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Introduction by the Organisers

The purpose of this conference was to bring together people working in low-
dimensional topology, both in knot theory and 3-manifold theory and in 4-manifold
theory.

Here is a short comment on the combinatorial topology side of the topics. In
1969 John H. Conway published a version of the Alexander polynomial that in-
volves nothing more than a recursion on diagrams controlled by a “skein formula”
that expresses the difference between the polynomial for a knot with a given cross-
ing, the same diagram with a switched crossing and the same diagram with the
crossing replaced by connecting arcs that do not cross (a smoothing of the cross-
ing). This remarkable reformulation of the Alexander polynomial remained a
mystery for some years. In the late 1970’s people became interested in this re-
lation again and, among others, Kauffman wrote a paper explaining the skein
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relation approach of Conway in terms of the Seifert pairing of the knot. In the
early 1980’s Kauffman found another model of the Alexander-Conway Polynomial
as state summation related to Alexander’s original definition using a determinant
of a matrix associated with the link diagram. Then in 1983, Vaughan Jones found
a new and powerful polynomial invariant of knots and links that was quite dif-
ferent from the Alexander polynomial, but also satisfied a skein relation. This
discovery of the Jones polynomial quickly led to a number of other skein-type
invariants – the Homflypt polynomial and a two-variable Kauffman polynomial.
Also Kauffman found a state sum model for the original Jones polynomial. After
this initial combinatorial revolution in the knot theory, there came a big influx
of algebra, first via von Neuman algebras and the Temrperley Lieb algebra from
Jones himself, then Hecke algebras and quantum groups (deformations of classical
Lie algebras) and Hopf algebras with the work of Reshetikhin and Turaev. Then
quantum field theory entered the picture with the work of Edward Witten and
this led to the development of new invariants of three-manifolds, the formulation
of Vassiliev invariants, work of Birman, Lin and Bar Natan and a mix of research
problems that continues to the present day. In the 1990’s Kauffman and Gous-
sarov, Polyak and Viro introduced virtual knot theory a generalization of classical
knot theory to knots and links in thickend surfaces that has a simple diagram-
matic extension from classical knot diagrams. Virtual knot theory continues in
a very active way to the present day with contributions from many people and a
first book on the subject by Manturov and Ilyutko, containing significant recent
advances by Manturov and collaborators. In 1999 Misha Khovanov discovered
an extension of the Kauffman bracket state sum model for the Jones polynomial
to a graded homology theory such that the coefficients of the Jones polynomial
become Euler characteristics of graded parts of the homology. The Khovanov ho-
mology of a knot is more powerful than the Jones polynomial of that knot and
in fact it was shown in 2008 that the Khovanov homology detects the unknot, a
property that is still unknown for the Jones polynomial. This “categorification”
of the Jones polynomial was followed by a quite different categorification of the
Alexander-Conway polynomial in the work of Oszváth and Szábo, and this work
led to astonishing results such as a homological method to find the Seifert genus
of a knot and, in both cases of these theories, a bridge between three manifolds
and four manifolds. This sketch indicates the background of our conference on the
side of combinatorial topology.

There were 51 participants, and 42 speakers among them. Participants without
talks presented their results in various private communications during the discus-
sion time or in the evening at the workshops or in an unofficial manner.

Several talks were organized for the whole audience; the other talks were held
in two parallel sessions.

Nevertheless, all participants could share their results with everyone in formal
or less formal workshops organized every day in the evening time. Research reports
of the majority of participants were posted on the wall as well as on the conference
webpage.
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The main topics of the conference were:

• Recognition of the Unknot
• Virtual Knot Theory and Parity Theory
• Cobordisms and Concordance of Knots
• Finite-type invariants
• Heegaard-Floer Homology
• Exotic structures and Corks in 4-manifold Theory
• Seiberg-Witten Invariants, Gauge Theory
• 2-knots and their diagrams
• Khovanov homology theory
• Braid Theory
• Unknotting numbers and related topics in classical and virtual knot theory
• Quandles and Related Structures in Knot Theory
• Knot Mutations
• Knots and DNA
• Contact topology
• Topological Methods in Combinatorial Group Theory
• Calabi-Yau Manifolds
• Fibred Manifolds

In addition to the talks, three workshops were organized during the conference.
A workshop on Virtual Knot Theory and parity in Low-Dimensional Topology
was organized by V.O.Manturov. It was devoted to further applications of parity
theory as well as to various unsolved problems, and others contributed to the
discussion.

One workshop was devoted to the result of Chad Musick on the recognition of
the unknot in a polynomial time.

One workshop was organized by Scott Carter on various algebraic generaliza-
tions of quandles possessing distributitivty and associativity properties leading to
invariants of knots, 2-knots and trivalent graphs.
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Abstracts

Virtual Knot Theory - Problems and Ideas

Louis H. Kauffman

1. Introduction

Virtual knot theory [3, 2] is a generalization of classical knot theory that can be
described in a number of ways. One way to describe it is to say that virtual knot
theory uses diagrams just like the diagrams for classical knot theory except that
there is a new type of crossing, called virtual, that is neither an under-crossing
nor an overcrossing. The virtual crossing behaves in the following way: any arc
in the diagram with a consecutive sequence of virtual crossings can be excised
from the diagram and another arc can be placed transversely to the remaining
part of the diagram so that all the crossings introduced in the new arc are also
taken to be virtual. Otherwise, one applies the usual Reidemister moves to the
classical crossings in the diagram. This diagrammatic definition of virtual knot
theory is equivalent to saying that virtual knot theory is the set of equivalence
classes of oriented Gauss codes modulo the abstract Reidemeister moves on these
codes. Since not all codes are realizable in the plane, a diagram for a virtual knot
or link may contain virtual crossings in the same way that an attempt to embed a
non-planar graph into the plane leads to extra crossings of the edges of the graph
with itself. In this view, the virtual crossings are artifacts of the attempt to embed
a non-planar code into the plane.

Another equivalent definition of virtual knot theory is that a virtual knot is
represented by an embedding of a circle (or circles) into a thickened oriented surface
of some genus g. Two such embeddings are equivalent if there is an orientation
preserving homeomorphism of the surface that carries one embedding to the other,
or if one can perform a 1-handle surgery in the complement of the knot in the
thickened surface, retaining connectiviity and changing the genus. We say that
virtual knots are knots in thickened surfaces taken up to handle stabilization.
From this point of view, one would like to find the least genus surface in which
such a knot could be represented. Kuperberg [4] proved that the embedding type
of the knot in its minimal genus surface is uniquely determined and so there is a
definite topological interpretation for the virual knot as its least genus embedding.
It follows from this Theorem of Kuperberg that virtual knot theory embeds in
classical knot theory (this was proved earlier by a more algebraic argument [3, 2]).

In this talk we describe a polynomial invariant of virtual knots and links that
has the advantage of being quite easy to calculate, and it can detect features that
the Jones polynomial cannot see.
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Figure 1. Labeled Flat Crossing and Example 1

2. The Polynomial Invariant

We define a polynomial invariant of of virtual knots by first describing how to
calculate the polynomial. We then justify that this definition is invariant under
virtual isotopy. Calculation begins with a flat oriented virtual knot diagram (the
classical crossings in a flat diagram do not have choices made for over or under).
An arc of a flat diagram is an edge of the 4-regualar graph that it represents. That
is, an edge extends from one classical node to the next in orientation order. An
arc may have many virtual crossings, but it begins at a classical node and ends at
another classical node. We label each arc c in the diagram with an integer λ(c) so
that an arc that meets a classical node and crosses to the left increases the label
by one, while an arc that meets a classical node and crosses to the right decreases
the label by one. See Figure 1 for an illustration of this rule. We prove that such
integer labelling can always be done for any virtual or classical link diagram. In
a virtual diagram the labeling is unchanged at a virtual crossing, as indicated in
Figure 1. One can start by choosing some arc to have an arbitrary integer label,
and then proceed along the diagram labelling all the arcs via this crossing rule.
We call such an integer labelling of a diagram a Cheng coloring of the diagram.
The invariant described herein is a generalization the the invariant described by
Cheng in [1].

Given a labeled flat diagram we define two numbers at each classical node c:
W−(c) and W+(c) as shown in Figure 1. If we have a labeled classical node with
left incoming arc a and right incoming arc b then the right outgoing arc is labeled
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a − 1 and the left outgoing arc is labeled b + 1 as shown in Figure 1. We then
define

W+(c) = a− (b+ 1)

and

W−(c) = b− (a+ 1).

Note that

W−(c) = −W+(c)

in all cases.

Given a crossing c in a diagram K, we let sgn(c) denote the sign of the crossing.
The sign of the crossing is plus or minus one according to the standard convention.
The writhe, wr(K), of the diagram K is the sum of the signs of all its crossings.
For a virtual link diagram, labeled in the integers according to the scheme above,
and a crossing c in the diagram, define W (c) by the equation

W (c) = Wsgn(c)(c)

so that W (c) is W±(c) according as the sign of the crossing is plus or minus.

Let K be a virtual knot diagram. Define

PK =
∑

c

sgn(c)tW (c) − wr(K).

We shall prove that the Laurent polynomial PK is a highly non-trivial invariant
of virtual knots.

In Figure 1 we show the computation of the weights for a given flat diagram
and the computation of the polynomial for a virtual knot K with this underlying
diagram. The knot K is an example of a virtual knot with unit Jones polynomial.
The polynomial PK for this knot has the value

PK = t−2 + t2 − 2,

showing that this knot is not isotopic to a classical knot.
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Invariants and homology of biquandle classifying space

Roger Fenn

This talk had the following themes:

1. A new description of the biquandle
2. The idea of a “partial” biquandle
3. Applications to classical knots—in particular discriminating the left and

right trefoil

1. The definition of the biquandle can be simplified by the application of

ab ab

a a

baba b , b

2. Partial biquandles are now defined on all pairs—in particular taking the double
of a biquandle pairs of pairs {(ac)(bc) : ca = cb},

(ac)(bc) = (abcb), (bc)(ac) = (baca).

3. In the classifying space of the double of the 3-colour quandle, the left and right
trefoil have values +1 and −1 respectively.

Injectivity of satellite operators in knot concordance

Tim D. Cochran

(joint work with Chris W. Davis and Arunima Ray)

The satellite construction is a procedure that transforms an oriented knot K in
S3 to another knot. Suppose P is an oriented knot in the solid torus ST ≡ S1×D2,
called a pattern knot. For any oriented knot K in S3 we denote by P (K) the
(untwisted) satellite of K obtained by using P as a pattern. Each pattern may
thus be viewed as a function P : K → K on the set of isotopy classes of knots.
These induce functions, called satellite operators, on K/ ∼ for other important
equivalence relations, in particular on the set of concordance classes of knots. We
will establish the injectivity of these functions in some important cases.

The importance of satellite operations extends beyond knot theory. They gener-
alize to operations on 3 and 4-manifolds where they produce very subtle variations
while fixing the homology type [5, Sec. 5.1]. Winding number one satellites are
closely related to Mazur 4-manifolds which in turn are closely related to Akbulut
corks [1]. The latter are contractible 4-manifolds that can be used to alter the
smooth structure on 4-manifolds (by removing them and reinserting them with a
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twist). Specifically, a knot K may occur as the attaching circle of a 2-handle in
the handlebody description of a 4-manifold. It was shown, for example, in another
talk at this conference [2], that, for the simplest strong winding number one oper-
ators P , the modification of the handlebody effected by K  P (K) can alter the
smooth structure on the 4-manifold without altering the homeomorphism type!

We consider four different sets, denoted C, Cex, Ctop, and C 1

n respectively. Here
C is the (usual) set of smooth knot concordance classes. Here Ctop is the (usual)
set of topological knot concordance classes. Cex is the set where two knots
are equivalent if they are smoothly concordant in S3 × [0, 1] equipped with a pos-
sibly exotic smooth structure. This has been called pseudo-concordance by some
authors. If the smooth 4-dimensional Poincaré Conjecture is true then Cex = C.
Finally, for a fixed non-zero integer n, let C 1

n denote the set of equivalence classes
of knots in S3 where two are equivalent if they cobound a smoothly embedded
annulus in a smooth 4-manifold that is Z[ 1n ]-homology cobordant to S3 × [0, 1].

For odd n it seems to be unknown whether or not C = mathcalC
1

n ! For economy
we will use the notation C∗ to denote either ∗ = top, ∗ = ex or ∗ = 1

n , reserv-
ing the notation C for the smooth knot concordance group. If K = 0 = U in C
(respectively: Cex, Ctop, C 1

n ) then K is called a (smooth) slice knot (respectively:
pseudo-slice, topologically slice, Z[ 1n ]-slice).

We are interested in whether or not such satellite operators are injective func-
tions (beware they are not homomorphisms). Call an operator weakly injective
if P (K) = P (0) implies K = 0 (here 0 is the class of the trivial knot U). It is a
long-standing open problem as to whether or not the Whitehead double operator
is weakly injective on C [7, Problem 1.38]. Considerable effort has been expended
in providing evidence for this conjecture (see [6] for a survey and the most re-
cent results). There has recently been speculation that many other “non-trivial”
satellite operators are injective on C. In [4] large classes of winding number zero
operators called “robust doubling operators” were introduced and evidence was
presented for their injectivity. Yet no single “non-trivial” operator is known to be
even weakly injective.

Here we have more success for non-zero winding number operators, especially
winding-number ±1 operators. The winding number of P is the algebraic in-
tersection number of P with a meridional disk of ST . Let η denote the oriented
meridian of ST , {1} × ∂D2. The condition that a pattern P has winding number
±1 is equivalent to the condition that η generates H1(S

3 − P (U)).

Definition 1. The pattern P has strong winding number ±1 if the meridian
of the solid torus ST normally generates π1(S

3 − P (U)).

The example in Figure 1 has strong winding number one. If P (U) is unknotted
then strong winding number one is the same as ordinary winding number one. We
show that strong winding number ±1 patterns are plentiful. Our main theorem is:

Theorem 1. Suppose P is a pattern with non-zero winding number n. Then

a. P : C 1

n → C 1

n is an injective function.
Suppose that P is a pattern with strong winding number ±1. Then



1700 Oberwolfach Report 28/2012

η

P

Figure 1. A strong winding number one pattern P

b. P : Cex → Cex is an injective function,
c. P : Ctop → Ctop is an injective function, and
d. if S4 has a unique smooth structure (up to diffeomorphism) then P : C → C

is an injective function.

This establishes that the sets C∗ admit many natural self-similarities (as con-
jectured in [4]).

Restricting part a. of the theorem to the case n = 1 yields:

Corollary 2. Suppose P is a pattern with winding number ±1. Then P (K) is
smoothly concordant to P (J) in a smooth homology S3×[0, 1] if and only if K#−J
is smoothly slice in a smooth homology B4.

Similarly, restricting part a. to cable operations yields:

Corollary 3. If p and q are coprime positive integers then the (p, q) cable of K is
smoothly concordant to the (p, q) cable of J in a smooth Z[ 1p ]-homology S3 × [0, 1]

if and only if K is smoothly concordant to J in a smooth homology Z[ 1p ]-homology

S3 × [0, 1].

The case p = 2 of Corollary 3 was proved previously by the third author and
indeed was one of the inspirations for the current paper. An important ingredient
in our proof is a well-known relationship between concordance of knots and ho-
mology cobordism of certain 3-manifolds associated to the knots via surgery. In
this regard we also owe a substantial debt to the recent work of Cochran-Franklin-
Hedden-Horn [3]. Our techniques are elementary. We use only basic topology
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and handlebody techniques, except for our use of the 4-dimensional topological
Poincaré conjecture.

We also extend some of our results to links.
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A new construction of the Fukaya–Seidel category

Andriy Haydys

Inspired by Seidel’s construction [2], I present a new construction of the Fukaya–
Seidel category, which is associated to a symplectic Lefschetz fibration.

Let (M,ω = dλ, J) be an exact symplectic manifold equipped with an al-
most complex structure. A symplectic Lefschetz fibration in our setting is a J–
holomorphic function f : M → C with finitely many non–degenerate critical points
m1, . . . ,mk. Then one can conjecturally associate to f an A∞–category Af as fol-
lows (see [1] for details). The objects of Af are critical points of f . To define
the morphism spaces choose a pair of critical points m± ∈ {m1, . . . ,mk} and de-
note by Γ(m−,m+) a suitably chosen subspace of {γ : R → M | γ(±∞) = m∓}.
Consider the functional

F : Γ(m−,m+) −→ R, F(γ) =

∫

R

γ∗λ+

∫

R

Im
(
e−iθ(t)f ◦ γ(t)

)
dt,

where θ = θ(t) is a suitably chosen function. Then, roughly speaking,
hom(m−,m+) is the Morse–Witten complex of F. Let us describe some details.
The critical points of F are solutions of the problem

(1) γ̇ + vt = 0, lim
t→±∞

γ(t) = m∓,

where vt = cos θ(t) gradRef + sin θ(t) grad Im f . These freely generate
hom(m−,m+) as a Z/2Z–vector space.



1702 Oberwolfach Report 28/2012

Furthermore, choose a pair γ± of solutions of (1) and consider the problem

(2)

∂su+ J
(
∂tu+ vt

)
= 0, u : R2

s,t → M,

lim
t→±∞

u(s, t) = m∓, lim
s→±∞

u(s, t) = γ∓(t),

lim
t→±∞

∫ +∞

−∞
|∂su(s, t)| ds = 0, lim

s→±∞

∫ b

a

|∂su(s, t)| dt = 0.

Notice that the first equation is formally the antigradient flow equation for the
functional F. Denote the space of solutions of the above equations by M(γ−; γ+)
and put M̂(γ−; γ+) = M(γ−; γ+)/R, where R acts by translations in s–variable.
One defines the differential ∂ : hom(m−,m+) → hom(m−,m+) in the usual way,

provided points in M̂(γ−; γ+) can be sensibly counted. The composition
hom(mp,mq) ⊗ hom(mq,mr) → hom(mp,mr) as well as the “Massey products”
are defined in a similar manner. Conjecturally, these combine to an A∞–structure.

Theorem 1. The space M(γ−; γ+) is the zero locus of a Fredholm section.

Theorem 2. Assume critical values f(m1), . . . , f(mk) are in convex position and
the fibration f : M → C is trivial in the neighbourhood of infinity. Then the space

M̂(m−;m+) =
⋃

γ±

M̂(γ−; γ+)

is compact, where the union is taken over all pairs of solutions of (1).
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Naturality of Heegaard Floer homology

András Juhász

(joint work with Peter Ozsváth, Dylan Thurston)

Heegaard Floer homology, defined by Ozsváth and Szabó in [1, 2], is a package
of invariants for 3- and 4-manifolds. For concreteness, we will focus on the 3-

manifold invariant ĤF with Z2-coefficients. Given a closed oriented 3-manifold

Y , the construction of [1] assigns to Y the Z2-vector space ĤF (Y ), well-defined
up to isomorphism. There are several choices involved in the construction; most
importantly, one has to choose a based Heegaard diagram (Σ,α,β, z) of Y . Here
Σ ⊂ Y is an oriented genus g surface that splits Y into two handlebodies, α and
β are two g-tuples of pairwise disjoint, homologically linearly independent simple
closed curves in Σ, and z ∈ Σ \ (α ∪ β) is a basepoint.

To obtain the 4-manifold invariants, one has to define maps induced on Hee-
gaard Floer homology by cobordisms, and for that one needs to assign a concrete
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vector space ĤF (Y ) to a 3-manifold Y . The same is needed to have a diffeomor-

phism action on ĤF , or to be able to talk about the contact element in Heegaard
Floer homology (as opposed to just being able to say whether this element is zero
or not). In [2], Ozsváth and Szabó attempted to prove these naturality properties
of Heegaard Floer homology. However, as noticed by the author, there is a gap in
their proof, they did not account for the way the Heegaard surface Σ is embedded

in Y . Furthermore, it is unclear whether ĤF depends on the choice of basepoint
(just like the fundamental group depends on a basepoint). As an analogy, one can
consider simplicial homology, which depends on a triangulation, and since man-
ifolds can carry several PL structures, it is a priori unclear how to compare the
homology computed from triangulations lying in different PL structures. In that
case, singular homology overcomes this problem.

Intuitively, one should think of ĤF as assigning a Z2-vector space to every

based diagram (Σ,α,β, z) with Σ ⊂ Y . Hence, ĤF is a Z2-vector bundle over the
“space of diagrams”. A priori, this might be a non-trivial bundle, one could move

Σ around a non-trivial loop and get a non-trivial automorphism of ĤF (Σ,α,β, z).
This would mean that, a priori, the Goeritz group of the Heegaard splitting (Y,Σ)

might act non-trivially on ĤF (Σ,α,β, z).
As we show in [3], Heegaard Floer homology is in fact natural and is equipped

with a diffeomorphism action. If D and D′ are both based diagrams of the based

3-manifold (Y, p), then we construct an isomorphism ΦD,D′ : ĤF (D) → ĤF (D′).
These satisfy the property that ΦD′,D′′ ◦ ΦD,D′ = ΦD′′,D. Then the vector space

ĤF (Y, p) is defined to be
∐

D

ĤF (D)/ ∼,

where the disjoint union is taken over all based diagrams D of (Y, p) with z = p,

and the equivalence relation ∼ is defined by requiring that x ∈ ĤF (D) and

x′ ∈ ĤF (D′) are equivalent if and only if x′ = ΦD,D′(x). Given a diffeomor-

phism d : (Y, p) → (Y ′, p′), we define the diffeomorphism map d∗ : ĤF (Y, p) →
ĤF (Y ′, p′) as follows: Let D be a diagram of (Y, p), and D′ = d(D) the corre-

sponding diagram of (Y ′, p′). Then d∗ maps the equivalence class of x ∈ ĤF (D)

to the equivalence class of d∗(x) ∈ ĤF (D′), where d∗ on the chain level is simply
given by the map d induces from Tα ∩ Tβ to Tα′ ∩ Tβ′ .

In fact, we provide a set of axioms for arbitrary invariants of Heegaard diagrams
that should be satisfied in order to give rise to a functorial invariant of 3-manifolds.
The proof proceeds by studying the bifurcations of generic 2-parameter families of
gradient vector fields on 3-manifolds. A Heegaard diagram arises from a generic
gradient on Y , while bifurcations of generic 1-parameter families of gradients cor-
respond to certain generalized Heegaard moves. We assign an isomorphism to
every classical Heegaard move, and then show that no loop of moves produces a
non-trivial monodromy, where a move can be a diffeomorphism Σ → Σ′ that is

isotopic to the identity in Y (without this, it is impossible to compare ĤF for
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Figure 1. A simple handleswap

different Heegaard surfaces). From this loop of moves, we construct a loop of gra-
dient vector fields, parametrized by S1. Then we extend this to D2. The link of
a codimension-2 bifurcation gives a loop of diagrams, and we simplify these loops
until consecutive diagrams are related by the standard Heegaard moves and dif-
feomorphisms isotopic to the identity. Finally, we show the monodromy is trivial
along each loop in the simplification. It turns out that, in addition to the loops

checked in [2], one only has to verify that ĤF has no monodromy for one specific
type of loop that we call a simple handleswap, see Figure 1.

There are simple examples of multi-pointed Heegaard diagrams where moving
the basepoints produces non-trivial automorphisms of the Floer homology. We

conjecture that this is also the case for ĤF (Y, p), but not for the other flavors of
Heegaard Floer homology. The latter claim is motivated by the fact that the other
flavors are isomorphic to the various versions of monopole Floer homology, whose
construction does not depend on the choice of basepoint.
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Free Knots and Parity in Low-Dimensional Topology

Vassily Olegovich Manturov

The main objective of my talk is the concept of parity. Assume for some topo-
logical theory objects are encoded by diagrams modulo moves. Assume further
that diagrams have some combinatorial data (crossings, vertices, singularities, etc)
such that there is a natural rule of decorating this combinatorial data with ele-
ments from some finite set (usually, {0, 1}) in such a way that if two diagrams
are connected by one move then their combinatorial data is transformed in a good
way.

Then this allows one to do the following.

(1) Construct functorial mappings between objects.
(2) Reduce problems about objects to questions about their representatives.
(3) Prove minimality theorems.
(4) Refine many well-known invariants.
(5) Localize the non-triviality: a non-triviality of an object can follow from

the existence of odd data.

Our main domain is virtual knot theory [1] with its closed relatives: free knots,
flat knots, graph-links etc [3, 4, 5, 7, 9]. We do not distinguish between virtual
knot diagrams that differ by a detour move.

By a parity for the knot theory K we mean a rule for associating 0 or 1 with
every (classical) crossing of every diagram K from the theory K in a way such
that:

(1) For every Reidemeister move K → K ′ the corresponding crossings have
the same parity;

(2) For each of the three Reidemeister moves the sum of parities of crossings
taking part in this move is zero modulo two.

A flat knot is an equivalence class of virtual knots modulo crossing switches.
A free knot is an equivalence class of virtual knots modulo crossing switches and
virtualizations.

The main example of parity is the Gaussian parity, i.e., the parity for virtual
knots (free knots, flat knots) which associates with every classical crossing 0 if and
only if the corresponding chord of the Gauss diagram is even, i.e., it is linked with
evenly many chords [2]. Nevertheless, many results work for arbitrary parity.

One of the striking examples [3] is the parity bracket [·] which takes free knots to
Z2-linear combinations of framed 4-graphs modulo the second Reidemeister moves.
In the case when all crossings are odd, the bracket allows one to reduce questions
about free knots to questions about their representatives.

We mention the following results based on parity.
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(1) Counterexample to Turaev’s conjecture. In [11], Turaev conjectured
all free knots to be trivial. In [3], infinitely many examples of non-trivial
free knots were constructed.

(2) Cobordisms. It was proved [4] that free knots admit non-trivial cobor-
dism classes: there are free knots not spannable by discs with typical
3-dimensional singularities.

(3) Reducing problems about knots to problems about representa-
tives. In [6], it was first proved that the minimal virtual crossing number
of virtual knots can grow quadratically with respect to the minimal classi-
cal crossing number. This result was obtained by applying parity argument
and the fact that the minimal crossing number of 4-valent graphs grows
quadratically with respect to the number of vertices.

By using the bracket [·], one easily shows that free knots are generally
not invertible and that long free knots generally do not commute.

(4) Projection. For every virtual knot diagram K whose underlying genus
is not minimal in the given knot class, there exists a diagram K ′ obtained
from K by making some classical crossings virtual and having the same
knot type as K.

There exists a projection from the set of virtual knots to the set of
classical knots: for every virtual knot diagram K there exists a classical
knot diagramK ′′ obtained by making some classical crossings ofK virtual.

As a consequence, we see that minimal classical crossing number of a
virtual knot can be achieved only on classical diagrams (for virtual dia-
grams which are not detour-equivalent to any classical one, it is strictly
greater).

(5) By using free knots, one constructs a virtual knot with the unit Jones
polynomial which can not be undone by Reidemeister moves and virtual-
izations. This disproves the corresponding conjecture from [8].

Questions for further research:

(1) Categorification of the bracket. The bracket [K] of a 4-valent graph
with an opposite half-edge structure is a sum of graphs which correspond
to states at even crossings of the initial graph. For each crossings, the two
local states A and B are not ordered, so, it there is no straightforward
way to generalize Khovanov’s construction. How to construct a complex
whose Euler characteristic is the parity bracket (with all graphs treated,
say, as gradings)?

(2) Higher dimensions. How to construct the parity theory for higher-
dimensional objects? For example, for 2-surfaces in 4-space and which
analogs of properties listed above can be obtained in this case? Is there
any analog of the bracket in higher dimensions? A hint can be taken from
[4].

(3) Singular knots. It is well known [10] that there is no non-trivial parity
for classical knots. The main reason behind that is that the plane has no
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homology unlike closed 2-surfaces of positive genera, virtual knots live in.
Probably, there should be some parity for singular knots in 3-space.

(4) The same question about (classical) Legendrian knots.
(5) The same question about classical knots when we restrict ourselves to

the situation when Reidemeister moves between the two knots are not
arbitrary but with some restriction, e.g., when study fix a homotopy class
of a path in the space of knots.

(6) Group Theory. Homotopy classses of curves on 2-surfaces can be con-
sidered as conjugacy classes of elements in the fundamental group of the
surface; on the other hand, they can be considered as euqivalence classes of
diagrams modulo Reidemeister moves. Which other groups can be studied
as similar equivalence classes? When can one locate the information about
groups at crossings? How to define the bracket for the group?

(7) Arbitrary 3-manifolds. Is there any parity theory for knots in arbitrary
3-manifolds?

(8) Are there applications of parity in link homotopy theory?
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Mutant knots with symmetry

Hugh R. Morton

We compare knots K and K ′ made up from oriented 2-tangles A,B and C as in
figure 1.

When the tangles A and B are symmetric under the half-twist in figure 2 the
knots K and K ′ are examples of mutants in the sense of Conway.
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K =

A

B
C K′ =

B

A
C

Figure 1

A = A , B = B

Figure 2

We look at ways of distinguishing such knots K and K ′ by comparing the
Homfly polynomials of their satellites.

Examples of knots K and K ′ include pretzel knots such as those in figure 3.

K = , K′ =

Figure 3

Mutants are never distinguished by their Homfly polynomial nor that of any
2-string satellite.

We show that, in contrast to the general case, the directed m-string satellites
of any knots K and K ′ made up of symmetric tangles as above share the same
Homfly polynomial for all m ≤ 5. In addition the satellites of K and K ′ based on
the (m,n) torus knot pattern, where m and n are coprime, have the same Homfly
polynomial for all values of m.

However m-string satellites of K and K ′ other than the true (m,n) cables can
have different Homfly polynomials when m > 5.

It can be shown explicitly that the 6-parallels of the two pretzel knots in figure
3 have different Homfly polynomials.

The proofs make use of the relation between the quantum sl(N) invariants of K
andK ′ and the Homfly polynomials of their satellites. In particular the calculation
for the difference of the Homfly polynomials of the two 6-parallels depends on a



Invariants in Low-Dimensional Topology and Knot Theory 1709

comparison of the quantum sl(3) invariants of the two pretzel knots based on the
irreducible 27 dimensional sl(3) module with partition 4, 2.

A detailed account of these results appears in [1].
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Cork twisting exotic Stein 4-manifolds

Kouichi Yasui

(joint work with Selman Akbulut)

We discuss how to construct exotic 4-manifolds using corks ([1], [2], [3]). In par-
ticular, from any 4-dimensional compact oriented handlebody X without 3- and
4-handles and with b2(X) ≥ 1, we construct arbitrary many compact Stein 4-
manifolds which are all homeomorphic but mutually non-diffeomorphic, so that
their topological invariants coincide with those of X .
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Towards a categorification of the universal sl(2) link invariant

Anna Beliakova

Witten-Reshetikhin-Turaev invariants of any homology 3-sphere at all roots of
unity are dominated by a certain generating function - called a unified invariant,
which has its values in the Habiro ring. This ring is a cyclotomic completion of
the polynomial ring in one variable with integral coefficients.

In the talk we provide evidence to the fact that the unified invariants are more
natural objects for categorification than the original invariants. A categorification
program for unified invariants is based on a categorification of the universal sl(2)
link invariant, which is a generalization of the colored Jones polynomial taking
values in the universal enveloping algebra of the corresponding quantum group.

Together with K. Habiro we recently made a crucial step towards a categorifi-
cation of the universal R-matrix. We constructed an unbounded bicomplex which
belongs to the Drinfeld center of the Khovanov-Lauda 2-category, whose Euler
characteristic is the ribbon element of quantum sl(2).
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Corks and Exotic Smooth Structures of 4-Manifolds

Cagri Karakurt

It is known that any two simply connected homotopy equivalent closed smooth
4-manifolds differ by a surgery along a contractible codimension 0 sub-manifold
so-called cork. Understanding gauge theoretical properties of corks play a crucial
role in smooth classification of 4-manifolds. In this talk I will present a joint work
with S. Akbulut on calculation of relative Ozsváth-Szabó invariants of an infinite
family corks.

Unlinking numbers of links and their families

Slavik Jablan

The main topic of this talk is the Bernhard-Jablan Conjecture [2, 8, 9] and
recent results related to it. The term “link” will be used for both knots and links.
In this setting we have the following definition:

Definition 1.

a) The unlinking number u(D) of a link diagram D is the minimal number of
crossing changes on the diagram required to obtain a diagram representing
an unlink.

b) The uM (L) of a link L in R3 is the minimum of u(D) over all minimal
crossing number diagrams D representing L.

c) The unlinking number u(L) of a link L in R3 is the minimum of u(D)
over all diagrams D representing L.

Computing unlinking number is usually very difficult and complex problem.
Therefore we define BJ-unlinking number which is computable due to the algo-
rithmic nature of its definition.

Definition 2. For a given crossing v of a diagram D representing link L let Dv

denote the link diagram obtained from D by switching crossing v.

a) The BJ-unlinking number uBJ(D) of a diagram D is defined recursively
in the following manner:
(1) uBJ(D) = 0 iff D represents an unlink.
(2) uBJ(D) = 1+min

Dv

uBJ(Dv) where the first minimum is taken over all

crossings v of D and the second minimum is taken over all minimal
diagrams of a link represented by Dv for which the value is already
defined.

b) The BJ-unlinking number uBJ(L) of a link L uBJ(L) = min
D

uBJ(D)

where the minimum is taken over all minimal diagrams D representing L.

Bernhard [2] in 1994 and independently Jablan in 1995, conjectured that for
every link L we have that u(L) = uBJ(L).
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Definition 3. Let S denote the set of numbers in the unreduced1 Conway sym-
bol C(L) of a link L [3]. Given C(L) and an arbitrary (non-empty) subset S̃ =
{a1, a2, . . . , am} of S, the family FS̃(L) of knots or links derived from L is con-

structed by substituting each ai ∈ S̃, ai 6= 1 in C(L) by sgn(a)(|a|+n), for n ∈ N+.

For even integers n ≥ 0 this construction preserves the number of components,
i.e., we obtain (sub)families of links with the same number of components. If all
parameters in a Conway symbol of a knot or link are 1, 2, or 3, such a link is called
generating.

For alternating knots, signature can be computed by using a combinatorial for-
mula derived by P. Traczyk [14]. We will use this formula, proved by J. Przytycki,
in the following form, taken from [13], Theorem 7.8, Part (2):

Theorem 1. If D is a reduced alternating diagram of an oriented knot, then

σD = −1

2
w +

1

2
(W −B) = −1

2
w +

1

2
(|Ds+| − |Ds−|),

where w is the writhe of D, W is the number of white regions in the checkerboard
coloring of D, which is for alternating minimal diagrams equal to the number of
cycles |Ds+| in the state s+, and B is the number of black regions in the checker-
board coloring of D equal to the number of the cycles |Ds−| in the state s−.

Introducing orientation of a knot, every n-twist (chain of digons) becomes par-
allel or anti-parallel.

Lemma 2. By replacing n-twist (n ≥ 2) by (n+2)-twist in the Conway symbol of
an alternating knot K, the signature changes by −2 if the replacement is made in a
parallel twist with positive crossings, the signature changes by +2 if the replacement
is made in a parallel twist with negative crossings, and remains unchanged if the
replacement is made in an anti-parallel twist.

Theorem 3. The signature σK of an alternating knot K given by its Conway
symbol is

σK =
∑

P

−2
[ni

2

]
ci + 2c0,

where the sum is taken over all parallel twists ni, ci ∈ {1,−1} is the sign of
crossings belonging to a parallel twist ni, and 2c0 is an integer constant which can
be computed from the signature of the generating knot.

The proof of this theorem follows directly form the preceding Lemma, claiming
that only additions of twists in parallel twists in a Conway symbol result in the
change of signature, and that by every such addition, signature changes by −2ci.
Notice that the condition that we are making twist replacements in the standard
Conway symbols, i.e., Conway symbols with the maximal twists, is essential for
computation of general formulae for the signature of alternating knot families.

1The Conway notation is called unreduced if 1’s denoting elementary tangles in vertices are
not omitted in symbols of polyhedral links.



1712 Oberwolfach Report 28/2012

K. Murasugi [11] proved the lower bound for the unknotting number of knots,

u(K) ≥ |σK |
2 . Using this criterion, for many (sub)families of knots we can confirm

that their BJ-unknotting numbers, i.e., unknotting numbers computed according
to Bernhard-Jablan Conjecture, represent the actual unknotting numbers of these
families.

Let be given the Conway symbol of a knot family F with parameters p1, p2, . . . ,
pn denoting twists (pi > 1, i = 1, . . . , n). The polynomial with variables p1, p2, . . . ,
pn and integer coefficients, obtained as the evaluation of the Conway polynomial
of the family F for x = 2i, where i is the imaginary unit, will be called the critical
polynomial.

Conjecture 4. For every knot or link, the maximal degree of every variable in its
critical polynomial is 1.

If Conjecture 4 is true, following the changes of the sign of critical polynomial,
we will be able to obtain general formulae for the signature of particular subfamilies
of nonalternating knots and links and confirm their unknotting numbers estimated
according to BJ-conjecture.

Except the above mentioned problems, we will consider a few other topics re-
lated to unknotting: ascending numbers [12, 7], knot distances [4], smoothing
numbers (band unknotting numbers) [1], pseudodiagrams and their trivializing
and knotting numbers [5, 6], as well as unknotting numbers related to virtual
knots and links [10, 6].
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Detecting tightness through open book decompositions

Andy Wand

Let M be a closed, oriented 3-manifold. An open book decomposition of M
is a fibration of the complement of an embedded link B (the binding) in M over
S1, such that each fibre (the page) is the interior of a Seifert surface for B. Open
book decompositions of 3-manifolds provide a very useful topological framework
for studying properties of contact structures. In particular, work of Giroux ([1])
has shown a 1-1 correspondence between isotopy classes of contact structures onM
and stabilization-equivalence classes of open book decompositions. The starting
point of this talk is the problem of determining how various properties of a contact
structure are reflected in arbitrary corresponding open book decompositions.

The structure of the talk is as follows: we begin by describing how, given the
data of an open book decomposition along with a collection of disjoint, properly
embedded arcs in a page, to define a necessary condition for tightness of the sup-
ported contact structure, in some sense a generalization of the “right-veering”
condition of Honda, Kazez, and Matić ([2]). We further show that, in contrast
to right-veering, our condition is invariant under stabilization and destabilization,
and composition of the monodromy of the open book with arbitrary positive Dehn
twists. It follows then that the condition is indeed a sufficient condition for tight-
ness, thus providing the first known algorithm for determining tightness from an
arbitrary open book decomposition.

A particular application is that tightness of a closed contact 3-manifold is pre-
served under Legendrian surgeries on that manifold. This provides a much sought-
after link between intrinsically 3-dimensional contact phenomena and those which
are induced as the boundaries of 4-dimensional manifolds with particular geometric
(e.g. Stein or symplectic) structures.

We also indicate an interpretation of the property as the vanishing of a certain
homology. Conjecturally, this should be isomorphic to the 0-level filtration of the
embedded contact homology of Hutchings (see the appendix of [3]), and should give
some indication of how the grading on the embedded contact homology differential
carries over to the various homology theories (Heegaard Floer and Monopole Floer
in particular) to which it is isomorphic.
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[2] K. Honda, W. Kazez and G. Matić, Right-veering diffeomorphisms of compact surfaces with
boundary I, Invent. Math. 169 (2007), no. 2, 427–449.

[3] Latschev, Janko and Wendl, Chris, Algebraic torsion in contact manifolds, With an appen-
dix by Michael Hutchings, Geom. Funct. Anal. 21 (2011), 1144–1195.



1714 Oberwolfach Report 28/2012

The 2-variable Jones polynomial and the invariants from the
Yokonuma–Hecke algebras

Sofia Lambropoulou

(joint work with Maria Chlouveraki)

We compare the knot invariant defined using the Juyumaya trace on the
Yokonuma-Hecke algebras with the 2-variable Jones polynomial, and we show that
they do not coincide except in a few trivial cases.

1. The 2-variable Jones or HOMFLYPT polynomial

Let Bn denote the Artin braid group of type A. Closing a geometric braid

β with simple arcs gives rise to an oriented knot or link β̂ and, by the classical
Markov theorem, oriented knot or link types are in bijective correspondence with
equivalence classes of braids in ∪nBn under the moves:

(i) Conjugation in each Bn: αβ ∼ βα;
(ii) Positive and negative stabilization: α ∼ ασn

±1, α ∈ Bn.

Let q ∈ C \ {0}. The Iwahori-Hecke algebra Hn(q) of type A is a C-associative
algebra with generators G1, G2, . . ., Gn−1, which can be defined as the quotient
of the algebra CBn over the quadratic relations G2

i = (q− 1)Gi + q for all i. The
algebras Hn(q) support the Ocneanu trace with parameter ζ [3, Theorem 5.1], a
unique linear Markov trace τ :

⋃
n≥0 Hn(q) −→ C[ζ]. Another characterization of

the Ocneanu trace can be given by its values on the basis elements Gwµ
, τ(Gwµ

) =

ζℓ(wµ), where wµ is a minimal length representative of the conjugacy class of Sn

parametrized by the partition µ of n [2], and ℓ(wµ) denotes the length of wµ. After
re-scaling and normalizing the Ocneanu trace according to the Markov theorem,
Jones constructed the 2-variable Jones or HOMFLYPT polynomial [3], an isotopy
invariant of oriented links:

P (α̂) = (DH)
n−1

(
√
λH)ǫ(α) (τ ◦ π) (α)

where α ∈ Bn, for any n ∈ N, π : CBn −→ Hn(q) is the natural algebra epi-
morphism that maps the braid generator σi to the algebra generator Gi, ǫ(α) is
the algebraic sum of the exponents of the braid generators in the braid word α,

λH := ζ+(1−q)
qζ and DH := − 1−λHq√

λH(1−q)
= 1

ζ
√
λH

.

2. Link invariants from the Yokonuma-Hecke algebras

The Yokonuma-Hecke algebra [7], Yd,n(u), for d ∈ N and u ∈ C\{0}, is a C-
associative algebra with generators g1, . . . , gn−1, t1, . . . , tn, satisfying: the braid
relations for the gi’s, the relations titj = tjti for all i, j, the modular relations
tdj = 1 for all j, the mixed relations tjgi = gitsi(j) for all i, j, where si denotes the
transposition (i, i+ 1), and the quadratic relations:

g2i = 1 + (u− 1) ei + (u − 1) ei gi for all i

where ei :=
1
d

∑d−1
s=0 t

s
i t

−s
i+1, idempotents in Yd,n(u).
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The algebras Yd,n(u) support the Juyumaya trace with parameters z, x1, . . . ,
xd−1 in C\{0} [4, Theorem 12], a unique linear Markov trace tr :

⋃
n≥0 Yd,n(u) −→

C[z, x1, . . . , xd−1]. Trying to normalize and re-scale the Juyumaya trace according
to the Markov braid equivalence, in order to obtain a link invariant, turns out to be
impossible, basically because tr(αen) 6= tr(en)tr(α), unless the trace parameters
x1, . . . , xd−1 satisfy the so-called E-system [5, 6]:

∑d−1
s=0 xm+sxd−s = xm

∑d−1
s=0 xsxd−s (m = 1, . . . , d− 1)

where the sub-indices on the xj ’s are regarded modulo d and x0 := 1. As it is
shown in [5] (in the Appendix by Paul Gérardin), the solutions of the E-system are
parametrized by the non-empty subsets S of Z/dZ. The case E := tr (ei) = 1 leads
to the “trivial” solution: x1 a d-th root of unity and xm = xm

1 (m = 1, . . . , d− 1).
Given a solution XS = {x1, . . . , xd−1} of the E-system, a link isotopy invariant

∆S was defined in [6], depending on the variables u, z:

∆S(α̂) = Dn−1
Y (

√
λY)

ǫ(α) (tr ◦ δ) (α),
where α ∈ Bn, for any n ∈ N, δ : CBn −→ Yd,n(u) is the natural algebra
homomorphism that maps the braid generator σi to the algebra generator gi,
ǫ(α) is the sum of the exponents of the braid generators in the braid word α,

λY := z+(1−u)E
uz , and DY := 1−λYu√

λY(1−u)E
= 1

z
√
λY

.

3. Comparing P and ∆S

It is natural to ask how the invariants P and ∆S compare. Computational data
so far do not indicate that one invariant is stronger than the other. Thus, it is
possible that the two invariants are topologically equivalent. For comparing the
two invariants we would like to introduce a given solution of the E-system as early
in the construction as possible. Therefore, in [1] we first consider the specialization
map θ : C[z, x1, . . . , xd−1] −→ C[z], given by z 7→ z and xm 7→ xm (m = 1, . . . , d−
1), for x1, . . . , xd−1 ∈ C \ {0}. Then we consider the specialized Juyumaya trace
θ ◦ tr with parameter z and we show that, as in the case of the Ocneanu trace,
this is uniquely determined by its values on the elements gwµ

, tr(gwµ
) = zℓ(wµ).

We show this by considering the linear map ϕ :
⋃

n≥0 Yd,n(u) −→
⋃

n≥0 Yd,n(u)

defined inductively on Yd,n(u), for all n ∈ N, by the following rules:

ϕ(1) = 1
ϕ(wngngn−1 . . . git

k
i ) = gnϕ(wngn−1 . . . git

k
i )

ϕ(wnt
k
n+1) = xkϕ(wn)

where wn ∈ Yd,n(u), x1, . . . , xd−1 ∈ C \ {0}, x0 = 1 and k ∈ Z/dZ. Then we show
that tr◦ϕ = θ◦tr and that ϕ(Yd,n(u)) is the C-linear subspace of Yd,n(u) spanned
by the elements gwµ

.
Mapping now gi 7→ Gi and tmi 7→ xm (m = 1, . . . , d − 1) does not define an

algebra homomorphism between Yd,n(u) and Hn(u), unless we are in the case
E = 1. In this case we can then show that P and ∆S coincide.
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The map ϕ provides us with the earliest possible specialization to a solution
of the E-system during the construction of ∆S . So, we proceed in [1] with com-
paring the invariants P and ∆S as maps on isotopy classes of knots and links.
Forcing P = ∆S on the identity braid 1 in each Bn we deduce DH = DY.
Then, taking α = σ2

1 , α = σ3
1 and α = σ1σ

2
2σ1σ

2
2 we find necessary condi-

tions for the maps P and ∆S to coincide. Namely, when u = 1 or q = 1 or
E = tr(ei) = 1. Then we prove that these are also sufficient conditions for
the maps P and ∆S to coincide on any braid α. Our proof is by induction on
ν(α) := | sum of all negative exponents of the braid generators in α |. For the first
step (ν(α) = 0), we proceed by induction on n on the braid monoid B+

n , see [1]
for details. To recapitulate, in [1] we prove the following.

Theorem 1. Let XS be a solution of the E-system. Let tr be the Juyumaya trace
on Yd,n(u) with parameters z, XS, and let τ be the Ocneanu trace on Hn(q) with
parameter ζ. Let E = tr(ei) for all i = 1, . . . , n − 1. Then P = ∆S or, more
generally, P is a scalar multiple of ∆S if and only if we are in one of the cases
portrayed in the following tables:

Case q ζ u z E

1 1 z 1 C
∗

any

2 1 −z 1 C
∗

any

3 C
∗ q 1 1 any

4 C
∗ q 1 −1 any

5 C
∗

−1 1 1 any

6 C
∗

−1 1 −1 any

7 1 E C
∗

−E any

Case q ζ u z E

8 1 −E C
∗

−E any

9 C
∗ q C

∗
−1 1

10 C
∗ q C

∗ u 1
11 C

∗
−1 C

∗
−1 1

12 C
∗

−1 C
∗ u 1

13 u z C
∗

C
∗ 1

14 1/u −z/u C
∗

C
∗ 1
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Seiberg-Witten maps and stable homotopy

Stefan Bauer

Consider the space of all compact non-linear perturbations of a fixed linear Fred-
holm operator L satisfying a boundedness condition: Preimages of bounded sets
are supposed to be bounded. Suitably topologized, this space will have the weak
homotopy type of the infinite loop space

Ω∞Σ∞(S−ind(L)).

The Seiberg-Witten map for a closed four-manifold satisfies the necessary bound-
edness conditions and thus defines a map of spectra: From the Thom spectrum
of the virtual index bundle of the Dirac operator over the Picard group of the
manifold to the sphere spectrum. In this way one obtains a lift of what is known
as the Bauer-Furuta invariant [1] from the homotopy category of spectra to the
category of spectra. An extension of this construction to compact four-manifolds
with boundary a finite union of rational homotopy three-spheres was announced.
From this extension one can conclude that the 11/8 conjecture holds for spin
four-manifolds with finite fundamental group.
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Recognizing trivial links in polynomial time

Chad Musick

We let a link be a family of circles disjointly embedded in R3∪{∞}. Trivial links
are those links embedded such that the 3-dimensional space may be continuously
deformed so that the resultant link is embedded as a subset of R2. We give a
method to decide, for any link L, whether or not L is trivial. This method is
polynomial in complexity.

We proceed by developing two new measures of complexity, the crumple and
the sentence length. To define these, we restrict our attention to links embedded
in a restricted fashion as described below.

Let L be a link. If we may find a finite set S of concentric spheres of positive
integer radius such that the closure of the portion of L lying in (R3 − S)∪ {∞} is
a set of disjoint line segments each lying along a line through the common center
of the members of S, we say that the link is a tar link.

Given a tar link L with a set S of spheres as described above, we let the crumple
of L be the sum of the lengths of the portions of L lying in the complement of S.
By choosing a tar link in which all of the members of the intersection of L and
the complement of S lie in the plane R2, we may write a descriptive sentence of
the embedding of L. The length of this sentence will depend upon the number of
line segments in the complement of S and on the number of mutual intersections
between S, L, and R2.
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We give a method to construct a sentence from any link diagram. The initial
length of this sentence will be a linear multiple of the number of crossings in the
diagram. By its construction, the crumple of the resulting link will be at worst
quadratic on the number of crossings. As well, the number of crossings in any
diagram of a sentence will be at most quadratic on the length of the sentence.
This gives us an upper bound on the complexity of the diagrams as a function of
the length of the descriptive sentence.

As a Lemma, we show that given a trivial link and a descriptive sentence for
a tar link equivalent to this link – and so also trivial – there is a simple isotopy
occurring entirely within one of the spheres associated to the link such that the
resultant link has a strictly smaller crumple. This gives an immediate algorithm
to determine whether or not a link is trivial.

Knowing this Lemma, we then prove that there is a strictly monotonic sequence
on a 5-tuple describing a link. Each of the measures of this tuple is at worst
quadratic on the number of crossings of the diagram used to generate the initial
sentence, and so on the number of crossings of the original diagram. We show that
there are a polynomial number of attempts needed before a move may be found
that results in a strictly lower tuple from a trivial link. Taken together, these
moves constitute an algorithm to decide whether or not a link is trivial. Those
links that are trivial will produce a sequence of diagrams proceeding stepwise to a
trivial diagram. Those links that are not trivial will terminate when none of the
polynomial number of possible moves produces an improvement in the complexity
tuple.

We demonstrate the use of the algorithm on two trivial knot diagrams and give
a complete description of the construction of the sentence and of the algorithm.
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How to Fold a Manifold

J. Scott Carter

A classical result of J.W. Alexander states that any k+2 dimensional oriented
compact connected manifold can be obtained as a simple branched cover of the (k+
2)-sphere with branch set an embedded k-dimensional manifold. Other important
results include those of Hilden and Montesinos which indicate that a 3-dimensional
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manifold is a simple 3-fold branched cover of the 3-sphere, and that of Iori and
Piergallini that states that a 4-dimensional manifold can be obtained as a simple
5-fold branched cover of the 4-sphere branched along am embedded surface in the
4-sphere.

Our result (Carter and S. Kamada) is that we can embedded 2-fold simple
branched covers of the 2,3, and 4-sphere branched along a linked oriented manifold
in the sphere times a 2-disk in such a way that the projection to the sphere is the
covering map. Similarly, we can immerse the 3-fold branched covers in the same
space. Covers with higher branching indices can often be embedded. In this way,
we are initiating a theory of braids for knotted 3-manifolds in 5-space and knotted
4-manifolds in 6-space.

Gluck twisting 4-manifolds with odd intersection form

Selman Akbulut

Given an imbedding of Fg ⊂ M4, where Fg is a surface of genus g, I discussed
the question of when (and if) you get an exotic copy of M by twisting M along Fg

(when g = 0 this operation is called Gluck twisting). In particular, I will discuss
a recent theorem about Gluck twisting proved jointly with Yasui, which says that
Gluck twisting 4-manifold M with odd intersection form, along a 2-sphere S does
not change the smooth structure of M under mild conditions on the homology
class of S (e.g. when it is homologous to zero).

Distributivity versus associativity in the homology theory of algebraic
structures

Józef H. Przytycki

1. Introduction

While homology theory of associative structures, such as groups and rings,
has been extensively studied in the past beginning with the work of Hurewicz,
Hopf, Eilenberg, and Hochschild, the non-associative structures, such as racks or
quandles, were neglected until recently. The distributive structures have been
studied for a long time and even C.S. Peirce in 1880 emphasized the importance
of (right) self-distributivity in algebraic structures. However, homology for such
universal algebras was introduced only between 1990 and 1995 by Fenn, Rourke,
and Sanderson. We develops theory in the historical context and propose a general
framework to study homology of distributive structures. We outline potential rela-
tions to Khovanov homology and categorification, via Yang-Baxter operators. We
use here the fact that Yang-Baxter equation can be thought of as a generalization
of self-distributivity.
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1.1. Invariants of arc colorings. Consider a link diagram D, say , and a

finite set X . We may define a diagram invariant as the number of colorings of
arcs of D by elements of X , colX(D). Even such a naive definition leads to a link
invariant colX(L) = minD∈LcolX(D), where D ∈ L means that D is a diagram
of L.1. More sensible approach would start with magma (X ; ∗) with the coloring

convention
*a  b

a

b

b , Again, let for a finite X , colX(D) denote the number of

colorings of arcs of D by elements of X , according to the above convention at
every crossing. We can define an oriented link invariant by considering colX(L) =
minD∈LcolX(D). Alternatively, we can minimize colX(D) over minimal crossing
diagrams of L only. Such an invariant would be very difficult to compute so
it is better to look for properties of (X ; ∗) so that colX(D) is invariant under

Reidemeister moves: R1 , gives idempotency relation a ∗ a = a. R2 ( )

forces ∗ to be an invertible operation and the third move is illustrated in detail
below:

*(a   c)

*(a   c)
R 3a

b

c

c

*

*

(b   c)

b   c

*

a

c

c

a    b

(a    b)

b   c

*   c*

*
*

b

The magma (X ; ∗) satisfying all three conditions is called a quandle, the last
two – a rack, and only the last condition – a shelf or RDS. Thus, if (X ; ∗) is a
quandle then colX(D) is a link invariant. We can do more (after Carter-Kamada-
Saito). We can sum over all crossings pairs ±(a, b) according to the convention

a

b *a     b

−(a,b) 
a

b *a     b

(a,b) 

; the investigation of invariance of
∑±(a, b) under Reidemeis-

ter moves was a hint toward construction of (co)homology of quandles.
Let us now compare homology for associative structures (semigroups) with that

for distributive structures (shelves).

1.2. Group homology of a semigroup. Let (X, ∗) be a semigroup. We define
a chain complex {Cn, ∂n} as follows: Cn(X) = ZXn and ∂n =

∑n
i=0(−1)idi

(alternating sum of face maps). Where d0(x1, ..., xn) = (x2, ..., xn),
di(x1, ..., xn) = (x1, ..., xi−1, xi ∗ xi+1, xi+2, ..., xn), for 0 < i < n and
dn(x1, ..., xn) = (x1, ..., xn−1).
We check that didj = dj−1di for i < j. The sequence of groups Cn (n ≥ 0) with
maps di : Ci → Ci−1, which satisfies equalities didj = dj−1di for 0 ≤ i < j ≤ n is
called a presimplicial group (or presimplicial Z-module).

1.3. Hochschild homology of a semigroup. Let (X ; ∗) be a semigroup. We
define a Hochschild chain complex {Cn, ∂n} as follows Cn(X) = ZXn+1 and the
Hochschild boundary ∂n =

∑n
i=0(−1)idi, where di(x0, ..., xn) = (x0, ..., xi−1, xi ∗

1One can say that it is a nonsense but an invariant nontrivial: colX(L) = |X|2cr(L)+t(L),
where cr(L) is the crossing number of L and t(L) the number of trivial components in L.
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xi+1, xi+2, ..., xn), for 0 ≤ i < n and dn(x0, ..., xn) = (xn ∗ x0, ..., xn−1).
Again, (Cn, di) is a presimplicial module. If (X, ∗) is a monoid, one can define
n+1 homomorphisms si : Cn → Cn+1, called degeneracy maps, by si(x0, ..., xn) =
(x0, ..., xi, 1, xi+1, ..., xn) (similarly, in the case of group homology of a monoid, we
put, si(x1, ..., xn) = (x1, ..., xi, 1, xi+1, ..., xn)). We check that in both cases the
following conditions hold:

(1) didj = dj−1di for i < j,

(2) sisj = sj+1si, 0 ≤ i ≤ j ≤ n,

(3) disj =

{
sj−1di if i < j,
sjdi−1 if i > j + 1,

(4) disi = di+1si = IdCn
.

(Cn, di, si) satisfying conditions (1)-(4) above is called a simplicial module (Z-

module in our case). If we replace (4) by a weaker condition disi = di+1si we deal
with a weak simplicial module, the concept useful in the theory of homology of
distributive structures (spindles or quandles).

1.4. Homology of distributive structures. Recall that a shelf (X ; ∗) is a set
X with a right self-distributive binary operation ∗ : X ×X → X (i.e. (a ∗ b) ∗ c =
(a ∗ c) ∗ (b ∗ c)). We define a (one-term) distributive chain complex Cn, ∂n) as

follows: Cn = ZXn+1 and the boundary operation ∂
(∗)
n =

∑n
i=0(−1)idi, where

di(x0, ..., xn) = (x0 ∗ xi, ..., xi−1 ∗ xi, xi+1, ..., xn).
(Cn, di) is a presimplicial module. If we define si : Cn → Cn+1 by si(x0, ..., xn) =
(x0, ..., xi−1, xi, xi, xi+1, ..., xn), then (Cn, di, si) satisfies conditions (1)-(3) of sim-
plicial module, and if (X ; ∗) is a spindle (a ∗ a = a), then (Cn, di, si) is a weak
simplicial module and degenerate homology (not necessarily trivial) can be defined.

If (X ; ∗) is a rack then the complex (C
(∗)
n , ∂(∗)) is acyclic, but in the general case

of a shelf or spindle homology can be nontrivial with nontrivial free and torsion
part (joint work with A. Crans, K. Putyra and A. Sikora [1, 5, 6]).

1.5. Multi-term distributive homology. One generalize one term distributive
homology as follows. Let X be a set and Bin(X) the set of all binary operations
on X (in fact a monoid with composition a ∗1 ∗2b = (a ∗1 b) ∗2 b and a ∗0 b =
a). We say that S ⊂ Bin(X) is a distributive set if for any pair ∗1, ∗2 ∈ S
we have (a ∗1 b) ∗2 c = (a ∗2 c) ∗1 (b ∗2 c). If (∗1, ..., ∗k) is a distributive set, we
define a multiterm chain complex by taking any linear combination of ∂(∗i), that is
(Cn, ∂

(a1,...,ak)) is defined by Cn = ZXn+1 and ∂(a1,...,ak) = a1∂
(∗1)+ ...+ak∂

(∗k),
where ai ∈ Z. We computed with K. Putyra [5] various multiterm homology,
including that for finite distributive lattices (including Boolean algebras). Also
multiterm homology based on the distributive embedding of G to Bin(G), given
by Greg Mezera, where g → ∗g with a ∗g b = ab−1gb is of great interest.

1.6. From distributivity homology to Yang-Baxter homology. For a given
Yang-Baxter operator we attempt to find presimplicial module using graphical
presentation of the (co)presimplicial category ∆op

pre, from which homology will
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be derived. The figure below illustrate various graphical interpretation of the
generating morphism di of a presimplicial category ∆op

pre. They are loosely related
to homology of set-theoretical Yang-Baxter equation of Carter-Kamada-Saito and
Fenn, and to homology of Yang-Baxter equation of Eisermann [2, 3]. We should
also acknowledge stimulating observations by Ivan Dynnikov.

i

Figure 1. Various interpretation of the graphical face map di
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Spinal open books and algebraic torsion in contact 3-manifolds

Chris Wendl

(joint work with Janko Latschev, Samuel Lisi, Jeremy Van Horn-Morris)

It is a long-standing conjecture1 in 3-dimensional contact topology that if (M, ξ)
is any tight contact manifold and (M ′, ξ′) is obtained from (M, ξ) by Dehn surgery
along a Legendrian knot with framing −1 relative to the canonical contact fram-
ing, then (M ′, ξ′) is also tight. Since Legendrian surgery can be viewed as the

1During the same workshop, Andy Wand announced a proof of this conjecture using open
book decompositions and a new characterization of tightness in terms of the monodromy map.
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attachment of a Weinstein 2-handle and thus gives rise to a Stein cobordism from
(M, ξ) to (M ′, ξ′), it is immediate that it always preserves symplectic fillability;
the latter implies tightness, but the converse is not true. The following joint result
with Janko Latschev shows that there is a great deal of interesting structure within
the class of contact manifolds that are tight but not fillable.

Theorem 1 ([1]). There exists a nested infinite sequence of classes of closed
contact 3-manifolds

{all} = Ξ0 ⊃ Ξ1 ⊃ Ξ2 ⊃ . . . ⊃ Ξ∞ ⊃ {symplectically fillable}
with the following properties:

(1) For each k = 0, 1, 2, . . . ,∞, Ξk is preserved by Legendrian surgery,
(2) Ξ1 contains all closed contact 3-manifolds that are tight.

It is possible that Ξ1 in this result may be precisely the class of tight contact
3-manifolds: this would be equivalent to the statement that a closed contact 3-
manifold has vanishing contact homology if and only if it is overtwisted. That
would of course imply a new proof of the conjecture about surgery and tightness,
but as yet no one knows how to prove that vanishing contact homology implies
overtwistedness. Regardless, one can interpret the theorem as saying that there
is an infinite hierarchy of “degrees of tightness,” in which some tight contact
manifolds are tighter than others. There are examples to show that the inclusions
Ξk →֒ Ξk−1 are all proper (see below). There are also candidates that might
belong to Ξ∞ without being fillable, but no proof of this as yet.

The classes Ξk are defined in terms of a contact invariant that lives in the
Symplectic Field Theory outlined by Eliashberg, Givental and Hofer. The version
of SFT we are interested in is, roughly speaking, the homology of a chain complex

HSFT
∗ (M, ξ) := H∗ (A[[~]], DSFT) ,

where A is a free graded commutative algebra with unit, with generators qγ cor-
responding to closed Reeb orbits γ on (M, ξ), ~ is a formal variable, and

DSFT : A[[~]] → A[[~]]

is a linear operator that encodes a count of rigid pseudoholomorphic curves in
the symplectization of (M, ξ), with cylindrical ends asymptotic to closed Reeb
orbits. This homology is functorial with respect to exact symplectic cobordisms:
in particular, whenever there exists an exact cobordism from (M−, ξ−) to (M+, ξ+),
it induces an R[[~]]-module morphism

HSFT
∗ (M+, ξ+) → HSFT

∗ (M−, ξ−)

which maps [~k] 7→ [~k] for all k ≥ 0. This property is especially useful in light of
the following hypothetical example: suppose that for some choice of suitable data,
the symplectization of (M, ξ) contains only one rigid pseudoholomorphic curve,
which has genus 0, no negative ends and positive ends approaching a set of k
distinct Reeb orbits γ1, . . . , γk. Then it turns out that

DSFT (qγ1
. . . qγk

) = ~
k−1,
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hence the element [~k−1] vanishes inHSFT
∗ (M, ξ). Among other things, this implies

that (M, ξ) cannot have an exact symplectic filling, as [~k] is nontrivial in HSFT
∗ (∅)

for every k ≥ 0.
With this example in mind, we define a numerical invariant, called the order of

algebraic torsion, by

AT(M, ξ) = sup{k ≥ 0 | [~k−1] 6= 0 ∈ HSFT
∗ (M, ξ)} ∈ {0, 1, 2, . . . ,∞},

and then define (M, ξ) to be in Ξk if and only if AT(M, ξ) ≥ k. It follows imme-
diately from the properties described above that if (M, ξ) ∈ Ξk and there is an
exact cobordism from (M, ξ) to (M ′, ξ′), then (M ′, ξ′) ∈ Ξk; in particular this is
true whenever the latter is obtained from the former by Legendrian surgery, since
Stein cobordisms are always exact.

To find interesting examples of contact 3-manifolds with varying orders of al-
gebraic torsion, one needs a source of existence and uniqueness results for holo-
morphic curves. One such source is the relationship between Lefschetz fibrations
and a certain generalization of open book decompositions. To motivate the idea,
consider a Lefschetz fibration Π : E → Σ whose base and generic fiber are both
compact oriented surfaces with nonempty boundary. The boundary of E then has
two smooth faces ∂E = ∂hE ∪ ∂vE, which each inherit fibrations

∂hE :=
⋃

z∈Σ

∂Ez → Σ

∂vE := E|∂Σ → ∂Σ ∼= S1 ⊔ . . . ⊔ S1.

In the simplest example, if Σ is a disk, then the resulting decomposition of ∂E can
be viewed as an open book decomposition, with ∂hE as a tubular neighborhood
of the binding.

More generally, we define a spinal open book on a closed oriented 3-manifold M
to be a decomposition of the form M = MΣ∪MP , where the two pieces (called the
spine and paper respectively) both come with fibrations: the fibers of MP → S1

are surfaces with boundary, the connected components of which are called pages,
while fibers of MΣ → Σ are circles, with Σ being a compact oriented surface with
boundary, the connected components of which are called vertebrae. We require
additionally that the boundary of every page should be a disjoint union of fibers
of the spine. We then say that a contact structure ξ is supported by the spinal
open book if it admits a contact form α such that dα is positive on the interiors
of all pages and the fibers on MΣ are closed Reeb orbits.

It’s important to note that in these definitions, neither Σ nor the fibers of
MP → S1 need be connected, so there can be multiple vertebrae and multiple
families of pages with varying topological types, though in the specific example of
the boundary of a Lefschetz fibration, this does not happen. Indeed, most spinal
open books cannot be boundaries of Lefschetz fibrations, and this observation
becomes very powerful in light of the following joint result with Sam Lisi and
Jeremy Van Horn-Morris:



Invariants in Low-Dimensional Topology and Knot Theory 1725

Theorem 2 ([2]). Suppose (M, ξ) is supported by a spinal open book containing a
page of genus 0. Then the symplectic fillings of (M, ξ) (up to symplectic deforma-
tion equivalence) are in one-to-one correspondence with the Lefschetz fibrations (up
to diffeomorphism) that restrict to the given spinal open book at their boundaries.

This generalizes a result in [3] which covers the case Σ = D2. The main reason
such results hold is that spinal open books always give rise to holomorphic curves:
in general, one can choose data such that each genus g page of a spinal open book
lifts to a holomorphic curve of index 2− 2g in the symplectization, so for the case
g = 0, these curves have the “expected” dimensions and can be extended to a
family of holomorphic curves foliating any given filling. Alternatively, the genus 0
pages in the symplectization can be counted in order to compute SFT, giving rise
to the following:

Theorem 3 ([2]). Suppose (M, ξ) is supported by a spinal open book containing a
page of genus 0 with k+1 boundary components, and also a page of positive genus.
Then [~k] = 0 ∈ HSFT

∗ (M, ξ).

The simplest examples are S1-invariant contact structures on manifolds of the
form S1×Σ, where Σ is a closed oriented surface. In this case the surfaces {∗}×Σ
are convex, and the above theorem applies for instance if the dividing set consists
of k + 1 curves cutting Σ into two pieces, of which one has genus 0 and the other
does not. It is shown in [1] that this contact manifold satisfies AT = k, hence it
belongs to Ξk \ Ξk+1.
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Vassiliev invariants for virtual knots

Heather A. Dye

I construct degree one, finite type invariants for virtual knots. This method
focuses on the idea of partitioning the crossings in a virtual knot diagram into
sets. The sets of crossings are not invariant under the Reidemeister moves, but
the sum of the signs of the crossings in the set (the signed cardinality of the set)
is an invariant of the knot.

Let K+ denote a knot diagram with a positive crossing c. Correspondingly,
let K− denote a knot diagram identical to K+ except at a crossing c – where
the over passing edge is switched to form a negative crossing. Let K• denote a
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knot diagram identical to K+ except that the crossing c is singular. A finite type
invariant V [4] [2] has the property that

V(K•) = V(K+)− V(K−).

More generally, let X be a tuple of k singular crossings in the knot diagram K.
Let σ(X) denote a resolution of each crossing as a positively or negatively signed
crossing and let |σ| denote the sum of negative crossings in σ(X). Summing over
all possible resolutions:

V(KX) =
∑

σ

(−1)|σ|V(Kσ(X)).

The invariant V is said to have finite type ≤ n if V(KX) = 0 for all tuples of length
n+ 1 or greater.

Henrich introduced a degree one, finite type invariant called the gluing invariant
in [5]. Let K be a virtual knot diagram. Let Kc denote the virtual knot diagram
obtained from K by gluing the crossing c (making the crossing a singularity) and
let KcO denote the diagram obtained by attaching a small unknot near c with
a singularity. Let F (K) denote the flat projection of the knot K. The gluing
invariant is a formal sum of equivalence classes of flat virtual knots with one
singular crossing.

G(K) =
∑

c∈K

[F (Kc)− F (KcO)].

(Note that if the crossing c is involved in a Reidemeister I move, then [F (Kc) −
F (KcO)] is the empty diagram.) By extending the flat classical and virtual Rei-
demeister moves to include one singular crossing, the formal sum G(K) becomes
an invariant of virtual knots and a universal, degree one, finite type invariant.

We compute the weight of a chord in a Gauss diagram. The weights partition
the chords into sets which can be used to define finite type invariants of the Gauss
diagrams. A Gauss diagram G is a clockwise oriented circle with a collection, C,
of oriented, signed chords. Equivalence classes of Gauss diagrams are determined
by three types of moves: 1) the introduction or deletion of a single isolated chord,
2) the introduction of two adjacent (feet and head), oppositely signed chords, and
3) the (2,1) and (3,0) triangle moves with appropriately selected signs. (Although
my orientation conventions are slightly different, the set of chord diagram moves
is introduced in [8]. In this paper, Turaev determines the minimum set of moves
required to generate the equivalence classes of Gauss diagrams.) We construct a
map P : C → Z. Let c denote a chord and let Nc be the set of chords that intersect
c. The oriented intersection number of the chord c with the chord x is denoted
intc(x). Then

p(c) =
∑

x∈Nc

intc(x)sgn(x).

The value of p(c) is the weight of the chord. For each integer i, we define Ai(G) =
{c | p(c) = i}, the set of chords with weight i. For a positive integer, we define
Vj(G) = {c | |p(c)| = j}, the set of chords with weight j or −j. The signed
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cardinality of these sets are integers that are denoted as |Ai(G)| and as |Vj(G)|
respectively.

|Ai(G)| =
∑

c∈Ai(G)

sgn(c) and |Vj(G)| =
∑

c∈Vj(G)

sgn(c).

We prove that for any non-zero integer i and any positive integer j, |Ai(G)| and
|Vj(G)| are invariant under the Gauss diagram moves. The proof can be briefly
sketched as follows. Chords involved in a single chord move have weight zero.
Chords involved in a two chord move have the same weight, but have opposite
signs. Their net contribution to the signed cardinality of a set is zero. The weight
of chords is not changed by the triangle moves.

Virtual knots are equivalence classes of virtual knot diagrams that are in one
to one correspondence with equivalence classes of Gauss diagrams [6]. Let K be a
virtual knot diagram and let GK be the corresponding Gauss diagram. We define
Vj(K) (Ai(K)) to be the set of crossings that correspond to chords in Vj(GK) that
have parity j or −j (respectively i). We define the gluing invariant Gj(K) to be
a formal sum of flat virtual knot diagrams with one singular crossing. However,
instead of gluing all crossings, we restrict our attention to crossings with particular
weights.

Gj(K) =
∑

c∈Vj(K)

sgn(c)[F (Kc)− F (KcO)].

This formal sum of flat diagrams with one singular crossing Gj(K) (modulo the
slightly expanded Reidmeister move set) is a degree one Vassiliev invariant.

We can obtain a numerical invariant equivalent to |Vj(K)| by mapping the
formal sum to the integers and each non-empty diagram class, [F (Kc)−F (KcO)],
is mapped to 1. (The value |Ai(GK)| is an invariant of virtual knots, but it is not
a finite type invariant.) We remark that

G(K) =

∞∑

i=1

Gi(K).

Taking products of the Gi(K) produces finite type invariants of higher degree.
(The weights can also be extracted from the polynomial invariant introduced by
Henrich in [5].)

Finite type invariants can be obtained from the Jones polynomial (FK(A)) of
the virtual knot K [6]. We expand FK(ex) as a Taylor series centered at 0. The
coefficient of xk is a finite type invariant of degree k. We illustrate this with
the following calculation. Let K+ (K−) denote a knot diagram with a positive
(respectively negative) crossing. Let KV and KH denote a knot diagram with a
vertical and horizontal smoothing respectively. Now 〈K+〉 = A〈KH〉+A−1〈KV 〉.
After normalization:

FK+(A) = −A−2FKV
−A−4FKH

,

FK−(A) = −A2FKV
−A4FKH

.
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Hence

FK•
(A) = (−A−2 +A2)(FKV

− (−A2 + A−2)FKH
).

We see that the expansion of FK••
(ex) has the form x2g(x) and and the coefficient

of x is zero. Thus the coefficient of xk is a Vassilliev invariant of degree k [6].
The normalized arrow polynomial, WK(A,Ki), [3] is an enhanced version of the

Jones polynomial that tracks the planarity of a knot diagram using the variables
Ki. The normalized arrow polynomial WK•

factors in a similar fashion to FK(A)
and the planarity variablesKi are invariant under Reidemeister moves. As a result,
if we form the Taylor series of WK(ex,Ki) at centered at zero, we can obtain
Vassiliev invariants of degree 1 and higher. The coefficients of the monomials
with the form xiKj in the arrow polynomial WK(ex) expanded as a Taylor series
at 0 are Vassiliev invariants of degree i. Computations suggest that there is a
relationship between the coefficients of WK(A,Ki) and |Vi(K)|.
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Surface bundles, Lefschetz fibrations, and their (multi)sections

Refik Inanc Baykur

Surface bundles and Lefschetz fibrations over surfaces constitute a rich source
of examples of smooth, symplectic, and complex manifolds. Their sections and
multisections carry interesting information on the smooth structure of the un-
derlying four-manifold. In this talk we will discuss several problems and recent
results on surface bundles, Lefschetz fibrations, and their (multi)sections, which
we will tackle, for the most part, using various mapping class groups of surfaces.
Conversely, we will use geometric arguments to obtain some structural results for
mapping class groups.
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On a cohomology theory for colored tangles

Carmen Caprau

1. Introduction

In [6] Khovanov constructed a cochain complex associated to an oriented framed
link whose components are labelled by irreducible representations of Uq(sl(2)).
The graded Euler characteristic of the homology of this complex is the colored
Jones polynomial. Specifically, [6] provides a categorification of the colored Jones
polynomial by interpreting the defining formula for the polynomial

Jn(K) =

⌊n
2
⌋∑

i=0

(−1)i
(

n− i
i

)
J(Kn−2i),

where Kj is the j-parallel cable of the knot K, as the Euler characteristic of a
complex whose objects require the original Khovanov homology [5] of the cablings
Kn−2i, for i = 0, . . . , ⌊n

2 ⌋. This construction works over Z2, due to the sign
ambiguity in the functoriality property of the original Khovanov homology.

A similar approach to constructing homology theories for colored links was pro-
posed by Mackaay and Turner [7], and independently by Beliakova and Wehrli [2],
by exploring ideas of Bar-Natan [1]. In both constructions one needs to juggle with
the sign ambiguity in the functoriality property of the employed Khovanov-type
homology theories.

The goal of this talk is two-folded. First we improve the existing categorifica-
tions of the colored Jones polynomial by giving a clean definition of the colored
invariant of a knot. For that, we employ the universal sl(2) foam cohomology
theory using foams (seamed 2-cobordisms) constructed by the author in [4] (see
also [3]). Moreover, we construct a local colored cohomology theory, in that it
is built with colored tangles in mind, and which “composes” well under tangle
composition, leading to efficient computations of the colored invariants of a knot.

The construction in [4] is defined over the ring R = Z[i, a, h], and it involves
webs and dotted foams modulo local relations. The resulting Khovanov-type coho-
mology theory is properly functorial with respect to tangle or link cobordisms with
no sign indeterminacy. Denote by Kof/h the homotopy category of complexes over
dotted foams modulo certain local relations. Given a diagram D of an oriented
tangle T , the author constructed a formal complex [D] whose isomorphism class
in Kof/h is an invariant of T . If C ⊂ R3 × [0, 1] is a tangle cobordism between

tangles T1 and T2, then there is an induced map [T1] → [T2], well-defined under
ambient isotopy of C (rel. boundary). The category Kof/h has a natural struc-

ture of an oriented planar algebra, and [ · ] is a planar algebra morphism from the
planar algebra of oriented tangles modulo the three Reidemeister moves to Kof/h.



1730 Oberwolfach Report 28/2012

2. Colored tangle-cohomology

We restrict our attention to oriented framed tangles T without closed compo-
nents, whose strands are colored by the same natural number n, or equivalently,
by the (n+ 1)-dimensional irreducible representation of quantum sl(2). Let D be
a diagram of T whose blackboard framing agrees with the given framing of T . The

binomial coefficient

(
n− k
k

)
equals the number of ways of selecting k pairs of

neighbors from n dots placed on a line, such that each dot appears in at most one
pair. A dot-row s is a set of n dots on a line in which some adjacent dots are
paired. Denote by p(s) the number of pairs in s.

Let Γn be the oriented graph whose vertices are all possible dot-rows s corre-
sponding to n. Two vertices s and s′ of Γn are connected by an edge e : s → s′

if and only if all pairs in s are pairs in s′, and p(s′) = p(s) + 1. The height of a
vertex s is equal to p(s), and the edges are oriented towards increasing heights.
In Figure 1 we show such a graph for n = 5. To a dot-row s attach the cable dia-
gram Ds := Dn−2p(s), formed by taking the (n− 2p(s))-parallel cable of D. When
forming an m-parallel cable of D we enumerate the strands in a cross-section of
Dm from left to right by 1 to m, and orient the parallel cable-strands such that
adjacent strands receive opposite orientations, where we give strand 1 the original
orientation of D. To an edge e : s → s′ we attach the cobordism Se : Ds → Ds′

given by contracting the neighboring strands in Ds corresponding to the pair in
s′ but not in s. That is, Se is the cobordism with two inputs and no output for
these two strands, and the identity otherwise (see Figure 1).

_

+

+

+ +

+ + + _
_

e

Se

s s

Figure 1. Graph Γ5 and cobordism Se

We sprinkle the edges of the resulting graph of tangle diagrams and tangle
cobordisms with some minus signs. Let o(s, s′) represent the number of pairs in s

to the right of the only pair in s′\s, and multiply each cobordism Se by (−1)o(s,s
′).

To the latter graph we apply now the morphism [ · ] constructed in the sl(2)
foam cohomology, and form the complex Cn(D) for the colored tangle theory. The
cochain objects are given by

Ci
n(D) :=

⊕

s

[Ds],

where the sum is over all dot-rows s such that p(s) = i. The i-th differential
di : Ci

n → Ci+1
n is a formal sum of all morphisms [Se] corresponding to edges e at

height i, where [Se] : [Ds] → [Ds′ ].
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Theorem 1. The isomorphism class of the cochain complex Cn(D) is an invariant
of the colored framed link T .

To obtain a cohomology theory we apply a functor to switch from the geometric
picture to an algebraic one. Specifically, we employ the Bar-Natan type functor F
constructed in the sl(2) foam cohomology theory, switching from the category of
foams (rel. local relations) to the category of R-modules. This yields an ordinary
complex FCn(D), and we can take its cohomology. The isomorphism class of
the cohomology group Hn(D) := H(FCn(D)) is a triply-graded invariant of the
colored framed tangle T . Moreover, if the tangle T is a knot, the total graded
Euler characteristic of FCn(D) is the colored Jones polynomial of the knot.

We consider now two colored tangle diagramsD1 andD2, whose components are
colored by n. Moreover, we suppose that the vertical tangle composition D1 ◦D2

is defined, and that D1, D2 and D1 ◦D2 have no circle components. Then there
exists a binary operation ∗ defined on the homotopy category of complexes over
Kof/h, such that Cn(D1) ∗ Cn(D2) = Cn(D1 ◦D2).

Denote by (Ci, φi) := Cn(D1) ∗ Cn(D2). Then Ci =
⊕

s,p(s)=i

([D1,s] ⊗R [D2,s])

and

φi(v1 ⊗ v2) :=
∑

e

[S1,e](v1)⊗ [S2,e](v2), for all v1 ⊗ v2 ∈ [D1,s]⊗R [D2,s]

where the latter sum is over all edges e with tail s. The formal tensor product
here is the “gluing” operation of formal complexes coming from the sl(2) foam
cohomology.

Theorem 2. (Ci, φi) is a cochain complex, and (Ci, φi) = Cn(D1 ◦ D2), up to
homotopy.
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Seiberg-Witten theory and four-dimensional homology cobordisms

Nikolai Saveliev

I will talk about an invariant introduced in our joint work with Tom Mrowka
and Daniel Ruberman with an eye toward the study of homology cobordisms in
dimension four. The definition of the invariant uses Seiberg–Witten gauge theory
on homology S1 × S3 and some index theory on manifolds with periodic ends. I
will define the invariant and describe its properties and calculations available up
to date.

Torus bundles, and the lower central series of metabelian groups

Kent E. Orr

(joint work with Gilbert Baumslag and Roman Mikhailov)

Abstract: We address the following question: Given a residually nilpotent,
solvable group G, what do the lower central series quotients tell us about G?

Our approach is motivated by knots and three manifolds, group closure and
localization, and the theory of birational equivalence of affine algebraic sets. We
present some classification results arising in this problem, with answers framed in
terms of classical number theoretical ideas. We briefly consider applications to
torus bundles over the circle.

Description of the talk: The talk arises from a sequence of papers with
Gilbert Baumslag and Roman Mikahilov, most still in preparation, and includ-
ing A new look at finitely generated metabelian groups. The latter will appear
in Contemporary Mathematics: Combinatorial and Computational Group Theory
with Cryptography.

We study this question:
Question: Given a residually nilpotent, finitely presented, metabelian group, G,
what can I conclude about the group G from its lower central series quotients?

In the talk we discussed briefly the relevance of this question to some central
questions in combinatorial group theory, knot theory, and four manifolds, including
the Isomorphism Problem for finitely generated metabelian groups, the Parafree
Conjecture, the topological disk embedding problem, the problem of defining trans-
finite Milnor link invariants, and homology cobordism of manifolds.

Definition 1. A group H is para-G if H is residually nilpotent, finitely generated,
and metabelian, and if there is a homomorphism G → H inducing an isomorphism
on lower central series quotients.

Given a metabelian group G with a short exact sequence

1 → B → G → A → 1

where A and B are abelian, then B has a Z[A]-module structure. We call the
ring RG = Z[A]/Ann(B) the coordinate ring of G. This ring depends only on the
group G and not on the choice of exact sequence above.
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Theorem 1. Let S = 1 + ker{ǫ : Z[A] → Z}. If H is para-G, then;

(1) The coordinate rings of G and H are isomorphic.
(2) S−1[G,G] ∼= S−1[H,H ].

Definition 2. We say that a finitely generated, residually nilpotent, metabelian
group H is para-equivalent to G if H is para-G and G is para-H.

We think of the coordinate ring RG of G and the RG-module S−1[G,G] as the
primary invariants of the para-equivalence class of G.

Our secondary invariant is our telescope of G.
To define this, suppose G is a metabelian group, classified by the second coho-

mology class

k(G) ∈ H2(Gab; [G,G]).

We define G, our telescope of G, to be the group determined by the element

k(G) ∈ H2(Gab;S
−1[G,G])

where the latter is the image of k(G) under the coefficient induced homomorphism
[G,G] → S−1[G,G].

We emphasize that the telescope of G is not new, and is a version of a well
known construction due to J. P. Levine that he called the algebraic closure of G.

Theorem 2 (Telescope Theorem). There is a filtration by subgroups

G = G1 ⊂ G2 ⊂ · · · ⊂ ∪kGk = G

such that;

(1) Each group Gk
∼= G.

(2) The inclusion of any Gk ⊂ Gℓ is a para-equivalence, k < ℓ.
(3) H is para-G if and only if G ∼= H.

This has many corollaries, a few enumerated below.

Corollary 3. If H is para-G and finitely generated, then H and G are para-
equivalent and G is finitely generated.

Corollary 4. If G is poly-cyclic and H is para-G then G and H are para-
equivalent. Furthermore, G contains an isomorph of H of finite index, and H
contains an isomorph of G of finite index.

Corollary 5. Suppose G ∼= M ⋊Z. If the coordinate ring of G is a principal ideal
domain, then every finitely generated para-G group is isomorphic to G.

The Lamplighter group is among numerous examples covered by this last corol-
lary.

We prove a classifying theorem for para-equivalence of finitely generated, resid-
ually nilpotent, metabelian groups.

Definition 3. We call a submodule M ⊂ S−1[G,G] an S-fractional submodule if
this inclusion induces an isomorphism S−1M ∼= S−1[G,G].
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Theorem 6 (Classification Theorem). Define the Ideal Class Monoid of G as
follows:

Cℓ(G) =
{S-fractional submodules of S−1[G,G]}

Aut(G)
.

Isomorphism classes of groups para-equivalent to G lie in one-to-one correspon-
dence to elements of Cℓ(G).

Here Aut(G) acts on the module S−1[G,G] by conjugation, and thus on the set
of S-fractional sub-modules.

We apply this result in the talk to compute para-equivalence classes of torus
bundles over S1. Homeomorphism classes of such bundles correspond to a special
class of real quadratic extensions of the field of rational numbers. We proved:

Theorem 7. For any 3-dimensional torus bundle M such that π1(M) is residually
nilpotent, there are at most finitely many torus bundles with groups para-equivalent
to π1(M).

Numerous examples were given. For instance, for the torus bundle with group
the semi-direct product Z[

√
82]⋊Z, there are precisely four para-equivalent torus

bundles. Here the quotient group Z acts on Z[
√
82] by multiplication by 9 +

√
82.

Curves on class VII surfaces. A gauge theoretical approach for
proving existence of a cycle

Andrei Teleman

Let M be a 4-manifold with b1 = 1 and b+ = 0 (negative definite intersection
form). Suppose for simplicity π1(M,x0) = Z, and put b := b2(M). Donaldson’s
first theorem: qM is standard, so H2 has a basis (ei)1≤i≤b with eiej = −δij . We
put I0 := {1, . . . , b}, for I ⊂ I0 put Ī := I0 \ I, eI :=

∑
i∈I eI . The characteristic

elements with vanishing SW expected dimension have the form cI := eI − eĪ .
The Seiberg-Witten invariants are not well defined [1]: A generic SW moduli

space contains a circle of reductions and finitely many regular irreducible points.
What can try to define an invariant by counting only the irreducible points (by
taking into account the signs defined by the fixed orientation data). But one
can see that, deforming the parameters, some irreducible points might become re-
ducible and then disappear, so the algebraic cardinality of the irreducible part of
the moduli space will jump. One has a countable chamber structure in the param-
eter space, and the SW “invariant” obtained by counting algebraically irreducible
points can take infinitely many values [1].
Idea: forget about SW and use ideas from original GW theory: count only ratio-
nal curves in the given class. The corresponding Gromov-Witten moduli space of
rational curves will be: MGW

ei (Ĥ) = {Ei} , so this approach produces apparently
a well defined “invariant” of the complex structure (which takes the values 1), but
this invariant is not constant in deformations:
Example: X → D with Xt = blown up Hopf surface for t 6= 0 and X0 a so



Invariants in Low-Dimensional Topology and Knot Theory 1735

called Kato surface (a known minimal class VII surface). X0 does not contain
any effective divisor (irreducible or not) in the classes ei. A natural question is:
What happens with the exceptional curves Ei,t as t → 0? Why do they vanish?
The answer is: Explosion of area. The area of Ei,t tends to infinity as t → 0! A
more sophisticated answer is given in a recent paper with G. Dloussky: “Infinite
bubbling”.

About Kato surfaces: they are the known minimal class VII surfaces with b2 >
0. Any Kato is a deformation of blown up Hopf surfaces and has (intriguing) b2
rational curves. So the total number of rational curves is constant in the known
deformations, but the classes which are represented by these curves are not. Curves
appear in classes with negative expected dimension. . . and we have no tools to
count all rational curves in all possible homology classes (including those with
negative GW expected dimension).

2. Class VII surfaces (not classified yet) V II ⊃ V IIb2>0
min ⊃ Kato surfaces (the

known surfaces in the class).

Conjecture 1. If X ∈ V IIb2>0
min then X has b2 rational curves. This would imply

that X is Kato, so it would complete classification. It is equivalent to the GSS
conjecture.

Conjecture 2. If X ∈ V IIb2>0
min then X has a cycle of rational curves. This would

imply that X is a deformation of blown up Hopf surfaces, so it would complete
classification up to deformation equivalence.

3. Using Donaldson theory: E Hermitian 2-bundle D := det(E) fix a ∈ A(D).
Put MASD

a (E) := {A ∈ Aa(E) |(FA)
+
0 = 0}/Γ(SU(E)). The obvious pimorphism

ρ : H1(M,Z) → {±1} defines a flat line bundle Lρ. Important ⊗Lρ defines an
involution on MASD

a (E): its fixed points are twisted reductions (whose pull-back

on the double cover M̃ρ associated with ρ are split) and its quotient is the usual
moduli space of PU(2) instantons on P̄E .
Example: b = 2. Take E with c2(E) = 0, c1(E) = e1 + e2. One has −p1(P̄E) =
∆(E) = 4c2(E) − c21(E) = 2 ≤ 3, so the corresponding moduli space is compact.
It contains two circles of reductions corresponding to the topological splittings
E = L0 ⊕ Le1+e2 , E = Le1 ⊕ Le2 . Any circle Ci has a neighborhood which is a
fibration over Ci with fibre cone over P1 (= D3) so smooth! If π1(M) ≃ Z, one
can count also the twisted reductions and gets two isolated twisted reductions.
For generic metric one gets a smooth 4-manifold. Its signature σM := σ(M) is a
C∞-invariant of M .

We will prove: If M is the underlying differentiable manifold of an unknown
minimal class VII surface with b2 = 2 then M ≃ S4, and using this fact, we will
prove Conjecture 2 for b2 = 2. Therefore the moduli space M can be accurately
described (although the information we have on the base manifoldM is very vague)
using complex geometry. The main tool will be the KH correspondence, relating
instantons to stable bundles. This correspondence has been used by Donaldson
to compute Donaldson invariants, so he used complex geometry to solve gauge
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theoretical problems. This time we use gauge theory to solve complex geometric
problems.
Dichotomy: Either the signature invariant σ is always trivial (which will sub-
stantially simplify the proof of Conjecture 2 in the case b2 = 2) or is not trivial,
which would be interesting from a topological point of view.
Remark: Using a standard cobordism argument and the Donaldson class µ(h),
where h is a generator of H1(M,Z), it follows that the two circles Ci belong to the
same component of the moduli space.

Let now X be a minimal class VII surface with b2 = 2, and M := MASD
a (E) =

Mpst
K (E) (the Kobayashi-Hitchin correspondence) is compact, has a structure of

smooth complex surface in the complement of the reductions (on the stable part).
Known pieces of M: (1) 2 circles of reductions C1, C2, (2) 2 twisted reductions
B1, B2, (3) four strata of stable extensions Mst

I , I ⊂ {1, 2}. Mst
I consists of

extensions of the form 0 → L := K ⊗ M∨ → E → M → 0 with c1(M) = cI .
Mst

{1,2} is a P1-bundle over a punctured disk, Mst
{1}, Mst

{2} are punctured disks,

and Mst
∅ = {A,A′ := A ⊗ LR}, where A is the central term of a non-trivial

extension:

(1) 0 → K → A → O → 0.

Step 1: M0 := C1 ∪ C2 ∪ {B1,B2} ∪ (∪I 6=∅Mst
I ) is a connected component of M.

Using the fact that the two circles of reductions belong to the same component,
one can see that this component (the known component of the moduli space) is
isomorphic to S4.
Dichotomy: Either A belongs M0 (the known component of the moduli space
space), or it belongs to a smooth compact surface Y ⊂ Mst.
Remark: If A belongs to M0 then X has a cycle of rational curves! 1This can
be proved easily: Suppose for instance that A belonged to one of the strata Mst

I ,
I 6= {1, 2}. In this case the bundle A (which was defined as the central term of the
nontrivial extension (1)) could be written as an extension in a different (new) way.
If this was the case, composing the epimorphism of the exact sequence (1) with
the monomorphism of the new exact sequence we obtain a line bundle morphism,
which is neither trivial nor isomorphism. The zero locus of this composition is a
non-empty effective divisor, and one can prove that it is a cycle.
Step 2: The appearance of a new compact connected component Y in the moduli
space leads to a contradiction.
For this statement we have two proofs: for the first one, which uses the classifi-
cation of complex surfaces, we refer to [3]. A new proof is based on very recent
results of Bismut, namely on a refinement of the GRR theorem in the non-Kähler
case, which gives the computation of the Chern character of the total direct image

1A cycle of rational curves is en effective divisor of the form C =
∑

i∈Zk
Ci, where either

k = 1 and C0 is a rational curve with a simple singularity, or k ≥ 2 and Ci ·Ci+1 = 1, Ci ·Cj = 0

for i− j 6= ±1.
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in Bott-Chern cohomology. This proof might be generalized to arbitrary b2 (work
in progress).

The author is partially supported by the ANR project MNGNK, decision No ANR-10-

BLAN-0118
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Functorial maps and weak parities

Igor Nikonov

Parity theory introduced by V.O. Manturov [1] has many interesting applica-
tions. One of them is the construction of functorial maps [2, 3]. Functorial map
is defined as transformation of knot diagrams that replaces classical crossings of
diagrams with virtual ones in a way compatible with Reidemeister moves: if two
diagrams differ with a Reidemeister move then the functorial map transforms them
into two diagrams that differ with a Reidemeister move. So any functorial map
determines a well-defined map from knots to knots and thus allows to get new
knot invariants as compositions of the functorial map with known knot invariants.

Weak parities defined by V.O. Manturov give another description of functorial
maps. Among weak parities there is a distinguished one — the maximal nontrivial
weak parity. In the talk we describe the maximal nontrivial weak parity for knots
in a given surface and show that all the weak parities (and functorial maps) on
the classical knots are trivial.
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Recent progress on topologically slice knots

Matthew Hedden

In this talk I discussed work with several collaborators, including Se-Goo Kim,
Paul Kirk, Charles Livingston, and Daniel Ruberman. The focus of the talk was on
the concordance group of knots in the 3-sphere, with special emphasis paid to the
distinction between the groups defined in the smooth and topological categories.

To set the stage, recall that two knots in the 3-sphere are called concordant if
they arise as the boundary of a smooth and properly embedded cylinder in the
3-sphere times an interval. Concordance is clearly an equivalence relation. Modulo
this relation, the set of knots forms an abelian group C, with the role of addition
played by connected sum and identity given by the class of the unknot. The inverse
is obtained by considering the mirror image, with reversed orientation. The focus
of this talk was on the fact that one can also define topological concordance by
merely requiring the cylinder above to be flatly embedded. Roughly, this is a
continuous embedding of the cylinder which extends to a continuous embedding
of the “thickened cylinder” i.e. the cylinder times a 2-disk. Using this definition,
one obtains a topological concordance group, denoted Ctop. There is an obvious
homomorphism

φ : C −→ Ctop.

I’ll denote the kernel of this homomorphism by CTS , and call it the concordance
group of topologically slice knots. This name comes from the fact that it is the
subgroup of the concordance group generated by knots which bound flatly embed-
ded disks, so-called topologically slice knots. Until recently, very little was known
about this group and there are many interesting open questions. In terms of its
size, a result of Endo [1] showed that CTS is quite large: he showed that it con-
tains an infinitely generated free abelian subgroup. Endo’s result used non-abelian
gauge theory, exploiting work of Furuta [3] that built on Fintushel-Stern’s SO(3)
gauge theory for pseudo-free orbifolds [2].

More recently, combined work of Manolescu-Owens [9], and Livingston [8]
showed that CTS splits off a free abelian group of rank 3; that is,

CTS
∼= Z

3 ⊕G,

for some group G. These results used a combination of Heegaard Floer homology
[12, 11] and Rasmussen’s s-invariant [13] coming from Khovanov homology [7].

My talk discussed three recent results concerning the structure of CTS . The
first concerns satellite operations. It is a well-known observation to those working
with concordance that the satellite operation from knot theory descends to yield
self-maps on the concordance groups. Given a pattern knot P ⊂ S1 × D2, one
obtains a map

P : C −→ C
which takes the concordance class of a knot K to that of P (K) (the satellite
knot of K defined via P ). Such an operation is also defined on Ctop. While not
homomorphisms in general, these maps have been extremely useful in the study
of concordance. Perhaps the most famous satellite operation in this context is
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“Whitehead doubling”, which I’ll denote by D. A well-known conjecture of Kirby
asserts that the Whitehead double of a knot K is slice if and only if K is slice.
This can be stated succinctly as

Conjecture 1. D−1(O) = O.

Our first result is that the doubling operator has infinite rank. What makes this
result interesting is that the doubling operator has rank zero in the topological
category. This follows from a fundamental result of Freedman that implies the
Whitehead double of any knot is topologically slice, hence Im D ⊂ CTS . Let
T2,2n+1 denote the (2, 2n + 1) torus knot. We have

Theorem 2 (with Kirk [5]). The set {D(T2,2n+1)}∞n=1 freely generates a subgroup
isomorphic to Z∞

⊳ CTS.

The proof uses a refinement of the Furuta and Fintushel-Stern technique, to-
gether with calculations of the Chern-Simons invariants of flat SO(3) connections
on the branched double cover of D(T2,2n+1). This is the first example of a satellite
operation whose image has infinite rank in the smooth category but finite rank in
the topological category.

Like all previous results on CTS , Theorem 2 relies on Freedman’s result which
says that a knot whose Alexander polynomial is equal to 1 is topologically slice.
An interesting question was whether Freedman’s result captures the difference
between C and Ctop; that is, whether CTS is generated by knots which are smoothly
concordant to Alexander polynomial one knots. Let

C∆ = 〈{K | K is concordant to a knot with Alexander polynomial 1}〉 .
Thus C∆⊳ CTS is the subgroup generated by Freedman’s theorem. The next result
I discussed is the following:

Theorem 3 (with Livingston and Ruberman [6]).

Z
∞
⊳ CTS/C∆.

The proof of this result uses Heegaard Floer homology, in the form of the “cor-
rection terms” [11] of the branched double cover of certain explicitly constructed
knots, together with surgery formulae relating knot Floer homology invariants to
the invariants of 3-manifolds obtained by Dehn surgery. A key tool is a formula
for the knot Floer homology of the Whitehead double of a knot [4].

Until now, all results about CTS showed that if a class was non-trivial, then it
had infinite order. The result which I discussed in most detail is also the most
recent:

Theorem 4 (with Se-Goo Kim and Livingston [10]).

(Z/2Z)∞ ⊳ CTS .

The proof is similar in spirit to that of Theorem 3. An explicit family of knots is
constructed which are fully amphichiral and can be seen to be topologically slice
via Freedman’s theorem. Thus they have order two in C and lie in CTS . Then
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an explicit examination of the correction terms of their branched double covers is
performed, again using surgery formulae for the Floer invariants. The calculations
involved in the proof of Theorem 3 were quite delicate, and complicated by the
fact that the manifolds involved do not arise as surgery on a knot in the 3-sphere.
They do, however, arise as surgery on a two-component link.
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Combinatorial Spatial Graph Floer Homology

Shelly L. Harvey

Knot Floer homology, introduced by Ozsváth and Szabó [6], and independently
by Rasmussen [8], is an invariant of knots in S3 that categorifies the Alexander
polynomial. Knot Floer homology is widely studied because of its many applica-
tions in low-dimensional topology. For example, it detects the unknot [5], detects
whether a knot is fibered [1, 4], and detect the genus of a knot [5]. The theory
was generalized to links in [7]. We extend their theory for balanced spatial graphs
in S3.

Originally, knot Floer homology was defined as the homology of a chain complex
obtained by counting certain holomorphic disks in a 2g-dimensional symplectic



Invariants in Low-Dimensional Topology and Knot Theory 1741

manifold with some boundary conditions that arose from a (doubly pointed) Hee-
gaard diagram for S3 compatible with the knot. As such, the chain groups were
combinatorial but one could not, a priori, compute the boundary map for a partic-
ular example. However, Sucharit Sarkar discovered an criterion that would ensure
that the count of certain holomorphic disks was combinatorial. This idea was used
by Manolescu, Ozsváth, and Sarker in [2] to give a combinatorial description of
link Floer homology using grid diagrams. Using this description, in [3], Manolescu,
Ozsváth, Szábo, and D. Thurston gave a self-contained, combinatorial proof that
link Floer homology is an invariant.

We generalize the combinatorial description and proof in [2, 3] for certain spatial
graphs. The class of spatial graphs that we work with are embeddings of oriented
graphs with a transverse disk at each vertex splitting up the incoming and outgoing
edges. Morevoer, we require that there must be the same number of incoming edges
as outgoing edges at each vertex. We call these spatial graphs balanced.

To define the chain complex, we first introduce the notion of a graph grid
diagram for a balanced spatial graph. Roughly, a grid diagram for a spatial graph
is an n×n grid of squares each of which is decorated with an X , an O, or is empty
and that satisfies some conditions. Like for links, there is precisely one O per row
and column. However, there may be many Xs in each row and column but they
must be grouped around a single O and be in L-formation. An O grouped with
multiple Xs corresponds to a vertex of the spatial graph. Note, for this definition,
we do not need to have the same number of incoming edges as outgoing edges. See
Figure 1 for an example.

O X

X

X

O

O

O

O X X

X

Figure 1. Example of a graph grid diagram

We associate an oriented spatial graph to a grid diagram by connecting the
Xs to the Os vertically and the Os to the Xs horizontally. We also use the
convention that the vertical strands go over the horizontal strands. See Figure 2
for an example.

We prove that any two representative for the same spatial graph are related by
a sequence of graph grid moves.

Theorem 1. If f : G → S3 is a balanced graph then there is grid diagram gr(f)
representing f . Moreover, if gr(f) and gr′(f) are two grid diagrams representing



1742 Oberwolfach Report 28/2012

O X

X

X

O

O

O

O X X

X

Figure 2. Associating a spatial graph to a graph grid diagram

f then the grid diagrams are related by a finite sequence of the following moves:
cyclic permutation, commutation’, and stabilization.

We remark that the only move that differs from that of links is commutation’.
Next, we define the chain complex (C−(gr(f)), ∂−) associate to a graph grid

diagram gr(f). The chain groups consist of free modules over F[U1, . . . , UV ] where
F ∼= Z/2Z is the ring with two elements and V is the number of vertices in
the graph. Like in link Floer homology, the generators of the chain groups are
unordered tuples of intersections between the horizontal and vertical curves in the
grid. The Maslov grading is defined exactly as in [3]. Note that this is possible
since it only depends on the set of Os on the grid. For links, the Alexander
grading lives in Zm. For spatial graphs, we define an Alexander grading that has
values in H1(S

3 \ f(G)) which can be identified with Zm after choosing a basis.
To define this, for each point in the lattice of the grid, we define an element of
H1(S

3 \ f(G)), called the generalized winding number. It is defined so that if
you can get from one point to another by passing under an edge of f(G) then
the difference between their values is the homology class of the meridian of that
edge. The Alexander grading of a generator is defined by taking the sum of the
generalized winding numbers of the elements in the set. Each Ui is associated
with a vertex O and we define the Alexander grading so that multiplication by Ui

corresponds to lowering the Alexander grading by the element of H1(S
3 \ f(G))

represented by a meridian of the vertex corresponding to Ui. The ∂− map is
defined by counting empty rectangles in the (toroidal) grid that do not contain
an X . We show that ∂− ◦ ∂− = 0 and hence this gives a well-defined bigraded
homology group for each graph grid diagram. Moreover, one can show that the
homology is independent of the choice of grid.

Theorem 2. If gr(f) and gr′(f) are two graph grid diagrams representing
f : G → S3 then (C−(gr(f)), ∂−) and (C−(gr′(f)), ∂−) are quasi-isomorphic as
F[U1, . . . , UV ]-modules.

To prove this, we show that the quasi-isomorphism type of the chain complex
is preserved under the three graph grid moves. This gives a bigraded homology
module over F[U1, . . . , UV ] associated to each balanced spatial graph.
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One can set all the Ui’s to zero and take the bigraded Euler characteristic of the
homology (or chain complex). This will give a multivariable polynomial associated
to the spatial graph. We show that this polynomial is equal to the torsion of a
certain chain complex associated to the spatial graph.
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Parity Biquandles

Aaron Kaestner

(joint work with Louis H. Kauffman)

We use crossing parity to construct a generalization of biquandles for virtual
knots which we call Parity Biquandles. These structures include all biquandles
as a standard example referred to as the even parity biquandle. Additionally, we
find all Parity Biquandles arising from the Alexander Biquandle and Quaternionic
Biquandles. Examples are provided showing that using this method we can find
examples of parity biquandles which are distinct from the associated even parity
biquandle. Furthermore we discuss some related results and additional directions
for this research.
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Floer theoretically essential tori in rational blowdowns

Yanki Lekili

(joint work with Maksim Maydanskiy)

We compute the Floer cohomology of monotone tori in the Stein surfaces ob-
tained by a linear plumbing of cotangent bundles of spheres, also known as the
Milnor fibre associated with the complex surface singularity of type An. We next
study some finite quotients of the An Milnor fibre which coincide with the Stein
surfaces that appear in Fintushel and Stern’s rational blowdown construction. We
show that these Stein surfaces have no exact Lagrangian submanifolds by using
the already available and in depth understanding of the Fukaya category of the
An Milnor fibre coming from homological mirror symmetry. On the contrary, we
find Floer theoretically essential monotone Lagrangian tori, finitely covered by the
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monotone tori that we studied in the An Milnor fibre. We conclude that these
Stein surfaces have non-vanishing symplectic cohomology.
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Minimal Diagrams of Free Knots

Allison Henrich

(joint work with Tomas Boothby and Alexander Leaf)

An irreducibly odd graph is a graph such that each vertex has odd degree and for
every pair of vertices, a third vertex in the graph is adjacent to exactly one of the
pair. This family of graphs was introduced recently by Manturov in relation to free
knots. Manturov proved that if a free knot diagram is associated to an irreducibly
odd graph (given a certain canonical association), then the diagram is a minimal
crossing representation of the free knot it represents. In our work, we begin to
classify irreducibly odd graphs so they may give us insight into the classification
of free knots. In particular, we show that every graph is the induced subgraph
of an irreducibly odd graph. We also prove that all irreducibly odd graphs must
contain a particular minor called the 3-morningstar. In addition, we introduce a
family of permutation graphs that correspond to minimal diagrams of free knots.
This family is of particular interest since it provides many more minimal diagrams
of free knots.
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Markov Theorem for Free Links

Hang Wang

(joint work with Vassily O. Manturov)

Definition 1. A free link is an equivalence class of framed 4-valent graphs modulo
the following three transformations:

(1) The first Reidemeister move being an addition/removal of a loop.
(2) The second Reidemeister move being an addition/removal of a bigon

formed by a pair of edges which are adjacent (not opposite) at each of
the two vertices.

(3) The third Reidemeister move being a triangle move involving three vertices.

When projecting a free link on a plane, we obtain a free link diagram, with both
flat and virtual crossings.
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Figure 1. The classical crossing σi and the virtual crossing ζi

Free knots were first considered by V. G. Turaev who conjectured these knots
to be all trivial. Using parity, a natural invariant for free knots, V. O. Manturov
disproved this conjecture [5]. Free knots are intimately related to flat virtual knots
in the following sense.

Proposition 1 ([5]). Two representatives of free links represent the same equiv-
alence class if and only if the corresponding virtual link diagrams are the same
modulo a combination of the following transformations:

(1) The generalized Reidemeister moves for virtual knot theory.
(2) Crossing switches that make a diagram flat.
(3) Virtualization move.

In classical knot theory, knots and links can be represented as equivalence classes
of braids modulo Markov moves. The Markov theorem is powerful in constructing
their invariants [7]. Our motivation is to seek invariants for free links, by investi-
gating representations of the corresponding braid groups. We define the n-strand
free braid group fBn as the quotient of the n-strand virtual braid group (cf. [2])
by two more relations: the cross-switching and virtualization.

Definition 2 ([6]). The set of the n-strand free braids fBn is a group with 2n− 2
generators σ1, σ2, . . . , σn−1, ζ1, ζ2, . . . , ζn−1, see Fig. 1, subject to the following
relations:

• (Relations for classical braids)
– σiσj = σjσi, for all |i− j| > 1, 1 ≤ i, j ≤ n− 1;
– σiσi+1σi = σi+1σiσi+1, for 1 ≤ i ≤ n− 2.

• (Additional relations for virtual braids)
– ζiζj = ζjζi and ζiσj = σjζi, for all |i− j| > 1;
– ζiζi+1ζi = ζi+1ζiζi+1 and σiζi+1ζi = ζi+1ζiσi+1 for 1 ≤ i ≤ n− 2;
– ζ2i = 1.

• (Additional relations for free braids) σiζi = ζiσi, σ
2
i = 1 for all 1 ≤ i ≤

n− 1.

In [3] L. Kauffman and S. Lambropoulou proved the Alexander’s theorem for
virtual links. The Alexander for free links follows easily as a corollary.
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Theorem 2 ([6]). For any free link, there exists a free braid whose closure is
isotopic to the given link.

In [3] Louis Kauffman and Sofia Lambropoulou using the L-move method to
give a local version of the Markov theorem for virtual braids. Markov theorem
for flat virtual links follows immediately from the argument of [3]. Together with
Proposition 1, we proved the following main theorem. The most important thing
in proving it is to deal with the virtualization moves. See [6] Lemma 3.4.

Theorem 3 (Markov theorem for free links [6]). Two oriented free links are iso-
topic if and only if two corresponding free braids differ by a finite sequence of free
braid isotopy and the following moves and their inverses:

(1) Flat conjugation.
(2) Right virtual L-moves.
(3) Right flat L-moves.
(4) Right and left threaded L-moves.

Remark 1. There is also a type of knot theory defined by virtual knots modulo
virtualizations and we have the corresponding Markov theorem ([6] Theorem 3.7).

The main motivation for our interest to Markov’s theorem for free links is
that we would like to construct invariants for free knots out of free braids. We
start tackling such problems by using classical objects, such as the Yang-Baxter
equation. Let V be a vector space of dimension n and R : V ⊗ V → V ⊗ V be a
linear transformation. We denote by Rab

cd the (a⊗ b, c⊗ d)-th matrix entry, where
a, b, c and d belong to a set of the basis of V .

Definition 3. Let Id be the identity map of V , then the Yang-Baxter equation is
an equation on V ⊗3 given by

(1) (R⊗ Id)(Id ⊗R)(R⊗ Id) = (Id⊗R)(R⊗ Id)(Id ⊗R).

Remark 2. Note that (1) is considered over some field K. However, a simi-
lar calculation of solutions to (1) can be performed on a module V , over a non-
commutative ring K or a ring K with zero divisors.

Let us take the following representation of the free braid group fBn on V ⊗n

(2) σi → Id⊗ · · · ⊗ Id⊗ R︸︷︷︸
ith,(i+1)st

⊗Id⊗ · · · ⊗ Id,

where R corresponds to the i-th and (i + 1)-st factors in V ⊗n and satisfies the
following conditions:

(3) Rab
cd = Rba

dc, for all a, b, c, d being in the set of the basis of V ;

(4) R2 = In2
(In2

is the identity matrix of size n2).

The first step in obtaining an invariant for free knots is to take the trace of the
representation, and this trace is automatically invariant under flat conjugations.
Nevertheless, the problem of finding such representations for which the trace is
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invariant under all L-moves is more complicated because we have two sorts of
“stabilization moves” corresponding to the first classical Reidemeister move and
the first virtual Reidemeister move. Here, we restrict ourselves to an example.

Example 1 ([6]). Let V be a 2-dimensional vector space/module over a field/ring
K, with a basis {e0, e1}. We solve R satisfying (1), (3) and (4). We restrict to

the case of the eight-vertex model, that is, R =




a 0 0 b
0 c d 0
0 d c 0
b 0 0 a


 and obtain the

following result:

• If K is commutative with no zero divisors, we obtain the complete set of so-
lutions of (a, b, c, d) by solving the set of equations: (1, 0, 0,±1), (1, 0, 1, 0),
(−1, 0, 0,±1), (−1, 0,−1, 0), (0, 1, 1, 0) and (0,−1,−1, 0).

• If K is a ring with zero divisors, then there are more interesting solutions.
For example, when K = Z12, a solution to (a, b, c, d) is (4, 3, 3, 4).

Remark 3. It is interesting to study the representations of free braid groups when
K as a ring has zero divisors or is noncommutative, and then use it to study
quantum invariants for free knots and links. Other possible ways of constructing
free knot invariants may consist of constructing biquandles similar to [1, 4].
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Graph-links and Bouchet graphs

Denis Ilyutko

It is well known that classical and virtual knots can be represented by Gauss
diagrams, and the whole information about the knot and its invariants can be
read out of any Gauss diagram encoding it. Whenever a Gauss diagram does
not describe any embedded 4-valent graph in R2 (just because the corresponding
Gauss code is not planar), one gets a virtual knot, where generic immersion points
of intersections of edges are encircled.
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It turns out that some information about the knot can be obtained from a more
combinatorial data: the intersection graph of a Gauss diagram. The intersection
graph is a simple graph, i.e. a graph without loops and multiple edges, whose ver-
tices are in one-to-one correspondence with chords of the Gauss diagram of the
knot (the latter are, in turn, in one-to-one correspondence with classical crossings
of the knot). Two vertices of the intersection graph are adjacent whenever the
corresponding arrows of the Gauss diagram are linked, see Fig. 1. Each vertex of
the intersection graph is endowed with the local writhe number of the correspond-
ing crossing. Even more, if we forget about the writhe number information and
only have the structure of opposite edges, we shall get non-trivial objects (modulo
Reidemeister’s moves).

However, sometimes the Gauss diagram can be obtained from the intersection
graph in a non-unique way, and some graphs (shown in Fig. 2) cannot be repre-
sented by chord diagrams at all.

Probably, the simplest evidence that one can get some information out of the
intersection graph is the number of circles one gets in a certain state after a
smoothing, see Fig. 3. The circuit-nullity formula allows one to count the number
of circles in Kauffman’s states out of the intersection graph. In particular, this
means that graphs not necessarily corresponding to any knot admit a way of gen-
eralising the Kauffman bracket, which coincides with the usual Kauffman bracket
when the graph is realizable by a knot.

Likewise virtual knots appear out of non-realizable Gauss code and thus gener-
alize classical knots (which have realizable Gauss codes), graphs-links come out of
intersection graphs: We may consider graphs which realize chord diagrams, and,
in turn, virtual links, and pass to arbitrary simple graphs which correspond to
some mysterious objects generalizing links and virtual links.

Traldi and Zulli [7] constructed a self-contained theory of “non-realizable knots”
(the theory of looped interlacement graphs) possessing lots of interesting knot the-
oretic properties by using Gauss diagrams. These objects are equivalence classes
of (decorated) graphs modulo “Reidemeister moves”.

The author and V. O. Manturov suggested another way of looking at knots and
links and generalizing them (the theory of graph-links): whence a Gauss diagram
corresponds to a transverse passage along a knot, one may consider a rotating cir-
cuit which never goes straight and always turns right or left at a classical crossing.
One can also encode the type of smoothing (Kauffman’s A-smoothing or Kauff-
man’s B-smoothing) corresponding to the crossing where the circuit turns right
or left and never goes straight, see Fig. 4. We note that chords of the diagrams
are naturally split into two sets: those corresponding to crossings where two oppo-
site directions correspond to emanating edges with respect to the circuit and the
other two correspond to incoming edges, and those where we have two consecutive
(opposite) edges one of which is incoming and the other one is emanating.

After the two theories were constructed, some questions arose. The first ques-
tion is whether or not every graph is Reidemeister equivalent (each theory has
own Reidemeister moves) to the intersection graph of a virtual knot diagram. The
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Figure 1. A Gauss diagram and its labeled intersection graph.

Figure 2. Non-realizable Bouchet graphs.
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Figure 4. Rotating circuit shown by a thick line; chord diagram

second question is related to the existence of an equivalence between two theories.
Other questions concern invariants.

The first question was resolved by using parity theory introduced by Manturov
in [5]. It was shown that in the theory of looped interlacement graphs there were
graphs being not equivalent to intersection graphs of Gauss diagrams of knots by
Reidemeister moves. The same situation is for graph-links. The equivalence of
these two theories (the theory of looped interlacement graphs and the theory of



Invariants in Low-Dimensional Topology and Knot Theory 1751

graph-knots) was proved in [1]. Also, some invariants were constructed, see [2, 3,
4, 7].

Most of obtained results are related to graphs encoding knots, not links! Be-
cause a Gauss diagram represents a knot. If we have a free-link with many com-
ponents, then the situation is more complicated. We can endow a graph-link with
orientation. Therefore, in this case, we can get more invariants.

The theory of graph-links (looped interlacement graphs) is interesting for vari-
ous reasons:

a) in some cases it exhibits purely combinatorial ways of extracting invariants
for knots (see, e.g. [6]);

b) in some cases it produces heuristic approaches to new “knot theories”;
c) it highlights some “graphical” effects which are hardly visible in usual or

virtual knot theory.
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On Seifert fibered 4-manifolds

Weimin Chen

In this talk we discussed a new approach to study the topology of Seifert fibered
4-manifolds. The method relies on two technical inputs: Thurston’s Geometriza-
tion of 3-manifolds/orbifolds and Rips-Sela’s theory of Z-splittings of single-ended
finite presented groups. The first fruit of this approach is a finiteness theo-
rem which asserts that there are at most finitely many distinct Seifert fibered
4-manifolds realizing a given finitely presented group of infinite center. Our re-
search also suggests that the differentiable structure of a Seifert fibered 4-manifold
is determined by its underlying topological structure.
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Stable Generalized Polyak Groups: An Approach to Finite-Type
Invariants of Virtual Knots

Micah W. Chrisman

There are two notions of finite-type invariant for virtual knots. The first is
the natural notion of Vassiliev invariants for virtual knots [15]. The second type
is due to Goussarov, Polyak, and Viro (called GPV finite-type) [11]. There is no
known universal Vassiliev finite-type invariant of virtual knots. However, there is a
universal order one finite-type invariant [13], a universal GPV finite-type invariant
[11], and a universal finite-type invariant for knots in oriented thickened surfaces
[2, 1]. This suggests the following strategy:

Strategy: Find the universal finite-type invariant of virtual knots
by finding a combinatorial description of the universal finite-type
invariant of knots in thickened surfaces. Then “stabilize” this
group.

For each compact connected oriented surface Σ, we construct an analogue of the
Polyak groups of degree n. This generalized Polyak group of degree n is denoted
GPn(Σ). If Σ1,Σ2 are compact connected oriented surfaces and h : Σ1 → Σ2 is
any orientation preserving map, then there is an induced group homomorphism
GPn(h) : GPn(Σ1) → GPn(Σ2). In fact, GPn is a functor.

Let K(Σ) denote the ambient isotopy classes of oriented knots in Σ× I.

Theorem 1. For all natural numbers n, there exists a map In[Σ] : K(Σ) →
GPn(Σ) which is a Vassiliev invariant of oriented knots in Σ× I of degree ≤ n.

The groups GPn(Σ) may be “stabilized” to give finite-type invariants of virtual
knots. The stabilization is motivated by the stabilization of abstract knots as given
in [14]. Set GPn =

⊕
Σ GPn(Σ). We define a set of relations Rn on GPn: If x1 ∈

GPn(Σ1), x2 ∈ GPn(Σ2), there exists a compact connected oriented surface Σ and
orientation preserving embeddings h1 : Σ1 → Σ, h2 : Σ2 → Σ, and GPn(h1)(x1) =
GPn(h2)(x2), then x1 − x2 ∈ Rn. Define:

SGPn :=
GPn

〈Rn〉
Let πn[Σ] : GPn(Σ) → GPn → SGPn denote the map which is inclusion followed by
projection. Let VK denote the set of virtual knots, considered up to Reidemeister
and detour moves. For a virtual knot K, let τK be its band-pass presentation with
surface ΣK .

Theorem 2. For every n, the map SIn : VK → SGPn defined for all K ∈ VK by:

SIn(K) = πn[ΣK ] ◦ In[ΣK ](τK)

is a Vassiliev invariant of virtual knots of degree ≤ n.

We show an example which proves that the invariant is non-trivial. Moreover,
the groups SGPn are not isomorphic to the Polyak groups of [11].
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