreu [1], and global quotient orbifolds with singular set purely
of codimension 2 give us many more. Einstein manifolds with such edge-cone
singularities were the focus of my lecture.



Geometrie 1647

Let M be a smooth n-manifold, and let Σ ⊂ M be a smoothly embedded
(n − 2)-manifold. Near any point p ∈ Σ, we can thus find local coordinates
(y1, y2, x1, . . . , xn−2) in which Σ is given by y1 = y2 = 0. Given any such adapted
coordinate system, we then introduce an associated transversal polar coordinate
system (ρ, θ, x1, . . . , xn−2) by setting y1 = ρ cos θ and y2 = ρ sin θ. We define
a Riemannian edge-cone metric g of cone angle 2πβ on (M,Σ) to be a smooth
Riemannian metric on M − Σ which, for some ε > 0, can be expressed as

(1) g = ḡ + ρ1+εh

near any point of Σ, where the symmetric tensor field h on M has infinite conormal
regularity along Σ, and where

(2) ḡ = dρ2 + β2ρ2(dθ + ujdx
j)2 + wjkdx

jdxk

in suitable transversal polar coordinate systems; here wjk(x)dxjdxk and uj(x)dxj

are a smooth metric and a smooth 1-form on Σ. (Our conormal regularity hypoth-
esis means that the components of h in (y, x) coordinates have infinitely many
continuous derivatives with respect to ∂/∂xj, ∂/∂θ, and ρ ∂/∂ρ.) Thus, an edge-
cone metric g behaves like a smooth metric in directions parallel to Σ, but is
modelled on a 2-dimensional cone in the transverse directions. If an edge-cone
metric on (M,Σ) is Einstein on M − Σ, we will call it an Einstein edge-cone
metric.

The Hitchin-Thorpe inequality [2, 5, 8] provides an important obstruction to the
existence of Einstein metrics on 4-manifolds. If M is a smooth compact oriented
4-manifold which admits a smooth Einstein metric g, then the Euler characteristic
χ and signature τ of M must satisfy the two inequalities

(2χ± 3τ)(M) ≥ 0

because both expressions are represented by Gauss-Bonnet-type integrals for which
the integrands become non-negative in the Einstein case. This hinges on several
peculiar features of 4-dimensional Riemannian geometry; no analogous obstruction
to the existence of Einstein metrics is currently known in any other dimension. Our
main result is a generalization of the Hitchin-Thorpe inequality which is adapted
to the edge-cone setting:

Theorem 1. Let (M,Σ) be a pair consisting of a smooth compact 4-manifold and
a fixed smoothly embedded compact oriented surface. If (M,Σ) admits an Einstein
edge-cone metric with cone angle 2πβ along Σ, then (M,Σ) must satisfy the two
inequalities

(2χ± 3τ)(M) ≥ (1 − β)
[

2χ(Σ) ± (1 + β)[Σ]2
]

.

As a consequence, whenever Σ ⊂ M has non-zero self-intersection [Σ]2, the
existence of Einstein edge-cone metrics is obstructed for all sufficiently large β. It
is also easy to find examples where existence is obstructed for all β ∈ (0, ε).

Theorem 1 follows from modified Gauss-Bonnet and signature formulas that
hold for arbitrary edge-cone metrics, and so are of independent interest:
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Theorem 2. Let M be a smooth compact oriented 4-manifold, and let Σ ⊂ M be
a smooth compact oriented embedded surface. Then, for any edge-cone metric g
on (M,Σ) with cone angle 2πβ,

χ(M) = (1 − β)χ(Σ) +
1

8π2

∫

M

(

s2

24
+ |W |2 − |̊r|2

2

)

dµ

τ(M) =
1

3
(1 − β2)[Σ]2 +

1

12π2

∫

M

(

|W+|2 − |W−|2
)

dµ

where s, r̊, W+, and W− respectively denote the scalar, trace-free Ricci, self-dual
Weyl, and anti-self-dual Weyl curvatures of g, W = W+ + W−, and dµ is the
metric volume form.

Many gravitational instantons arise as β → 0 limits of edge-cone metrics, and
Theorem 2 has some interesting consequences in this context.
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How to produce a Ricci flow via Cheeger-Gromoll exhaustion

Esther Cabezas-Rivas

(joint work with Burkhard Wilking)

We give a detailed analysis of the Ricci flow

(1)
∂

∂t
g(t) = −2Ric(g(t))

on open (i.e. complete and non-compact) n-manifolds (M, g) with KC ≥ 0:

Definition 1. If we extend the Riemannian curvature tensor Rm and the metric
g at p ∈ M to C-multilinear maps on TCM := TM⊗C, then the complex sectional
curvature of a 2-plane σ of TC

p M is defined by

KC(σ) = Rm(u, v, v̄, ū) = g(Rm(u ∧ v), u ∧ v),
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where {u, v} is any unitary basis for σ, i.e. g(u, ū) = g(v, v̄) = 1 and g(u, v̄) = 0.
We say M has nonnegative complex sectional curvature if KC ≥ 0.

Note that this is weaker than Rm ≥ 0 and implies nonnegative sectional curvature
(K ≥ 0). Unlike the latter, KC ≥ 0 has the advantage to be invariant under (1).

In a broader scheme of things, Ricci flows on open manifolds arise naturally as
singularity models for (1) on closed (i.e. compact and without boundary) mani-
folds. The condition KC ≥ 0 is also relevant for singularity analysis prospects: for
n = 3 it is well known by Hamilton-Ivey’s estimates that singularity models satisfy
KC ≥ 0; even for higher dimensions we have strong indications that various Ricci
flow invariant curvature conditions should pinch towards KC ≥ 0.

Historically, the first question was to ensure that (1) admits a solution for a
short time. This was settled for closed manifolds by Hamilton in [7]. But it seems
hopeless to expect similar results for the open case; e.g. it is difficult to imagine
how to construct a solution to (1) starting at a complete n-manifold (n ≥ 3)
built by attaching in a smooth way long spherical cylinders with radii converging
to zero. The natural way to prevent such situations is to add extra conditions
on the curvature; indeed, W. X. Shi proved in [9] that (1) starting on an open
manifold with bounded curvature (i.e. supM |Rmg| ≤ k0 < ∞) admits a solution
on [0, T (n, k0)] also with bounded curvature.

Later on M. Simon (cf. [11]), assuming further that the manifold has Rmg ≥ 0
and is non-collapsing (infM volg (Bg(·, 1)) ≥ v0 > 0), was able to extend Shi’s

solution for a time interval [0, T (n, v0)], with |Rmg(t)| ≤ c(n,v0)
t for t > 0. Although

T (n, v0) does not depend on an upper curvature bound, such a bound is still needed
to guarantee short time existence.

Our first result in [3] manages to remove any restriction on upper curvature
bounds for open manifolds with KC ≥ 0 which, by Cheeger, Gromoll and Meyer
[4, 6], admit an exhaustion by convex sets Cℓ. We are able to construct a Ricci
flow with KC ≥ 0 on the closed manifold obtained by gluing two copies of Cℓ along
the common boundary, and whose ‘initial metric’ is the natural singular metric on
the double. By passing to a limit we obtain

Theorem 2. Let (Mn, g) be an open manifold with nonnegative (and possibly
unbounded) complex sectional curvature. Then there exists a constant T = T (n, g)
such that (1) has a smooth solution on [0, T ], with g(0) = g and KC

g(t) ≥ 0.

Using that by Brendle [1] the trace Harnack inequality holds for the closed case,
it follows that the above solution on the open manifold satisfies the trace Harnack
estimate as well. This solves an open question posed in [5, Problem 10.45]. The
proof of Theorem 2 is considerably easier if KC

g > 0 since e.g. then, by Gromoll
and Meyer [6], M is diffeomorphic to Rn. We overcome the lack of such a property
in the general case by proving (see [8] for a version asking Rmg ≥ 0):

Theorem 3. Let (Mn, g) be an open, simply connected Riemannian manifold with
nonnegative complex sectional curvature. Then M splits isometrically as Σ × F ,
where Σ is the k-dimensional soul of M and F is diffeomorphic to Rn−k.
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In the nonsimply connected case M is diffeomorphic to a flat Euclidean vector
bundle over the soul. Thus combining with the knowledge from [2] of the compact
case, we extend the same classification of [2] for open manifolds with KC ≥ 0; more
precisely, any such a manifold admits a complete nonnegatively curved locally
symmetric metric ĝ, i.e. Kĝ ≥ 0, ∇Rĝ ≡ 0.

It is not hard to see that, given any open manifold (M, g) with bounded curva-
ture and KC

g > 0, for any closed discrete countable subset S ⊂ M one can find a
deformation ḡ of g in an arbitrary small neighborhood U of S such that ḡ and g
are C1-close, (M, ḡ) has unbounded curvature and KC

ḡ > 0. The following result,
which is very much in spirit of [11], shows that this sort of local deformations will
be smoothed out instantaneously by our Ricci flow.

Corollary 4. Let (Mn, g) be an open manifold with KC
g ≥ 0. If

(2) inf
{

volg(Bg(p, 1)) : p ∈ M
}

= v0 > 0,

then the curvature of (M, g(t)) is bounded above by c(n,v0)
t for t ∈ (0, T (n, v0)].

Any nonnegatively curved surface satisfies (2), so can be deformed by (1) to one
with bounded curvature. However, (2) is essential for n ≥ 3:

Theorem 5. a) There is an immortal 3-dimensional nonnegatively curved com-
plete Ricci flow (M, g(t))t∈[0,∞) with unbounded curvature for each t.

b) There is an immortal 4-dimensional complete Ricci flow (M, g(t))t∈[0,∞) with
positive curvature operator such that Rmg(t) is bounded if and only if t ∈ [0, 1).

Part b) shows that even if Rmg(0) is bounded one can run into metrics with
unbounded curvature. Our next result gives a precise lower bound on the existence
time for (1) in terms of supremum of the volume of balls, instead of infimum as in
Corollary 4 and [11]. We stress that this is new even for g(0) of bounded curvature.

Corollary 6. For each complete (Mn, g) with KC
g ≥ 0 we find ε(n) > 0 so that if

T := ε(n) · sup
{

volg(Bg(p,r))
rn−2

∣

∣ p ∈ M, r > 0
}

∈ (0,∞],

then any complete maximal Ricci flow (M, g(t))t∈[0,T ) with KC

g(t) ≥ 0 and g(0) = g

satisfies T ≤ T .

If M has a volume growth larger than rn−2, this ensures T = ∞. Previously
(cf. [10]) long time existence was only known in the case of Euclidean volume
growth (EVG) under stronger curvature assumptions. We highlight that our vol-
ume growth condition cannot be further improved: indeed, as the Ricci flow on the
metric product S

2 ×R
n−2 exists only for a finite time, the power n− 2 is optimal.

For n = 3 we can even determine exactly the extinction time:

Corollary 7. Let (M3, g) be open with Kg ≥ 0 and soul Σ. Then a maximal
complete Ricci flow (M, g(t))t∈[0,T ) with g(0) = g and Kg(t) ≥ 0 has (a) T =
area(Σ)
4πχ(Σ) if dim Σ = 2, (b) T = ∞ if dim Σ = 1, and (c) T = 1

8π limr→∞
volg(Bg(p,r))

r

if Σ = {p0}. If T < ∞ in (c), then (M, g) is asymptotically cylindrical and Rmg(t)

is bounded for t > 0.
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Finally, we analyze the long time behaviour of an immortal Ricci flow: For an
initial metric with EVG we remark that a result in [10] can be adjusted to see that
a suitable rescaled Ricci flow subconverges to an expanding soliton. Moreover,

Theorem 8. Let (Mn, g(t)) be a non flat immortal Ricci flow with KC ≥ 0
satisfying the trace Harnack inequality. If (M, g(0)) does not have EVG, then for
p0 ∈ M we find tk → ∞ and Qk > 0 so that (M,Qkg(tk + t/Qk), p0) converges in
the Cheeger-Gromov sense to a steady soliton which is not isometric to Rn.
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A refinement of a gap theorem for gradient shrinking Ricci solitons

Takumi Yokota

In [Yo], we dealt with ancient solutions to the Ricci flow and gradient shrinking
Ricci solitons. A triple (M, g, f) consisting of a Riemannian manifold (M, g) with
f ∈ C∞(M) is called a gradient shrinking Ricci soliton if it satisfies the following
equation with some positive constant λ > 0:

Ric(g) + Hess f =
1

2λ
g.

The integral Θ(M) :=
∫

M
(4πλ)−n/2e−fdµg is sometimes called the Gaussian

density of (Mn, g, f) with the potential function f being normalized so that

λ(R + |∇f |2) = f on M.

Here R and dµg denote the scalar curvature and the volume element of g, respec-
tively.
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Gradient shrinking Ricci solitons appear as ancient solutions to the Ricci flow in
its analysis of finite time singularities. A Ricci flow (M, g(t)) is called an ancient
solution if it exists for all τ := −t ∈ [0,∞).

The main theorem of the addendum [Yo2] to [Yo] is the following gap theorem.

Theorem 1 ([Yo2]). For any n ≥ 2, there exists a constant ǫn > 0 satisfying the
following: Any complete n-dimensional gradient shrinking Ricci soliton (Mn, g, f)
with Θ(M) > 1 − ǫn is, up to scaling, the Gaussian soliton (Rn, gE , | · |2/4).

In [Yo], Theorem 1 was obtained as a corollary of the following gap theorem
under the additional assumption on the Ricci curvature.

Theorem 2 ([Yo]). For any n ≥ 2, there exists a constant ǫn > 0 satisfying the
following: Any complete n-dimensional ancient solution (Mn, g(τ)), τ ∈ [0,∞) to

the Ricci flow with Ricci curvature bounded below and limτ→∞ Ṽ(p,0)(τ) > 1 − ǫn
for some p ∈ M is the Gaussian soliton, i.e., the trivial solution on the Euclidean
space (Rn, gE) for all τ ∈ [0,∞).

In the above statement, Ṽ(p,0)(τ) denotes the reduced volume which was intro-
duced and shown to be nonincreasing in τ > 0 by G. Perelman [Pe], and we use

the convention that Ṽ(p,0)(τ) ≤ 1 for any Ricci flow. We assume that the Ricci
curvature is bounded below only to ensure that the reduced volume is well-defined.

In [Yo2], Theorem 1 is proved by observing that the reduced volume is well-
defined for ancient solutions generated by any complete gradient shrinking Ricci
solitons and applying Theorem 2. Finally, we comment that our Theorem 1 is
intimately related to the conjecture of Carrillo–Ni [CN].
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Long-time analysis of 3 dimensional Ricci flow

Richard Bamler

It is still an open problem how Perelman’s Ricci flow with surgeries behaves
for large times. For example, it is unknown whether surgeries eventually stop to
occur and whether the full geometric decomposition of the underlying manifold is
exhibited by the flow as t → ∞.

In this talk, I present new tools to treat this question. In particular, I discuss the
case in which the initial manifold only has hyperbolic or non-ashpheric components
in its geometric decomposition (i.e. prime and torus-decomposition). Note that
this is a purely topological condition. It turns out that in this case, surgeries do
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in fact stop to occur after some time and that the curvature is globally bounded
by Ct−1. Finally, I explain how to treat more general cases.

A Ricci flow with surgery M is a solution to the Ricci flow equation ∂tgt =
−2 Rict on a sequence of time intervals [0, T1), [T1, T2), . . . such that the metric at
the initial time of each time interval arises from the metric at the final time of
the previous time interval through a certain surgery process which removes areas
of high curvature and controlled topology. Perelman has used the Ricci flow with
surgery to prove the Poincaré and Geometrization Conjecture ([2], [3], [4]). More
precisely, given any initial metric on a closed 3-manifold, Perelman managed to
construct a specific Ricci flow with surgery M on a maximal time interval [0, T )
and showed that the surgery times T1, T2, . . . do not accumulate on [0, T ). This
means that on every finite time interval there are only finitely many surgeries.
Furthermore, he could prove that the maximal time interval [0, T ) is finite if and
only if the initial manifold is a connected sum of spherical space forms and copies of
S1×S2. In this case it follows immediately that the number of surgeries performed
on [0, T ) is finite and it is possible to give an accurate asymptotic characterization
of the metric gt as t ր T .

In the more generic case [0, T ) = [0,∞), it is an interesting question whether
M always has finitely many surgeries, i.e. whether surgeries stop to occur after
a finite time, and how the metric gt behaves as t → ∞. Observe that although
the Ricci flow with surgery was used to solve such difficult problems, these basic
questions were never answered, because once a few properties of the metric gt for
large t were determined, topological arguments could be used to finish the proof
of the Geometrization Conjecture.

The results presented in this talk, answer some of these open questions in the
case [0, T ) = [0,∞) when the topology of the initial manifold is of a certain type.
Consider the following classes of topological 3-manifolds

T ′
1 = {M prime, closed 3-manifold : M has only hyperbolic components

in its geometric decomposition}
T ′
2 = {M prime, closed 3-manifold : M “has enough incompressible surfaces”}

The exact definition of T ′
2 is quite long and is omitted here. I remark that T ′

2

includes large classes of prime 3-manifolds but not all prime 3-manifolds. For
example T ′

1 ⊂ T ′
2 , T 3 ∈ T ′

2 . Also, manifolds whose geometric pieces are glued
together in a certain way are of type T ′

2 . However, the Heisenberg manifold, for
instance, is not of type T ′

2 . We now define for i = 1, 2

Ti = {M1# . . .#Mm : Mi ∈ T ′
i or Mi ≈ S3/Γ, S1 × S2}.

Then the results presented in this talk are

Theorem 1 (cf [1]). Assume M ∈ T1 and let g be an arbitrary Riemannian
metric on M . Then there is a Ricci flow with surgery M starting from (M, g) on
a maximal time interval [0, T ) which only has finitely many surgeries. Moreover

|Rm| < C

t
for all t ≫ 1.
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Theorem 2 (to appear). The same holds when M ∈ T2.
Observe that the conditions in the Theorems above are purely topological. We

mention a few consequences which do not use the somewhat unhandy notion of
Ricci flows with surgery:

Corollary 1. Assume M ∈ T1 and let (gt)t∈[0,∞) be a long-time existent Ricci
flow (without surgeries) on M . Then (a posteriori M ∈ T ′

1 and)

|Rm| < C

t
for all t > 0.

Corollary 2. The same holds when M ∈ T2.
Corollaries 1 and 2 are direct consequence of Theorems 1 and 2. The following

Corollary asserts that there are indeed examples in which the conditions of these
Corollaries are satisified.

Corollary 3. If M ∈ T ′
2 , then there is a long-time existent Ricci flow (gt)t∈[0,∞)

on M .

Corollary 3 follows from Theorem 2 in the following way: Consider any Ricci
flow with surgery M starting from an arbitrary metric g on M . Since M is prime
and not a spherical space form or S1×S2, we know that M is defined on the time
interval [0,∞) and that the topology of the manifold does not change throughout
time. Moreover, Theorem 2 implies that there is a time T ′ > 0 after which no
surgeries occur. Then M restricted to the time interval [T ′,∞) is a long-time
existent Ricci flow without surgeries.

In order to understand the proofs of Theorems 1 and 2, it suffices to prove
Corollaries 1 and 2 on their own. In fact, the existence of surgeries would only add
some technical details to these proofs. On the other hand, the curvature estimates
achieved in those Corollaries, rule out the existence of surgeries after a certain
time, since the curvature blows up around every surgery.

A major ingredient for the proof of Corollaries 1 and 2 is a generalization of a
theorem of Perelman [3, 7.3]. This theorem asserts that if at a late time t in a Ricci
flow (with surgery) the volume of the ρ(x, t)-ball B(x, t, ρ(x, t)) around a point x
is bounded from below by wr3, where w > 0 is an arbitrary constant and ρ(x, t) is
the maximum of all numbers r > 0 such that the sectional curvatures on B(x, t, r)
are bounded from below by −r−2, then we have curvature control of the form
|Rm| < K(w)t−1 on B(x, t, ρ(w)

√
t). Here ρ(w) > 0,K(w) < ∞ are constants

depending only on w. This theorem can be generalized, by passing to the universal
cover of M (Perelman’s theorem also holds in the non-compact case under certain
assumptions). Then, the volume bound of B(x, t, ρ(x, t)) in Perelman’s theorem
generalizes to a bound on the volume of the ρ(x, t)-ball in the universal cover of
M (which is always greater or equal to the volume of B(x, t, ρ(x, t))).

This generalization gives us the opportunity to extend the known long-time cur-
vature bounds to regions in the manifold which are collapsed along incompressible
S1 or T 2 fibers. For the proof of Corollary 1, a closer look at the geometry of the
collapsed part of the manifold along with a minimal surface argument yields that
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these regions are large enough to conclude a curvature bound on the whole man-
ifold. The proof of Corollary 2 is far more complex and it makes it necessary to
deduce different types of curvature estimates similar to the generalization of Perel-
man’s theorem, which also hold in regions that are collapsed along compressible
fibers.
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Signatures of surface bundles and Milnor Wood inequalities

Ursula Hamenstädt

A surface bundle over a surface is a smooth closed 4-manifold E which admits a
surjective projection E → B onto a closed surface B. The preimage of a point
x ∈ B is a closed surface S. Assume that the genus h of B and the genus g of S
are at least 2. Such a surface bundle is determined up to diffeomorphism by its
monodromy which is a homomorphism π1(B) → Mod(S). Here Mod(S) denotes
the group of isotopy classes of diffeomorphisms of S.

The Bogomolov-Miyaoka-Yau inequality states that the Chern numbers of a
complex surface M of general type are related by the inequality c21 ≤ 3c2. It
implies the relation

3|σ(M)| ≤ |χ(M)|
between the signature σ and the Euler characteristic χ.

Kotschick [3] showed that the Miyaoka inequality holds true for surface bundles
E → B over surfaces which admit a complex structure or an Einstein metric. For
general surface bundles over surfaces he used Seiberg Witten theory to derive the
weaker inequality 2|σ(E)| ≤ χ(E).

Baykur [1] constructed for large enough fibre and base genus infinitely many
surface bundles over surfaces which do not admit a complex structure. Obstruc-
tions to the existence of an Einstein metric in this setting are unknown.

In this talk we discuss the following

Theorem 3|σ(E)| ≤ χ(E) for any surface bundle E over a surface.

The proof of this result consists in three steps. First we identify an explicit cycle
in E which is Poincaré dual to the first Chern class of the cotangent bundle of the
fibres of E. This cycle can be viewed as a multi-section of E → B with singular
points. Pulling back the cotangent bundle of the fibres with this multi-section
and taking tensor products yields a complex line bundle over the base whose first
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Chern class equals 3σ(E). This first Chern class can then be estimated with a
Milnor Wood-type inequality.
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The space of metric measure spaces is an Alexandrov space

Karl-Theodor Sturm

We study the space X of equivalence classes of metric measure spaces (X, d,m)
with finite L2-size

size(X, d,m) =

(
∫

X

∫

X

d
2(x, y) dm(x) dm(y)

)1/2

.

The space X will be equipped with the L2-distortion distance ∆∆ defined as

∆∆
(

(X0, d0,m0) , (X1, d1,m1)
)

=

inf
m̄∈Cpl(m0,m1)

(
∫

X0×X1

∫

X0×X1

|d0(x0, y0) − d1(x1, y1)|2 dm̄(x0, x1)dm̄(y0, y1)

)
1
2

where Cpl(m0,m1) denotes the set of all probability measures m̄ on X0 ×X1 with
(π0)∗m̄ = m0 and (π1)∗m̄ = m1. Restricted to subsets of X with uniformly bounded
diameters the ∆∆-topology coincides with the topology induced by Gromov’s box
distance �λ as well as that induced by the author’s L2-transportation distance D

([2], [4]).
The metric ∆∆, however, is not complete. The ∆∆-completion X̄ is the space of

equivalence classes of pseudo metric measure spaces (X, d,m) where X is a Polish
space, m a Borel measure and d a symmetric, measurable function on X2 which
satisfies the triangle inequality almost everywhere.

Theorem 1.
(

X̄,∆∆
)

is a complete geodesic space of nonnegative curvature in the
sense of Alexandrov.
It is a cone over its unit sphere {(X, d,m) ∈ X̄ : size(X, d,m) = 1} which itself is
an Alexandrov space of curvature ≥ 1.

A rich class of functions U : X̄ → R is given by the so-called polynomials of
order n ∈ N:

U
(

(X, d,m)
)

=

∫

Xn

u
(

(

d(xi, xj)
)

1≤i,j≤n

)

dmn(x1, . . . , xn)

for u : Rn×n → R bounded and continuous.

Theorem 2. Let U : X̄ → R be defined as above.
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(i) If u is λ-continuous on R
n×n then U is λn(n− 1)-continuous on X̄.

(ii) If u is κ-convex on Rn×n then U is κn(n− 1)-convex on X̄.

Polynomials of order 4 can be used to characterize spaces with given upper or
lower curvature bounds in the sense of Alexandrov.

Another important functional F : X̄ → R+ measures the deviation of the volume
growth from that of a given model space. Let (X∗, d∗,m∗) be a mm-space with
volume growth

v∗r = m
∗ (B∗

r (x))

independent of x ∈ X∗. For each (X, d,m) ∈ X̄ put

vr(x) = m(Br(x)), wt(x) =

∫ t

0

∫ s

0

vr(x)drds, w∗
t =

∫ t

0

∫ s

0

v∗rdrds and

F
(

(X, d,m)
)

=

∫ ∞

0

(wt(x) − w∗
t )2ρtdt.

Theorem 3. (i) For suitable choice of the weight function ρ : R+ → (0,∞),
the function F : X̄ → R+ is κ-convex and λ-Lipschitz continuous with κ
and λ given explicitly.

(ii) For each (X0, d0,m0) ∈ X̄ there exists a unique gradient flow curve
(

(Xt, dt,mt)
)

t≥0
for F .

(iii) F
(

(X, d,m)
)

= 0 ⇐⇒ ∀r > 0, ∀x ∈ X : vr(x) = v∗r .

Remark 4 ([3]). Assume that X∗ is the n-dimensional sphere Sn and that X
is a k-dimensional Riemannian manifold (both with normalized volume). Then if
n ≤ 3

F
(

(X, d,m)
)

= 0 ⇐⇒ X = Sn.

For further details, see [1].
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Instantaneously complete Ricci flows on surfaces

Gregor Giesen

(joint work with Peter M. Topping)

We consider the well-posedness of the initial value problem of the Ricci flow,
i.e. of solutions

(

g(t)
)

t∈[0,T ]
on a connected n-dimensional Riemannian manifold

(

Mn, g0
)

without boundary to

(RF)







∂

∂t
g(t) = −2Rcg(t)

g(0) = g0.

While classical theory provides existence and uniqueness in the case of compact
manifolds (Hamilton [6]) or non-compact but complete manifolds with bounded
curvature (Shi [8] and Chen-Zhu [2]), very little is known about the Ricci flow
of incomplete Riemannian manifolds with unbounded curvature. As this turns
out to be very difficult in higher dimensions, we restrict our attention to the two-
dimensional situation, where the initial value problem (RF) simplifies to a scalar
equation due to its conformal invariance in this very dimension: Writing locally
g0 = e2u0 |dz|2 for some (complex) isothermal coordinate z = x + iy on U ⊆ M
and some smooth function u0 ∈ C∞(

U
)

, the system (RF) is locally equivalent to

(RF2)







∂

∂t
u(t) = e−2u(t)∆u(t)

u(0) = u0,

where ∆ = ∂2

∂x2 + ∂2

∂y2 . However, already simple examples reveal a vast non-

uniqueness: Taking the flat metric on the open unit disc in the plane as the
initial surface

(

D, |dz|2
)

, for any prescribed Dirichlet boundary data on [0, T ]×∂D,
standard parabolic theory provides divergent solutions to (RF2) all starting from
u(0) ≡ 0.

As a ‘geometrical’ replacement for these boundary conditions, Topping started
to investigate those solutions of the Ricci flow which become instantaneously com-
plete, i.e. they are complete for all positive time [9]. Along with a very general
short-time existence result he also conjectured that this instantaneous complete-
ness is the right condition in order to gain uniqueness in this class. In [4] we
have generalised Topping’s existence result to the most general case including
long-time existence and removing any curvature assumptions:

Theorem 1 (1st Part of [4, Theorem 1.3]). Let
(

M2, g0
)

be a smooth Riemannian
surface which need not be complete, and could have unbounded curvature. Depend-
ing on the conformal class, we define T ∈ (0,∞] by

T :=







volg0 M
4π χ(M)

if
(

M, g0
) conf

= S2 or RP 2 or C,

∞ otherwise.

Then there exists a smooth Ricci flow
(

g(t)
)

t∈[0,T )
such that
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(i) g(0) = g0;

(ii)
(

g(t)
)

t∈[0,T )
is instantaneously complete;

(iii)
(

g(t)
)

t∈[0,T )
is maximally stretched1,

and this flow is unique in the sense that if
(

g2(t)
)

t∈[0,T2)
is any other Ricci flow

on M satisfying (i) and (iii), then T2 ≤ T and g2(t) = g(t) for all t ∈ [0, T2).

If T < ∞, then we have

(∗) volg(t) M = 4π χ(M) (T − t) −→ 0 as t ր T,

and in particular, T is the maximal existence time.

In contrast to the classical theory where the blow-up of the curvature would mean
the solution to end (usually forming a singularity), here the only obstacle to con-
tinuing the flow is the entire consumption of the surface’s area (∗). Furthermore,
Theorem 1 allows us to construct such examples where the curvature is unbounded
for all time:

Theorem 2 ([5, Theorem 1.2]). On every non-compact Riemann surface M2

there exists a complete immortal Ricci flow
(

g(t)
)

t∈[0,∞)
with unbounded curvature

supM Kg(t) = ∞ for all t ∈ [0,∞).

The solutions of Theorem 1 are unique in the class of maximally stretched Ricci
flows. This property of being maximally stretched turns out to be quite use-
ful in applications, e.g. for constructing barriers. Another consequence is that
these maximally stretched solutions are not somehow exotic; moreover, if they are
complete and have bounded curvature, they coincide with the classical solutions
obtained by Hamilton and Shi as long as both exist. The issue of uniqueness
in the class of instantaneously complete solutions (as conjectured by Topping) is
still partly open: We have shown uniqueness of an instantaneously complete Ricci
flow starting at a surface which does not admit a complete hyperbolic metric [4,
Theorem 1.6], while in [3] we have proved uniqueness, if the initial surface has
uniformly negative curvature. The latter result has been slightly improved since
then [4, Theorem 1.7].

The estimates we proved in order to establish the existence result (Theorem 1)
allows us to describe the asymptotical behaviour in most cases:

Theorem 3 (2nd Part of [4, Theorem 1.3]). Suppose
(

g(t)
)

t∈[0,∞)
is an instan-

taneously complete Ricci flow on a surface M2 such that
(

M2, g(0)
)

admits a
complete hyperbolic metric ghyp of curvature −1, then we have convergence of the
rescaled flow

1

2t
g(t) −→ ghyp smoothly locally as t ր ∞.

1A Ricci flow
(

g(t)
)

t∈[0,T ]
on M2 is maximally stretched, if for any Ricci flow

(

g2(t)
)

t∈[0,T2]
on M2 with g2(0) ≤ g(0), we have g2(t) ≤ g(t) for all t ∈

[

0,min{T, T2}
]

.
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If additionally there exists a constant M > 0 such that g(0) ≤ Mghyp, then the
convergence is global: For any k ∈ N0 := N ∪ {0} and η ∈ (0, 1) there exists a
constant C = C(k, η, g(0)) > 0 such that

∥

∥

∥

∥

1

2t
g(t) − ghyp

∥

∥

∥

∥

Ck(M,ghyp)

≤ C

t1−η
for all t ∈ [1,∞).

This generalises the known capability of the Ricci flow to uniformise compact
surfaces ([7], [1]) by the very large class of non-compact surfaces which admit a
complete hyperbolic metric.
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Desingularisation of Einstein orbifolds

Olivier Biquard

This work is devoted to the study of the compactification of the moduli space
of Einstein 4-manifolds. Frequently the study of a compactification of a moduli
space of solutions of a geometric partial differential equations (instantons in gauge
theory, pseudo-holomorphic curves, etc.) has two parts:

• a compactness theorem giving the possible singular limits of the objects;
• a gluing theorem which shows that a singular limit is indeed at the bound-

ary of the moduli space, that is one can reconstruct points in the moduli
space near the singular limit.

The aim of this work is to understand a part of this picture in the case of Einstein
4-manifolds. There is a good compactness theorem [And89, BKN89]: if one has
a sequence of compact Einstein 4-manifolds (Mi, gi), with Einstein constant ±1
or 0, with bounded diameter and volume bounded from below, and bounded L2-
norm of the curvature (which reduces to the control of the Euler characteristic
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via Chern-Weil formulas), then a subsequence must Gromov-Hausdorff converge
to a compact Einstein 4-orbifold (M0, g0). Moreover, the compactness is smooth
outside the singular points, the singular points are of type R4/G where Γ ⊂ SO4

is a finite subgroup with isolated fixed point at the origin, and at each singular
point there is a sequence ti → 0 such that gi

ti
→ gALE , where gALE is a Ricci flat

ALE (Asymptotically Locally Euclidean) metric, which means that it has an end
asymptotic to R4/Γ where Γ ⊂ SO4 is a finite subgroup.

The known possible ‘bubbles’, that is the Ricci flat ALE 4-manifolds, are Kro-
nheimer’s gravitational instantons [Kro89a]: these are hyperKähler 4-manifolds,
which are deformations of the minimal resolution of C2/Γ for a finite subgroup
Γ ⊂ SU2. Some finite quotients can also occur. It is still an open important
question whether other Ricci flat ALE 4-manifolds exist.

One of the most typical examples is the singular Kummer surface T/Z2 — an
orbifold with sixteen singular points of type C

2/Z2 —, which can be desingularized
into a K3 surface, by gluing an Eguchi-Hanson metric (this is a U2-invariant ALE
hyperKähler metric on T ∗CP 1) at each singular point.

In this work we precisely study the possibe desingularisation of an Einstein
4-orbifold (M0, g0) with singular points of type C2/Z2, by gluing Eguchi-Hanson
instantons at the singularities. It turns out that a local obstruction appears:
remind that in dimension 4 the Riemannian curvature of an Einstein manifold de-
composes into two pieces: R = R+ +R−, where R± is a symmetric endomorphism
of ±-selfdual 2-forms. Then we prove (see the precise statement in [Biq11]):
Theorem. Let (M0, g0) be an Einstein orbifold, with singular points of type
C2/Z2. Let (gi) be a sequence of metrics on the (topological) desingularisation of
M0, which converge to g0 so that they are close enough to the grafting of Eguchi-
Hanson instantons to g0. Then at each singular point p ∈ M0,

(†) detRg0
+ (p) = 0.

Conversely, if (M0, g0) is a non compact, Asymptotically Hyperbolic Einstein man-
ifold, and the condition (†) is satisfied at each singular point, then one can desin-
gularise (M0, g0).

See [Biq11] for the precise definition of an Asymptotically Hyperbolic manifold:
these are manifolds with boundary, with a complete metric in the interior, which
behaves roughly like a real hyperbolic metric near the boundary. Of course, the
prototype is real hyperbolic space RH4 itself.

An interesting point is that the obstruction (†) is never satisfied by a (nonzero)
constant curvature metric, so real hyperbolic orbifolds or quotients of the sphere
are not expected to be desingularisable by an Einstein 4-manifold. In particular
the quotient S4/Z2 of the 4-sphere with 2 fixed points, or the quotient RH4/Z2,
are not expected to be desingularisable.

There are also some interesting consequences of the result on a wall crossing
phenomenon on the Dirichlet problem at infinity for Einstein metrics as posed by
Anderson [And05], again see the details in [Biq11].
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Telescopic actions

Anton Petrunin

(joint work with Dmitry Panov)

An isometric co-compact properly discontinuous group action H on X is called
telescopic if for any finitely presented group G, there exists a subgroup H ′ of finite
index in H such that G is isomorphic to the fundamental group of X/H ′.

We construct examples of telescopic actions on some CAT[-1] spaces, in partic-
ular on 3 and 4-dimensional hyperbolic spaces. As applications we give new proofs
of the following statements.

Aitchison’s theorem. Every finitely presented group G can appear as the fun-
damental group of M/J , where M is a closed 3-manifold and J is an involution
which has only isolated fixed points.

Taubes’ theorem. Every finitely presented group G can appear as the funda-
mental group of a compact complex 3-manifold.

Compactness and Non-compactness for the Yamabe Problem on

Manifolds With Boundary

Marcus A. Khuri

(joint work with Marcelo M. Disconzi)

The Yamabe problem consists of finding a constant scalar curvature metric g̃ which
is pointwise conformal to a given metric g on an n-dimensional (n ≥ 3) compact
Riemannian manifold M without boundary. This is equivalent to producing a
positive solution to the following semilinear elliptic equation

(1) Lgu + Ku
n+2
n−2 = 0, on M,

where K is a constant, Lg = ∆g − c(n)Rg is the conformal Laplacian for g with
scalar curvature Rg, and c(n) = n−2

4(n−1) . If u > 0 is a solution of (1) then the new
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metric g̃ = u
4

n−2 g has scalar curvature c(n)−1K. This problem was solved in the
affirmative through the combined works of Yamabe [12], Trudinger [11], Aubin [1]
and Schoen [10] (see also [8] for a complete overview).

It is natural to ask what can be said about the full set of solutions to (1) in
the case of positive Yamabe invariant. While this set is noncompact in the C2

topology when the underlying manifold is Sn with the round metric, when M is
not conformally equivalent to the round sphere compactness was established in
various cases. However in a surprising turn of events, counterexamples to com-
pactness were found by Brendle [2] when n ≥ 52, and subsequently by Brendle
and Marque [3] for 25 ≤ n ≤ 51. Finally, Khuri, Marques and Schoen [7] proved
that compactness does hold in all remaining cases, that is, for n ≤ 24.

An obvious extension of such problems is to consider manifolds with boundary.
In this case one would like to conformally deform a given metric to one which has
not only constant scalar curvature but constant mean curvature as well. This prob-
lem is equivalent to showing the existence of a positive solution to the boundary
value problem

{

Lgu + Ku
n+2
n−2 = 0, in M,

Bgu = ∂νgu + n−2
2 κgu = n−2

2 cu
n

n−2 , on ∂M,
(2)

where νg is the unit outer normal and κg is the mean curvature. If such a solution

exists then the metric g̃ = u
4

n−2 g has scalar curvature c(n)−1K and the boundary
has mean curvature c. This Yamabe problem on manifolds with boundary was
initially investigated by Escobar [4, 5], who solved the problem affirmatively in
several cases. With contributions from several authors most of the cases have now
been solved.

Consider subcritical approximations to equation (2), where a priori estimates
are readily available. Thus we define

Φp =
{

u > 0
∣

∣ Lgu + Kup = 0 in M, Bgu = 0 on ∂M
}

,

for p ∈ [1, n+2
n−2 ]. Furthermore, as the case K < 0 has already been treated in [6],

we will assume from now on that K > 0. Then our main result may be stated as
follows.

Theorem 1. (Compactness) Let (Mn, g) be a smooth compact Riemannian
manifold of dimension 3 ≤ n ≤ 24 with umbilic boundary, and which is not con-
formally equivalent to the standard hemisphere (Sn

+, g0). Then for any ε > 0 there
exists a constant C > 0 depending only on g and ε such that

C−1 ≤ u ≤ C and ‖ u ‖C2,α(M)≤ C

for all u ∈ ∪1+ε≤p≤ n+2
n−2

Φp, where 0 < α < 1.

This theorem is established by a fine analysis of blow-up behavior at boundary
points; such a fine analysis was carried out for interior blow-up points in [7]. The
entire problem is reduced to showing the positivity of a certain quadratic form on
a finite dimensional vector space, which may be analyzed in a similar manner as
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is done in the appendix of [7]. Of course this theorem also relies on the Positive
Mass Theorem of General Relativity, in its usual form. That is, although we are
concerned with manifolds having boundary, we are still able to use the standard
Positive Mass Theorem by employing a doubling procedure.

Another key feature of our approach is to employ a version of conformal normal
coordinates adapted to the boundary, which elucidates the dependence of vari-
ous geometric quantities on the conformally invariant umbilicity tensor and Weyl
tensor. This coordinate system can be thought of as a good compromise between
traditional conformal normal coordinates [8] and the so-called conformal Fermi co-
ordinates [9]. This is because although the latter has been shown to be a powerful
tool to study the Yamabe problem on manifolds with boundary, a critical part of
the compactness result in [7] is the proof of the positivity of the quadratic form
mentioned earlier. This proof makes substantial use of the the radial symmetry
coming from normal coordinates and we would like to preserve as much as possible
of that original argument.

In general, it is expected that wherever blow-up occurs, these conformally in-
variant quantities will vanish to high order because, up to a conformal change, the
geometry of the manifold resembles that of a sphere near the blow-up. As we are
assuming that the boundary is umbilic here, we focus on the Weyl tensor.

Theorem 2. (Weyl vanishing) Let g be a smooth Riemannian metric defined
in the unit half n-ball B+

1 , 6 ≤ n ≤ 24. Suppose that there is a sequence of positive
solutions {ui} of

{

Lgui + Kupi

i = 0, in B+
1 ,

Bgui = 0, on B+
1 ∩ Rn−1,

pi ∈ (1, n+2
n−2 ], such that for any ε > 0 there exists a constant C(ε) > 0 such that

supB+
1 \B+

ε
ui ≤ C(ε) and limi→∞(supB+

1
ui) = ∞. Assume also that B+

1 ∩ Rn−1

is umbilic. Then the Weyl tensor Wg satisfies

|Wg|(x) ≤ C|x|l

for some integer l > n−6
2 .

Remark. It may appear that since the boundary is umbilic, the proofs of
Theorems 1 and 2 should follow directly from [7] by applying a reflection argument.
However, the techniques employed in [7] require a higher degree of regularity than
what is typically available from a simple reflection of the metric.

In analogy to the case without boundary, one wonders if Theorem 1 is false
when n ≥ 25. We have also been able to answer this question.

Theorem 3. Assume that n ≥ 25. Then there exists a smooth Riemannian
metric g on the hemisphere Sn

+ and a sequence of positive functions ui ∈ C∞(Sn
+),

such that:

(i) g is not conformally flat (so in particular (Sn
+, g) is not conformally equiva-

lent to (Sn
+, g0), where g0 is the round metric),

(ii) ∂Sn
+ is umbilic in the metric g,
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(iii) for each i, ui is a positive solution of the boundary value problem
{

Lgui + Ku
n+2
n−2

i = 0, in Sn
+,

Bgui = 0, on ∂Sn
+,

where K is a positive constant,
(iv) supSn

+
ui → ∞ as i → ∞.
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Uniqueness of compact tangent flows in Mean Curvature Flow

Felix Schulze

In this work we study Mean Curvature Flow (MCF) of n-surfaces of codimension
k ≥ 1 in R

n+k, which are close to self-similarly shrinking solutions. In the smooth
case we consider a family of embeddings F : Mn× (t1, t2) → Rn+k, for Mn closed,
such that

d

dt
F (p, t) = ~H(p, t) ,

where ~H(p, t) is the mean curvature vector of Mt := F (M, t) at F (p, t). We denote
with M =

⋃

t∈(t1,t2)
(Mt × {t}) ⊂ Rn+k × R its space-time track.
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In the following, let Σn be a smooth, closed, embedded n-surface in R
n+k where

the mean curvature vector satisfies

~H = −x⊥

2
.

Here x is the position vector at a point on Σ and ⊥ the projection to the normal
space of Σ at that point. Such a surface gives rise to a self-similarly shrinking
solution MΣ, where the evolving surfaces are given by

Σt =
√
−t · Σ, t ∈ (−∞, 0).

We denote its space-time track by MΣ.
We also want to study the case that the flow is allowed to be non-smooth.

Following [5], we say that a family of Radon measures (µt)t∈[t1,t2) on Rn+k is
an integral n-Brakke flow, if for almost every t the measure µt comes from a n-
rectifiable varifold with integer densities. Furthermore, we require that given any
ϕ ∈ C2

c (Rn+k;R+) the following inequality holds for every t > 0

(1) D̄tµt(ϕ) ≤
∫

−ϕ| ~H |2 + 〈∇ϕ, ~H〉 dµt,

where D̄t denotes the upper derivative at time t and we take the left hand side to
be −∞, if µt is not n-rectifiable, or does not carry a weak mean curvature. Note
that if Mt is moving smoothly by mean curvature flow, then D̄t is just the usual
derivative and we have equality in (1).

We restrict to integral n-Brakke flows which are close to a smooth self-similarly
shrinking solution. The assumption that the Brakke flow is close in measure to
a smooth solution with multiplicity one actually yields that the Brakke flow has
unit density. This implies that for almost all t the corresponding Radon measures
can be written as

µt = Hn
LMt .

Here Mt is a n-rectifiable subset of Rn+k and Hn is the n-dimensional Hausdorff-
measure on Rn+k. If the flow is (locally) smooth, then Mt can be (locally) repre-
sented by a smooth n-surface evolving by MCF. Conversely, if Mt moves smoothly
by MCF, then µt := Hn

LMt defines a unit density n-Brakke flow.

Theorem 1. Let M = (µt)t∈(t1,0) with t1 < 0 be an integral n-Brakke flow such
that

i) (µt)t∈(t1,t2) is sufficiently close in measure to MΣ for some t1 < t2 < 0.

ii) Θ(0,0)(M) ≥ Θ(0,0)(MΣ), where Θ(0,0)(·) is the respective Gaussian den-
sity at the point (0, 0) in space-time.

Then M is a smooth flow for t ∈ [(t1 + t2)/2, 0), and the rescaled surfaces M̃t :=
(−t)−1/2 · Mt can be written as normal graphs over Σ, given by smooth sections
v(t) of the normal bundle T⊥Σ, with |v(t)|Cm(T⊥Σ) uniformly bounded for all t ∈
[(t1 + t2)/2, 0) and all m ∈ N. Furthermore, there exists a self-similarly shrinking
surface Σ′ with

Σ′ = graphΣ(v′)
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and
|v(t) − v′|Cm ≤ cm(log(−1/t))−αm

for some constants cm > 0 and exponents αm > 0 for all m ∈ N.

The above theorem implies uniqueness of compact tangent flows as follows. Let
the parabolic rescaling with a factor λ > 0 be given by

Dλ : Rn+k × R → R
n+k × R, (x, t) 7→ (λx, λ2t) .

Note that any Brakke flow M (smooth MCF) is mapped to a Brakke flow (smooth
MCF), i.e. Dλ(M) is again a Brakke flow (smooth MCF).

Let (x0, t0) be a point in space-time and (λi)i∈N, λi → ∞, be a sequence of
positive numbers. If M is a Brakke flow with bounded area ratios, then the
compactness theorem for Brakke flows (see [5, 7.1]) ensures that

(2) Dλi(M− (x0, t0)) → M′ ,

where M′ is again a Brakke flow. Such a flow is called a tangent flow of M at
(x0, t0). Huisken’s monotonicity formula ensures that M′ is self-similarly shrink-
ing, i.e. it is invariant under parabolic rescaling.

Corollary 2. Let M be an integral n-Brakke flow with bounded area ratios, and
assume that at (x0, t) ∈ Rm+k ×R a tangent flow of M is MΣ. Then this tangent
flow is unique, i.e. for any sequence (λi)i∈N of positive numbers, λi → ∞ it holds

Dλi(M− (x0, t0)) → MΣ .

Until recently, other than the shrinking sphere and the Angenent torus [2] no
further examples of compact self-similarly shrinking solutions in codimension one
were known. However, several numerical solutions of D. Chopp [3] suggest that
there are a whole variety of such solutions. In a recent preprint [7], N. Møller
shows that it is possible to desingularize the intersection lines of a self-similarly
shrinking sphere and the Angenent torus to obtain a new, compact, smoothly
embedded self-similarly shrinking solution. In higher codimensions this class of
solutions should be even bigger.

In a recent work of Kapouleas/Kleene/Møller [6] and X.H. Nguyen [8] non-
trivial, non-compact, self-similarly shrinking solutions were constructed. In [4],
G. Huisken showed that, under the assumption that the second fundamental form
is bounded, the only solutions in the mean convex case are shrinking spheres and
cylinders.

The analogous problem for minimal surfaces is the uniqueness of tangent cones.
This was studied in [11, 1, 12], and, in the case of multiplicity one tangent cones
with isolated singularities, completely settled by L. Simon in [9]. One of the main
tools in the analysis therein is the generalisation of an inequality due to  Lojasiewicz
for real analytic functions to the infinite dimensional setting.

Also in the present work, this Simon- Lojasiewicz inequality for “convex” en-
ergy functionals on closed surfaces, plays a central role. We adapt several ideas
from [9, 10]. We prove a smooth extension lemma for Brakke flows close to MΣ

and introduce the rescaled flow. Furthermore, we treat the Gaussian integral of
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Huisken’s monotonicity formula for the rescaled flow as an appropriate “energy
functional” on Σ and use the Simon- Lojasiewicz inequality to prove a closeness
lemma. This lemma and the extension lemma are then applied to prove the main
theorem and its corollary.
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Singularities in 4d Ricci flow

Robert Haslhofer

(joint work with Reto Müller)

Hamilton’s Ricci flow [1], ∂tg = −2Rcg, has been very successful in many cases.
Highlights include Perelman’s spectacular proof of the geometrization conjecture
[2, 3], the Brendle-Schoen proof of the differentiable sphere theorem [4], and many
deep results on the Kähler Ricci flow. However, relatively little is known in the
general higher-dimensional case without strong positivity assumptions on the cur-
vatures. In this general case extremely complicated singularities can form and a
key problem is to study the nature of these singularities. The aim here is to report
on our work on the compactness properties of the space of singularity models, for
full details please see [5].
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By Perelman’s monotonicity formula the singularity models for the Ricci flow
are the gradient shrinking Ricci solitons (shrinkers), given by a manifold M , a
metric g and a function f such that the following equation holds:

(1) Rcg + Hessgf = 1
2g .

Solutions of (1) correspond to selfsimilar solutions of the Ricci flow, moving only by
homotheties and diffeomorphisms. Shrinkers always come equipped with a natural
basepoint p ∈ M , a minimum point for the potential f , in fact f(x) ∼ 1

4d(x, p)2.

After imposing the normalization
∫

M
(4π)−n/2e−fdV = 1, shrinkers also have a

well-defined Perelman entropy,

(2) µ(g) =

∫

M

(

R + |∇f |2 + f − n
)

(4π)−n/2e−fdV .

Our first main result says that the space of shrinkers with bounded entropy and
locally bounded energy is orbifold-compact in arbitrary dimensions:

Theorem 1. For every sequence of shrinkers (Mn
i , gi, fi) satisfying the entropy

and local energy assumptions,

(3) µ(gi) ≥ µ > −∞,

∫

Br(pi)

|Rmgi |n/2dVgi ≤ C(r) < ∞ ,

there exists a subsequence that converges to an orbifold shrinker in the pointed
orbifold Cheeger-Gromov sense.

Here, the limit can have a discrete set of orbifold points modeled on finite
quotients Rn/Γ (Γ ⊂ O(n)). Away from these points the convergence is smooth.
See also [6, 7, 8, 9] for related compactness results for Ricci solitons, and [10, 11, 12]
for the fundamental results in the Einstein case. The strength of our Theorem 1
is that it works for noncompact manifolds and that we do not require any other
assumptions, in particular no volume, diameter or pointwise curvature bounds.
In fact, most interesting singularity models for the Ricci flow are noncompact,
the cylinder being the most basic example. Also, assuming a lower bound for the
entropy is very natural, since it is nondecreasing along the Ricci flow by Perelman’s
celebrated monotonicity formula [2]. In dimension four, a delicate localized Gauss-
Bonnet argument even allows us to drop the assumption on energy in favor of
essentially an upper bound for the Euler characteristic:

Theorem 2. For four-dimensional shrinkers (M4, g, f) we have the weighted L2-
estimate

(4)

∫

M

|Rm|2e−fdV ≤ C(µ, χ, Ctech) < ∞ ,

depending only on a lower bound µ for the entropy, an upper bound χ for the Euler
characteristic, and a technical constant Ctech such that

(5) |∇f |(x) ≥ 1/Ctech whenever d(x, p) ≥ Ctech .
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Actually, we believe that the technical condition (5) is always satisfied. It re-
mains an interersting open problem to prove that this is indeed the case.

Outline of the proofs. We first sketch the main steps to prove Theorem 1:
Volume comparison implies the existence of a pointed Gromov-Hausdorff limit
(M∞, d∞, p∞). Using the lower bound for the entropy and the fact that the scalar
curvature is locally bounded on shrinkers we obtain a lower bound for the volume
of small balls (noncollapsing). The shrinker equation and the Bianchi identity
yield an elliptic equation of the schematic form

(6) ∆Rm = ∇f ∗ ∇Rm + Rm + Rm ∗ Rm .

We then prove the following ε-regularity estimate:

(7) ||Rm||Ln/2(Bδ(x)) ≤ ε(r) ⇒ ||∇kRm||L∞(Bδ/2(x)) ≤
Ck(r)

δ2+k
||Rm||Ln/2(Bδ(x)) .

A key step here is an uniform estimate for the local Sobolev constant. Putting
things together we can pass to a smooth Cheeger-Gromov limit away from a dis-
crete set of singular points. Finally, the singular points are of C∞-orbifold type.

To get across the idea of the proof of Theorem 2, recall that the Gauss-Bonnet
formula for 4-manifolds with boundary has the schematic form

(8) χ(B) =

∫

B

(

|Rm|2 − |Rc|2 + R2
)

dV +

∫

∂B

(II ∗ Rm + II ∗ II ∗ II) dA .

We choose (essentially) e−f as a weight function on M , use the coarea formula
and apply (8). The goal is then to estimate

∫

M |Rm|2e−fdV , by controlling all the

other terms. The hardest term has the form
∫

M |Rc|3e−fdV and comes from the

boundary term cubic in the second fundamental form (very roughly II ∼ ∇2f ∼
Rc). At first sight, it seems impossible to control the cubic Ricci term by the
bulk terms which are only quadratic. However, we have the following weighted
L3-estimate for shrinkers:

(9)

∫

M

|Rc|3e−fdV ≤ ε

∫

M

|Rm|2e−fdV + C(ε, µ) .

Our proof of the key estimate (9) is based on a delicate use of partial integrations
and soliton identities. The proof of Theorem 2 can then be finished by estimating
and absorbing all the remaining terms.
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Convexity and semi-ellipticity of Busemann–Hausdorff surface area

Sergei Ivanov

(joint work with Dmitri Burago)

Let X = (X, ‖ · ‖) be a finite-dimensional normed space. By the area of a two-
dimensional surface in X we mean the two-dimensional Hausdorff measure, cf. [4].
In this lecture I present the following results of a recent work [3] solving the two-
dimensional case of an old problem posed by Busemann, see e.g. [5, page 180].

Theorem 1. Let D ⊂ X be a two-dimensional disc contained in a two-dimensional
affine subspace. Then D minimizes the area among all surfaces with the same
boundary. That is, for every surface S in X such that ∂S = ∂D, one has
Area(S) ≥ Area(D).

Theorem 2. The two-dimensional area density in X, regarded as a function
on the set of simple bi-vectors (i.e., on the two-dimensinal Grassmannian cone),
admits a convex extension to Λ2X.

In the language of geometric measure theory, Theorem 1 says that the area den-
sity is semi-elliptic over Z and Z2, and Theorem 2 is equivalent to semi-ellipticity
of the area over R (see [2]). Since the area is semi-elliptic for every norm, it is
elliptic in the case when the norm is smooth and strictly convex. By a classic result
of Almgren, the ellipticity implies the existence and regularity almost everywhere
of solutions of the Plateau problem in X .

By the results of [1], Theorem 1 has the following corollaries.

Corollary 1. Let d be a metric on R2 invariant under the action of |mathbbR2

by translations. Let BR denote the metric ball in (R2, d) of radius R centered at
the origin. Then

lim inf
R→∞

H2(BR, d)

R2
≥ π

where H2 denotes the two-dimensional Hausdorff measure.
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Corollary 2. Let ‖ · ‖ be a norm on R
2, B its unit ball, and d a metric on B such

that d(x, y) ≥ ‖x− y‖ for all x, y ∈ ∂B. Then H2(B, d) ≥ π.

The proof of the theorems is based on an almost elementary inequality for the
areas of symmetric convex polygons in the plane. This inequality is used to con-
struct a calibrating 2-form (with constant coefficients) for every two-dimensional
plane in X . The existence of such a calibrating form implies the convexity and
semi-ellipticity of the area.
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An ε-regularity theorem for the Ricci flow

Hans-Joachim Hein

(joint work with Aaron Naber)

As a motivating example, consider the regularity theory at infinity of complete
Ricci-flat manifolds of Euclidean volume growth: Bishop-Gromov tells us that the
ratio Vol(Br(x0))/ωnr

n is nonincreasing in r, and constant (only) on metric cones.
This allows one to prove that blowdowns exist in the Gromov-Hausdorff sense and
(after a great amount of work [3]) are, in fact, metric cones. Such tangent cones at
infinity are then very likely unique (proved in special cases [4], expected in general).
Singular cones do appear in examples (the asymptotic cone of Kronheimer’s hyper-
Kähler metric on the regular semisimple orbit in sl(3,C) is the nilpotent variety of
sl(3,C), i.e. a Z3-quotient of a smooth cone [6]). However, the singularities of the
tangent cones have codimension ≥ 2, and ≥ 4 in the Kähler case. A basic input in
proving regularity results of this kind is ε-regularity: the ability to detect smooth
points x by smallness of the local density Vx(r) = log(Vol(Br(x))/ωnr

n).
Virtually none of the ingredients in the above theory are at present available for

the Ricci flow (given the understanding that blowdowns ↔ tangent flows, metric
cones ↔ gradient shrinking solitons). We make a start by proving ε-regularity.

Let (Mn, g(t)) be a smooth (compact) Ricci flow, parametrized by t ∈ [−T, 0].
To state our main result [5], we need to recall Perelman’s pointed entropy [10],

Wx(s) =

∫

M

(|s|(|∇fx|2 + R) + fx − n) dνx,(1)
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where dνx = Hx dvol for the backward heat kernel Hx with pole at (x, 0), and

Hx(y, s) = H(x, 0 | y, s) = (4π|s|)−n
2 e−fx(y,s).(2)

We also recall Perelman’s global entropy functional µ(g, τ).

Theorem 1. For all n,C there exists ε = ε(n,C) such that if we have

R(g(s)) ≥ − C

|s| , inf
τ∈(0,2|s|)

µ(g(s), τ) ≥ −C,(3)

for some s ∈ [−T, 0), then, for all x0 ∈ M in the final time slice,

Wx0(s) ≥ −ε =⇒ |Rm(x)| ≤ (εr)−2 for all x ∈ Pεr(x0, 0),(4)

where r2 = |s| and, in general, Pr(x, t) = Br(x, t) × [t− r2, t].

The assumptions (3) are natural and minimal: Since both lower scalar curvature
and µ-entropy bounds are propagated by the flow, (3) can be derived from bounds
on the geometry of the initial time slice (M, g(−T )), which we view as given.

One might think that Theorem 1 is obvious by contradiction. Indeed there exist
well-known proofs of ε-regularity theorems along these lines, e.g. Anderson [1] (for
Einstein manifolds) and White [11] (for minimal surfaces and the mean curvature
flow). However, these proofs all involve passing from a basepoint of small density
to a nearby one that locally minimizes the regularity scale. One therefore needs
to know that the density is small in a whole definite neighborhood of x0.

Continuity of the density is obvious (in an effective Lipschitz fashion) from the
monotonicity formulas for Einstein manifolds and minimal surfaces. For the mean
curvature flow we at least have continuity in a form that survives to singular limits.
However, effective continuity in x is certainly not obvious for Wx(s), and for all
we know might in fact fail. This is the whole difficulty of the proof.

The first ingredient to fix this is to regularize the W-entropy by averaging in
time. This leads to our introducing what we call the Nash entropy; see [9]:

Nx(s) :=
1

|s|

∫ 0

s

Wx(t) dt
!

=

∫

M

fx dνx − n

2
.(5)

This is a straightforward but very useful computation. It quantifies the smoothness
gained by averaging in that it shows that Nx no longer depends on any derivatives
of the heat kernel. Moreover, we don’t lose too much information because

Ns(x) = −
∫ 0

s

2|t|
(

1 − t

s

)
∫

M

∣

∣

∣

∣

Ric + ∇2fx − g

2|t|

∣

∣

∣

∣

2

dνx dt.(6)

We are then able to prove the following, which leads to a proof of Theorem 1, and
in fact of a strengthening of Theorem 1 in which Wx0 gets replaced by Nx0 .

Theorem 2. The Nash entropy is effectively Lipschitz in x. Precisely,

|Nx1(s) −Nx2(s)| ≤ C′(n,C)|s|− 1
2 dg(0)(x1, x2)(7)

for all x1, x2 ∈ M in the final time slice.
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In order to prove Theorem 2, we need to estimate ∇xNx(s). This leads to the
second ingredient, which we learned about from the work of Qi Zhang [12]: The
conjugate heat kernel H(x, t | y, s) is also the fundamental solution of the ordinary
forward heat operator ✷x,t = ∂t − ∆g(t),x with pole at (y, s). Thus, if we want to
bound ∇xfx, then we need to think about gradient estimates for the forward heat
equation. Luckily we have the following parabolic Bochner formula:

✷
1

2
|∇u|2 = −|∇2u|2 + 〈∇✷u,∇u〉,(8)

which nicely generalizes the usual elliptic Bochner formula, the centerpiece of the
theory of spaces with lower Ricci bounds. The final result of Zhang’s work in this
direction allows us to deduce that, for some constant C′ = C′(n,C),

|∇xfx|2 ≤ C′

|s| (C
′ + fx).(9)

If we substitute this into the integral computing ∇xNx, then we quickly see that it
now suffices to estimate the 4th moment of the heat kernel,

∫

|fx|2 dνx. This calls
for a Poincaré inequality for the measure dνx because the expression

∫

|∇yfx|2 dνx
featuring on the right-hand side would then be controlled by the µ-entropy.

In actual fact, and this is then the third ingredient, we are even able to prove
a logarithmic Sobolev inequality for dνx whose optimal constant is universal.
Theorem 3. The following functional inequality holds along every Ricci flow:

ϕ > 0,

∫

M

ϕ2 dνx = 1 =⇒
∫

M

ϕ2 logϕ2 dνx ≤ 4|s|
∫

M

|∇ϕ|2 dνx.(10)

Moreover, we have equality if and only if either ϕ ≡ 1, or if the flow isometrically
splits off an R-factor.

This follows by adapting the classical Bakry-Émery and Bakry-Ledoux proofs
for shrinking Ricci solitons and static manifolds with Ric ≥ 0, see [2], to the case of
the conjugate heat kernel measure coupled to an arbitrary Ricci flow. The reason
why this works is ultimately once again the Bochner formula (8). Let us also point
out that the applications of the LSI for dνx in (10), and of Perelman’s LSI for the
Riemannian measure dvol from [10], seem to be essentially disjoint.

Final remark: An LSI as in (10) implies Gaussian concentration of the measure;
see [7]. Unfortunately, in the case of the Ricci flow, this does not give us pointwise
Gaussian upper heat kernel bounds in any reasonable generality. However, we do
obtain Gaussian upper bounds assuming that the Ricci flow is of type I. Somewhat
surprisingly, these were not known before. See [8] for a recent application.
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Doubling construction for CMC hypersurfaces in Riemannian

manifolds

Frank Pacard

(joint work with Taoniu Sun)

Assume that n ≥ 2 and that we are given a compact (n + 1)-dimensional Rie-
mannian manifold (M, g) and a compact n-dimensional manifold Λ. We define
M(M, g,Λ) to be the set of immersed hypersurfaces in M which are diffeomorphic
to Λ and have their mean curvature function which is constant (it is customary
to distinguish minimal hypersurfaces whose mean curvature vanishes identically
from constant mean curvature hypersurfaces whose mean curvature is constant
not equal to 0).

Adapting the result of White [5], one can prove that, for a generic choice of
the metric g on the ambient manifold M , the set M(M, g,Λ) is a smooth one
dimensional manifold (possibly empty) which might have infinitely many (compact
or non compact) connected components. Understanding the possible degeneration
of sequences of constant mean curvature surfaces with fixed topology will certainly
give some information about M(M, g,Λ) and this will also provide a partial answer
to the existence problem.

Under mild assumptions, we prove that a minimal hypersurface Λ immersed in
a Riemannian manifold (M, g) is the multiplicity 2 limit of a family of constant
mean curvature hypersurfaces whose topology degenerates as their mean curvature
tends to 0. The constant mean curvature hypersurfaces we construct have small
mean curvature and are obtained by performing the connected sum between two
copies of Λ at finitely many carefully chosen points.

Assume that Λ is a smooth, compact orientable, minimal hypersurface immersed
in a (n+ 1)-dimensional Riemannian manifold (M, g). The Jacobi operator about
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Λ appears in the expression of the second variation of the area functional and is
defined by

(1) JΛ := ∆Λ + |AΛ|2 + Ricg(N,N),

where ∆Λ is the Laplace-Beltrami operator on Λ, AΛ is the second fundamental
form, |AΛ|2 is the square of the norm of AΛ (i.e. the sum of the square of the
principal curvatures of Λ). Finally, Ricg denotes the Ricci tensor on (M, g) and
N denotes a unit normal vector field on Λ. Recall that :

Definition 1. A minimal hypersurface Λ is said to be nondegenerate if

JΛ : C2,α(Λ) −→ C0,α(Λ),

is injective.

If Λ is nondegenerate, the implicit function theorem guaranties the existence of
ε0 > 0 and a smooth one parameter family of immersed constant mean curvature
hypersurfaces Λε, for ε ∈ (−ε0, ε0), whose mean curvature is constant equal to
ε. Moreover, Λε is a normal geodesic graph over Λ for some function whose C2,α

norm is bounded by a constant times ε.
We assume that Λ is a nondegenerate, compact, orientable minimal hypersurface

which is immersed in M and we define ϕ0 to be the (unique) solution of

(2) JΛ ϕ0 = 1.

Our main result reads :

Theorem 1. Assume that n ≥ 2 and that p ∈ Λ is a nondegenerate critical
point of ϕ0. Further assume that ϕ0(p) 6= 0. Then, there exist ε0 > 0 and a one

parameter family of compact, connected constant mean curvature hypersurfaces Λ̂ε,
for ε ∈ (−ε0, ε0), which are immersed in M and satisfy the following properties :

(i) The mean curvature Λ̂ε is constant equal to ε ;

(ii) Away from any given neighborhood of p in M , the hypersurface Λ̂ε is, for ε
small enough, a normal geodesic graph over a subset of the disjoint union
Λε ⊔ Λ−ε ;

(iii) The hypersurface Λ̂ε is the connected sum of Λε and Λ−ε at points in Λε

and Λ−ε which are close to p.

The proof of this result is based on a perturbation argument, hence, if Λ is not
embedded, Λ̂ε will not be embedded either. However, when Λ is embedded, the
question of the embeddedness of the hypersurfaces Λ̂ε is addressed in the following :

Corollary 2. Assume that Λ is embedded and further assume that the function
ϕ0 does not change sign. Then, for ε > 0 small enough, Λ̂ε is embedded. If Λ is
embedded and ϕ0 changes sign, the hypersurfaces Λ̂ε are not embedded anymore
for any ε > 0 small.

This result is very much influenced by the result of Kapouleas and Yang [3],
Butscher and Pacard [1], [2] and by the result of Ritoré [4] where similar doubling
constructions are considered when the ambient manifold is either the unit sphere
Sn+1 or a quotient of Rn+1.
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On surgery stable curvature conditions

Sebastian Hoelzel

A p-surgery of an n-dimensional manifold M is performed by deleting an open
region diffeomorphic to Sn−p−1 ×Bp+1 and gluing in a new region diffeomorphic
to Bn−p × Sp by identifying along the common boundary. This yields a new
manifold

χp(M) :=
[

M\
(

Sn−p−1 ×Bp+1
)]

∪Sn−p−1×Sp

[

Bn−p × Sp
]

,

which generally will depend on the region removed.
It is natural to ask whether or not a specific curvature condition survives this

surgery operation, i.e. suppose M admits a metric of, say, positive scalar cur-
vature, does so χp(M)? That latter question was answered affirmately in [2]
and, independently, [5], so positive scalar curvature is indeed surgery stable (for
p = 0, . . . , n− 3). The surgery stability of quite other curvature conditions - such
as positive isotropic curvature, positive p-curvature, among others - was investi-
gated in [4], [3], [7].

Now, in order to give a general answer, one first formulates a convenient no-
tion of a curvature condition which covers all pointwise ones. Consider the space
S2
B(so(n)) of n-dimensional algebraic curvature operators and let C ⊂ S2

B(so(n))
be a subset. If C is invariant under the natural representation of O(n) on this
vector space, it is meaningful to say that a Riemannian manifold (Mn, g) satisfies
C, if for all p ∈ M the pullback ι∗R(p) of the curvature operator at the point p is
contained in the interior of C, where ι : Rn → TpM is an isometry.

Given this notion, one can state the following surgery theorem which is going
to be part of the author’s Ph.D. thesis:

Theorem 1. Let C ⊂ S2
B(so(n)) be a O(n)-invariant closed convex cone. Suppose

Sn−k−1 × Rk+1 equipped with its standard product metric satisfies C. Then the
curvature condition C is stable under p-surgeries for p = 0, . . . , k.

This theorem subsumes all curvature conditions mentioned above. Furthermore,
it should be remarked that actually a stronger version of the theorem holds which
requires less by relaxing the requirement on the shape of C - essentially some kind
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of inner cone condition suffices - and delivers more because it is possible to apply
the surgery process along arbitrary compact submanifolds of dimension at most
k. Moreover there exists corresponding versions in the equivariant class as well as
in the class of conformally flat manifolds.

As an application of the above theorem, consider a closed simply connected
manifold M . It is well known that if M admits a metric with positive curvature
operator, then it is actually diffeomorphic to the sphere (see [1]). If we require
the curvature operator only to be non-negative, then the manifold is diffeomorphic
to a (compact) symmetric space. In the nonsymmetric case, one now can employ
methods put forward in [2] and [6] in addition to the above surgery theorem to
construct metrics with pointwise almost non-negative curvature operators:

Theorem 2. Let Mn be a closed simply-connected manifold, n ≥ 5. If M admits
a metric of positive scalar curvature, then for any ǫ > 0 there exists a metric gǫ
on M such that

R(gǫ) ≥ −ǫ ‖R(gǫ)‖gǫ ,
where R(gǫ) denotes the curvature operator of the metric gǫ.
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Degeneration of shrinking Ricci solitons

Zhenlei Zhang

An important problem in Riemannian geometry is to study the geometric structure
of Gromov-Hausdorff limits of Riemannian manifolds: Let (Mi, gi) be a sequence
of Riemannian manifolds and (X, d) a Gromov-Hausdorff limit of (Mi, gi). What
can we say about this metric space X?

By Gromov’s compactness theorem, when dimMi = n and

(1) RicMi ≥ −(n− 1),
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the limit space is a length metric space. Further structural results are obtained
by Cheeger and Colding in their serial papers [2]-[4], and Cheeger, Colding and
Tian’s paper [5]; see also [1] for a survey of the results in this topic.

There is a generalization of Cheeger, Colding and Tian’s theory to the case of

bounded Bakry-Émery Ricci curvature, a kind of modified Ricci curvature by a
potential function:

(2) Ricf =: RicM + Hess(f).

In the very special case of constant Bakry-Émery Ricci curvature, which is known
as Ricci solitons by Hamilton, we can state some precise convergent results; see
[7] and [6] for details. As Ricci solitons are steady solutions to the Ricci flow, we
hope the results here are useful in the study of Ricci flow.

For simplicity we restrict to the case of closed shrinking Ricci soliton. Same
results for other kinds of Ricci solitons, compact or not, can be deduced bin the
same way. A triple (M, g, f) is called a shrinking Ricci soliton if (M, g) is a
Riemannian manifold such that

(3) RicM + Hess(f) = g.

Let (Mi, gi, fi) be a sequence of shrinking Ricci solitons. By the volume comparison

of Bakry-Émetry Ricci curvature, there always exist a Gromov-Hausdorff limit
(X, d) of (Mi, gi). However, to obtain more geometric information of X , we need
some estimate of fi. This is guaranteed by a Shur type lemma to the scalar
curvature.

The following is the result that we want to show:
Let (Mi, gi, fi) be a sequence of shrinking Ricci solitons such that

(4) volMi ≥ v, diamMi ≤ D

for some positive constants v,D independent of i, then, passing a subsequence
if possible, (Mi, gi, fi) converges to a triple (X, d, f∞) where (X, d) is a compact
length metric space and f∞ is a Lipschitz function on X . The lime X has a
closed singular locus S of (Hausdorff) codimension ≥ 2; off the singular locus
f∞ is smooth and there is a smooth Riemannian metric g∞ there which satisfies
shrinking Ricci soliton equation (3) with potential f∞. Moreover, g∞ induced the
same metric structure as d on X\S and gi → g∞ smoothly on X\S.

If Mi are assumed to be Kähler, then g∞ is still Kähler with respect to a
complex structure J∞ and the codimension of S is ≥ 4.
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Flowing maps to minimal surfaces

Peter Miles Topping

(joint work with Melanie Rupflin)

We introduce a new flow which is related to the mean curvature flow and the
harmonic map flow. Our flow is designed to look for minimal surfaces, but has a
more tractable singularity structure than the mean curvature flow.

The flow arises by taking a gradient flow for the energy

E(u) = E(u, g) =
1

2

∫

M

|du|2gdµg

of a map u : M → N from a closed, orientable Riemannian surface (M, g) to a
closed n-dimensional Riemannian manifold N . The gradient flow for E, varying
u, would (with respect to the L2 inner product) be the harmonic map flow of
Eells and Sampson. However, we change the situation by allowing both the map
u and the metric g to vary. This we need to set up with great care – exploiting
as many symmetries as possible – in order to arrive at a system of equations that
are as simple as possible, and for which solutions will exist. We end up allowing
the domain metric to flow within the space of constant curvature, constant area
metrics. With respect to an appropriate inner product, the equations are then

∂tu = τg(u)

∂tg = Re(Pg(Φ(u, g)))

where τg(u) is the tension field of u (i.e. its Laplacian), Φ(u, g) is the Hopf differen-
tial of u with respect to g, and Pg represents the projection onto the holomorphic
quadratic differentials.

In reasonable situations, the output of our flow at infinite time is then a pair
(u, g) where u is a harmonic map that is also (weakly) conformal with respect to
g. It is well-known that such a harmonic map (when nonconstant) represents a
minimal immersion with (according to Gulliver, Osserman and Royden) branching
at isolated singularities.

In the talk I sketched what the flow is, and what it does. I discussed the new
types of singularity that can occur, and indicated the new estimates that can be
used to analyse them, or even rule them out. I also showed how the nature of the
flow depends on the genus of the domain. In the genus zero case, our flow is easily
seen to coincide with the classical harmonic map flow. In the genus one case, the
flow can be rewritten to coincide with a flow of Ding-Li-Liu. In the higher genus
case, the behaviour of the domain metric is a lot more complicated owing to the
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non-integrability of the distribution of ‘horizontal’ tangent vectors in the space of
constant curvature metrics.
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Tits Geometry and Positive Curvature

Karsten Grove

(joint work with Fuquan Fang and Gudlaugur Thorbergsson)

There is a well known link between (maximal) irreducible polar representations
and isotropy representations of irreducible symmetric spaces provided by Dadok
[Da]. Moreover, the theory by Tits [Ti1] and Burns - Spatzier [BSp] provides a link
between irreducible symmetric spaces of non-compact type of rank at least three
and compact topological spherical irreducible buildings of rank at least three.

We discover and exploit a rich structure of a (connected) chamber system of
finite (Coxeter) type M associated with any polar action of cohomogeneity at least
two on any simply connected (closed) positively curved manifold. Although this
chamber system is typically not a (Tits) geometry of type M , we prove that in all
cases but one that its universal (Tits) cover indeed is a building. We construct a
topology on this universal cover making it into a compact topological building in
the sense of Burns and Spatzier using also the extension of [GKMW] .

Our work shows that the exception indeed provides a new example (also discov-
ered by Lytchak [Ly]) of a C3 geometry whose universal cover is not a building.

We use this structure to prove the following rigidity theorem:

Any polar action of cohomogeneity at least two on a simply connected positively
curved manifold is smoothly equivalent to a polar action on a rank one symmetric
space.

The analysis and methods used in the reducible case (including the case of fixed
points), the case of cohomogeneity two (cf. also independent work of Kramer and
Lytchak [KL]), and the general irreducible case in cohomogeneity at least three
are quite different from one another. Throughout the local approach to buildings
by Tits [Ti2] plays a significant role. The present work and different independent
work of Lytchak [Ly] on foliations on symmetric spaces are the first instances
where this approach has been used in differential geometry.
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