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Introduction by the Organisers

The workshop Reduction of Shimura varieties was organized by Laurent Far-
gues (Strasbourg), Ulrich Görtz (Essen), Eva Viehmann (München) and Torsten
Wedhorn (Paderborn). It was attended by 27 participants with broad geographic
representation, including a number of young participants. The programme in-
cluded 18 talks of 60 minutes each.

Arithmetic properties of Shimura varieties which are encoded in their reduction
to positive characteristic are an exciting topic which has contributed to some of
the most spectacular developments in number theory and arithmetic geometry in
the last fifteen years.

It is closely related to the Langlands program (classical as well as p-adic). A
particular case is given by moduli spaces of abelian varieties, which are a classical
object of study in algebraic geometry. Via automorphic forms (again classical as
well as p-adically), there is an important connection to number theory. Moduli
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spaces of p-divisible groups are also closely related. All these topics were present
in talks of the workshop.

All participants immensely enjoyed the unique environment provided by the
Mathematisches Forschungsinstitut Oberwolfach. The organizers intend to pro-
pose another workshop on the same topic for 2015.

In the last few years reductions of PEL Shimura varieties attached to unitary
groups of signature (1, n − 1) have been studied intensely. One main motivation
is the Kudla program which predicts a relation between the intersection numbers
of certain arithmetic cycles and Fourier coefficients of the derivative of certain in-
coherent Eisenstein series. Here the supersingular locus of these Shimura varieties
is of particular interest. It is uniformized by the corresponding Rapoport-Zink
space. For inert (unramified) primes Kudla and Rapoport proved such a relation
with the derivative of certain incoherent Eisenstein series if the intersection of the
cycles is non-degenerate. U. Terstiege presented in his talk On the regularity of
special difference divisors his progress in the degenerate case. He explained that
it suffices to consider so-called special difference divisors and proved that these
divisors are regular. It was also explained how these techniques can be applied t o
the arithmetic fundamental lemma conjecture of W. Zhang in the minuscule case.

At inert primes the combinatorial structure of that Rapoport-Zink space is
controlled by a certain Bruhat-Tits building and their irreducible components are
certain Deligne-Lusztig varieties. For ramified primes M. Rapoport reported in
his talk On the supersingular locus of the Shimura variety for GU(1, n− 1) in the
ramified case analogous results obtained together with U. Terstiege and S. Wilson.
The calculation of arithmetic intersection numbers of special cycles in the ramified
case was the topic of B. Howards talk Special cycles on unitary Shimura varieties
in which he explained results obtained together with J. Bruinier and T.-H. Yang.

The last two authors also formulated a conjecture about the finite part of
arithmetic intersecion numbers of special divisors (also called Heegner divisors
by Borcherds) for Shimura varieties of orthogonal type. E. Goren reported in his
talk On a Conjecture of Bruinier-Yang on significant progress obtained together
with F. Andreatta.

On a more foundational level P. Scholze presented his work on p-adic Hodge
theory for rigid analytic varieties. He showed how his theory of perfectoid spaces
together with the introduction of a pro-étale site for locally noetherian schemes
or adic spaces can be used to prove a deRham comparison isomorphism with
coefficients for rigid-analytic varieties.

An important tool to study the reduction modulo p of PEL Shimura varieties
is the Newton stratification, i.e. the decomposition according to the isogeny class
of the p-divisible groups of the abelian varieties. A foundational result on this
stratification is Rapoport and Zink’s uniformization theorem showing that PEL
Shimura varieties are uniformized along Newton strata by certain moduli spaces
of p-divisible groups associated with the fixed isogeny class. In his talk on Period
spaces for Hodge structures in equal characteristics Hartl presented the recent work
of his student E. Arasteh Rad who proved an extended analog of this result in the
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function field case. There, for any reductive group G moduli spaces of local G-
shtukas associated with a given isogeny class uniformize the corresponding moduli
spaces of global G-shtukas along the associated Newton stratum.

The reduced subschemes underlying moduli spaces of p-divisible groups or local
G-shtukas are called affine Deligne-Lusztig varieties. They can (as sets) be de-
fined in a purely group-theoretic way generalizing Deligne and Lusztig’s classical
construction. In her talk on Connected components of minuscule affine Deligne-
Lusztig varieties, M. Chen presented recent results with M. Kisin and E. Viehmann
determining the sets of connected components of these varieties, and applications
to the local Langlands correspondence. X. He ( in his talk Affine Weyl group,
affine Hecke algebra, and affine Deligne-Lusztig variety) reported on new group-
theoretic methods and important new results on the questions of non-emptiness
and dimension of affine Deligne-Lusztig varieties in affine flag varieties. In partic-
ular, this completely proves a conjecture by Görtz, Haines, Kottwitz and Reuman
on non-emptiness of these varieties that has been studied by many people in the
past f ew years. The presented methods provide a new approach to these arith-
metic questions which hopefully lead to even more geometric applications in the
near future.

A central tool to understand p-divisible group over p-adic rings is the display
theory developed by T. Zink. In his talk Truncated displays, E. Lau presented his
work to extend these techniques to truncated p-divisible groups. He introduced
the notion of a truncated display and showed how to attach to every truncated
p-divisible group over an arbitary base scheme of characteristic p such a truncated
display. Then he studied the induced morphism Φn from the algebraic stack of
truncated p-divisible groups to the algebraic stack of truncted displays. He ex-
plained that Φn is smooth and an equivalence on geometric points und he described
its inertia.

The theory of p-adic automorphic forms plays a very important role in the recent
developments of the Langlands program by p-adically interpolating between the
known cases of Langlands correspondences.

In his talk Farid Mokrane explained a new approach and a genereralization of
Hida’s theory (the case of ordinary p-adic modular forms). This is a joint work
with Jacques Tilouine. It relies heavily on the work by Brinon and Mokrane on the
overconvergence of the Iugsa monodromy representation. Mokrane and Tilouine
use this overconvergence to construct p-adic automorphic forms in infinite level on
an overconvergent version of the Igusa tower.

In another direction, Stroh announced an important result about new cases of
Artin conjectures, generalizing the work of Buzzard and Taylor from the case of
ordinary modular forms to the case of Hilbert modular forms. This is a joint work
in common with Kassaei, Pilloni, Tian and Sasaki. Recently, Pilloni and Stroh and
independently Kassaei, Tian and Sasaky have given a generalization of the result
by Buzzard and Taylor. But their results needed a ramification hypothesis. In his
talk Stroh explained how to remove this hypothesis by a more detailed study of
the action of Hecke operators on p-adic Hilbert modular varieties. They use this
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to prove a classicity criterion à la Coleman for p-adic Hibert modular forms. The
result about Artin conjecture is then obtained by using the theory of companion
forms due to Gee.

Shen Xu explained a new result obtained in his PHD about the structure the
action of Hecke operators on some unitary Rapoport-Zink spaces and unitary type
PEL Shimura varieties with signature (1, n− 1) at a non split prime. Rapoport-
Zink spaces are p-adic rigid analytic spaces that p-adically uniformize some parts of
Shimura varities. The Shimura varities Shen Xu considers are the same as the one
studied by Harris and Taylor in their work on the local Langlands correspondence
but instead of considering a prime at which the unitary groups becomes linear (as
in Harris-Taylor), Shen Xu considers a prime at which the unitary group is a p-adic
unitary group. The involved p-adic geometry is much more complicated. The mod
p geometry of those spaces has been studied in details by Vollard and Wedhorn,
linking this geometry to the one of a Bruhat-Tits building. Shen-Xu shows one
can lift this to the p-adic geometry by showing the involved Rapoport-Zink spaces
have a ”good” cellular decomposition under the action of Hecke operators. This
uses the theory of Harder-Narasimhan of finite flat group schemes (Fargues) and
gives another example of such type of cellular decompositions after the work of
Fargues (the linear case).

Pascal Boyer explained his work on the torsion in the ℓ-adic cohomology of
Lubin-Tate spaces. Lubin-Tate spaces are the Rapoport-Zink spaces showing up in
the work of Harris and Taylor in their proof of the local Langlands correspondence.
Boyer has proved that in a lot of cases the ℓ-adic cohomology of those spaces has
no torsion. For this he proceeds to a very detailed study of the perverse sheaf
of vanishing cycles on the corresponding Shimura varities, the ℓ-adic cohomology
of Lubin-Tate spaces being the fiber a a geometric point of those vanising cycles.
He gives a description of this perverse sheaf together with the action of the Hecke
operators and the monodromy operator. One of the main difficulties is that there
are two t-structures switched by Verdier duality in the context if integral perverse
sheaves and he has to play with them. Since the study of the torsion in the
cohomology of Shimura varieties is now an active domain (see the recent work of
Bergeron and Venkatesh for example), the techniques introduced by Boyer may
be useful in the future.

In his talk on Local models for Shimura varieties G. Pappas gave an overview
of his recent results with X. Zhu on a general method of constructing local models,
i.e. schemes defined in terms of linear algebra (more precisely, affine Grassman-
nians and affine flag varieties), which are expected to model, étale-locally, the
singularities of suitable models of Shimura varieties over the ring of integers of the
reflex field. For PEL-type Shimura varieties, a general framework of such models of
Shimura varieties and corresponding local models had been proposed by Rapoport
and Zink, and has been further investigated and improved upon by several other
people. But with the work of Pappas and Zhu a new way of constructing the
local model is now available, which is on the one hand completely general. On the
other hand the construction is independent of the Shimura variety. This opens
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a new approach to studying the local structure of arithmetic models of Shimura
varieties; for i nstance, Kisin and Pappas are working on applications to Shimura
varieties which are not of PEL type. The talk of Pappas was complemented by
X. Zhu’s talk on Nearby cycles for local models, where he explained the proof of
the Kottwitz conjecture by Pappas and Zhu, which gives a description of the trace
of Frobenius on the sheaf of nearby cycles in terms of a suitable Hecke algebra.

The work of Pappas and Zhu relays heavily on their results about reductive
groups over 2-dimensional base schemes, and on Bruhat-Tits theory. A different
look on Bruhat-Tits theory was explained by T. Haines, in his talk A Tannakian
approach to Bruhat-Tits theory and parahoric group schemes. The Tannakian
approach aims at defining the building of a group G in terms of all of its repre-
sentations, thus reducing the problem to the general linear group.

C.-F. Yu gave a talk on Shuffle structures on KR strata; these shuffle structures
allow to reduce many questions about the structure of the loci of p-rank ≥ 1 in
Siegel modular varieties with Iwahori level structure to questions about the p-rank
0 locus in Siegel modular varieties of lower genus. P. Hartwig’s talk p-rank strata
and Kottwitz-Rapoport strata in Shimura varieties of PEL type showed that for
Iwahori level structure the p-rank is constant on KR strata (as previously proved
by Ngô and Genestier in the Siegel case) and discussed how to actually compute
the p-rank on a given stratum.
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Abstracts

Eigenvarieties via Igusa towers

Farid Mokrane

(joint work with Olivier Brinon and Jacques Tilouine)

1. Introduction

Our work in progress ([1], [2]) concerns the construction of the holomorphic
eigenvariety of Ag,N , the moduli space of principally polarized abelian varieties of
dimension g and level structure N (constructed also independently by Andreatta-
Iovita-Pilloni using a different technique). The method is based on the study of
the p-adic monodromy following Katz’s point of view [6]. The result should be
generalized to all PEL Shimura varieties with dense ordinary locus and perhaps
non PEL type (like SO(2, 19)). In this report we present the elliptic case. More
precisely we consider the Legendre family E = (Eλ) : y2 = x(x− 1)(x− λ). Before
the study of the p-adic monodromy, we review the complex monodromy of this
family.

1.1. Complex monodromy (Euler). Let π : E → S := C − {0, 1} be the
structural morphism defining the Legendre family over C. The locally constant
sheaf L = R1π∗Z induces the monodromy representation :

ρ : π1(S, λ0)→ Aut(H1(Eλ0 ,Z)) ≃ GL2(Z)

ρ is injective with image conjugate to a subgroup of index 2 of Γ2(Z). The relation
with differential equations is given by de Rham cohomology H1

dR(E/S) which is a
free OS-module of rank 2 equipped with Gauß-Manin connection ∇. The classes
of the differential forms of the second kind :

ω =
dx

y
, ω′ = ∇(

∂

∂λ
)(ω) =

dx√
x(x − 1)(x− λ)3

form a basis of H1
dR(E/S). The class of ω is a solution of the Picard-Fuchs differ-

ential equation :

λ(λ − 1)ω′′ + (2λ− 1)ω′ +
1

4
ω = 0

We have a de Rham-Betti comparison theorem:

L ⊗ C ≃ H1
dR(E/S)

∇=0 = {λ(λ− 1)(G′(λ)ω −G(λ)ω′)}

where G(λ) ∈ OS runs over all the solutions of the Picard-Fuchs differential equa-
tion. The Gauß hypergeometric series

G(λ) =

+∞∑

n=0

( 1
2 (

1
2 + 1) . . . (12 + n− 1)

n!

)2

λn

is a particular solution.
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1.2. p-adic monodromy. Let p be a prime number > 2, k = Fp and consider
the Legendre family and its ordinary part :

E → P1
k − {0, 1,∞} = Y0 ⊃ X0 = Spec

(
k
[
λ,

1

λ(λ − 1)h(λ)

])

where h(λ) is the Hasse polynomial :

h(λ) = (−1)
p−1
2

p−1
2∑

n=0

(p−1
2

n

)2

λn

The étale quotient L of the Barsotti-Tate group E|X0
[p∞] induces the monodromy

representation
ρ : π1(X0, λ0)→ Z×

p

We know that ρ is surjective (Igusa).
The relation with differential equations is given by Dwork’s theory of unit F -
crystals [5]. Let W =W (k) be the ring of Witt vectors with coefficients in k and

K = Frac(W ) = Q̂nrp . Consider the formal affine schemes :

Y = Spf
(
W

{
λ,

1

λ(λ − 1)

})
⊃ X = Spf

(
W

{
λ,

1

λ(λ − 1)h(λ)

})

Let R = W
{
λ, 1

λ(λ−1)h(λ)

}
and ϕ : R → R a lift of the absolute Frobenius

of k
[
λ, 1

λ(λ−1)h(λ)

]
(For example ϕ(λ) = λp). Then H1

dR(E/X) is an F -crystal

equipped with an integrable connection ∇ and a horizontal ϕ-semilinear Frobenius
Φ.

Let Fil1 = π∗ΩE/X (the Hodge filtration), there exists a unit sub-F -crystal U

of rank 1 such that H1
dR(E/X) = U ⊕ Fil1. Let R̂nr be the p-adic completion of

the union of all étale R-algebras in a fixed algebraic closure of the field of fractions

of R. We have a canonical isomorphism L∨ ≃ (U ⊗ R̂nr)∇=0,Φ=1. Moreover, there
exists a basis e of U such that

Φ(e) =
G(λ)

G(ϕ(λ))
e and ∇(

∂

∂λ
)e =

G′(λ)

G(λ)
e

2. Overconvergence

2.1. Overconvergence of the p-adic monodromy. Dwork showed that G′(λ)
G(λ)

and G(λ)
G(λp) do not overconverge around the supersingular discs. But if we consider

the ”excellent lifting” ϕ defined by j(ϕ(λ)) =
∑
anq

pn with j(λ) =
∑
anq

n the j

invariant, then G(λ)
G(ϕ(λ)) overconverges.

By passing to the generic fiber, the p-adic monodromy ρ induces a representation

ρη : π1(X
rig, λ0)→ Z×

p

We say that ρ overconverges if ρη extends to π1(V, λ0) where V is a strict neigh-
borhood of Xrig in Y rig.

Theorem 1. (Brinon-M) The p-adic monodromy overconverges.
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2.2. Overconvergent p-adic modular forms. Let v = a
b ∈ Q+, pv a root of the

polynomial T b − pa and Rv = R[p1/b]{T }/(hT − pv). Rv is a normal domain, not
smooth over OK the ring of integers of K = K0[p

v] if v > 0, and not semi-stable if
a > 1. Let Xv = Spf(Rv), if v > 0, Xrig

v is a strict neighborhood of X consisting

of points x ∈ Y such that |h(x)| ≥ p−v. If 0 < v < p−1
p2 , we have a tower of Galois

étale covers (Vn,v) of X
rig
v with Galois group (Z/pnZ) (precise version of Theorem

1).
Set Tn,v = IsomXrig

v
(Vn,v,Z/pnZ) the torsor of bases of Vn,v overXrig

v and T∞,v =

lim←−n
Tn,v, π : T∞,v → Xrig

v . Let Mv,w be the Banach space over K of locally

analytic vectors (wrt the action of Z×
p ) of H0(Xrig

v , π∗OT∞,v
)∧ with a radius of

convergence ≥ p−1/w.
M † = limv,wMv,w is by definition the space of p-adic overconvergent modular
forms.
Let W = Homcont(Z×

p ,C
×
p ) the group of continuous characters of Z×

p . W ≃

(Ẑ/pZ)× × B(1, 1−) has a natural structure of a rigid space (finite union of open
unit discs).
Let Ww = {κ ∈ W such that κ extends to Tw = Z×

p (1 + p1/wOCp
), Ww is an

affinöıde domain and (Ww)w is an admissible covering of W . Let Mκ
v,w be the

subspace of Mv,w⊗̂OWw
of eigenforms wrt the universal character Tw → OWw

.

Mκ
v,w is an orthonormalizable Banach OWw

-module. Let T
π
→ Y be the R×-torsor

of bases of the locally free sheaf ω = π∗ΩE/Y . The space of classical modular forms
is

M = H0(X, π∗OT ) =
⊕

k∈Z

H0(X,ωk)

By considering the site ”Zprofét” of profinite étale covers of Zariski open rigid
scheme of Xv (introduced independently by Scholze), the relation with classical
forms comes from the following theorem :

Theorem 2. (Brinon-M-Tilouine) We have a canonical Xv-morphism of sheaves
on the site Zprofét, Z×

p -equivariant :

HTI : T∞,v → T|Xv

We call HTI the Hodge-Tate-Igusa map.

Corollary 3. For every classical weight k ∈ X∗(T ) ⊂ W(K), HTI induces an in-
jection of K-vector spaces HTI∗ : Mk(ΓN ;K)→Mk

v,w compatible with cuspidality

: HTI∗ : Sk(ΓN ;K)→ Skv,w.

By the relative spectral theory of the Up-operator overM
κ
v,w over OWw

-Banach

modules, there exists a sub-OWw
-projective module (Mκ

v,w)
≤α of OWw

of forms

with slope ≤ α. We have also a cuspidal part (Sκv,w)
≤α of Sκv,w.

Corollary 4. (Coleman) For any κ ∈ Ww(L), S
κ
v,w ⊗OWw ,κ L = S(Xv, κ, L).

For any κ ∈ W and α > 0, there exists an affinöıde neighbourhood W(κ) of κ
such that for every κ′ ≥ 2 with α < κ′ − 1, we have (Sv,w)

κ≤α ⊗OWw ,κ
′ K =
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S(Xv, κ
′,K) = S≤α

κ′ (the space of classical cuspidal forms of weight κ, level Γ(p)
and slope α).

We obtain the Eigenvariety from the data above using standard techniques
(Coleman-Mazur, Buzzard). Proofs of the theorems above are based on p-adic
Hodge theory. We give some indications in the following section.

3. Periods of overconvergent Hodge crystals

3.1. The structure of H1
dR over Xv. Let Ev → Xv be the Legendre family, we

have the crystal H1
dR(Ev/Xv) ≃ H1

cris(Ev/Xv) over Xv. We fix the excellent lifting
of the Frobenius ϕ : Rv → Rv/p, a ϕ-crystal M over Rv is a crystal endowed
with an isogeny : Φ : ϕ∗M → M ⊗Rv

Rv/p. We have a structure of ϕ-cystal on

H1
cris(Ev/Xv). The theory of canonical subgroup shows that Φ(Fil1) ⊂ p1−vM .

We call such a triple (M,Φ, F il1) an ”Overconvergent Hodge F -crystal”. We want
associate to it a p-adic lisse sheaf over Xv extending the Dwork-Katz recipe over
the ordinary locus.

3.2. Relative periods. The algebraic fundamental group of a rigid space Y clas-
sifies finite étale covers of Y . If Y is the generic fiber of an affine formal scheme
Y f = Spf R over OK with R a normal domain, π1(Y, y) classifies normal finite ex-

tensions S of R in some fixed algebraic closure Fr(R) of Fr(R), such that S[ 1p ] is

étale over R[ 1p ]. Let R ⊂ Fr(R) be the union of all such S. Let R = projlimR/pR

and W (R) the ring of Witt vectors. We have a lifting φ of the Frobenius x 7→ xp.
Gal (R/R) acts onW (R) and the action commutes with the Frobenius φ. We have

also a natural Galois-equivariant map θ : W (R)→ R̂.
Let A∇

cris(R) be the p-adic completion of the PD-envelope of W (R) wrt Ker θ.
On A∇

cris(R) acts the group Gal (R/R) and the Frobenius φ.
The ideal Ker θ is principal inW (R), generated by ξ = [p̃]−p where [p̃] ∈ W (R)

is the Teichmüller representative of a projective system p̃ = (p, p1/p, p1/p
2

, . . .).

Let u : T ։ R be a smooth presentation. Let θu = θ ⊗ u : W (R) ⊗W T → R̂
and Acris(u) be the p-adic completion of the PD-envelope of W (R) ⊗W T wrt
Ker θu. Acris(u) is aD(u)-algebra and Gal (R/R) acts. Moreover there is a natural
connection acting on it and the set of horizontal sections is A∇

cris(R). We can put
also a Frobenius structure.

3.3. Overconvergence of the Unit F -crystal. Let (M,Φ, F il1) be an overcon-
vergent Hodge F -crystal over Rv. Mu = (Mu⊗D(u)Acris(u))

∇=0 is an A∇
cris(Rv)-

module free of rank the rank of M over Rv endowed with an action of Φ and
Gal (R/R). Filu induces not canonically a filtration Filu on Mu. Let M =
H0
cris(Spec(Rv/pRv),M), We have a canonical isomorphismM≃Mu

Theorem 5. (Brinon-M) If v < p−1
p2 , there is a unique sub-A∇

cris(Rv)-module U

of M of rank 1 stable by Φ and Gal (R/R) and such that :

• U⊕Filu = [p̃]vMu+Filu for any presentation u and filtration Filu lifting
Fil1.



Reductions of Shimura Varieties 1973

• [p̃]pv ∈ detΦ|U

3.4. The comparison theorem. Let Λ = W (R)/([ζ] − 1)p−1 where [ζ] is the
Teichmüller lifting of a basis of the Tate module of the multilplicative group. We
have :

Λ0(Rv) ∼= A∇
cris(Rv)/I

[p−1]A∇
cris(Rv)

with I [r]A∇
cris(Rv) = {x ∈ A

∇
cris(Rv); ∀m ≥ 0, φm(x) ∈ J [r]A∇

cris(Rv)}

and J [r]A∇
cris(Rv) is the closure for the p-adic topology of the r-th divided power

of J [1]. Let U be an A∇
cris(Rv)-module, Ũ a lift of U ⊗ Λ to W (R) and

V(U) = Ker(ϕ/p⊗ Φ : ξW (R){[p̃]−1]} ⊗ Ũ → W (R){[p̃]−1]} ⊗ Ũ)

Theorem 6. (Brinon-M) Let (M,Φ, F il) be an overconvergent Hodge F -crystal
such that pv ∈ det(ΦM/Fil). If v < p−1

p2 then V(U) is a free Zp-module of rank the

rank of U over Rv.

Theorem 7. (Brinon-M-Tilouine) The natural map

V(U) ⊗Zp
A∇
cris(Rv)[

1

p
] −→ ξU [

1

p
]

is an isomorphism.

3.5. The Hodge-Tate-Igusa map. From Theorem 7, we have an isomorphism

V(U) ⊗Zp
R̂v[

1

p
] −→ ω∨ ⊗Rv

R̂v[
1

p
]

Let R∞ be the fixed field of ker(ρ), taking invariants by Gal (Rv/R∞) and using
the purity theorem (Faltings, Scholze), we obtain the Hodge-Tate-Igusa map

V(U)[
1

p
] →֒ ω∨ ⊗Rv

R̂∞[
1

p
].

We deduce a map of sheaves on the site Zprofét :

V(U)[
1

p
] →֒ ω∨[

1

p
]

4. The higher genus case

In the Siegel case, the Igusa tower T∞,v is a GLg(Zp)-torsor over Xv. Let TI,v
be the quotient of T1,v by B+(Z/pZ). T∞,v/TI,v is a Galois cover with group the

Iwahori group I = N−
1 × T ×N

+ where N+ is the upper unipotent subgroup and
N−

1 is the subgoup of the lower unipotent matrices congruent to the identity mod
p. For u ≥ w, we define a ”Banach sheaf” Mv,w,u of sections of the Igusa tower

over TI,v invariant under N+ and locally analytic wrt T and N−
1 with order w

and u. We then obtain similar results that described above in the elliptic case.
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p-adic Hodge theory for rigid-analytic varieties

Peter Scholze

In this talk, we explained parts of the proof of the following result.

Theorem 1. Let k be a p-adic field, i.e. a complete nonarchimedean extension
of Qp with perfect residue field. Let X be a proper smooth rigid-analytic variety

over k, and let L be a Zp-local system on X. Let C = ˆ̄k be the completion of an
algebraic closure of k.

(i) The étale cohomology groups Hi
ét(XC ,L) are finitely generated Zp-modules

for all i ≥ 0, and vanish for i > 2 dimX.
(ii) Assume that L is de Rham. Then there is an associated module with in-

tegrable connection (E ,∇) on X, with a separated and exhaustive decreas-
ing filtration Fil•E ⊂ E by locally direct summands, satisfying Griffiths
transversality. There is a Gal(k̄/k)-equivariant isomorphism

Hi
ét(XC ,L)⊗Zp

BdR
∼= Hi

dR(X, (E ,∇,Fil
•))⊗k BdR ,

where BdR is Fontaine’s field of p-adic periods. This isomorphism pre-
serves filtrations.

(iii) In the situation of (ii), the Hodge-de Rham spectral sequence

Hi,j
Hodge(X, (E ,∇,Fil

•))⇒ Hi+j
dR (X, (E ,∇,Fil•))

degenerates.

Here, we define

Hi,j
Hodge(X, (E ,∇,Fil

•)) = Hi+j(X, griDR(E ,∇,Fil•)) .

In particular, for L = Zp, the theorem says that the usual Hodge-de Rham
spectral sequence degenerates for any proper smooth rigid-analytic variety. More-
over, its étale cohomology groups Hi

ét(XC ,Qp) are de Rham representations of
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Gal(k̄/k) with associated filtered k-vector space Hi
dR(X). Also, there is a Hodge-

Tate decomposition

Hi
ét(XC ,Qp)⊗Qp

C ∼=

i⊕

j=0

Hi−j(X,ΩjX)⊗k C(−j) ,

answering a question of Tate.
The proof of the theorem follows ideas of Faltings, amplified by the theory of

perfectoid spaces.
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Truncated displays

Eike Lau

It is known that formal p-divisible groups over p-adic rings are equivalent to nilpo-
tent displays [Zi, L1]. There is a natural notion of truncated displays of level
n, and these objects form an Artin stack Dispn over SpecFp. Let BTn be the
stack of truncated p-divisible group of level n. The central result of [L2] is that
the Dieudonné crystal of a (truncated) p-divisible group can be endowed with a
natural display structure:

Theorem 1. There is a functor from p-divisible groups over p-adic rings to dis-
plays, φ : BT → Disp. It induces a morphism of Artin algebraic stacks

φn : BTn = BTn × SpecFp → Dispn,

which is smooth of relative dimension zero and an equivalence on geometric points.

The stack Dispn can be described as follows. Let IR be the kernel of the first
projection W (R) → R. The inverse of the Verschiebung is a σ-linear homomor-
phism σ1 : IR → W (R). Let K(R) = GLh(W (R)), and for fixed non-negative
integers d, c let Kµ(R) ⊂ K(R) be the subgroup of block matrices (A B

C D ) of size
(d, c) where C has coefficients in IR. Define a homomorphism

σµ : Kµ → K,

(
A B
C D

)
7→

(
σ(A) pσ(B)
σ1(C) σ(D)

)

and let g ∈ Kµ act onK by h 7→ g−1hσµ(g). Then the quotient stack [K/Kµ] is the
space of displays of height c + d and dimension d. If R is a ring of characteristic
p, the truncated Witt ring Wn(R) carries a Frobenius. This allows to define a
truncated variant σµ,n : Kµ,n → Kn of σµ where Kn(R) = GLh(Wn(R)) and
where Kµ,n(R) is the group of invertible block matrices (A B

C D ) of size (d, c) such
that A,B,D have coefficients in Wn(R) and C has coefficients in In+1,R, the
kernel of the first projection Wn+1(R) → R. Then [K/Kµ] ⊂ Dispn is the open
and closed substack of truncated displays of dimension d and height c+ d.
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The diagonal

∆ : BTn → BTn ×Dispn BTn

measures the failure of φn to be an isomorphism. For a truncated p-divisible
group G over an Fp-algebra let Auto(G) be the sheaf of automorphisms of G
which become trivial on the associated truncated display.

Theorem 2. The morphism ∆ is finite flat and surjective. More precisely, for
truncated p-divisible groups G,H of level n, dimension d, and height c+ d over an
Fp-algebra R, the morphism

π : Isom(G,H)→ Isom(φnG,φnH)

induced by φn is a torsor under Auto(G), and Auto(G) is an infinitesimal com-
mutative finite flat group scheme of rank pncd.

Here we see no difference between truncated p-divisible groups which are infin-
itesimal or not, but a difference appears in the limit over n:

Theorem 3. (a) For a p-divisible group G over an Fp-algebra, the affine group
scheme

Auto(G) = lim
←−
n

Auto(Gn)

is trivial if and only if all fibres of G are infinitesimal or unipotent.
(b) Over p-adic rings, the functor φ induces an equivalence between infinitesimal

p-divisible groups and nilpotent displays.

The situation in (a) can be described quite explicitly; see [LZ]: If G is an
infinitesimal p-divisible group of dimension d and height c + d over a reduced
Fp-algebra, the reduction

Auto(Gn)→ Auto(Gm)

is trivial as soon as n ≥ (c + 1)m. It follows that the limit is trivial as required.
The equivalence in (b) is known, but the proof is new.

As another application of Theorems 1 and 2 we get the following.

Corollary 4. Let R be a perfect ring of characteristic p.
(a) The functor φn induces an equivalence between truncated p-divisible groups

over R and truncated displays over R.
(b) The category of finite flat commutative p-group schemes over R is equivalent

to the category of triples (M,F, V ) where M is a finitely presented W (R)-module
annihilated by a power of p and of projective dimension at most one with a σ-linear
endomorphism F and a σ−1-linear endomorphism V such that FV = V F = p.

Part (b) was proved earlier by Gabber by a reduction to the case of perfect
valuation rings, which is due to Berthelot [Be].
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Rapoport-Zink uniformization over function fields

Urs Hartl

(joint work with M. Esmail Arasteh Rad)

There is a remarkable parallel between the arithmetic of number fields and the
arithmetic of function fields under which abelian varieties and p-divisible groups
have, as function field counterparts, global and local G-shtukas. Here G is a
parahoric group scheme over a smooth projective geometrically irreducible curve
C. For a fixed r ∈ N>0 a global G-shtuka over an Fq-scheme S consists of r
characteristic morphisms c1, . . . , cr : S → C, a G-torsor G over CS := C ×Fq

S

and an isomorphism φ : σ∗G|CS\Γ
∼−→G|CS\Γ of G-torsors outside the union Γ =

Γc1 ∪ . . . ∪ Γcr of the graphs of the ci, where σ = idC × Frobq,S is the Frobenius
on CS .

Local G-shtukas arise as the completion of global G-shtukas at the places (closed
points) of C. Local G-shtukas with bounded Hodge-polygon possess Rapoport-
Zink spaces, that is, deformation spaces by isogenies, which are formal schemes
locally formally of finite type. The Rapoport-Zink spaces can be used to partially
uniformize Newton strata in the algebraic moduli stacks of global G-shtukas with
the same bounds on their Hodge polygons.

Filtrations of stratification of some simple Shimura varieties

Pascal Boyer

For l 6= p two distinct prime numbers, in [1], we described the Q̄l-perverse sheaf
of vanishing cycles of some simple unitary Shimura variety studied in [2]. In this
sort resume of my talk, I want to explain how to attack the problem of studying
the Z̄l-version of these results.

1. Filtration of stratification

1.1. Torsion theories. A torsion theory on a abelian category A is a couple
(T ,F) of full subcategories such that:

• for all objects T in T and F in F , we have

HomA(T, F ) = 0;
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• for all objects A of A, there exist objects T and F of T and F respectively,
and a short exact sequence

0→ T −→ A −→ F → 0.

Remark: If A is Zl-linear, we say that T (resp. F ) is of torsion (resp. free) if
lN1A is null for some integer N (resp. l.1A is a monomorphism). If we note T
(resp. F) the set of such objects, then (T ,F) is a torsion theory.

Proposition 1. (cf. [3] 1.3.6)
If C = D≤0∩D≤0 is the heart of a perverse t-structure with a torsion theory (T ,F)
then

+D≤0 := {A ∈ D≤1 : h1(A) ∈ T }
+D≥0 := {A ∈ D≥0 : h0(A) ∈ F}

define a new t-structure with heart +C with (F , T [−1]) as torsion theory.

Notation 2. For T : D1 −→ D2 a triangulated functor, we note p+h0T for
+h0 ◦ T ◦ ǫ1.

1.2. Saturation.

Notation 3. For A,B ∈ C ∩ +C, we note

A
�

� // // B

a monomorphism A→ B in C and a epimorphism in +C.

Proposition 4. Let i : A →֒ P a monomorphism in C with A and P free in C;
then there exists an unique factorisation A→ B → P of i in C such that:

• B is free in C;
• A

�

� // // B ;
• the cokernel of B → P in C is free.

We call B the saturation of i, it is in fact the image of i in +C.

1.3. Filtrations. Let PΛ ∈ C ∩ +C, and let us consider the commutative diagram
in C:

PΛ
// pj∗j∗PΛ

// p+j∗j∗PΛ

pj!j
∗PΛ

//

99rrrrrrrrrrr
p+j!j

∗PΛ

OO

// pj!∗j∗PΛ
// p+j!∗j∗P

OO 88qqqqqqqqqq

Definition 5. We define

• Fil1U (PΛ) the image in +C of p+j!j
∗PΛ → PΛ;

• Fil0U (PΛ) the image in +C of

ph−1
freei

∗j∗j
∗PΛ →

p+j!j
∗PΛ →֒ Fil1U (PΛ).

Lemma 6. The perverse sheaves Fil0U (PΛ) and Fil1U (PΛ) define in C a filtration

Fil0U (PΛ) ⊂ Fil1U (PΛ) ⊂ PΛ

such that:
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• the graded pieces are free in C;
• we have a natural epimorphism in +C:

p+j!∗j
∗PΛ ։ Fil1U (PΛ)/Fil

0
U (PΛ);

• PΛ/Fil
1
U (PΛ) ≃ i∗p+i∗PΛ.

Dually, using the short exact sequence in C

0→ p+j!∗j
∗PΛ −→

pj∗j
∗PΛ −→

ph0librei
∗j∗j

∗PΛ → 0

and the fact that pj∗j
∗PΛ is free in C, we define the following cofiltration.

Definition 7. One defines

• CoFilU,−1(PΛ) the image in C of PΛ → pj∗j
∗PΛ;

• CoFilU,0(PΛ) the image in C of

PΛ →
pj∗j

∗PΛ ։
pi∗

ph0librei
∗j∗PΛ.

Remark: If the scheme X is stratified, we can iterate the preceding construction
to obtain a filtration or a cofiltration such that the graded pieces gr are of the
form

pj!∗L →֒ gr →֒ p+j!∗L

for some local system L shifted by its dimension.

2. The case of some simple unitary Shimura varieties

2.1. Definitions. Let F = F+E a CM field with E/Q imaginary quadratic. In
[2], they proove the existence of a unitary group G such that:

• G(R) ≃ U(1, d− 1)× U(0, d)r−1;
• G(Qp) ≃ (Qp)× ×

∏r
i=1(B

op
vi )

× where v = v1, v2, · · · , vr are the places of
F above the place u of E such that p = ucu and where B is a central
division algebra on F of dimension d2 with certain properties, for example
it is split or a division algebra in each place and split at the place v.

Notation 8. We note X the tower of the Shimura variety associated to the group
G. The Newton stratification of the special fiber Xs is noted X≥h

s .

To each irreducible representation τ of the group of invertibles D×
v,h of the

central division algebra Dv,h on Fv with invariant 1/h, the authors of [2] define a
local system Fτ called a Harris-Taylor local system. The intermediate extension
associated to these local system is called a Harris-Taylor perverse sheaf.

Notation 9. By the Jacquet-Langlands correspondence, each irreducible repre-
sentation τ of D×

v,h is associated to an irreducible cuspidal representation πv of

GLg(Fv) with h = tg. The corresponding Harris-Taylor perverse sheaf of weight
n is noted P(πv, t)(−n/2).
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2.2. Filtrations of the perverse sheaf of vanishing cycles. We note Ψv the
perverse sheaf of vanishing cycles on the special fiber Xs of X at the place v. Using
the monodromy we can decompose Ψv in a direct sum:

ΨI =
⊕

1≤g≤d
πv∈Cuspv(g)

ΨI,πv

where Cuspv(g) is the set of inertial equivalence classes of irreducible cuspidal
representations of GLg(Fv) with 1 ≤ g ≤ d.

Proposition 10. (cf. [1] corollaire 5.4.2)
In some Grothendieck group we have the following equality:

[ΨI,πv
] =

sg−1∑

k=1−sg

∑

|k|<t≤sg
t≡k−1 mod 2

P(t, πv)(−
k

2
).

Proposition 11. Let

0 = Fil0
S
(ΨI,πv

) ⊂ Fil1
S
(ΨI,πv

) ⊂ · · · ⊂ Fils
S
(ΨI,πv

) = ΨI,πv

be the filtration of stratification of Ψπv
. For all 1 ≤ k ≤ s, the surjection

j≥kg! HT (πv, [
←−−−
k − 1]πv

)⊗ Lg(πv)(
1 − k

2
) ։ FilkS(ΨI,πv

)/Filk−1
S

(ΨI,πv
)

has image in some Grothendieck group
s∑

i=k

P(i, πv)(
k − i

2
).

Remark: This construction explains the maps in the spectral sequence which
calculate the sheaves of cohomology of Ψπv

.

2.3. Entire version.

Conjecture 12. Let πv be a irreducible cuspidal representation of GLg(Fv) such

that its modular reduction is supercuspidal, then for all 1 ≤ t ≤ s = ⌊dg ⌋, we have

pj≥tg!∗ FZ̄l
(πv, t)[d− tg] ≃

p+j≥tg!∗ FZ̄l
(πv, t)[d− tg].

Remark: We can easily prove that this result can’t be true if the reduction modulo
l of πv is cuspidal but not supercuspidal; in fact we can describe precisely the
quotient of these two intermediate extensions in terms of the modular reduction
of the Steinberg representation Stt(πv).

Proposition 13. The conjecture is true for πv a character.

Remark: From this result we can prove the following result.

Corollary 14. In prime dimension, the cohomology groups of the Lubin-Tate
spaces are free.
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j
≥g

!
HT (πv, πv)

j
≥2g

!
HT (πv,St2(πv))(−

1

2
)

j
≥3g

!
HT (πv,St3(πv))(−1)

j
≥g

∗ HT (πv, πv)

j
≥2g
∗ HT (πv, St2(πv)(

1

2
)

j
≥3g
∗ HT (πv,St3(πv))(1)

−2

−1

0

1

2

3

0

1

2

−1

−2

−3

>>

>>

⊂

⊂

Figure 1. Filtration (fig. on the left) and cofiltration (fig. on
the right) of stratification of Ψπv

with d = 3g.
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Shimura simples. Invent. Math., 177(2):239–280, 2009.

[2] M. Harris, R. Taylor. The geometry and cohomology of some simple Shimura varieties, vol-
ume 151 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2001.

[3] D. Juteau. Modular Springer correspondence and decomposition matrices. Thèse de
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On a Conjecture of Bruinier-Yang

Eyal Z. Goren

(joint work with Fabrizio Andreatta)

This talk announces major progress towards the proof of a conjecture of Bruinier-
Yang concerning the arithmetic intersection number of the so-called small CM
points and Heegner, or special, divisors on Shimura varieties of orthogonal type.
Although at this time the proof is not written yet in complete detail, we believe
that the ideas presented in this talk suffice for a complete proof. Similar results,
using similar methods, were obtained independently by Ben Howard and Keerthi
Madapusi-Pera.
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Let (L, q) be a lattice with quadratic form q of signature (n+, 2−). Assume
that L = P ⊕⊥ N , where N is a totally negative two-dimensional sublattice. The
even Clifford algebra k = C+(N ⊗Z Q) is then a quadratic imaginary field with
associated torus T = k×. The map T (Q)\{±1} × T (Af)/K ′ → CSpin(Q)\X ×
CSpin(Af )/K =: XK , where X is the symmetric space of CSpin, K a compact
open subgroup of CSpin(Af ) and K ′ its intersection with T (Af), supplies one with
a zero cycle Z(N) on XK , whose points are called small CM points.

By the work of Kisin [5] and Vasiu [10], the varieties XK have canonical integral
models over Z after inverting 2, the primes p dividing the order of the discriminant
group |L∨/L| and the primes at which K is not hyperspecial. One lets Z (N) be
the normalization of the flat closure of Z(N) in that model. By the work of
Borcherds, one has divisors Zµ,n, µ ∈ L∨/L, n < 0, on XK ; Borcherds called
them Heegner divisors and also rational quadratic divisors, but here we use the
terminology special divisors. Likewise, they have a flat closure Zµ,n. Bruinier-
Yang [2] made the following conjecture concerning the finite part of the Arakelov
intersection number:

(⋆) 〈Zm,µ,Z (N)〉fin =

−
deg(Z(N))

2

∑

µ1∈N
∨/N,µ2∈P

∨/P
µ=µ1+µ2

∑

mi∈Q≥0

m=m1+m2

r(m1, µ1) · κ(m2, µ2),

where the coefficients r(m,µ) are coming from a theta series associated to the
quadratic imaginary field k, and the coefficients κ(m,µ) are coming from a theta
function associated to P . In a sense, this is an explicit formula. A similar con-
jecture was formulated for “big” CM points by Bruinier, Kudla and Yang in [1].
Both conjectures are best understood in the context of a far-reaching program due
to Kudla, see, e.g., [6]. For lack of space, we cannot review here later important
developments.

By virtue of results of Bruinier and Funke, we allow ourselves here to assume
that Zµ,n is the Borcherds lift Ψ(f) of a modular form f = fµ,n. Conjecture (⋆) is
intertwined with a formula obtained in [2] for the value Φ(f ;Z(N)) - the product
of the logarithmic Borcherds lift Φ(f) = log ‖Ψ(f)‖2Pet over the points of Z(N).

The usual scenario is that Z(N) ∩ Zµ,n 6= ∅. This immediately raises two
obstacles:

(a) Since Ψ(f) is not defined on Zµ,n the value of Φ(f), although well-defined
by [9], has mysterious nature;

(b) The intersection of Z (N) and Zµ,n is not proper and that needs to be
dealt with in the context of Arakelov intersection theory.

Assume that L∨/L has square free order and that K is hyperspecial at all odd
primes. The prime 2 is excluded from the discussion in this report. Our proof is
based on several ingredients:
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(1) Let G be the reductive algebraic group over Q given by {x ∈ C+(V ) :
x·ι(x) is a scalar}. It defines a Shimura variety of PEL-type, which admits
an integral model over Z[1/2] by Rapoport-Zink [8]. The endomorphism
structure is, essentially, multiplication by C+(L) - a maximal order away
from 2. Assuming “K comes from G”, we get arithmetic varieties SK .
Relative to SK we can describe very explicitly the Shimura variety XK

as PEL + a single Hodge class.
(2) We can prove that the special divisor Zµ,n is described inside the Shimura

variety XK by a relative PEL property. Given the modular interpretation
of points obtained from SK as parameterizing abelian varieties with ad-
ditional structure, the special divisor is - roughly speaking - the locus of
abelian varieties with an additional endomorphism that satisfies various
properties.

(3) The small CM points have a moduli interpretation. The initial moduli
interpretation of the points on the Shimura variety associated to T is that
of elliptic curves E with additional structure. We show that the image in
XK are points that parameterize (via the modular description provided
by SK) abelian varieties of the form C+(L) ⊗C+(N) E with additional
structure.

(4) The analysis of non-proper intersection is handled via deformation to the
normal cone in Arakelov geometry developed in Hu’s thesis [4]. This
method clarifies at the same time the meaning of the function Φ(f) at
points on Zµ,n. One ingredient is the calculation of the intersection of a

component Dλ of Zµ,n with D̂λ - the divisor Dλ equipped with a par-
ticular Green function, proving that it is proportional to the tautological
meterized line bundle ω̂ on Dλ.

(5) Using the theory of local models for the lattices L ⊂ L∨ we explicitly
describe the normal cone of a small CM point inside the normalization of
the schematic closure of XK inside SK . At least at primes not dividing
|L∨/L|, it gives the local ring at the given point for the integral model
of XK [5, 10]; using recent work of Madapusi-Pera, it should possible to
extend this to all primes.

(6) The analysis of components of Zµ,n having proper intersection with points
of Z (N) is then translated, making use of the relative PEL nature of the
special divisor and the interpretation of the points in Z (N) as arising via
a Serre tensor construction, to a problem about special endomorphisms
(in the sense of Kudla) of elliptic curves with CM. This is handled very
much in the same way as in [7] via reduction to calculation of lengths of
certain artinian rings; a calculation that rests on Gross’s work [3].
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A Tannakian approach to Bruhat-Tits buildings and parahoric group
schemes

Thomas J. Haines

(joint work with Kevin Wilson)

1. Introduction

For the general linear group, the Bruhat-Tits building can be described explic-
itly in terms of periodic lattice chains in the standard representation. Furthermore,
any parahoric group scheme may be described as a certain automorphism group
of such chains. This talk will explain joint work in progress with Kevin Wilson, in
which we give a Tannakian description of buildings and parahoric group schemes
for general connected reductive groups over complete discretely valued fields. This
project was inspired by the study of Rapoport-Zink local models.

2. Basic objects for GLn

Let K denote a complete discretely valued field, with ring of integers O and
uniformizer π. Let G be a connected reductive group over K. Then Bruhat-
Tits theory [BT1], [BT2] defines a building B(G,K). It decomposes, essentially
canonically, as a product B(Gder,K) × B(Z(G)◦,K). Note the second factor is
simply a Euclidean space of dimension dim Z(G). For example, the building for
GL2 is the product of a tree with the Euclidean space R.

Given a facet F ⊂ B(G,K), Bruhat-Tits theory constructs a smooth affine
group scheme GF over O.

Consider the example G = GLn. The building has maximal simplices (a.k.a
alcoves a) in 1-1 correspondence with complete periodic O-lattice chains

a = (Λ0 ⊂ Λ1 ⊂ · · · ⊂ Λn = π−1Λ0) ⊂ K
n.
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Given such a = Λ•, we can define a group functor (designated RZ for Rapoport-
Zink) on commutative O-algebras R by

GRZ
a

(R) = {(g0, . . . , gn−1) ∈
∏

i

GLR(Λi,R) | condition (Comm) holds}

(Comm) Writing Λi,R for Λi ⊗O R, the following diagram commutes

Λ0,R
//

g0

��

· · · // Λn−1,R

gn−1

��

π // Λ0,R

g0

��
Λ0,R

// · · · // Λn−1,R
π // Λ0,R.

A similar definition works for parahoric group schemes.

Proposition 1 ([RZ]). GRZ
a is formally smooth over O.

Corollary 2. GRZ
a = Ga.

Proof. It is easy to see that an affine, finite-type, and formally smooth group
scheme H over O with fixed generic fiber H/K is uniquely determined (up to a
unique isomorphism) by the group H(OL), where OL is the ring of integers in the

field L := K̂un. The two group schemes Ga and GRZ
a have these properties and

have as OL-points the fixer of a in G(L). �

3. General case: Moy-Prasad filtrations

It is simpler (and a first step) to construct objects over the field L = K̂un.
Henceforth, we therefore assume K = L. For simplicity we also assume that G is
K-split, and that Gder = Gsc.

We need to work integrally; thus we fix a special maximal vertex o ∈ B(G,K).
We denote by G := Go the Chevalley group scheme over O associated to o. We
will construct lattice chains in VK := V ⊗O K for all V ∈ Rep◦O(G), the category
of representations of G on finite-type projective O-modules V .

What kind of lattice chains will we consider? For V = Lie(G) =: g, Moy and
Prasad [MP] construct O-lattices gx,r (x ∈ B(G,K), r ∈ R). We define similar
lattices Vx,r in VK for every V and every r ∈ R.

There is a 1-1 correspondence A↔ A between apartments A containing o and
maximal O-split tori A ⊂ G (we also write A ⊂ G for its generic fiber). Fix A.
For x ∈ A, we set

(1) V A

x,r =
⊕

λ∈X∗(A)

V Aλ ⊗O Oπ
⌈r−〈λ,x−o〉⌉.

Here V Aλ is the λ-weight space for the restriction of V to A.
For any y ∈ B(G,K), write y = gx for some g ∈ G(K) and x ∈ A, and set

V A
y,r = g(V A

x,r). A lemma shows that V A
y,r is independent of the choices for g and

x. Another lemma shows that V A
x,r is independent of the choice of A. Hence we

may define, for any x, r,
Vx,r := V A

x,r
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and this agrees with (1) whenever x ∈ A.
The family of lattices Vx,r satisfies some obvious compatibilities as V and r vary.

We call the collection of all such abstract families (Vr)V,r Moy-Prasad filtrations
on the category Rep◦O(G) and denote the set of such byMP (G,K, o). This notion
yields a Tannakian description of the building.

Theorem 3. (In progress) The map x 7→ (Vx,r)V,r gives a G(K)-equivariant bi-
jection B(G,K) →̃ MP (G,K, o).

4. Construction of GF

Decompose o = o′×o′′ and F = F′×B(Z(G)◦,K) in B(Gder,K)×B(Z(G)◦,K),
and identify F′ with F′ × o′′ ⊂ F.

Definition 4. Let AutF be the group-valued functor on the category Alg
O

defined
as follows:

AutF(R) =
{
(gRVx,r

) ∈
∏

V ∈Rep◦
O
(G)

x∈F′, r∈R

GLR(Vx,r⊗OR) | conditions (Aut0)-(Aut3) hold
}

(Aut0) For all pairs (x, r), (y, s) ∈ F′ × R and integers n ∈ N such that Vx,r+n ⊂
Vy,s ⊂ Vx,r the following diagram commutes:

Vx,r⊗OR
∼= ·πn

//

gRVx,r

��

Vx,r+n⊗OR //

gRVx,r+n

��

Vy,s⊗OR //

gRVy,s

��

Vx,r⊗OR

gRVx,r

��
Vx,r⊗OR

∼= ·πn

// Vx,r+n⊗OR // Vy,s⊗OR // Vx,r⊗OR.

(Aut1) Let 1 denote the trivial representation on O. For all (x, r) ∈ F′ × R we
have gR

1x,r
= idR.

(Aut2) For every morphism U
φ // V in Rep◦O(G) and every (x, r) ∈ F′ × R

the following diagram commutes:

Ux,r ⊗O R
φR

//

gRUx,r

��

Vx,r ⊗O R

gRVx,r

��
Ux,r ⊗O R

φR

// Vx,r ⊗O R.

(Aut3) For V,W ∈ Rep◦O(G) and (x, r) ∈ F′ × R and s, t ∈ R with s+ t = r, the
following diagram commutes:

(Vx,s ⊗O R)⊗R (Wx,t ⊗O R) //

gRVx,s
⊗gRWx,t

��

(V ⊗O W )x,r ⊗O R

gR(V ⊗W )x,r

��
(Vx,s ⊗O R)⊗R (Wx,t ⊗O R) // (V ⊗O W )x,r ⊗O R.
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Using the same characterization ideas as for GLn, this leads to our Tannakian
description of the group schemes GF in this situation.

Theorem 5. AutF = GF.
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[BT1] F. Bruhat and J. Tits, Groupes réductifs sur un corps local. I, Inst. Hautes Études Sci.
Publ. Math. 41 (1972), 5–251.
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On the regularity of special difference divisors on unitary
Rapoport-Zink spaces of signature (1, n − 1)

Ulrich Terstiege

In this talk it was explained that special difference divisors on unitary Rapoport-
Zink spaces of signature (1, n − 1) in the unramified case are always regular. It
was also explained how one can apply some methods of the proof of this statement
to the arithmetic fundamental lemma conjecture in the minuscule case.

Let us recall from [1] the definition of the Rapoport-Zink space and of special
cycles in that case. Let n ≥ 1 be an integer and let p ≥ 3 be a prime. Let F = Fp
and W = W (F). We consider the Rapoport-Zink space N := Nn := N (1, n − 1)
over W parameterizing tuples (X, ι, λ, ρ) over W -schemes S where p is locally
nilpotent in OS and where a tuple (X, ι, λ, ρ) over S consists of the following
objects. First, X is a p-divisible group of dimension n and height 2n over S,
ι : Zp2 → End(X) is a homomorphism satisfying the determinant condition of
signature (1, n−1), further λ is a principal polarization of X such that ι∗(a) = ι(a)
for the Rosati involution and for all a ∈ Zp2 , and

ρ : X ×S S → X×Spec F S

is a Zp2 -linear quasi-isogeny of height 0. Here S = S×Spec W Spec F and (X, ιX, λX)
is a fixed triple over Spec F as before and where X is also required to be super-
singular. We also require that locally up to a scalar in Z×

p we have the identity
ρ̂ ◦ λX ◦ ρ = λ. Denote by (Y, ιY, λY) over F the fixed supersingular object for
n = 1 and denote by Y the same object but the Zp2 -action replaced by its con-

jugate. It has a canonical lift Y over W . The space of special homomorphisms
is the n-dimensional hermitian Qp2 -space V = HomZ

p2
(Y,X) ⊗ Q with hermitian

form h given by

h(x, y) = λ−1

Y
◦ ŷ ◦ λX ◦ x ∈ EndZ

p2
(Y)⊗Q ∼= Qp2 ,
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where the last isomorphism is via ι−1

Y
, and where ŷ is the dual of y. For j ∈ V the

special cycle Z(j) is the closed formal subscheme of N such that Z(S) is the set
of all (X, ι, λ, ρ) over S such that the quasi-homomorphism

Y×F S
j
−→ X×F S

̺−1

−→ X ×S S

lifts to a homomorphism Y ×Spec W S → X . Further we define as in [3] the special
difference divisor D(j) as D(j) = Z(j)−Z(j/p).

A conjecture of Kudla and Rapoport connects intersection multiplicities of spe-
cial cycles with derivatives of certain representaion densities. It was proved for
non-degenerate intersections (which can be reduced to the case n = 2) by Kudla
and Rapoport (see [1]). For n = 3 (which is the first case with degenerate inter-
sections) it was proved in [3]. An important ingredient of the proof for n = 3 is
the statement that the D(j) are regular. The main theorem discussed in this talk
is that this is true in arbitrary dimension:

Theorem 1. Let j be a special homomorphism. Then the special difference divisor
D(j) is regular.

An important ingredient of the proof is the following statement proved in [2]:

Theorem 2. Let x ∈ N (F) be a point such that there is no special homomorphism
j0 of valuation 0 with x ∈ Z(j0)(F) and let j be a special homomorphism such that
x ∈ Z(j)(F) but x 6∈ Z(j/p)(F). Then the special fiber Z(j)p of Z(j) is regular at
x.

If j0 is a special homomorphism of valuation 0 then Z(j0) can be identified
with Nn−1. This allows an inductive approach to the proof of Theorem 1 using
Theorem 2 (at least at points x such that x ∈ Z(j)(F) but x 6∈ Z(j/p)(F)).

It was also explained how these techniques can be applied to the arithmetic
fundamental lemma conjecture of W. Zhang in the minuscule case (cf. [2]). To
this end one can use Theorem 2 so show the following theorem.

Theorem 3. Let j1, ..., jn be special homomorphisms such that their fundamental
matrix T (j1, ..., jn) is equivalent to a matrix of the form diag(1, ..., 1, p, ..., p). Then
the intersection

⋂n
i=1Z(ji) lies in the special fiber.

The arithmetic fundamental lemma compares the derivative of a certain orbital
integral with an intersection number on N . In the so called minuscule case one can
use theorem 3 to show that this intersection lies in the special fiber. This allows
an explicit calculation of the intersection number (at least for p large enough) and
can be used for a proof of the arithmetic fundamental lemma in the minuscule
case (for F = Qp and n ≤ 2p), see [2].
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Cell decomposition of some unitary group Rapoport-Zink spaces

Xu Shen

Let p > 2 be a fixed prime, Qp2 |Qp be a quadratic unramified extension. Let
(V, 〈, 〉) be a hermitian space over Qp2 , and G = GU(V, 〈, 〉) be the associated
unitary similitude group over Qp. Denote by n = dimQ

p2
V , and assume there

exists an autodual Zp2 -lattice in V . This implies G is unramified. Let Qp be an
algebraic closure, then after fixing a basis of V we have an isomorphism GQp

≃

GLnQp
× GmQp

. Consider the cocharacter µ : GmQp
→ GQp

, such that under the

above isomorphism it is given by z 7→ (diag(z, · · · , z, 1), z). Let b = b0 ∈ B(G,µ)
(the Kottwitz set) be the basic element, Jb be the associated inner form of G. We
remark that if n is odd, then Jb ≃ G, and if n is even Jb is up to isomorphism the
unique non quasi-split inner form of G.

Let W = W (Fp), L = WQ. Consider the associated Rapoport-Zink space M̂

over Spf W : for any S ∈ NilpW , M̂(S) = {(H, ι, λ, ρ)}/ ≃, where H is a p-
divisible group over S, ι is a Zp2 -action on H satisfying the determinant condition
corresponding to µ, λ is a polarization which is compatible with ι, and ρ : HS →
HS is a quasi-isogeny (cf. [8] for more details). Here H is the standard unitary

p-divisible group over Fp. We consider the Berkovich analytic generic fiber M =

M̂an over L. As usual, there is in fact a tower of L-analytic spaces (MK)K⊂G(Zp),
where the index set is the open compact subgroups K of G(Zp) andMG(Zp) =M.
Jb(Qp) acts naturally on each space MK by modifying the quasi-isogeny, and
moreover, G(Qp) acts on the tower (MK)K⊂G(Zp) by Hecke correspondences. N
ote we have the decompositions (cf.[8])

M̂ =
∐

i∈Z, ni even

M̂i, M =
∐

i∈Z, ni even

Mi.

To state the theorem, we should fix some data. If n is even, fix an element
g1 ∈ Jb(Qp) such that it induces an isomorphism M0 → M1. We fix also a
Λ ∈ B(Jderb ,Qp), the set of vertices of the Bruhat-Tits building of the derived
subgroup Jderb of Jb, such that t(Λ) is maximal (cf. [8] for the precise meaning of
the function t). Let Stab(Λ) be the stabilizer of Λ in Jderb (Qp).

Theorem 1. There exists a relatively compact analytic domain D ⊂ M0, such
that we have a locally finite covering

M =
⋃

T∈G(Zp)\G(Qp)/G(Zp)

g∈Jder
b (Qp)/Stab(Λ)

T.gD
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if n is odd, and

M =
⋃

T∈G(Zp)\G(Qp)/G(Zp)

g∈Jder
b (Qp)/Stab(Λ)

j=0,1

T.ggj1D

if n is even.

The proof of this theorem is based some ideas developed in [3] and [4]. In
particular we use the theory of Harder-Narasimhan filtrations of finite flat group
schemes to study the p-analytic geometry of M. The fundamental inequality
between Harder-Narasimhan polygon and Newton polygon (Théorème 21 of [4])
can be easily generalized to our case. But we have to modify Fargues’s algorithm
in [4] a little to produce totally isotropic finite flat group schemes to be compatible
with Hecke correspondences. The analytic domain D is defined as following. Let
Mss be the semi-stable locus inM (cf. Définition 4 of [4]). Consider

C = {x ∈ M|∃ some finite extensionK ′|H(x), and a finite flatZp2 − subgroup

schemeG ⊂ Hx[p] overOK′ , such thatHx/G is semi-stable overOK′}.

Then one can prove that C is a closed analytic domain of M. Note Mss ⊂ C.
Let Λ be as above, and MΛ ⊂ M0

red be the associated projective subvariety of

the reduced special fiber of M̂0 defined by Vollaard-Wedhorn in [8]. Consider
the specialization map sp :M0 →M0

red, then sp
−1(MΛ) is an open subspace of

M0. The analytic domain D is defined by D := C
⋂
sp−1(MΛ). The relatively

compactness of D is proved by introducing some special unitary Shimura varieties
(cf. [1] and [8]), and the fact that their Harder-Narasimhan stratification and
Newton stratification coincide (cf. [6] and [7]). We remark that our methods of
proof of the above theorem in some other places are also different from that of [4].

This theorem has many useful applications. First, we have corresponding cov-
erings of the associated p-adic period domain and Shimura varieties. Second, we
have the locally finite coverings for all Rapoport-Zink spaces MK for any open
compact subgroup K ⊂ G(Zp). By studying the action of regular semi-simple
elliptic elements on the coverings of the later, we can verify easily that the condi-
tions of Theorem 3.13 in [5] hold. Thus we can establish a Lefschetz trace formula
for some sufficiently large subspaces. For more details, see section 11 of [7]. This
formula should be useful for proving the realization of local Jacquet-Langlands
correspondence in our case.
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On local models of Shimura varieties

George Pappas

(joint work with X. Zhu)

We give a group theoretic definition of “local models” as sought after in the theory
of Shimura varieties [2]. These are projective schemes over the integers of a p-
adic local field that are expected to model the singularities of integral models
of Shimura varieties with parahoric level structure. Our local models are certain
mixed characteristic degenerations of Grassmannian varieties; they are obtained by
extending constructions of Beilinson, Drinfeld, Gaitsgory to mixed characteristics
and to the case of general (tamely ramified) reductive groups.

Suppose that (G,Kp, {µ}) are the “local Shimura data” at the prime p obtained
from the triple (G, {h},K) defining a Shimura variety: Then G = G ⊗Q Qp,
Kp ⊂ G(Qp) is the level subgroup at p and {µ} is the conjugacy class (defined
over the local reflex field E) of the miniscule coweight µ obtained from {h}. We
assume that Kp is a parahoric subgroup in the sense of Bruhat-Tits and that G
splits over a tamely ramified extension of Qp. Recall that Bruhat and Tits define
a canonical smooth affine connected group scheme K over Zp (a “parahoric group
scheme”) with generic fiber G and K(Zp) = Kp. Our construction now proceeds
as follows:

Step 1. We construct a certain (smooth, affine, connected) group scheme G over
the affine line Zp[u] such that G ⊗Zp[u] Zp[u, u

−1] is reductive and with

G ⊗Zp[u] Qp((u)) = G⊗Qp
Qp((u)), G ⊗Zp[u],u7→p Zp = K.

In addition, the base change K′ := G ⊗Zp[u] Fp[[u]] is a parahoric group scheme for
the reductive group G′ := G ⊗Zp[u] Fp((u)) over Fp((u)).

Step 2. We show that the global affine Grassmannian GrG → A1
Zp

for G is

representable by an ind-scheme which is ind-projective over A1
Zp
. Here, GrG is the

functor which to the A1
Zp
-scheme y : S → A1

Zp
associates the set of isomorphism

classes of G-torsors over A1
Zp
×Zp

S together with a trivialization on the complement

of the graph of y.

Step 3. We show that the base change GrG ⊗Zp[u],u7→p Qp of GrG → A1
Zp

along

Zp[u]→ Qp can be identified with the loop Grassmannian G(Qp((u)))/G(Qp[[u]])
of G and that the G-homogeneous space Xµ = G/Pµ associated to the orbit
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of minuscule coweights {µ} can be embedded equivariantly (as a closed smooth
subvariety) in the base change of G(Qp((u)))/G(Qp[[u]]) to E.

Step 4. Finally, the local model M loc associated to (G,Kp, {µ}) is by definition
the Zariski closure of Xµ ⊂ (G(Qp((u)))/G(Qp[[u]]))E in GrG ⊗Zp[u],u7→p OE . By
definition, it supports an action of K ⊗Zp

OE and its special fiber is a closed
subscheme of the base change of the “twisted” affine flag variety for G′ and K′ to
the residue field of E.

Although, this is an involved definition, it has several advantages and we can use
it to obtain structural results onM loc and its special fiber: For example, under the
additional assumption that p does not divide the order of the fundamental group
of the derived group of G, we can show that the geometric special fiber of M loc

is reduced and can be stratified with strata parametrized by the µ-admissible set
of Kottwitz-Rapoport. The closures of these strata are affine Schubert varieties
and therefore, by results of Kumar, Mathieu, Faltings and Pappas-Rapoport, are
normal and Cohen-Macaulay.

Finally, we explain that in most cases of Shimura varieties of PEL type our
“abstract” local models can be identified with the flat closures of the local models
defined by Rapoport and Zink [3]. Therefore, in these cases, the local models fit
in a diagram

SK
π
←− S̃K

ψ
−→M loc

where SK is a flat OE-model of the Shimura variety, π is a K-torsor and ψ is a
K-equivariant smooth morphism. As a consequence, our structure results on the
special fiber of M loc imply similar results for the corresponding integral model
SK of the Shimura variety. We conjecture the existence of a similar diagram for
the general Shimura variety with parahoric level subgroup. For more details the
reader is referred to [1].
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Connected components of minuscule affine Deligne-Lusztig varieties

Miaofen Chen

(joint work with Mark Kisin, Eva Viehmann)

Let k be a finite field with q = pr elements and let k be an algebraic closure of k.
We consider both the equal characteristic case and the mixed characteristic case.
In the equal (resp. mixed) characteristic case, let F = k((t)) (resp. F =W (k)[1/p]

be the fraction field of the Witt vector ring of k) and let accordingly L = k((t))
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(resp. L = W (k)[1/p]). Let OF and OL be the valuation rings. We denote by ǫ
the uniformizer t or p. Let σ : x 7→ xq be the Frobenius of k over k and also the
induced Frobenius of L over F .

Let G be a connected unramified group over OF . Let GF be the generic fiber
of G. Let B ⊂ GF be a Borel subgroup and T ⊂ B the centralizer of a maximal
split torus in B. We denote by X∗(T ) the set of cocharacters of T defined over
L. The Galois group acts on X∗(T ). As G is unramified, the Galois action factors
through the quotient Γ = 〈σ〉.

For b ∈ G(L) and a minuscule dominant coweight µ ∈ X∗(T ), the affine Deligne-
Lusztig variety XG

µ (b) = Xµ(b) is defined as

Xµ(b)(k) = {g ∈ G(L)/G(OL) | g
−1bσ(g) ∈ G(OL)µ(ǫ)G(OL)}.

For non minuscule coweights, we can also define the corresponding (closed) affine
Deligne-Lusztig varieties. However, for the applications to Shimura varieties and
the moduli spaces of p-divisible groups, the coweight is always minuscule. So we
restrict ourselves to the minuscule situation.

A priori, the affine Deligne-Lusztig varieties are just sets of points, and do
not have the structure of an algebraic variety. If F is a function field, these sets
are the sets of k-valued points of closed subschemes locally of finite type of the
affine Grassmannian LG/K where LG denotes the loop group of G (compare [R],
[GHKR]). If F is of mixed characteristic, in general there is no known variety
structure on the affine Deligne-Lusztig varieties. However, we can still define a
meaningful notion of a set of connected components π0(Xµ(b)). For the particular
cases when F = Qp and G is the restriction of scalars of a linear group or simil-

itude unitary/symplectic group, Xµ(b) are the sets of k-valued points of moduli
spaces of p-divisible groups as defined by Rapoport and Zink [RZ] which are for-
mal schemes locally formally of finite type over SpfOL. In this case, π0(Xµ(b))
coincides naturally with the set of connected components of the corresponding
Rapoport-Zink space.

Let J = Jb = {g ∈ G(L)|g−1bσg = b}. The group J acts on Xµ(b)(k) by
multiplication on the left.

By [x] we denote the σ-conjugacy class of an element x ∈ G(L). The isomor-
phism class of the affine Deligne-Lusztig variety only depends on [b] and not on b.
We denote by B(G) the set of σ-conjugacy classes of elements in G(L).

We write π1(G) for the quotient of X∗(T ) by the coroot lattice of G. In [K2],
Kottwitz defines a homomorphism wG : G(L) → π1(G). The homomorphism wG
induces a homomorphism κG : B(G)→ π1(G)Γ.

We have a criterion for Xµ(b) to be nonempty (see [KR], [GHKR], [Ga]). In

particular, if Xµ(b)(k) 6= ∅, then κG(b) = µ in π1(G)Γ.
To [b] ∈ B(G), we may associate a Levi subgroup Mb ⊂ GF which is an inner

form of J . After replacing b by some representative in the same σ-conjugay class,
we may further assume that b ∈Mb. If Xµ(b)(k) 6= ∅, we call the pair (b, µ) inde-
composable with respect to the Hodge-Newton decomposition if for all standard
Levi subgroups M with Mb ⊆M ( G, we have κM (b) 6= µ in π1(M)Γ.
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If the couple (b, µ) is not indecomposable with respect to the Hodge-Newton
decomposition, then there exists a standard Levi subgroup M with Mb ⊂M ( G
such that κM (b) = µ in π1(M)Γ. By [MaV], Theorem 6, the natural inclusion

M(L)/M(OL) →֒ G(L)/G(OL) induces a bijection XM
µ (b)

∼
→ XG

µ (b).
¿From now on, we focus on the (b, µ)-indecomposable case. Let Gad be the

adjoint group of G. We denote the images of b and µ in Gad also by b and µ.
Then the sets of connected components of XG

µ (b) and XGad
µ (b) are closely related.

In order to describe the set of connected components of XG
µ (b), it is enough to

describe π0(X
Gad
µ (b)). So we may assume that G is simple.

Consider the short exact sequence

0→ π1(G)/π1(G)
Γ α
→ π1(G)→ π1(G)Γ → 0

where α(x mod π1(G)
Γ) = σ(x)−x. IfXµ(b) 6= ∅, let cb,µπ1(G)Γ ∈ π1(G)/π1(G)Γ

such that α(cb,µπ1(G)
Γ) = κG(b)− µ.

Theorem 1 (in progress). Let G be a classical group and let (b, µ) be indecom-
posable with respect to the Hodge-Newton decomposition.

(1) If κM (b0) 6= µ for all proper standard Levi subgroupsM of G withM∩[b] 6=
∅ and all b0 ∈M∩[b], then wG induces a bijection π0(Xµ(b)) ∼= cb,µπ1(G)

Γ.
(2) Assume furthermore that G is simple. If the hypothesis in the above state-

ment does not hold then [b] = [µ(ǫ)] with µ central and

Xµ(b) = X�µ(b) ∼= J/(J ∩K) ∼= G(F )/G(OF )

is discrete.

When F is a function field and G is split, this theorem is proved by Viehmann
[V2]. We use a generalization of Viehmann’s methods. We expect to be able to
generalize the same method to all unramified groups.

Corollary 2. Let G be a classical group and let µ be minuscule, then J acts
transitively on π0(Xµ(b)).

One direct application of this theorem is the following. Let F = Qp. Let
(G, b, µ) be as above such that G is the restriction of scalars of a linear group or
similitude unitary/symplectic group. We may associate to this triple a Rapoport-

Zink space of EL or PEL type M̆ = M̆(G, b, µ) which is the moduli space of
p-divisible groups with additional structures (cf. [RZ]). There exists a locally

constant function κ : M̆ → ∆ := Hom(X∗
Qp

(G),Z) which is the height of the quasi-

isogeny involved in the moduli space up to scalar. In fact, group theoretically, κ
is induced by the morphism κG modulo torsion.

Corollary 3. Same assumption as in the statement (1) of the theorem. Then

κ : M̆ → ∆ induces an injection π0(M̆) →֒ ∆.

In my thesis, by using this corollary, we can describe the set of geometrically
connected components of the tower of Rapoport-Zink spaces on the generic fiber.
This realizes the local Langlands correspondence between the 1-dimensional auto-
morphic representations of G and the characters of the Galois group given by the
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local class field theory. Moreover, Theorem 1 is also needed in Kisin’s work on the
mod p points in Shimura varieties of Hodge type.
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[GHKR] U. Görtz, Th. J. Haines, R. E. Kottwitz, D. C. Reuman, Dimensions of some affine

Deligne-Lusztig varieties, Ann. Sci. École Norm. Sup. 39 (2006), 467–511.
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Shuffle structures on KR strata

Chia-Fu Yu

(joint work with Ulrich Görtz)

In this talk we explain how to reduce the geometry of positive p-rank strata in
the Siegel moduli spaces with Iwahori level structure to that of p-rank zero strata
in those with lower genera. The construction holds for general PEL-type moduli
spaces.

1. KR stratification

Let p be a prime and g ≥ 1 be an integer. Let Ag,I be the moduli space over Fp
of g-dimensional principally polarized abelian varieties with Iwahori level struc-
ture at p. It parametrizes the isomorphism classes of chains of abelian varieties

(A0
α
→ A1, . . . ,

α
→ Ag, λ0, λg, η) with compatible conditions. This moduli space

also parametrizes the isomorphism classes of objects (A, λ, η,H•), where

H• : H1 ⊂ . . . ,⊂ Hg ⊂ A[p]

is a chain of finite flat subgroup schemes such that Hg is maxmally isotropic. We
have the KR stratification on Ag,I :

Ag,I =
∐

x∈Adm(µg)

AI,x,

where µg = (1g, 0g) is the minuscule dominant coweight of GSp2g, and Adm(µg) ⊂

W̃ is the µg-admissible set.
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For a scheme X of finite type over an algebraically closed field, denote by
π0(X) the set of (geometrically) connected components of X and Π0(X) the set
of (geometrically) irreducible components of X .

We know the following results about the KR strata:

Theorem 1.

(1) Each AI,x is smooth, quasi-affine, equi-dimensional of dimension ℓ(x),
where ℓ(x) is the length of x.

(2) If AI,x is not supersingular, then AI,x is irreducible. If AI,x is supersin-
gular, then the number |π0(AI,x)| of connected components of AI,x is a
class number.

(3) There is a simple criterion to determine whether AI,x is supersingular or
not.

(4) Each supersingular KR stratum is a disjoint union of copies of certain
Deligne-Lusztig varieties.

For f ∈ Z with 0 ≤ f ≤ g, let A
(f)
g,I be the p-rank f stratum of Ag,I . One has

A
(f)
g,I =

∐

x∈Adm(µg)(f)

AI,x,

where Adm(µg)
(f) ⊂ Adm(µg) is the subset of elements of “p-rank” f . Let

Adm(µg)
(f)
max be the maximal elements.

2. The shuffle construction

Let h ≥ 1 be a positive integer. Let BT1
h,I be the category of groupoids of

objects (G, λ,H•), where

• G is a truncated Barsotti-Tate group of level one, or a BT1, of height 2h,
• λ : G → GD is a principal polarization, where GD is the Cartier dual of
G, and
• H• : H1 ⊂ · · · ⊂ Hh ⊂ G is a chain of finite flat subgroup schemes such
that Hh is maximally isotroptic.

Let [p] : Ag,I → BT1
g,I be the functor which sends objects (A, λ, ι,H•) to

(A[p], λ,H•). The KR map KR : Ag,I → Adm(µg) factors through a surjective

map which we still denote by KR : BT1
g,I → Adm(µg).

For two positive integers s ≥ 1 and t ≥ 1 with s+ t = g, denote by Sh(s, t) the
set of maps ϕ : {0, 1, . . . , g} → {0, 1, . . . , s} such that

ϕ(0) = 0, ϕ(g) = s, and ϕ(i) ≤ ϕ(i + 1) ≤ ϕ(i) + 1, ∀ i = 0, . . . , g − 1.

Elements in Sh(s, t) are called shuffle maps of s letters and t letters.
For any may ϕ ∈ Sh(s, t), define a map ϕ′ : {0, 1, . . . , g} → {0, 1, . . . , t} as

follows:

ϕ′(0) = 0, and ϕ′(i+ 1) + ϕ(i+ 1) = ϕ′(i) + ϕ(i) + 1, ∀ i = 0, . . . , g − 1.
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The map ϕ′ ∈ Sh(t, s) is called the complement of ϕ. With the information above,
we construct a functor ϕ∗ : BT1

s,I × BT1
t,I → BT1

g,I by
(
(G, λ,H•), (G

′, λ′,H
′
•)
)
7→

(G×G′, λ× λ′, ϕ(H•, H
′
•)), where

ϕ(H•, H
′
•) : K1 ⊂ K2 ⊂ · · · ⊂ Kg ⊂ G×G

′, Ki := Hϕ(i) ×H
′
ϕ′(i).

The shuffle map ϕ∗ descends to a map ϕ∗ on the µ-admissible sets Adm(µ):
ϕ∗Adm(µs)×Adm(µt)→ Adm(µg).

We have the following properties:

• The map ϕ∗ preserves the Bruhat order.
• For each f the restriction ϕ∗ : Adm(µg−f )

(0)×Adm(µf )
(f) → Adm(µg)

(f)

is injective, and

Adm(µg)
(f) =

∐

ϕ∈Sh(g−f,f)

ϕ∗(Adm(µg−f )
(0) ×Adm(µf )

(f)).

Corollary 2. For any integer f with 0 ≤ f ≤ g, there is a natural bijection

Adm(µg−f )
(0)
max ×Adm(µf )

(f) × Sh(g − f, f)
∼
−→ Adm(µg)

(f)
max.

Consequently, we have |Adm(µg)
(f)
max| = |Adm(µg−f )

(0)
max| · 2f

(
g
f

)
.

Proposition 3. For any elements y ∈ Adm(µf )
(f) and ϕ ∈ Sh(g − f, f), the

map ϕ∗(·, y) : Adm(µg−f )→ Adm(µg) is injective and ranked, that is, there is an
integer d such that ℓ(ϕ∗(x, y)) = ℓ(x) + d for all x ∈ Adm(µg−f ).

3. Geometry of p-rank strata

Theorem 4. If f ≥ 1, then we have

|Π0(Adm(µg)
(f)| = |Adm(µg−f )

(0)
max|

(
g

f

)
2f .

If f = 0, the set Adm(µg)
(0)
max consists of the supersingular part Adm(µg)

(0),ss
max

and the non-supersingular part Adm(µg)
(0),ns
max . We have

|Π0(Adm(µg)
(0)| = |Adm(µg)

(0),ns
max |+

∑

x∈Adm(µg)
(0),ss
max

|π0(AI,x)|.

Theorem 5. For any integer f with 0 ≤ f ≤ g, we have

Codim(A
(f)
g,I ,Ag,I) = Codim(A

(0)
g−f,I ,Ag−f,I) = ⌈

g − f

2
⌉.

Theorem 5 is also due to P. Hamacher [1].

Theorem 6. Assume f ≥ 1, or f = 0 and g ≥ 3. The map

(ϕ, y) 7→
⋃

x∈Adm(µg−f )(0)

AI,ϕ∗(x,y)

induces a bijection Sh(g−f, f)×Adm(µf )
(f) ∼
−→ π0(A

(f)
g,I ). Consequently, we have

|π0(A
(f)
g,I )| =

(
g
f

)
2f .
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Finally we make two remarks on the set Adm(µg)
(0)
max:

• There is a upper bound: |Adm(µg)
(0)
max| ≤ g!.

• |Adm(µg)
(0)
max| = 1, 2, 5, 12 if g = 1, 2, 3, 4, respectively.
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[2] U. Görtz and C.-F. Yu, Supersingular Kottwitz-Rapoport strata and Deligne-Lusztig vari-
eties. Journal de l’Institut de Math. de Jussieu 9 (2010), no. 2, 357–390.
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Nearby Cycles on Local Models

Xinwen Zhu

(joint work with George Pappas)

Given certain group theoretical data (G, {µ},K), one can define a Shimura variety
SK over a number field E, whose ℓ-adic cohomology H∗ := H∗(SK⊗ Ē,Qℓ) carries
on the commuting actions of the Hecke algebra H(G,K) and the Galois group
Gal(Ē/E). To understand the pattern of the decomposition of H∗ under these
actions is of fundamental importance in arithmetic geometry and number theory
as it is expected to realize a large part of Langlands correspondence.

Under some reasonable assumptions, a possible way to attack the above question
is to study for each finite place v of E and each integer r ≥ 1, the sum

∑

x∈SK(kr)

trss(Φx, RΨx̄)

where

(1) kr is the degree r extension of the residue field k of E at v;
(2) SK is an integral model of SK over the ring of integers OEv

of Ev;
(3) RΨ is the sheaf of nearby cycles on SK⊗ k̄, with the action of Gal(Ēv/Ev),

compatible of the action of Gal(k̄/k) on SK ⊗ k̄;
(4) x ranges over all kr points of SK , x̄ a geometrical point lying over x, Φx

the geometrical Frobenius element in Gal(x̄/x) and trss is the semisimple
trace, a notion introduced by Rapoport.

In general, it is not clear how to give a reasonable definition of SK nor known
how to calculate the nearby cycles. However, in the case K = KpK

p (p = chark),
where Kp = G(Zp) and G is an parahoric groupscheme of GQp

, we calculated
trss(Φx, RΨx̄) via local models and therefore confirms the Kottwitz conjecture
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(the case GQp
= GLn or GSpn was previously proved by Haines and Ngô [3]) and

more generally some cases of a conjecture of Haines and Kottwitz.
Our definition of local models MKp

is group theoretical. It is defined over
OEv

, with an action of GOEv
, and is embedded into the base change to OEv

of an ind-scheme GrG over Zp, which is the mixed characteristic analogue (and
generalization) of the deformation from affine Grassmannian to the affine flag
variety appearing in the geometrical Langlands program ([1]). Then the theory of
local models for Shimura varieties asserts that there is a local model diagram

π : SK → [GOEv
\MKp

],

which is smooth and of relative dimension dimG. Therefore, we reduce the prob-
lem to the calculation of the semisimple trace on MKp

, which can be done in a
way analogous to the function field case [1, 5].

We also obtained some results on the monodromy of RΨ. For example, we
showed that the monodromy of RΨ ⊗ OFw

is purely unipotent, where Ev ⊂ Fw
is a splitting field of GQp

(the case GQp
= GLn or GSpn was proved by Görtz

and Haines [2]). In certain cases, we determine the monodromy of RΨ completely,
which requires results from [6] if Fw/Qp is ramified.
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Kottwitz-Rapoport and p-rank strata in the reduction of Shimura
varieties of PEL type

Philipp Hartwig

This is a report on some results of [2]. Fix a rational prime p 6= 2 and a PEL datum
B = (B, ∗, V, (·, ·) , J) with auxiliary data Bp = (OB,L) at p. The datum B gives
rise to a reductive group G over Q and a conjugacy class h of homomorphisms
ResC/R Gm → GR. Fix a compact open subgroup Cp ⊂ G(Apf ). From Cp and

Bp one obtains a compact open subgroup C ⊂ G(Af ) and thus a Shimura datum
(G, h,C).

In [4], Rapoport and Zink construct from B, Bp and Cp an integral model ACp

of the Shimura variety associated with (G, h,C). They further show that this
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integral model fits into a local model diagram

ÃCp

ϕ̃

||③③
③③
③③
③③
③

ψ̃

""❋
❋❋

❋❋
❋❋

❋

ACp M loc.

Here M loc is a scheme defined purely in terms of linear algebra, having the same
étale local structure as ACp .

The group G = Aut(L) of automorphisms of the self-dual multichain L is a

smooth group scheme over Zp, and it acts on both M loc and ÃCp . The map ϕ̃ is

an G-torsor, while the map ψ̃ is G-equivariant. Denote by F an algebraic closure of
Fp. Via the local model diagram, the decomposition of M loc(F) into G(F)-orbits
induces the Kottwitz-Rapoport (or KR) stratification

ACp(F) =
∐

x∈G(F)\M loc(F)

ACp,x.

It was first introduced in [3] in the case of the Siegel moduli space with Iwahori
level structure AI .

We are interested in the relationship of the KR stratification and the p-rank
stratification on ACp . In the case of AI , this relationship has been determined by
Ngô and Genestier in [3]. They show that the KR stratification is a refinement of
the p-rank stratification and they determine an explicit formula for the p-rank on
a given KR stratum.

As a first step, we show the following result.

Theorem 1. Let B be an arbitrary PEL datum. If L is complete, the p-rank is
constant on a KR stratum.

The assumption on L in Theorem 1 corresponds to the assumption that the level
structure at p in the definition of ACp is an Iwahori level structure, as opposed
to a more general parahoric level structure. Our expectation is that the p-rank
should be constant on all KR strata if and only if the multichain L is complete.

As a second step, we prove a group theoretic formula for the p-rank on a given
KR stratum. We only do this under the assumption that the reductive Qp-group
GLB⊗Qp

(V ⊗Qp) is quasi-split, but this assumption should be unnecessary. How-
ever this abstract formula seems to be of limited use when it comes to actual
applications. We therefore proceed to establish more concrete formulas in the
following two cases.

(1) The group G is essentially the restriction of scalars ResF/Q GSp2n,F of the
group of symplectic similitudes over a totally real field F/Q.

(2) The group G is essentially the restriction of scalars ResF0/Q GU of a group
of unitary similitudes over an imaginary quadratic extension F/F0 of a
totally real field F0/Q.
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Let us emphasize that in both cases we allow arbitrary ramification of p in the
occuring extension F/Q.

Let us state the obtained formula in an easy special case and mention an inter-
esting consequence. Let n, r, s ∈ N with r + s = n, and assume that the group G
is the group of unitary similitudes of signature (r, s) over an imaginary quadratic
extension F/Q in which p splits. In this case the KR stratification is indexed by
a subset Permr ⊂ Sn ⋉ Zn, and our result on the p-rank on a KR stratum reads
as follows.

Theorem 2. Let x ∈ Permr, say x = (w, λ) in Sn⋉Zn for some w ∈ Sn, λ ∈ Zn.
Then the p-rank on ACp,x is constant with value |Fix(w)|, where Fix(w) = {i ∈
{1, . . . , n} | w(i) = i}.

Copying the approach of Görtz and Yu in [1, §8], we use Theorem 2 to compute

the dimension of the p-rank zero locus A
(0)
Cp ⊂ ACp in this special case.

Theorem 3. dimA
(0)
Cp = min

(
(r − 1)(n− r), r(n − r − 1)

)
.
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Affine Weyl group, affine Hecke algebra and affine Deligne-Lusztig
variety

Xuhua He

In Lie theory, the following topics are closely related: Weyl groups, Hecke algebras
and algebraic groups. In this talk, we discuss some new relations among

• Combinatorics of affine Weyl groups;
• Representations of affine Hecke algebras;
• Structure of loop groups.

We then use them to study affine Deligne-Lusztig varieties. The work we present
is:

(1) Some combinatorial properties of affine Weyl groups.
For finite Weyl groups, Geck and Pfeiffer in [2] show that minimal length el-

ements in any conjugacy class have some remarkable properties. Their approach
was based on a case-by-case analysis and relied on computer for exceptional types.
Recently, in joint work with Nie [4], [5], we give a general proof that minimal
length elements in any conjugacy class of finite or affine Weyl groups have nice
properties.
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(2) Class polynomials of affine Hecke algebras.
Let H be the affine Hecke algebra of the affine Weyl group W over Z[v, v−1].

Based on the combinatorial properties in (1), in [5] we show that for any w ∈ W
and conjugacy class O of W , there exists a unique polynomial fw,O ∈ N[v − v−1]
such that for any finite dimensional representation V of H ,

Tr(Tw, V ) =
∑

O

fw,OTr(TwO
, V ).

Here wO is a minimal length element in O.
(3) Affine Deligne-Lusztig varieties.
Let L = F̄q((t)) and G(L) be a split loop group. Let σ : G(L) → G(L) the

Frobenius morphism and I the standard Iwahori subgroup of G(L). An affine
Deligne-Lusztig variety (in affine flag) is defined as follows. For w ∈ W and
b ∈ G(L), set

Xw(b) = {gI; g
−1bσ(g) ∈ IwI} ⊂ G(L)/I.

Affine Deligne-Lusztig varieties play an important role in the study of Newton
strata (indexed by b) and Kottwitz-Rapoport strata (indexed by w) on the special
fiber of Shimura variety with Iwahori level structure.

One of the main theorems I proved in [3] is the “Dimension=Degree” theorem,
which relates the dimension of Xw(b) to the degree of the class polynomial fw,O.
As an application, I proved the Görtz-Haines-Kottwitz-Reuman conjecture [1] on
the dimension of Xw(b) for b basic and w in the Shrunken Weyl chamber.
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On the supersingular locus of the Shimura variety for GU(1, n − 1) in
the ramified case

Michael Rapoport

(joint work with U. Terstiege and S. Wilson)

Let S(G,X)K be a Shimura variety with canonical model over its reflex field
E. We assume that the open compact subgroup K is of the form K = KpKp,
where Kp ⊂ G(A∞,p) and where Kp ⊂ G(Qp) is a parahoric subgroup. Let S
be a ‘good’ integral model over the ring of integers of the completion of E at a
prime ideal over p. Experience has shown that it should always be possible to
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give a ‘synthetic’ description of the basic locus of the special fiber of S. By the
uniformization theorem [2], this is essentially equivalent to asking for a description
of the underlying reduced scheme of an RZ-space in the basic case.

More precisely, it should be possible to describe the set of irreducible compo-
nents of the underlying reduced scheme in terms of the Bruhat-Tits building of
a reductive group over Qp, and the individual irreducible components should be
describable in terms of Deligne-Lusztig varieties (although they will only rarely be
equal to Deligne-Lusztig varieties).

In various special cases, this has been done by Drinfeld, by Kaiser, by Oort,
and others. Vollaard and Wedhorn [3, 4] have treated the case of the Shimura
variety for GU(1, n − 1) for an unramified prime of E. In the talk I reported on
analogous results in the ramified case.

1. The moduli space

We denote by E a ramified quadratic extension of Qp. We fix a uniformizer π
of E such that π0 = π2 ∈ Qp is a uniformizer. Since we assume p 6= 2, this is
always possible. We denote by F an algebraic closure of Fp, and by W =W (F) its
ring of Witt vectors and by WQ its fraction field. We denote by σ the Frobenius
on F, on W , and on WQ.

Let Ĕ = WQ ⊗Qp
E and let OĔ = W ⊗Zp

OE be its ring of integers. Let

σ = σ ⊗ id on Ĕ. We denote by ψ0 : E −→ Ĕ the natural embedding, and by
ψ1 = ψ0 ◦ − its conjugate.

Let Nilp be the category of OĔ-schemes S such that π ·OS is a locally nilpotent
ideal sheaf. For S ∈ Nilp, we denote by S̄ = S×SpecOĔ

SpecF its reduction modulo
π.

Let (X, ι) be a fixed supersingular p-divisible group of dimension n and height 2n
over F with an action ι : OE −→ End(X). Let λX be a principal quasi-polarization
such that its Rosati involution induces on OE the non-trivial automorphism over
Qp. The triple (X, ι, λX) is unique up to isogeny.

Fix n ≥ 2. Let N be the set-valued functor on Nilp which associates to S ∈ Nilp
the set of isomorphism classes of quadruples (X, ι, λ, ̺). Here X is a p-divisible
group over S, and ι : OE −→ End(X) is a homomorphism satisfying the following
two conditions (the Kottwitz condition and the Pappas condition).

(1)

char(ι(a)|LieX) = (T − ψ0(a)) · (T − ψ1(a))
n−1 .

2∧
(ι(x) − π|LieX) = 0 ,

n∧
(ι(π) + π|LieX) = 0 , if n ≥ 3.

Furthermore, λ : X −→ X∨ is a principal quasi-polarization whose associated
Rosati involution induces on OE the non-trivial automorphism over Qp. Finally,
̺ : X ×S S̄ −→ X ×SpecF S̄ is a OE-linear quasi-isogeny such that λ and ̺∗(λX)
differ locally on S̄ by a factor in Q×

p . An isomorphism between two quadruples
(X, ι, λ, ̺) and (X ′, ι′, λ′, ̺′) is given by an OE-linear isomorphism α : X −→ X ′

such that ̺′ ◦ (α×S S̄) = ̺ and such that α∗(λ′) is a Z×
p -multiple of λ.
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Proposition 1. The functor N is representable by a separated formal scheme N ,
locally formally of finite type over Spf OĔ. Furthermore, N is flat over OĔ. It is
formally smooth over OĔ in all points of the special fiber except those corresponding
to (X, ι, λ, ̺) ∈ N (F), where Lie(ι(π)) = 0 (these form an isolated set of points).

Proof. The representability follows from [2]. The assertions concerning flatness
and formal smoothness follow from [1], 4.5. �

We denote by N 0 the open and closed formal subscheme of N where the height
of ρ is zero. Let N̄ 0 be the reduction modulo π of N 0. Hence N̄ 0 parametrizes
isomorphism classes of quadruples (X, ι, λ, ̺), where X is a p-divisible group of
height 2n and dimension n, and where ι : OE −→ End (X) is an action of OE on
X , such that for n ≥ 3

(2)
2∧
(ι(π)|LieX) = 0 ,

and where λ is a principal quasi-polarization whose Rosati involution induces on
OE the non-trivial automorphism over Qp, and where ̺ : X −→ X ×SpecF S is
a quasi-isogeny of height 0 which is OE-linear and such that ̺∗(λX) and λ differ
locally on S by a factor in Z×

p (we note that ψ0 and ψ1 are identical modulo π).

2. The structure theorem

Let N be the rational Dieudonné module of X. Then τ := ιX(π)V
−1 is a σ-

linear endomorphism of N which is isoclinic with all slopes equal to zero. Let C
be the fixed space of τ . Then C is a hermitian vector space of dimension n over
E. A vertex lattice in C is a lattice Λ with

(3) πΛ ⊂ Λ∨ ⊂ Λ.

The dimension of the Fp-vector space Λ/Λ∨ is called the type of Λ and denoted by
t(Λ). This is always an even integer between 0 and n, and all these integers occur
as types of suitable vertex lattices.

Theorem 2. To every vertex lattice Λ there is associated a closed irreducible
subscheme NΛ of (N̄ 0)red. As Λ ranges over all vertex lattices, the NΛ form a
stratification of (N̄ 0)red (i.e., their union is (N̄ 0)red, and the non-empty intersec-
tion of strata is a stratum). Furthermore,

• NΛ1 ⊂ NΛ2 ⇐⇒ Λ1 ⊂ Λ2.

• If Λ1 ∩ Λ2 is a vertex lattice, then NΛ1∩Λ2 = NΛ1 ∩ NΛ2 . Otherwise
NΛ1 ∩ NΛ2 = ∅.

• dimNΛ = 1
2 t(Λ).

• Let N o
Λ = NΛ \

⋃
Λ′(ΛNΛ′ . Then N o

Λ is isomorphic to a Deligne-Lusztig

variety to a symplectic group of size t(Λ) over Fp and a Coxeter element.

In particular, (N̄ 0)red is connected and dim (N̄ 0)red = [n2 ].
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In contrast to the unramified case, the strata NΛ are singular (with isolated
singularities) as soon as t(Λ) ≥ 4. There exists a Demazure style nonsingular
resolution of NΛ.
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Height pairings on unitary Shimura varieties

Benjamin Howard

(joint work with Jan Bruinier, Tonghai Yang)

Let k ⊂ C be a quadratic imaginary field, which for simplicity we assume to have
class number one and odd discriminant. For any m > 1, denote by M(m,0) the
moduli space of abelian schemes, B, of dimension m over Ok-schemes, S, equipped
with a principal polarization and an action of Ok. We demand that the action
of Ok satisfy the following signature (m, 0) condition: the induced action on the
OS-module Lie(B) is through the structure map Ok → OS . The stack M(m,0) is
smooth of relative dimension 0 over Ok. Note that M(1,0) is simply the moduli
space of elliptic curves with complex multiplication by Ok, with the action of Ok
on the Lie algebra suitable normalized. For any A0 ∈M(1,0)(S) denote by A0 the
elliptic curve A0, but the Ok-action replaced by its complex conjugate.

For a fixed integer n > 1 there is a unitary Shimura varietyM(n−1,1) parametriz-
ing abelian schemes A of dimension n (over Ok-schemes) equipped with a principal
polarization and an action of Ok satisfying a suitable signature (n − 1, 1) condi-
tion. Over the complex numbers this condition is easy to describe: the maximal
subspace of Lie(A) on which Ok acts through the fixed embedding Ok → C has
dimension n− 1, while the maximal subspace on which Ok acts through the con-
jugate embedding has dimension 1. Over an arbitrary Ok-scheme the definition of
the signature condition is slightly subtle.

Consider the product space M = M(1,0) ×M(n−1,1), a regular algebraic stack
over Ok, flat of relative dimension n− 1. The stack M carries a natural family of
divisors Z(m), the Kudla-Rapoport divisors, indexed by positive integers. For each
pair (A0, A) ∈ M the space HomOk

(A0, A) is endowed with the Hermitian form
〈x1, x2〉 = x∨2 ◦x1 (the right hand side is an element of EndOk

(A0) ∼= Ok), and Z(m)
is the moduli space of triples (A0, A, x) where (A0, A) ∈M , and x ∈ HomOk

(A0, A)
has Hermitian norm m. Using regularized theta lifts, one can construct a Green
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function Φ(m) for each divisor Z(m), and so define an element

Ẑ(m) = (Z(m),Φ(m)) ∈ P̂ic(M)

in the group of isomorphism classes of metrized line bundles on M . There is also
a tautological bundle T on M , which is essentially the line bundle of weight one
modular forms for a certain unitary group, and endowing the tautological bundle

with a particular metric defines the class T̂ ∈ P̂ic(M). The modified Kudla-
Rapoport divisor is

Θ̂(m) = Ẑ(m) + c(m)T̂ ∈ P̂ic(M)

where each c(m) is the constant term of a certain weak harmonic Maass form of
weight 2− n whose holomorphic component has q-expansion q−m +O(1).

The are natural cycles on M of dimension one. Define Y = M(1,0) ×M(n−1,0).
This stack can be viewed as a cycle onM by the map Y →M defined by (A0, B) 7→
(A0, A0 ×B). Moreover, the connected components of Y are indexed in a natural
way by the set of self-dual Hermitian Ok-lattices of signature (n− 1, 0). Fix one
such lattice Λ, and let YΛ be the corresponding component of Y . It is smooth
of relative dimension 0 over Ok, and so is an arithmetic curve. As such, every
metrized line bundle on YΛ has an arithmetic degree, and composing this degree
with the restriction of metrized line bundles from M to YΛ defines the linear
function arithmetic intersection against YΛ:

[− : YΛ] : P̂ic(M)→ R.

The main theorem of [1] asserts that the generating series of arithmetic inter-
sections ∑

m>0

[Θ̂(m) : YΛ] · q
m

is a modular form of weight n, level Γ0(disc(k)), and character χn, where χ is the
quadratic Dirichlet character determined by k. In fact, this generating series is the
holomorphic projection of the product E′(τ, 0)θ(τ), where θ(τ) is the weight n− 1
theta series associated to Λ, and E(τ, s) is a weight one Eisenstein series vanishing
at s = 0. When n = 2 these results essentially reduce to results of Gross-Zagier.

Conjecturally, the formal power series

Θ̂(τ) =
∑

m>0

Θ̂(m) ∈ P̂ic(M)[[q]]

is a vector-valued modular form. Assuming that this is true, for any weight n
cuspform f we may form the Petersson inner product

Θ̂(f) = 〈f, Θ̂〉 ∈ P̂ic(M).

The usual Rankin-Selberg unfolding method then shows that

[Θ̂(f) : YΛ] = L′(f, θΛ, n− 1),

where L(f, θΛ, s) is the convolution L-function of f with θΛ, and the equality is
up to some simple constants and local factors.
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Overconvergence, classicity and ramification

Benôıt Stroh

(joint work with Payman Kassaei, Vincent Pilloni, Shu Sasaki, Yichao Tian)

We study classicity questions for overconvergent Hilbert modular forms of parallel
weight one in a ramified situation. Let F be a totally real number field and p a
prime number. Denote by p · OF =

∏r
i=1 π

ei
i the decomposition of p in distinct

prime ideals of F . Denote by fi the residue degree of πi for 1 ≤ i ≤ r. Let X0(π)
be the Hilbert modular variety parametrizing polarized abelian schemes endowed
with an OF -action and a finite flat subgroup scheme of the

∏r
i=1 πi-torsion. Let ω

denote the line bundle of weight one forms on X0(π). Then an overconvergent
Hilbert modular form of weight one is a section of ω which is defined in a strict
neighborhood of the multiplicative-ordinary locus in the rigid variety X0(π)

rig

associated to X0(π). It is an interesting question in number theory to decide
whether or not such a form is classical, ie can be extended to a section of ω on
the whole X0(π)

rig . Recall that a notion of “companion form” is defined in [2].

Theorem 1. Suppose fi ≥ 3 and ei ≥ 2. Let f be an overconvergent modular
form of weight 1 which has a companion form. Suppose that f is of finite slope.
Then f is classical.

Recall that having a companion form for f can be read on the Galois represen-
tation ρf : Gal(F̄ /F ) → GL2(Q̄p) restricted to the decomposition subgroups of
the πi. It implies in particular that this local Galois representation is de Rham.

The restriction fi ≥ 3 and ei ≥ 2 is of technical nature and could be removed
by further computations in p-adic Hodge theory. Neverthless, as we are finally
interested in Galois representations we can use solvable base change to achieve
such conditions.

The theorem was proven in [1] if F = Q. When F 6= Q, it was proven in [3]
if ei = 1 for all i and in [4] if ei < p− 1 for all i.

We use basically the same technique as Buzzard and Taylor : automatic exten-
sion of f to a big region of X0(π)

rig and gluing with its companion form. However
the automatic extension is delicate to show in the case where ei ≥ p−1. It requires
the use of Berkovich spaces and study of Barsotti-Tate groups over non discrete
valuation rings.
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