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Introduction by the Organisers

In this workshop again we focussed on mainly three types of nonlinear evolution
problems and their interrelations: geometric evolution equations (essentially all of
parabolic type), nonlinear hyperbolic equations, and dispersive equations. As in
previous editions of our workshop, this combination turned out to be very fruitful.

Altogether there were 21 talks, presented by international specialists from Aus-
tralia, Canada, Germany, Great Britain, Italy, France, Switzerland, Russia and
the United States. Many of the speakers were only a few years past their Ph.D.,
some even still working towards their Ph.D.; 6 out of 49 participants and 4 out
of the 21 main speakers were women. As a rule, three lectures were delivered
in the morning session; two lectures were given in the late afternoon, which left
ample time for individual discussions, including some informal seminar style pre-
sentations where Ph.D. students and recent postdoctoral researchers were able to
present their work. This report also contains abstracts of all informal seminar
style presentations.

In geometric evolution equations, the prominent themes were mean curvature
and Ricci flow. It became even more apparent that these equations have many
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features in common, both on the geometric and on the analytical level. Moreover,
the talks sparked discussions between researchers specializing in these types of
equations and experts in dispersive and hyperbolic equations, in particular, con-
cerning techniques involving matched asymptotic expansions. These techniques
in recent years have been used with amazing success not only in Ricci flow and
mean curvature flow but also for demonstrating the existence of stable blow-up
regimes for wave maps and nonlinear wave or Schrödinger equations. It became
apparent that a further link between these different sets of equations is the feature
of pseudo-locality, which is very close in spirit to the concept of finite propaga-
tion speed for wave equations. While they are false for the linear heat equation,
pseudo-locality estimates hold e.g. for the two-dimensional Ricci flow, establishing
another surprising connection between geometric evolution equations of parabolic
and hyperbolic type.

In the field of nonlinear hyperbolic equations special focus was laid on critical
growth and focussing nonlinearities, for which thresholds for concentration behav-
ior and asymptotic profiles were determined, again often using matched asymptotic
expansions. Connections between nonlinear hyperbolic equations and dispersive
equations arise, for instance concerning the use of vector fields and the treatment
of space-time resonances in capillary water waves and relativity. Finally the study
of blow up together with a more dynamical system approach to identify central
stable manifolds for Schrödinger and wave maps is again related to stationary
solutions that are in turn solutions to certain geometric elliptic equations.
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Mahir Hadžić (joint with Steve Shkoller)
The classical Stefan problem: well-posedness and asymptotic stability . . . 1577

Zaher Hani (joint with Benôıt Pausader)
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Abstracts

How to produce a Ricci flow via Cheeger-Gromoll exhaustion

Esther Cabezas-Rivas

(joint work with Burkhard Wilking)

Given a fixed Riemannian metric g on a smooth n-manifold M , we wonder about
short time existence of the Ricci flow:

(1)
∂

∂t
g(t) = −2Ric(g(t)),

with g(0) = g. This was completely settled for closed (i.e. compact and without
boundary) manifolds by Hamilton in [7]. But it seems hopeless to expect similar
results for the open (i.e. complete and non compact) case; e.g. it is difficult to
imagine how to construct a solution to (1) starting at a complete n-manifold (n ≥
3) built by attaching in a smooth way long spherical cylinders with radii converging
to zero. The natural way to prevent similar situations is to add extra conditions
on the curvature; in this spirit, W. X. Shi proved in [9] that the Ricci flow starting
on an open manifold with bounded curvature (i.e. supM |Rmg| ≤ k0 <∞) admits
a solution for a time interval [0, T (n, k0)] also with bounded curvature.

Later on M. Simon (cf. [11]), assuming further that the manifold has nonnega-
tive curvature operator (Rmg ≥ 0) and is non-collapsing (infM volg (Bg(·, 1)) ≥
v0 > 0), was able to extend Shi’s solution for a time interval [0, T (n, v0)], with

|Rmg(t)| ≤ c(n,v0)
t for t > 0. Although T (n, v0) does not depend on an upper

curvature bound, such a bound is still needed to guarantee short time existence.
Our first result in [3] manages to remove any restriction on upper curvature bounds
for open manifolds with KC ≥ 0 (which is a condition weaker than Rm ≥ 0):

Theorem 1. Let (Mn, g) be an open manifold with nonnegative (and possibly
unbounded) complex sectional curvature. Then there exists a constant T = T (n, g)
such that (1) has a smooth solution on [0, T ], with g(0) = g and KC

g(t) ≥ 0.

Our solution is obtained as a limit of closed solutions with KC ≥ 0. Using that
by Brendle [1] the trace Harnack inequality holds for the closed case, it follows
that the above solution on the open manifold satisfies the trace Harnack estimate
as well. This solves an open question posed in [5, Problem 10.45]. Next, we can
wonder if the curvature will be instantaneously bounded by our Ricci flow. The
negative answer is illustrated by

Theorem 2. There is an immortal 3-dimensional nonnegatively curved complete
Ricci flow (M, g(t))t∈[0,∞) with unbounded curvature for each t.

Asking further a non-collapsing condition as in [11], the answer to the above
question becomes affirmative:
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Corollary 3. Let (Mn, g) be an open manifold with KC
g ≥ 0. If

(2) inf
{

volg(Bg(p, 1)) : p ∈M
}

= v0 > 0,

then the curvature of (M, g(t)) is bounded above by c(n,v0)
t for t ∈ (0, T (n, v0)].

Moreover, even if the initial metric has bounded curvature one can run into
metrics with unbounded curvature, as shown by

Theorem 4. There is an immortal complete Ricci flow (M4, g(t))t∈[0,∞) with
positive curvature operator such that Rmg(t) is bounded if and only if t ∈ [0, 1).

Our next result gives a precise lower bound on the existence time for (1) in
terms of supremum of the volume of balls, instead of infimum as in Corollary 3
and [11]. We stress that this is new even for initial metrics of bounded curvature.

Corollary 5. In each dimension there is a universal constant ε(n) > 0 such that
for each complete manifold (Mn, g) with KC

g ≥ 0 the following holds: If we put

T := ε(n) · sup
{

volg(Bg(p,r))
rn−2

∣∣ p ∈M, r > 0
}
∈ (0,∞],

then any complete maximal Ricci flow (M, g(t))t∈[0,T ) with K
C

g(t) ≥ 0 and g(0) = g

satisfies T ≤ T .

If M has a volume growth larger than rn−2, this ensures T = ∞. Previously
(cf. [10]) long time existence was only known in the case of Euclidean volume
growth (EVG) under the stronger assumptions Rmg ≥ 0 and bounded curvature.
We highlight that our volume growth condition cannot be further improved: in-
deed, as the Ricci flow on the metric product S2 × Rn−2 exists only for a finite
time, the power n − 2 is optimal. For n = 3 we can even determine exactly the
extinction time depending on the structure of the manifold:

Corollary 6. Let (M, g) be an open 3-manifold with Kg ≥ 0 and soul Σ. Then a
maximal complete Ricci flow (M, g(t))t∈[0,T ) with g(0) = g and Kg(t) ≥ 0 has

T =





area(Σ)
4πχ(Σ) if dim Σ = 2

∞ if dim Σ = 1
1
8π limr→∞

volg(Bg(p,r))
r if Σ = {p0}

.

If Σ = {p0} and T < ∞, then (M, g) is asymptotically cylindrical and Rmg(t) is
bounded for t > 0.

By Corollary 5 a finite time singularity T on open manifolds with KC ≥ 0 can
only occur if the manifold collapses uniformly as t → T . For immortal solutions
we also give an analysis of the long time behaviour of (1): In the case of an initial
metric with EVG we remark that a result in [10] can be adjusted to see that a
suitable rescaled Ricci flow subconverges to an expanding soliton. Furthermore,

Theorem 7. Let (Mn, g(t)) be a non flat immortal Ricci flow with KC ≥ 0
satisfying the trace Harnack inequality. If (M, g(0)) does not have EVG, then
for p0 ∈ M there are sequences tk → ∞ and Qk > 0 such that the rescaled flow
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(M,Qkg(tk +t/Qk), p0) converges in the Cheeger-Gromov sense to a steady soliton
which is not isometric to Rn.

Here is the technical definition of the conditionKC ≥ 0: Let TCM := TM⊗C be
the complexified tangent bundle. We extend Rm and g at p ∈M to C-multilinear
maps. The complex sectional curvature of a 2-plane σ of TC

p M is defined by

KC(σ) = Rm(u, v, v̄, ū) = g(Rm(u ∧ v), u ∧ v),

where {u, v} is any unitary basis for σ, i.e. g(u, ū) = g(v, v̄) = 1 and g(u, v̄) = 0.
We say M has nonnegative complex sectional curvature if KC ≥ 0. Notice that
this is weaker than Rm ≥ 0 and implies nonnegative sectional curvature (K ≥ 0).
Unlike K ≥ 0, the condition KC ≥ 0 has the advantage to be invariant under (1).

During the talk, we sketched the proof of Theorem 1 in the case KC
g > 0, which

is considerably easier since e.g. then, by Gromoll and Meyer [6], M is diffeomorphic
to Rn. We overcome the lack of such a property in the general case by proving
the following result (see [8] for a version asking Rmg ≥ 0):

Theorem 8. Let (Mn, g) be an open, simply connected Riemannian manifold with
nonnegative complex sectional curvature. Then M splits isometrically as Σ × F ,
where Σ is the k-dimensional soul of M and F is diffeomorphic to Rn−k.

Thus combining with the knowledge from [2] of the compact case, this extends the
same classification of [2] for open manifolds with KC ≥ 0.

Finally, we mention that the general case in the proof Theorem 1 includes
working directly with the sublevel sets of the Busemann function, which form part
of the convex exhaustion used by Cheeger and Gromoll for the soul construction
(cf. [4]). The hardest issue is that such sets have non-smooth boundary (for details
about how we deal with such a difficulty, see [3]).
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Properties of the Navier-Stokes equation on negatively curved
manifolds.

Magdalena Czubak

(joint work with Chi Hin Chan)

The Navier-Stokes equation on Rn is given by

∂tu− ∆u+ u · ∇u+ ∇P = 0,

div u = 0,
(NS(Rn))

where u = (u1, . . . , un) is the velocity of the fluid, P is the pressure, and div u = 0
means the fluid is incompressible. Existence of global weak solutions

(1) u ∈ L∞(0,∞;L2(Rn)) ∩ L2(0,∞; Ḣ1(Rn))

for n = 2, 3 has been established in the work of Leray [6] and Hopf [4]. In addition,
the global weak solutions satisfy the global energy inequality

(2)

∫

Rn

|u(t, x)|2dx+ 2

∫ t

0

∫

Rn

|∇u|2dxds ≤
∫

Rn

|u0|2dx, t ≥ 0.

Solutions satisfying (1)-(2) are referred to as Leray-Hopf solutions, and have histor-
ically served as a foundation for further work in the regularity theory for NS(Rn).

There is a big difference between the regularity of Leray-Hopf solutions in 2
dimensions and in 3 dimensions. Indeed, the Leray-Hopf solutions for NS(R2) are
smooth and unique [5]. However, as is well-known, the regularity and uniqueness
of solutions to the NS(R3) equation is a long standing open problem.

When we move from the Euclidean setting to the Riemannian manifold, the
first question is how to write the equations. In particular, what is the natural gen-
eralization of the Laplacian, ∆? Ebin and Marsden [3] indicated that the ordinary
Laplacian should be replaced by the following operator

L = 2 Def∗ Def = (dd∗ + d∗d) + dd∗ − 2 Ric,

where Def and Def∗ are the deformation tensor and its adjoint respectively, (dd∗+
d∗d) = −∆ is the Hodge Laplacian with d∗ as the formal adjoint of the exterior
differential operator d, and Ric is the Ricci operator.

First, note that L is the ordinary Laplacian on Rn, since then Ric ≡ 0. Second,
L as given above sends 1-forms into 1-forms. Hence, it is more convenient to
formulate the Navier-Stokes equation on a Riemannian manifold M in terms of
1-forms U∗ instead of vector fields U on M . There is a natural correspondence
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between vector fields U and 1-forms U∗, which allows us to freely move between
the two, and rewrite the equation as

∂tU
∗ − ∆U∗ + ∇UU

∗ − 2 Ric(U∗) + dP = 0,

d∗U∗ = 0,
(NS(M))

where ∇ stands for the induced Levi-Civita connection on the cotangent bun-
dle T ∗M . Arguably less natural equation to study is the one without the Ricci
operator

∂tU
∗ − ∆U∗ + ∇UU

∗ + dP = 0.

d∗U∗ = 0.
(3)

Before we state the main result, we mention the only other work we are aware of
on a non-compact manifold for NS(M). Q.S. Zhang [10] shows the ill-posedness
of the weak solution with finite L2 norm on a connected sum of two copies of R3.

Consider both NS(M) and (3). We show

Theorem 1 (Non-uniqueness of NS(H2(−a2)). Let a > 0. Let M = H2(−a2),
the space form with the constant sectional curvature equal to −a2. Then, NS(M)
is ill-posed in the following sense: given smooth u∗0 ∈ L2(M), there exist infinitely
many smooth solutions satisfying

(finite energy)

∫

M

|U∗|2 <∞,(4)

( finite dissipation)

∫ t

0

∫

M

|Def U∗|2 <∞,(5)

(global energy inequality)

∫

M

|U∗|2 + 4

∫ t

0

∫

M

|Def U∗|2 ≤
∫

M

|u∗0|2.(6)

If we do not include the Ricci term in the equation, we can also have a non-
uniqueness result on a more general negatively curved Riemannian manifold.

Theorem 2. Let a, b > 0 be such that 1
2b < a ≤ b, and letM be a simply connected,

complete 2-dimensional Riemannian manifold with sectional curvature satisfying
−b2 ≤ KM ≤ −a2. Then there exist non-unique solutions to (3) satisfying (4)-(6).

There are some very easy to establish corollaries. In particular

Corollary 3 (Lack of the Liouville theorem for space forms). Let n ≥ 2, and
a > 0, then there exist nontrivial bounded solutions of NS(Hn(−a2)).

Corollary 4 (Lack of the Liouville theorem in the hyperbolic setting). Let n ≥
2, and b ≥ a > 0 and let M be a simply connected, complete n-dimensional
Riemannian manifold with sectional curvature satisfying −b2 ≤ KM ≤ −a2. Then
there exist nontrivial bounded solutions of (3).

The non-uniqueness results heavily relies on the existence of nontrivial bounded
harmonic functions on negatively curved Riemannian manifolds due to the works
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of Anderson [1] and Sullivan [8]. The solution pairs (U∗, P ) we consider are (for
NS(H2(−a2)) and similarly for (3))

U∗ = ψ(t)dF, and P = −∂tψ(t)F − 1

2
ψ2(t)|dF |2 − 2a2ψ(t)F,

where ψ(t) = exp(−At
2 ) for any A ≥ 4a2, and F is a nontrival bounded harmonic

function on H2(−a2). Verifying that (U∗, P ) solves NS(H2(−a2)) is simple when
we use Hodge theory. In fact, taking solutions of the form ψ(t)∇F seems to be
a well-known convention, and one could set out to try a similar solution on Rn.
However, such solutions would not be interesting, because it would not be possible
to show that they are even in L2 since only bounded harmonic functions on Rn are
trivial. In the hyperbolic setting, given the abundance of the bounded harmonic
functions, at least we have a hope, but a priori, it is not obvious that our solutions
have to satisfy (4)-(6). Hence the main contribution stems from showing (4)-(6).

The flavor of the proofs is very much in the differential geometry framework of
the book of Schoen and Yau [7]. There, amongst many things, one can find a simple
proof of the existence of the bounded nontrivial harmonic function, which was
presented originally in [2]. A careful study of the proof combined with the gradient
estimate for harmonic functions due to S.-T. Yau [9] leads to an exponential decay
of the gradient of the harmonic function:

(7) |∇F | ≤ C(a, δ, φ′)e−δρ,

where δ < a is some constant, ρ is the distance function, and φ boundary data for
F at infinity. This result has nothing to do with Navier-Stokes, and it might be of
independent interest. Estimate (7) very easily gives property (4). Showing finite
dissipation (5) is more involved, and we omit the details.
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Construction of dynamical vacuum black holes without symmetries

Mihalis Dafermos

(joint work with Gustav Holzegel, Igor Rodnianski)

A fundamental open problem in general relativity is that of the stability of the
Kerr black holes, the celebrated 2 parameter family of solutions to the Einstein
vacuum equations

(1) Ric(g) = 0.

According to the black hole stability conjecture, small perturbations of Kerr initial
data with sub-extremal Kerr parameters |a0| < M0 would asymptote in time under
evolution by (1) to a nearby member of the Kerr family (with parameters |a| < M).

At present, not only is this stability conjecture not resolved, but there are no
known examples of dynamic black holes with smooth event horizons which asymp-
tote in time to a Kerr solution. It is this more basic question whose resolution is
discussed in the present talk:

Theorem ([7]). Given suitable smooth scattering “data” on the horizon H+ and
future null infinity I+, asymptoting to the induced Kerr geometry with parameters
|a| ≤ M , then there exists a corresponding smooth vacuum black hole spacetime
(M, g) asymptotically approaching in its exterior region the Kerr solution with
parameters a and M .

In particular,

Corollary. There exist black hole spacetimes with smooth horizons which are not
exactly Schwarzschild or Kerr.

As is suggested by the statement of the above theorem, the black hole space-
times are constructed by prescribing “scattering data” on the event horizon H+

and on null infinity I+, and solving backwards as a characteristic initial value
problem for (1). More precisely, they are constructed by taking the limit of a
finite problem where null infinity is replaced by a far-away light cone and the two
null hypersurfaces are supplemented with a late time spacelike piece. Note that
this problem is well posed in the smooth category by work of Rendall [11]. See
also [10].

For global estimates, one needs a formulation of the Einstein equations which
captures both the hyperbolicity per se and the asymptotics towards null infinity.
Moreover, some version of the null condition must be captured, as one cannot con-
struct solutions even just in a neighourhood of a point in null infinity for general
non-linear equations with quadratic nonlinearities. We adopt thus a formulation
where the hyperbolic aspects of the Einstein equations are captured at the level of
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the Bianchi equations, but to close the system these must be coupled with trans-
port and elliptic equations for the metric and spin coefficients. This formulation
first appeared in [3] and has been much exploited to understand global properties
of (1), see for instance [2, 9].

Without getting technical, let us briefly motivate a certain assumption on the
scattering data that plays a fundamental role in the proof. To understand this, one
should remark first that the simplest scattering problems on Schwarzschild can of
course be formulated with respect to the degenerate ∂t-energy. See [8]. Thus, for
those problems, the notion of scattering data is defined simply by the finiteness of
the corresponding flux at H+ and I+. For non-linear problems, this is insufficient
near infinity as one must consider weighted energies–this already requires imposing
some decay along I+. But even for the linear problem of the fixed wave equation

(2) �gψ = 0

on Kerr, the ∂t energy would already be inappropriate near the horizon as it does
not yield a positive definite quantity. This is the well-known phenomenon of super-
radiance. For non-linear problems, one expects to have to control a non-degenerate
energy, analogous to the JN -flux introduced in [4] (see also [5]), exploiting the cel-
ebrated red-shift effect. To control such a non-degenerate energy when solving
backwards, however the red-shift effect is seen as a blue-shift effect. Thus,
to counterbalance this, one must impose suitably fast exponential decay on the
scattering data.

It is interesting to recall that in the forward problem, understanding (2) on
extremal Kerr |a| = M is considerably more difficult than the subextremal case
|a| < M , in view of the fact that the red-shift degenerates, and in fact, solutions of
(2) exhibit a mild instability exactly on the horizon. See recent work of Aretakis [1].
(It is for this reason that we in particular exclude the extremal case from the
stability conjecture.) In view of the comments of the previous paragraph, however,
it should not be surprising that the extremal case is not excluded from the above
theorem. In view of the fact that the red-shift now would appear as an obstacle,
its degeneration is not such a bad thing, and thus the extremal case is if anything
easier!

Details can be found in [7].
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Concentration compactness for the L
2 - critical nonlinear Schrödinger

equation

Benjamin Dodson

The nonlinear Schrödinger equation

(1) iut + ∆u = µ|u| 4d u
is said to be mass critical since the scaling u(t, x) 7→ 1

λd/2u( t
λ2 ,

x
λ) preserves the

L2 - norm, µ = ±1. In this talk we will discuss the concentration compactness
method, which is used to prove global well - posedness and scattering for (1) for
all initial data u(0) ∈ L2(Rd) when µ = +1, and for u(0) having L2 norm below
the ground state when µ = −1. This result is sharp.

As time permits the talk will also discuss the energy - critical problem in Rd \ Ω,

(2)
iut + ∆u = |u| 4

d−2u,

u|∂Ω = 0,

where Ω is a compact, convex obstacle, d = 4, 5.

Global existence for capillary water waves

Pierre Germain

(joint work with Nader Masmoudi, Jalal Shatah)

We prove global existence for the capillary water waves problem for small data
in weighted Sobolev spaces. The proof combines in a novel way the energy method,
the space-time resonance method and commuting vector fields.
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We consider the global existence and asymptotic behavior of surface waves for
irrotational, incompressible, and inviscid fluid in the presence of surface tension.
The fluid velocity is given by Euler’s equation in a domain U :

D = Dt = {(x, z) = (x1, x2, z) ∈ R
3, z ≤ h(x, t)}, U =

⋃

t

Dt,

and the free boundary of the fluid at time t

B = Bt = {(x, h(x, t)), x ∈ R
2} = ∂D

moves by the normal velocity of the fluid . The surface tension is assumed to be
proportional (by the coefficient c) to the mean curvature κ of B and we neglect
the presence of gravity. In this setting the Euler equation for the fluid velocity v,
and the boundary conditions are given by

{
Dtv

def
= ∂tv + ∇vv = −∇p (x, z) ∈ D ,

∇ · v = 0 (x, z) ∈ D ,
(1a)

{
∂th+ ∇v(h− z) = 0 (x, z) ∈ B,

p = cκ, (x, z) ∈ B.
(1b)

Since the flow is assumed to be irrotational, the Euler equation can be reduced to
an equation on the boundary and thus the system of equations (E–BC) reduces
to a system defined on B. This is achieved by introducing the potential ψH

where v = ∇ψH. Denoting the trace of the potential on the free boundary by
ψ(x, t) = ψH(x, h(x, t), t), the system of equations for ψ and h are

(WW)





∂th = G(h)ψ

∂tψ = cκ− 1
2 |∇ψ|2 + 1

2(1+|∂h|2) (G(h)ψ + ∂h · ∇ψ)
2

(h, ψ)(t = 0) = (h0, ψ0).

where

G(h) =
√

1 + |∂h|2N ,

N being the Dirichlet-Neumann operator associated with D , and the mean curva-
ture can be expressed as

κ =
(1 + (∂1h)2)∂22h+ (1 + (∂2h)2)∂21h− 2∂1h∂2h∂1∂2h

2
√

1 + (∂1h)2 + (∂2h)2
∼ ∆h+ (cubic).

In the sequel we take c = 2 for simplicity. The dispersive nature of (WW) is
revealed by writing the linearization of this system around (h, ψ) = (0, 0):

(2)

{
∂th = Λψ + R1,
∂tψ = ∆h+ R2,

Λ
def
= |(∂1, ∂2)|,

where Ri are at least quadratic in (∂h∂2h, ∂ψ,Nψ). By introducing the variable

u
def
= Λ1/2h+ iψ,
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the above system can be written as a single equation

(3) ∂tu = −iΛ3/2u+ R,

where R = Λ
1
2R1 + iR2

Main result and plan of the proof. To state our main result we need to
introduce the following notation: let

∂
def
= (∂1, ∂2), Ω

def
= x1∂2 − x2∂1 = ωi∂i, and S def

=
3

2
t∂t + xi∂i,

Σ
def
= xi∂i the spatial part of S, and let Γ denote any of these operators Γ = Σ,Ω,

or ∂3.
Our main theorem reads

Theorem 1. Assume that the initial data u0 satisfies
∑

|k|≤2K

∥∥∥ΓkΛ1/2u0

∥∥∥
W 9/2,2(R2)

+
∑

|k|≤2K

∥∥ΓkΛαu0
∥∥
L2(R2)

. ǫ,(4)

where K ≥ 10 and ǫ > 0 and α > 0 are sufficiently small. Then there exists a
global solution (h, ψ) of (3). Furthermore, this solution scatters, i.e., there exists
a solution (hℓ, ψℓ) of (3) such that

‖h(t) − hℓ(t)‖2 + ‖ψ(t) − ψℓ(t)‖2 → 0 as t→ ∞.

The proof of this result is based on combining the vector field method (which is
based on invariances of the equation), and the space time resonance method (which
is based on resonant interactions of waves). Below we give a brief description of
the proof.

The classical Stefan problem: well-posedness and asymptotic stability

Mahir Hadžić

(joint work with Steve Shkoller)

The Stefan problem is a non-local geometric evolution problem used in the
description of solid-liquid interfaces and crystal formation [14]. The unknowns are
the phase temperature p and the moving interface Γ and they satisfy the following
equations:

pt − ∆p = 0 in Ω(t) ;(1a)

∂np = VΓ(t) on Γ(t) ;(1b)

p = σκΓ(t) on Γ(t) ;(1c)

p(0, ·) = p0 , Γ(0) = Γ0 .(1d)

Here, Ω(t) is an evolving open subset of Rn, with Γ(t) denoting the moving bound-
ary (which may be a connected subset of ∂Ω(t) if a part of the boundary is fixed).
∂np = ∇p·n is the normal derivative of p on Γ(t) where n stands for the outward

pointing unit normal and VΓ(t) denotes the normal velocity of the hypersurface
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Γ(t). When σ = 0, problem (1) is called the classical Stefan problem. In this
case, freezing of the liquid occurs at a constant temperature p = 0. If however the
surface tension coefficient σ > 0 in (1c) then the problem (1) is termed the Stefan
problem with surface tension, whereby κΓ(t) stands for the mean curvature of the
moving boundary Γ(t).

In absence of surface tension, the local-in-time existence of classical solutions
has been studied by various authors: Meirmanov, Hanzawa, Prüss-Saal-Simonett,
Frolova-Solonnikov (see [14, 15] and references therein for a complete overview).
Weak solutions were shown to exist by Friedman [4], Friedman and Kinderlehrer [6],
Kamenomostskaya [10]. The regularity of such solutions was further studied by
Friedman, Kinderlehrer, Caffarelli, Evans, Stampacchia, DiBenedetto and others
- for an overview see [5, 15] and references therein. Viscosity solutions were in-
troduced and shown to be smooth in seminal works of Athanasopoulos, Caffarelli,
Salsa (for an overview see [1]), and have been also studied in [11]. In the presence
of surface tension local-in-time existence (for one and two-phase problem) is shown
by Radkevich, Escher-Prüss-Simonett (see [15]), global stability of steady states
is investigated in [9, 8, 12] and weak solutions (without uniqueness) are shown to
exist by Luckhaus, Almgren-Wang (see [15] for an overview and references).

We are interested in the classical Stefan problem from the point of view of
well-posedness in smooth functional spaces and its qualitative dynamic properties.
Our first main result is the development of the well-posedness theory in high-order
Sobolev-type energy spaces, naturally associated with the problem. Inspired by [2],
the problem is first pulled back onto the fixed domain by introducing the so-called
Arbitrary Lagrange-Eulerian change of variables. As a consequence, the equations
take a form analogous to that of the fluid dynamics equations [3]. We identify a
weighted energy quantity which controls the regularity of the moving boundary,
where the weight is given by the Neumann derivative of the temperature. Under
the so-called Taylor sign condition:

(2) ∂np0 < 0,

this energy quantity is indeed coercive and we prove local-in-time well-posedness.
With surface tension (σ > 0) (1) is a micro-scale model where the phase transi-

tion does not occur at a constant temperature. This is opposed to the macro-scale
classical Stefan problem where, given suitable sign on the initial and boundary
data, maximum principle implies that the phase is characterized by the sign of the
temperature p. In particular, it is not clear how to obtain uniform-in-σ bounds
that allow one to rigorously link the two problems. Our well-posedness treatment
applies to the Stefan problem with and without surface tension and as a second
result we establish the vanishing surface tension limit as σ → 0 [7]. Note that
such a limit is a singular limit and it is a-priori not clear whether surface tension
always acts as a stabilizing effect [13].

Finally, we study the question of global-in-time stability close to circular steady
states. Note that the problem (1) has infinitely many steady states of the form
(p,Γ) ≡ (0, Γ̄), where Γ̄ is some given C1-hypersurface. It is thus degenerate in the
sense that it is a-priori unclear where the solution converges asymptotically. We
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use the new energy structure mentioned above to address the stability question.
Since the weight ∂np is expected to decay exponentially fast, the control of the
boundary regularity becomes problematic. Relying on Harnack-type bounds and
a careful bootstrap argument, we prove global stability of near circular steady
states, under the assumption of strictly positive initial temperature.
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On scattering for the quintic defocusing nonlinear Schrödinger
equation on R × T

2

Zaher Hani

(joint work with Benôıt Pausader)

The purpose of this work [5] is to study the asymptotic behavior of the defo-
cusing quintic nonlinear Schrödinger equation on R× T2 given by:

(1) (i∂t + ∆R×T2)u = |u|4u, u(t = 0) = u0 ∈ H1(R× T
2)

Our main motivation is to better understand the broad question of the effect of the
geometry of the domain on the asymptotic behavior of large solutions to nonlinear
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dispersive equations. While scattering holds for the quintic equation on R
3, it is

not expected to hold (apart from trivial cases) on T3. As it turns out, the situation
on R× T2 seems to be a borderline case for this question.

To further explain our motivation and our choice of domain, we present the
following heuristic relating the domain geometry to the asymptotic behavior of
power type nonlinear Schrödinger equations of the form:

(2) (i∂t + ∆Md)u = |u|p−1u, u(0) ∈ H1(Md)

Here Md stands for a d−dimensional Riemannian manifold. From the heuristic
that linear solutions with frequency ∼ N initially localized around the origin will
disperse at time t in the ball of radius ∼ Nt, one can hope that scattering is partly
determined by the asymptotic volume growth of balls with respect to their radius.
In fact, if

V (r) := inf
q∈Md

{VolMd(B(q, r))} ∼r→∞ rg,

then one would expect that linear solutions decay at a rate ∼ t−g/2 and based on
the Euclidean theory on Rg, the equation (2) would scatter in the range 1 + 4/g ≤
p ≤ 1 + 4/(d − 2), while one might expect more exotic behavior, at least when
p ≤ 1 + 2/g.

We don’t know whether such a simple picture is completely accurate, but testing
this hypothesis motivated us to study the asymptotic behavior for (1) in the case
g = 1 and d = 3, which seems to be the hardest case that can be addressed in light
of the recent developments in [6, 4]. Indeed, as we will argue later, this problem
is both mass-critical and energy-critical (1 + 4/g = 1 + 4/(d− 2) = 5).

Our two main results seem to confirm the picture above about scattering, at
least in the case of quotients of Euclidean spaces. The first result asserts that
small initial data lead to solutions which are global and scatter.

Theorem 1 ([5]). There exists δ > 0 such that any initial data u0 ∈ H1(R× T
2)

satisfying

‖u0‖H1(R×T2) ≤ δ

leads to a unique global solution u ∈ X1
c (R) of (1) which scatters in the sense that

there exists v± ∈ H1(R× T
2) such that

(3) ‖u(t) − eit∆R×T2v±‖H1(R×T2) → 0 as t→ ±∞.

The uniqueness space X1
c ⊂ Ct(R : H1(R× T2)) was essentially introduced by

Herr-Tataru-Tzvetkov [6]. The main novelty here is the scattering statement on
a manifold with such little volume (and so many trapped geodesics1). A key fact
about Theorem 1 is that it requires only a control provided by the conserved mass
and energy of the solution defined respectively by

(4) M(u) := ‖u(0)‖2L2(R×T2), E(u) :=
1

2
‖∇u(0)‖2L2(R×T2) +

1

6
‖u(0)‖6L6(R×T2).

1The presence of trapped geodesics is known to have nontrivial effects on the linear flow and
could be expected to also affect the asymptotic behavior of nonlinear solutions.
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Having such a small-data scattering result with control in terms of conserved
quantities (compare to Tzvetkov-Visciglia [15]) is crucial in extending a small
data result to a global result. This is precisely the question we tackle in the main
part of this paper.

For this, we follow the Kenig-Merle “concentration-compactness-rigidity” ma-
chinery [11] along with later adaptations to deal with inhomogeneous critical
equations ([13, 8, 9]). One key ingredient here is a linear and nonlinear profile
decomposition for solutions with bounded energy, which identifies sequences of
initial data, called “profiles”, exhibiting an extreme behavior (in fact a defect of
compactness) and possibly “leaving” the geometry. It is there that the “energy-
critical” and “mass-critical” nature of our equation become manifest. Each type of
profile singles out an effective equation (in general different from (1)) that governs
its dynamic, thus linking the asymptotic behavior of (1) to that of the effective
equations. We elaborate on this point for the two main types of profiles2:

i) Small-scale profiles: These correspond to sequences of initial data that

concentrate at a point (typically like u(0) = N
1/2
k φ(Nkz) with φ ∈ C∞

0 (R3) and
Nk → ∞). These solutions live at very small-scales, so one would expect them not
to sense the distinction between R×T2 and R3 before they scatter. We prove that
this is indeed the case, and the dynamic of those profiles is dictated by the quintic
nonlinear Schrödinger equation on R

3, which is energy-critical and was proven to
be globally well-posed and scattering in [2].

ii) Large-scale profiles: These are sequences of initial data typically of the

form u(0) = M
1/2
k ψ(Mkx, y) with (x, y) ∈ R× T

2, ψ ∈ C∞
0 (R× T

2) and Mk → 0.
They are also products of the profile decomposition and their importance can be
heuristically anticipated by looking at one of the scaling limit of the manifold
R × T2 (namely R × 1

λT
2 as λ → ∞, cf. [5]). One is tempted to guess that the

behavior of such profiles is governed by that of mass-critical quintic NLS on R (as
is the case if the initial data are independent of the periodic variable y). However,
the situation turns out to be more complicated, and the behavior of such profiles
is governed by what we call the “quintic resonant system” given by:

(i∂t + ∂xx)uj =
∑

R(j)

uj1uj2uj3uj4uj5 j ∈ Z
2

R(j) ={(j1, j2, j3, j4, j5) ∈ (Z2)5 : j1 − j2 + j3 − j4 + j5 = j and

|j1|2 − |j2|2 + |j3|2 − |j4|2 + |j5|2 = |j|2}

(5)

with unknown ~u = {uj}j∈Z2 , where uj : Rx × Rt → C. In the special case when
uj = 0 for j 6= 0, we recover quintic NLS on R, but in general, this is a new
equation (see [5] for references on such systems of NLS equations).

2These profiles are the product of the profile decomposition, but their appearance can be
anticipated by looking at the scaling limits of the manifold R timesT2 (cf. [5]).
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It is not very hard to see that (5) is Hamiltonian, has a nice local theory and
retains many properties of quintic NLS on R. In view of this and of the result of
Dodson [4], it seems reasonable to formulate the following conjecture:

Conjecture 2 ([5]). Let E ∈ (0,∞). For any smooth initial data ~u0 satisfying:

Els(~u0) :=
1

2

∑

j∈Z

〈j〉2‖u0,j‖2L2(R) ≤ E

there exists a global solution of (5), ~u(t), ~u(t = 0) = ~u0 with conserved Els(~u(t)) =
Els(~u0) that scatters in positive and negative infinite time.

We can now give the main result of this paper which asserts large data scattering
for (1) conditioned on Conjecture 2.

Theorem 3 ([5]). Assume that Conjecture 2 holds for all E ≤ Els
max, then any

initial data u0 ∈ H1(R× T2) satisfying

L(u0) :=

∫

R×T2

{
1

2
|u0|2 +

1

2
|∇u0|2 +

1

6
|u0|6

}
dx ≤ Els

max

leads to a solution u ∈ X1
c (R) which is global, and scatters in the sense that there

exists v± ∈ H1(R × T2) such that (3) holds. In particular, if Els
max = +∞, then

all solutions of (1) with finite energy and mass scatter.

A few remarks about this theorem are in order: First, we should point out that
the global regularity part holds for all solutions of finite energy, unconditional on
Conjecture 2. Second, while Theorem 3 is stated as an implication, it is actually
an equivalence (cf. Appendix of [5]). Finally, we note that the full resolution
of Conjecture 2 seems to require considerable additional work that is completely
independent of the analysis on R× T2, so we choose to leave it for a later work.

To conclude, we point to the main novelties of the proof: i) proving good global
Strichartz estimates not only to prove Theorem 1 but also to obtain an L2−profile
decomposition suitable for the large data theory, ii) the analysis of the large-scale
profile initial data that appear in the profile decomposition, understanding their
“two time-scale” behavior in terms of the quintic system (5) via a normal form
transformation, and iii) a final nonlinear profile recomposition similar to that in
[9] but with many more cases (cf. [5]).
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A mass-decreasing flow in dimension three

Robert Haslhofer

Let (M, gij) be an asymptotically flat three-manifold with nonnegative inte-
grable scalar curvature. The ADM-mass [1] from general relativity is defined as

(1) m(g) := lim
r→∞

∫

Sr

(∂jgij − ∂igjj) dA
i.

By the positve mass theorem, the mass is always nonnegative and vanishes only for
flat space. Beautiful proofs employing a variety of techniques have been discovered
by Schoen-Yau, Witten and Huisken-Ilmanen [2, 3, 4].
The purpose here is to introduce a geometric flow that decreases the mass, for full
details please see [5]. Our mass-decreasing flow is defined by iterating a suitable
Ricci flow with surgery and conformal rescalings.

Definition 1. Let (M, g0) be an orientable asymptotically flat three manifold with
nonnegative integrable scalar curvature, and fix a parameter ε > 0.

• Let (M(t), g(t))t∈[0,ε] be the surgical Ricci flow solution of [6] starting at g0,
with all connected components except the one containing the asymptotically
flat end thrown away.

• Solve the elliptic equation (−8∆g(ε) + Rg(ε))w1 = 0, w1 → 1 at ∞, and

conformally rescale to the scalar flat metric g1 := w4
1g(ε).

• Let (M(ε), g1) be the new initial condition and iterate the above procedure.



1584 Oberwolfach Report 26/2012

The concatenation ‘flow, conformal rescaling, flow, conformal rescaling, ...’ gives
an evolution (M(t), g(t))t∈[0,∞) which we call the mass-decreasing flow.

The point is, that conformal rescalings to scalar flat metrics squeeze out of the
manifold as much mass as possible. However, unless the manifold is flat, the scalar
curvature becomes strictly positive again under the Ricci flow and thus the mass
can be decreased even more by another conformal rescaling. This process can be
iterated forever.

Theorem 2. The mass-decreasing flow exists for all times, and preserves asymp-
totic flatness and nonnegative integrable scalar curvature. The mass is constant
in the time intervals t ∈ ((k − 1)ε, kε) and jumps down by

(2) δmk = −
∫

M

(8|∇wk|2 +Rw2
k)dV

at the conformal rescaling times tk = kε, where wk is the solution of

(3)
(
−8∆g(tk) +Rg(tk)

)
wk = 0 , wk → 1 at ∞.

The monotonicity of the mass is strict as long as the metric is nonflat.

We remark that the formal limiting equations for ε→ 0 are

(4) ∂tg = −2Ric + ∆−1|Ric|2g , ∂tm = −2

∫

M

|Ric|2dV.

The equations (4) have been discovered independently by Hubert Bray and Lars
Andersson. Short-time existence for this nonlocal flow has been proved very re-
cently by Lu-Qing-Zheng [7]. However, we will actually work with the discrete
ε-iteration (ε > 0). The point is that our long-time existence result (Theorem 2)
relies heavily on the theory of Ricci flow with surgery due to Perelman [8, 9], and
the nice variant for noncompact manifolds due to Bessières-Besson-Maillot [6].
Regarding the topological aspects of the long-time behavior, recall that the Ricci
flow with surgery on a closed 3-manifold that admits a metric with positive scalar
curvature becomes extinct in finite time [10, 11]. In a similar spirit, along the mass-
decreasing flow wormholes pinch off and nontrivial spherical space forms bubble
off in finite time.

Theorem 3. There exists a T <∞, such thatM(t) ∼= R3 for t > T . In particular,
the initial manifold had the diffeomorphism type

(5) M ∼= R
3#S3/Γ1# . . .#S3/Γk#(S1 × S2)# . . .#(S1 × S2).

Moreover, one can in fact take T = A0

4π , where A0 is the area of the largest outer-
most minimal two-sphere in (M, g0).

To investigate the geometric-analytic aspects of the long-time behavior we will
follow the general principle that monotonicity formulas are a very useful tool.
However, Perelman’s λ-energy vanishes for all asymptotically flat manifolds with
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nonnegative scalar curvature. To overcome this difficulty, we consider instead the
following variant of Perelman’s λ-functional,

(6) λAF(g) := inf
w:w→1

∫

M

(
4|∇w|2 +Rw2

)
dV,

where the infimum is now taken over all w ∈ C∞(M) such that w = 1 + O(r−1)
at infinity.

Theorem 4. Away from the conformal rescaling and surgery times, we have the
monotonicity formula

(7) d
dtλAF(g(t)) = 2

∫

M

|Ric + ∇2f |2e−fdV ≥ 0,

where (−4∆ + R)e−f/2 = 0, f → 0 at ∞. At the conformal rescaling times, λAF

jumps down, but the mass jumps down more, i.e. m− λAF is (almost) monotone
decreasing at all times (the cumulative error term from the surgeries can be made
arbitrarily small by choosing the surgery parameters suitably).

In fact, we had already introduced the energy-functional λAF in our previous
note [12], where we also observed it gives a lower bound for the mass, i.e.

(8) m(g) ≥ λAF (g).

In passing, we remark that the renormalized Perelman-functional also motivates a
stability inequality for Ricci-flat cones that we investigated thoroughly in a joint
work with Hall and Siepmann [13]. Coming back to the long-time behavior of the
mass-decreasing flow we have:

Theorem 5. Let (M(t), g(t))t∈[0,∞) be a solution of the mass-decreasing flow and

assume a-priori there exist a constant c > 0, such that λAF (g(tk)) ≥ cm(g(tk))2

for all positive integers k. Then there exists a constant C <∞ such that m(g(t)) ≤
C/t. In particular, the mass-decreasing flow squeezes out all the initial mass, i.e.
limt→∞m(g(t)) = 0.

The a-priori assumption is (partly) motivated by considering the flow on an end
close to Schwarzschild. However, we actually have:

Conjecture 6. The mass-decreasing flow squeezes out all the initial mass even
without a-priori assumptions, i.e. limt→∞m(g(t)) = 0.

Going one step further, one might ask:

Question 7. Can the mass-decreasing flow be used to give an independent proof
of the positive mass theorem?

The idea is to show that the mass-decreasing flow converges (for t→ ∞) to flat
space in a sense strong enough to conclude that the mass limits to zero (and hence
that the mass was nonnegative at the initial time). Understanding the geometric
long time behavior is already very difficul in the case of the Ricci flow with surgery
on closed 3-manifolds, see however the recent progress by Bamler [14].
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Ancient solutions to mean curvature flow

Gerhard Huisken

(joint work with Carlo Sinestrari)

We study ancient solutions M t of the mean curvature flow, with t ∈ (−∞, 0),
i.e. F : M × (−∞, 0) → IRn+1 satisfies

(1)
∂F

∂t
(p, t) = −H(p, t)ν(p, t), p ∈ M , t < 0,

where H(p, t) and ν(p, t) are the mean curvature and the outer normal respectively
at the point F (p, t) of the surface Mt = F (·, t)(M ).

We assume that M is closed and convex for all t. We take t = 0 to be the
singular time, so that Mt shrinks to a round point as t → 0. We assume that the
dimension of Mt is at least two.

In the one-dimensional case it was shown by Daskalopoulos, Hamilton and
Sesum [1], that the only such ancient solutions are either circles shrinking by
selfsimilarities or special solutions shaped like the gluing of two translating solu-
tions given by the graph of log(cosx). For the 2d-Ricci flow a similar result was
obtained in [2].

In higher dimensional Ricci flow Brendle, Huisken and Sinestrari [3] have ob-
tained a classification of ancient solutions that are of sufficiently positive pinched
curvature while White has given examples of ancient compact convex solutions
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to mean curvature flow that are obtained from gluing translating solutions. Here
we show that convex, compact ancient solution of mean curvature flow are round
shrinking spheres if they satisfy natural uniformity assumptions:

Theorem 1 Let Mt, with t ∈ (−∞, 0) be an ancient solution to the mean
curvature flow which is closed and convex and satisfies

(2) hij ≥ ǫHgij

for some ǫ > 0 independent of t. Then Mt is a shrinking sphere.
Theorem 2 Let Mt, with t ∈ (−∞, 0), be a convex ancient solution of the mean

curvature flow satisfying the diameter bound

(3) diam(Mt) ≤ C(1 +
√
−t) for all t < 0.

Then Mt is a family of shrinking spheres.
The lecture sketches the arguments of the proof and describes extensions to

compact 2-convex ancient solutions of the flow.
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Neckpinching for asymmetric surfaces moving by mean curvature

Dan Knopf

(joint work with Zhou Gang, Israel Michael Sigal)

There is a folklore conjecture in geometric analysis which predicts that finite-time
singularities of parabolic geometric pde asymptotically become as symmetric as
their topologies allow. How should this be interpreted?

A first observation is that the statement should be understood in the sense of
quasi-isometries. For example, one may deform the standard round metric on S3

to a ‘bumpy’ metric g0, making its isometry group trivial while preserving positive
Ricci curvature. Now consider a solution g(t) of Ricci flow with initial data g0. By
Kotschwar’s result [14], the isometry group of each g(t) remains trivial. But by
Hamilton’s seminal Ricci flow result [9], the actions of O(4) with respect to a fixed
atlas become arbitrarily close to isometries as the singularity time is approached.

A second observation is that the statement must be understood locally. For
example, asymptotics of Ricci flow neckpinch singularities [2] reveal that metrics
possessing rotation and reflection symmetries asymptotically acquire an additional
translational symmetry near the singular set by converging to the cylinder soliton.

A third observation is that the conjecture may be broken down into two parts.
The first, which can be stated rigorously, is that dilations of finite-time singulari-
ties converge (at least modulo subsequences) to self-similar solutions, i.e. solitons.
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Indeed, Huisken’s monotonicity formula [11] proves this for Type-I singularities
of mean curvature flow (mcf). The second part of the conjecture is the heuristic
expectation that solitons, as generalized fixed points of geometric heat flows, are
in a sense ‘maximally diffused’ and hence possess symmetry groups that are as
large as possible.

How might one investigate the full conjecture? The most powerful methods for
studying finite-time singularities of parabolic geometric pde in greatest generality
are surgery programs. These exploit a ‘canonical neighborhood’ property — the
fact that high-curvature regions of a solution have special properties which in some
cases allow their classification. Two celebrated examples are Perelman’s surgery
program for Ricci flow [15, 16] (also see Hamilton’s foundational work [10]) and
the surgery program of Huisken and Sinestrari [12] for singularities of 2-convex hy-
persurfaces evolving by mcf. However, even these spectacularly successful surgery
programs do not provide independence of subsequence, precisely because of their
need to consider quite general solutions. This is an obstacle to showing that a so-
lution asymptotically (locally, quasi-isometrically) approaches a unique singularity
model. For example, given a family of hypersurfaces Mn

t ⊂ R
n+1 evolving by mcf

and becoming singular as t ր T < ∞, we call the set of points in the ambient
space at which the solution becomes singular its residue set. The residue set of a
cylinder is a line, and that of a rotationally and reflection symmetric neckpinch is
a point [8]. For nonsymmetric neckpinches, however, it is not even known if the
residue set is rectifiable (though it is conjecturally a point — see below).

The difficulties in proving independence of subsequence alluded to above are
reflected in another conjecture, which we learned of from Ecker: Do singularities
of mcf have unique tangent flows? This has recently been proved by Schulze
[17] if one tangent flow consists of a closed, multiplicity-one, smoothly embedded
self-similar shrinker, but the general case remains open.

Another approach to studying singularity formation involves matched asymp-
totic expansions. These generally require much stronger hypotheses than do
surgery programs. But in turn, they provide statements that hold uniformly in
suitable space-time neighborhoods of a developing singularity. Some examples
(certainly not a comprehensive list!) of asymptotics for geometric pde are work of
King [13], Daskalopoulos–del Pino [5], and Daskalopoulos–Šešum [6] for logarith-
mic fast diffusion, ut = ∆ log u, which represents the evolution of the conformal
factor for a noncompact 2-dimensional solution of Ricci flow encountering a Type-
II singularity; work of Angenent–Velázquez [3] for Type-II mcf singularities; work
of Angenent and an author [2] for Type-I Ricci flow singularities; work of two au-
thors [8] for Type-I mcf singularities; and work [1] of Angenent–Isenberg and an
author for Type-II Ricci flow singularities. Notably, all of these results — except
for [6] — require a hypothesis of rotational symmetry, which invites the question:
Do singularities of geometric pde become asymptotically rotationally symmetric?
In other words, is rotational symmetry stable in a suitable geometric sense?

This note is a report on the first step in a program intended to provide an
affirmative answer to this question. In the first step [7], we remove the hypothesis
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of rotational symmetric for surfaces M2
t ⊂ R

3 evolving by mcf, replacing it by
weaker discrete symmetries. We conclude that solutions starting sufficiently close
to a standard rotationally-symmmetric neck become asymptotically rotationally
symmetric in a precise sense (see below). This result provides another example
in which the folklore conjecture outlined above can be made rigorous. In forth-
coming work, we plan to remove the dimension restriction as well as the discrete
symmetry assumptions. In light of the important result of Colding–Minicozzi [4]
that spherical and cylindrical singularities are the only generic mcf singularities, a
successful completion of this program will prove that rotationally symmetric neck-
pinch behavior is ‘universal’ in a precise sense. As a corollary, it will also prove
a version of the conjecture that mcf neckpinch singularities have unique limiting
cylinders. What follows is a brief outline of our methods and results in [7].

We study the evolution of graphs over a cylinder S1 × R embedded in R3. In
coordinates (x, y, z) for R3, we take as an initial datum a surface M2

0 around the

x-axis, given by a map
√
y2 + z2 = u0(x, θ), where θ denotes the angle from the

ray y > 0 in the (y, z)-plane. Then for as long as the flow remains a graph, all M2
t

are given by
√
y2 + z2 = u(x, θ, t).

Analysis of rotationally symmetric neckpinch formation [8] leads one to expect
that perturbations of rotationally symmetric necks should resemble spatially ho-
mogeneous cylinders

√
2(T − t) in a space-time neighborhood of the developing

singularity. So we apply adaptive rescaling, transforming the original variables x

and t into rescaled blowup variables y(x, t) := λ−1(t)x and τ(t) :=
∫ t

0 λ
−2(s) ds,

respectively. (Reflection symmetry fixes the center of the neck at x = 0.) What
distinguishes this approach from standard parabolic rescaling (e.g. [3] or [2]) is
that we do not fix λ(t) but instead consider it as a free parameter to be deter-
mined from the evolution itself. We study a rescaled radius v(y, θ, τ) defined by
v(y(x, t), θ, τ(t)) := λ−1(t)u(x, θ, t). Then in commuting (y, θ, τ) variables, the
quantity v evolves by vτ = Av(v)− (λλt)v− v−1, where Av is a quasilinear elliptic
operator. The formal adiabatic approximate solution of this equation is given by
Vα,β(y) :=

√
α(2 + βy2) for positive parameters α and β.

We assume that the initial surface v0(y, θ) = v(y, θ, 0) is sufficiently C3-close
to some Vα0,β0(y). We then prove that for such initial data, the solution v(y, θ, τ)
of mcf becomes singular at some T < ∞ and converges locally to a rotationally
symmetric solution Vα(τ),β(τ)(y), where α ≈ 1 and β ≈ (− log(T − t))−1 as t ր T .
The solution’s residue set is a point. An interested reader should consult [7] for
precise statements of our assumptions, estimates, and convergence results.
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Threshold behavior of solutions for the critical focusing NLW on R3+1

Joachim Krieger

(joint work with Roland Donninger, Kenji Nakanishi, Wilhelm Schlag)

We discuss questions revolving around the behavior of certain large solutions of
the energy critical focussing nonlinear wave equation

�u = −utt + ∆u = −u5

on R3+1. More precisely, we consider radial solutions which have energy close
to but slightly larger than that of the unique (up to scaling) radial ground state
solution

W (x) =
1

(
1 + |x|2

3

) 1
2

.

The question we are interested in is the construction of ’bubbling off’ solutions of
the type

u(t, x) = Wλ(t)(x) + ε(t, x) ,

where Wλ = λ
1
2W (λx) and λ(t) obeys various types of dynamics, as well as the

significance of these types of solutions as a kind of threshold behavior dividing
stable blow up/scattering regimes for the equation for data near the ground state.
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We discuss finite and infinite time blow up scenarios with a continuum of rates, as
well as the existence of a center stable manifold passing through W in a sufficiently
strong topology. We also mention quantized blow up rates for smooth data (work in
progress), as well as a possible dynamic interpretation of the center stable manifold.
This comprises work done in collaboration with R. Donninger, K. Nakanishi and
W. Schlag.

Scattering for equivariant wave maps

Andrew Lawrie

(joint work with Raphaël Côte, Carlos Kenig, Wilhelm Schlag)

Wave maps, also known as nonlinear σ-models, constitute a class of nonlinear wave
equations defined as critical points (at least formally) of Lagrangians

L(u, ∂tu) =
1

2

∫

Rd+1

ηαβ 〈∂αu , ∂βu〉g dtdx

where u : (Rd+1, η) → (M, g) is a smooth map from Minkowski space into a
Riemannian manifold (M, g). If M →֒ RN is embedded, then critical points are
characterized by the property that �u ⊥ TuM where � is the d’Alembertian. In
particular, harmonic maps from Rd → M are wave maps which do not depend
on time. In the presence of symmetries, such as when the target manifold M is
rotationally symmetric, one often singles out a special class of such maps called
equivariant wave maps. For example, for the sphere M = Sd one requires that
u ◦ ρ = ρℓ ◦ u where ℓ is a positive integer and ρ ∈ SO(d) acts on R

d on Sd by
rotation. These maps themselves have been extensively studied, see for example
Shatah [8], Christodoulou, Tahvildar-Zadeh [3], Shatah, Tahvildar-Zadeh [9] for
early results. For a summary of these developments, see the book by Shatah,
Struwe [10].

1. 2d Equivariant Wave Maps

In a forthcoming joint work with Côte, Kenig, and Schlag, we consider energy
critical 1-equivariant wave maps U : R1+2 → S2. In this case, the Cauchy problem
reduces to

ψtt − ψrr −
1

r
ψr +

sin(2ψ)

2r2
= 0(1)

(ψ, ψt)|t=0 = (ψ0, ψ1)

where ψ is the azimuth angle measured from the north pole. In this equivariant
setting, the conserved energy becomes

E(U, ∂tU)(t) = E(ψ, ψt)(t) =

∫ ∞

0

(
ψ2
t + ψ2

r +
sin2(ψ)

r2

)
r dr = const.(2)

Any ψ(r, t) of finite energy and continuous dependence on t ∈ I := (t0, t1) must
satisfy ψ(t, 0) = mπ and ψ(t,∞) = nπ for all t ∈ I where m,n ≥ 0 are fixed
integers. This requirement splits the energy space into disjoint classes according
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to this topological condition. The wave map evolution preserves these classes. In
light of this, the natural spaces in which to consider Cauchy data for (1) are the
energy classes Hn := {(ψ0, ψ1) | E(ψ0, ψ1) <∞ and ψ0(0) = 0, ψ0(∞) = nπ}.

In the analysis of 1-equivariant wave maps to the sphere, an important role is
played by the harmonic map, Q, given by stereographic projection. One can show
that the energy E(Q, 0) is minimal in H1 and up to a rescaling, Q is the unique
1-equivariant harmonic map to the sphere in H =

⋃
n≥0 Hn.

One of our goals is to study the asymptotic behavior of solutions to (1) with

data in H0. In [12], Struwe’s work implies that solutions ~ψ(t) to (1) with data

in ~ψ(0) ∈ H0 are global in time if E(~ψ(0)) < 2E(Q). Recently, Cote, Kenig
and Merle, in [2] extended this result to include scattering to zero in the regime,
~ψ(0) ∈ H0 and E(~ψ) < E(Q) + δ for small δ > 0 and conjecture that scattering
should hold for data in H0 with energy up to 2E(Q). Referred to as the “threshold
conjecture,” this result is implied by the work of Sterbenz and Tataru in [11] when
one restricts their results to the equivariant setting. Here we give an alternative
proof of the threshold conjecture in the simpler equivariant setting based on the
concentration compactness/rigidity method of Kenig and Merle, [4], [5]. The main
new ingredient in the proof is a robust “rigidity” result which states that any
solution whose trajectory in the energy space is pre-compact up to the symmetries
of the equation must be either identically zero or a rescaled nontrivial harmonic
map.

2. 3d Equivariant, Exterior Wave Maps to the Sphere

Recently, together with Wilhelm Schlag in [6], we investigated equivariant wave
maps from 3 + 1-dimensional Minkowski space exterior to a ball and with S3 as
target. To be specific, let B ⊂ R3 be the unit ball. We then consider wave maps
U : R× (R3 \B) → S3 with a Dirichlet condition on ∂B, i.e., U(∂B) = {N} where
N is a fixed point on S3. In the usual equivariant formulation of this equation,
where ψ is the azimuth angle measured from the north pole, the Cauchy problem
for 1-equivariant wave maps with Dirichlet boundary condition ψ(1, t) = 0 for all
t ≥ 0 reduces to

ψtt − ψrr −
2

r
ψr +

sin(2ψ)

r2
= 0, r ≥ 1(3)

ψ(1, t) = 0, ∀ t ≥ 0, ψ(r, 0) = ψ0(r), ψt(r, 0) = ψ1(r)

E(ψ, ψt) =

∫ ∞

1

1

2

(
ψ2
t + ψ2

r + 2
sin2(ψ)

r2
)
r2 dr = const.(4)

Any ψ(r, t) of finite energy and continuous dependence on t ∈ I := (t0, t1) must
satisfy ψ(∞, t) = nπ for all t ∈ I where n ≥ 0 is fixed. Again we denote by H the
energy space.

The advantage of this model lies with the fact that removing the unit ball
eliminates the scaling symmetry and also renders the equation subcritical relative
to the energy. Both of these features are in stark contrast to the same equation
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on 3 + 1-dimensional Minkowski space, which is known to be super-critical and to
develop singularities in finite time, see Shatah [8] and also Shatah, Struwe [10].

Another striking feature of this model, which fails for the 2+1-dimensional ana-
logue, lies with the fact that it admits infinitely many stationary solutions Qn(r)
which satisfy Qn(1) = 0 and limr→∞Qn(r) = nπ, for each n ≥ 1. These solu-
tions have minimal energy in the class of all functions of finite energy which satisfy
the nπ boundary condition at r = ∞, and they are the unique stationary solutions
in that class. We denote the latter class by Hn.

The exterior equation (3) was proposed by Bizon, Chmaj, and Maliborski [1]
as a model in which to study the problem of relaxation to the ground states given
by the various equivariant harmonic maps. Numerical simulations described in [1]
indicate that in each equivariance class and topological class given by the boundary
value nπ at r = ∞ every solution scatters to the unique harmonic map that lies
in this class. In this paper we verify this conjecture for ℓ = 1, n = 0. These
solutions start at the north-pole and eventually return there. For n ≥ 1 we obtain
a perturbative result. In particular, we prove:

Theorem 1. (L, Schlag 2011): Let (ψ0, ψ1) ∈ H0. Then there exists a unique
global evolution to (3) scattering to zero in the sense that the energy of the wave
map on an arbitrary but fixed compact region vanishes as t→ ∞.

Theorem 2. (L, Schlag 2011): For any n ≥ 1 there exists ε > 0 such that for
any (ψ0, ψ1) ∈ Hn such that ‖(ψ0, ψ1) − (Qn, 0)‖H < ε the solution to (3) with
data (ψ0, ψ1) exists globally, is smooth, and scatters to (Qn, 0) as t→ ∞.

We prove Theorem 1 by means of the Kenig-Merle concentration compact-
ness/rigidity method [4], [5], [7]. The most novel aspect of our implementation of
this method lies with the rigidity argument. Indeed, in order to prove Theorem 1
without any upper bound on the energy we demonstrate that the natural virial
functional is globally coercive on H. This requires a detailed variational argu-
ment, the most delicate part of which consists of a rigorous phase-space analysis
of the Euler-Lagrange equation.
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Impulsive gravitational waves

Jonathan Luk

(joint work with Igor Rodnianski)

Explicit solutions of impulsive gravitational waves were first found by Penrose [8],
building on earlier works of [1] and [3]. These are spacetimes satisfying the vacuum
Einstein equations such that the Riemann curvature tensor has a delta singularity
across a null hypersurface. However, the Penrose explicit solution was constructed
in plane symmetry. The impulsive gravitational wave thus has plane wavefront
and can only be thought of as an idealization that the source of the gravitational
wave is at an infinite distance. Moreover, plane symmetry also assumes that the
gravitational wave has infinite extent and automatically imposes the assumption
of non-asymptotic flatness.

The first study of general spacetimes satisfying the Einstein equations and ad-
mitting possible 3-surface delta singularities was first undertaken by Taub [10],
who derived a system of consistency relations linking the metric, curvature tensor
and the geometry of the singular hypersurface.

We study the dynamical problem for general impulsive gravitational waves by
solving the characteristic initial value problem without symmetry assumptions.
Characteristic initial data is given on a truncated outgoing cone H0 and a trun-
cated incoming cone H0 intersecting at a two sphere S0,0 (Figure 1).

Figure 1. Setup for the characteristic initial value problem
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To study the propagation of impulsive gravitational waves, the initial data on
the outgoing hypersurface H0 is prescribed such that the null second fundamental
form has a jump discontinuity across an embedded two sphere S0,us

but is smooth
otherwise. The curvature tensor for the initial data thus has a delta singularity
across S0,us

. On the initial incoming hypersurface, the data is smooth but other-
wise does not satisfy any smallness assumption. For this class of data, we prove
existence and uniqueness of local solutions, as well as a result on the propagation
of singularity:

Theorem 1 (L.-Rodnianski [4]). Given the characteristic initial data as above,
there exists a unique local solution to the vacuum Einstein equations Rµν = 0.
Moreover, the curvature has a delta singularity across the null hypersurface em-
anating from the initial singularity prescribed on S0,us

. The spacetime is smooth
away from this null hypersurface.

The theorem gives a precise description of how the singularity propagates as
depicted in Figure 2. This can be thought of as an analog in general relativity of
the work of Majda on the propagation of shocks in compressible fluids [6], [7].

Figure 2. Propagation of impulsive gravitational waves

In view of the examples of colliding impulsive gravitational waves found by
Khan-Penrose [2] and Szekeres [9], we also studied the collision of these impulsive
gravitational waves. More specifically, we prescribe a jump discontinuity across an
embedded two sphere in the null second fundamental forms both on the outgoing
and the incoming initial hypersurfaces. Locally, by Theorem 1, a unique solution
exists and the curvature has a delta singularity across each of the null hypersurfaces
emanating from the initial singularity. We show that we can understand the
spacetime after the interaction of the two gravitational impulsive waves, which is
represented geometrically by the intersection of these two null hypersurfaces. In
particular, while the two gravitational impulsive waves interact nonlinearly, the
resulting spacetime is smooth except on the union of the two null hypersurfaces
emanating from the initial singularities even beyond the interaction:

Theorem 2 (L.-Rodnianski [5]). Suppose on the initial outgoing hypersurface H0,
the null second fundamental form has a jump discontinuity across the two sphere
S0,us

but is smooth otherwise; on the initial incoming hypersurface H0, the null
second fundamental form has a jump discontinuity across the two sphere Sus,0 but
is also smooth otherwise. Then there exists a unique local solution to the vacuum
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Einstein equations Rµν = 0. Moreover, the spacetime is smooth away from the
union of incoming null hypersurface Hus emanating from Sus,0 and the outgoing
null hypersurface Hus

emanating from S0,us
.

The main difficulty in studying this class of spacetimes is that the Riemann
curvature tensor is not in L2. In this case, the standard energy estimates based
on the Bel Robinson tensor do not apply. In the proof, we introduced a new type
of energy estimates, which is based on the L2 norm of only some (renormalized)
components of the Riemann curvature tensor. Moreoever, we show that the space-
time geometry can be controlled only with the knowledge of these components of
the curvature tensor. In fact this allows us to prove existence and uniqueness of
solutions to the vacuum Einstein equations for a more general class of initial data.

References

[1] M. W. Brinkmann, M. W., On Riemann spaces conformal to Euclidean space, Proc. Natl.
Acad. Sci. U.S.A. 9 (1923), 1-3.

[2] K. A. Khan and R. Penrose, Scattering of two impulsive gravitational plane waves, Nature
229 (1971), 185-186.
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Ricci flow of non-compact warped products with torus fibres

Tobias Marxen

We examine the behaviour of the manifold M = R × N , where (N, gN ) is a
flat, complete, connected Riemannian manifold, with warped product metric h =
f2
0dx

2 + g20gN under Ricci flow, where f0, g0 : R → R are C∞ and positive, such
that (M,h) is complete and has bounded curvature.

First we show that the warped product structure is preserved, i. e. the unique
maximal solution h(t), t ∈ [0, T ), 0 < T ≤ ∞, of Ricci flow

d

dt
h(t)(p) = −2Rich(t)(p), p ∈M, t ∈ [0, T )

with h(0) = h is of the form h(t) = f2(·, t)dx2 + g2(·, t)gN , t ∈ [0, T ) with f, g :
R× [0,∞) → R C∞ and positive.

Next we show, in case DimN = 2, long time existence (T = ∞) and that the
solution is of type III, i. e. | | ≤ C

t for some C > 0 and for all t ∈ (0,∞).
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The proof idea is as follows: The product structure M = R × N induces a
decomposition of each tangent space T(x,q)M of M as a direct sum of the subspace
T(x,q)(R× {q}) tangent to the submanifold R× {q} at (x, q) and of the subspace
T(x,q)({x} × N) tangent to the submanifold {x} × N at (x, q). We call vectors
in T(x,q)(R × {q}) horizontal and vectors in T(x,q)({p} ×N) vertical. If we equip

R × N with the warped product metric f2dx2 + g2gN , where f, g : R → R are
C∞ and positive, we have two main sectional curvatures that can be described
via two C∞ functions KV ,KH : R × N → R: all two dimensional subspaces of
T(x,q)M that are spanned by two vertical vectors have the same sectional cur-
vature, we denote it by KV (x, q); all two dimensional subspaces of T(x,q)M that
are spanned by a horizontal and a vertical vector have the same sectional cur-
vature, we denote it by KH(x, q). In fact KV and KH depend only on x ∈ R:

KV (x, q) = K̂V (x),KH(x, q) = K̂H(x) with K̂V , K̂H : R → R.

Now we have | |2 = a(n)K2
V + b(n)K2

H , where a(n), b(n) are positive constants
depending only on DimN . We next calculate, in case DimN = 2, evolution
equations for K̂V , K̂H and other appropriate geometric quantities. Applying an
extension of a maximum principle on noncompact manifolds with time dependent
metric then yields

Proposition 1. sup
x∈R

|K̂V |(x, t) ≤ 1
4t+ 1

sup
x∈R

|K̂V |(x,0)

= C
t+a for all x ∈ R, t ∈ [0,∞)

with C := 1
4 and a := 1

4 sup
x∈R

|K̂V |(x,0)
.

Proposition 2. |K̂H |(x, t) ≤ C
t+a for all x ∈ R, t ∈ [0,∞) with a := 1

4 sup
x∈R

|K̂V |(x,0)

and C = C(sup
x∈R

|K̂H |(x, 0), sup
x∈R

|K̂V |(x, 0)).

Thereof we get | | ≤ C
t for some C > 0 and for all t > 0.

Furthermore we show Gaussian upper bounds for the geometric quantities
| |2, |∇ |2 and |T |2 (T denotes the traceless Ricci tensor) on arbitrary complete
noncompact manifolds under Ricci flow assuming that the quantities have com-
pact support at time t = 0 and appropriate curvature conditions.

The condition that |∇ |2 has compact support at time t = 0 could intuitively
be called: M has locally symmetric ends at time t = 0. And one intuitively starts

with flat or Einstein ends, if | |2 or |T |2 have compact support at t = 0.
Applying the Gaussian estimates to the warped product manifold R×N assum-

ing hyperbolic ends at t = 0 additionally yields, that the ends have asymptotically
constant curvature C(t) for each positive time t > 0, and a quantitative estimate
of how far the curvatures deviate from this constant. Moreover we determine the
exact rate of C(t): C(t) = − 1

4t− 1
C(0)

. This is exactly the rate at which the curva-

tures decay on hyperbolic space H3 under Ricci flow.
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Finally we construct a special class of collapsing (i.e. the injectivity radius goes
uniformly to 0 while the curvatures stay bounded) warped product solutions to
the Ricci flow.

There are many related results for Ricci flow, we list just a few examples: In 1982
R. Hamilton started Ricci flow by showing that the volume normalized Ricci flow
on a closed three dimensional manifold converges to a metric of constant positive
sectional curvature, if the initial manifold has strictly positive Ricci curvature ([6]).
In [9] M. Simon showed that neckpinching actually happens under Ricci flow by
considering a class of warped product metrics on the manifold R × N , where N
is a closed Einstein manifold with positive Einstein constant. S. Angenent and
D. Knopf showed neckpinching for a class metrics on Sn+1, considering a warped
product R× Sn [2]. Asymptotics for Ricci flow neckpinches were developed by S.
Angenent and D. Knopf in [3] and by S. Angenent, J. Isenberg and D. Knopf in
[1]. In [7] R. Hamilton considered the case of a warped product S1 × T 2, where
T 2, the two dimensional torus, carries a flat metric. Furthermore, J. Lott and
N. Sesum analysed Ricci flow on warped products with an S1-fibre over a closed
surface and on compact three dimensional manifolds with a free locally isometric
T 2 action [8]. Also there is a vast literature on Gaussian estimates for heat type
equations, see for example the references in [5]. Our Gaussian estimates are based
on [4], p. 355, Theorem 26.25.
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Nonlinear bound states and quasimodes on manifolds

Jeremy L. Marzuola

(joint work with Pierre Albin, Hans Christianson, Jason Metcalfe, Michael
Taylor, Laurent Thomann)

This is a collection of observations made in several works with various co-
authors, namely [2, 1, 3]. In each of these results, we wish to explore existence of
stationary solutions to the nonlinear Schrödinger equation (though other nonlinear
dispersive type equations can certainly be considered as well) on a manifold (M, g).
Let −∆g be the Laplace-Beltrami operator on M with respect to the metric g.
Consider the nonlinear Schrödinger equation (NLS − g) on M :

{
iut + ∆gu+ |u|pu = 0, x ∈M

u(0, x) = u0(x).

A nonlinear bound state is a choice of initial condition Rλ(x) such that

u(t, x) = eiλtRλ(x)

satisfies (NLS − g) with initial data u(0, x) = Rλ(x).
Plugging in the ansatz yields the following stationary elliptic equation for Rλ:

(1) −∆gRλ + λRλ − |Rλ|pRλ = 0.

We see a very nice trichotomy in our work:

• H
d : dispersion is so strong that only local nonlinearity dominates,

• Rd : balance of dispersion and nonlinearity globally,
• (M, g) : Locally geometry dominates over nonlinearity.

Recent progress allows us to further explore the existence of global bound states
on Weakly Homogeneous Manifolds, [3]. Weakly homogeneous spaces are taken
to be spaces such that one can apply compactness techniques locally. Namely, we
assume there is a group G of isometries of M and a number D > 0 such that for
every x, y ∈M , there exists g ∈ G such that dist(x, g(y)) ≤ D.

We analyze two variational methods of establishing the existence of a solution
to (1). One is to mimimize the functional

(2) Fλ(u) = ‖∇u‖2L2 + λ‖u‖2L2

subject to the constraint

(3) Jp(u) =

∫

M

|u|p+1dV = β,

with β ∈ (0,∞) fixed. For this, we will require

(4) p ∈
(

1, 1 +
4

n− 2

)
, i.e., p+ 1 ∈

(
2,

2n

n− 2

)
.

From the work of P.L. Lions [5], we have the following means of finding con-
strained minimizers:



1600 Oberwolfach Report 26/2012

Let (ρn)n≥1 be a sequence in L1(Rd) satisfying:

ρn ≥ 0 in R
d,

∫

Rd

ρndx = λ

where λ > 0 is fixed. Then there exists a subsequence (ρnk
)k≥1 satisfying one of

the three following possibilities:
i. (compactness) there exists yk ∈ Rd such that ρnk

(· + ynk
) is tight, i.e.:

∀ǫ > 0, ∃R <∞,

∫

yk+BR

ρnk
(x)dx ≥ λ− ǫ;

ii. (vanishing) limk→∞ supy∈Rd

∫
y+BR

ρnk
(x)dx = 0, for all R <∞;

iii. (dichotomy) there exists α ∈ [0, λ] such that for all ǫ > 0, there exists k0 ≥ 1
and ρ1k, ρ

2
k ∈ L1

+(Rd) satisfying for k ≥ k0:




‖ρnk
− (ρ1k + ρ2k)‖L1 ≤ ǫ,

|
∫
Rd ρ

1
kdx− α| ≤ ǫ,

|
∫
Rd ρ

2
kdx− (λ− α)| ≤ ǫ,

d(Supp(ρ1k), Supp(ρ2k)) → ∞.

This framework can generalized to weakly homogeneous spaces, which include
all smooth compact manifolds (including with boundary), universal coverings of
compact manifolds and of course standard homogeneous spaces.

1. Nonlinear quasimodes on manifolds with periodic elliptic

geodesic orbits

In [1], we construct almost stationary solutions to (1). We do this by separating
variables in the t direction, we write

ψ(x, t) = e−iλtu(x),

from which we get the stationary equation

(λ− ∆g)u = σ|u|pu.
The construction in the proof finds a function uλ(x) = λ(d−1)/8g(λ1/4x) such

that g is rapidly decaying away from Γ, C∞, g is normalized in L2, and

(λ− ∆g)uλ = σ|uλ|puλ + E(uλ),

where the error E(uλ) is expressed by the truncation of an asymptotic series similar
to that in the work of Thomann and is of lower order in λ.

The result is an improvement over the trivial approximate solution. It is well
known that there exist quasimodes for the linear equation localized near Γ of the
form

vλ(x) = λ(d−1)/8eisλ
1/2

f(s, λ1/4x), (λ > 0),

with f a function rapidly decaying away from Γ, and s a parametrization around
Γ, so that vλ(x) satisfies

(λ− ∆g)vλ = O(λ−∞)‖vλ‖
in any seminorm, see Ralston.
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Then
(λ− ∆g)vλ = σ|vλ|pvλ + E2(vλ),

where the error E2(vλ) = |vλ|pvλ satisfies

‖E2(vλ)‖Ḣs = O(λs/2+p(d−1)/8).
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Partial Regularity for the Harmonic Map Heat Flow

Roger Moser

Many of the questions on the regularity of weakly harmonic maps have been an-
swered by the works of Hélein [5, 6, 7] and subsequent generalisation of Evans [3]
and Bethuel [1]. Similar results have been obtained for the harmonic map heat
flow as well [4, 2, 8], but only for special target manifolds and for low-dimensional
domains. More recently, another approach to regularity for harmonic maps has
been found by Rivière [10] and extended by Rivière and Struwe [11]. It turns out
that the new method allows a generalisation to variants of the underlying equation,
including the harmonic map heat flow.

Suppose that we study maps between the open unit ball B in R
m and a compact,

smooth Riemannian manifold N without boundary. It is convenient to assume
that N is embedded isometrically in another Euclidean space Rn. Consider the
Dirichlet functional

E(u) =
1

2

∫

B

|∇u|2 dx.
Critical points of the functional are called harmonic maps. If A denotes the second
fundamental form of N , regarded as a submanifold of Rn, then the corresponding
Euler-Lagrange equation is

∆u+ traceA(u)(∇u,∇u) = 0.

We may study weak solutions of this equation in the Sobolev space

W 1,2(B;N) =
{
u ∈ W 1,2(B;Rn) : u(x) ∈ N for almost every x ∈ B

}
.

By the aforementioned results, weak solutions of the equation are always smooth if
m = 2. For m > 2, there exist examples of weak solutions that are discontinuous
everywhere [9]. On the other hand, under a certain stationarity condition, it
follows that weak solutions are smooth away from a singular set of codimension 2.
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Now consider the L2 gradient flow of the functional E, called the harmonic map
heat flow. The equation for this problem is

(1)
∂u

∂t
= ∆u+ traceA(u)(∇u,∇u).

Obviously, weakly harmonic maps give rise to weak solutions of this equation,
thus we cannot expect better regularity results than for the elliptic problem. In
particular, in order to obtain any regularity at all, we need to impose additional
assumptions. Various conditions have been formulated in this context, all with
the aim to use a certain monotonicity formula (found by Struwe [12] for smooth
solutions).

We do not state the formula here, but rather one of its consequences. Consider
the time interval (−1, 1) for simplicity. Suppose that

d∗((t1, x1), (t2, x2)) = max
{√

|t1 − t2|, |x1 − x2|
}

is the parabolic metric on the space-time B∗ = (−1, 1)×B, and let B∗
r (z0) be the

open ball of radius r about z0 = (t0, x0) with respect to d∗.

Definition 1. Consider u ∈ W 1,2(B∗;N). Suppose that there exists a constant
c0 > 0 such that for all z0 = (t0, x0) ∈ B∗ and r > 0 with B∗

r (z0) ⊂ B∗ and for all
z1 = (t1, x1) ∈ B∗ and s > 0 with B∗

s (z1) ⊂ B∗
r/2(z0), the inequality

s2−m

(∫

Bs(x1)

|∇u(t1, x)|2 dx+

∫

B∗
s (z1)

∣∣∣∣
∂u

∂t

∣∣∣∣
2

dz

)
≤ c0r

−m

∫

B∗
r (z0)

|∇u|2 dz

holds true. Then we say that u satisfies a monotonicity inequality.

Using this inequality as an additional assumption, we can prove a partial reg-
ularity result for weak solutions of the harmonic map heat flow.

Theorem 2. Suppose that u ∈ W 1,2(B∗;N) is a weak solution of (1) satisfying
a monotonicity inequality. Then there exists a set S ⊂ B∗ that is closed relative
to B∗, such that the m-dimensional Hausdorff measure of S with respect to the
metric d∗ vanishes, and such that u ∈ C∞(B∗\S).

For the proof of this result, we mostly work on time slices {t} × B and regard
∂u
∂t as a perturbation of the harmonic map equation. Thus we study an equation
of the form

(2) ∆u+ traceA(u)(∇u,∇u) = f,

where we assume that the right-hand side f belongs to Lp(B;Rn) for some p > 1.
We want to show that this equation implies regularity under a certain smallness
condition, expressed in terms of a Morrey space. More precisely, we require that
the norm

‖∇u‖M2,2(B) = sup
x0∈B

sup
r>0

(
r2−m

∫

B∩Br(x0)

|∇u|2 dx
)1/2

is sufficiently small.
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Theorem 3. For every p ∈ (1,∞) there exists a number ǫ > 0 with the following
property. Suppose that u ∈ W 1,2(B;N) and f ∈ Lp(B;Rn) satisfy (2) weakly in

B. If ‖∇u‖M2,2(B) ≤ ǫ, then u ∈W 2,p
loc (B;Rn) ∩W 1,2p

loc (B;N).

Using this result, it is not too difficult to show that under the assumptions of
Theorem 2, an inequality of the form

r−m

∫

B∗
r (z0)

|∇u|2 dz ≤ ǫ

for a sufficiently small ǫ > 0 implies regularity near z0. Using a standard covering
argument, we can thus reduce Theorem 2 to Theorem 3.

The proof of Theorem 3 relies in part on the arguments of Rivière and Struwe
[11], but it is not obvious how to control the additional term f with this method.
We solve a sequence of auxiliary problems for this purpose, subtracting the solution
from u in each step. Passing to the limit, we then obtain an equation that permits
the use of known methods.
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Finite time singularities of the Ricci flow

Reto Müller

(joint work with Robert Haslhofer, Carlo Mantegazza)

A smooth compact solution (Mn, g(t)) of Hamilton’s Ricci flow ∂tg(t) = −2Rcg(t)
on a time interval t ∈ [0, T ) develops a finite time singularity at T < ∞ if and
only if the Riemannian curvature tensor Rm satisfies

sup
M

|Rm(·, t)|g(t) ≥
1

8(T − t)
, ∀t ∈ [0, T ).

If there exists a constant CI such that we have in addition

sup
M

|Rm(·, t)|g(t) ≤
CI

T − t
, ∀t ∈ [0, T ),

then the Ricci flow is said to be of Type I, otherwise it is said to be of Type II. A
natural line to study finite time singularities is to take blow–ups based at a fixed
(singular) point p ∈ M . In this talk, we describe how this can be done in the
Type I case using Perelman’s W–entropy functional

W(g, f, τ) :=

∫

M

(
τ(Rg + |∇f |2g) + f − n

) e−f

(4πτ)n/2
dVg.

We let τ(t) := T − t be the remaining time to the finite time singularity and we

choose f(·, t) = fp,T (·, t) in such a way that up,T (·, t) := e−fp,T (·,t)

(4πτ)n/2 is an adjoint

heat kernel based at the singular time (p, T ), that is, a locally smooth limit of
solutions of the backward parabolic equation ∂

∂tu = −△u + Rgu, all converging
(as distributions) to a Dirac δ–measure at p ∈ M at times closer and closer to
the singular time T (see [3] for a precise definition and an existence proof). From
Perelman’s entropy formula and Li–Yau–Harnack type inequality [6], we obtain
the following monotonicity and nonpositivity result.

Proposition 1 (Monotonicity of W(g(t), fp,T (t), τ(t)), see [3]). Letting fp,T (t) :
M → R be as above, we define θp,T (t) := W(g(t), fp,T (t), τ(t)). Then, θp : [0, T ) →
R is nonpositive and non–decreasing along the Ricci flow with derivative

∂tθp,T (t) = 2τ

∫

M

∣∣∣Rcg(t) + ∇2fp,T (t) − g(t)

2τ

∣∣∣
2

g(t)

e−fp,T (t)

(4πτ)n/2
dVg(t) ≥ 0.

Now, define the pointed flow (M, ĝ(s), p) by

ĝ(s) :=
g(t)

T − t
, s(t) := − log(T − t) ∈ [− logT ,+∞).

This so-called dynamical blow–up satisfies the evolution equation

∂sĝ(s) = −2Rcĝ(s) + ĝ(s).

A simple rescaling argument shows that

(1) lim
j→∞

∫ j+1

j

∫

M

|Rcĝ(s) + ∇2f̂(s) − ĝ(s)

2
|2ĝ(s)e−f̂(s)dVĝ(s) ds = 0,
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where f̂(s) = fp,T (t(s)) and s(t) = − log(T − t) as before. From (1), we obtain
the following main result.

Theorem 2 (Blow–ups at Type I singularities, see [3]). Let (M, g(t)) be a compact
singular Type I Ricci flow, p ∈ M , and fp,T (t) as above. Let (M, ĝ(s), p) be

the dynamical blow–up and f̂(s) = fp,T (t) as before. Then there exist sj → ∞
such that (M, ĝ(sj), f̂(sj), p) converges smoothly in the pointed Cheeger–Gromov
sense to a normalized gradient shrinking Ricci soliton (M∞, g∞, f∞, p∞), that is,
a complete Riemannian manifold (M∞, g∞) satisfying

Rcg∞ + ∇2f∞ =
g∞
2
,

where f∞ : M∞ → R is a smooth function with
∫
M∞

e−f∞

(4π)n/2dVg∞ = 1. Moreover,

no entropy is lost in the limit process, i.e. we have

W(g∞, f∞) :=

∫

M∞

(
Rg∞ + |∇f∞|2g∞ + f∞ − n

) e−f∞

(4π)n/2
dVg∞

= lim
j→∞

∫

M

(
Rĝ(sj) + |∇f̂(sj)|2ĝ(sj) + f̂(sj) − n

) e−f̂(sj)

(4π)n/2
dVĝ(sj).

As a consequence of this, in the case where p ∈ M is a singular point (i.e. there
does not exist any neighborhood Up ∋ p on which |Rm(·, t)|g(t) stays bounded as
t→ T ), the limit soliton is non–flat.

A related blow–up theorem has previously been proved by Naber [5] and Enders–
Müller–Topping [1] using a different method. In their works, the soliton potential
function is obtained as a limit of a version of Perelman’s reduced length based at
the singular time T .

A key ingredient in the proof of the main theorem are the following upper and
lower Gaussian bounds for the adjoint heat kernels based at the singular time. We
have

Ĉe−d2
g(t)(p,q)/Ĉ(T−t) ≤ e−fp,T (q,t) ≤ C̄e−d2

g(t)(p,q)/C̄(T−t)

for every adjoint heat kernel fp,T and (q, t) ∈M × [0, T ), where Ĉ, C̄ are positive
constants depending only on n and the Type I constant CI. The upper bound
follows from a very recent result of Hein and Naber [4].

Finally, we know that the space of singularity models obtained by a blow–up
procedure as in the main theorem above is compact. In fact, we can prove a
precompactness result (allowing orbifold–singularities) even in the general case
without Type I curvature bounds.

Theorem 3 (Orbifold–compactness of singularity models, see [2]). Let (Mn
i , gi, fi)

be a sequence of normalized gradient shrinking solitons with entropy uniformly
bounded below, W(gi, fi) ≥ µ > −∞, and uniform local energy bounds,

(2)

∫

Br(pi)

|Rmgi |n/2gi dVgi ≤ E(r) <∞, ∀i, r.
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Then a subsequence of (Mn
i , gi, fi, pi) converges to an orbifold gradient shrinker

in the pointed orbifold Cheeger-Gromov sense. Moreover, in dimension n = 4,
the energy bounds (2) follow from an upper bound on the Euler–characteristic
χ(Mi) ≤ χ̄ <∞ under a technical assumption for the soliton potentials fi.
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Almost sure existence of global weak solutions for supercritical
Navier-Stokes equations

Andrea R. Nahmod

(joint work with Nataša Pavlović, Gigliola Staffilani)

Consider a viscous, homogenous, incompressible fluid with velocity ~u on Ω = Rd

or Td, d=2, 3 and which is not subject to any external force. Then the initial
value problem for the Navier-Stokes equations is given by

(NSEp)





~ut + ~v · ∇~u = −∇p+ ν∆~u; x ∈ Ω t > 0
∇ · ~u = 0
~u(x, 0) = ~u0(x),

where 0 < ν =inverse Reynolds number (non-dimensional viscosity); ~u : R+×Ω →
Rd, p = p(x, t) ∈ R and ~u0 : Ω → Rd is divergence free. For smooth solutions it is
well known that the pressure term p can be eliminated via Leray-Hopf projections
and view (NSEp) as an evolution equation of ~u alone. The mean of ~u is easily seen
to be an invariant of the flow (conservation of momentum) so can reduce to the
case of mean zero ~u0. Then the incompressible Navier-Stokes equations (NSEp)
(assume ν = 1) can be expressed as

(NSE)





~ut = ∆~u− P∇ · (~u⊗ ~u); x ∈ Ω, t > 0
∇ · ~u = 0
~u(x, 0) = ~u0(x),
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where P is the Leray-Hopf projection operator into divergence free vector fields.
By Duhamel’s formula we have

(NSEi) ~u(t) = et∆~u0 +

∫ t

0

e(t−s)∆
P∇ · (~u⊗ ~u) ds

In fact, under suitable general conditions on ~u the three formulations (NSEp),
(NSE) and (NSEi) can be shown to be equivalent (weak solutions, mild solutions,
integral solutions. Work by Leray, Browder, Kato, Lemarie, Furioli, Lemarié and
Terraneo, and others). If the velocity vector field ~u(x, t) solves the Navier-Stokes
equations in Rd or Td then ~uλ(x, t) := λ~u(λx, λ2t), is also a solution for the initial
data ~u0 λ = λ~u0(λx). In particular, ‖~uλ(x, 0)‖Ḣsc = ‖~u(x, 0)‖Ḣsc , sc := d

2 − 1
The spaces which are invariant under such a scaling are called critical spaces for

Navier-Stokes. For example, Ḣ
d
2−1 →֒ Ld →֒ Ḃ

−1+ d
p

p,∞ →֒ BMO−1 for 1 < p <∞.
Classical solutions to the (NSE) satisfy the decay of energy which can be ex-

pressed as ‖u(x, t)‖2L2 +
∫ t

0
‖∇u(x, τ)‖2L2 dτ = ‖u(x, 0)‖2L2. When d = 2, the energy

‖u(x, t)‖L2, which is globally controlled, is exactly the scaling invariant Ḣsc = L2-
norm. In this case the equations are said to be critical. Classical global solu-
tions have been known to exist (Ladyzhenskaya 69’). When d = 3, the global
well-posedness/regularity problem of (NSE) is a long standing open question.The
energy ‖u(x, t)‖L2 is at the super-critical level with respect to the scaling invari-

ant Ḣ
1
2 -norm, and hence the Navier-Stokes equations are said to be super-critical.

The lack of a known bound for the Ḣ
1
2 contributes in keeping the large data global

well-posedness question still open.
One way of studying the initial value problem (NSE) is via weak solutions in-

troduced by Leray. Indeed, Leray (1934) and Hopf (1951) showed existence of a
global weak solution of the Navier-Stokes equations corresponding to initial data
in L2(Rd). Lemarié extended this construction and obtained existence of uni-
formly locally square integrable weak solutions. Questions addressing uniqueness
and regularity of these solutions when d = 3 have not been answered yet. But im-
portant contributions in understanding partial regularity and conditional unique-
ness of weak solutions by many; see e.g. Caffarelli-Kohn-Nirenberg (82’); Struwe
(88’-07’); Lin (98’); P.L. Lions -Masmoudi (98’), Seregin-Šverak (02’) Escauriaza-
Seregin-Šverak (03’); Vasseur (07’), others. Another approach is to construct
solutions to the corresponding integral equation (‘mild’ solutions) pioneered by
Kato and Fujita (1961). Mild solutions to the Navier-Stokes equations for d ≥ 3
has been studied locally in time and globally for small initial data in various sub-
critical or critical spaces. Many references; see e.g. T. Kato (84’), Giga-Miyakawa
(89’), Cannone (95’), Planchon (96’), H.Koch-Tataru (01’), Gallagher-Planchon
(02’), Germain-Pavlovic-Staffilani (07’), Kenig-G. Koch (09’), others.
Periodic Navier-Stokes below L2. Our goal is to show that after suitable data
randomization there exists a large set of super-critical initial data, in H−α(Td) for
some α(d) > 0, for both 2d and 3d Navier-Stokes equations for which global energy
bounds are proved. As a consequence we then obtain almost sure super-critical
global weak solutions. In 2d these global weak solutions are unique.
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In the periodic setting similar supercritical randomized well-posedness results
were obtained for the 2D cubic NLS by Bourgain (96’) and for the 3D cubic
NLW by Burq and Tzvetkov (11’)1 This approach was applied in the context of
the Navier-Stokes to obtain local in time and small data global solutions to the
corresponding integral equation (NSEi) for randomized initial data in L2(T3) by
Zhang and Fang (11’) and by Deng and Cui (11’). The latter also obtained local
in time solutions to (NSEi) for randomized initial data in Hs(Td), for d = 2, 3
with −1 < s < 0.

We are concerned with existence of global in time weak solutions to (NSE) for
randomized initial data (without any smallness assumption) in negative Sobolev
spaces H−α(Td), d = 2, 3, for some α = α(d) > 0. Roughly, we start with a

divergence free and mean zero initial data ~f ∈ (H−α(Td))d, d = 2, 3 and suitably

randomize it to obtain ~fω preserving the divergence free condition. The key point
is that although the initial data is in H−α for some α > 0, the heat flow of the
randomized data gives almost surely improved Lp bounds. These bounds yield
improved nonlinear estimates arising in the analysis of the difference equation for
~w almost surely. The induced ‘nonlinear smoothing’ phenomena -akin to the role
of Kintchine inequalities in Littlewood-Paley theory- stems from classical results
of Rademacher, Kolmogorov, Paley and Zygmund proving that random series on
the torus enjoy better Lp bounds than deterministic ones. Indeed, consider the
example of Rademacher series f(τ) :=

∑∞
n=0 an rn(τ) τ ∈ [0, 1), an ∈ C where

rn(τ) := sign sin(2n+1π τ), n ≥ 0. Then rk,j(τ) := rk(τ)rj(τ), 0 ≤ k < j < ∞ is
o. n. over (0, 1). It is then a classical theorem (cf. Zygmund Vol I), that if an ∈ ℓ2

then the sum f(τ) converges a.e. and furthermore that the sum f(τ) belongs to

Lp([0, 1)) for all p. More precisely, (
∫ 1

0
|f |p dτ )1/p ≈p ‖ an ‖ℓ2.

These ideas were already exploited in Bourgain’s work on NLS, KdV, mKdV,
Zakharov system, where global in time existence was obtained almost surely on
the statistical ensemble via the existence and invariance of the associated Gibbs
measure (after Lebowitz, Rose and Speer’s and Zhidkov’s works). The starting
point of this method is a good local theory on the statistical ensemble (support
of the measure) which consists precisely of randomized data of the form φ =

φω(x) =
∑ gn(ω)

|n|α ei〈x,n〉, where {gn(ω)}n are independent standard (complex/real)

Gaussian random variables on a probability space defining almost surely in ω a

function in Hα− d
2−ǫ but not in Hα− 3

2 (α chosen appropriately depending on the
Hamiltonian equation). Then almost surely in ω the nonlinear part (= u−S(t)φ)
is showed to be smoother than the linear part. When an invariant measure is
available, this is used in lieu of a conserved quantity to control the growth in time
of those solutions in its support and extend the local in time solutions to global
ones almost surely. Some recent works (after Bourgain’s above) include those by
Tzvetkov, Burq-Tzvetkov; T. Oh; Nahmod-Oh-Rey Bellet-Staffilani; Nahmod-Rey
Bellet-Sheffield-Staffilani; Colliander-Oh, etc. for certain dispersive PDE (NLW,

1Burq-Tzvetkov (08’) results on compact Riemannian manifolds for 3D radial cubic NLW.
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KdV, NLS, etc.) where in the absence of an invariant measure other methods
(energy, Bourgain’s high-low, etc.) have been adapted.

We seek a solution to the initial value problem (NSE) in the form ~u = et∆ ~fω+ ~w
and identify the difference equation that ~w should satisfy. The heat flow of the
suitably randomized data gives improved Lp bounds2 almost surely. These bounds
yield improved nonlinear estimates in the analysis of the difference equation for ~w
almost surely. We first revisit the proof of equivalence between the initial value
problem for the difference equation and the integral formulation of it in our context
. We then prove a priori energy estimates for ~w. The integral equation formulation
is used near time zero and the other one away from zero. A construction of a global
weak solution to the difference equation via a Galerkin method is thus possible
thanks to the a priori energy estimates for ~w. We then prove uniqueness of weak
solutions when d = 2 in the spirit of Ladyzhenskaya-Prodi-Serrin. Finally, we put
all ingredients together to conclude. Our main results can be stated as follows:
Theorem [Existence and Uniqueness in 2D]. Fix T > 0, 0 < α < 1

2 and let
~f ∈ (H−α(T2))2, ∇ · ~f = 0 and of mean zero. Then there exists a set Σ ⊂ Ω of
probability 1 such that for any ω ∈ Σ the initial value problem (NSE) with datum
~fω has a unique global weak solution ~u of the form

~u = ~u~fω + ~w

where ~u~fω = et∆ ~fω and ~w ∈ L∞([0, T ]; (L2(T2))2) ∩ L2([0, T ]; (Ḣ1(T2))2).

Theorem [Existence in 3D]. Fix T > 0, 0 < α < 1
3 and let ~f ∈ (H−α(T3))3,

∇ · ~f = 0, and of mean zero. Then there exists a set Σ ⊂ Ω of probability 1 such

that for any ω ∈ Σ the initial value problem (NSE) with datum ~fω has a global
weak solution ~u of the form

~u = ~u~fω + ~w,

where ~u~fω = et∆ ~fω and ~w ∈ L∞([0, T ]; (L2(T3))3) ∩ L2([0, T ]; (Ḣ1(T3))3).

Global existence for models from the Euler-Maxwell equation

Benôıt Pausader

(joint work with Alexandru D. Ionescu)

We consider a line of research concerned with global existence for quasilinear
dispersive equations, assuming that the initial data are smooth small and localized.
In this context, even under such stringent conditions on the initial data, global
existence may simply fail.

This study was aparently initiated by F. John [14]. Key early contributions were
then made by Klainerman [15] with the introduction of the vector field method and
by Shatah [16] with the introduction of the normal form transformation. Many
work followed from Ginibre-Velo, Ozawa, Sideris, Tsutsumi among others. Later,

2There is no Hs regularization, i.e. ‖~fω‖Hs ∼ ‖~f‖Hs
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Germain-Masmoudi-Shatah [6] and Gustafson-Nakanishi-Tsai [11, 12] indepen-
dently introduced a new point of view sometimes refered to as the “space-time
resonance method”. This method turned out to be very successful and allowed
to prove stability of many physical systems of importance in a situation “close to
flat”.

The original motivation of our work started from a result of Sideris showing that
there exists solutions of the compressible Euler equations starting from arbitrarily
small smooth and localized data which do not remain smooth globally (create a
shock in finite time) [17], which seemed to deem compressible fluids as unstable
and not amenable to analysis in a smooth setting. However, Guo [8] showed that
this unstable mecanism no longer persists when one considers charged fluids which
self-interact through their electrostatic field. Indeed he showed that 3-dimensional
small smooth neutral perturbations of a constant equilibrium for the Euler-Poisson
systems for the electrons remain smooth globally and scatter back to equilibrium.
The neutral assumption was later removed [5], the result was extended to two
dimensions [13].

The Euler-Poisson equation for electron is derived from the full Euler-Maxwell
system (see [1]):

∂tne + div(neve) = 0, ∂tni + div(nivi) = 0,

me (∂t + ve · ∇) ve = −∇pe(ne) − e
[
E +

ve
c

×B
]
,

Mi (∂t + vi · ∇) vi = −∇pi(ni) + e
[
E +

vi
c
×B

]
,

∂tB + c∇× E = 0, div(B) = 0

∂tE − c∇×B = 4πe [neve − nivi] , div(E) = 4πe [ni − ne]

which represents the dynamics of a compressible fluid of electrons (resp ions)
of mass me, density ne and velocity ve (resp. Mi, ni and vi) subject to the
forces created by an electromagnetic field (E,B) originating from the motion of
charge and current. Here c denotes the speed of light and pe and pi are the
respective pressure associated to the fluids. We consider the adiabatic case when
this pressure is a function of the density. The goal is to study whether or not the
flat equilibrium (ne, ve, ni, vi, E,B) = (n0, 0, n0, 0, 0, 0) is stable in the sense that
small perturbations will generate a global dynamics that returns to equilirium.

After scaling, we discover that this system only depends on three dimensionless
parameters: the ratio of the inertia of the fluids: ε = me/Mi, the ratio of the sound
speeds T = p′e(n0)/p′i(n0) and the ratio of the speed of light with these velocities

C = c/
√
p′e(n0)p′i(n0). In many situations C >> 1 and setting C = +∞ drops the

magnetic field and defines the “electrostatic approximation”. In practice ε << 1
and setting it to 0 leads to the study of “one fluid” problems.

The electrostatic one fluid problems have been shown to have stable equilib-
rium [8, 9], while the electron Euler-Maxwell problem has been treated in [4].
Leaving the electrostatic one fluid problem yields many new complications and
to understand them, a nice toy model has been singled out in [3]: the system of
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Klein-Gordon equations

(1)
(
∂tt − c2σ∆ +m2

σ

)
uσ = Qσ(~u,D~u,D2~u)

for a vector ~u, where Q denotes a general quadratic nonlinearity. This system had
been studied previously in [2] when the velocities are the same cµ = 1, ∀µ and in
[3] when the masses are the same mσ = 1, ∀σ, in the semilinear case.

In order to understand better the stability problem for the full Euler-Maxwell
system, it is convenient to understand the case of systems of Klein-Gordon equation
in a more general case. In this direction, in a joint work with A. Ionescu, we obtain

Theorem 1. Assume that

mσ1 6= mσ2 +mσ3 , (cσ1 − cσ2)(c2σ1
mσ1 − c2σ2

mσ2) ≥ 0, ∀σ1, σ2, σ3,

and fix any initial data ~u(0) = {uσ(0)} smooth and compactly supported, then there
exists δ0 > 0 such that for all δ < δ0 the initial data δ~u yields a global solution of
(1) which is global and scatters.

The conditions on the parameters are probbaly not optimal. However some
condition is necessary for our method to run.

This result is obtained following a method similar to the “space-time resonance
method” as in [4, 6, 12], but with several crucial modifications to handle some
of the worst bilinear interactions. The starting point is to conjugate out the lin-
ear flow by considering the linear profiles. Then, one tries to control the profiles
using energy estimates and dispersion estimate to bound localization norms; we
thus focus on control in HN and in L2(xαdx). By dispersion, terms which remain
bounded in L2(x1+εdx) can be managed easily. These are the “strong” compo-
nents. Unfortunately, some of the interactions seem to unavoidably produce terms
just outside of these spaces. Taking this into account, we also add a component
of our solution with similar properties, except that it only leaves in L2(x1−εdx),
which is not enough, but has the redeeming feature of being essentially supported
on a two dimensional set. These are the “weak” components.

Besides the energy estimates which are quite standard, our dispersive analysis
consists of three different parts. First we quantify position and momentum, and
decompose all the interactions with respect to the localization of both intput and
the output. This gives a gigantic sum. We then proceed to remove most of the
terms where the interaction is inefficient. At the end of this first part, we are
left with interactions at a time T , where the output is located at X ≃ T and the
inputs are located at Y . T . The second part consists of a careful analysis of
the interactions in the case Y . T 1/2 when no assumption on the integrability
can be of much help (in particular, one may very well have Y ≃ 1; on the other
hand, in this region, one can integrate by parts efficiently as in stationary phase
estimates). This uncovers the “weak” component alluded to above, but also reveals
its particular two dimensional structure and the fact that it only barely fails to be
“strong”. The second part of the analysis deals with the case T 1/2 . Y . T in
which case, we verify that the information already obtained is sufficient to output
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“strong” terms all the time (in this case, the bootstrap information about the
norms helps, while the integrations by parts become less and less efficient).
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Flowing to minimal surfaces

Melanie Rupflin

(joint work with Peter Topping)

We introduce a geometric flow of maps from surfaces which has elements in com-
mon with both the harmonic map flow and the mean curvature flow, but is more
effective at finding minimal surfaces.
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Let M be a smooth closed orientable surface of arbitrary genus γ ≥ 0 and let
(N,G) be a smooth compact Riemannian manifold of any dimension. We assign
to each pair (u, g) consisting of a smooth map u : M → N and a smooth metric g
on the domain M , its Dirichlet energy

E(u, g) :=
1

2

∫

M

|du|2dµg

and recall that (u, g) is a critical point of E if and only if u is a weakly con-
formal harmonic map on (M, g), and thus, if non-constant, a branched minimal
immersion.

Taking into account the symmetries of the energy, that is its invariance under
conformal variations of the domain as well as under the pull-back by diffeomor-
phisms (applied to both components), we introduce a natural gradient flow of E
of equivalence classes [(u, g)] of pairs of map and domain metric. This flow may
be represented by the system

(1)

∂tu = τg(u)

dg

dt
= Re(Pg(Φ(u, g)))

to be solved in the space of maps u : M → N and metrics g ∈ Mc of constant cur-
vature c = 1, 0,−1 for surfaces of genus γ = 0, 1,≥ 2 (with unit area if γ = 1). Here
τg(u) is the tension field and Φ(u, g) the Hopf-differential of u : (M, g) → (N,G).
Furthermore Pg denotes the L2-orthogonal projection from the space of quadratic
differentials onto the finite dimensional subspace of holomorphic quadratic differ-
entials on (M, g).

We remark that in the special case of M being a sphere the equation (1) is
just the harmonic map flow while for M a torus (1) agrees with a flow introduced
by Ding-Li-Liu [1] from a somewhat different viewpoint and its metric component
reduces to an equation on a 2 dimensional submanifold of M0.

In general, we obtain

Theorem 1 ([5]). For any initial data (u0, g0) ∈ C∞(M,N) × Mc there exists
a (weak) solution (u, g) of (1), smooth away from finitely many times Ti and
with non-increasing energy, which is defined for all times, unless the metrics g(t)
degenerate in moduli space as t approaches a time T <∞, that is unless the length
ℓ(g(t)) of the shortest closed geodesic of (M, g(t)) converges to zero as tր T .

Furthermore, this solution is uniquely determined by its initial data in the class
of all weak solutions with non-increasing energy.

The singularities (before a possible time of degeneration) of such a solution are
caused by the bubbling off of harmonic spheres at a finite number of points as
described by Struwe [6] for the harmonic map flow. Away from these points the
map u remains regular while the metric component is Lipschitz-continuous in time
on all of M (w.r.t. any Cm metric in space) across the singular time.
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The main difficulty in the proof of this result is that for surfaces of genus γ ≥ 2,
the metric g moves within the full space M−1 of hyperbolic metrics. This demands
that the projection operator Pg which takes the form

Re(Pg(Ψ)) = Re(Ψ) − µ(g,Ψ) · g − LX(g,Ψ)g,

with X and µ determined as solutions of elliptic PDEs to be solved on the varying
Riemannian surface (M, g), needs to be analysed in the full space M−1. In [5] we
do this by combining ideas from Teichmüller theory with results on elliptic PDEs.

Given a global solution of the flow whose metric does not degenerate in moduli
space even as t→ ∞ we obtain asymptotic convergence (up to reparametrisation)
to branched minimal immersions.

Theorem 2 ([4]). In the setting of Theorem 1, if the length ℓ(g(t)) of the shortest
closed geodesic of (M, g(t)) is uniformly bounded below by a positive constant, then
there exist a sequence of times ti → ∞ and a sequence of orientation-preserving
diffeomorphisms fi : M →M such that

f∗
i g(ti) → ḡ and u(ti) ◦ fi → ū

converge to a metric ḡ ∈ Mc and a map ū with the same action on π1(M) as u0
which, if non-constant, is a branched minimal immersion.

Here the convergence of metrics is smooth, while the maps converge weakly in
H1(M,N) and strongly in W 1,p

loc (M\S) for any p ∈ [1,∞) away from a finite set
of points where energy concentrates.

For incompressible initial maps u0, that is maps with injective action on π1,
a degeneration of the metric component both at finite and infinite time can be
excluded and we recover the results of Schoen-Yau [3] and Sacks-Uhlenbeck [2]
concerning the existence of branched minimal immersions with given incompress-
ible action on π1 with a flow approach. For further details on these results, their
proofs and the construction of the flow we refer to [4].

An important tool in the proof of Theorem 2, and a result that is of independent
interest, is a Poincaré-type estimate for quadratic differentials of the form

‖Ψ − Pg(Ψ)‖L1(M,g) ≤ C · ‖∂z̄Ψ‖L1(M,g)

that bounds the distance of any quadratic differential to its holomorphic part in
terms of the antiholomorphic derivative.

Contrary to the Poincaré estimate for functions, we will show in future work
that this estimate is uniform, valid for all closed hyperbolic surfaces (M, g) and all
quadratic differentials Ψ on (M, g) with a constant depending only on the topology
of the surface, that is only on the genus.
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Mean curvature flow of complete graphs

Oliver Schnürer

(joint work with Mariel Sáez)

We study the evolution of complete graphs under mean curvature flow. This is
illustrated by three examples (Figure 1):

Figure 1. Examples of evolution

(1) Picture on the left: A graph (thick) inside a cylinder (thin) disappears to
infinity at the time the cylinder collapses.

(2) Picture in the middle: The middle part of the 4-dimensional graph disap-
pears to infinity and avoids the formation of a neck-pinch.

(3) Picture on the right: Before the cylinder inside the surface (thick) degen-
erates to a line, a “cap at infinity” is being added to the surface that moves
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downwards very quickly. The thin surface depicts the surface shortly after
that.

If u0 : Ω0 → R is locally Lipschitz, defined on a bounded domain Ω0 ⊂ Rn+1,
u0(x) → ∞ as x → ∂Ω0, and u0 is bounded below, then there exists a maximal
smooth solution u to graphical mean curvature flow with initial value u0.

The orthogonal projections Rn+2 → Rn+1 of the evolving graphs yield a level
set solution to mean curvature flow.

This allows to define weak solutions as projections of classical graphical solu-
tions.

Uniqueness of compact tangent flows in Mean Curvature Flow

Felix Schulze

In this work we study Mean Curvature Flow (MCF) of n-surfaces of codimension
k ≥ 1 in Rn+k, which are close to self-similarly shrinking solutions. In the smooth
case we consider a family of embeddings F : Mn× (t1, t2) → Rn+k, for Mn closed,
such that

d

dt
F (p, t) = ~H(p, t) ,

where ~H(p, t) is the mean curvature vector of Mt := F (M, t) at F (p, t). We denote
with M =

⋃
t∈(t1,t2)

(Mt × {t}) ⊂ Rn+k × R its space-time track.

In the following, let Σn be a smooth, closed, embedded n-surface in Rn+k where
the mean curvature vector satisfies

~H = −x
⊥

2
.

Here x is the position vector at a point on Σ and ⊥ the projection to the normal
space of Σ at that point. Such a surface gives rise to a self-similarly shrinking
solution MΣ, where the evolving surfaces are given by

Σt =
√
−t · Σ, t ∈ (−∞, 0).

We denote its space-time track by MΣ.
We also want to study the case that the flow is allowed to be non-smooth.

Following [5], we say that a family of Radon measures (µt)t∈[t1,t2) on Rn+k is
an integral n-Brakke flow, if for almost every t the measure µt comes from a n-
rectifiable varifold with integer densities. Furthermore, we require that given any
φ ∈ C2

c (Rn+k;R+) the following inequality holds for every t > 0

(1) D̄tµt(φ) ≤
∫

−φ| ~H |2 + 〈∇φ, ~H〉 dµt,

where D̄t denotes the upper derivative at time t and we take the left hand side to
be −∞, if µt is not n-rectifiable, or does not carry a weak mean curvature. Note
that if Mt is moving smoothly by mean curvature flow, then D̄t is just the usual
derivative and we have equality in (1).
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We restrict to integral n-Brakke flows which are close to a smooth self-similarly
shrinking solution. The assumption that the Brakke flow is close in measure to
a smooth solution with multiplicity one actually yields that the Brakke flow has
unit density. This implies that for almost all t the corresponding Radon measures
can be written as

µt = Hn
LMt .

Here Mt is a n-rectifiable subset of Rn+k and Hn is the n-dimensional Hausdorff-
measure on Rn+k. If the flow is (locally) smooth, then Mt can be (locally) repre-
sented by a smooth n-surface evolving by MCF. Conversely, if Mt moves smoothly
by MCF, then µt := Hn

LMt defines a unit density n-Brakke flow.

Theorem 1. Let M = (µt)t∈(t1,0) with t1 < 0 be an integral n-Brakke flow such
that

i) (µt)t∈(t1,t2) is sufficiently close in measure to MΣ for some t1 < t2 < 0.

ii) Θ(0,0)(M) ≥ Θ(0,0)(MΣ), where Θ(0,0)(·) is the respective Gaussian den-
sity at the point (0, 0) in space-time.

Then M is a smooth flow for t ∈ [(t1 + t2)/2, 0), and the rescaled surfaces M̃t :=
(−t)−1/2 ·Mt can be written as normal graphs over Σ, given by smooth sections
v(t) of the normal bundle T⊥Σ, with |v(t)|Cm(T⊥Σ) uniformly bounded for all t ∈
[(t1 + t2)/2, 0) and all m ∈ N. Furthermore, there exists a self-similarly shrinking
surface Σ′ with

Σ′ = graphΣ(v′)

and
|v(t) − v′|Cm ≤ cm(log(−1/t))−αm

for some constants cm > 0 and exponents αm > 0 for all m ∈ N.

The above theorem implies uniqueness of compact tangent flows as follows. Let
the parabolic rescaling with a factor λ > 0 be given by

Dλ : Rn+k × R → R
n+k × R, (x, t) 7→ (λx, λ2t) .

Note that any Brakke flow M (smooth MCF) is mapped to a Brakke flow (smooth
MCF), i.e. Dλ(M) is again a Brakke flow (smooth MCF).

Let (x0, t0) be a point in space-time and (λi)i∈N, λi → ∞, be a sequence of
positive numbers. If M is a Brakke flow with bounded area ratios, then the
compactness theorem for Brakke flows (see [5, 7.1]) ensures that

(2) Dλi(M− (x0, t0)) → M′ ,

where M′ is again a Brakke flow. Such a flow is called a tangent flow of M at
(x0, t0). Huisken’s monotonicity formula ensures that M′ is self-similarly shrink-
ing, i.e. it is invariant under parabolic rescaling.

Corollary 2. Let M be an integral n-Brakke flow with bounded area ratios, and
assume that at (x0, t) ∈ Rm+k ×R a tangent flow of M is MΣ. Then this tangent
flow is unique, i.e. for any sequence (λi)i∈N of positive numbers, λi → ∞ it holds

Dλi(M− (x0, t0)) → MΣ .
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Until recently, other than the shrinking sphere and the Angenent torus [2] no
further examples of compact self-similarly shrinking solutions in codimension one
were known. However, several numerical solutions of D. Chopp [3] suggest that
there are a whole variety of such solutions. In a recent preprint [7], N. Møller
shows that it is possible to desingularize the intersection lines of a self-similarly
shrinking sphere and the Angenent torus to obtain a new, compact, smoothly
embedded self-similarly shrinking solution. In higher codimensions this class of
solutions should be even bigger.

In a recent work of Kapouleas/Kleene/Møller [6] and X.H. Nguyen [8] non-
trivial, non-compact, self-similarly shrinking solutions were constructed. In [4],
G. Huisken showed that, under the assumption that the second fundamental form
is bounded, the only solutions in the mean convex case are shrinking spheres and
cylinders.

The analogous problem for minimal surfaces is the uniqueness of tangent cones.
This was studied in [11, 1, 12], and, in the case of multiplicity one tangent cones
with isolated singularities, completely settled by L. Simon in [9]. One of the main
tools in the analysis therein is the generalisation of an inequality due to  Lojasiewicz
for real analytic functions to the infinite dimensional setting.

Also in the present work, this Simon- Lojasiewicz inequality for “convex” en-
ergy functionals on closed surfaces, plays a central role. We adapt several ideas
from [9, 10]. We prove a smooth extension lemma for Brakke flows close to MΣ

and introduce the rescaled flow. Furthermore, we treat the Gaussian integral of
Huisken’s monotonicity formula for the rescaled flow as an appropriate “energy
functional” on Σ and use the Simon- Lojasiewicz inequality to prove a closeness
lemma. This lemma and the extension lemma are then applied to prove the main
theorem and its corollary.

References

[1] William K. Allard and Frederick J. Almgren, Jr., On the radial behavior of minimal surfaces
and the uniqueness of their tangent cones, Ann. of Math. (2) 113 (1981), no. 2, 215–265.

[2] Sigurd B. Angenent, Shrinking doughnuts, Nonlinear diffusion equations and their equi-
librium states, 3 (Gregynog, 1989), Progr. Nonlinear Differential Equations Appl., vol. 7,
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A local result for two dimensional Ricci flow

Miles Simon

We consider the Ricci flow of two dimensional Riemannian manifolds without
boundary. Assume that the solution is defined on [0, T ), is smooth and complete
for all times, has no boundary and satisfies the following conditions at time zero:
(a) R(·, 0) ≥ −1 on B1(x0, 0) and (b) vol(B1(x0, 0)) ≥ v0 > 0 ( R(x, t) refers to
the scalar curvature at x ∈ M at time t). Then (at) R(·, t) ≥ −2 on B 1

2
(x0, t)

and (bt) vol(B 1
2
(x0, t)) ≥ ṽ(v0) > 0, and (ct) R(·, t) ≤ c(v0)

t on B 1
2
(x0, t) for all

t ∈ [0, S(v0)) ∩ [0, T ). This result differs from G.Perelman’s Pseudolocality result
(Theorem 10.3 of [1]) in that the initial ball of radius one is not necessarily almost
euclidean. It allows (for example) initial balls which are cone like.
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Low regularity local wellposedness of Chern-Simons-Schrödinger

Paul Smith

(joint work with Baoping Liu and Daniel Tataru)

We consider the initial value problem for the Chern-Simons-Schrödinger system

(1)





Dtφ = iDℓDℓφ+ ig|φ|2φ
∂tA1 − ∂1At = − Im(φ̄D2φ)

∂tA2 − ∂2At = Im(φ̄D1φ)

∂1A2 − ∂2A1 = − 1
2 |φ|2,

where φ = φ(t, x) is a complex-valued function, the connection coefficients Aα =
Aα(t, x) are real-valued functions, the covariant derivatives Dα are defined in terms
of the gauge potential Aα via

Dα := ∂α + iAα,

and (t, x) ∈ R × R2. As the left hand sides of the last three equations of (1)
are essentially obtained by commuting various covariant derivatives Dα, these
equations are referred to as curvature constraints.
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The system (1) is a basic model of Chern-Simons dynamics [11, 6, 7, 10]. Two
quantities conserved by the flow are charge

M(φ) :=

∫

R2

|φ|2dx

and energy

E(φ) :=

∫

R2

|Dxφ|2 −
g

2
|φ|4dx.

As the scaling symmetry

φ(t, x) 7→ λφ(λ2t, λx)

preserves charge, L2
x is the critical space for (1).

The Chern-Simons-Schrödinger system exhibits gauge freedom in that (1) is
invariant with respect to the transformations

φ 7→ eiθφ Aα 7→ Aα + ∂αθ

for real-valued functions θ(t, x). Therefore, in order for (1) to be well-posed, a
gauge must be selected.

A classical choice is the Coulomb gauge, which is derived by imposing the con-
straint div(Ax) = 0, where div(Ax) = ∂1A1 + ∂2A2. Using the Coulomb gauge, [1]
establishes local wellposedness in H2 and presents conditions ensuring finite-time
blowup. In low dimension, the Coulomb gauge has unfavorable high×high → low
frequency interactions that are a serious obstacle to proving low-regularity well-
posedness results. This motivates searching for a different gauge.

We adopt from [5] a variation of the Coulomb gauge called the parabolic gauge
or heat gauge. The defining condition of the heat gauge is

(2) div(Ax) = At.

Combining (2) with the curvature constraints of (1) leads to the following set of
evolution equations for At, A1, and A2:

(∂t − ∆)At = −∂1 Im(φ̄D2φ) + ∂2(φ̄D1φ)

(∂t − ∆)A1 = − Im(φ̄D2φ) − 1

2
∂2|φ|2

(∂t − ∆)A2 = Im(φ̄D1φ) +
1

2
∂1|φ|2.

We initialize φ,At, A1, A2 at t0 = 0 as follows:

(3)





φ(0, x) = φ0

At(0, x) = 0

A1(0, x) = 1
2∆−1∂2|φ0|2(x)

A2(0, x) = − 1
2∆−1∂1|φ0|2(x).

Our main result is the following.
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Theorem 1. For initial data φ0 ∈ Hs(R2), s > 0, there is a positive time T ,
depending only upon ‖φ0‖Hs , such that (1), (2) with initial data (3) has a unique
solution φ(t, x) ∈ C([0, T ], Hs(R2)). Moreover, φ0 7→ φ is Lipschitz continuous
from Hs(R2) to C([0, T ], Hs(R2)).

Remark 2. As (1) is L2-critical, Theorem 1 establishes local wellposedness over
the entire subcritical range.

Remark 3. Using the Coulomb gauge, [4] establishes local existence in Hs for
s > 1/2 and uniqueness in Hs for s ≥ 1. Also, the methods of [4] establish an
interaction Morawetz estimate for Chern-Simons-Schrödinger.

We make some remarks regarding the proof of Theorem 1. Deserving special
emphasis is the fact that we employ the heat gauge as opposed to one of the
standard gauges. Letting Q12(·, ·) denote the null form defined by

Q12(f, g) = Im(∂1f∂2g − ∂2f∂1g),

we have, in the Coulomb gauge, the heuristic that

At ≈ ∆−1Q12(φ̄, φ).

On the other hand, the heat gauge obeys the heuristic

At ≈ H−1Q12(φ̄, φ),

where H−1 in this context denotes evolution by the linear heat flow. The symbol
H−1 provides extra decay at high modulation, which plays a crucial role in con-
trolling the nonlinearities in the φ-evolution equation. Our approach also takes
advantage of the Q12 null form structure, which appears thanks to the sign twists
in (1). Refined bilinear Strichartz estimates, in the spirit of [2], for functions with
restricted frequency support, also serve as important tools. Finally, we employ
modifications of the Up, V p spaces [12, 8, 9] to handle various logarithmic losses.

The author is supported by NSF grant DMS-1103877.
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(2008k:35439)

[6] Ezawa, Z. F., Hotta, M. and Iwazaki, A., Breathing vortex solitons in nonrelativistic Chern-
Simons gauge theory, Phys. Rev. Lett. 67 (1991), no. 4, 411–414. MR 1114940 (92f:81100)



1622 Oberwolfach Report 26/2012

[7] Ezawa, Z. F., Hotta, M. and Iwazaki, A. Nonrelativistic Chern-Simons vortex solitons in
external magnetic field, Phys. Rev. 44 (1991), no. D, 452–63.

[8] Hadac, Martin, Herr, Sebastian and Koch, Herbert, Well-posedness and scattering for the
KP-II equation in a critical space, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009),
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On the uniqueness of solutions to the periodic 3D Gross-Pitaevskii
hierarchy

Vedran Sohinger

(joint work with Gigliola Staffilani)

We present a uniqueness result for solutions to the Gross-Pitaevskii hierarchy
on the three-dimensional torus, under the assumption of an a priori spacetime
bound. We show that this a priori bound is satisfied for factorized solutions to the
hierarchy which come from solutions of the nonlinear Schrödinger equation. This
establishes a periodic analogue of the uniqueness result on R3 previously proved
by Klainerman and Machedon.

1. Setup of the problem and statement of our result

We are considering the Gross-Pitaevskii hierarchy, which is a sequence of func-
tions Γ(t) = (γ(k)(t; ~xk; ~x′k)) of functions γ(k) : R × Λk × Λk → C satisfying the
folllowing symmetry properties:

i) γ(k)(t, ~xk; ~x′k) = γ(k)(t, ~x′k; ~xk)

ii) γ(k)(t, xσ(1), . . . , xσ(k);x
′
σ(1), . . . , x

′
σ(k)) = γ(k)(t, x1, . . . , xk;x′1, . . . , x

′
k) for

all σ ∈ Sk.

which solve the following infinite system of linear equations:

(1)

{
i∂tγ

(k) + (∆~xk
− ∆~x′

k
)γ(k) =

∑k
j=1 Bj,k+1(γ(k+1))

γ(k)|t=0 = γ
(k)
0 .

We are interested in the case of the spatial domain Λ := T3.

Here, ∆~xk
:=
∑k

j=1 ∆xj ,∆~x′
k

:=
∑k

j=1 ∆x′
j

and the collision operator Bj,k+1 is

given by:

Bj,k+1(γ(k+1))(~xk; ~x′k) := Trk+1[δ(xj − xk+1), γ(k+1)](~xk; ~x′k)
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=

∫

Λ

dxk+1

(
δ(xj − xk+1) − δ(x′j − xk+1)

)
γ(k+1)(~xk, xk+1; ~x′k, xk+1)

We suppose that we are working in the class A of Γ(t) = (γ(k)(t)), satisfying
i), ii) as above, such that there exist continuous, positive functions σ, f : R → R,
such that, for all k ∈ N, j = 1, . . . , k, t ∈ R, one has:

(2)

∫ t+σ(t)

t−σ(t)

‖S(k,α)Bj,k+1(γ(k+1))(s)‖L2(Λk×Λk)ds ≤ fk+1(t).

The result that we prove is:

Theorem 1. Solutions to the Gross-Pitaevskii hierarchy (1) are unique in the
class A for α > 5

4 .

2. Main ideas of the proof

The proof of the uniqueness result is based on the following two results:
This first result resembles a “Strichartz-type estimate”, frequently used in the

study of dispersive PDE.

Lemma 2. (Spacetime estimate) For α > 5
4 , there exists C1 = C1(α) > 0 such

that, for all k ∈ N, and for all j ∈ {1, . . . , k}, one has:

‖S(k,α)Bj,k+1U (k+1)(t)γ
(k+1)
0 ‖L2([0,2π]×Λk×Λk) ≤ C1‖S(k+1,α)γ

(k+1)
0 ‖L2(Λk+1×Λk+1).

Here,

S(k,α) :=

k∏

j=1

(1 − ∆xj )
α
2 (1 − ∆x′

j
)

α
2

and

U (k)(t)γ
(k)
0 := eit

∑k
j=1 ∆xj γ

(k)
0 e

−it
∑k

j=1 ∆x′
j .

The second result states that the class A is non-empty. In particular, it con-
tains the physically relevant factorized solutions which come from the nonlinear
Schrödinger equation. Namely, if φ solves.

(3)

{
i∂tφ+ ∆φ = |φ|2φ on R× Λ

φ|t=0 = φ0 ∈ Hα(Λ).

then Γ(t) = (|φ〉〈φ|⊗k(t)) =
∏k

j=1 φ(t, xj)φ(t, x′j) solves (1). Such solutions are
called factorized.

Lemma 3. (Verification of the spacetime bound) The factorized solution Γ(t) =
(|φ〉〈φ|⊗k(t)) satisfies the spacetime bound (2) for α ≥ 1.

The proof of Lemma 2 is based on number theoretic techniques used to count
lattice points, in the spirit of the work of Bourgain [1]. The two-dimensional ana-
logue of this bound was proved in the work of Kirkpatrick, Schlein, and Staffilani
[7] for α > 3

4 . We expect that Lemma 2 can be improved, which would improve the
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result of the main theorem. This is part of an ongoing joint work of the authors
with Philip Gressman.

An analogue of Lemma 3 on R3 was proved in the work of Klainerman and
Machedon by the use of Strichartz estimates on R3. Due to the loss of derivatives
one obtains in the periodic Strichartz estimates [1], the aforementioned argument
does not carry through to T3. We can circumvent this difficulty by using mul-
tilinear estimates in atomic spaces, which were first introduced in the work of
Koch and Tataru [5]. In particular, we use variants of these spaces adapted to the
Schrödinger equation which were used in the context of the energy critical NLS on
T3 by Herr, Tataru, and Tzvetkov [4]. The use of these spaces allows us to prove
Lemma 3 when α ≥ 1.

Since (1) is linear, it suffices to show that, under the assumptions of Theorem
1, γ0 = 0 implies that Γ = 0. We do this by using an iterated Duhamel expansion.
Finally, we combine Lemma 2 and Lemma 3 with a Duhamel expansion and the
combinatorial argument of Klainerman and Machedon [8] to deduce the main
result.

Our uniqueness result is a potential first step in the program of the rigorous
derivation of the nonlinear Schrödinger equation from N -body Schrödinger dy-
namics in the periodic setting. A rigorous derivation was given in the in the
non-periodic setting in the work of Erdös, Schlein, and Yau [2].
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Homogenization and asymptotics for small transaction costs

Mete Soner

(joint work with Nizar Touzi)

The problem of investment and consumption in a market with transaction costs
was formulated by Magill & Constantinides [2] in 1976. Since then, an impressive
understanding of this problem has been achieved. This problem of proportional
transaction costs is a special case of a singular stochastic control problem in which
the state process can have controlled discontinuities. The related partial differen-
tial equation for this class of optimal control problems is a quasi-variational in-
equality which contains a gradient constraint. Technically, the multi-dimensional
setting presents intriguing free boundary problems.

It is well known that in practice the proportional transaction costs are small
and in the limiting case of zero costs, one recovers the classical problem of Merton
[3]. Then, a natural approach to simplify the problem is to obtain an asymptotic
expansion in terms of the small transaction costs. This was initiated in the pio-
neering paper of Constantinides [1]. The first proof in this direction was obtained
in the appendix of [4].

In this talk, we consider this classical problem of small proportional transaction
costs and develop a unified approach to the problem of asymptotic analysis. We
also relate the first order asymptotic expansion in ǫ to an ergodic singular control
problem.

To simplify the presentation, in this abstract we restrict ourselves to a single
risky asset with a price process {St, t ≥ 0}. We assume St is given by a time
homogeneous stochastic differential equation together with S0 = s and volatility
function σ(·). For an initial capital z, the value function of the Merton infinite
horizon optimal consumption-portfolio problem (with zero-transaction costs) is
denoted by v(s, z). On the other hand, the value function for the problem with
transaction costs is a function of s and the pair (x, y) representing the wealth in
the saving accounts and in the stock. Then, the total wealth is simply given by
z = x + y. For a small proportional transaction cost ǫ3 > 0, we let vǫ(s, x, y)
be the maximum expected discounted utility from consumption. It is clear that
vǫ(s, x, y) converges to v(s, x+y) as ǫ tends to zero. Our main analytical objective
is to obtain an expansion for vǫ in the small parameter ǫ.

To achieve such an expansion, we assume that v is smooth and let

(1) η(s, z) := − vz(s, z)

vzz(s, z)

be the corresponding risk tolerance. The solution of the Merton problem also
provides us an optimal feedback portfolio strategy θ(s, z) and an optimal feedback
consumption function c(s, z). Then, the first term in the asymptotic expansion
is given through an ergodic singular control problem defined for every fixed point
(s, z) by

ā(s, z) := inf
M
J(s, z,M),
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where M is a control process of bounded variation with variation norm ‖M‖,

J(s, z,M) := lim sup
T→∞

1

T
E

[∫ T

0

|σ(s)ξt|2
2

+ ‖M‖T
]
,

and the controlled process ξ satisfies the dynamics driven by a Brownian motion
B, and parameterized by the fixed data (s, z):

dξt = [θ(s, z)(1 − θz(s, z))]dBt + dMt.

This problem in one space dimension can be solved explicitly.

Let {Ẑs,z
t , t ≥ 0} be the optimal wealth process using the feedback strategies

θ, c, and starting from the initial conditions S0 = s and Ẑs,z
0 = z. Our main result

is on the convergence of the function

ūǫ(x, y) :=
v(s, x+ y) − vǫ(s, x, y)

ǫ2
.

Main Theorem. Let ā be as above and set a := ηvzā. Then, as ǫ tends to zero,

(2) ūǫ(x, y) → u(s, z) := E

[∫ ∞

0

e−βta(St, Ẑ
s,z
t )dt

]
, locally uniformly.

Naturally, the above result requires assumptions and we refer to the original
paper for a precise statement. Moreover, the definition and the convergence of uǫ

is equivalent to the expansion

(3) vǫ(s, x, y) = v(z) − ǫ2u(z) + ◦(ǫ2),

where as before z = x+ y and ◦(ǫk) is any function such that ◦(ǫk)/ǫk converges
to zero locally uniformly.

The above result provide the connection with homogenization. Indeed, the
dynamic programming equation of the ergodic problem described above is the
corrector equation in the homogenization terminology. This identification allows us
to construct a rigorous proof similar to the ones in homogenization. Moreover, the
above ergodic problem is a singular one and we show that its continuation region
also describes the asymptotic shape of the no-trade region in the transaction cost
problem.

The main proof technique is the viscosity approach of Evans to homogenization.
This powerful method combined with the relaxed limits of Barles & Perthame
provides the necessary tools. As well known, this approach has the advantage of
using only a simple L∞ bound.
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Near soliton dynamics in wave and Schrödinger maps

Daniel Tataru

(joint work with Ioan Bejenaru, Joachim Krieger)

Wave maps into the sphere

φ : Rn+1 → S
2

are solutions to the semilinear wave equation

�φ+ φ(|∂tφ|2 − |∇xφ|2) = 0, φ(0) = φ0, φt(0) = φ1

This evolution admits a conserved energy

EW (φ) =
1

2

∫
|∂tφ|2 + |∇xφ|2dx

and dimensionless scaling

φ(t, x) → φ(λt, λx)

Schrödinger maps into the sphere

φ : Rn+1 → S
2

are solutions to

φt + φ× ∆φ = 0, φ(0) = φ0

This evolution admits a conserved energy

ES(φ) =
1

2

∫
|∇xφ|2dx

and scaling

φ(t, x) → φ(λ2t, λx)

Stationary solutions for both equations are called harmonic maps and solve

∆φ+ φ|∇xφ|2 = 0

One can classify dimensions according to the scaling properties of the energy.
The case n = 1 is energy subcritical. n = 2 is the energy critical case, which will
be discussed in the sequel. The case n > 2 is energy supercritical.

For n = 2 all finite energy harmonic maps are smooth, and are critical points
for the Lagrangian

L(φ) =

∫

R2

|∇xφ|2dx

The finite energy maps φ : R2 → S2 are classified according to the homotopy class
k ∈ Z. A special role is played by the minimizers of the Lagrangian in homotopy
classes. These are unique modulo symmetries. In polar coordinates (r, θ) in R2

and (φ, θ) on S2 these maps can be represented as

Qk(r, θ) → (2 tan−1 rk, θ), k 6= 0

where the case k = 1 is exactly the stereographic projection.
Both equations satisfy globally well-posedness and scattering for small data in

the energy space, see [1], [11] and references therein. The threshold conjecture
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asserts that global well-posedness and scattering should still hold for zero homo-
topy data with energy below 2E(Q1) = 8π. For wave maps this is a consequence
of results in [9], [10]. For Schrödinger maps it is still an open problem; only partial
results are available so far. see [2].

The question discussed in the talk concerns the behavior of homotopy one so-
lutions with energy close to the energy of Q1. Energy considerations show that
such solutions must stay close to the family Q1 of harmonic maps generated from
Q via symmetries. However, Q1 is noncompact so this does not even guarantee
global wellposedness.

A slightly simpler problem is to consider a restricted class of solutions, namely
equivariant ones. Precisely, in the case of wave maps it suffices to consider maps
of the form

(r, θ) → (φ(r), θ), φ(0) = 0, φ(∞) = π

In the case of Schrödinger maps this class is not preserved by the flow. Instead
one needs to consider a slightly larger class of maps of the form

(r, θ) → (φ(r), θ + α(r)), φ(0) = 0, φ(∞) = π

The (still noncompact) restricted group of symmetries associated to equivariant
maps contains only the scaling for wave maps, respectively the scaling and rota-
tions for Schrödinger maps. The corresponding solitons are denoted by

Qλ(r, θ) = (2 tan−1 λr, θ), Qλ,α(r, θ) = (2 tan−1 λr, θ + φ)

Given initial data in the above class with energy less than E(Q1) + ǫ, one can
identify parameters λ(t) for wave maps, respectively (λ(t), α(t)) for Schrödinger
maps which describe how the solution moves along the soliton family. These are
uniquely determined modulo an O(ǫ) error. Then we have

Open Problem 1. Describe all possible dynamics of λ(t) for wave maps, respec-
tively (λ(t), α(t)) for Schrödinger maps which correspond to maps with energy less
than E(Q1) + ǫ.

The scenario where λ→ 0 in finite time is prohibited. However, a finite focusing
blow-up λ→ ∞ is possible, see [5],[7], [8], [6].

The aim of the talk was to introduce the above problem, and then discuss some
progress made toward characterizing the behavior of large classes of solutions in
[3] for Schrödinger maps, respectively in [4] for wave maps. Understanding what
happens for all finite energy equivariant data as above seems still out of reach for
now.

A key difficulty in the problem is caused by the presence of a resonant zero
mode arising in the study of the linearized equations near the soliton.
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Smoothing properties for dispersive partial differential equations and
systems of equations.

Nikolaos Tzirakis

(joint work with M. Burak Erdogan)

1. Main results

In this note we study local smoothing properties for dispersive partial differential
equations and systems of equations. Examples include the periodic KdV, the peri-
odic mKdV and the periodic KdV with a smooth, mean-zero, space-time potential

(1)

{
ut + uxxx + (u2 + V u)x = 0, x ∈ T, t ∈ R,
u(x, 0) = g(x) ∈ Hs(T).

Another example is the periodic Zakharov system which consists of a complex field
u (Schrödinger part) and a real field n (wave part) satisfying the equation:

(2)





iut + αuxx = nu, x ∈ T, t ∈ [−T, T ],
ntt − nxx = (|u|2)xx,
u(x, 0) = u0(x) ∈ Hs0(T),
n(x, 0) = n0(x) ∈ Hs1(T), nt(x, 0) = n1(x) ∈ Hs1−1(T),

where α > 0 and T is the time of existence of the solutions. Here α is the dispersion
coefficient. In the literature it is standard to include the speed of an ion acoustic
wave in a plasma as a coefficient β−2 in front of ntt where β > 0. One can easily
scale away this parameter and reduce the system to (2). For both equations,
we prove that the difference of the nonlinear evolution with the linear evolution
is smoother than the initial data. This smoothing property is not apparent if
one views the nonlinear evolution as a perturbation of the linear flow and apply
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standard Picard iteration techniques to absorb the nonlinear derivative term. On
the other hand the first Picard iteration for the KdV

e−t∂3
x

∫ t

0

et
′∂3

x
[
e−t′∂3

xg∂x
(
e−t′∂3

xg
)]
dt′

implies a possible full derivative smoothing for the nonlinearity, since on the
Fourier side (ignoring zero modes):

∑

k1+k2=k

∫ t

0

e−3ik1k2kt
′

k2ĝ(k1)ĝ(k2)dt′ =
∑

k1+k2=k

ĝ(k1)ĝ(k2)

−3ikk1
(e−3ik1k2kt − 1).

Therefore, if g ∈ L2, then the correction term is in H1. Our result, [7], vali-
dates this heuristic. It follows from a combination of the method of normal forms
(through differentiation by parts) inspired by the result in [1] and the restricted
norm method of Bourgain, [2]. As it is well-known, KdV is a completely integrable
system with infinitely many conserved quantities. However, our method does not
rely on the integrability structure of KdV, and thus it can be applied to other
dispersive models.
The motivation for studying the Zakharov system in [9], comes from the fact
when β → ∞, the system reduces to the focusing cubic NLS. But there is no
derivative smoothing for the NLS with power-type nonlinearity, [5, 6]. In [5], the
author obtained a (local-in-time) smoothing estimate in the Fℓp → Fℓq setting
for 1d cubic NLS. Here Fℓp is the space of functions whose Fourier series is in
ℓp. We, on the other hand, prove that for the Zakharov system there is derivative
smoothing even though the resonances of the model are non trivial. Notice that
if we integrate (1) and the wave part of (2) we obtain that the averages of the
solutions are constant. Since the evolution does not change if we apply a trivial
transformation and remove the constant average, we can safely assume mean zero
solutions. This assumption is crucial. It removes the zero Fourier mode of the
series solution and enables one to use the oscillatory character of the solution
in the normal form transformations. On the Rn setting, the conservation of the
average does not lead to the same result and it remains a challenging problem to
extend our methods there. We state as an example the smoothing estimate for (1)
(through Miura’s transform they extend to the mKdV) but similar statements can
be found in [9] for the Zakharov system where we distinguish the case of 1

α ∈ N

and 1
α 6∈ N.

Theorem 1. Fix s ≥ 0 and s1 < s+ 1. Consider (1) where V ∈ C∞(T×R) is a
mean zero real-valued potential with bounded derivatives and initial data u(x, 0) =
g(x) ∈ Hs. Assume that we have a growth bound ‖u(t)‖Hs ≤ C(‖g‖Hs)T (t) for
some nondecreasing function T on [0,∞). Then u(t) − etLg ∈ C0

tH
s1
x and

‖u(t) − etLg‖Hs1 ≤ C(s, s1, ‖g‖Hs)(1 + |t|)T (t)9.

Here L = −∂3x +
(

1
2π

∫ π

−π
g
)
∂x.



Nonlinear Evolution Problems 1631

2. Applications

We highlight below some applications of the smoothing estimates for the KdV and
Zakharov evolutions.

2.1. Growth of higher order Sobolev norms. Theorem 1 implies, that the
smoothing estimates can be iterated (if a priori bounds can be established inde-
pendently) to provide estimates on the growth of higher order Sobolev norms.
These a priori bounds usually come from either the conservation laws of the equa-
tions or (like in our theorem) from ”almost conservation laws”, [4]. This method is
not new and has been developed for many years now, [3], [13]. Our low regularity
smoothing estimates supplement these results by providing simpler proofs of the
known results or proving new bounds for low regularity solutions as in Theorem
1. For the Zakharov system the following Corollary can be proved which appears
to be new.

Corollary 2. For any α > 0, and for any Sobolev exponents (s0, s1) that give rise
to well defined local well-posed solutions with s0 ≥ 1, s1 ≥ 0, the global solution of
(2) with Hs0 ×Hs1 ×Hs1−1 data satisfies the growth bound

‖u(t)‖Hs0 + ‖n(t)‖Hs1 + ‖nt(t)‖Hs1−1 ≤ C1(1 + |t|)C2 ,

where C1 depends on s0, s1, and ‖u0‖Hs0 + ‖n0‖Hs1 + ‖n1‖Hs1−1 , and C2 depends
on s0, s1.

2.2. Continuity of the KdV flow map. For L2 initial data g, Theorem 1 implies
that u− etLg ∈ C0

tH
1−
x , and hence is a continuous function of x and t. Using this

remark and the following theorem of Oskolkov, [12], we obtain Corollary 4 below.
We also note that using our theorem it is likely that other known properties of the
Airy evolution could be extended to the KdV evolution.

Theorem 3. [12] Let L be as in the previous theorems and assume that g is of
bounded variation, then etLg is a continuous function of x if t/2π is an irrational
number. For rational values of t/2π, it is a bounded function with at most countably
many discontinuities. Moreover, if g is also continuous then etLg ∈ C0

t C
0
x.

Corollary 4. Let u be the real valued solution of (1) with initial data g ∈ BV ⊂
L2. Then, u is a continuous function of x if t/2π is an irrational number. For
rational values of t/2π, it is a bounded function with at most countably many
discontinuities. Moreover, if g is also continuous then u ∈ C0

t C
0
x.

2.3. Almost everywhere convergence of the KdV flow map. It is well
known, [11], that Strichartz estimates for linear dispersive PDE, can lead to an
easy proof of the property of almost everywhere convergence of the linear evolution
to the initial data u0 ∈ Hs for some s ≤ 1

2 . For the periodic KdV a new result in
[10] proves that for s > 3/14,

‖e−t∂3
xg‖L14

t L14
x (T×T) ≤ C‖g‖Hs .

This estimate implies, after some trivial calculations, that if g ∈ Hs, s > 3/7,

then e−t∂3
xg converges to g almost everywhere as t → 0. Theorem 1 establishes
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the same conclusion for the periodic KdV with or without a smooth space-time
potential.

2.4. Existence of global smooth attractors for weakly damped and forced
equations and systems. In many real situations one cannot neglect energy dis-
sipation and external excitation when studying certain dispersive equations. For
example for the periodic KdV problem one can study

(3)

{
ut + uxxx + γu+ uux = f, t ∈ R, x ∈ T

u(x, 0) = u0(x) ∈ L̇2(T) := {g ∈ L2(T) :
∫
T
g(x)dx = 0},

where γ > 0 and f ∈ L̇2. On a finite time interval the solution properties of the
two models (1) (with V = 0) and (3) are identical. But the long time dynamics of
the forced and weakly damped KdV is described by a finite dimensional attractor.
Thus we want to study the influence of dissipation on the actual numbers of
degrees of freedom of the infinite dimensional dynamical system. We note that
inverse scattering theory describes the long time behavior of KdV as a truly infinite
dimensional dynamical system. The problem of global attractors for nonlinear
PDEs is concerned with the description of the nonlinear dynamics for a given
problem as t → ∞. In particular assuming that one has a well-posed problem for
all times we can define the semigroup operator U(t) : u0 ∈ H → u(t) ∈ H where
H is the phase space. Dissipative systems are characterized by the existence of
a bounded absorbing set into which all solutions enter eventually. The candidate
for the attractor set is the omega limit set of an absorbing set, B, defined by
ω(B) =

⋂
s≥0

⋃
t≥s U(t)B where the closure is taken on H .

Definition 5. We say that a compact subset A of H is a global attractor for the
semigroup {U(t)}t≥0 if A is invariant under the flow and if for every u0 ∈ H,
d(U(t)u0,A) → 0 as t→ ∞.

Definition 6. We say a bounded subset B0 of H is absorbing if for any bounded
B ⊂ H there exists T = T (B) such that for all t ≥ T , U(t)B ⊂ B0.

It is not hard to see that the existence of a global attractor A for a semigroup
U(t) implies the existence of an absorbing set. For the converse we need to prove
the asymptotic compactness of the semigroup, which through Rellich’s Theorem
boils down to our smoothing estimates. In particular we proved that the solution
of (3) decomposes into two parts; a linear one which decays to zero as time goes
to infinity and a nonlinear one which always belongs to a smoother space. As
a corollary we prove that all solutions are attracted by a ball in Hs, s ∈ (0, 1),
whose radius depends only on s, the L2 norm of the forcing term and the damping
parameter. We record our theorem from [8]:

Theorem 7. Consider the forced and weakly damped KdV equation (3) on T×R

with u(x, 0) = u0(x) ∈ L̇2. Then the equation possesses a global attractor in L̇2.
Moreover, for any s ∈ (0, 1), the global attractor is a compact subset of Hs, and it
is bounded in Hs by a constant depending only on s, γ, and ‖f‖.
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We prove a similar theorem, [9], for the energy solutions of the weakly damped
and forced periodic Zakharov system:

(4)





iut + uxx + iγu = nu+ f, x ∈ T, t ∈ [−T, T ],
ntt − nxx + δnt = (|u|2)xx + g,
u(x, 0) = u0(x) ∈ H1(T),
n(x, 0) = n0(x) ∈ L2(T), nt(x, 0) = n1(x) ∈ H−1(T),

where f ∈ H1(T), g ∈ L2(T) are time-independent, g is mean-zero, and the
damping coefficients δ, γ are positive.
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