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Abstract. Applied harmonic analysis and sparse approximation are highly
active research areas with a lot of recent exciting developments. Their meth-
ods have become crucial for a wide range of applications in technology and
science, such as signal and image processing. Understanding of the underlying
mathematics has grown vastly. Interestingly, there are a lot of connections
to other fields, such as convex optimization, probability theory and Banach
space geometry. Yet, many problems in these areas remain unsolved or even
unattacked. The workshop intended to bring together world leading experts
in these areas, to report on recent developments, and to foster new develop-
ments and collaborations.
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Introduction by the Organisers

The workshop Applied Harmonic Analysis and Sparse Approximation was orga-
nized by Ingrid Daubechies (Durham), Gitta Kutyniok (Berlin), Holger Rauhut
(Bonn) and Thomas Strohmer (Davis). This meeting was attended by 53 partici-
pants from about 10 countries and 3 continents.

Applied Harmonic Analysis has seen enormous developments in the last three
decades. Its tools and methods have turned out to be crucial in a wide range
of signal and image processing applications, in numerical algorithms for the so-
lution of operator equations, and in inverse problems. In addition, mathematical
understanding of the underlying harmonic analysis has grown vastly – with re-
search sometimes driven by the needs of various applications and its results, in
turn leading to renewed interplay with applications. Sparse approximation and
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compressed sensing constitute a recent development with clear roots in applied
harmonic analysis as well as in other areas such as statistics and optimization. It
has been the focus of an intense research activity in recent years, and – despite
its young age – has become already a fairly mature mathematical discipline. This
does by far not mean that all problems are solved – only that the field is past its
childhood: There are still various important and sometimes deep open problems
in applied harmonic analysis and sparse approximation. Compressed sensing has
moreover shown intriguing connections to the fields of random matrix theory and
convex optimization.

One main focus of research in applied harmonic analysis is on the development
of novel structured dictionaries which exhibit specific properties – for example,
optimal sparse approximation – for desired classes of mathematical objects. This
has led to the recent introduction of curvelets, shearlets, and other representa-
tion systems, which have already impacted both theoretically oriented questions
such as sparse expansions of Fourier integral operators and application orientation
areas such as image processing. There remains, however, a wide range of funda-
mental open questions; for instance, the understanding and/or characterization
of associated function spaces, which is essential for a mathematically satisfactory
analysis of such representations systems.

One key property that ensures the occurrence of sparse expansions is the redun-
dancy of these systems. This is the focus of the research area of frame theory,
which studies various aspects of redundancy as a mathematical concept. Frame
theory already impacted the whole area of applied harmonic analysis and sparse
approximation significantly; yet, surprisingly, a fundamental understanding of re-
dundancy measures is just at its beginning.

Sparsity has become a very important concept in recent years in applied math-
ematics, especially in mathematical signal and image processing. The key idea is
that many types of functions and signals arising naturally in these contexts can
be described using only a small number of significant terms in a suitable basis or
frame, often a wavelet basis, a Gabor frame or a shearlet frame. This is essentially
the reason why many lossy compression techniques such as JPEG or MP3 work
so well. Quite interestingly, sparsity is useful not only for compression purposes.
The new field of compressed sensing predicts that sparse high-dimensional sig-
nals can be recovered efficiently from what would previously have been considered
highly incomplete measurements. This discovery has led to a fundamentally new
approach to certain signal and image recovery problems, which can in fact be
regarded as a paradigm change. Remarkably, the main constructions for good
measurement matrices known so far are random, and the mathematical research
in compressive sensing uses also tools, sometimes quite sophisticated, from prob-
ability theory and the geometry of Banach spaces.

The workshop featured 31 talks, thereof 9 longer overview talks. Moreover, a
session of very short presentation of 3 minutes took place on Monday, which we
called the 3 Minutes of Fame (following Andy Warhol’s concept of 15 minutes of
fame). Every participant had the possibility to contribute to this session, and this
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experiment worked out very well. In particular, it provided a quick overview on
what the participants are presently working or would like to discuss with other
participants.

Some highlights of the presentations include:

• Super-resolution: Emmanuel Candés reported on a new approach to
super-resolution based on convex optimization. Quite surprisingly and in
contrast to compressive sensing, this theory does not require randomness
and demonstrates that one can extrapolate the high-frequency content of
a signal from only low-frequency information.

• Co-sparsity: A new direction in sparse approximation uses the notion of
cosparsity. Rather than requiring that has a sparse representation with
respect to a basis or frame, one requires that Ωx is sparse, where Ω is a so-
called analysis operator. This approach has advantages in certain signal
processing tasks. An overview talk on this topic was given by Michael
Elad, and this idea appeared also in some of the shorter talks, e.g. by
Emily King and Ignace Loris.

• Signal separation: Very accurate bounds for the problem of separating
two signals “of different nature” via convex programming were presented in
the talk of Joel Tropp. This rather general theory covers several situations
including that both vectors are sparse in different bases and that one is a
sparse matrix and the other one a low rank matrix.

• Phase retrieval: Thomas Strohmer presented a new method to recover
a signal x based on knowledge of only the absolute values of some coef-
ficients |〈ak, x〉| with respect to some vectors ak. This problem arises for
instance in diffraction imaging, where one measures the absolute value of
the Fourier transform. The method builds on ideas from low rank matrix
recovery and uses a convex optimization program to find x. First results
were reported, but many open problems remain. A shorter talk on phase
retrieval was presented by Radu Balan.

Further new interesting developments include the use of sparsity in flocking (Mas-
simo Fornasier), new constructions of shearlets, results for corresponding function
spaces and applications in image segmentation (Stephan Dahlke, Gabriele Steidl,
Gerd Teschke; Philipp Grohs), new results around the restricted isometry prop-
erty (Bernhard Bodmann; Felix Krahmer) as well as new algorithms for sparse
recovery (Ignace Loris; Sergey Voronin).

The organizers would like to take the opportunity to thank MFO for providing
support and a very inspiring environment for the workshop. The magic of the place
(as coined by one of the participants) and the pleasant atmosphere contributed
greatly to the success of the workshop.
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Abstracts

Subspace segmentation and modeling high dimensional data

Akram Aldroubi

Let U =
⋃M
i=1 Si where {Si ⊂ B}Mi=1 is a set of subspaces of a Hilbert space or

Banach space B. Let W = {wj ∈ B}Nj=1 be a set of data points drawn from

U . The goal of subspace clustering is to identify all of the subspaces that the
data W = {w1, ..., wN} ∈ B is drawn from and assign each data point wi to the
subspace it belongs to. The number of subspaces, their dimensions, and a basis
for each subspace are to be determined even in presence of noise, missing data,
and outliers. The subspace clustering or segmentation problem can be stated as
follows: Then,

(1) determine the number of subspaces M ,
(2) find each subspace Si,
(3) collect the data points belonging to the same subspace into the same clus-

ter.

The ambient space B maybe be finite or infinite dimensional and the subspace
Si may be infinite dimensional as well, e.g., B = L2(Rn) and the Sis are un-
known shift invariant spaces with at most r generators [3, 5]. There are many
engineering and mathematics applications in which data lives in a union of low
dimensional subspaces, and where the subspace segmentation problem is central,
(see e.g., [1, 4, 8, 10] and the references therein).

When M is known, the subspace segmentation problem, for both the finite and
infinite dimensional space cases, can be formulated as follows:
Let B be a Banach space, W = {w1, . . . , wN} a finite set of vectors in B. For
i = 1, . . . ,M , let C = C1 × C2 × · · · × CM be the cartesian product of M family
Ci of closed subspaces of B each containing the trivial subspace {0}. Thus, an
element C is a sequence {S1, . . . , SM} of M subspaces of B with Si ∈ Ci.

Problem 1

(i) Given a finite set W ⊂ B, a fixed p with 0 < p ≤ ∞, and a fixed integer
M ≥ 1, find the infimum of the expression

e(W,V) :=
∑

w∈W

min
1≤j≤M

dp(w, Sj),

over V = {S1, . . . , SM} ∈ C, and d(x, y) := ‖x− y‖B.
(ii) Find a sequence ofM -subspaces Vo = {So1 , . . . , SoM} ∈ C (if it exists) such

that

(1) e(W,Vo) = inf{e(W,V) : V ∈ C}.
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Note that this problem is neither linear nor convex for any p. In the presence of
outliers, it is shown that p = 1 is a good choice [8], and a good choice for light-
tailed noise is p = 2. The necessary and sufficient conditions for the existence of
a solution when p = 2 and B is a Hilbert space can be found in [4]. However, the
necessary and sufficient conditions for the existence of a solution when p 6= 2 is an
open problem.

Many algorithms for solving Problem 1, or some special cases of the subspace seg-
mentation problem when noise is present have been proposed. Algebraic methods,
such as GPCA [11], or the RREF [1] work perfectly in noiseless environment but
do not perform as well in noisy environment. However, the output to these algo-
rithms can be set as initial conditions to convergent iterative algorithms, see e.g.,
[5]. It is still not known if there are a good thresholding or denoising algorithms
that render the algebraic methods more performant.

In the presence of noise, the best algorithms to date are those based on spectral
clustering (see e.g., [2, 12, 9]). However, some of the theoretical and quantitative
issues related to these methods are still open.
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Reconstruction of Signals from Magnitudes of Redundant
Representations

Radu Balan

This paper is concerned with the question of reconstructing a vector x in a finite-
dimensional real or complex Hilbert space H when only the magnitudes of the
coefficients of the vector under a redundant linear map are known.

Specifically our problem is to reconstruct x ∈ H up to a global phase factor from
the magnitudes {|〈x, fk〉| , 1 ≤ k ≤ m} where {f1, . . . , fm} is a frame (complete
system) for H . In H we consider the following equivalence relation:

(1) x, y ∈ H , x ∼ y iff y = zx for some scalar z with |z| = 1

Let Ĥ = H/ ∼ be the set of classes of equivalence induced by this relation. Thus
x̂ = {x,−x} in the real case (when H = Rn), and x̂ = {eiαx, 0 ≤ α < 2π} in the
complex case (when H = Cn). The analysis map induces the following nonlinear
map

(2) ϕ : Ĥ → (R+)m , ϕ(x̂) = (|〈x, fk〉|2)1≤k≤m

where R+ = {x , x ∈ R , x ≥ 0} is the set of nonnegative real numbers. The
main problem is to analyze when ϕ is injective, and, when it is so, to find efficient
algorithms for its invertibility.

A previous paper [3] described the importance of this problem to signal process-
ing, in particular to the analysis of speech. Of particular interest is the case when
the coefficients are obtained from a Windowed Fourier Transform (also known as
Short-Time Fourier Transform), or an Undecimated Wavelet Transform (in audio
and image signal processing). While [3] presents some necessary and sufficient con-
ditions for reconstruction, the general problem of finding fast/efficient algorithms
is still open. In [2] we describe one solution in the case of STFT coefficients.

For vectors in real Hilbert spaces, the reconstruction problem is easily shown
to be equivalent to a combinatorial problem. In [4] this problem is further proved
to be equivalent to a (nonconvex) optimization problem.

A different approach (which we called the ”algebraic approach”) was proposed
in [1]. While it applies to both real and complex cases, noisless and noisy cases,
the approach requires solving a linear system of size exponentially in space di-
mension. The algebraic approach mentioned earlier generalizes the approach in
[5] where reconstruction is performed with complexity O(n2) (plus computation
of the principal eigenvector for a matrix of size n). However this method requires
m = O(n2) frame vectors.

Recently the authors of [6] developed a convex optimization algorithm (PhaseLift)
and proved its ability to perform exact reconstruction in the absence of noise, as
well as its stablity under noise conditions. In a separate paper, [7], the authors
developed further a similar algorithm in the case of windowed DFT transforms.
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In this paper we analyze an iterative algorithm based on regularized least-square
criterion. Consider the following function

J : H ×H × R+ × R+ → R+(3)

J(u, v, λ, µ) =

m∑

k=1

|yk − 〈u, fk〉〈fk, v〉|2 + λ‖u‖2 + µ‖u− v‖2 + λ‖v‖2.

Our goal is to minimize ‖y − ϕ(u)‖2 = J(u, u, 0, µ) over u, for some (and hence
any) value µ ∈ R+. Our strategy is the following iterative process:

(4) xt+1 = argminuJ(u, x
t, λt, µt)

for some initialization x0 and policy of decreasing (λt)t≥0 and (µt)t≥0.
In this paper we have also proved additional necessary and sufficients conditions

for injectivity of the nonlinear map ϕ. Specifically we showed:
Theorem Given a m-set of vectors F = {f1, . . . , fm} ⊂ H the following condi-

tions are equivalent:

(1) For any disjoint partition of the frame set F = F1 ∪ F2, either F1 spans H
or F2 spans H ;

(2) For any two vectors x, y ∈ H if n 6= 0 and y 6= 0 then

m∑

k=1

|〈x, fk〉|2|〈y, fk〉|2 > 0;

(3) There is a positive real constant a0 > 0 so that for all x, y ∈ H ,

(5)

m∑

k=1

|〈x, fk〉|2|〈y, fk〉|2 ≥ a0‖x‖2‖y‖2

(4) There is a positive real constant a0 > 0 so that for all x ∈ H ,

(6) R(x) :=
m∑

k=1

|〈x, fk〉|2〈·, fk〉fk ≥ a0I

where the inequality is in the sense of quadratic forms.

Remark
1. The constants in (3) and (4) above are the same (hence the same notation).
2. In the real case (when H = Rn), any of the above conditions is equivalent to

injectivity of the nonlinear map ϕ.
3. In the complex case, the above four conditions are necessary but not sufficient

for injectivity of the map ϕ.
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On optimal rational approximations and their applications

Gregory Beylkin

Theoretical results on optimal rational approximations (showing their efficiency
in approximating functions with isolated singularities) have been around for at
least half a century. On the other hand, practical construction of (near) optimal
rational approximations have been limited to relatively small problems and, when
applied to functions with singularities, achieved only limited accuracy. The rea-
son is that algorithms for this purpose rely on computing small singular values
and corresponding singular vectors as well as on finding roots of polynomials of
high degree, both generally ill-advised numerical tasks. Recently, we developed
an algorithm for computing with high relative precision con-eigenvalues of Cauchy
matrices [4]. This algorithm leads to a practical approach for constructing (near)
optimal rational approximations, thus making such approximations a tool in nu-
merical analysis.

Specifically, given a rational function with n poles in the unit disk, a rational
approximation with m≪ n poles in the unit disk may be obtained from the mth
con-eigenvector of an n × n Cauchy matrix, where the associated con-eigenvalue
λm > 0 gives the approximation error in the L∞ norm. Unfortunately, standard al-
gorithms do not accurately compute small con-eigenvalues (and the associated con-
eigenvectors) and, in particular, yield few or no correct digits for con-eigenvalues
smaller than the machine roundoff. We have developed a fast and accurate al-
gorithm for computing con-eigenvalues and con-eigenvectors of positive-definite
Cauchy matrices, yielding even the tiniest con-eigenvalues with high relative ac-
curacy. The algorithm computes the mth con-eigenvalue in O

(
m2n

)
operations

and, since the con-eigenvalues of positive-definite Cauchy matrices decay exponen-

tially fast, we obtain (near) optimal rational approximations in O
(
n
(
log δ−1

)2)

operations, where δ is the approximation error in the L∞ norm. We provide error
bounds demonstrating high relative accuracy of the computed con-eigenvalues and
the high accuracy of the unit con-eigenvectors.
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We also developed several applications of the new algorithm. These include
constructing near optimal rational representations of large data sets (e.g. musical
recordings) [2], solving Burgers’ equation with a small (10−5) viscosity [3], a new
approach to the design of near optimal filters [1] and a new algorithm for X-ray
tomography with improved resolution of singularities (in progress).

In contrast to wavelet-type approximations, near optimal rational approxima-
tions are effectively shift invariant. In order to obtain a near optimal rational
approximation of a large data set, we first construct its intermediate B-spline rep-
resentation. Then, by using a new rational approximation of B-splines, we arrive
at a suboptimal rational approximation of the data set. We then use fast and ac-
curate reduction algorithm to obtain a near optimal rational approximation from a
suboptimal one. Our approach requires first splitting the data into large segments,
which may later be merged together, if needed. We also provide a fast algorithm
for evaluating these rational approximations. In particular, this allows us to in-
terpolate the original data to any grid. One of the applications of our algorithm
is the compression of audio signals.

Using the reduction algorithm, we develop a numerical calculus for rational
representations of functions. Indeed, while operations such as multiplication and
convolution increase the number of poles in the representation, we use the reduc-
tion algorithm to maintain an optimally small number of poles. To demonstrate
the efficiency, robustness, and accuracy of our approach, we solve Burgers’ equa-
tion with small viscosity ν. It is well known that its solutions exhibit moving
transition regions of width O (ν), so that this equation provides a stringent test
for adaptive PDE solvers. We show that optimal rational approximations capture
the solutions with high accuracy using a small number of poles. In particular, we
solve the equation with local accuracy ǫ = 10−9 for viscosity as small as ν = 10−5.

We develop a systematic method for designing highly accurate and efficient
infinite impulse response (IIR) and finite impulse response (FIR) filters given their
specifications. In our approach, we first meet the specifications by constructing an
IIR filter with, possibly, a large number of poles. We then construct, for any given
accuracy, an optimal IIR version of such filter (with a minimal number of poles).
Finally, also for any given accuracy, we convert the IIR filter to an efficient FIR
filter cascade (either serial or parallel). Since in this FIR approximation the non-
causal part of the IIR filter only introduces an additional delay (as a function of the
desired accuracy), our IIR construction does not have to enforce causality. Thus,
we obtain a simple method for constructing linear phase filters if the specifications
so require. All of these procedures are accomplished via robust, fast algorithms.

Using the fact that the full Fourier series of a periodic rational function may be
recovered from (sufficiently many) of its samples, we construct near optimal ratio-
nal approximations of projections and demonstrate that we can improve resolution
of reconstruction in X-ray tomography.

This presentation is based on the joint work with Lucas Monzón, Terry Haut,
Ryan Lewis, Matt Reynolds and Anil Damle.
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Spaceability of Functions with Complicated Quantization and
Truncation Behavior

Holger Boche

A well-known fact about the convergence behavior of the Shannon sampling series
for functions in the Paley–Wiener space PW1

π is Brown’s theorem, which states
the uniform convergence on compact subsets of R. The truncation of the finite

Shannon sampling series
∑N

k=−N f(k)
sin(π(t−k))
π(t−k) is done in the domain of the func-

tion f because only the samples f(k), k = −N, . . . , N are taken into account. In
contrast, it is also possible to control the truncation of the series in the codomain
of f by considering only the samples f(k), k ∈ Z, whose absolute value is larger
than or equal to some threshold δ > 0. This leads to the approximation process

(1) (Aδf)(t) :=
∞∑

k=−∞
|f(k)|≥δ

f(k)
sin(π(t − k))

π(t− k)
.

In general, Aδf is only an approximation of f , and we want the function Aδf to be
close to f if δ is sufficiently small. Here, we analyze a more general approximation
process

(2) (ATδ f)(t) := (TAδf)(t) =

∞∑

k=−∞
|f(k)|≥δ

f(k)hT (t− k),

where additionally a linear time invariant (LTI) system T is applied. Clearly,
(1) is a special case of (2) with T being the identity operator. Surprisingly, the
approximation errors of the approximation processes (1) and (2) do not always
decrease as the threshold δ tends to zero, i.e., as more and more samples are used
for the approximation. Depending on the function f ∈ PW1

π and the LTI system
T , the approximation process (ATδ f)(t) can diverge unboundedly, even for fixed
t ∈ R, as δ goes to zero.

In order to continue the discussion, we fix some notation. Let f̂ denote the

Fourier transform of a function f , where f̂ is to be understood in the distributional
sense. For σ > 0 let Bσ be the set of all entire functions f with the property that
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for all ǫ > 0 there exists a constant C(ǫ) with |f(z)| ≤ C(ǫ) exp
(
(σ + ǫ)|z|

)
for all

z ∈ C. The Bernstein space Bpσ consists of all functions in Bσ, whose restriction
to the real line is in Lp(R), 1 ≤ p ≤ ∞. A function in Bpσ is called bandlimited
to σ. It is well known, that Bpσ ⊂ Bsσ for 1 ≤ p ≤ s ≤ ∞. For σ > 0 and
1 ≤ p ≤ ∞ we denote by PWp

σ the Paley-Wiener space of functions f with a
representation f(z) = 1/(2π)

∫ σ
−σ g(ω)e

izω dω, z ∈ C, for some g ∈ Lp[−σ, σ].
If f ∈ PWp

σ then g(ω) = f̂(ω). The norm for PWp
σ, 1 ≤ p < ∞, is given by

‖f‖PWp
σ
= (1/(2π)

∫ σ
−σ|f̂(ω)|p dω)1/p. A subset G of a metric space X is said

to be nowhere dense in X if the closure [G] does not contain a non-empty open
set of X . G is said to be of the first category (or meager) if G is the countable
union of sets each of which is nowhere dense in X . The complement of a set of
the first category is called a residual set. One property that shows the richness of
residual sets is the following: The countable intersection of residual sets is always
a residual set.

1. Stable LTI Systems

Since our analyses involve stable linear time-invariant (LTI) systems, we briefly
review some definitions and facts. A linear system T : PW1

π → PW1
π is called sta-

ble if the operator T is bounded, i.e., if ‖T ‖ = sup‖f‖
PW1

π
≤1‖Tf‖PW1

π
<∞. Fur-

thermore, it is called time-invariant if (Tf( · −a))(t) = (Tf)(t−a) for all f ∈ PW1
π

and t, a ∈ R. For every stable LTI system T : PW1
π → PW1

π there exists exactly

one function ĥT ∈ L∞[−π, π] such that (Tf)(t) = 1
2π

∫ π
−π f̂(ω)ĥT (ω)e

iωt dω for

all f ∈ PW1
π. Conversely, every function ĥT ∈ L∞[−π, π] defines a stable LTI

system T : PW1
π → PW1

π. We have hT = T sinc, where sinc(t) = sin(πt)/(πt) for
t 6= 0 and sinc(t) = 1 for t = 0. The operator norm of a stable LTI system T is

given by ‖T ‖ = ‖ĥT ‖∞. Note that ĥT ∈ L∞[−π, π] ⊂ L2[−π, π], and consequently
hT ∈ PW2

π.

For certain functions f and stable LTI systems T , we can use
∑N

k=−N f(k)hT (t−
k) to obtain an approximation of Tf . Here, we analyze the analogous approxima-
tion process (2), where the truncation is controlled in the codomain of f instead
of the domain of f , for functions in PW1

π. By ATδ we denote the operator that

maps f ∈ PW1
π to ATδ f according to (2). If f ∈ PW1

π we have limt→∞ f(t) = 0
by the Riemann-Lebesgue lemma, and it follows that the series in (2) has only
finitely many summands, which implies ATδ f ∈ PW2

π ⊂ PW1
π. The analysis of the

approximation processes (2) is difficult, because the operator ATδ : PW1
π → PW2

π

is non-linear and discontinuous.

2. Behavior for Fixed t

Let Φ be the set of all continuous, positive, and monotonically decreasing
functions φ defined on (0, 1] that satisfy limδ→0 φ(δ) = ∞ and φ(δ) ≥ 1 for all
0 < δ ≤ 1.
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For fixed t ∈ R, we want to characterize the stable LTI systems T for which the
set

D1(T, t, φ) := {f ∈ PW1
π : lim sup

δ→0

|(ATδ f)(t)|
φ(δ)

= ∞}

is non-empty and, and in the case where D1(T, t, φ) is non-empty we are interested
in structure of this set. The function φ ∈ Φ is introduced in the above expression
in order to describe the divergence speed of (ATδ f)(t).

Theorem 1. Let T be an stable LTI system, t ∈ R, and φ ∈ Φ. Then we have
D1(T, t, φ) 6= ∅ if and only if

∑∞
k=−∞|hT (t− k)| = ∞. Further, if

∑∞
k=−∞|hT (t−

k)| = ∞ then D1(T, t, φ) is a residual set.

Next, we want to apply Theorem 1. For the LTI system T = Id, where Id
denotes the identity operator, we have hT = sinc and thus obtain, as a special
case of (2), the sampling series (1), which is the Shannon sampling series that
uses only the samples that are larger than or equal to the threshold δ. Since∑∞

k=−∞|sinc(t − k)| = ∞ for all t ∈ R \ Z, the next corollary is an immediate
consequence of Theorem 1.

Corollary 1. Let t ∈ R \ Z and φ ∈ Φ. Then {f ∈ PW1
π : lim supδ→0

|(Aδf)(t)|
φ(δ) =

∞} is a residual set.

The next corollary strengthens this assertion.

Corollary 2. For every φ ∈ Φ, the set of functions f ∈ PW1
π, for which we have

for all t ∈ R \ Z lim supδ→0
|(Aδf)(t)|
φ(δ) = ∞, is a residual set.

3. Behavior of the L∞-Norm

Next we study the behavior of ‖ATδ f‖∞, i.e. the L∞-norm of the approximation
process, as the threshold δ is decreased to zero. The set of interest in this case is

D∞
1 (T, φ) = {f ∈ PW1

π : lim sup
δ→0

‖ATδ f‖∞
φ(δ)

= ∞}.

Theorem 2. Let T be a stable LTI system and φ ∈ Φ. Then we have D∞
1 (T, φ) 6= ∅

if and only if hT /∈ B1
π. Further, if hT /∈ B1

π then D∞
1 (T, φ) is a residual set.

Corollary 3. Let T be a stable LTI system and φ ∈ Φ. Then we have D∞
1 (T, φ) 6=

∅ if and only if (
∑∞

k=−∞|hT (k)| = ∞ or
∑∞
k=−∞

∣∣hT
(
k + 1

2

)∣∣ = ∞). Moreover,
if D∞

1 (T, φ) 6= ∅ then D∞
1 (T, φ) is a residual set.

4. Spaceability

A subset D ⊂ PW1
π is called spaceable if there exists an infinite-dimensional

closed linear subspace SD of PW1
π with SD ⊂ D.

Theorem 3. The set {f ∈ PW1
π : lim supδ→0‖Aδf‖∞ = ∞} ∪ {f ≡ 0} is space-

able.
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For all f ∈ SD, f 6≡ 0, we have lim supδ→0‖Aδf‖∞ = ∞, i.e., every non-trivial
function in the subspace SD is not approximable by Aδf .

Open Problem. In general, oversampling is known to improve the convergence
behavior of approximation processes. However, it is known that, for certain stable
LTI systems, oversampling cannot remove the divergence of the approximation
process with thresholding [2]. It is an interesting open problem to characterize the
systems that can be stably approximated with approximation processes that use
oversampling.

This work was partly supported by the German Research Foundation (DFG)
under grant BO 1734/13-2. A journal paper that describes the results in more
details is in preparation [1].
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Fusion frames from matrices with the restricted isometry property

Bernhard G. Bodmann

(joint work with Jameson Cahill and Peter G. Casazza)

This talk investigates the use of matrices satisfying the restricted isometry prop-
erty (RIP) in the theory of fusion frames. The design of fusion frames with desir-
able properties remains challenging [1, 3, 4]. We show that RIP matrices, when
viewed as tight frames satisfying the restricted isometry property, give rise to
nearly tight fusion frames. We also show how to replace parts of the RIP frame
with orthonormal systems while maintaining the restricted isometry property.

Definition. A frame Φ = {φi}Mi=1 for ℓ2N is a spanning sequence. The analysis
operator of Φ is T : x 7→ (〈x, φi〉)Mi=1 and the frame operator S = T ∗T . The frame
is called ǫ-nearly tight if the operator inequality aI ≤ T ∗T ≤ bI holds with frame
constants a = c

1+ǫ , b = (1 + ǫ)c and some c > 0 and it is unit norm if ‖φi‖ = 1 for

all i ∈ {1, 2, . . . ,M}.
A Riesz (basic) sequence {φi}Ni=1 is a linearly independent sequence with as-

sociated analysis operator T . It is called ǫ-Riesz if aI ≤ TT ∗ ≤ bI with a =
1

1+ǫ , b = 1 + ǫ . A sequence Φ = {φi}Mi=1 in ℓ2N has ǫ-RIP for size s ≤ N if for all

J ⊂ {1, 2, . . . ,M}, |J | ≤ s, {φi}i∈J is ǫ-Riesz. An N×M matrix Φ whose columns
form an ǫ-Riesz sequence is called an ǫ-RIP matrix.

We can construct Φ such that its columns can be partitioned into orthonormal
systems, for example the “trivial” case of selecting random, uniformly distributed

0B.G.B. is in part supported by NSF grant DMS 1109545 and AFOSR grant FA9550-11-1-
0245, J.C. by NSF grant DMS 1008183, and P.G.C. by NSF DMS 1008183, NSF ATD 1042701
and AFOSR grant FA9550-11-1-0245.
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vectors on the unit sphere of a Hilbert space. The general case in which the
orthonormal systems can have size larger than one can be interpreted as a fusion
frame with subspaces that are spanned by the orthonormal systems.

A fusion frame {Wi, vi}i ∈ K, Wi =Wi ⊂ H, vi > 0, for a Hilbert space H sat-
isfies a‖x‖2 ≤ ∑i∈K v

2
i ‖Pix‖2 ≤ b‖x‖2∀x ∈ H with Pi the orthogonal projection

onto Wi and some 0 < a ≤ b <∞. It is ǫ-nearly c-tight if a = c
1+ǫ , b = c(1 + ǫ) .

The first main result addresses how coarse we can make the partition of a unit-
norm tight frame into orthonormal systems.
Theorem ([2]). Let {φi}Mi=1 be a unit norm tight frame for ℓ2N which is ǫ-RIP for
sets of size s, and let {Ij}Kj=1 be any partition of {1, 2, . . . ,M} with |Ij | ≤ s and

Wj = spani∈Ijφi,

then {Wj , 1}Kj=1 is a fusion frame with fusion frame bounds

M

(1 + ǫ)N
,
M(1 + ǫ)

N
.

Moreover, if L ⊂ {1, 2, . . . ,K} and for j ∈ L we have Jj ⊂ Ij with
∑K
j=1 |Jj | ≤ s

then

1

(1 + ǫ)2

L∑

j=1

‖
∑

i∈Jj
aiϕi‖2 ≤ ‖

L∑

j=1

∑

i∈Jj
aiϕi‖2 ≤ (1 + ǫ)2

K∑

j=1

‖
∑

i∈Jj
aiϕi‖2.

The above result on fusion frames concerns properties of subspaces. What can
we say about spanning systems? We recall that for ǫ-Riesz {φi}i∈Ij and Sj =∑

i∈Ij φi ⊗ φ∗i , the system {S−1/2
j |Wj

φi}i∈Ij is orthonormal basis for Wj . The

next main result answers the question whether we can we orthonormalize subsets
of a frame in an RIP preserving way.

Theorem ([2]). Let {ϕi}Mi=1 be a family of vectors in ℓ2N having the restricted
isometry property with constant 0 < ǫ < 1 for sets of size s. Partition {1, 2, . . . ,M}
into sets {Ij}Kj=1 with |Ij | ≤ s, and for K1 ≤ K, let Sj =

∑
i∈Ij φi ⊗ φ∗i for

j ∈ {1, 2, . . . ,K1}, and

{S−1/2
j ϕi}i∈Ij ;j=1,2,...,K1

∪ {ϕi}i∈Ij :K1+1≤j≤K =: {ψi}Mi=1 .

Given J ⊂ {1, 2, . . . ,M} with |J | ≤ s and coefficients {ai}i∈J , then
[
(1 − ǫ− ǫ2)1/2

1 + ǫ
− ǫ
√
K1

]2∑

i∈J
|ai|2

≤ ‖
∑

i∈J
aiψi‖2 ≤

[
(1 + ǫ)3/2 + ǫ

√
K1

]2∑

i∈J
|ai|2 .

In brief, after orthonormalizingK1 of the subsets, lower and upper Riesz bounds
for subsets of size s are

[
(1− ǫ− ǫ2)1/2

1 + ǫ
− ǫ
√
K1

]2
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and [
(1 + ǫ)3/2 + ǫ

√
K1

]2
.

Corollary. If K1 <
1

ǫ2
1− ǫ− ǫ2

(1 + ǫ)2
then we retain RIP. So, K1 = O(ǫ−2).

Example. If ǫ = 0.2, K1 = 13; if ǫ = 0.1, K1 = 73.
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Faster than Nyquist but Slower than Tropp

Robert Calderbank

Well, who isn’t? This talk described a modification to the Random Demodula-
tor (RD) of Tropp et al. for sub-Nyquist sampling of frequency-sparse signals. It
involves replacing the random waveform integral to the operation of the RD with
a constrained random waveform with a slower switching rate. It was motivated
by the difficulty in generating ideal fast switching waveforms. This Constrained
Random Demodulator (CRD) provides a relaxation of the hardware requirements,
a modest increase in addressable bandwidth, and a slight decrease in the recovery
guarantees. The theoretical analysis also provides insight into how the statistics of
the constrained random waveform should be chosen. Recovery of the input signal
tones is improved if the power spectrum of the constrained waveform matches the
distribution on the tones of the input signal (i.e., the distribution is proportional
to the power spectrum).

This example shows the value of adaptation in compressed sensing and mo-
tivates an information theoretic criterion for designing measurement matrices in
other applications. This criterion is maximizing the mutual information between
the projected signal and the class label. Applying a recent theoretical result due
to Palomar and Verdu (PV) on the gradient of mutual information, we show that
this optimization problem can be solved directly using gradient descent, without
requiring simplification of the objective function.

We then presented experiments where compressive sensing methods are applied
to image reconstruction. We improved on standard methods and described a fast
online method of projection design.
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We considered two classes of results based upon random projection design. The
random Gaussian Mixture Model (GMM) results shown below employ the patch-
based CS construction and the learned GMM-based prior p(x). We also considered
CS design in which the projections are performed directly on the entire image,
rather than at the patch level. If one performs CS inversion based on traditional CS
algorithms, which employ l1 and related regularization, the quality of the inversion
is markedly worse than that using the proposed approach, with learned signal
models p(x); we therefore do not show these results here, because they do not fit on
the same scale as the results presented below. This is not surprising, as the patch-
dependent signal model p(x) is much richer, and tailored to the data than is simple
sparsity. To provide a fairer comparison, when performing inversion for the case in
which the projections are performed directly on the entire image, we consider an
underlying wavelet basis and perform inversion based on the sophisticated hidden
Markov tree (HMT) wavelet model for images. This signal model p(x) could in
principle also be used within the theory to design a projection matrix applicable
to the entire image. However, the significant advantage of the GMM construction
is that the posterior of the underlying signal may be constituted analytically, while
for the HMT expensive computational methods are needed. Therefore, we only
show HMT inversion results when the projection matrix is constituted at random,
thereby providing a comparison of inversion quality of the GMM (patch based)
and the HMT (entire image), based upon random projections.

We considered offline design of the patch-based projection matrix based upon
the Renyi measure of entropy, as well as based upon mutual information. For
online Renyi and Palomar-Verdu (PV) design, we do not make a simplifying single-
Gaussian assumption when designing each row of M. By contrast the online PDS
method uses the most probable Gaussian from the posterior to design the next
projection at each step (this is therefore an approximation). The PDS method
is very fast, while online PV is expensive, and therefore is shown principally for
comparison (may not be done in practice, where online design must be fast).

First comparing the results based on random projections, the results based upon
the (learned) patched-based GMM and based on the entire-image-based HMT are
comparable in reconstruction quality. Sometimes the GMM results are slightly
better, and other times the HMT results are better. However, there is no compar-
ison with respect to computation speed. The HMT results are expensive, being
based upon a Gibbs sampler. By contrast the GMM results are very fast, with
the inversion analytic. The additional big advantage of the GMM representation
is that it allows convenient design of patch-dependent projection matrices, which
we consider next.

Each of the designed projection methods yield significant improvement relative
to random, and after approximately 6 projections per patch we note that the online
results are significantly better than offline design. For the first approximately 5
measurements per patch, the offline and online results are comparable; we attribute
this to an inadequate number of measurements to obtain an accurate signal model,
and therefore little gain manifested by adaptivity. However, after approximately
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Figure 1. Barbara

Figure 2. Reconstruction Results for Barbara

6 measurements per patch it appears that the posterior signal model becomes
accurate, yielding advantages of adaptivity. Concerning online design, inversion
quality based on the simple and fast online PDS performs quite competitively
relative to the online Renyi and PV design (which do not make a simplification to
a single Gaussian), despite the fact that it assumes that the patch is drawn from
a single Gaussian.
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Towards a Mathematical Theory of Super-Resolution

Emmanuel J. Candès

(joint work with Carlos Fernandez-Granda)

This talk develops a mathematical theory of super-resolution. Super-resolution
is a word used in many different contexts; here, it is understood as the problem
of recovering the fine details of an object—the high end of its spectrum—from
coarse scale information only—from samples at the low end of the spectrum. In
this extended abstract, we present typical results and refer to [3] for further details
and references.

Suppose we have many point sources at unknown locations in [0, 1] and with
unknown complex-valued amplitudes. Formally, our unknown signal x is of the
form

x =
∑

j

ajδτj ,

where the amplitudes aj ∈ C and the locations τj ∈ T ⊂ [0, 1]. We only observe
Fourier samples of this object up until a frequency cut-off fc; namely, we are given
n = 2fc + 1 low-frequency coefficients (Nyquist sampling)

(1) y(k) =

∫ 1

0

e−i2πktx(dt) =
∑

j

aje
−i2πktj , where k ∈ Z and |k| ≤ fc.

For simplicity, we use matrix notation,

y = Fnx
for (1). Informally, we have information about our object x up to a resolution
limit equal to λc = 1/fc that we can understand as some sort of Rayleigh limit.
Nevertheless, our work shows that one can super-resolve these point sources with
infinite precision—i.e. recover the exact locations and amplitudes—by solving a
simple convex optimization problem, which can be reformulated as a semidefinite
program. This holds provided that the distance between sources is at least 2λc.

To recover the signal, simply solve

(2) min ‖x̃‖TV subject to Fn x̃ = y,

in which ‖ · ‖TV is the classical total-variation norm and is the continuous analog
of the ℓ1 norm (e.g. with x as above, ‖x‖TV =

∑
j |aj |). Introduce the minimum

distance defined as

(3) ∆(T ) = inf
(t,t′)∈T : t6=t′

|t− t′|∞ T ⊂ [0, 1].

Our main result is this:

Theorem 1 ([3]). If the support T of the signal x obeys

(4) ∆(T ) ≥ 2λc,

then the minimum total-variation norm solution is exact. For a real-valued signal
x, a minimum distance of 1.87λc suffices.
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In words, one can perfectly resolve the signal by simple convex programming
provided that the spikes are sufficiently separated. This result extends to higher
dimensions and other models. In one dimension for instance, it is possible to
recover a piecewise smooth function by resolving the discontinuity points with
infinite precision as well. The paper [3] also shows that the same result holds if
the point sources are located in the plane, in 3D-space and so on.

At first sight, finding the solution to the total-variation norm problem (2) might
seem quite challenging, as it requires solving an optimization problem over an
infinite dimensional space. It is of course possible to approximate the solution
by discretizing the support of the signal, but this could lead to an increase in
complexity if the discretization step is reduced to improve precision. In this lecture,
we show that (2) can be cast as a semidefinite program and demonstrate that highly
accurate solutions can be found rather easily. This formulation is similar to that
in [2] which concerns a related infinite dimensional convex program.

We also demonstrate that our approach is robust to noise. In particular, we
develop some theoretical results explaining how the accuracy of the super-resolved
signal is expected to degrade when both the noise level and the super-resolution
factor vary. Suppose we have noisy data

y = Fnx+ w ⇐⇒ s = Pnx+ z

in which Pn = F∗
nFn is the projection onto the first n Fourier modes; above

s = F∗
ny and z = F∗

nw. Assume we have bounded noise in the sense that

‖Pnz‖TV ≤ δ,

and recover the signal by solving

(5) min ‖x̃‖TV subject to ‖s− Pnx̃‖TV ≤ δ.

With noise, it is of course impossible to hope for perfect super-resolution. However,
suppose we wish to resolve the signal up to a finite finer resolution λf < λc. It is
fruitful to think of the ratio

SRF =
λc
λf

as a super-resolution factor. For instance, a value of SRF = 4 means that we wish
to extrapolate the spectrum by a factor of 4. How well then can re recover the
finer features of x? Our second results is this:

Theorem 2 (C. and Fernandez Granda (2012)). Suppose ϕλf is a low-pass filter
that suppresses frequencies above f = 1/λf . Then under the same hypotheses as
above, the solution to (5) obeys

‖(x̂− x) ∗ ϕλf ‖TV ≤ C0 · SRF2 · δ,
where C0 is a numerical constant.

This explains precisely how the error increases as the super-resolution factor
increases.

The lecture will discuss other results and approaches to super-resolution, in
particular [1, 4, 5, 6] with a special attention to the beautiful and recent work of
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Kahane [7]. Finally, we will explain that when the distance between spikes falls
below λc/2, the super-resolution problem becomes hopelessly ill posed. This is a
consequence of Slepian’s seminal work on prolate spheroidal functions [8] (see also
[4]).
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Spectral Tetris Constructions for Sensor Networks

Peter G. Casazza

Wireless sensor networks are an emerging technology which enables cost-effective
and reliable surveillance. But there are serious problems with getting the needed
information from the network. The sensors may have small batteries (which are
constantly burning out), with small bandwidth. So we may need substations which
are collecting information from the sensors and passing it on to the next level. We
have transmission losses, quantization errors, overlapping information from the
sensors and a host of other problems. Basically, the sensors represent vectors in a
Hilbert space and they sense information by taking the inner product of the signal
with the sensor vectors.

Fusion frames [5] (see also [6]) are a platform for dealing with the above problems
but need much more development to be much more useful in this setting. In
particular, fusion frames are designed to do local or distributed processing of a
signal and fusing this information later to reconstruct the signal. They do this
by projecting the signal onto the fusion subspaces, doing local processing and
reconstructing. The idea is basically that we have a family of subspaces of a
Hilbert space and by projecting a signal onto these subspaces we obtain a collection
of vector coefficients that represent the signal uniquely. This then gives unique
reconstruction from these vector coefficients.

Spectral Tetris is a recent breakthrough in the construction of (sparse) frames
and fusion frames [2]. Until now, we have been living off existence proofs which
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tell us what types of frames exist. However, in practice, we did not know how
to find hardly any of these - except a few concrete constructions of specialized
classes of frames. Spectral tetris is a general method for constructing equal norm
tight frames [2] and some types of fusion frames [2]. It is also true that spectral
tetris produces the sparsest tight frames in general [4]. Since its inception, spectral
tetris has been generalized in many different directions to produce constructions of
frames with arbitrary eigenvalues for the frame operator and arbitrary prescribed
norms for the frame vectors - keeping in mind that there are restrictions on when
these two can line up [1, 3, 3].
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Shearlet Coorbit Spaces: Traces and Embeddings in Higher
Dimensions

Stephan Dahlke, Gabriele Steidl, Gerd Teschke

(joint work with Sören Häuser)

This papers examines structural properties of the recently developed shearlet coor-
bit spaces in higher dimensions. We prove embedding theorems for subspaces of
shearlet coorbit spaces resembling shearlets on the cone in three dimensions into
Besov spaces. The results are based on general atomic decompositions of Besov
spaces. Furthermore, we establish trace results for these subspaces with respect to
the coordinate planes. It turns out that in many cases these traces are contained
in lower dimensional shearlet coorbit spaces.

1. Introduction

In recent years it has turned out that shearlets have the potential to retrieve
directional information so that they became interesting for many applications, see
[14, 17, 19]. Moreover, quite surprisingly, the shearlet transform has the out-
standing property to stem from a square integrable group representation [2]. This
remarkable fact provides the opportunity to design associated canonical smooth-
ness spaces by applying the general coorbit theory derived by Feichtinger and
Gröchenig [7, 8, 9, 12]. Indeed, in [3, 4] the above relationships have been clari-
fied and new smoothness spaces, the so-called shearlet coorbit spaces, have been
established. In particular, it has been shown that all the conditions needed in the
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context of the coorbit space theory to obtain atomic decompositions and Banach
frames can be satisfied in the shearlet setting.

2. Shearlets on Rd

In this section, we recall basic results about the shearlet group on Rd, d ≥ 2,
its square integrable representations and shearlet coorbit spaces from [4].

2.1. Shearlet Group and Shearlet Transform. For a ∈ R∗ := R \ {0} and
s ∈ Rd−1, let

Aa :=

(
a 0T

d−1

0d−1 sgn (a)|a| 1d Id−1

)
and Ss :=

(
1 sT

0d−1 Id−1

)

be the parabolic scaling matrix and the shear matrix, respectively, where sgn (a)
denotes the sign of a. The (full) shearlet group S is defined to be the set R∗ ×
Rd−1 × Rd endowed with the group operation

(a, s, t) (a′, s′, t′) = (aa′, s+ |a|1−1/ds′, t+ SsAat
′).

For the shearlet group the mapping π : S → U(L2(Rd)) defined by

(1) π(a, s, t)ψ(x) := | detAa|−
1
2ψ(A−1

a S−1
s (x− t))

is a unitary representation of S. The representation (1) is also square integrable,
i.e., it is irreducible and there exists a nontrivial admissible function ψ ∈ L2(Rd)
fulfilling the admissibility condition

∫

S

|〈f, π(a, s, t)ψ〉|2 dµS(a, s, t) <∞.

The function ψ ∈ L2(Rd) is called an admissible shearlet and the transform SHψ :
L2(Rd) → L2(S) defined by

SHψ(f)(a, s, t) := 〈f, π(a, s, t)ψ〉,
continuous shearlet transform. It is known that there exist both band-limited and
compactly supported shearlets, see [2, 5, 16, 18].

2.2. Shearlet Coorbit Spaces. Let w be a real-valued, continuous and submul-
tiplicative weight on S, i.e., w(gh) ≤ w(g)w(h) for all g, h ∈ S. For 1 ≤ p ≤ ∞,
let

Lp,w(S) := {F measurable : Fw ∈ Lp(S)}.
Furthermore, we assume that the weight function w satisfies all the coorbit-theory
conditions as stated in [12, Section 2.2]. A function contained in

Aw := {ψ ∈ L2(R
d) : SHψ(ψ) = 〈ψ, π(·)ψ〉 ∈ L1,w(S)}

is called an analyzing vector. For an analyzing vector ψ we can consider the space

H1,w := {f ∈ L2(R
d) : SHψ(f) = 〈f, π(·)ψ〉 ∈ L1,w(S)},

with norm ‖f‖H1,w
:= ‖SHψ(f)‖L1,w(S) and its anti-dual H∼

1,w, the space of
all continuous conjugate-linear functionals on H1,w. Then the inner product on
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L2(R
d) × L2(R

d) extends to a sesquilinear form on H∼
1,w × H1,w. Therefore for

ψ ∈ H1,w and f ∈ H∼
1,w the extended representation coefficients

SHψ(f)(a, s, t) := 〈f, π(a, s, t)ψ〉H∼
1,w×H1,w

are well-defined.
Let m be a w-moderate weight on S We are interested in the following Banach

spaces which are called shearlet coorbit spaces

SCp,m := {f ∈ H∼
1,w : SHψ(f) ∈ Lp,m(S)}, ‖f‖SCp,m := ‖SHψ(f)‖Lp,m(S).

To construct Banach frames in coorbit spaces, the following better subset Bw
of Aw has to be non-empty:

Bw := {ψ ∈ L2(R
d) : SHψ(ψ) ∈ WL(L∞, L1,w(S))},

By Theorem [6, Theorem 1.1] there exist compactly supported shearlets ψ ∈
L2(R

d) which are contained in Bw for certain weights w. The following theorem
collects results about the existence of atomic decompositions and Banach frames
from [3, 7].

Theorem 2. Let 1 ≤ p ≤ ∞ and ψ ∈ Bw, ψ 6= 0. Then there exists a (sufficiently
small) neighborhood U of e so that for any U -dense and relatively separated set
X = {gi = (ai, si, ti) : i ∈ I} the set {π(gi)ψ)} provides an atomic decomposition
and a Banach frame for SCp,m:
Atomic Decompositions: If f ∈ SCp,m, then

f =
∑

i∈I
ci(f)π(gi)ψ,

where the sequence of coefficients depends linearly on f and satisfies

‖(ci(f))i∈I‖ℓp,m . ‖f‖SCp,m

with ℓp,m being defined by

ℓp,m := {c = (ci)i∈I : ‖c‖ℓp,m := ‖cm‖ℓp <∞},

where m = (m(gi))i∈I . Conversely, if (ci)i∈I ∈ ℓp,m, then f =
∑
i∈I ciπ(gi)ψ is

in SCp,m and

‖f‖SCp,m . ‖(ci)i∈I‖ℓp,m .
Banach Frames: The set {π(gi)ψ : i ∈ I} is a Banach frame for SCp,m which
means that

i) ‖f‖SCp,m ∼ ‖(〈f, π(gi)ψ〉H∼

1,w×H1,w
)i∈I‖ℓp,m ,

ii) there exists a bounded, linear reconstruction operator R from ℓp,m to SCp,m
such that R

(
(〈f, π(gi)ψ〉H∼

1,w×H1,w
)i∈I

)
= f.
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3. Characterization of Besov Spaces and Coorbit Spaces

In the next section, we will show that traces of shearlet coorbit spaces onto
certain hyperplanes are contained in Besov spaces or again in shearlet coorbit
spaces. The proof of these trace theorems will heavily rely on the characterization

• of Besov spaces via atomic decompositions,
• of coorbit spaces via expansions of molecules.

The following subsections provide the results which will be necessary for our anal-
ysis.

3.1. Atoms in Besov Spaces. For α > 1, D > 1 and K ∈ N0, a K times
differentiable function φ on Rd is called a K-atom if the following two conditions
are fulfilled:

A1) suppφ ⊂ DQj,l(Rd) for some l ∈ Rd,
where DQj,l(Rd) denotes the cube in Rd centered at α−j l with sides par-
allel to the coordinate axes and side length 2α−jD.

A2) |Dγφ(x)| ≤ α|γ|j for |γ| ≤ K.

Now the homogeneous Besov spaces can be characterized as follows.

Theorem 3. Let D > 1 and K ∈ N0 with K ≥ 1 + ⌊σ⌋, σ > 0 be fixed. Let
1 ≤ p ≤ ∞. Then f ∈ Bσp,q if and only if it can be represented as

(2) f(x) =
∑

j∈Z

∑

l∈Zd

λ(j, l)φj,l(x),

where the φj,l are K-atoms with suppφj,l ⊂ DQj,l(R
d) and

‖f‖Bσp,q ∼ inf
(∑

j∈Z

αj(σ−
d
p
)q
(∑

l∈Zd

|λ(j, l)|p
) q
p

) 1
q

where the infimum is taken over all admissible representations (2).

3.2. Molecules in Shearlet Coorbit Spaces. Further, we will make use of the
recently introduced molecules in general coorbit spaces, see [13]. We summarize
the results needed from [13] for our shearlet coorbit spaces. Let ψ ∈ Bw, ψ 6= 0
and let X := {gi}i∈I be a U -dense, relatively separated family in S. A collection
of functions {φi}i∈I from L2(Rd) is called a set of molecules, if there exists an
envelope function H ∈ WR(L∞, L1,w(S)) such that

|SHψ(φi)(g)| ≤ H(g−1
i g), i ∈ I.

This definition of the molecules does not depend on the particular choice of ψ ∈ Bw.
The following synthesis property was proved in [13] for general coorbit spaces.

Theorem 4. Let {φi}i∈I be a set of molecules subordinated toH ∈ WR(L∞, L1,w(S)).
If (ci)i∈I ∈ ℓp,m, 1 ≤ p ≤ ∞, then f :=

∑
i∈I ciφi ∈ SCp,m and ‖f‖SCp,m .

‖(ci)i∈I‖ℓp,m .
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4. Traces of Shearlet Coorbit Spaces

In this section, we are interested in traces of shearlet coorbit spaces. To keep
the technicalities at a reasonable level, we restrict ourselves to the practically most
important case of three dimensions. Moreover, we are only interested in weights

m(a, s, t) = m(a) := |a|−r, r ≥ 0

and use the abbreviations

SCp,r := SCp,m and ψj,k,l := π(a, s, t)ψ.

By Theorem 2, any f ∈ SCp,r can be written as

(3) f(x) =
∑

j∈R

∑

k∈R2

∑

l∈R3

c(j, k, l)ψj,k,l(x).

To derive reasonable trace and embedding theorems, it is necessary to introduce

the following subspaces of SCp,r. For fixed ψ ∈ Bw, we denote by SC(η)
p,r , η ∈ {0, 1}2

the closed subspace of SCp,r consisting of those functions which are representable

as in (3) but with integers |ki| ≤ α
2j
3 if ηi = 1. These subspaces resemble shearlets

on the cone. We want to investigate the traces of functions lying in the subspaces

SC(η)
p,r with respect to the coordinate planes. For symmetry reasons we can restrict

our attention to the x1x2-plane and to the x2x3-plane. We start with the latter
one, where we prove that the traces are contained in Besov spaces.

Theorem 5. Let Trx1
f denote the restriction of f to the x2x3-plane, that is,

(Trx1
f)(x2, x3) := f(0, x2, x3). Then the embedding Trx1

(SC(1,1)
p,r (R3)) ⊂ Bσ1

p,p(R
2)+

Bσ2
p,p(R

2) holds true, where σ1 + 2⌊σ1⌋ = 3r − 21
2 + 8

p and σ2 = 3r − 5
2 + 2

p .

The proof uses atomic decomposition of shearlet coorbit spaces. Let us now
turn to traces on the x1x2-plane. In this case the shear parameter will play an
additional role so that the traces will again be contained in shearlet coorbit spaces.

Theorem 6. Let Trx3
f denote the restriction of f to the x1x2-plane, that is,

(Trx3
f)(x1, x2) := f(x1, x2, 0). Then Trx3

(SC(0,1)
p,r (R3)) ⊂ SCp,r1(R2)+SCp,r2(R2),

where r1 = r − 5
6 + 2

3p and r2 = r − 1
6 .

The proof uses molecules in shearlet coorbit spaces.

5. Embeddings into Besov Spaces

In this section, we prove the following embedding result of certain subspaces
of shearlet coorbit spaces in three dimensions into (sums of) homogeneous Besov
spaces. We like to mention that embedding results in Besov spaces have also been
shown for the curvelet setting by Borup and Nielsen [1]. However, the technique
used by these authors is completely different since they work in the frequency
domain.
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Theorem 7. The embedding SC(1,1)
p,r (R3) ⊂ Bσ1

p,p(R
3)+Bσ2

p,p(R
3), holds true, where

σ1 + 2⌊σ1⌋ = 3r − 21

2
+

9

p
and σ2 −

2

3
⌊σ2⌋ = r +

5

3p
+

7

6
.

The proof uses again atomic decomposition of shearlet coorbit spaces.
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[7] H. G. Feichtinger and K. Gröchenig, A unified approach to atomic decompositions via inte-
grable group representations, Proc. Conf. “Function Spaces and Applications”, Lund 1986,
Lecture Notes in Math. 1302 (1988), 52 - 73.
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[13] K. Gröchenig and M. Piotrowski. Molecules in coorbit spaces and boundedness of operators.
Studia Math., 192(1):61 - 77, 2009.

[14] K. Guo, G. Kutyniok, and D. Labate, Sparse multidimensional representation using
anisotropic dilation and shear operators, in: Wavelets and Splines (Athens, GA, 2005),
G. Chen and M.J. Lai, eds., Nashboro Press, Nashville, TN (2006), 189–201.

[15] L.I. Hedberg and Y. Netrusov, An axiomatic approach to function spaces, spectral synthesis,
and Luzin approximation, Memoirs of the American Math. Soc. 188, 1- 97 (2007).

[16] P. Kittipoom, G. Kutyniok, and W.-Q Lim, Construction of compactly supported shearlet
frames, Constructive Approximation, 1–52 (2010).

[17] G. Kutyniok and D. Labate, Resolution of the wavefront set using continuous shearlets,
American Mathematical Society, 361(5), 2719–2754 (2009).

[18] G. Kutyniok, J. Lemvig, and W.-Q. Lim, Compactly supported shearlets, Approximation
Theory XIII: San Antonio 2010, 163–186 (2012).

[19] G. Kutyniok and D. Labate. Shearlets: The First Five Years. Oberwolfach Report 44 (2010),
1-5.

[20] C. Schneider, Besov spaces of positive smoothness, PhD thesis, University of Leipzig, 2009.
[21] H. Triebel, Function Spaces I, Birkhäuser, Basel - Boston - Berlin, 2006
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The Analysis Sparse Model - Definition, Pursuit, Dictionary Learning,
and Beyond

Michael Elad

The synthesis-based sparse representation model for signals has drawn a consider-
able interest in the past decade. Such a model assumes that the signal of interest
can be decomposed as a linear combination of a few atoms from a given dictionary.
In this talk we concentrate on an alternative, analysis-based model, where an anal-
ysis operator – hereafter referred to as the ”Analysis Dictionary” - multiplies the
signal, leading to a sparse outcome. While the two alternative models seem to
be very close and similar, they are in fact very different. In this talk we define
clearly the analysis model and describe how to generate signals from it. We discuss
the pursuit denoising problem that seeks the zeros of the signal with respect to
the analysis dictionary given noisy measurements. Finally, we explore ideas for
learning the analysis dictionary from a set of signal examples. We demonstrate
this model’s effectiveness in several experiments, treating synthetic data and real
images, showing a successful and meaningful recovery of the analysis dictionary.
Joint work with Ron Rubinstein (former PhD student), Tomer Peleg (PhD stu-
dent), Remi Gribonval and Sangnam Nam (INRIA, Rennes), and Mike Davies
(UEdin). Relevant papers are [1, 2, 3]
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Hyperspectral imaging, compressed sensing and chromo-tomography

Matthew Fickus

Traditional hyperspectral imaging involves taking an enormous number of mea-
surements. However, the theory of compressed sensing (CS) gives hope that far
fewer measurements actually need to be taken, provided the scene is sufficiently
simple. Indeed, several CS-based hyperspectral imagers have recently been pro-
posed. Such imagers would be invaluable in situations where conventional imaging
systems have insufficient temporal resolution (i.e., imaging extremely brief events).
We discuss the basic principles of the proposed CS-based systems. We then discuss
a competing hyperspectral imaging technology that also promises to drastically re-
duce the number of needed measurements: chromo-tomography, namely applying
ideas from tomography to color.
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Sparse optimal control in consensus emergence

Massimo Fornasier

We consider the dynamical system provided by the Cucker-Smale model of con-
sensus emergence





ẋi = vi ∈ Rd

v̇i =
1

N

N∑

j=1

vj − vi
(1 + ‖xj − xi‖2)β

∈ Rd
,

where β > 0 governs the rate of communication between particles. Denote a(t) :=
aβ(t) =

1
(1+t2)β

. In compact matrix form

{
ẋ = v

v̇ = −Lxv

where Lx is the Laplacian of the matrix1 (a(‖xj − xi‖)/N)
N
i,j=1 and depends on

x. Without loss of generality v̄ = 0 and x̄(t) = x̄(0) = 1
N

∑N
i=1 xi(0). Whenever

the rate of communication is sufficiently strong or, in other words, β is sufficiently
small, the system converges to a consensus in the parameter v independently of
the initial condition.

Theorem 1 (Cucker-Smale, Ha-Tadmor, Carrillo-F.-Rosado-Toscani). Let
(x(t), v(t)) ∈ C1([0,+∞),R2d×N) be the solution of the Cucker-Smale system.
We denote

V(t) = max
i=1,...N

‖vi(t)‖, V0 = V(0).

If 0 < β < 1
2 then

V(t) ≤ V0e
−a(2X̄ )t → 0, t→ ∞, ∃X̄ > 0.

Actually one has V(t) → 0 also for β = 1/2.

When β > 1/2 then one has convergence to consensus only for specific ini-
tial configurations which are representing certain concentration properties of the
system. Consider the symmetric bilinear form

B(u, v) =
1

2N2

∑

i,j

〈ui − uj , vi − vj〉 =
1

N

N∑

i=1

〈ui, vi〉 − 〈ū, v̄〉,

and

X(t) = B(x(t), x(t)), V (t) = B(v(t), v(t)).

Then the following result gives sufficient conditions for consensus.

1The Laplacian L of A is given by L = D−A, with D = diag(d1, . . . , dN ) and dk =
∑N

j=1
akj
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Theorem 2 (Ha-Ha-Kim). Let (x0, v0) ∈ (Rd)N × (Rd)N be such that X0 =
B(x0, x0) and V0 = B(v0, v0) satisfy

√
N

∫ ∞

√
NX0

a(
√
2r)dr >

√
V0 .

Then the solution with initial data (x0, v0) tends to consensus.

If β > 1/2 then the latter consensus condition is not satisfied by all (x0, v0) ∈
(Rd)N × (Rd)N . In particular there are counterexamples to consensus emergence.
In such cases where neither β ≤ 1/2 nor the sufficient concentration properties
for consensus emergence are satisfied, we wonder whether one can “help” the
system to achieve consensus by external intervention. We consider admissible
controls, given by measurable functions u = (u1, . . . , uN ) : [0,+∞) → RN such

that
∑N
i=1 ‖ui(t)‖ ≤M for every t > 0, for a given constant M :





ẋi = vi

v̇i =
1

N

N∑

j=1

a(‖xj − xi‖)(vj − vi) + ui

for i = 1, . . . , N , and xi ∈ Rd, vi ∈ Rd. The aim is then to find admissible controls
steering the system to the consensus region.

Proposition 1 (Caponigro-Fornasier-Piccoli-Trélat). For every initial condition
(x0, v0) ∈ (Rd)N × (Rd)N and M > 0 there exist T > 0 and u : [0, T ] → (Rd)N ,

with
∑N
i=1 ‖ui(t)‖ ≤M for every t ∈ [0, T ] such that the associated solution tends

to consensus.

Proof. Consider a solution of the system with initial data (x0, v0) associated with

a feedback control u = −α(v − v̄), with 0 < α ≤M/(N
√
B(v0, v0)). Then

d

dt
V (t) =

d

dt
B(v(t), v(t))

= −2B(Lxv(t), v(t)) + 2B(u(t), v(t))

≤ 2B(u(t), v(t)) = −2αB(v − v̄, v − v̄) = −2αV (t).

Therefore V (t) ≤ e−2αtV (0) and V (t) tends to 0 exponentially fast as t → ∞.

Moreover
∑N
i=1 ‖ui‖ ≤M . �

However the strategy described in the proof above requires to activate a control
on every agent, and we wonder whether more economical choices are possible. In
particular we wish to make

d

dt
V (t) =

d

dt
B(v(t), v(t))

= −2B(Lxv(t), v(t)) + 2B(u(t), v(t))

the smallest possible and use the minimal amount of intervention. This leads to
minimize B(u(t), v(t)) with additional sparsity constraints on u. We propose then
the following greedy strategy.
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Theorem 3 (Caponigro-Fornasier-Piccoli-Trélat). For every initial condition
(x0, v0) ∈ (Rd)N × (Rd)N and M > 0 there exist T > 0 and a sparse control

u : [0, T ] → (Rd)N , with
∑N
i=1 ‖ui(t)‖ ≤ M for every t ∈ [0, T ] such that the

associated solution tends to consensus. More precisely, we can choose adaptively
the control law explicitly as one of the solutions of the variational problem

minB(v, u) + γ(x)

N∑

i=1

‖ui‖ subject to

N∑

i=1

‖ui‖ ≤M ,

where

γ(x) =
√
N

∫ ∞

√
NB(x,x)

a(
√
2r)dr.

The control u(t) is a sparse vector with at most one nonzero coordinate, i.e.,
ui(t) 6= 0 for a unique i ∈ {1, . . . , N} and uj(t) = 0 for j 6= i for almost every
t ∈ [0, T ].

Denote v⊥ = v − v̄. Let us construct explicitly the control law from the varia-
tional principle described above. If B(v, v) ≤ γ(x)2, then ‖v⊥i‖ ≤ γ(x) for every
i = 1, . . . , N and

u1 = · · · = uN = 0 ⇒ reached flocking region.

If B(v, v) > γ(x)2 then there exists i ∈ {1, . . . , N} such that

‖v⊥i‖ > γ(x) and ‖v⊥i‖ ≥ ‖v⊥j‖ for every j = 1, . . . , N.

Therefore we can choose i ∈ {1, . . . , N} satisfying it, and a control law

ui = −M v⊥i
‖v⊥i‖

, and uj = 0, for every j 6= i.

Hence the control acts instantaneously on the most “stubborn” agent. This choice
of the control makes V (t) = B(v(t), v(t)) vanishing in finite time, hence there
exists T such that B(v(t), v(t)) ≤ γ(x)2, t ≥ T , and it maximizes the rate of
convergence among all the possible feedback control strategies. This can be viewed
as a mathematical description of the general principle for which a policy maker
should consider more favorable, in order to obtain consensus, to intervene with
stronger actions on the fewest possible instantaneous optimal leaders than trying
to control more agents, with minor strength.
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Gabor Frames and Totally Positive Functions

Karlheinz Gröchenig

(joint work with Joachim Stöckler)

The fundamental problem of Gabor analysis is to determine triples (g, α, β)
consisting of an L2-function g and lattice parameters α, β > 0, such that the set of
functions G(g, α, β) = {e2πiβltg(t − αk) : k, l ∈ Z} constitutes a frame for L2(R).
Thus the fundamental problem is to determine the set (the frame set)

(1) F(g) = {(α, β) ∈ R2
+ : G(g, α, β) is a frame } .

Under mild conditions, precisely, if g is in the Feichtinger algebra M1, then
the set F(g) is open in R2

+. Furthermore, if g ∈ M1, then F(g) contains a

neighborhood U of 0 in R2
+. Much effort has been spent to improve the analytic

estimates and make this neighborhood as large as possible, see e.g., [1, 6]. The
fundamental density theorem asserts that F(g) is always a subset of {(α, β) ∈ R2

+ :
αβ ≤ 1} [2]. If g ∈ M1, then a subtle version of the uncertainty principle, the
so-called Balian-Low theorem, states that F(g) ⊆ {(α, β) : αβ < 1}. This means
that {(α, β) : αβ ≤ 1} is the maximal set that can occur as a frame set F(g).

Until now, the catalogue of windows g for which F(g) is completely known,

consists of the following functions: if g is either the Gaussian g(t) = e−πt
2

, the
hyperbolic secant g(t) = (et+ e−t)−1, the exponential function e−|t|, then F(g) =
{(α, β) ∈ R2

+ : αβ < 1}; if g is the one-sided exponential function g(t) = e−tχR+(t),
then F(g) = {(α, β) ∈ R2

+ : αβ ≤ 1}. In addition, the dilates of these functions
and their Fourier transforms, g(t) = (1 + 2πit)−1 and g(t) = (1 + 4π2t2)−1, also
have the same frame set. The case of the Gaussian was solved independently by
Lyubarski [5] and Seip [8] in 1990 with methods from complex analysis. The case
of the hyperbolic secant can be reduced to the Gaussian with a trick of Janssen
and Strohmer, the case of the exponential functions is due to Janssen. We note
that in all these cases the necessary density condition αβ < 1 (or αβ ≤ 1) is also
sufficient for G(g, α, β) to generate a frame.

The example of the Gaussian lead Daubechies to conjecture that

F(g) = {(α, β) ∈ R2
+ : αβ < 1}

whenever g is a positive function in L1 with positive Fourier transform in L1 [1,
p. 981]. This conjecture was disproved by Janssen [4].

In our talk we treated a modification of Daubechies’ conjecture and explained
that the frame set of a large class of functions is indeed the maximal set F(g) =
{(α, β) ∈ R2

+ : αβ < 1}.
The main observation is that all functions above — the Gaussian, the hyperbolic

secant, and the exponential functions — are totally positive functions. This means
that for every two sets of increasing real numbers x1 < x2 < · · · < xN and
y1 < y2 < · · · < yN , N ∈ N, the determinant of the matrix [g(xj − yk)]1≤j,k≤N is
non-negative.
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Indeed, for a large class of totally positive functions to be defined in (2) the
frame set F(g) can be determined completely. Based on Schoenberg’s classification
of totally positive functions [7], f is called totally positive of finite type M , if its
Fourier transform factors as

(2) f̂(ξ) = C

M∏

j=1

(1 + 2πiδjξ)
−1 ,

for M ∈ N, C > 0, and δk ∈ R.

Theorem 1. Assume that g ∈ L2(R) is a totally positive function of finite type
≥ 2. Then F(g) = {(α, β) ∈ R2

+ : αβ < 1}. In other words, G(g, α, β) is a frame,
if and only if αβ < 1.

Our theorem increases the number of functions with known frame set from six
to uncountable. Among the examples of totally positive functions of finite type
are the two-sided exponential e−|t| (already known), the truncated power functions
g(t) = e−ttrχR+

for r ∈ N, the function g(t) = (e−at − e−bt)χR+(t) for a, b > 0, or

the asymmetric exponential g(t) = eatχR+(−t)+ e−btχR+(t), and the convolutions
of totally positive functions of finite type.

Using a partial fraction decomposition of (2), one can obtain explicit formulas
for totally positive functions of finite type and their Zak transform.

To compare with Daubechies’ original conjecture, we note that every totally
positive and even function possesses a positive Fourier transform. Theorem 1
yields a large class of functions for which Daubechies’ conjecture is indeed true.
Furthermore, Theorem 1 suggests the modified conjecture that the frame set of
every continuous totally positive function is F(g) = {(α, β) ∈ R2

+ : αβ < 1}.
As a corollary of the theorem one obtains results about Gabor frames on ℓ2(Z)

(corresponding to discrete signals) and on L2(T) (corresponding to periodic sig-
nals) by sampling and periodizing.

This is a report on work in progress. The first results are available in the
preprint [3].
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[2] K. Gröchenig. Foundations of time-frequency analysis. Birkhäuser Boston Inc., Boston, MA,
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On the Structure of Anisotropic Frames

Philipp Grohs

(joint work with Gitta Kutyniok)

In recent years the field of geometric multiscale analysis has seen a flurry of activity,
specifically in the construction of representation systems which are capable of
efficiently encoding anisotropic structures such as edges in images.

This effort has brought forward a whole zoo of different constructions (among
which we mention curvelets and shearlets) all possessing similar properties. This
latter fact is usually proven by a rather complicated case-by-case study for each
seperate system.

The motivation of [2] is the question whether such a cumbersome repetition
of proofs is really necessary or if a higher-level viewpoint could be useful for a
unification and better understanding of these previous results.

This has led to the introduction of parabolic molecules in [2] which can be
defined as certain systems of functions (mλ)λ∈Λ each one having frequency support
in parabolic wedges associated to an orientation and spatial support in rectangles
with parabolic aspect ratio

length ∼ width2.

Each index λ is associated with a scale sλ ∈ R+, a direction θλ ∈ (−π, π] and a lo-
cation xλ ∈ R2 which can be formalized by introducing a so-called parametrization
ΦΛ : Λ → P := R+ × (−π, π]× R2, λ 7→ (sλ, θλ, xλ).

The formal definition of parabolic molecules is as follows: We shall write 〈x〉 :=
(1+ x2)1/2, Rθ =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
the rotation matrix of angle θ and Da :=

diag(a,
√
a) for the anisotropic dilation matrix associated with a > 0.

Definition 1. Let ΦΛ be a parametrization. A family (mλ)λ∈Λ of functions mλ ∈
L2(R

2) is called a family of parabolic molecules of order (R,M,N1, N2) if it can
be written as

mλ(x) = 23sλ/4a(λ) (D2sλRθλ (x− xλ))

such that
∣∣∣∂β â(λ)(ξ)

∣∣∣ . min
(
1, 2−sλ + |ξ1|+ 2−sλ/2|ξ2|

)M
〈|ξ|〉−N1 〈ξ2〉−N2

for all |β| ≤ R. The implicit constants are uniform over λ ∈ Λ.

The two main findings of [2] are that

(i) All known curvelet or shearlet systems in the literature are systems of
parabolic molecules.

(ii) Any two systems of parabolic molecules possess equivalent approximation
properties.
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To show (ii) we consider a specific index distance ω : P× P → R+ and prove that
the cross Gramian matrix of any two systems of parabolic molecules possesses
strong off-diagonal decay in terms of ω. More specifically we show the following

Theorem 2. Let (mλ)λ∈Λ, (pµ)µ∈M be two systems of parabolic molecules of order
(R,M,N1, N2) with

R ≥ 2N, M > 4N − 5

4
, N1 ≥ 2N +

3

4
, N2 ≥ 2N.

Then

|〈mλ, pµ〉| . ω ((sλ, θλ, xλ), (sµ, θµ, xµ))
−N

.

Using this “almost orthogonality” property between different systems of para-
bolic molecules one can transfer approximation results between two such systems.
For instance one can readily establish the celebrated approximation results of [1]
for any system of parabolic molecules.

Theorem 3. Assume that (mλ)λ∈Λ is a system of parabolic molecules of order
(R,M,N1, N2) such that

(1) (mλ)λ∈Λ constitutes a frame for L2(R2),
(2) Λ is k-admissible for all k > 2 (this is in particular true for the shearlet

parametrization),
(3) it holds that

R ≥ 6, M > 12− 5

4
, N1 ≥ 6 +

3

4
, N2 ≥ 6.

Then the frame (mλ)λ∈Λ possesses an almost best N -term approximation rate
of order N−1+ε, ε > 0 arbitrary for cartoon images (i.e. compactly supported,
bivariate, piecewise C2 functions with C2 curve singularities).

In particular this includes results from [3, 4].

References

[1] E. Candes and D. Donoho, New tight frames of curvelets and optimal representations of
objects with C2 singularities, Comm. Pure Appl. Math., 56:219-266, (2004).

[2] P. Grohs and G. Kutyniok, Parabolic Molecules, submitted (2012). Available as arXiv
preprint arXiv:1206.1958v1.

[3] K. Guo and D. Labate, Optimally sparse multidimensional representation using shearlets,
SIAM J. Math. Analy., 39:298-318, (2007).

[4] G. Kutyniok and W.-Q. Lim, Compactly supported shearlets are optimally sparse, J. Approx.
Theory, 163(11):1564-1589, (2011).



1798 Oberwolfach Report 29/2012

Topological Aspects in Time-Frequency Analysis

Mijail Guillemard

We consider the problem of studying the components fℓ of a signal f =
∑
ℓ fℓ

using a combination of topological methods with time-frequency analysis. The
basic illustration for our setting is the field of polyphonic audio analysis, where
various sounds fℓ, originated from different simultaneous events, are recorded in
a single structure f . For many applications, extracting from f the components fℓ
can be a difficult task, and a direct usage of modern harmonic analysis tools such
as wavelets, Gabor analysis, or frame theory can be insufficient. Our objective is
to study f using geometrical and topological properties of a set Xf = {xi}i defined
by collecting local information of f as in the context of time-frequency analysis.

In time-frequency analysis [4] a signal f is analyzed by considering a par-
titioning in segments xb = fgb, for g a window function, and gb(t) = g(t − b).
This procedure is a local analysis strategy that can be abstractly described using
a locally compact group G acting in a Hilbert space H. The space H is the space
of signals, and the action of G is required to be an irreducible and square inte-
grable group representation, π : G→ U(H), defined as a homomorphism between
G and U(H), the space of unitary operators in H. With this representation, the
voice transform is constructed as Vψ : H → L2(G), with Vψf(x) = 〈f, π(x)(ψ)〉 for
f ∈ H, x ∈ G, and ψ a particular (so called admissible) element of H . Gabor and
wavelet transforms are basic examples where ψ is a Gaussian window function and
a wavelet, respectively.

In dimensionality reduction and manifold learning [8], the objective is
to study a point cloud data (or dataset), defined as a finite family of vectors
X = {xi}mi=1 ⊂ Rn in a n-dimensional Euclidean space. We assume that X is sam-
pled from M, a (low dimensional) space, seen as a submanifold of Rn or it can be
also considered as the geometrical realization of a topological space (e.g. simplicial
complex) in Rn. We have then, X ⊂ M ⊂ Rn with p := dim(M) < n. Another
concept is a homeomorphic copy of M, denoted by Ω, embedded in a low dimen-
sional space Rd (with d < n), together with a homeomorphism A : Ω → M ⊂ Rn,
Ω ⊂ Rd. The main advantage of using Ω instead of M in concrete applications, is
the low-dimensionality of the environment Rd.

Persistent Homology [1, 3] is a subfield of computational topology, and
it provides an efficient strategy for computing topological properties of a dataset
X = {xi}mi=1 ⊂ Rn. In the context of topological analysis, homology theories
are fundamental tools, and these can be described as functors from an adequate
category (e.g. topological spaces) to a given category of algebraic structures (e.g.
abelian groups). Simplicial homology is the basic example where the concept of
abstract simplicial complex is the object to study. When considering simplicial
homology for the analysis of a raw dataset X = {xi}mi=1, a basic problem is that
simplicial complex structures need to be constructed. Persistent homology pro-
vides a useful strategy for this problem by efficiently constructing a multiscale
topological overview of a point cloud data. The fundamental idea is to construct a
family of simplicial complexes by considering the spaces Xǫ = ∪mi=1B(xi, ǫ), where
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a ball B(xi, ǫ) of radius ǫ > 0 is centered around each point xi of the dataset X .
The efficient algorithmic procedures of this framework is a major milestone in the
application of algebraic topology in computational settings.

Noncommutative geometry [7] provides powerful concepts for studying geo-
metrical and topological spacesX using algebraic structures based on C∗-algebras.
A basic component in this framework is the concept of noncommutative quotients,
which uses noncommutative C∗-algebras for studying “bad” quotients spaces X =
Y/ ∼ for an equivalence relation ∼ in Y . In the general framework of noncommu-
tative geometry, the equivalence relation ∼, is replaced with a groupoid, which is
a powerful generalization of the notion of an equivalence relation, groups, group
actions, etc. In our work, we attempt to use the topological counterpart of this
framework, noncommutative topology, in order to analyze a time-frequency space
Xf related to a signal f .

Our basic proposal [5, 6] is to consider a functional cloud Xf = {xi}ki=1 (that
we also denote by Mf = {xi}i for non necessarily discrete cases) defined as a quo-
tient space MG

Vψf
= FVψf/G for FVψf the graph of Vψf |suppVψf , a voice transform

of f , and G a groupoid. Our objective is to use noncommutative C∗-algebras,
and the concept of Morita equivalence

m∼, as a new type of analysis layer in signal

processing. Given f =
∑k

ℓ=1 fℓ, our goal is to study the space MG
Vψf

= FVψf/G

via C0(M
G
Vψf

)
m∼ A ⋊lt,r G for A =

{
[hij ] ∈ Mk(C0(FVψf )), hij ∈ C0(Ui ∩ Uj)

}

a noncommutative C∗-algebra, with {Uℓ}kℓ=1 a covering of FVψf describing time-
frequency information of the components fℓ. Another objective of our framework
is to design computational algorithms based on our developments of signal analysis
via C∗-algebras. Here, our proposal is to combine the framework of persistent ho-
mology, with tools from AF-algebras which are an important family of C∗-algebras,
particularly useful for studying finite simplicial complexes [7]. We remark that an-
other important strategy for constructing a C∗-algebra from a simplicial complex
has been proposed in [2].
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Figure 1. The targets at distance z0 distributed sparsely in the
target domain.

Remote sensing via ℓ1-minimization

Max Hügel

(joint work with Holger Rauhut, Thomas Strohmer)

We analyze a compressive sensing scheme arising from radar and similar appli-
cations. The aim is to detect the locations and reflectivities of remote targets by
sending probing signals from an antenna array and recording the reflected signals.
Standard techniques, such as matched field processing or time reversal methods
work well for the detection of very few, well separated targets. However, when
the number of targets increases and/or some targets are adjacent to each other,
these methods run into severe problems. Moreover, these methods have major dif-
ficulties when the dynamic range between the reflectivities of the targets is large.
Following [3], we propose a compressive sensing based approach to the inverse
scattering problem to overcome the ill-posedness by utilizing sparsity of the target
scene. In fact, sparsity is a natural assumption as the targets typically occupy
only a small fraction of the overall region of interest. As common in compressive
sensing [1, 4] randomness is used and in this setup it is realized by placing the
antennas at random locations on a square.

Suppose an array of n transducers is located in the square [0, B]2. The spatial
part of a wave of wavelength λ > 0 emitted from some point source b ∈ [0, B]2

and recorded at another point r ∈ R3 is given by the Green’s function G of the
Helmholtz equation,

(1) G(r, b) :=
exp

(
2πi
λ ‖r − b‖2

)

4π ‖r − b‖2
.

Our aim is to image targets which are at distance z0 > 0. We make the idealizing
assumption that the targets are on a discretized grid of meshsize d0 > 0 in the
domain T := [−L,L]2 × {z0}, where L > 0 determines the size of the target
domain, see 1 for an illustration.
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In order to simplify the analysis we approximate the Green function under the
far field assumption z0 ≫ B + L by

(2) G(r, b) ≈ G̃(r, b) :=
exp

(
πi
λz0

‖(x, y)− (ξ, η)‖22
)

4πz0
.

Choosing the meshsize d0 such that the aperture condition

(3) ρ :=
d0B

λz0
∈ N,

is met, then the normalized system of functions

Ĝ(b, rℓ) := 4πz0G̃ (b, rℓ) , b ∈ [0, B], ℓ ∈ [N ],

satisfies the orthonormality relation

1

B2

∫

[0,B]2
Ĝ(b, rℓ)Ĝ(b, rm)db = δℓm.

Assume we have a vector (xj)j∈[N ] ∈ CN of reflectivities on the resolution

grid. We sample n antenna positions b1, . . . , bn ∈ [0, B]2 independently at random
according to the uniform distribution on [0, B]2. If antenna element bj ∈ [0, B]2

transmits and bk ∈ [0, B]2 receives, then we model the echo yjk with the Born
approximation

(4) yjk =

N∑

ℓ=1

Ĝ(bj , rℓ)Ĝ(rℓ, bk)xℓ, (j, k) ∈ [n]2.

We study the transmit-receive mode where one antenna element transmits at a
time and the whole aperture receives the echo. Then the appropriately scaled

sensing matrix A ∈ Cn
2×N is given entrywise by

(5) A(j,k),ℓ := Ĝ(bj , rℓ)Ĝ(rℓ, bk), (j, k) ∈ [n]2, ℓ ∈ [N ],

and y = Ax by (4). Due to the randomness in the bk, k ∈ [n], the matrix A is then
a (structured) random matrix with coupled rows and columns. In many scenarios
the number of targets is small compared to the grid size, which naturally leads to
sparsity in the vector x ∈ CN of reflectivities, ‖x‖0 := #{ℓ : xℓ 6= 0} ≤ s.

As common in compressive sensing we study reconstruction of x from noisy
measurements y = Ax via ℓ1-minimization,

min
z∈CN

‖z‖1 subject to Az = y.

The main result of [5] stated next gives an estimate of the required number of
antennas ensuring perfect recovery in a nonuniform setting.

Theorem 1. Let x ∈ CN with ‖x‖0 ≤ s be a fixed vector and A ∈ Cn
2×N be a

draw of the random scattering matrix. If, for ε > 0,

(6) n2 ≥ Cs log2(N/ε)

then with probability at least 1− ε, ℓ1-minimization recovers x from y = Ax. The
constant C > 0 is universal.
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This result can be made stable under noise on the measurements y and under
passing from sparse to approximately sparse vectors, see [5] for details. Moreover,
note that the number of measurements is n2 in this context. The theorem is
nonuniform in the sense that the theorem holds for a fixed vector and does not
imply that a single draw of the random matrix is able to recover all sparse vectors
simultaneously. Such a result would be implied by an estimate of the so-called
restricted isometry property [4, 2], but it presently remains an open problem to
establish this property for our scattering matrix.

The proof of the theorem relies on an estimate of the conditioning of a single
column submatrix of A corresponding to the support of x, which is achieved via
decoupling techniques and the non-commutative Bernstein inequality. Moreover,
combinatorial estimates similar to [1, 6] are pursued in order to construct a dual-
certificate ensuring perfect recovery as well as approximate recovery in the noisy
case. A new general criterion for recovery via ℓ1-minimization in the noisy case is
provided in [5] for this purposes. The paper [5] also contains numerical experiments
illustrating the theoretical findings.
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Analysis of Inpainting via Clustered Sparsity and Microlocal Analysis

Emily J. King

(joint work with Gitta Kutyniok, Xiaosheng Zhuang)

Land development and geographic features many times prevent optimal sensor
placement when collecting seismic data [HFH10, HH08]. Photographs may be
scratched. Blocks of videos may be missing due to imperfect steaming. These
examples of missing data arise in very different situations but may be formulated
as similar mathematical problems. Inpainting is the term for the data recovery
problem applied to images or videos. In what follows, we set up a general theo-
retical framework for a certain approach to data recovery which may be analyzed
by a novel concept called cluster coherence, and we use this framework to prove
results about the success of particular systems, namely shearlets, in inpainting.
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One common approach to data recovery is using variational methods [BBCSV,
BBS01, BSCB00, CS02]. However, over the last few years, methods based on
sparsity have become more popular and have proven themselves heuristically and
theoretically to be powerful in a large variety of situations. Based on the apparent
success of the numerical algorithms which inpaint based on ℓ1-minimization of
analysis coefficients in [ESQD05, CCS10, DJLSX], we focus on this approach which
we shall specifically define below. Detailed exposition may be found in the papers
[KKZ11, KKZ12]. Additionally, this analysis-side inpainting may be viewed as a
discretization of the variational methods [CDOS12].

We now define what is meant by analysis-side inpainting. A collection of vectors
Φ = {ϕi}i∈I in a separable Hilbert space H forms a Parseval frame for H if for all
x ∈ H, ∑

i∈I
|〈x, ϕi〉|2 = ‖x‖2.

With a slight abuse of notation, given a Parseval frame Φ, we also use Φ to denote
the synthesis operator

Φ : ℓ2(I) → H, Φ({ci}i∈I) =
∑

i∈I
ciϕi.

With this notation, Φ∗ is called the analysis operator. Assume that the complete
signal x0 lies in some Hilbert space H and that H = HM ⊕ HK with respective
orthogonal projections PM and PK . The part of x0 that is known to us is PKx0,
and we would like to recover x0. We solve the following minimization problem:

(1) min
x

‖Φ∗x‖1 s.t. PKx
0 = PKx.

The sequence Φ∗x is called the sequence of analysis coefficients and optimizing
this problem is analysis-side inpainting.

One would not expect any arbitrary Parseval frame to inpaint successfully. This
brings us to the definition of two different measurements which will allow us to
analyze how successful a particular Φ is when used in (1). That is, if x⋆ solves (1),
how small is ‖x−x⋆‖2? The following two concepts were first introduced in [DK12]
to analyze problems of geometric separation and are modifications of sparsity and
mutual coherence which take into account the geometry of the Parseval frame.

Definition 1. Fix δ > 0. Given a Hilbert space H with a Parseval frame Φ with
index set I, x ∈ H is δ-relatively sparse in Φ (with respect to Λ) if

‖(Φ∗x)λ : λ ∈ I\Λ‖1 ≤ δ.

Now let Φ1 = {ϕ1i}i∈I and Φ2 = {ϕ2j}j∈J lie in a Hilbert space H and let
Λ ⊆ I. Then the cluster coherence µc(Λ,Φ1; Φ2) of Φ1 and Φ2 with respect to Λ
is defined by

µc(Λ,Φ1; Φ2) = max
j∈J

∑

i∈Λ

|〈ϕ1i, ϕ2j〉|.

With these ideas, we can characterize the success of (1).
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Theorem 2. Fix δ > 0 and suppose that x0 is δ-relatively sparse in Φ. Let x⋆

solve (1). Then

‖x⋆ − x0‖2 ≤ 2δ

1− 2µc(Λ, PMΦ;Φ)
.

A similar result holds when noise is incorporated into the theory. Furthermore,
a similar result holds with ℓ1-minimization is replaced with a simple thresholding
of the analysis coefficients. The set Λ here plays an auxiliary role. Any Λ which
yields δ-relative sparsity may be used. Even though in general, increasing the size
of Λ decreases the δ that may be used, if Φ is a sparsifying dictionary, then a
carefully chosen small Λ will yield a small δ. Decreasing the size of Λ increases the
value of 1− 2µc(Λ, PMΦ;Φ), thus decreasing the error of x⋆ in approximating x0.

We may now apply Theorem 2 to specific cases. While wavelets handle 1-
dimensional data well, they do not capture directional information in higher di-
mensions. This has lead a number of researchers to consider alternate systems.
Shearlets, introduced in [GKL06], are one such system. Shearlets are the optimal
sparsifying systems for images governed by anisotropic structures and have the
advantage that they provide a unified concept of the continuum and the digital
[KL12, KL11].

Definition 3. The cone-adapted shearlet system SH(φ, ψ, ψ̃) generated by φ ∈
L2(R2) and ψ, ψ̃ ∈ L2(R2) is the union of

{φ(· −m) : m ∈ Z2},

{23j/4ψ(SkA2j · −m) : j ≥ 0, |k| ≤ ⌈2j/2⌉,m ∈ Z2}, and
{23j/4ψ̃(S̃kÃ2j · −m) : j ≥ 0, |k| ≤ ⌈2j/2⌉,m ∈ Z2}.

where Aa =

(
a 0
0

√
a

)
and Sℓ =

(
1 ℓ
0 1

)
.

We would also like to show that shearlets are good tools for inpainting. Thus,
the Parseval frames we will use in (1) are either wavelets Wj or cone-adapted
shearlets Sj . The signal to be recovered x0 is a linear singularity in R2 filtered by
sub bands wLj = wL ∗ Fj . We consider the mask

Mh = {(x1, x2) ∈ R2 : |x1| ≤ h} h > 0.

Then PM is the product of an L2(R2) function with the indicator function of Mh.
We vary h with j, denoted hj , and also denote xK with fj = PKwLj . The positive
results in the following theorem also hold for thresholding.

Theorem 4.

• For hj = o(2−j) (this is critical in thresholding case) as j → ∞,

‖Wj − wLj‖2
‖wLj‖2

→ 0, j → ∞.
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• For hj = o(2−j/2) as j → ∞,

‖Sj − wLj‖2
‖wLj‖2

→ 0, j → ∞.

This shows that shearlets are able to inpaint larger gaps than wavelets are.
Future directions of research would be to implement shearlet inpainting, to prove
theoretical results for simultaneously geometrically separating and inpainting using
analysis-side minimization, to find the critical bound for the size of the gap that
wavelets can asymptotically inpaint using ℓ1 minimization (the known critical
bound is for thresholding), and to apply the framework of parabolic molecules
[GK12].
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Suprema of Chaos Processes and the Restricted Isometry Property

Felix Krahmer

(joint work with Shahar Mendelson, Holger Rauhut)

The theory of compressed sensing considers the following problem: Let A ∈ Cm×n

and let x ∈ Cn be s-sparse, i.e., xi = 0 for all but s indices i. One seeks to recover
x uniquely and efficiently from linear measurements y = Ax, although m ≪ n.
A sufficient condition to ensure that this is possible is the Restricted Isometry
Property (RIP).

A matrix Φ ∈ Cm×n has this property for sparsity s < n and level δ if the
restricted isometry constant δs, defined as the smallest number such that

(1− δs)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δs)‖x‖22 for all s-sparse x,

is small [1]. For example, δ2s ≤ 0.49 is known to be sufficient (see, e.g., [5]) to
ensure that ℓ1-minimization

min ‖z‖1 subject to Φz = y,

reconstructs every s-sparse x from y = Φx.
In practice, structure is an additional requirement on the measurement matrix

Φ, both to accelerate computations using fast matrix-vector multiplies and to
model specific applications. An example for a matrix structure that arose in models
for specific applications and also possesses fast matrix multiplication properties
is a partial circulant matrix, describing a subsampled convolution with a fixed
vector. Potential applications such matrices include system identification, radar
and cameras with coded aperature.

More precisely, the (circular) convolution of two vectors x, z ∈ Cn is defined by

(z ∗ x)j :=
n∑

k=1

zj⊖kxk, j = 1, . . . , n,

where j ⊖ k = j − k mod n is the cyclic subtraction; the circulant matrix H =
Hz ∈ Cn×n associated with z is given by Hx = z ∗x and has entries Hjk = zj⊖k.
Moreover, we let Ω ⊂ {1, . . . , n} be an arbitrary (fixed) set of cardinality m, and
denote by RΩ : Cn → Cm the operator that restricts a vector x ∈ Cn to its entries
in Ω. Then our object of study, the corresponding partial random circulant matrix,
is the (normalized) combination of a circulant matrix and such a projection.

We discuss the restricted isometry property for such matrices, where the vector
z is chosen at random. This randomized setup is in line with the observation that
the most efficient matrix constructions which are known to have the restricted
isometry property are all random matrices. While corresponding results also hold
for the more general case of vectors with independent subgaussian entries [4],
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we will, for simplicity, focus on Rademacher vectors. Here a Rademacher vector
ε = (εi)

n
i=1 is a random vector with independent entries distributed according to

P(εi = ±1) = 1
2 . Then the associated partial random circulant matrix is given by

Φ = m−1/2RΩHε ∈ Rm×n and acts on vectors x ∈ Cn via

Φx =
1√
m
RΩ(ε ∗ x).

We show the restricted isometry property ofΦ in a near-optimal parameter regime:

Theorem 1. Let Φ ∈ Rm×n be a draw of a partial random circulant matrix
generated by a Rademacher vector ε. If

m ≥ cδ−2s (log2 s)(log2 n),

then with probability at least 1 − n−(logn)(log2 s), the restricted isometry constant
of Φ satisfies δs ≤ δ. The constant c > 0 is universal.

These results improve the best previously known estimates for a partial random
circulant matrix [6], namely that m ≥ Cδ(s log n)

3/2 is a sufficient condition for
achieving δs ≤ δ with high probability (see also [3] for an earlier work on this
problem).

For the proof, note that one can rewrite the restricted isometry constant of a
partial circulant matrix A based on a Rademacher vector as

δs(A) = sup
x∈Sn−1

| supp x|≤s

∣∣‖Ax‖22 − 1
∣∣

= sup
x∈Sn−1

| supp x|≤s

∣∣‖PΩx ∗ ǫ‖22 − 1
∣∣

= sup
x∈Sn−1

| supp x|≤s

∣∣‖Vxǫ‖22 − E‖Vxǫ‖22
∣∣ ,

where Vx is defined through Vxy := PΩx ∗ y. This motivates the study of suprema
of chaos processes of the form

sup
A∈A

∣∣‖Aǫ‖22 − E‖Aǫ‖22
∣∣ ,

where A is a set of matrices. The key ingredients of the proof of Theorem 1
are moment bounds for such suprema. The formulation of these bounds uses
the generic chaining methodology of Talagrand [7]. In particular, the following
definition will be crucial to formulate the result.

Definition 2 ([7]). For a metric space (T, d), an admissible sequence of T is a
collection of subsets of T , {Ts : s ≥ 0}, such that for every s ≥ 1, |Ts| ≤ 22

s

and
|T0| = 1. For β ≥ 1, define the γβ functional by

γβ(T, d) = inf sup
t∈T

∞∑

s=0

2s/βd(t, Ts),

where the infimum is taken with respect to all admissible sequences of T .
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Furthermore, denote by dF (A) the radius of A in the Frobenius norm ‖A‖F =√∑
i,j A

2
ij , i.e., dF (A) = sup

A∈A
‖A‖F . In terms of these concepts, the bound of the

first moment reads as follows.

Theorem 3 ([4]). Let m,n ∈ N, let ǫ be a Rademacher vector of length n, and let
A ⊂ Rm×n be a symmetric set of matrices. Then one has

E sup
A∈A

∣∣‖Aǫ‖22 − E‖Aǫ‖22
∣∣ . dF (A)γ2(A, ‖ · ‖2→2) + (γ2(A, ‖ · ‖2→2))

2
.

From such moment bounds, Theorem 1 is deduced using a Dudley-type entropy
integral (cf. [2]).
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Adaptive Anisotropic Refinement Scheme for Transport Dominated
Problems

Wang-Q Lim

(joint work with Wolfgang Dahmen, Gitta Kutyniok and Gerrit Welper)

1. Introduction

Solutions of hyperbolic conservation laws or more generally of transport domi-
nated equations are governed by anisotropic features such as singularities concen-
trated on lower dimensional embedded manifolds. In this case, solutions typically
exhibit strong anisotropic features such as shear layers or shock fronts. The met-
ric entropy of compact sets of such functions suggest that ’good’ approximation
methods should give rise to distortion rates that cannot be achieved by isotropic
refinements corresponding to classical wavelet bases. Since the stability of dis-
cretizations based on anisotropic mesh refinements is not a straightforward matter,
an interesting alternative is offered by recent developments centering on directional
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representation systems like curvelets (see [1]) or shearlets (see [4]). Best N-term
approximations from such systems are known to resolve wave front sets - the pro-
totype of anisotropic singularities - at a nearly optimal rate [1, 6] when compared
with the metric entropy of such classes. However, the currently known directional
representation systems do generally not form Riesz bases but merely frames for a
specific function space, namely for L2(Rd), d = 2, 3, [1, 6]. Adaptive discretizations
of operator equations using such representation systems must therefore take this
fact into account.

Recently, a general framework for L2–stable variational formulations of linear
unsymmetric operators, taking first order transport equations in bounded domains,
has been introduced in [2]. In this framework, the trial space X indeed can be
chosen as L2(Rd), in which the variational solution is sought and the proposed
stability concept is based on perturbations of certain ’ideal’ test spaces in Petrov-
Galerkin formulations. Our aim in this report is to develop adaptive refinement
scheme providing nearly optimal approximation rate for linear transport equations
using directional representation system – especially shearlets – based on this L2–
stable variational formulation.

2. Linear transport equations

In this section we briefly discuss model problems that we will consider. Through-
out this report, we will only consider 2 dimensional bounded domain D = [0, 1]2

with boundary Γ = ∂D but our scheme which will be introduced here can be
generalized to more general settings – for instance, a bounded, polyhedral domain

in 2D or 3D. First, we assume that velocity field
−→
b (x), x ∈ D is differentiable,

i.e.
−→
b ∈ C1(D)2. Likewise, c ∈ C0(D) will serve as the reaction term in the first

order transport equation

Au :=
−→
b · ∇u+ cu = f in D,(1)

u = g on Γ−.

Here, Γ− is the inflow boundary defined by

Γ− = {x ∈ Γ :
−→
b (x) · −→n (x) < 0},

where −→n (x) is the exterior unit normal vector for x ∈ Γ.

3. Adaptive Refinement Scheme using Shearlets

The anisotropic structures can be distinguished by location and direction which
indicates that our way of analyzing and representing the data should capture not
only location, but also directional information. This observation inspires various
constructions of directional representation systems to achieve sparse approxima-
tions of data governed by anisotropic features. Among those representation sys-
tems, shearlets were introduced as a means to optimal sparsely encode anisotropic
singularities of multivariate data while allowing compactly supported analyzing
elements [6]. In contrast to curvelets, shearlets treat the continuum and digital
setting uniformly, thereby enabling faithful numerical realizations [4]. We first
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briefly review the customarily employed notion of (cone-adapted) shearlets. For
this, for j ≥ 0, k ∈ Z, let

Aj =

(
2j 0
0 2⌊j/2⌋

)
, Sk =

(
1 k
0 1

)
, and Mc =

(
c1 0
0 c2

)
,

where c = (c1, c2) and c1, c2 are some positive constants. The definition of (cone-
adapted) discrete shearlets (in 2D) can now be phrased as follows.

Definition 1. Let c = (c1, c2) ∈ (R+)
2. For φ, ψ, ψ̃ ∈ L2(R2) the (cone-adapted)

discrete shearlet system SH(φ, ψ, ψ̃; c) is defined by

SH(φ, ψ, ψ̃; c) = Φ(φ; c1) ∪Ψ(ψ; c) ∪ Ψ̃(ψ̃; c),

where

Φ(φ; c1) = {φ(· −m) : m ∈ c1Z
2}

Ψ(ψ; c) = {2 3
4
jψ(SkAj · −m) : j ≥ 0,−2⌈j/2⌉ ≤ k ≤ 2⌈j/2⌉,m ∈McZ

2},

and each element in Ψ̃(ψ̃; c) is defined from element in Ψ(ψ; c) by switching the

order of variables x1 and x2. If SH(φ, ψ, ψ̃; c) is a frame for L2(R2), we refer to φ

as a scaling function and ψ and ψ̃ as shearlets.

In [6], decay conditions on compactly supported shearlet generators ψ and ψ̃
were derived which ensure that the associated (cone-adapted) shearlet system

SH(φ, ψ, ψ̃; c) forms a frame for L2(R2). Further, it was shown that compactly
supported shearlets provide almost optimally sparse approximations for functions
which are C2 smooth apart from C2 singularity curves. This indicates that the
anisotropic structures of piecewise smooth functions – in particular, singularities
of a solution of linear transport equation (1) – can be efficiently encoded using
shearlets. However, until now there has been little attempt to utilize directional
representation systems for adaptive solvers for solving PDEs. In fact, in addition
to this sparse approximation property, there are additional desiderata in order to
use directional representation systems in the adaptive scheme as follows.

• Adaptation to bounded domain. Since solutions are typically just defined
on a bounded domain, basis elements which are supported on such a do-
main, in particular, whose regularity is adapted to this domain, are re-
quired. This will also allow for naturally incorporating boundary condi-
tions.

• Piecewise polynomial basis elements. It is desirable to be able to compute
the entries of a mass matrix efficiently.

In [3], new construction of shearlet system, so called Alpert shearlets, satisfying all
the desirable properties above as well as optimal sparse approximation property
has been introduced. Based on L2–stable variational formulation in [2], we have
developed a novel adaptive scheme, where we use Alpert shearlets to approximate
solutions of linear transport equations given as (1) – see [3]. Various numerical
test results in [3] show that our scheme approximates solutions of (1) at almost
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optimal rate. The main advantage of the adaptive scheme is that there is hi-
erarchical structure associated with Alpert shearlet system with respect to scale
and shear parameters j and k. Indeed this provides very efficient adaptive an-
siotropic refinements for approximating the solutions. Also, 2D shearlet system
we described in this report can be naturally extended to higher dimensions – for
instance, we refer to [6] for shearlets in 3D. Therefore, there is a strong potential
of the shearlet based adaptive scheme for higher dimensional problems although
we only considered 2D problems in [3].
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A generalization of the iterative soft-thresholding algorithm for
non-separable penalties

Ignace Loris

(joint work with Caroline Verhoeven)

The present research report focuses on the efficient use of sparse representations
for the regularization and solution of ill-posed problems. In particular, we dis-
cuss simple iterative algorithms for the minimization of certain convex functionals
encountered in this area.

Sparsity refers to the property that data can be modeled using only few sig-
nificant coefficients, without loss of important information. In the context of this
report it is used as a way of imposing a priori information on the solution of an
ill-posed inverse problem. A popular technique for recovering sparse vectors x
from noisy data y is found by using a penalty term of type ‖x‖1 =

∑
i |xi| in

combination with a least squares data misfit term:

(1) min
x

1
2‖Kx− y‖22 + λ‖x‖1.

Here y are noisy data, x is the unknown quantity andK is a known linear operator.
The above functional is non-differentiable, which makes numerical minimization

more difficult. A simple iterative method for finding the minimizer of (1) is the
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so-called iterative soft-thresholding algorithm (IST) [1, 2]:

(2) xn+1 = Sλ[xn +KT (y −Kxn)] x0 = arbitrary and ‖K‖ <
√
2.

Sλ acts componentwise and Sλ(u) = u− λ sgn(u) when |u| ≥ λ and Sλ(u) = 0 for
|u| ≤ λ. However, convergence of this algorithm can be slow and an faster version
has been proposed in [3].

Another, more general, minimization problem that is often encountered in
sparse regularization of ill-posed inverse problems is:

(3) min
x

1
2‖Kx− y‖22 + λ‖Ax‖1.

Here a second linear operator A mixes the variables also in the penalty term.
In [4] we have developed a generalized iterative soft-thresholding algorithm that
converges to a minimizer of this functional. It takes the form:

(4)





x̄n+1 = xn +KT (y −Kxn)−ATwn

wn+1 = Pλ(wn +Ax̄n+1)
xn+1 = xn +KT (y −Kxn)−ATwn+1 x0, w0 = arbitrary,

where Pλ = Id− Sλ is the projection on the ℓ∞-ball of radius λ.
Just as the original IST algorithm (2), the ‘generalized IST’ algorithm (4) is an

explicit algorithm that uses only matrix-vector multiplications and a simple convex
projection operator. Convergence is proven in a finite dimensional setting when
‖K‖ <

√
2 and ‖A‖ < 1. We also derived a O(N−1) bound on the functional for

the sequence of averages
∑N

n=1 x
n/N . The algorithm reduces to the IST algorithm

(2) in the special case A = 1 (or A orthogonal). Other algorithms exist as well.
The algorithm (4) can be used to solve ‘total variation’ (TV) penalized problems

popular in image restoration. In that case the operator A in (3) is simply a
local differencing operator (‘gradient’). Another application is found in structured
sparsity where sparsity is expressed in terms of grouped variables. In this case
the operator A is used for grouping variables and the projection Pλ takes on a
different (but still completely explicit) expression.

In some applications it is necessary to find the minimizer of functional (3) under
additional linear constraints Bx = b, i.e. one is interested in the problem:

(5) min
Bx=b

1
2‖Kx− y‖22 + λ‖Ax‖1.

In [5], we showed that the algorithm

(6)





v̄n+1 = vn − (Bxn − b)
x̄n+1 = xn +KT (y −Kxn) +BT v̄n+1 −ATwn

wn+1 = Pλ(wn +Ax̄n+1)
xn+1 = xn +KT (y −Kxn) +BT v̄n+1 −ATwn+1

vn+1 = vn − 1
α (Bx

n+1 − b) x0, w0, v0 = arbitrary.

converges to a minimizer of this problem if ‖ 1
2K

TK+BTB‖ < 1, ‖AAT ‖ < 1 and

α > 1
2 .
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Using similar techniques an iterative algorithm for the constrained problem

(7) min
‖Kx−y‖≤ǫ

‖Ax‖1

was derived:

(8)





x̄n+1 = xn −KT (vn + (vn − vn−1)/θ)−ATwn

wn+1 = Pµ
(
wn +Ax̄n+1

)

xn+1 = xn −KT (vn + (vn − vn−1)/θ)−ATwn+1

vn+1 = (1− θ)vn + θTy,ǫ
(
vn +Kxn+1

)
x0, w0, v0 = arbitrary,

and convergence was proven [6] for 0 < θ ≤ 1, µ > 0, ‖K‖ < 1 and ‖A‖ < 1. Here
Ty,ǫ = Id −Qy,ǫ where Qy,ǫ is the projection on the ℓ2-ball of radius ǫ around y.
Its performance was compared numerically with a number of other algorithms and
illustrated on generalized TV constrained inversions.

All the above algorithms can be generalized to handle an arbitrary convex
function H(Ax) instead of ‖Ax‖1 as long as the proximity operator of H is known.
Notice that the proximity operator of H(A·) does not need to be known.

A current theme of research is the comparison of the generalized IST algorithm
of [4] with the block-iterative algorithm of [7] for TV regularized medical imaging.
Both algorithms appear to show about the same speed of convergence. Although
the latter algorithm is block-iterative, it does approximate the (non-differentiable)
TV function by a differentiable penalty. The generalized IST algorithm uses tech-
niques of convex optimization to avoid such an approximation. An interesting
direction for future research is therefore the development of a block-iterative al-
gorithm for the minimization of a TV penalized least functional, that does not
approximate the TV function, but that would use the same proximal operators
as the algorithm (4). As a first step, we will look at the problem of finding
argminx,Kx=y ‖Ax‖1 by a block iterative method. The plan is to later generalize
this to argminx,‖Kx−y‖≤ǫ ‖Ax‖1 using a block-iterative algorithm.
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Scalable Frames

Friedrich Philipp

(joint work with Gitta Kutyniok, Kasso A. Okoudjou, and Elizabeth K. Tuley)

A frame for a separable Hilbert space H is a system of vectors Φ = (ϕj)j∈J ⊂ H,
J ⊂ N, which satisfies a stability condition

(1) A‖x‖2 ≤
∑

j∈J
|〈x, ϕj〉|2 ≤ B‖x‖2, x ∈ H,

where B ≥ A > 0. Thus, frames are typically redundant, yet stable systems and
have therefore established themselves as a standard tool in applied mathematics,
computer science, and engineering. The stability of a frame can be measured by
the ratio B/A of the optimal frame bounds in (1) which is exactly the square of the
condition number of the so-called analysis operator TΦ = (〈·, ϕj〉)j∈J of the frame.
A frame is thus optimally conditioned if it is a Parseval frame, i.e. if A = B = 1.

In applications it is often desirable to construct a Parseval frame from a given

frame. One possibility of doing so is to compute the Parseval frame (S
−1/2
Φ ϕj)j∈J ,

where SΦ = T ∗
ΦTΦ is the frame operator of Φ. But the problem of inverting the

frame operator might be ill-conditioned, so that this method is of rather theoretical
interest. The simplest way to modify a frame is just to multiply its frame vectors
with scalars. Therefore, we call a frame scalable if such an operation leads to a
Parseval frame. If the scalars used are all larger than some δ > 0, we say that the
frame is strictly scalable. Scalability can also be expressed in operator-theoretic
terms:

Theorem 1. A frame Φ = (ϕj)j∈J for H is (strictly) scalable if and only if there
exists a non-negative (strictly positive, respectively) self-adjoint diagonal operator
D in ℓ2(J) such that the operator DTΦ, mapping from H to ℓ2(J), is isometric.

Hence, scalability is closely connected with the preconditioning problem in numer-
ical linear algebra (see, e.g., [2]). But in the latter case the problem is to find
the smallest possible condition number of DTΦ where D runs through the diag-
onal operators or matrices. Here, we ask for necessary and sufficient conditions
for optimal preconditioning, i.e. for which frames there exists a diagonal operator
such that DTΦ has exactly condition number one. The first of our two presented
characterizations is the following.

Theorem 2. Let Φ = (ϕj)j∈J be a frame for H. Then the following statements
are equivalent.

(i) The frame Φ is strictly scalable.
(ii) There exist a Hilbert space K and an injective bounded operator L : K →

ℓ2(J) with closed range such that TT ∗+LL∗ is a strictly positive bounded
diagonal operator in ℓ2(J).
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(iii) There exist a Hilbert space K and a frame Ψ = (ψj)j∈J for K such that
the vectors (ϕj , ψj) ∈ H⊕K form an orthogonal basis of H⊕K.

In the case when H = KN (where K stands for either C or R) and J = {1, . . . ,M},
M ≥ N , we have ℓ2(J) = KM , and K in Theorem 2 can be chosen as KM−N . In
particular, a basis of KN is strictly scalable if and only if it is an orthogonal basis.
If there is only one frame vector more than dimensions, i.e. M = N +1, Theorem
2 leads to a simple scalability test (see [1, Corollary 2.9]).

In the real finite-dimensional case (i.e. H = RN and J = {1, . . . ,M}, M ≥ N)
it is natural to ask for the geometric nature of scalable frames. Our following
second characterization theorem will lead to such a geometric interpretation.

Theorem 3. Let Φ = (ϕj)
M
j=1 ⊂ RN \ {0} be a frame for RN . Then the following

statements are equivalent.

(i) Φ is not scalable.
(ii) There exists a symmetric matrix Y ∈ RN×N with tr(Y ) = 0 such that

ϕTj Y ϕj > 0 for all j = 1, . . . ,M .

Before providing the geometric interpretation of scalability, let us first draw the
following corollary which is a direct consequence of Theorem 3.

Corollary 4. The set of non-scalable frames is open in the following sense: Given
a non-scalable frame (ϕj)

M
j=1 ⊂ RN \ {0}, then there exists ε > 0 such that each

system of vectors (ψj)
M
j=1 ⊂ RN with ‖ϕj − ψj‖ < ε for all j = 1, . . . ,M is a

non-scalable frame.

For the convenience of the reader, here we only consider the geometry of scalable
frames in R2 or R3. First, note that, by Theorem 3, the frame Φ = (ϕj)

M
j=1 in RN

(N ∈ {2, 3}) is non-scalable if and only if a rotated and reflected version (ψj)
M
j=1

of Φ is contained in a set of the form

{
x ∈ RN :

N∑

i=1

cix
2
i > 0

}
,

where
∑N

i=1 ci = 0. For each N this is a cone with the 2N points (±1, . . . ,±1)T ∈
RN on its boundary. In the special case N = 2 it is just the 45◦-rotation of the
set {(x, y)T : xy > 0}. Hence, a frame in R2 is non-scalable if and only if all its
vectors lie in a rotation of the quadrant cone {(x, y)T : xy > 0}. In the 3D-case
it is easily seen that the quadrant cone must be replaced by a range of special
elliptical cones. For a detailed description (also for general N) see [1].
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(a) (b) (c)

Figure 1. (a) shows a sample region of vectors of a non-scalable
frame in R2. (b) and (c) show examples of sets which determine
sample regions in R3.
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Blind Deconvolution and Channel Protection using Random Codes

Justin Romberg

(joint work with Ali Ahmed and Benjamin Recht)

We consider the problem of recovering two unknown vectors, w and x, of length
L from their circular convolution. We make the structural assumption that the
two vectors are members known subspaces, one with dimension N and one with
dimension K. Although the observed convolution is nonlinear in both w and
x, it is linear in the rank-1 matrix formed by their outer product wx∗. This
observation allows us to recast the deconvolution problem as low-rank matrix
recovery problem from linear measurements, whose natural convex relaxation is a
nuclear norm minimization program.

We prove the effectiveness of this relaxation by showing that for “generic”
signals, the program can deconvolve w and x exactly when the maximum of N
and K is almost on the order of L. That is, we show that if x is drawn from a
random subspace of dimension N , and h is a vector in a subspace of dimension K
whose basis vectors are “spread out” in the frequency domain, then nuclear norm
minimization recovers wx∗ without error.

We discuss this result in the context of blind channel estimation in communi-
cations. If we have a message of length N which we code using a random L ×N
coding matrix, and the encoded message travels through an unknown linear time-
invariant channel of maximum length K, then the receiver can recover both the
channel response and the message when L & N +K, to within constant and log
factors.
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The problem is formalized as follows. A message vector m ∈ RN is encoded
through an L ×N encoding matrix C — we will take C to be a random matrix,
and will discuss how it is generated below. The protected message x = Cm

travels through a channel whose impulse response is h ∈ RK (and so w is simply
h zero-padded to length L). The receiver observes

(1) y = h ∗Cm.

We can write the observations in matrix-vector form as

y = HCm,

where H = circ(
[
h(0) h(1) · · · h(K) 0 · · · 0

]
) is the L×L circulant matrix

generated from h after it has been zero-padded. We will find it convenient to treat
this problem in the Fourier domain; taking the discrete Fourier transform of y
yields

(2) ŷ = ĤFCm,

where Ĥ = diag(
[
ĥ(1) · · · ĥ(L)

]
) is the L-point discrete Fourier transform

(DFT) of h and F is the (normalized) L× L DFT matrix,

F (ω, ℓ) =
1√
L
e−j2π(ω−1)(ℓ−1)/L.

Since we are “blind” to the channel h, the inverse problem (2) is nonlinear
— the observations in ŷ contain scalar products between the entries in m and
the entries in h. But by rewriting (2) carefully, we can view ŷ as a set of linear
measurements of the K × N rank-1 matrix X0 = hm∗. We do this by breaking
apart the action of the channel H on each component of Cm. The coded message
Cm is of course a linear combination of the columns of C; we can interpret y in
this lights as the first column of C weighted by m(1) convolved with h plus the
second column of C weighted by m(2) convolved with h, etc. With Cn as the nth
column of C, we can write this in matrix form as

y = m(1)(C1 ∗ h) +m(2)(C2 ∗ h) + · · ·+m(N)(CN ∗ h)

=
[
toep(C1) toep(C2) · · · toep(CN )

]




m(1)h
m(2)h

...
m(N)h


 ,

where toep(Cn) is the L×K matrix whose columns are the first K circular shifts
of Cn. We will find it convenient to write this system in the Fourier domain; since
F is orthogonal, recovering ŷ = Fy is the same as recovering y. Using the fact
that

toep(Cn) = F ∗DnF̃ ,



1818 Oberwolfach Report 29/2012

where F̃ consists of the first K columns of F and Dn is an L×L diagonal matrix
whose diagonal entries are the DFT of Cn: Dn = diag{

√
LFCn}. The frequency-

domain observations ŷ are now given by

ŷ =
[
D1F̃ D2F̃ · · · DN F̃

]




m(1)h
m(2)h

...
m(N)h


 .(3)

The form of (3) makes it clear that ŷ can be interpreted as a set of linear mea-
surements of the rank-1 matrix hm∗,

(4) ŷ = A(hm∗),

where A maps K × N matrices to RL. Recovering X0hm
∗ is then the same as

recovering both h and m up to a multiplicative factor.
By making the matrix C random, we can interpret (4) as random linear mea-

surements of a low-rank matrix. The structure of our measurements (given in (3)),
however, is completely different than anything which has appeared in the litera-
ture to date. We will generate the coding matrix in the Fourier domain by taking
the dℓ(n) to be independent Steinhaus random variables. To preserve symmetry
in the Fourier domain (in order to keep our code book real-valued), we take

dℓ(n) = ejθ(ℓ,n),

θ(ℓ, n) ∼ Uniform[0, 2π), ℓ = 1, . . . , (L+ 1)/2,

θ(ℓ, n) = −θ(L− ℓ+ 1, n), ℓ = (L+ 3)/2, . . . , L.

(We assume here that L is odd for simplicity; extending the construction to even
L is straightforward.) This method of generating the codes is chosen purely for
mathematical convenience — it will achieve the desired result while keeping the
analysis as simple as possible. It is very likely that codes generated using different
models (simply taking the entries of C to be independent subgaussian random
variables, for example) can be shown to be equally effective.

Given y (and hence ŷ), we recover X0 = hm∗ using the convex program

(5)
minimize ‖X‖∗
subject to ŷ = A(X)

.

Our main result gives a sufficient condition on the code length L that allows
perfect recovery of both the message m and the channel h from the observation
of their convolution y by solving (5). The code is generated at random, and
is effective for arbitrary, fixed h and m with high probability. Along with the
message length N and the channel length K, the bound depends on the channel
coherence

µ2
h = L · max

1≤ℓ≤L
|〈h,fℓ〉|2.

The parameter µh roughly quantifies how “flat” the channel is in the frequency
domain. If the distribution of the energy in h is spread more or less evenly across
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the entire band, then µ2
h will be a small constant. Note that it is always the case

that 1 ≤ µ2
h ≤ K.

Theorem 1. Let m ∈ RN be a message vector, and h ∈ RK be a channel vector
with channel coherence µh. Let ŷ ∈ RL be the nonlinear observations of m and h

as in (3). Then there is a constant C such that if

(6) L ≥ C max
(
K,µ2

hN
)
log2(KN),

then with probability 1 − O(N−1), h and m are recoverable from ŷ: the K × N
matrix X0 = hm∗ is the unique solution to (5).

Proof of this theorem can be found in the preprint [1].
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Localization Phenomena of Laplacian Eigenfunctions on Graphs &
Sparse Graph Constructions

Naoki Saito

(joint work with Yuji Nakatsukasa and Ernest Woei)

The first part of the talk, we described our current understanding on the phase
transition phenomenon of the graph Laplacian eigenfunctions constructed on a
certain type of unweighted trees [9], which we previously observed through our
numerical experiments conducted on dendritic trees of mouse’s retinal ganglion
cells [11, 12]. The eigenvalue distribution for such a tree is a smooth bell-shaped
curve starting from the eigenvalue 0 up to 4. Then, at the eigenvalue 4, there
is a sudden jump. Interestingly, the eigenfunctions corresponding to the eigen-
values below 4 are semi-global oscillations (like Fourier modes) over the entire
tree or one of the branches; on the other hand, those corresponding to the eigen-
values above 4 are much more localized and concentrated (like wavelets) around
junctions/branching vertices.

For a special class of trees called starlike trees, each of which has only one vertex
whose degree is larger than 2, we obtained a complete understanding of such phase
transition phenomenon:

Theorem 1 ([12, 9]). A starlike tree has exactly one graph Laplacian eigenvalue
greater than or equal to 4. The equality holds if and only if the starlike tree is K1,3,
which is also known as a claw. Moreover, let φ = (φ1, · · · , φn)T, where φj is the
value of the eigenfunction corresponding to the largest eigenvalue at the vertex vj,
j = 1, . . . , n. Then, the absolute value of this eigenfunction at the central vertex
v1 cannot be exceeded by those at the other vertices, i.e.,

|φ1| > |φj |, j = 2, . . . , n.
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The dendritic trees of neurons, of course, are more complicated than starlike
trees. However, we managed to prove the following theorem for general unweighted
graphs.

Theorem 2 ([9]). For any unweighted graph G of finite volume, we have

0 ≤ mG([4,∞)) ≤ #{j ∈ [1, n] | d(vj) 	 2},
where mG(I) is the number of the Laplacian eigenvalues of G belonging to the
interval I ⊂ R. Moreover, each eigenfunction corresponding to λ ≥ 4 has its
largest component (in the absolute value) on the vertices whose degree are larger
than 2.

Moreover, we also proved the decay of the eigenfunction magnitudes along a
branching path for a general graph.

Theorem 3 ([9]). Suppose that an unweighted graph G has a branch consisting of
a path of length k, say, {vi1 , . . . , vik} with vik being the leaf of that branch. Then
for any λ > 4, the corresponding eigenfunction φ = (φ1, · · · , φn)T satisfies

|φij+1
| ≤ γ|φij | for j = 1, 2, . . . , k − 1, γ := 2/(λ− 2) < 1.

Hence |φij | ≤ γj−1|φi1 | for j = 1, . . . , k, that is, the eigenfunction along the branch
decays exponentially with the rate γ.

For the proofs of the above theorems, the Geršgorin Circle Theorem played a
crucial role [9].

We have also identified a unique class of trees that can have an eigenvalue
exactly equal to 4 as follows:

Corollary 4 ([9] based on Theorem 4 of Guo [6]). A tree has an eigenvalue exactly
equal to 4 iff it consists of vertex disjoint copies of K1,3.

There are still many open problems related to the graph Laplacian eigenvalue
4 and the eigenfunction localizations. For example, for a finite lattice graph (or
regular grids) in Rd of size nd, we know that:

mG(4)





= 0 if d = 1;

= n− 1 if d = 2;

≥
(
d
2

)
(n− 1) if d ≥ 3.

However, it seems quite difficult to figure out the exact multiplicity of the eigen-
value 4 for d ≥ 3. For example, in the case of d = 3, for most n, we have
mG(4) = 3(n− 1); however, if n is a multiple of 6, then mG(4) = 3n. Moreover, if
n = 15, then mG(4) = 3(n+ 1). There seems to be an intimate relationship with
the analytic number theory and the uncertainty principle [14], which we would like
to investigate in the near future.

We also know that unexpected things can happen if we deal with weighted
graphs. For example, for a 1D lattice graph (or a path graph) with uniform
weights, there is no eigenfunction localization phenomenon, i.e., the eigenfunctions
are simply cosine functions with increasing frequency. As soon as one introduces
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uneven edge weights in such a simple 1D lattice graph, the wavelet-like localized
eigenfunctions start to emerge [9]. We are currently analyzing this phenomenon
using the similar techniques we used to prove the above theorems.

Finally, the second part of the talk, we briefly discussed the importance of con-
structing a sparse graph with a given set of input vectors as vertices. A sparse
graph here means that a connected graph with a relatively small number of edges.
Compared to complete or dense graphs, such sparse graphs often provide: 1) com-
putational efficiency for processing data defined or measured at vertices; and 2)
better performance of the tasks at hand (e.g., classification, regression, segmen-
tation, etc.). In particular, we reviewed two recent methods of such sparse graph
constructions: one is the method based on the ℓ2-minimization of the product of
the graph Laplacian matrix and the transposed input data matrix proposed by
Daitch, Kelner, and Spielman [4]; and the other is the so-called ℓ1-graph that uses
ℓ1-sparse approximation of input vectors proposed by Cheng, et al. [1]. The DKS
method requires convex quadratic programming and may not be too robust for out-
liers and noise unless their modified approach called an α-soft graph that allows αn
vertices with low weighted degree is used. However, the determination of this pa-
rameter α ∈ (0, 1) may not be trivial. On the other hand, the ℓ1-graph seems quite
robust against outliers and noise, but the computational burden looks severe. We
are currently comparing these methods in terms of computational costs and per-
formances using several standard datasets. We also commented some recent effort
of constructing wavelet-like transforms on graphs (see, e.g., [3, 13, 8, 7, 5, 2, 10]),
and emphasized the importance of transferring conventional Fourier and wavelet
analysis tools developed for the standard Euclidean domains (intervals, cubes, and
regular lattices) to more general graph settings.
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Image restoration: total variation, wavelet frames, and beyond

Zuowei Shen

(joint work with Jianfeng Cai, Bin Dong, Stanley Osher)

This talk is based on the recent paper [1].
The variational techniques (e.g., the total variation based method [3]) are well
established and effective for image restoration, as well as many other applications,
while wavelet frame based approach is relatively new and came from a different
school (see e.g. [4]) . This paper is designed to establish a connection between
these two major approaches for image restoration. The main result of this paper
shows that when spline wavelet frames of [2] are used, a special model of a wavelet
frame method, called the analysis based approach, can be viewed as a discrete ap-
proximation at a given resolution to variational methods. A convergence analysis
as image resolution increases is given in terms of objective functionals and their
approximate minimizers. This analysis goes beyond the establishment of the con-
nections between these two approaches, since it leads to new understandings for
the both approaches. First, it provides geometric interpretations to the wavelet
frame based approach as well as its solutions. On the other hand, for any given
variational model, wavelet frame based approaches provide various and flexible
discretizations which immediately lead to fast numerical algorithms for both the
wavelet frame based approaches and the corresponding variational model. Fur-
thermore, the built-in multiresolution structure of wavelet frames can be utilized
to adaptively choose proper differential operators in different regions of a given
image according to the order of the singularity of the underlying solutions. This
is important when multiple orders of differential operators are used in various
models that generalize the total variation based method. These observations will
enable us to design new methods according to the problems at hand, hence, lead
to wider applications of both the variational and wavelet frame based approaches.
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Links of wavelet frame based approaches to some more general variational methods
developed recently will also be discussed.
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Algebraic geometry and tight wavelet frames

Joachim Stöckler

(joint work with Maria Charina, Mihai Putinar, Claus Scheiderer)

Recent results from real algebraic geometry and the theory of moments are re-
lated in a novel framework in [1] to the existence of multivariate tight wavelet
frames. The construction of multivariate tight frames by the so-called Unitary
Extension Principle [3] and succeeding results [2] require the existence of mul-
tivariate trigonometric polynomials Q1, . . . , QN , such that a given nonnegative
trigonometric polynomial f has a sum-of-squares decomposition

f =

N∑

j=1

Q∗
jQj .

Scheiderer’s local-global principles of real algebraic geometry [4] confirm the exis-
tence of such a decomposition in the two-dimensional case, and provide sufficient
conditions based on the Hessian of f at all zeros of f for higher dimensions. More-
over, two methods for the construction of Qj , 1 ≤ j ≤ N , are presented. The first
construction uses tools from semi-definite programming. The second construction
employs the representation of non-negative trigonometric polynomials as transfer
functions of linear systems.
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Phase Retrieval and Convex Optimization

Thomas Strohmer

(joint work with Emmanuel Candès, Vlad Voroninski, and YoninaEldar)

In many applications, one would like to acquire information about an object but
it is impossible or very difficult to measure and record the phase of the signal.
The problem is then to reconstruct the object from intensity measurements only.
A problem of this kind that has attracted a considerable amount of attention over
the last hundred years or so, is of course that of recovering a signal or image from
the intensity measurements of its Fourier transform as in X-ray crystallography.
As is well-known, such phase retrieval problems are notoriously difficult to solve
numerically.

We develop a novel methodology for phase retrieval based on a rigorous and
flexible numerical framework. Whereas most of the existing methods seek to over-
come nonuniqueness by imposing additional constraints on the signal, we pursue a
different direction by assuming no constraints at all on the signal. There are two
main components to our approach.

• Multiple structured illuminations. We suggest collecting several diffraction
patterns providing ‘different views’ of the sample or specimen. This can
be accomplished in a number of ways: for instance, by modulating the
light beam falling onto the sample or by placing a mask right after the
sample. Taking multiple diffraction patterns usually yields uniqueness.

A variety of methods have been proposed to carry out these multiple
measurements; depending on the particular application, these may include
the use of various gratings and/or of masks, the rotation of the axial
position of the sample, and the use of defocusing implemented in a spatial
light modulator. Other approaches include ptychography, an exciting field
of research, where one records several diffraction patterns from overlapping
areas of the sample.

• Formulation of phase recovery as a matrix completion problem. We suggest
(1) lifting up the problem of recovering a vector from quadratic constraints
into that of a recovering of a rank-one matrix from affine constraints, and
(2) relaxing the combinatorial problem into a convenient convex program.
Since the lifting step is fundamental to our approach, we will refer to
the proposed numerical framework as PhaseLift. The price we pay for
trading the nonconvex quadratic constraints into convex constraints is that
we must deal with a highly underdetermined problem. However, recent
advances in the areas of compressive sensing and matrix completion have
shown that such convex approximations are often exact.

A significant aspect of our methodology is that our systematic optimization frame-
work offers a principled way of dealing with noise, and makes it easy to handle
various statistical noise models. This is important because in practice, measure-
ments are always noisy. In fact, our framework can be understood as an elaborate
regularized maximum likelihood method. Lastly, our framework can also include
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a priori knowledge about the signal that can be formulated or relaxed as convex
constraints.

Formally, suppose x ∈ Cn is a discrete signal and that we are given information
about the squared modulus of the inner product between the signal and some
vectors zi, namely,

bi = |〈x, zi〉|2, i = 1, . . . ,m.

We would like to know 〈x, zi〉 and record both phase and magnitude information
but can only record the magnitude; in other words, phase information is lost.

Letting A be the linear transformation

Hn×n 7→ Rm

X 7→ {z∗iXzi}1≤i≤m
which maps Hermitian matrices into real-valued vectors, one can express the data
collection bi = |〈x, zi〉|2 as

b = A(xx∗).

For reference, the adjoint operator A∗ maps real-valued inputs into Hermitian
matrices, and is given by

Rm 7→ Hn×n

y 7→ ∑
i yi ziz

∗
i .

As observed in [3, 2] the phase retrieval problem can be cast as the matrix
recovery problem

minimize rank(X)
subject to A(X) = b

X � 0.

Indeed, we know that a rank-one solution exists so the optimal X has rank at
most one. We then factorize the solution as xx∗ in order to obtain solutions to
the phase-retrieval problem. This gives x up to multiplication by a unit-normed
scalar. This is all we can hope for since if x is a solution to the phase retrieval
problem, then cx for any scalar c ∈ C obeying |c| = 1 is also solution.1

Rank minimization is in general NP hard, and we propose, instead, solving a
trace-norm relaxation. Formally, we suggest solving

(1)
minimize trace(X)
subject to A(X) = b

X � 0.

If the solution has rank one, we factorize it as above to recover our signal. This
method which lifts up the problem of vector recovery from quadratic constraints
into that of recovering a rank-one matrix from affine constraints via semidefinite
programming is known under the name of PhaseLift [2].

Our main result is that the convex program recovers x exactly (up to global
phase) provided the number m of magnitude measurements is on the order of
n logn.

1When the solution is unique up to multiplication by such a scalar, we shall say that unicity
holds up to global phase.
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Theorem 1. Consider an arbitrary signal x in Cn and suppose that the number
of measurements obeys m ≥ c0 n logn, where c0 is a sufficiently large constant.
Then in both the real and complex cases, the solution to the trace-minimization
program is exact with high probability in the sense that (1) has a unique solution
obeying

X̂ = xx∗.

This holds with probability at least 1− 3e−γ
m
n , where γ is a positive absolute con-

stant.

Expressed differently, the theorem above establishes a rigorous equivalence be-
tween a class of phase retrieval problems and a class of semidefinite programs. We
refer to [1] for the proof as well as a theorem establishing robustness vis a vis ad-
ditive noise. Details about multiple structured illuminations as well as numerical
algorithms can be found in [2].
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Fast subspace search and applications to object recognition

Arthur Szlam

(joint work with Karol Gregor, Yann LeCun)

Sparse modeling [3, 4] has proven to be a useful framework for signal processing.
Each point from a dataset consisting of vectors in a Euclidean space is represented
by a vector with only a few nonzero coefficients. Sparse modeling has lead to state
of the art algorithms in image denoising, inpainting, supervised learning, and of
particular interest here, object recognition. The systems described in [1, 2, 5, 6,
7, 8] use sparse coding as an integral element. Since the coding is done densely
in an image with relatively large dictionaries, this is a computationally expensive
part of the recognition system, and a barrier to real time application.

The main contribution described in this extended abstract of our paper[9] is
a fast approximate algorithm for finding sparse representations; we use this algo-
rithm to build a system with near state of the art recognition performance that
runs in real time. During inference the algorithm uses a tree to assign an input to
a group of allowed dictionary elements and then finds the corresponding coefficient
values using a cached pseudoinverse. We give an algorithm for learning the tree,
the dictionary and the dictionary element assignment.



Applied Harmonic Analysis and Sparse Approximation 1827

One standard formulation of sparse coding is to consider N d-dimensional real
vectors X = {x1, . . . , xN} and represent them using N K-dimensional real vectors
Z = {z1, . . . , zN} using a k × d dictionary matrix W by solving

(1) argminZ,W
∑

k

||Wzk − xk||2, s.t. ||zk||0 ≤ q,

where ||·||0 measures the number of nonzero elements of a vector; each input vector
x is thus represented as a vector z with at most q nonzero coefficients. While this
problem is not convex, and in fact the problem in the Z variable is NP-hard, there
exist algorithms for solving both the problem in Z (e.g. Orthogonal Matching
Pursuit, OMP [10]) and the problem in both variables (e.g. K-SVD [4]) that work
well in many practical situations.

A simple form of structured sparsity is given by specifying a list of L allowable
active sets of coefficients (coefficients that are allowed to be nonzero), and some
function g : Rd 7→ {1, ..., L} associating to each x to one of the L configurations.
An example of this is the output of many subspace clustering algorithms. There
each of the L configurations corresponds to the subspace spanned by a basis Bj ,
j = 1, . . . , L. We can treat the sparse coding dictionary W as concatenation of
the bases W = [B1 . . . BL]. If each B is of size q then the allowed active sets of
coefficients are {1, ..., q}, {q+ 1, ..., 2q}, etc. This sort of method is used in object
recognition in [6].

We discusses learning the L configurations as well as the dictionary. We intro-
duce a LLoyd-like algorithm [15] that alternates between updating the dictionary,
updating the assignments of each data point to the groups, and updating the
dictionary elements associated to a group via simultaneous OMP (SOMP) [16].

At inference time, we need a fast method for determining which group an x
belongs to. This is computationally expensive if there is a large number of groups
and one needs check the projection onto each group. However, by specializing
the Lloyd type algorithm to the case when each group is composed of a union of
(perhaps only one) leaves of a binary decision tree, we will build a fast inference
scheme into the learned dictionary. The key idea is that by using SOMP, we can
learn which leaves should use which dictionary elements as we train the dictionary.
To code an input, we march it down the tree until we arrive at the appropriate
leaf. In addition to the decision vectors and thresholds, we will store a lookup
table with the active set of each leaf as learned above, and the pseudoinverse of
the columns of W corresponding to that active set. Thus after following x down
the tree we need only make one matrix multiplication to get the coefficients.

Finally, we would like use these algorithms to build an accurate real time recog-
nition system. We focus on a particular architecture studied in [1, 2, 6, 8]. We use
this pipeline with two modifications. First we write our own fast implementation
of the SIFT descriptor. Second we use our fast algorithm for the sparse coding
step. The resulting system achieves nearly the same performance as exact sparse
coding calculation but processes 321× 481 size images at the rate of 20 frames per
second on a laptop computer with a quad core cpu.
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There is much left to understand here. Hashing algorithms empirically work
well in the sense of finding almost as near as the nearest one when there are
not too many subspaces. On the other hand, when the number of subspaces is
combinatorially large, as in Equation (1), they do not perform very well in the
mean square error sense. However, even though in that case the l2 error is not
nearly optimal, they still perform well as a component of the object recognition
system. It would be nice to understand rigorously under what conditions we can
expect good mean square error results, and while it is too much, perhaps, to hope
for rigor, better understanding of what is actually important for the recognition
system would be useful.
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Sharp recovery bounds for convex deconvolution, with applications

Joel A. Tropp

(joint work with Michael B. McCoy)

Deconvolution refers to the challenge of identifying two structured signals given
only the sum of the two signals and prior information about their structures. A
standard example is the problem of separating a signal that is sparse with respect
to one basis from a signal that is sparse with respect to a second basis. Another
familiar case is the problem of decomposing an observed matrix into a low-rank
matrix plus a sparse matrix. This paper describes and analyzes a framework,
based on convex optimization, for solving these deconvolution problems and many
others.

This work introduces a randomized signal model which ensures that the two
structures are incoherent, i.e., generically oriented. For an observation from this
model, the calculus of spherical integral geometry provides an exact formula that
describes when the optimization problem will succeed (or fail) to deconvolve the
two constituent signals with high probability. This approach identifies a summary
statistic that reflects the complexity of a particular signal. The difficulty of sepa-
rating two structured, incoherent signals depends only on the total complexity of
the two structures.

Some applications include (i) deconvolving two signals that are sparse in mutu-
ally incoherent bases; (ii) decoding spread-spectrum transmissions in the presence
of impulsive errors; and (iii) removing sparse corruptions from a low-rank matrix.
In each case, the theoretical analysis of the convex deconvolution method closely
matches its empirical behavior.

N-Widths for High-Dimensional Sparse Approximations

Tino Ullrich

(joint work with Zung Dinh)

In recent decades, there has been increasing interest in solving problems that in-
volve functions depending on a large number d of variables. These problems arise
from many applications in mathematical finance, chemistry, physics, especially
quantum mechanics, and meteorology. It is not surprising that these problems
can almost never be solved analytically such that one is interested in a proper
framework and efficient numerical methods for an approximate treatment. Classi-
cal methods suffer the so-called “curse of dimensionality” coined by Bellmann in
1957. In fact, the computation time typically grows exponentially in the dimen-
sion d, and the problems become intractable already for mild dimensions without
further assumptions on the model. A classical model, widely studied in literature,
is to impose certain smoothness conditions on the function to be approximated;
in particular, it is assumed that mixed derivatives are bounded.

In the present talk, we discuss linear sparse hyperbolic cross grid approximations
and the well-known Kolmogorov n-widths in isotropic Sobolev space Hγ , γ ∈ R, of
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periodic multivariate function classes with both, mixed and isotropic smoothness
properties in high-dimensional settings. In particular, if W is a class of d-variate
functions and n represents the dimension of the linear approximation space, both
parameters n and d play the same essential role for the asymptotic estimates of
the n-widths dn(W,X).

If X is a normed space and W a subset in X then the Kolmogorov n-width
dn(W,X) is given by

dn(W,X) := inf
Ln

sup
f∈W

inf
g∈Ln

‖f − g‖X ,

where the outer inf is taken over all linear manifolds Ln in X of dimension at most
n. It represents a characterization of the optimal worst case error from a llinear
subspace of order n. In the talk we are interested in measuring the approximation
error in Hγ , therefore we can assume X to be a Hilbert space H .

For the unit balls Uα and Uα1 of the periodic d-variate isotropic Sobolev space
Hα and the space Hα1 with mixed smoothness α > 0, the following well-known
estimates hold true

(1) A(α, d)n−α/d ≤ dn(U
α, L2) ≤ A′(α, d)n−α/d,

and

(2) B(α, d)n−α(logn)α(d−1) ≤ dn(U
α1, L2) ≤ B′(α, d)n−α(logn)α(d−1).

Here A(α, d), A′(α, d), B(α, d), B′(α, d) are certain constants which are usually
not computed explicitly. The inequalities (1) are a direct generalization of the
first result on n-widths proven by Kolmogorov [3] where the exact values of n-
widths were obtained for the univariate case. The inequalities (2) were proven by
Babenko already in 1960, where a linear approximation on hyperbolic cross spaces
of trigonometric polynomial is used. These estimates are quite satisfactory if d
the number of variables is small and fixed. In high-dimensional settings, i.e., if d
is large, it turns out that the smoothness of the isotropic Sobolev class Uα is not a
proper concept. Indeed, in (1) the curse of dimensionality occurs since here nε ≥
C(α, d)ε−d/α. In this talk, we extend and refine existing estimates. In particular,
we give the lower and upper bounds for constants B(α, d), B′(α, d) in (2) with
regards to α, d. In fact, we are concerned with measuring the approximation error
in the isotropic smoothness space Hγ . This is motivated by Galerkin’s method
and estimates of the error in the energy norm.

The curse of dimensionality is not sufficiently clarified unless “constants” such
as B(α, d), B′(α, d) in (2) for dn are not completely determined. We are interested,
so far possible, in explicitly determining these constants. We computed dn(U,H

γ)
and nε(U,H

γ) where U is the unit ball Uα,β in Hα,β . Here Hα,β is a hybrid type
space combining mixed smoothness α and isotropic smoothness β.

It seems that smoothness is not enough for ridding the curse of dimensionality.
However, by imposing some additional restrictions on functions in Uα,β this is
possible. In fact, Uα,βν is the set of all functions f ∈ Uα,βν actually depending on
at most ν (unknown) variables by formally being a d-variate function. For this
function class, the curse of dimensionality is broken. We establish sharp lower and
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upper bounds in an explicit form of all relevant components depending on α, β, γ
and d, n, ν. This includes the case (2) and its modifications when α > γ = β = 0.
In contrast to [2] we also obtain lower bounds and prove therefore that sparse
hyperbolic cross approximation is optimal in terms of Kolmogorov n-widths. For
the case α > γ − β > 0, we prove that the optimized sparse grid spaces from

[2] are optimal for dn(U
α,β
∗ , Hγ). Moreover, the modifications given are optimal

for dn(U
α,β, Hγ) and dn(U

α,β
ν , Hγ). In the case α > γ − β = 0, we prove that

classical hyperbolic cross spaces (see, e.g., [5]) and their modifications are optimal

for dn(U
α,β
∗ , Hγ), dn(U

α,β, Hγ) and dn(U
α,β
ν , Hγ). We obtain for instance the

relations

1

2ρ+3δ
νδ
(
1 +

d

ν(2ρ/δ − 1)

)δν
n−δ ≤ dn(U

α,β
ν , Hγ)

≤
(α
δ

)δ
22ρ+δνδ

(
1 +

d

2ρ/δ − 1

)δν
n−δ,

if n ≥ α
δ ν2

ν(2α/δ+1)(1 + d/(2ρ/δ − 1))ν , where δ := α + β − γ and ρ := γ − β.
On the other hand, what concerns the curse of dimensionality, we show negative
results for the class Uα,β in Hγ . A corresponding result for the ε-dimension nε
states that the number nε(U

α,β
ν , Hγ) is bounded polynomially in d and ε−1 from

above. As a consequence, according to [4, (2.3)], we obtain that the problem is
polynomially tractable. In addition, the case γ = β, which contains the classical
situation with Uα1ν instead of Uα1 in (2), gives as well the polynomial tractability.

Let us mention the relation to the results of Novak and Woźniakowski on
weighted tensor product problems with finite order weights [4, 5.3]. Their ap-
proach also limits the number ν of active variables in a function via a finite order
weight sequence (of order ν). However, since here in most cases neither the spaces
Hα,β of the functions to be approximated, nor the space Hγ , where the approxi-
mation error is measured, are tensor product spaces of univariate ones, our results
are not included in [4, Theorem 5.8].

References

[1] K.I. Babenko, On the approximation of periodic functions of several variables by trigono-
metric polynomials, Dokl. Akad. Nauk USSR, 132 (1960), 247–250.

[2] M. Griebel and S. Knapek, Optimized general sparse grid approximation spaces for operator
equations, Math. Comp., 78,268 (2009):2223–2257.
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Two New Algorithms Useful For the Regularization of Large Scale
Inverse Problems With Sparsity Constraints

Sergey Voronin

We introduced two new algorithms useful for the regularization of large scale
inverse problems which possess sparsely representable solutions. These algorithms
are designed to minimize a generalized sparsity promoting functional and are based
on a reweighted two norm technique, which makes the non-smooth terms differ-
entiable. They are simple to implement and parallelize and exhibit promising
numerical performance.

The motivation for these algorithms lies in an application in Geotomography.
This inverse problem, like many others from the physical sciences, has several
key characteristics which impact the type of algorithms that may be used to find
reconstructions. We have a very large under-determined linear system with a
noisy data vector and a badly conditioned matrix, from which we would like to
find a solution in the least squares sense. Additional constraints must be imposed
to make the problem well posed, which is done via regularization. It turns out
that a sparse solution may be found under the action of a transform (for example
a Wavelet transform) and we would like to look for such solutions. These are
the settings under which we design our schemes. For reasons of size, we prefer
simple, easy to implement and easy to parallelize methods which do not require
significantly more than matrix vector and matrix transpose vector multiplications.

Two typical constraints are often enforced to give sparse solutions: the mini-
mization of the ℓ0 and ℓ1 norms. In the context of noisy problems, this corresponds
to solving the problems: min ||x||0 s.t. ||Ax − b||2 ≤ ǫ and min ||x||1 s.t. ||Ax −
b||2 ≤ ǫ which for some constant τ corresponds to minimizing the functionals:

G(x) = ||Ax− b||22 + 2τ ||x||0 and F (x) = ||Ax− b||22 + 2τ ||x||1
which we call the ℓ0 and ℓ1 functionals below. When x is expected to be sparse
only under a certain transform, we can replace ||x||1 above with ||Wx||1 where
W denotes the desired transform. For the first functional (ℓ0), a wide variety of
methods from compressed sensing exist. However, the ℓ0 norm which counts the
number of nonzero elements, is highly non-convex and difficult to deal with numer-
ically, because of the existence of local minima. Additionally, these methods often
rely on the matrix satisfying the Restricted Isometry Property, which amounts to
satisfying a condition of the form:

(1− σs)||y||22 ≤ ||Asy||22 ≤ (1 + σs)||y||22
for every s-columned submatrix As of A for some small constant σs and sparse
vectors y. This is problematic for large matrices which are not well conditioned,
since any such matrix As would likely have a nonzero null space that contains
some sparse vectors. The end result is that methods based on the ℓ0 norm are
difficult to use for problems with our requirements.

For this reason, an attractive option is ℓ1 optimization, which involves a convex
functional with a single global minimum. The main difficulty here is treating the
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non-smooth term ||x||1 =
N∑

k=1

|xk|. Subgradient methods then lead to the soft-

thresholding operation which is a component wise nonlinear operator defined via
the minimization problem: Sτ (b) = argminx ||x− b||2 +2τ ||x||1. A simple scheme
called the Iterative Soft Thresholding Algorithm (ISTA) can then be used to min-
imize the ℓ1 functional. The scheme can be derived from a so called majorization-
minimization approach, where instead of minimizing the original function, we min-
imize the function which majorizes it, resulting in a simpler problem and a very
straightforward algorithm:

xn+1 = argmin
x

||Ax − b||22 + ||x− xn||22 − ||A(x− xn)||22 + 2τ ||x||1
=⇒ xn+1 = Sτ (x

n +AT b−ATAxn)

The advantage of the above scheme is its convergence for any matrix with spectral
norm less than one: ||A||2 < 1 and any initial guess x0. The disadvantage, however,
is that the convergence of this algorithm is known to be very slow. In particular,
it was shown in [1] that:

F (xn)− F (x∗) ≤ C||x0 − x∗||22
2n

where x∗ = limn→∞ xn. This motivates the search for different algorithms, which
are of about the same complexity but which converge faster. One such answer
is given by the FISTA scheme which employs a simple trick from the work of
Nesterov and can be implemented simply as:

zn = xn−1 +
tn−1 − 1

tn
(xn−1 − xn−2) , tn ∈ R

xn+1 = Sτ (z
n +AT b−ATAzn)

and has a significantly faster rate of convergence:

F (xn)− F (x∗) ≤ C2||x0 − x∗||22
(n+ 1)2

In this work we searched for other schemes based on a different approach. In-
stead of treating the non-smooth term of the ℓ1 functional directly and using the
soft thresholding operator, we have replaced the non-smooth portion by a smooth
approximation. One such approximation is possible, simply by convoluting the
absolute value function with a smooth function having a shrinking support, such
as a narrow Gaussian. This simple approach results in a smooth approximation
to the ℓ1 functional but is rather crude and does not give good numerical results.
In this work we instead use a reweighted approach that gets more accurate as the
iterations progress:

||x||1 =

N∑

k=1

|xk| ≈
N∑

k=1

wnkx
2
k
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where we use the weight wnk = 1√
(xn
k
)2+(ǫn)2

where the parameter ǫn → 0. The trick

to proving convergence turns out to be in picking the parameter ǫn in a suitable
way so that the limiting points of the iteration satisfy the required optimality
conditions. Using a majorization-minimization approach similar to that of ISTA,
we can define the algorithm via the minimization:

xn+1 = argmin
x

||Ax− b||22 + ||x− xn||22 − ||A(x − xn)||22 + 2τ

N∑

k=1

wnkx
2
k

=⇒ xn+1
k =

1

1 + τwnk

(
xnk +AT b− ATAxnk

)

where the ǫn are defined simply by ǫn = min(ǫn−1,
1
N

√
||xn − xn−1|| + αn) for

some small α > 0 and some initial ǫ0 = 1. For this to work we prove that
||xn − xn−1|| → 0. Numerically, this algorithm exhibits performance similar to
that of the FISTA scheme. We show that with minor modifications for the weights,
the scheme can be extended to minimize a more general functional:

||Ax− b||22 + 2

N∑

k=1

λk|xk|qk , 1 ≤ qk ≤ 2

Finally, we propose a scheme that is more complicated at each step, yet more
powerful. Instead of the above minimization, we define simply:

xn+1 = argmin
x

||Ax − b||22 + 2τ

N∑

k=1

wnkx
2
k = argmin

x
||Ax − b||22 + 2τ ||Dnx||22

Both terms of the above are quadratic and can be differentiated to yield:

xn+1 = (ATA+ τD2
n)

−1AT b

where Dn is a diagonal matrix containing the elements
√
wnk where wnk are defined

as before. The difficulty in the proofs lies again in picking the right subsequence
ǫn, which is more challenging in this case, since the estimate ||xn − xn−1|| → 0
does not (at least readily) come about. At each iteration, the method requires a
linear solve, which can be done, for instance, using some variant of a conjugate
gradient method. At this step, the solution of the previous iteration can be used
as a warm start for the linear solve so that at later iterations very few inner linear
solve iterations are required. With this scheme, the number of outer iterations
is significantly smaller and the total runtime can be reduced. Finally, by taking
more general weights, the scheme can be adopted to minimize the generalized
functional above, which is useful in applications. The proofs assume that the linear
solve at each step is carried to completion. Both methods are simple to use and
attractive, especially for larger problems, since they involve only simple matrix
vector operations. In both cases we prove that all limit points of a particular
subsequence of the iterates satisfy the optimality conditions for our generalized
sparsity promoting functional, without any requirements on the matrix A except
for its spectral norm to be less than one.
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Performance guarantees for total variation minimization from
undersampled measurements

Rachel Ward

(joint work with Deanna Needell)

Compressed sensing (CS) is a new signal processing methodology where signals are
acquired in compressed form as undersampled linear measurements. The applica-
tions of CS are abundant, ranging from radar and error correction to many areas
of image processing. The underlying assumption that makes such acquisition and
reconstruction possible is that most natural signals are sparse or compressible. We
say that a signal x ∈ Cp is s-sparse when

(1) ‖x‖0 def

= |supp(x)| ≤ s≪ p.

Compressible signals are those which are well-approximated by sparse signals. In
the CS framework, we acquire m ≪ p nonadaptive linear measurements of the
form y = M(x) + ξ, where M : Cp → Cm is an appropriate linear operator and
ξ is vector modeling additive noise. The theory of CS ensures that under suitable
assumptions on the measurement operator M , a sufficiently compressible signal
can be accurately approximated by the signal of minimal ℓ1-norm consistent with
the measurements,

(L1) x̂ = argmin
w

‖w‖1 such that ‖M(w)− y‖2 ≤ ε,
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where ε bounds the noise level ‖ξ‖2 ≤ ε. The program (L1) may be cast as a
second order cone program (SOCP) and can be solved efficiently using standard
convex programming methods.

To guarantee robust recovery of compressible signals via (L1), Candès and Tao
introduced in [1] the restricted isometry property (RIP) for a measurement oper-
ator M .

Definition 1. A linear operator M : Cp → Cm is said to have the restricted
isometry property (RIP) of order s ∈ N and level δ ∈ (0, 1) if

(1− δ)‖x‖22 ≤ ‖M(x)‖22 ≤ (1 + δ)‖x‖22 for all s-sparse x ∈ Cp.(2)

For example, a matrix whose entries are independent and identical (i.i.d.) real-
izations of a properly-normalized subgaussian random variable will have the RIP
with probability exceeding 1− e−cm once m ≈ δ−2s log(p/s).

Candès, Romberg, and Tao [2] showed that when the measurement operator
M has the RIP of order O(s) and sufficiently small constant δ, the program (L1)
recovers an estimation x̂ to x that satisfies the error bound

(3) ‖x̂− x‖2 ≤ C

(‖x− xs‖1√
s

+ ε

)
,

where xs denotes the best s-sparse approximation to the signal x. Using prop-
erties about Gel’fand widths of the ℓ1 ball due to Kashin and Garnaev–Gluskin,
this is the optimal minimax reconstruction rate from m ≈ s log(p/s) nonadaptive
linear measurements. Due to the rotational-invariance of an RIP matrix with ran-
domized column signs [4], a completely analogous theory holds for signals that
are compressible with respect to a known orthonormal basis or tight frame D by
replacing w with D∗w inside the ℓ1-norm of the minimization problem (L1) [5].

0.1. Imaging with CS. Natural images are highly compressible with respect to
their gradient representation. A typical grayscale digital image, regarded as a

signal x ∈ CN
2

, consists primarily of slowly-varying pixel intensities, with large
jumps in intensity occurring only along edges. Figure 1 illustrates the gradient

sparsity of a representative image x ∈ CN
2

along with its discrete directional
derivatives,

xu : CN×N → C(N−1)×N , (xu)j,k = xj,k+1 − xj,k(4)

xv : C
N×N → CN×(N−1), (xv)j+1,k = xj,k+1 − xj,k(5)

The discrete gradient transform ∇ : CN
2 → CN×N×2 is defined in terms of the

directional derivatives,

(
∇[x]

)
j,k

def

=





(
(xu)j,k, (xv)j,k

)
, 1 ≤ j ≤ N − 1, 1 ≤ k ≤ N − 1(

0, (xv)j,k
)
, j = N, 1 ≤ k ≤ N − 1(

(xu)j,k, 0
)
, k = N, 1 ≤ j ≤ N − 1(

0, 0
)
, j = k = N
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Figure 1. An image, along with its horizontal and vertical dis-
crete directional derivatives.

The ℓ1-norm of the discrete gradient defines a seminorm for the space CN
2

, often
referred to as the total variation seminorm and denoted by

(6) |x|TV def

= ‖∇[x]‖1.
Due to the gradient sparsity of natural images, it should not be surprising that
the total variation minimization program

(TV) x̂ = argmin
z

|z|TV such that ‖M(z)− y‖2 ≤ ε.

is often used for image reconstruction, in setting of compressed sensing and more
broadly in imaging applications such as denoising, deblurring, and inpainting.
While (TV) is similar to the ℓ1-minimization program (L1), the RIP-based theo-
retical guarantees for (L1) do not directly translate to recovery guarantees for (TV)
because the gradient map z → ∇[z] is not well-conditioned. In fact, viewed as an
invertible operator over mean-zero images, the condition number of the gradient
map grows linearly with the signal side-length N .

0.2. Our results. We provide the first recovery guarantees for (TV ) in the com-

pressed sensing set-up. In the setting of two-dimensional images x ∈ CN
2

, we
show that the gradient map is well-conditioned when restricted to signals lying in
null space of a matrix with the restricted isometry property:

Theorem 1. There are choices of linear operators M : CN
2 → Cm with m ≈

s log(N2/s) for which the following holds for any image x ∈ CN
2

: Given noisy
measurements y = M(x) + ξ with noise level ‖ξ‖2 ≤ ε, the total-variation mini-
mizing signal

x̂ = argmin
z

|z|TV such that ‖M(z)− y‖2 ≤ ε(7)

satisfies the error bound

(8) ‖x− x̂‖2 ≤ C log(N2/s)
(‖∇[x]−∇[x]s‖1√

s
+ ε
)
.

For details, see [6]. In words, the total-variation minimizer estimates x to
within a factor of the noise level and best s-term approximation of its gradient.
The bound in (8) is optimal up to the logarithmic factor log(N2/s).
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We also extend Theorem 1 to multidimensional signals x ∈ CN
d

of arbitrary

dimension d ≥ 2, detailed in [7]. We show that the signal x̂ ∈ CN
d

of min-
imal (d-dimensional) total variation seminorm consistent with m ≈ sd log(Nd)
appropriately-chosen linear measurements y = M(x) + ξ will approximate x to
within a factor of the noise level and the best s-term approximation to the (d-
dimensional) discrete gradient of x, modulo a single logarithmic factor in the
signal dimension Nd. In particular, our results provide guarantees on total vari-
ation minimization in reconstructing three-dimensional digital movies, which rep-
resent sequences of gradually-changing images and thus have compressible (three-
dimensional) discrete gradient.

0.3. Open problems. Our proof rests on the Sobolev inequalities for random
subspaces from [7], which follow from bounds of Cohen, Dahmen, Daubechies,
and DeVore in [3] on the compressibility of wavelet representations for functions
of bounded variation. Unfortunately these bounds, and hence our results for total
variation, do not hold in dimension d = 1; guarantees on the fidelity of total varia-
tion minimization in the one-dimensional setting remains an interesting open prob-
lem. It also remains open whether the sub-optimal logarithmic factor in Theorem
1 can be removed. Finally, guarantees for total variation from structured random
measurements such as partial rows from the Discrete Fourier matrix would be of
practical and theoretical interest.
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