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Introduction by the Organisers

Discrete Differential Geometry is a very productive research area where graph
theory, analysis, integrability, and geometry interact and contribute to the con-
struction and understanding of discrete models for differential geometric situations
and structures. It also plays a very important role in applications, to graphics and
simulations of PDE.

This was the third Discrete Differential Geometry conference at Oberwohlfach.
The subject has evolved significantly since its beginning a decade ago. This year’s
conference highlighted advances in new areas: in discrete exterior calculus and
cluster algebras in geometry, as well as in some older ones: discrete uniformization,
polyhedra, applications to PDE.

The workshop featured many talks around the subject of discrete exterior cal-
culus. The main idea of discrete exterior calculus is to find the right adaptation of
the classical notions of forms, exterior differentiation, Hodge decomposition, etc.
to functions on cell complexes, with the goal being to do classical analysis using
discrete approximations to continuous objects. The talks by Chelkak, von Deylen,
Günther, Hildebrandt, Skopenkov, Stern all fit in this category. From the variety
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of techniques presented we can only say that the subject is still under discussion,
and that a global framework is still to be found.

Another new and exciting direction is the integrability and cluster structure of
discrete geometric mappings. Here we heard talks by Doliwa, Goncharov, Suris,
Tabachnikov on connections between various discrete systems and cluster alge-
bras/varieties or other integrable structures. This area seems ripe for further
exploration, in particular since we don’t understand what features these models
have in common, and what consequences the cluster structure may have. In par-
ticular the cluster structure allows one to introduce quantization which may yield
important new avenues of research.

There were a few talks about polyhedra (by Adiprasito, Izmestiev, Schlenker)
and versions of discrete uniformization (by Sechelmann, Stephenson, Sullivan).
Although these are more well-studied areas the new ideas presented open new
opportunities for further research.

Finally there were a few talks about discretizations of PDE: by Crane, Lessig,
Schief, Schumacher, Hoffmann, Vouga. Here we include applications to graphics:
mapping textures to surfaces and smoothing using conformal maps is one common
theme. This area of PDE applications continues to be an important source of
inspiration for theoretical advances in discrete differential geometry: our goal is
to be able to model PDEs, and often finding the right discretization makes a huge
difference in efficiency. Furthermore some systems have discretizations which are
in some sense more natural than their continuous counterparts (in the sense that
there is more mathematical structure).

The organizers are grateful to all participants for all the lectures, discussions,
and conversations that combined into this very lively and successful workshop –
and to everyone at Research Institute in Oberwolfach for the perfect setting.
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Abstracts

Many 4-polytopes with a low-dimensional realization space

Karim A. Adiprasito

(joint work with Günter M. Ziegler)

We report on recent progress [1] on two classical problems concerning the space
of geometric realizations of a given polytope. The first problem seems to originate
with Perles. A d-polytope P ∈ Rd is projectively unique if every polytope P ′ in Rd

combinatorially equivalent to P is related to P via a projective transformation.

Problem I (Perles & Shephard ’74 [8], Kalai ’97 [5]). Is it true that, for fixed
d, the number of distinct combinatorial types of projectively unique d-polytopes is
finite?

It was generally conjectured that the answer to this problem is positive, even
though no substantial progress was made since 1976 [7]. It is easy to see that
a 2-polytope is projectively unique if and only if it has 3 or 4 vertices. The
case of 3-polytopes is more demanding. Classical approaches highlight the close
connection of Problem I to the dimension of the realization space RS(P ) (cf. [12])
of a polytope P .

Theorem 1 (Legendre–Steinitz Formula [11, Sec. 69, p. 349]). The realization
space of a 3-polytope P is of dimension f1(P ) + 6.

From this, we can see that a 3-polytope can be projectively unique only if
f1(P ) + 6 ≤ dimPGL(R4) = 15. A more careful analysis reveals that this is in
fact a complete characterization: A 3-polytope is projectively unique if and only
if it has at most 9 edges [3, Sec. 4.8, pr. 30].

This argument motivates the study of the dimension of the realization space of
a polytope as a separate problem, which goes back to research of Legendre. He
was the first to give the correct formula (Theorem 1) for the dimension of the
realization space of 3-polytopes, cf. [6, Note VIII, p. 309], the first proof for which
was later supplied by Steinitz [11, Sec. 69].

Let the size of a polytope be given by the combined number of its vertices and
facets. We study Legendre’s problem in the following form:

Problem II (Legendre–Steinitz; cf. Ziegler 2011 [12]). How does, for d-dimensional
polytopes, the dimension of the realization space grow with the size of the polytopes?

Main Idea and Results. Our approach to these problems is given by the ob-
servation that the 8-th vertex of a realization of the 3-cube is determined by the
remaining 7 vertices. This idea gives rise to a construction technique for cubical
complexes as follows: We give a sequence of cubical 3-complexes Tn, n ∈ N, called
transmitters, such that for every construction step Tn−1 → Tn, Tn is obtained from
Tn−1 by attaching a (combinatorial) 3-cube W to Tn−1 such that Tn−1 ∩W has
7 vertices. Since the geometric realization of the attached cube is determined by
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the information in Tn−1, the geometric realization of Tn is determined by the re-
alization of Tn−1, and in particular, the geometric realization of Tn is determined
by the realization of T0.

With this technique, we are able to complete the answer to Problem II.

Theorem I (Transmitter polytopes, A.-Ziegler [1]). There is an infinite family
(TRP4[n]), n ∈ N of combinatorially distinct 4-dimensional polytopes on 24 + n
vertices, such that for all n, dimRS(TRP4[n]) is bounded above by 96.

As an immediate corollary, we obtain:

Corollary 1. For each d ≥ 4, there is an infinite family (TRPd[n]), n ∈ N of
combinatorially distinct d-dimensional polytopes such that dimRS(TRPd[n]) ≤
76 + d(d + 1) for all n.

Building on the family (TRP4[n]), we can use extension techniques, in particular
Lawrence extensions (see for example [9]), to answer Problem I for all dimensions
high enough.

Theorem II (Rigid transmitter polytopes, A.-Ziegler [1]). There is an infinite
family (RTP81[n]), n ∈ N of combinatorially distinct 81-dimensional polytopes, all
of which are projectively unique.

Again, we can immediately conclude:

Corollary 2. For each d ≥ 81, there is an infinite family (RTPd[n]), n ∈ N

of combinatorially distinct d-dimensional polytopes, all of which are projectively
unique.

The hardest part of the proof of Theorem I (and Theorem II) goes into a
geometric construction of a complex T0 that allows for the repeated attachment of
3-cubes in accordance with our construction technique. The pivotal structure for
this initial complex T0 is formed by (weighted) Clifford tori, upon which we build
the sequence of complexes Tn, all of which are homeomorphic to T 2×I, and whose
vertices are, in turn, distributed over several weighted Clifford tori in a symmetric
fashion. For the study of T0 and its extensions Tn, Santos [10] provided valuable
intuition.

To ensure that the extensions Tn of T0 give rise to 4-polytopes, we use the notion
of convex position complexes which is closely related to the theory of (locally)
convex hypersurfaces, cf. [2, 4]. Convex position encodes the property of being
the subcomplex of the boundary complex of a convex polytope. Using a careful
adaption of the Alexandrov–van Heijenoort Theorem to manifolds with boundary,
we prove that our complexes Tn are indeed in convex position, and consequently
give rise to convex polytopes by considering the polytopes TRP4[n] := conv Tn.

To finish the proof, we then note that the realization space of the polytopes
TRP4[n] is naturally embedded into the realization space of Tn, which in turn
is embedded into the realization space of T0. In particular, dimRS(TRP4[n]) ≤
dimRS(Tn) ≤ dimRS(T0), and dimRS(TRP4[n]) is uniformly bounded. A more
careful analysis gives the bound of Theorem I.
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Discrete complex analysis: conformal invariants without conformal
invariance

Dmitry Chelkak

Dealing with some 2D lattice model and its scaling limit (e.g., with the 2D Brow-
nian motion in a fixed planar domain, which can be realized as a limit of random
walks on refining lattices δZ2), one usually works in the context when the lat-
tice mesh δ tends to zero. Then, one can argue that a pre-limiting behavior of
the model is sufficiently close to the limiting one, if δ is small enough, e.g., the
random walks hitting probabilities (discrete harmonic measures) become close to
the Brownian motion hitting probabilities (classical harmonic measure) as δ → 0.
After re-scaling by δ−1, such statements provide an information about random
walk properties in (the bulk of) large discrete domains in Z2.

In this talk, we are interested in uniform estimates which hold true for arbitrary
discrete domains, possibly having many fiords and bottlenecks of various widths,
including very thin (several lattice steps) ones. Having in mind the classical geo-
metric complex analysis as a guideline, we would like to construct its discrete
version “staying on a microscopic level” (i.e., without any limit passage), which
allows one to handle discrete domains by the same methods as continuous ones.

The main objects of our interest are discrete quadrilaterals, i.e. simply con-
nected domains Ω with four marked boundary points a, b, c, d. Focusing on quadri-
laterals, we are motivated by two reasons. First, in the classical theory this is the
“minimal” configuration which has a nontrivial conformal invariant (e.g., all simply
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connected domains with three marked boundary points are conformally equivalent
due to the Riemann mapping theorem). Second, quadrilaterals are archetypical
configurations for the 2D lattice models theory, where one often needs to estimate
the probability of some crossing-type event between the opposite boundary arcs
[ab], [cd] ⊂ ∂Ω of a discrete simply connected domain Ω.

Below we present a number of uniform double-sided estimates (1)–(3) relating
discrete counterparts of several classical conformal invariants of a configuration
(Ω; a, b, c, d): cross-ratios, random walk partition functions and extremal lengths.

Let Ω be a discrete domain (i.e., connected subset of Z2) and A,B ⊂ ∂Ω. We
denote by ZΩ(A;B) the total partition function of the simple random walk running
from A to B inside Ω. Namely,

ZΩ(A;B) = ZΩ(B;A) :=
∑

γ∈SΩ(a;b)

4−Length(γ),

where SΩ(A;B) = {γ = (u0u1 . . . un) : u0 ∈ A, u1, . . . , un−1 ∈ IntΩ, un ∈ B} is
the set of all nearest-neighbor paths connecting A and B in Ω, and Length(γ) = n.

Further, let Ω be a simply-connected discrete domain and a, b, c, d ∈ ∂Ω be four
boundary points listed counterclockwise. We define their discrete cross-ratios by

XΩ(a, b; c, d) :=

[
ZΩ(a; c) · ZΩ(b; d)

ZΩ(a; b) · ZΩ(c; d)

] 1
2

, YΩ(a, b; c, d) :=

[
ZΩ(a; d) · ZΩ(b; c)

ZΩ(a; b) · ZΩ(c; d)

] 1
2

.

Note that the continuous analogue of the partition function ZΩ(a; b) for the upper
half-plane Ω = H (up to a multiplicative constant) is given by (b − a)−2, so the
quantities introduced above are discrete counterparts of the usual cross-ratios

xH(a, b; c, d) :=
(b−a)(d−c)
(d−b)(c−a) , yH(a, b; c, d) :=

(b−a)(d−c)
(d−a)(c−b) .

Moreover, for any continuous Ω, the corresponding xΩ, yΩ could be defined
via a proper conformal mapping Ω → H. In particular, one has the standard
identity x−1

Ω = 1+ y−1
Ω for any (Ω; a, b, c, d). Since in the discrete setup there is no

appropriate notion of conformal invariance (for different subsets of the fixed grid),
one cannot hope that this identity remains valid for discrete Ω’s. Nevertheless, it
turns out that the similar uniform double-sided estimate holds true:

(1) XΩ(a, b; c, d)
−1 ≍ 1 + YΩ(a, b; c, d)

−1
,

i.e., there exist two independent of Ω, a, b, c, d constants C1, C2 > 0 such that
C1X

−1
Ω ≤ 1 + Y−1

Ω ≤ C2X
−1
Ω for all possible discrete quadrilaterals (Ω; a, b, c, d).

Further, note that the natural continuous analogues zΩ([ab]; [cd]) of the total
partition functions ZΩ([ab]; [cd]) are conformally invariant as well, and, for Ω = H,
one has (up to a multiplicative constant)

zH([ab]; [cd]) = log
(c− a)(d − b)

(d− a)(c− b)
= log(1 + yH(a, b; c, d)).

Hence, this identity is fulfilled for any continuous quadrilateral (Ω; a, b, c, d). Again,
it cannot survive on the discrete level, but one can prove that the similar uniform
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double-sided estimate

(2) ZΩ([ab]; [cd]) ≍ log(1 + YΩ(a, b; c, d))

holds true for discrete quadrilaterals (with constants independent of (Ω; a, b, c, d)).
In order to summarize our results, it is worthwhile to introduce the third quan-

tity related to a discrete quadrilateral which is a well known discrete analogue of
the extremal length notion. Let E(Ω) be the set of all edges of Ω. We define

LΩ([ab]; [cd]) := sup
w:E(Ω)→R+

minγ⊂E(Ω):[ab]↔[cd]

(∑
e∈γ w(e)

)2

∑
e∈E(Ω)(w(e))

2
,

where min is taken over all nearest-neighbor paths γ connecting [ab] and [cd] in Ω
and sup is over all nonnegative functions (“discrete metrics”) w : E(Ω) → R+.

Note that one can easily estimate extremal lengths since for this purpose it is
sufficient to take any “discrete metric” w0 in Ω (possibly, having some natural
geometric meaning) and estimate the corresponding ratio for this particular w0.
Our main results are summarized in the following

Theorem. Let Ω be a simply connected discrete domain and boundary points
a, b, c, d ∈ ∂Ω be listed in the counterclockwise order. Denote

Y := YΩ(a, b; c, d), Z := ZΩ([ab]; [cd]), L := LΩ([ab]; [cd]);

Y′ := YΩ(b, c; d, a), Z′ := ZΩ([bc]; [da]), L′ := LΩ([bc]; [da]).

Then, the following uniform estimates are fulfilled:

(3)
log(1 + Y) ≍ Z ≤ L−1

Y · Y′ = 1 L · L′ ≍ 1
log(1 + Y′) ≍ Z′ ≤ (L′)−1

Moreover, Z′ ≍ (L′)−1, if L′ ≤ const < +∞ (or, equivalently, L ≥ const > 0).

Finally, note that the most essential ingredient of our proofs is the asymptotics

G(u;u0) =
1

2π
log |u− u0|+O(1)

of the free Green’s function which is known (in a much more precise form) at least
for the class of isoradial graphs. Thus, if this asymptotics is established for some
class of planar graphs, one almost immediately has a “toolbox” described above
(for this class of graphs) which allows one to use classical methods of geometric
complex analysis more-or-less in the same style as in the usual continuous setup.
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Fast Computation of Geodesic Distance via Linear Elliptic Equations

Keenan Crane

(joint work with Clarisse Weischedel and Max Wardetzky)

The geodesic distance φ to a point x on a Riemannian manifold M is typically
characterized in terms of the nonlinear hyperbolic eikonal equation |∇φ| = 1.
We present an alternative formulation in terms of linear elliptic equations, which
has important practical and numerical consequences. In particular, let ∆ be the
(negative-semidefinite) Laplace-Beltrami operator onM and let δ be a Dirac delta
centered at x. The heat kernel is the solution to the heat equation

u̇ = ∆u

with initial conditions u0 = δ. As observed by Varadhan [1],

φ = lim
t→0

√
−4t logut,

i.e., the geodesic distance can be recovered as the limit of a simple pointwise
transformation applied to the heat kernel. In practice, however, it is difficult to
obtain a precise numerical reconstruction of ut.

Consider instead the single-step backward Euler approximation of the heat ker-
nel given by the solution to the linear elliptic equation

(id− t∆)vt = δ

for a fixed integration time t, where id is the identity operator. Since the function
vt is merely a crude approximation of the true heat kernel ut, applying Varadhan’s
transformation no longer yields the geodesic distance. It can be shown, however,
that limt→0 vt is a monotonically decreasing function of the distance to x, which
means that ∇vt will become parallel to the gradient of the distance function ∇φ
as t→ 0. Alternatively, if we define X := −∇vt/|∇vt| then we have

lim
t→0

X = ∇φ,

since (as indicated by the eikonal equation) ∇φ has unit length. For finite values of
t the vector field X may not be integrable, but we can obtain a close approximation

φ̂ of φ by solving the problem

min
φ̂

|∇φ̂ −X |2,

or equivalently, by solving

∆φ̂ = ∇ ·X
which is a standard linear elliptic Poisson equation. These observations lead to the

heat method, which can be used to obtain a consistent approximation φ̂ of geodesic

distance (i.e., limt→0 φ̂ = φ):

Computationally this method is attractive because the linear equations from
steps (I) and (III) can easily be prefactored and solved in parallel; step (II) is
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Algorithm 1 The Heat Method

I. Solve (id− t∆)vt = δ.
II. Evaluate X = −∇vt/|∇vt|.
III. Solve ∆φ̂ = ∇ ·X .

a simple pointwise evaluation. Further discussion of the method (including dis-
cretization and numerics) can be found in [2].
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Axioms for an Arbitrary (Discrete) Calculus with Dirichlet Problem
and Hodge Decomposition

Stefan W. von Deylen

Consider am Riemannian manifold (M, g). The Dirichlet problem is to find
minimisers of the Dirichlet energy Dir(u) = 〈du, du〉L2 + 〈δu, δu〉L2 inside an
appropriate class of functions or differential forms. The (L2-orthogonal) Hodge
decomposition of any vector field α as

α = dφ+ δχ+ ψ such that dψ = 0, δψ = 0

subject to some additional conditions on the boundary values of φ, χ and ψ, is
strongly connected to the unique solvability of the Dirichlet problem. For both
problems, it is well known that the space of Sobolev differential forms H1Ωk(M)
is the appropriate choice of regularity, see [4].

There are several approaches to define “discrete exterior calculi”, see e. g. [3, 2,
1]. Sometimes by interpolation properties, sometimes by mere discrete calculation,
they show that the above properties of the continous calculus are reflected in their
definitions.

We have asked ourselves for the “minimal set of definitions” that is fulfilled by
all these discrete constructions as well as their smooth counterpart and propose
the following:

Definition. SupposeM is an n-dimensional compact, oriented cone manifold with
boundary. An exterior calculus (Gk,Ω

k) consists of

(a) collections G1, . . . , Gn of “integration domains”: each U ∈ Gk is a smooth k-
dimensional submanifold of M such that ∂U can be covered by Gk−1 domains.

(b) L2-closed spaces Ω0, . . . ,Ωn of differential forms such that Ωk ⊂ L2Ωk(M)
and each α ∈ Ωk is integrable on each U ∈ Gk.
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This definition collects all objects that are needed to form a calculus. Let us add
some purely notational definitions: A form is some α ∈ Ωk weakly differentiable
if there is dα ∈ Ωk+1 with

∫

U

dα =

∫

∂U

α for all U ∈ Gk+1.

Call dα the weak exterior derivative of α (if it is not unique, pick the one with
least L2 norm). The pointwise projection of α onto the tangent space of a lower-
dimensional submanifold, e. g. ∂U , (the “tangential part”) is denoted as tα, the
projection onto the orthogonal complement (the “normal part”) as nα.

Of course, one can construct very strange collections of forms and domains that
do not have much to do with one another. As conditions for an exterior calculus
to be “useable”, we propose the following:

(a) the space H1Ωk of weakly differentiable Ωk forms should be dense in Ωk,
(b) there is a co-differential δ with 〈α, dβ〉L2 = 〈δα, β〉L2 if tβ = 0 or nα = 0,
(c) but if nα 6= 0, there is β with 〈α, dβ〉L2 6= 〈δα, β〉L2 and vice versa for tβ 6= 0.

Remark that in general this co-differential δ is not neccessarily linked to the
differential by the Hodge star, δ 6= ∗d∗.
Comparison. The fact that Ωk may also be spaces of piecewise constant differ-
ential forms and yet admit a weak derivative in the above sense, as the Stokes’
formula only has to hold on a very limited set of domains, has some implications
for the comparison to other discrete calculi.

(1.) The FEEC (finite element exterior calculus) approach, cf. [1] and Ari
Stern’s abstract in this report, needs weakly differentiable forms in the usual
Sobolev sense, e. g. piecewise smooth and globally continous forms. One way
to see our definition is to make their approach applicable to the purely discrete
approaches, e. g.:

(2.) The DEC (discrete exterior calculus) approach, cf. [2], does (at least
in the first step) not define k-forms in the usual sense, but only numbers at k-
cells. When some interpolation is chosen, mostly piecewise linear and globally
continous (Whitney forms), Stokes’ and Green’s theorem do not neccessarily hold
on the level of interpolating forms. But an appropriately chosen piecewise constant
interpolation keeps both theorems valid, and it will be weakly differentiable in the
above definition, thus admitting the results given below without extra proofs for
the discrete setting.

Result. The reason that we consider these objects above as a “minimal set” of
objects to form an exterior calculus is that a careful inspection of the Sobolev
theory for the aforementioned problems, Dirichlet problem and the Hodge decom-
position, e. g. from [4], shows that all their proofs will carry over. We especially
emphasise that the following properties of any “useable” exterior calculus are
proven by literally taking over the proofs from Sobolev theory:

Theorem. Let (Gk,Ω
k) be a “useable” exterior calculus as above. Then hold for

H k := {α ∈ Ωk | Dir(α) = 0}:
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(a) Dirichlet problem: For each f ∈ (H k
t
)⊥, there is a unique u ∈ (H k

t
)⊥
t
with

〈dα, dψ〉+ 〈δα, δψ〉 = 〈f, ψ〉 for all ψ ∈ Ωk
t
.

(b) Hodge decomposition: Ωk = d(Ωk−1
t

)⊕ δ(Ωk+1
n

)⊕ H k

(c) Friedrichs decomposition: H k = H k
n
⊕H k∩d(Ωk−1) = H k

t
⊕H k ∩δ(Ωk+1)

(d) kerdk/ im dk−1 ≃ H k
n

(e) de Rham: if span
R

(Gk) is a dense subspace of (Ωk)′, then ker ∂k/ im∂k+1 ≃
kerdk/ im dk−1
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Hirota equation and the quantum plane

Adam Doliwa

Hirota’s discrete Kadomtsev–Petviashvili equation [5] may be considered as the
Holy Grail of integrable systems theory, both on the classical and the quantum
level [6]. Its geometric interpretation is provided [2] by Desargues maps (see
Figure 1). These are the maps φ : ZK → PM (D) of multidimensional integer
lattice into projective space (over a division ring D) subject to collinearity of all
triplets of points φ(n), φ(i)(n) and φ(j)(n), i 6= j; here φ(i)(n1, . . . , ni, . . . , nK) =
φ(n1, . . . , ni + 1, . . . , nK). We remark that the symmetry properties of Desargues
maps are more transparent [3] in the language of the AK root lattice and of the
corresponding affine Weyl group.

Geometric integrability of the maps follows from the celebrated Desargues the-
orem. In algebraic terms the nonlinear system generated by Desargues maps (a
non-commutative Hirota equation) can be decomposed [4] into reiterated applica-
tion of two maps, which are solutions of the functional pentagon equation. The
simpler one W : D2 × D2 ∋ ((x1, y1), (x2, y2)) 99K ((x̃1, ỹ1), (x̃2, ỹ2)) ∈ D2 × D2

x̃1 = x2 + x1y2, ỹ1 = y1y2(1)

x̃2 = −y1x−1
1 x2, ỹ2 = y2 + x−1

1 x2(2)

is related to collinearity of four points. We stress that the functional pentagon
equation

(3) W12 ◦W23 =W23 ◦W13 ◦W12, in D
2 × D

2 × D
2

is satisfied without any assumptions about commutativity of the multiplication.
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Figure 1. Desargues map condition and the Veblen configuration

The second map WG : D2 × D2 99K D2 × D2

u′1 = Gw1, w′
1 = w2w1

u′2 = −u2w1u
−1
1 , w′

2 = Gw1u
−1
1

contains a free gauge parameter G, and is directly related to Desargues config-
uration. The pentagonal property of the map follows from the symmetry of the
configuration; on the algebraic level the gauge parameters of the corresponding
five maps have to be suitably adjusted.

We present also a path to the corresponding solutions of the quantum penta-
gon equation [1]. In doing the reduction from ”noncommutative to quantum” we
elucidate [4] the role of the ultra-locality principle (the tensor product structure)
which leads to the Weyl commutation relations

xy = qyx

of the quantum plane Kq[x, y]. Moreover, the pentagonal property of the map W
implies coassociativity of the coproduct ∆ : Kq[x, y] → Kq[x, y]⊗Kq[x, y]

(4) ∆(x) = 1⊗ x+ x⊗ y, ∆(y) = y ⊗ y,

which should be compared with equation (1). From that it follows the Hopf algebra
structure of the extended quantum plane Kq[x, y, y

−1].
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Discrete complex analysis on quad-graphs

Felix Günther

(joint work with Alexander I. Bobenko)

We deal with a linear discretization of complex analysis on quad-graphs. Dis-
crete holomorphic functions on the square lattice were studied by Isaacs [7], where
he proposed two different definitions for holomorphicity. One of them was rein-
troduced by Ferrand [6] and studied extensively by Duffin [4], who extended the
notion of discrete holomorphicity to rhombic lattices [5]. The investigation of dis-
crete complex analysis on rhombic lattices was resumed by Mercat [9], Kenyon [8],
Chelkak and Smirnov [3]. For a survey on the theory of discrete complex analy-
sis based on circle patterns and its relation to the linear theory, see the book of
Bobenko and Suris [2].

Our setting is a bipartite quad-graph Λ corresponding to a strongly regular and
locally finite cell decomposition of a Riemann surface consisting of quadrilaterals
only. Mainly, we are interested in bipartite quad-graphs embedded in the complex
plane. We denote by Γ respectively Γ∗ the maximal independent sets of Λ. In
addition to the graph Λ, its dual ♦ := Λ∗ will come up in the definitions of
discrete derivatives.

Being consistent with the previous definitions of discrete holomorphicity, a func-
tion H : Λ → C is discrete holomorphic on the face z ∈ ♦, iff

H(u+)−H(u−)

u+ − u−
=
H(w+)−H(w−)

w+ − w−

for the two diagonals u−u+ and w−w+ of z. Based on this notion of holomorphic-
ity, we generalize the discrete derivatives ∂, ∂̄ of [3] to arbitrary quadrilaterals.
These discrete derivatives map functions on Λ to functions on ♦ or vice versa.
As in the rhombic setting, we can find discrete primitives of discrete holomorphic
functions on simply-connected domains of ♦.

For functions on Λ, we show the factorization 4∂∂̄ = 4∂̄∂ = △ where △ is the
discrete Laplacian introduced by Mercat [10] and studied by Skopenkov [11]. As
a corollary, ∂H is discrete holomorphic if H : Λ → C is discrete harmonic, i.e.
△H ≡ 0. Also, the real and the imaginary part of a discrete holomorphic function
H : Λ → C are discrete harmonic. Moreover, if H is discrete holomorphic on
a simply-connected domain, the imaginary part of H is determined uniquely by
its real part up to two additive constants on Γ and Γ∗. In particular, a discrete
holomorphic and purely real or purely imaginary functionH on a simply-connected
domain is constant on Γ and constant on Γ∗.
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Skopenkov proved existence and uniqueness of solutions to the discrete Dirichlet
boundary value problem [11]. Basing on this result, we prove surjectivity of the
operators ∂, ∂̄,♦ on discrete domains homeomorphic to a disk or the plane. Es-
pecially, discrete Green’s functions G(·; v0) : Λ → R and discrete Cauchy kernels
K(·, v0) : ♦ → C and K(·, z0) : Λ → C exist for all v0 ∈ Λ and z0 ∈ ♦ in the case
that Λ discretizes the complex plane. For all v ∈ Λ and z ∈ ♦, these functions
fulfill

G(v0; v0) = 0 and △G(v; v0) =
1

2µΛ(v0)
δvv0 ,

∂̄K(·; z0) = δzz0
π

µ♦(z0)
and ∂̄K(·; v0) = δvv0

π

µΛ(v0)
.

Here δ is the Kronecker delta, and µΛ(v0) are µ♦(z0) are geometric weights associ-
ated to vertices of Λ and ♦ which already appear in the definitions of ∂ and ∂̄. Note
that we do not require any certain asymptotic behavior. However, we construct
discrete Green’s functions and Cauchy kernels with asymptotics analogous to the
rhombic [3, 8] and close to the smooth case if all quadrilaterals are parallelograms
with bounded interior angles and bounded ratio of side lengths. The construction
of these functions is closely related to discrete complex analysis on quasicrystallic
parallelogram-graphs [1] and uses the connection to discrete integrable systems [2].

To state discrete Cauchy formulas in a simpler way than in [3], we introduce the
medial graph X of Λ which is defined as follows. The vertex set is given by the set
of midpoints of all edges of Λ and two vertices are adjacent iff the corresponding
edges belong to the same face and have a vertex in common. The set of faces of X
is in bijective correspondence with the vertex set Λ∪♦: A face corresponding to a
vertex v of Λ consists of the midpoints of all edges incident to v and a quadrilateral
face corresponding to a face z of ♦ consists of the four midpoints of edges belonging
to z. So given two functions F : ♦ → C and H : Λ → C, we can define a product
F ·H on the edges of X in a canonical way. Such functions can then be integrated
along paths of edges of X .

v0

Figure 1. Bipartite quad-graph Λ (dashed) with medial graph X

Note that choosing F ≡ 1 or H ≡ 1, F respectively H is discrete holomorphic
iff all closed discrete line integrals of 1 · H respectively F · 1 vanish, yielding a
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discrete Morera’s theorem. Also, all closed discrete line integrals of F ·H vanish if
F and H are both discrete holomorphic. Though, F ·H is not everywhere discrete
holomorphic in the sense of the theory above. More precisely, F ·H is defined on
the vertices of the medial graph of X , which is the dual of a bipartite quad-graph
having Λ ∪ ♦ as one maximal independent vertex set and the midpoints of edges
of Λ as the other. But in general, F ·H is discrete holomorphic on the vertices of
Λ ∪ ♦ only.

Let F : ♦ → C and H : Λ → C be discrete holomorphic, and v0 ∈ Λ, z0 ∈ ♦. If
K(·, z0) : Λ → C and K(·, v0) : ♦ → C are discrete Cauchy kernels, then for any
discrete contour Cz0 or Cv0 on the medial graph X surrounding z0 respectively v0
once in counterclockwise order (e.g. the paths determined by the gray vertices in
Figure 1), the discrete Cauchy formula holds true:

F (z0) =
1

2πi

∮

Cz0

F ·K(·; z0),

H(v0) =
1

2πi

∮

Cv0

K(·; v0) ·H.

If additionally Cz0 does not pass through any vertex incident to z0, then

∂H(z0) =
1

2πi

∮

Cz0

−∂K(·; z0) ·H.

In the special case of the Z2-lattice of a skew coordinate system in the com-
plex plane, ♦ ∼= Λ and all derivatives of a discrete holomorphic functions are
discrete holomorphic themselves. We derive discrete Cauchy formulas for all dis-
crete derivatives and show that the nth derivative of the discrete Cauchy kernel
with asymptotics O(x−1) has asymptotics O(x−(n+1)).
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Consistent discretizations of the Laplace–Beltrami operator and the
Willmore energy of surfaces

Klaus Hildebrandt

(joint work with Konrad Polthier)

A fundamental aspect when translating classical concepts from smooth differential
geometry, such as differential operators or geometric functionals, to corresponding
discrete notions is consistency. A discretization is consistent if the discrete operator
or functional converges to its smooth counterpart in the limit of refinement. Here,
we are concerned with the construction of consistent counterparts to the Laplace–
Beltrami operator and the Willmore energy on polyhedral surfaces in R3. Our
starting point is the weak form of the Laplace–Beltrami operator (LBO) on a
smooth surface M . This is the continuous linear operator that maps any u ∈
H1(M) to the distribution ∆u ∈ H1(M)′ that is given by

(1) 〈∆u|ϕ〉 = −
∫

M

g(gradu, gradϕ) dvol

for all ϕ ∈ H1(M). Here H1(M) denotes the Sobolev space of functions whose
first derivative is square integrable, H1(M)′ is the (topological) dual space, and
〈·|·〉 denotes the pairing of H1(M)′ and H1(M). This operator can be rigorously
defined on polyhedral surfaces, and, in [1], convergence of this operator to its
smooth counterpart in an appropriate operator norm was shown. To discretize the
operator, we restrict u and ϕ to be functions in the finite dimensional subspace
Sh of H1 consisting of continuous functions that are piecewise linear over the
triangles. Then, the discrete weak LBO is a map from Sh to S′

h (the dual space of
Sh). It can be used to discretize second order differential equation on surfaces, and
convergence of solutions of discrete Dirichlet problems of Poisson’s equation was
shown in [2]. In contrast to the weak form, discretizations of the strong LBOs are
endomorphisms of Sh. Based on the discrete weak LBO, different constructions
of discrete strong LBOs are used in practice, but none of them was proven to be
consistent and counterexamples to pointwise convergence have been reported.

Here, we introduce a consistent discretization of the strong LBO. As a tool for
the construction, we use functions that we call r-local functions.

Definition 1. Let M be a smooth or a polyhedral surface in R3, and let CD be
a positive constant. For any x ∈ M and r ∈ R+, we call a function ϕ : M 7→ R

r-local at x (with respect to CD) if the criteria
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(D1) ϕ ∈W 1,1(M),

(D2) ϕ(y) ≥ 0 for all y ∈ M,

(D3) ϕ(y) = 0 for all y ∈ M with dM(x, y) ≥ r,

(D4) ‖ϕ‖L1 = 1, and

(D5) |ϕ|W 1,1(M) ≤ CD

r

are satisfied.

A function that is r-local at x ∈ M can be used to approximate the function
value at x of a function f through the integral

∫
M
f ϕdvol. In this sense, r-local

functions are approximations of the delta distribution.

Lemma 1. Let ϕ ∈ L1(M) satisfy properties (D2), (D3), and (D4) of Definition 1
for some x ∈M and r ∈ R+, and let f ∈ C1(M). Then, the estimate

(2)

∣∣∣∣f(x) −
∫

M

f ϕ dvol

∣∣∣∣ ≤ ‖grad f‖L∞ r

holds.

Certain functions ϕ even exhibit a higher approximation order: there r-local
functions ϕ that satisfy

(3)

∣∣∣∣f(x)−
∫

M

f ϕ dvol

∣∣∣∣ ≤ C r2,

where C depends on M and the second derivatives of f .
A function in Sh is uniquely determined by its function values at the vertices.

Assuming a total ordering of the vertices, the function values can be listed in a
vector, which is called the nodal vector. We will describe the discrete LBOs by
their action on the nodal vectors. Let {ϕi}i∈{1,2,..n} be a set of functions such
that every ϕi is r-local at the vertex vi ∈ Mh. Then, we define the discrete

Laplace–Beltrami operator ∆
{ϕi}
Mh

associated to {ϕi} as

∆
{ϕi}
Mh

: Sh 7→ Sh


uh(v1)
uh(v2)
...

uh(vn)


 7→




〈∆Mh
uh|ϕ1〉

〈∆Mh
uh|ϕ2〉
...

〈∆Mh
uh|ϕn〉


 .

For each ϕi there is a constant CD,i such that (D5) of Definition 1 is satisfied. In
the following, we refer to the maximum of the CD,i as the constant CD of {ϕi}.

For the proof of consistency of the discrete operators, we consider a polyhedral
surface Mh that is closely inscribed to a smooth surface M , i. e. the vertices of
Mh lie onM , Mh is in the reach ofM , and the restriction to Mh of the orthogonal
project ontoM is a bijection. We denote the restricted orthogonal projection by π.
Furthermore, for a smooth function u on M , we denote by uh the function in Sh

that interpolates the function values of u at the vertices of Mh.
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Theorem 1. Let M be a smooth surface in R
3, and let u be a smooth function on

M . Then there exists a h0 ∈ R+ such that for every pair consisting of a polyhedral
surfaceMh that is closely inscribed toM and satisfies h < h0 and a set of functions
{ϕi}i∈{1,2,..n} such that every ϕi is r-local at the vertex vi ∈Mh with r =

√
h, the

estimate

(4) sup
y∈Mh

∣∣∣∆u(π(y)) −∆
{ϕi}
Mh

uh(y)
∣∣∣ ≤ C

√
h

holds, where uh ∈ Sh(Mh) is the interpolant of u. If every ϕi ◦ π−1 satisfies (3)

and r = h
1
3 , then we have

(5) sup
y∈Mh

∣∣∣∆u(π(y))−∆
{ϕi}
Mh

uh(y)
∣∣∣ ≤ C h

2
3 .

The constants C depend only on M , u, h0, the shape regularity ρ of Mh, and the
constant CD of {ϕi}.

We plan to use the discrete LBOs to discretize forth-order problems on sur-
faces. As a first step in this direction, we derived a consistent discretization of the
Willmore energy. The Willmore energy of a smooth surface M in R3 is

(6) W (M) =

∫

M

H2dvol,

whereH denotes the mean curvature ofM . It is connected to the Laplace–Beltrami
operator through the mean curvature vector field H = HN = ∆I. It follows that
the Willmore energy of M equals the squared L2-norm of ∆I.

Let IMh
:Mh 7→ R3 denote the embedding of the polyhedral surface Mh. Each

of the three components of IMh
is a function in Sh. Therefore, we can define the

discrete Willmore energy of Mh and {ϕi} as

W
{ϕi}
Mh

(Mh) = ‖∆{ϕi}
Mh

IMh
‖2L2(Mh)

.

The following theorem shows consistency of the discrete Willmore energies.

Theorem 2. Let M be a smooth surface in R3. Then there exists a h0 ∈ R+ such
that for every pair consisting of a polyhedral surface Mh that is inscribed to M and
satisfies h < h0 and a set of functions {ϕi}i∈{1,2,..n} such that every ϕi is r-local

at the vertex vi ∈Mh with r =
√
h, the estimate

∣∣∣W (M)−W
{ϕi}
Mh

(Mh)
∣∣∣ ≤ C

√
h

holds. If every ϕ̂i satisfies (3) and r = h
1
3 , then we have

∣∣∣W (M)−W
{ϕi}
Mh

(Mh)
∣∣∣ ≤ C h

2
3 .

The constants C depend only on M , h0, the shape regularity ρ of Mh, and the
constant CD of {ϕi}.

Proofs to the theorems can be found in [3].
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Discrete focal surfaces and geodesics

Wolfgang K. Schief and Tim Hoffmann

Voss surfaces are surfaces which can be parametrized by two conjugate families
of geodesics [1]. However, there exists another characterization of Voss surfaces
which is intimately related to their canonical discretization as recorded by Sauer
[2] and Wunderlich [3]. Thus, Voss surfaces are reciprocal parallel to surfaces of
constant negative Gaussian curvature (K surfaces). These K surfaces admit a
natural discretization [2, 3] which is linked to the discrete Voss surfaces proposed
by Sauer and Graf [4] via a discrete analogue of reciprocal parallelism. In fact,
the latter may be interpreted in terms of equilibrium of forces acting along the
edges of discrete Voss sufaces [3] or infinitesimal isometric deformations of discrete
Voss surfaces [4]. It turns out that discrete Voss surfaces admit finite isometric
deformations, which constitutes the counterpart of a well-known property in the
classical setting. However, it is by no means obvious in what sense the mesh
polygons of discrete Voss surfaces constitute discrete geodesics on the surface.

It is a known fact that a family of lines of curvature on a surface is mapped to a
family of geodesics on the corresponding focal surface, that is, the loci of the centre
of curvature associated with the family of lines of curvature. Moreover, the other
family of lines of curvature is mapped to lines which are conjugate to the geodesics.
Thus, a Voss surface can be characterized as being a focal surface of two different
surfaces which are parametrized in terms of curvature coordinates with the two
corresponding families of geodesics being mutually conjugate as mentioned above.
The standard discretization of conjugate nets [5] is given by quadrilateral meshes
with planar faces (pq-meshes). These constitute discrete curvature line nets if the
quadrilaterals are circular and, modulo an arbitrary choice of one vertex normal,
an associated vertex Gauss map, which itself constitutes a circular mesh, may be
defined uniquely. In this setup, as in the classical case, there exist canonical focal
points and one is therefore naturally led to an investigation of the properties of
the resulting focal meshes. It is noted that focal meshes for circular and conical
meshes have been considered in [7].

It turns out that the focal meshes associated with circular meshes are discrete
conjugate and that one can characterize the fact that a mesh is a focal mesh of a
circular mesh by a compact condition on the four angles made by an edge of one
family of coordinate polygons and the four edges of the other family of coordinate
polygons which emanate from the two vertices of the edge. This angle condition
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encodes the property that the four associated tangent directions incident with the
edge are the vertices of a circular quadrilateral when thought of as points on the
unit sphere and we refer to this property as geodesic-circular. The simplest exam-
ple of discrete surfaces which possess this property is given by discrete rotationally
symmetric pq-meshes. The condition of a pq-mesh to be geodesic-circular in both
lattice directions can now be encoded in the property that these normalized tan-
gent directions form two circular meshes on the unit sphere which are related by
a discrete Laplace transform projected onto the sphere. Remarkably, this novel
discretization of Voss surfaces includes Sauer and Graf’s ”classical” discrete Voss
surfaces in the special case that all dihedral angles in any of the two lattice direc-
tions are the same.

In general, classical discrete Voss surfaces are defined by the requirement that
opposite angles at each vertex star be equal. In order to gain more insight into the
classical discrete Voss surfaces which are not captured by our novel discretization,
we now consider a different discretization of curvature line nets, namely conical
meshes (see [6]). A conical mesh is a pq-mesh such that the faces incident to each
vertex are in oriented contact with a cone of revolution originating in that vertex.
Here, the key property is ”oriented contact”. Thus, a mesh is conical or, better,
curvature-conical, iff, at each vertex, the two sums of opposite angles are the same.
However, there exist other ways in which a cone can touch the four faces (or the
corresponding planes) incident to a vertex. For instance, we call a mesh geodesic-
conical iff, at each vertex, the sum of two neighbouring angles coincide with the
sum of the other two. In these and the remaining cases, the planes of the faces
around a vertex touch a common cone of revolution but with different orientations.
Again, discrete rotationally symmetric pq-meshes can serve as an example and the
classical discrete Voss surfaces constitute meshes that are geodesic-conical in both
lattice directions.

There exists a well-known connection between conical and (curvature-)circular
meshes. Thus, for any conical mesh, one can construct a two-parameter family
of circular meshes with vertices on the faces of the conical mesh and the axes of
the circles coinciding with the axes of the cones. In the curvature-conical case,
the conical and the circular nets essentially discretize the same surface. However,
in the geodesic-conical case, the conical mesh should be viewed as a focal mesh
of the circular one. In this manner, the classical discrete Voss surfaces constitute
simultaneously discrete focal surfaces of two different circular meshes as mentioned
in the preceding.
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[1] A. Voss, Über diejenigen Flächen, auf denen zwei Scharen geodätischer Linien ein conju-
girtes System bilden, Sitzungsber. Bayer. Akad. Wiss., math.-naturw. Klasse (1888) 95–102.

[2] R. Sauer, Parallelogrammgitter als Modelle für pseudosphärische Flächen, Math. Z. 52
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Flexible Kokotsakis polyhedra and elliptic functions

Ivan Izmestiev

A Kokotsakis polyhedron with an n-gonal base is a polyhedral surface in R3

that consists of one n-gon, n quadrilaterals attached to the sides of the n-gon,
and n triangles attached to the vertices of the n-gon and to the adjacent sides
of the quadrilaterals. A Kokotsakis polyhedron with a quadrangular base can be
viewed as a part of an infinite polyhedral surface combinatorially isomorphic to
the square grid: see Figure 1, left. Polyhedral surfaces of this kind are being
intensively studied.

φ3

φ1

φ2

φ′2

φ′3

Figure 1. A Kokotsakis polyhedron as a part of a quad-surface;
the corresponding spherical linkage.

Kokotsakis (1932) characterized infinitesimally flexible Kokotsakis polyhedra
and gave some examples of flexible polyhedra with quadrangular base. Other ex-
amples were found by Graf and Sauer, and recently by Schief and (independently)
Stachel.

In this talk we describe an approach that allows to characterize all flexible
Kokotsakis polyhedra with a quadrangular base. We show that any flexible poly-
hedron belongs to one of the known classes: Kokotsakis, Graf-Sauer, or Schief-
Stachel.

Consider the spherical link of a vertex of the polyhedron. This is a spherical
quadrilateral, and an isometric deformation of the polyhedron results in an iso-
metric deformation of this spherical quadrilateral. The angles of the spherical link
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correspond to the dihedral angles of the polyhedron, thus the links of adjacent
vertices have a pair of equal angles. All four spherical links together form a spher-
ical linkage pictured on Figure 1, right. The polyhedron is flexible if and only if
during the motion of this spherical linkage the angles φ3 and φ′3 remain equal.

By introducing new variables

zk = tan
φk
2

one finds a polynomial relation between z1 and z2:

(1) c22z
2
1z

2
2 + c20z

2
1 + c02z

2
2 + 2c11z1z2 + c00 = 0

By writing a similar polynomial for z2 and z3 and excluding z2 one finds a poly-
nomial relation P13(z1, z3) = 0. In a similar way, by means of z′2, one finds a
polynomial relation P ′

13(z1, z
′
3) = 0. Since z3 = z′3, a necessary and sufficient con-

dition for flexibility is that polynomials P13 and P ′
13 have a common factor. This

approach was proposed by Stachel and partially realized by Nawratil.
We study the dependence between z1 and z3 from the viewpoint of branched

covers and monodromy. Namely, the equations P13(z1, z3) = 0 and P ′
13(z1, z

′
3) = 0

determine two branched covers over CP 1 ∋ z1, and a necessary condition for
flexibility is that a component of one cover coincides with a component of the
other. By analyzing all possible monodromies we show that this coincidence can
take place only in one of the known cases.

The solution set of (1) is in general an elliptic curve. The variables z1 and z2
correspond to two functions on this curve that differ by a shift along the curve and a
multiplication with a constant. The recently found examples of Schief and Stachel
appear when all four elliptic curves at the interior vertices of the polyhedron have
the same modulus, the functions zi have the same amplitudes on the two curves
where they are defined, and the sum of four shifts is a period of the curve.

The Geometry of Light Transport Theory

Christian Lessig

Light transport theory, also known as radiative transfer, describes the propagation
of electromagnetic energy at the short wavelength limit when polarization effects
are neglected. Applications of the theory are for example in computer graphics,
medical imaging, climate science, and astrophysics. Despite the practical impor-
tance, the mathematical foundations of the theory are still those introduced in
the 18th century and its physical basis is phenomenological, with little connec-
tion to more fundamental theories of light in physics. Following recent literature
that develops an approach akin to inverse quantization to study quadratic observ-
ables of partial differential equations [9, 1], we show that a geometric formulation
of light transport theory can be obtained rigorously and naturally from classical
electromagnetic theory, and we initiate a study of this geometric structure.
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Maxwell’s equations, Hamilton’s equations for electromagnetic field theory, are

∂

∂t

(
~E
~H

)
=

(
0 1

ε∇×
1
µ∇× 0

)(
~E
~H

)

and in operator notation they can be written as

Ḟ ǫ = P ǫF ǫ

where F ǫ = ( ~E, ~H)T is the Faraday vector and P ǫ is the the Maxwell operator. The
scale parameter ǫ = λ/λn in the above equation is proportional to the wavelength
of light λ and it vanishes at the short wavelength limit when λ→ 0. To study the
time evolution of quadratic obervables such as the energy density

E(q) = ‖ ~F‖2ε,µ =
ε

2
‖ ~E(q)‖2 + µ

2
‖ ~H(q)‖2

at the limit ǫ → 0 it is convenient to consider the Wigner transform [1]. For the
six dimensional Faraday vector F ǫ the transform yields a 6 × 6 matrix density
W ǫ(q, p) ∈ Den(T ∗Q) on phase space T ∗Q defined by

W ǫ
ij(q, p) =

1

(2 π)3

∫

Q

ei p·rFi(q −
ǫ

2
r)Fj(q +

ǫ

2
r) dr.

The importance of the transform lies in the linear dependence of the electromag-
netic energy density E(q) on the Wigner distribution W ǫ,

E(q) =
∑

a

∫

T∗

q Q

tr(ΠaW
ǫ) dp ,

with Πa being the projection onto the ath eigenspace ofW ǫ, so that on phase space
the limit ǫ → 0 commutes with obtaining the observable from the field variable.
With the electromagnetic field being represented by the Wigner transform W ǫ,
the dynamics are described by

Ẇ ǫ = −{{W ǫ, pǫ}}
where {{ , }} is a matrix-valued Moyal bracket and pǫ is the symbol of the Maxwell
operator P ǫ [1]. In components, the Moyal bracket takes the form

Ẇ ǫ =
1

ǫ
(W ǫpǫ − pǫW ǫ) +

1

2i
({W ǫ, pǫ} − {pǫ,W ǫ}) +O(ǫ).

The divergence of the first term 1
ǫ (W

ǫpǫ−pǫW ǫ) at the limit ǫ→ 0 can be evaded
by considering transport on the non-trivial eigenspaces πa of the limit Maxwell
symbol p0 in which case p0a = τaδij lies in the ideal of the matrix algebra and
multiplication commutes. The eigenvalues of p0 are [9]

τ1 = 0 τ2 =
c

n(q)
‖p‖ τ3 = − c

n(q)
‖p‖

where c is the speed of light in vacuum and n(q) : Q → R is the refractive index,
and each eigenvalue τa has multiplicity two. Considering the projection onto the
ath eigenspace, with τa 6= 0 on physical grounds, and taking the limit yields [1]

Ẇ 0
a + {τa,W 0

a } = [W 0
a , Fa]
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where { , } is a matrix-valued Poisson bracket and the eigenvalue λa plays the role
of the Hamiltonian. W 0

a in the above equation is the limit of the projection of the
Wigner distribution, which in components is given by

W 0
a = lim

ǫ→0
(ΠaW

ǫ
aΠa) =

1

2

[
I +Q U + iV
U − iV I −Q

]
dq dp.

The parameters I,Q, U, V in W 0
a are the Stokes parameters for polarization so

that Ẇ 0
a + {λa,W 0

a } = [W 0
a , Fa] describes the transport of polarized light at the

short wavelength limit. For unpolarized light, the regime of classical light transport
theory, one hasQ = U = V = 0 andW 0

a can be identified with the phase space light
energy density ℓ = tr(W 0

a |Q=U=V =0) ∈ Den(T ∗Q). The commutator [W 0
a , Fa],

describing the rotation of the polarization during transport, also vansishes in this
case, and the time evolution of ℓ is thus described by the light transport equation

ℓ̇ = −{ℓ,H}
where we identified the eigenvalue λa with the Hamiltonian H , that is H(q, p) =
λa = ± c

n(q)‖p‖ ∈ F(T ∗Q), with the ambiguity in the sign corresponding to for-

ward and backward propagation in time. The light transport equation emphasizes
the Hamiltonian structure of light transport theory, a property that has not been
appreciated before (cf. [7]). In our opinion, however, it is of considerable impor-
tance because it facilitates the use of a wide range of tools from modern mathemat-
ical physics, cf. [8], and provides a necessary first step towards the development of
structure preserving computational techniques, cf. [2, 6]. For example, the Hamil-
tonian formulation shows that geometrical optics can be considered as a special
case of light transport theory when the amount of energy that is transported is not
considered, and it is also necessary to establish that a five dimensional formulation
of the theory on the cosphere bundle S∗Q = (T ∗Q\{0})/R+ can be obtained when
the symmetry associated with the conservation of the light frequency is considered.

A central result in classical light transport theory is the conservation of radiance
along a ray. A modern formulation of radiance, as the energy flux through a two
dimensional surface, can be obtained from the light energy density ℓ ∈ Den(T ∗Q)
when measurements are considered. What is then still left open, nonetheless, is
the symmetry associated with the conservation law, the conservation of the light
energy density along trajectories in phase space in our parlance. The associated
Lie group action becomes apparent when light transport is considered in idealized
environments where the Hamiltonian vector field is defined globally. Time evolu-
tion is then described by a curve on the infinite dimensional group Diffcan(T

∗Q)
of canonical transformation, establishing that light transport is a Lie-Poisson sys-
tem with the group Diffcan(T

∗Q) as configuration space and symmetry group [8].
Using the existing theory for such systems [8], light transport can then be reduced
from the cotangent bundle T ∗Diffcan(T

∗Q) to the dual Lie algebra g
∗, which can

be identified with g
∗ ∼= Den(T ∗Q), cf. [5]. The infinitesimal coadjoint action in the

Eulerian representation g
∗
+, obtained using the right translation action, is equiv-

alent to the light transport equation, ℓ̇ = −ad∗Hℓ = −{ℓ,H}, and the convective
representation g

∗
−, obtained with the left translation action, is by the change of
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variables formula equivalent to the conservation of the light energy density along
trajectories in phase space.

A more detailed overview of the geometric structure of light transport theory
and its connection to Maxwell’s equations is available in [3] and a comprehensive
discussion can be found in [4].
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Discrete Quasiconformal Mappings of Triangular Meshes

Yaron Lipman

In this talk we present several inroads to open problems in discrete geome-
try such as the construction of bijective and/or bounded distortion mappings be-
tween two dimensional domains and the approximation of polyhedral surfaces’
uniformization. The main tool will be the space of quasiconformal piecewise affine
mappings. In particular we will study this space of mappings by dissecting it into
a collection of convex subspaces.

Simplicial SL(2,R) Chern-Simons theory and Boltzmann entropy on
triangulated 3-manifolds

Feng Luo

Given a triangulated oriented 3-manifold or pseudo 3-manifold (M, T ), Thurston’s
equation associated to T is a system of integer coefficient polynomial equations
defined on the triangulation. These polynomial equations are derived from the
basic properties of the cross ratio. William Thurston introduced his equation in
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the field C of complex numbers in order to find hyperbolic structures. Due to
the important work of Thurston, Neumann-Zagier, Yoshida, Segermann-Tillmann
and others, solving Thurston’s equation over R (or C) can be considered as a
simplicial PSL(2,R) (or PSL(2,C)) Chern-Simons theory since these solutions
produce representations of the fundamental group to PSL(2,R) (or PSL(2,C)).
Our focus is on solving Thurston equation in the field R of real numbers. Since
the classical Chern-Simons theory is variational, it is natural to ask if solutions
of Thurston’s equation are characterized by a variational principle. The volume
optimization program of Casson and Rivin shows that the answer is affirmative
for solutions whose values are in the upper-half-plane ⊂ C. Our main result shows
that solutions of Thurston equation over R are variational with action given by
the entropy function.

We achieve this in three steps. In step 1, we introduce a homogeneous Thurston
equation on (M, T ). This equation is motivated by the vector valued cross ratio.
It is shown that solutions of Thurston equation over R are derived from no-where-
zero solutions of the homogeneous Thurston equation. In step 2, using a result of
Baseilhac-Benedetti on the existence of Z2 angle taut structure s, we introduce a
closed non-empty convex polytope Ws in RN consisting of ”angle structures” and
define the action functional F on Ws to be the restriction of the entropy function

−
∑N

i=1 xi ln(|xi|). In step 3, we show that the entropy function F is concave in
Ws so that the maximum point of F in int(Ws) produces a no-where-zero solution
to the homogeneous equation. Furthermore, if the maximum point of F appears
in the boundary of Ws, then one can make each tetrahedron in T an ideal space-
like tetrahedron in the anti de Sitter space so that (1) these tetrahedra are glued
isometrically along faces producing no shearing at each edge and (2) the signs of
dihedral angles of the tetrahedra coincide with the given Z2 angle taut structure.

This investigation leads to a pentagon relation for the Boltzmann entropy func-
tion f(x) = x ln(|x|). Namely, if α1, α2, α3, β1, β2, β3 are real numbers satisfying∑

i(αi + βi) = 0,
∏

i |αi| =
∏

i |βi| and all but one of them are positive, then

∑

i,j

f(αi + βj) =
∑

i

(f(αi) + f(βi)).

The geometric meaning of this identity is a mystery to me. The existence of
the pentagon relation seems to suggest that there is a topological invariant of 3-
manifolds derived from PSL(2,R) Chern-Simons theory. It remains to be seen
if there is a quantum version of this identity which should be simpler than the
pentagon relation for the quantum dilogarithm.
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Uniformization of discrete Riemann surfaces

Stefan Sechelmann

(joint work with Alexander I. Bobenko and Boris Springborn)

On the basis of the notion of discrete conformal equivalence of Euclidean triangle
meshes we define discrete conformal equivalence of spherical and hyperbolic tri-
angulations [1, 3, 4]. We consider triangulated surfaces equipped with a metric of
constant curvature K = 0, 1, or −1 except at the vertices of the triangulation,
where the metric is allowed to have cone-like singularities. The discrete metric of
such a surface is the function that assignes to each geodesic edge ij its length lij .
Now let l : E → R>0 be the discrete metric of a triangulated Euclidean surface
and let l̃ : E → R>0 be the discrete metric of an (a) Euclidean, (b) hyperbolic, or

(c) spherical surface with combinatorially equivalent triangulation. Then l and l̃
are called discretely conformally equivalent if there exists a function u : V → R on
vertices such that

(a) l̃ij = e
1
2
(ui+uj)lij , (b) 2 sinh

l̃ij
2

= e
1
2
(ui+uj)lij , (c) 2 sin

l̃ij
2

= e
1
2
(ui+uj)lij .

A discrete Riemann surface is an equivalence class of discretely conformally equiv-
alent metrics. It is characterized by the length-cross-ratios defined on edges

lcrij =
lik ljl
lkj lli

,

where k and l are the vertices of two triangles sharing the edge ij .
The discrete uniformization problem is formulated as follows: Given a discrete

metric, find a discretely conformally equivalent Euclidean, spherical, or hyperbolic

Figure 1. An embedded genus 3 surface and its uniformization.
The dashed lines are the axes of the hyperbolic translations that
identify corresponding edges of the fundamental polygon. The
curves on the embedded surface are the pre-images of the polygon
and its axes.
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Figure 2. Uniformization of a discretely sampled conformal im-
mersion of the Wente torus. The faces of the polyhedral surface
are approximate conformal squares. In the discrete uniformiza-
tion their images are approximately squares, as it should be.

Figure 3. Uniformization of a genus 3 hyperelliptic surface cre-
ated from a two sheeted branched cover of the Riemann sphere.
The dashed lines are the axes of the hyperbolic translations that
identify opposite sides of the fundamental polygon.

metric without cone-like singularities at vertices, i.e., such that the sum of angles
of corresponding triangles around every vertex is 2π. As in the smooth case:
For triangulated surfaces of genus g = 0, 1, or >1 one obtains a Euclidean,
spherical, or hyperbolic discretely conformally equivalent metric, respectively. In
all three cases we give a variational description of the corresponding uniformization
problem. It is related to volumes of ideal hyperbolic polyhedra [1, 5]. In the
Eucliean and hyperbolic case the corresponding functional is convex. Using this
technique we show how to calculate standard representations of discrete Riemann
surfaces (Figures 1, 2).

For higher genus surfaces we calculate Fuchsian uniformization groups and show
different examples for hyperelliptic and general surfaces (Figure 1). We derive a
hyperellipticity criterion from the Fuchsian group representation. If and only if
the surface is hyperelliptic then in a normalized presentation where opposite sides
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Figure 4. Fuchsian uniformization of a discrete Riemann surface
given by Schottky data. The fundamental domain is bounded by
images of the Schottky-circles and cuts that connect them.

of a fundamental polygon are identified, the axes of the hyperbolic translations
meet in a point (Figure 3).

We show how to pass from a Schottky to a Fuchsian uniformization. Here one
cannot start with the edge length of a triangulation of a Schottky fundamental
domain, since the edges of identified boundaries have different lengths. But the
length-cross-ratios lcr : E → R>0 are well defined. They determine a discrete
conformal class of globally defined discrete metrics l that can be used to obtain
a Fuchsian uniformization. The Schottky-circles are mapped to smooth curves in
the corresponding Fuchsian uniformization (Figure 4).
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Geometric properties of anti-de Sitter simplices and applications

Jean-Marc Schlenker

(joint work with Jeffrey Danciger and Sara Maloni)

Ideal hyperbolic polyhedra have interesting properties that come up in different
areas of mathematics. They are uniquely determined by either their dihedral
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angles or by their induced metrics, and can also be described by their “shape
parameters”, which are complex numbers attached to their edges.

We consider ideal polyhedra in the 3-dimensional anti-de Sitter (AdS) space, a
Lorentzian space of constant curvature −1 often considered as a Lorentzian analog
of hyperbolic space. The complex numbers occuring when considering hyperbolic
space are replaced with Lorentz numbers for the anti-de Sitter space. Several
statements on ideal hyperbolic polyhedra have analogs for ideal anti-de Sitter
polyhedra.

The rigidity properties of those polyhedra are related to those of Euclidean
polyhedra with all vertices on a hyperboloid of one sheet.

Convergence of Discrete Elastica

Henrik Schumacher

(joint work with Sebastian Scholtes and Max Wardetzky)

The bending energy of a thin, naturally straight, homogeneous and isotropic elastic
rod of length L is given by

F (γ) =

∫ L

0

|κ(s)|2 ds,

where γ : [0, L] → Rm is the arclength parametrisation and κ = γ′′(s) the curvature
vector. Consider the following boundary value problem: Given points P , Q ∈ Rm

and unit vectors v, w ∈ Sm−1 find the shapes of static elastic curves with clamped
ends and fixed length. Defining the space

C =

{
γ ∈ L2([0, L];Rm)

∣∣∣∣
γ′ ∈ L2([0, L]; Sm−1), γ(0) = P, γ(L) = Q,
γ′′ ∈ L2([0, L];Rm), γ′(0) = v, γ′(L) = w

}
,

this can be reformulated to find the minimizers of F : C → R.
A widely used discrete bending energy for a polygonal line p = (p0, p1, · · · , pn)

with pi ∈ Rm is given by

Fn(p) =

n−1∑

i=1

(
ϕi

ℓi

)2

ℓi,

where ϕi is the turning angle and ℓi is given by ℓi =
1
2 (|pi+1 − pi| + |pi − pi−1|).

We restrict ourselves to evenly segmented polygons, i. e. |pi − pi−1| = L
n for all

i = 1, . . . , n. It is straightforward to formulate a discrete analogon of the boundary
value problem above: Find the minimizers of Fn : Cn → R with the discrete ansatz
space

Cn =

{
(p0, . . . , pn) ∈ (Rm)n

∣∣∣∣
|pi − pi−1| = L

n , p0 = P, pn = Q,
p1 − p0 = L

nv, pn − pn−1 = L
nw

}
.

There has been an attempt by Bruckstein et al. [1] to relate argmin(Fn)
and argmin(F ) via techniques from the theory of epi-convergence. However, epi-
convergence of Fn to F only guarantees that some minimizers of F can be approx-
imated by those of Fn. We are able to improve this result in various ways:



Discrete Differential Geometry 2109

• The metric on configuration space is strenghtened from Fréchet-distance
to W 1,2-distance.

• We settle some subtleties concerning the length constraint.
• If certain growth conditions of F , Fn can be established, the method yields
convergence rates for Hausdorff distance of argmin(F ) and argmin(Fn).

As metric space we choose

X =
{
γ ∈ W 1,∞([0, L];Rm) | γ′ ∈ L∞([0, L]; Sm−1), γ(0) = P, γ(L) = Q

}

with distance

dX(γ1, γ2) =

(∫ L

0

dSm−1(γ′1(t), γ
′
2(t))

2 dt

) 1
2

, γ1, γ2 ∈ X.

Both C and Cn are contained in X and we extend F , Fn to X by

F (γ) =

{
F (γ), γ ∈ C,

∞, else,
Fn(γ) =

{
Fn(γ), γ ∈ Cn,

∞, else.

In general, define

argminδ(F )ε = {x ∈ X | ∃y ∈ X : F (y) ≤ inf(F ) + δ and dX(x, y) ≤ ε}.
Our main result is

Theorem 2. For given length and boundary data, there is c > 0 s. t.

|inf(Fn)− inf(F )| ≤ c

n
,

argmin(Fn) ⊂ argmin
c
n (F ) c

n
and argmin(F ) ⊂ argmin

c
n (Fn) c

n

hold.

If F and Fn grow quadratically at their respective minimizers (which appears
to be the case generically, but we cannot prove this fact yet), this result implies
Hausdorff convergence

argmin(Fn)
n→∞−→ argmin(F )

with convergence rate
√

1
n in the metric space X .

The proof of Theorem 1 uses techniques which are very much related to the
notions of epigraph distances and Attouch-Wets-convergence. (See for example
Rockafellar and Wets [2], Chapter 7.) We translate these results to our situation
and obtain the following sufficient conditions for Theorem 1 to hold:

• For every global minimizer γ ∈ C of F there is p ∈ Cn with

dX(p, γ) ≤ c

n
and Fn(p) ≤ F (γ) +

c

n
.

• For every global minimizer p ∈ Cn of Fn there is γ ∈ C with

dX(γ, p) ≤ c

n
and F (γ) ≤ Fn(p) +

c

n
.
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Finally, we show that these conditions are actually fulfilled. Two things are
crucial: (i) Minimizers of F have higher regularity than W 2,2, in particular κ′ is
bounded. (ii) The energy F and ‖κ′‖L∞ of a curve give c

n -bounds for the error of
suitably chosen polygonal approximations.
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Discrete analytic functions: convergence results

Mikhail Skopenkov

This report is on development of discrete complex analysis introduced by R. Isaacs,
J. Ferrand, R. Duffin, and C. Mercat [5]. We consider a graph lying in the complex
plane and having quadrilateral faces. A function on the vertices is called discrete
analytic, if for each face the difference quotients along the two diagonals are equal.

We prove that the Dirichlet boundary value problem for the real part of a
discrete analytic function has a unique solution. In the case when each face has
orthogonal diagonals we prove that this solution converges to a harmonic function
under lattice refinement [6]. This solves a problem of S. Smirnov [7]. This was
proved earlier by R. Courant–K. Friedrichs–H. Lewy [4] for square lattices, by
D. Chelkak–S. Smirnov [2] and implicitly by P.G. Ciarlet–P.-A. Raviart [3] for
rhombic lattices.

We also develop the theory of discrete Riemann surfaces introduced by C. Mer-
cat [5] (the following results are joint with A.I. Bobenko). We prove convergence
of discrete period matrices and discrete Abelian integrals to their continuous coun-
terparts [1]. We prove a discrete counterpart of the Riemann–Roch theorem [1].

The methodology is based on energy estimates inspired by direct- and alternating-
current networks theory.

The author was supported in part by President of the Russian Federation
grant MK-3965.2012.1,“Dynasty” foundation, Simons–IUM fellowship, and grant
RFBR-12-01-00748-a.
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Weighted Averages on Surfaces

Olga Sorkine

(joint work with Daniele Panozzo, Olga Diamanti, Ilya Baran)

We consider the problem of generalizing affine combinations in Euclidean spaces
to triangle (PL) meshes: computing weighted averages of points on PL surfaces.
Given a triangle PL mesh S = (V , E ,F) embedded in R3, and anchor points
p1,p2, . . . ,pN ∈ S (the anchors can be vertices or anywhere on the mesh’s faces).
Consider the following function:

(1) F (x) =

N∑

i=1

wi d(x,pi)
2,

where w1, . . . , wN ≥ 0 are scalar weights such that
∑N

i=1 wi = 1, and d is a metric
on S. If d is the Euclidean metric of R3 then F (x) has a unique minimum in R3

which is the regular Euclidean weighted average
∑N

i=1 wipi. When d is the surface
metric and we look for minima of F on S, the result (if it exists and is unique) is
called the Fréchet mean.

We are interested in quickly solving the forward and the inverse problems,
defined below.

The Forward Problem. We are given scalar weights w1, . . . , wN ≥ 0 such

that
∑N

i=1 wi = 1. Compute

(2) argmin
x∈S

F (x) = argmin
x∈S

N∑

i=1

wi d(x,pi)
2.

The Inverse Problem. Given an additional point p ∈ S, compute scalar

weights w1, . . . , wN ≥ 0 such that
∑N

i=1 wi = 1 and

(3) p = min
x∈S

N∑

i=1

wi d(x,pi)
2.

There are clearly many choices of weights for the inverse problem (when d is Eu-
clidean, the inverse problem is generally known as finding (generalized) barycentric
coordinates).
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Solving the forward problem on a mesh enables applications such as splines
on meshes, Laplacian smoothing and remeshing. Combining the forward and in-
verse problems allows us to define a correspondence mapping between two differ-
ent meshes based on provided corresponding anchor point pairs, enabling texture
transfer, compatible remeshing, morphing and more.

If S were a C2 surface and d(x,p) the geodesic distance between x,p, then the
Fréchet mean is well defined and continuous in wi and pi under some mild condi-
tions (mainly that the distances between anchors are sufficiently small), see [2, 3].
We wish to define the Fréchet mean such that it is reasonably smooth even on
PL surfaces. Otherwise splines on meshes will appear jaggy, etc. Moreover, the
computation of geodesic distance between arbitrary points on the mesh is com-
putationally expensive, prohibiting real-time interactive applications we have in
mind. Hence minimizing F (x) by brute-force search is impractical.

We instead propose to define d by embedding the mesh S in a higher-dimensional
Euclidean space RD, where Euclidean distances mimic the original geodesic ones.
We sample some vertices s1, . . . , sK ∈ S, K ≪ N , sampling denser in areas of
high Gaussian curvature. We then compute the matrix Q ∈ R

K×K of pairwise
geodesic distances between all si’s:

(4) Qi,j = dgeo(si, sj).

We then perform the process of so-calledMetric Multidimensional Scaling (MMDS),
a technique well-established in machine learning. Choosing some D (we use
D = 8), we solve for positions e1, . . . , eK ∈ RD that minimize:

(5) min

K∑

i=1

K∑

j=1

(
1− ‖ei − ej‖

Qij

)2

.

Now we find the locations xi ∈ RD of the rest of the mesh vertices by solving for
a biharmonic surface:

(6) ∆2x = 0, s.t. xi = ei for all sampled vertices.

Here, x = [xT
1 , . . . ,x

T
N ]T ∈ RN×D, ∆2 is the cotangent discretization of the bi-

Laplacian [1].
Now that we have our surface embedded in RD (including the anchors pi) and

assuming d is the Euclidean metric there, F (x) can be simplified as follows:

F (x) =

N∑

i=1

wi (x − pi)
T (x− pi) =

N∑

i=1

wi x
Tx− 2wi x

Tpi + wi p
T
i pi =(7)

= ‖x− p̄‖2 − p̄T p̄+
N∑

i=1

wi p
T
i pi, where we denoted p̄ =

N∑

i=1

wi pi.(8)

Note that only the first term, ‖x− p̄‖2 depends on x, hence minimizing F (x) on
S embedded in RD amounts to projecting the regular Euclidean average of the
anchor points onto the mesh.
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The standard Euclidean projection suffers from the discontinuity problem on the
medial axis of S, which is particularly bad for PL surfaces, since there the medial
axis touches the surface on every edge. Hence, we are looking for an alternative
definition of the projection, which would be continuous and even smooth. Our
current idea is to continuously interpolate tangent spaces over the surface. This
is not possible to do globally due to “hairy ball” problems, but we consider to
perform this locally, such that a consistent projection operator can be defined.
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Generalized Branching: Making Circles Behave

Ken Stephenson

(joint work with James Ashe and Edward Crane)

Circle packings are configurations of circles with specified patterns of tangency.
The geometry that magically emerges in the manipulation of these packings is
conformal in nature, as evidenced by the rich theory of discrete analytic functions
they have engendered. This discrete theory would be extremely limited, however,
if branching were not among its features. It is crucial, for example, in construct-
ing discrete finite Blaschke products, discrete polynomials, and discrete rational
functions, just to name a few instances.

The first and most natural notion of branching in circle packing involves a
branch circle as the center of a flower whose petal circles wrap multiple times
around it [2]. This notion alone allows the theory to advance quite far. In approx-
imating a particular classical polynomial, for example, branching should perhaps
be located at specific points, yet there may be no circles centered at those points
to carry the branching. In such a situation, placing the branching at nearby circles
may harm the detailed properties of the discrete polynomial, but its global char-
acter and behavior will be assured — one still obtains a packing which represents
a well defined discrete polynomial. This image shows a flower on the left and its
branched version on the right; the petals are color coded for identification.
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As the discrete theory advances in new directions, however, discretization issues
become existential — obstructions must be overcome even to get started with the
most basic theory. This talk discusses two key examples: Ahlfors functions on
annuli and Weierstrass elliptic functions on tori. With enough symmetry in the
combinatorics, all problems may disappear. The next figure illustrates the domain
and range of a discrete Ahlfors function; the boundary circles are shaded and the
blue circles are symmetrically chosen to be traditional branch circles. The image is
a double covering of the unit disc; each of the image circles (other than the branch
circles, which are too small to see) represents two circles, one on each sheet.

Likewise, the next figure illustrates a discrete Weierstrass function: the domain
packing lies on a torus on the left, while the image packing lies on the sphere.
There are four branch points and the image is a 2-sheeted covering of the sphere.
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In the absence of combinatorial symmetry, generically there will be no locations for
traditional branching that will yield such examples. Hence the need for some new
branching paradigm. In this talk we introduce “generalized” branch points into
the circle packing machinery [1]. The key idea is to prescribe localized relaxations
in packing conditions so that global consistency and integrity can be achieved
— give up a little in isolated patches to realize the greater goals. This is quite
loose, however, and to gain existence, uniqueness, and convergence results it is
necessary to have well delineated (and preferrably minimal) parameterizations of
these local relaxations. The following images illustrate two types of generalized
branching; in each the unbranched combinatorics are shown on the left, their
branched configuration on the right.

These involve “chaperone” circles and prescribed overlap angles in place of some
tangencies. The branching can be difficult to see on the right since, by definition,
the circles lie on multiple sheets. These share “local coherence”, which means that
there is a closed chain of faces around the generalized branch region whose circles
will lay out without local holonomy. That outer chain of circles is color coded to
match in left and right of each example.
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We believe that these two types of generalized branching will allow us the full
flexibility available in the classical setting: local coherence ensures they do not
introduce local holonomy, yet they can be used to eliminate global holonomy.
Of course, having parameters does not mean that finding appropriate branching
is easy — in fact it is quite difficult and methods for guaranteeing solutions are
under investigation. The talk ends, however, with experiments for an annulus with
partial symmetry in its combinatorics; in this instance one can use continuity to
find parameters for generalized branching so that the associated discrete Ahlfors
function does exist. (The talk was presented as a series of live experiments carried
out with the third author’s software package CirclePack [3].)
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The abstract Hodge–Dirac operator and its stable discretization

Ari Stern

(joint work with Paul Leopardi)

In the numerical analysis of elliptic PDEs, much attention has been given (quite
rightly) to the discretization of the second-order Laplace operator. The develop-
ment of mixed finite elements (e.g., edge elements) paved the way for the discretiza-
tion of related second-order differential operators, such as the vector Laplacian,
with important numerical applications in computational electromagnetics and elas-
ticity. The recent development of finite element exterior calculus [1, 2] has shown
that these operators are special cases of the Hodge–Laplace operator on differential
k-forms, which can be stably discretized by certain families of finite element dif-
ferential forms. An even more general operator, called the abstract Hodge–Laplace
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operator, includes both the aforementioned Hodge–Laplace operator on k-forms,
as well as other operators that arise, for example, in elasticity.

By comparison, discrete Dirac operators have received little attention from the
perspective of numerical PDEs—despite being, in many ways, just as fundamental
as the widely-studied Laplace operators discussed above. Informally, a Dirac oper-
ator is a square root of some Laplace operator, and is therefore a first-order (rather
than second-order) differential operator. Dirac-type operators arise both in anal-
ysis [11] and in differential geometry [14], in addition to their well-known, epony-
mous origins in quantum mechanics [10]. The study of these first-order operators
is also associated with a number of celebrated theorems, including the Atiyah–
Singer index theorem [3], Witten’s proof of the positive energy theorem [17], and
the solution of the Kato square root problem [4]. Clifford analysis is the study of
Dirac operators in various settings, including on smooth manifolds [8, 7].

Recently, there has been growing interest in developing a theory of discrete
Clifford analysis, based on lattice discretizations of Dirac operators [13, 12, 6]. In
many respects, this work resembles the various lattice approaches to discretizing
exterior calculus [9, 15, 5], particularly in the use of primal-dual mesh pairs. These
approaches are closer in spirit to finite difference methods than to finite element
methods, in that they focus more on the degrees of freedom themselves than on
basis functions and interpolants. Consequently, these methods tend to be less
amenable to stability and convergence analysis, or to higher-order discretizations,
compared with finite element exterior calculus. However, scant attention has been
given to the possibility of using a mixed finite element approach to discretize Dirac
operators and their associated first-order PDEs.

This talk reports on new work [16] which aims to fill this gap. We begin
by devloping abstract Dirac operators and Hodge theory in terms of nilpotent
operators on Hilbert spaces, following the approach of [4], and introducing a mixed
variational problem associated to the Dirac operator. Next, we prove stability
estimates, which establish well-posedness for both the continuous and discrete
variational problems, as well as convergence estimates, given certain conditions on
the discretization. These discretization conditions correspond precisely to similar
conditions in finite element exterior calculus, and consequently, we obtain stability
and convergence for the well-studied Pr and P−

r finite element families of piecewise-
polynomial differential forms. Finally, we show that many of the key estimates in
finite element exterior calculus, which apply to discrete Laplace operators, can be
recovered as corollaries of our estimates for discrete Dirac operators.
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Lifting Spherical Cone Metrics

John M. Sullivan

Let Md
κ denote the (simply connected) “model” d-dimensional space of constant

curvature κ. (That is, spherical, euclidean, or hyperbolic space, depending on the
sign of κ.) A cone metric on a (compact) d-dimensional pseudomanifold (with
background curvature κ) is obtained by gluing (finitely many) simplices from Md

κ

together along isometries of their facets. Away from the (d− 2)-skeleton this gives
a smooth metric of constant curvature. Around each face of codimension 2 we
have some cone angle α > 0; the angle defect 2π − α is a measure of curvature.
In particular, the cone metric forms an Alexandrov space of curvature bounded
below by κ if and only if all cone angles satisfy α ≤ 2π. (Similarly, the metric has
curvature bounded above by κ if and only if α ≥ 2π holds everywhere.)

For d = 2, a cone surface has a constant curvature metric away from finitely
many cone points. Each cone point contributes an atom 2π−α of Gauss curvature
and the Gauss–Bonnet formula holds in the form 2πχ = κA+

∑
(2π − α), where

A is the area of the surface and the sum is over all cone points.
For d = 3, the singular locus is an embedded graph with “straight” edges, each

with some constant cone angle α. Given an embedded graph in a 3-manifold one
can ask which cone metrics exist: for which values of κ and which assigments of
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α to each edge is there a corresponding cone metric? The rigidity question asks:
when is the cone metric uniquely determined by this data? Even if the metric is not
rigid, is the volume – and the length of the singular edges – uniquely determined?

We focus on the case of a link L = L1 ∪ · · · ∪ Lk of k components in S3. The
idea of studying cone metrics basically comes from Thurston, who showed that
“most” links are hyperbolic in the sense that for small cone angles αi around the
components Li there is a hyperbolic (κ = −1) metric; in the limit αi → 0 we get a
complete hyperbolic metric on S3rL. (This metric is unique by Mostow rigidity.)

A standard example, illustrated nicely for instance in the 1991 video Not Knot
from the Geometry Center, is the Borromean rings, taken with equal cone angles
α on all three components. For π < α < 2π there is a spherical cone metric.
(As α → 2π the three singular axes limit to three orthogonally intersecting great
circles in the equator of the round 3-sphere. It is known that the Borromean rings
cannot be built from three round circles in S3 but of course we can come arbitrarily
close.) For α = π we get a euclidean cone metric – the quotient of E3 by 2-fold
rotations around the (non-intersecting, axis-parallel) lines of the primitive cubic
rod packing [6]. (Equivalently, the 2-fold cover of S3 branched over the Borromean
rings is a 3-torus admitting a euclidean metric.) For 0 < α < π we get a hyperbolic
cone metric (in particular, for α = π/n this corresponds to a hyperbolic metric on
an n-fold branched covering), and in the limit α→ 0 we get the hyperbolic metric
on the link complement.

A d-orbifold is a space locally modeled on Rd/Γ for some finite point group Γ.
Examples include quotients of Md

κ by any discrete group of isometries – these
inherit “smooth” orbifold metrics, meaning cone metrics with cone angles α =
2π/n along the rotation axes of the orbifold.

Thurston used 2-orbifolds as base spaces for Seifert fibrations. These consist
of some underlying surface with cone points (those of order n corresponding to
Γ = Cn) and mirror boundaries (Γ = D1), which are straight except for coners
(Γ = Dn). To compute the orbifold Euler characteristic χo (which is multiplicative
even for branched covers) we start with the Euler characteristic of the underlying
surface with boundary, and then subtract 1− 1/n for each n-fold cone point (and
half that much for each mirror corner).

It is known that every 2-orbifold with χo < 0 admits a hyperbolic metric, i.e.,
is a global quotient of H2. Similarly there are only 17 orbifolds with χo = 0,
corresponding to the wallpaper groups and thus having euclidean metrics. For
χo > 0 we of course have orbifolds corresponding to the finite subgroups of O3

(the seven polyhedral groups and the seven infinite families of axial groups). But
there are also the so-called “bad” orbifolds: spheres with two cone points of orders
1 ≤ p < q (along with their quotients, disks with two corners of orders 1 ≤ p < q on
their mirror boundary). These are the base spaces for the (p, q)-Seifert fibrations of
S
3 by (p, q)-torus knots, but do not have spherical metrics. (There is no spherical

cone metric on S2 with just two unequal cone points, cf. [5].)
Much of the interest in rigidity of cone metrics in three dimensions has been

related to the proofs by Cooper/Hodgson/Kerckhoff and by Boileau/Leeb/Porti
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of Thurston’s orbifold geometrization conjecture. In an orbifold metric the cone
angles satisfy α ≤ π and many known results are restricted to this range (but see
e.g. [2]); we are instead particularly interested in spherical cone metrics with large
cone angles.

Given a triangulation of S3 in which no edge has valence more than 5 – a com-
puter enumeration with Frank Lutz shows there are exactly 4761 such simplicial
complexes – we can give each tetrahedron the shape of one from the 600-cell:
spherical regular with dihedral angles 2π/5 and edge lengths π/5. The cone angle
around an edge of valence v is then 2πv/5. We get a spherical cone metric of
curvature bounded below by 1 in the sense of Alexandrov, leading immediately to
diameter and volume bounds. In an ongoing project with Florian Frick, we have
focused first on the family whose cone axes (formed by the edges of valence less
than 5) are unbranched, forming a link. We have found that most of these are
Seifert-fibered, arising as lifts of spherical cone metrics on 2-orbifolds, in the sense
we now explain. (The Borromean rings also arise, as do certain graph manifolds.)

Recall that with the exception of hyperbolic and Sol geometries, the remaining
six Thurston geometries are those of Seifert fibered spaces, distinguished by the
curvature κ of the base and the curvature τ of the bundle [9]. Untwisted bundles
(τ = 0) give the geometries M2

κ × R; twisted bundles (τ 6= 0) give the Berger

metrics on S3 if κ > 0; Nil or Heisenberg geometry if κ = 0; and S̃L(2,R) if κ < 0.
We want to consider such twisted bundles over an aribtrary metric base. That

is, we’re interested in a Killing submersion from a 3-manifold to a surface, i.e., a
submersion where the unit vertical vector field Z is a Killing field, an infinitesimal
isometry. The fundamental equations for Riemannian submersions are due to
O’Neill [7]. Given a metric disk D with Gauss curvature function κ, and a Killing
submersion from M = D × R, suppose that X and Y = JX = X × Z are
orthonormal horizontal vector fields. Then ∇XZ = τY for some function τ on M
called the bundle curvature, and we find 〈[X,Y ], Z〉 = 2τ . The sectional curvatures
range from κ− 3τ2 for the horizontal plane to τ2 for any vertical plane, cf. [1].

Suppose we start with a metric on D with κ ≥ 1, then scale down by a factor
of two so that κ ≥ 4. Taking τ ≡ 1, the resulting metric on M has all sectional
curvatures at least 1. Suppose γ is a closed curve enclosing areaA (before rescaling)
in the base D. If we lift it to a horizontal curve in M , this lift fails to close and its
vertical holonomy is exactly A/2 (twice the rescaled area, since [X,Y ] = 2Z+ · · · ).
Thus if we want to glue two such metrics together to get a bundle over S2, we need
to take a quotient in the fiber direction, giving circles of some length ℓ. If the total
base area is A, then to get the holonomy to match, we need A/2 = eℓ where e ∈ Z

will be the Euler class of the bundle. That is, to get S3 with the Hopf fibration
we take e = 1 and ℓ = A/2. (For e > 1 we get the quotient of this by an e-fold
Hopf rotation, giving the lens space L(e, 1).)

Consider the case where the base is a spherical cone metric with k cone points of
cone angles αi. Then Gauss–Bonnet says A = 4π−∑

(2π−αi) = 2π(2−k)+∑
αi.

Since the fiber length is ℓ = A/2 and the projected area is A/4 we find the volume
of the 3-sphere is V = A2/8. Now consider what happens when we change the αi.
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We obtain 2 dV = AdA/2 = ℓ
∑
dαi, which of course is the well-known Schläfli

formula.
There are 17 (not necessarily simplicial) trianguations of S2 with valence up

to 5; giving their triangles the geometry of those in the icosahedron (with area
π/5) we get 17 interesting spherical cone metrics on S2. Each one Hopf-lifts to
give a cone metric on S3 and indeed these come from triangulations in our family.
The lift of an example with f -vector (k + 2, 3k, 2k) has vertical length k π/5 and
f -vector

(
k(k+2), k(7k−2), 12k2, 6k2

)
. The lift of the icosahedron is the 600-cell;

the lift of the tetrahedron has 8 edges of valence 3 forming a 4-component Hopf
link.

Now suppose we are given 1 ≤ p < q relatively prime and a spherical cone metric
on S2 with one cone point of angle β ≤ 2π/p, a second of angle γ ≤ 2π/q and k
further ones of angles αi. We view this as a spherical cone metric on the “bad”
pq-orbifold. This we can lift along the (p, q)-Seifert fibration of S3 to give a cone
metric on S3. Considering the Euler class of the bundle in the orbifold sense [9],
we can check that the vertical length must now be pqA/2 (where A again is base
area). The cone angles are pβ and qγ along the two singular fibers and αi along a
collection of (p, q)-torus knots (i.e., along a (kp, kq)-torus link). This construction
accounts for most of the remaining triangulations we have been studying.

Note that in the special case of torus links with equal cone angles along each
component, the geometric parameters for these spherical cone metrics have been
determined previously via quite different methods [3]; see also [8, 4].
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Spherical geometry and integrable systems

Yuri B. Suris

(joint work with Matteo Petrera)

Nowadays, it is well accepted that geometry provides us with a wealth of important
instances of integrable systems. In the present work, it is demonstrated that the
cosine law for spherical simplices [7] defines integrable systems in several senses.

For a spherical triangle with the vertices v1, v2, v3 ∈ S
2, with the sides ℓij

(connecting vi and vj) and the inner angles αij (opposite to ℓij), the cosine law
reads as follows:

(1) cos ℓij =
cosαij + cosαik cosαjk

sinαik sinαjk
.

Here (i, j, k) stands for an arbitrary permutation of (1, 2, 3). Putting xij = cosαij

and yij = cos ℓij , equation (1) is written in the algebraic form:

(2) yij =
xij + xikxjk√
1− x2ik

√
1− x2jk

.

First interpretation of the spherical cosine law as an integrable system.
In this interpretation, the quantities xij are combinatorially assigned to the three 2-
faces of a 3-dimensional cube parallel to the coordinate planes ij, and the quantities
yij = Tkxij to the three opposite 2-faces, cf. Fig. 1. Here, Tk stands for the unit
shift in the k-th coordinate direction. In the terminology of [1], we consider a

x12

x23

x13
7→

y12

y23

y13

Figure 1. A map on an elementary 3D cube with fields assigned
to 2-faces. We interpret yij as Tkxij , the shift of xij in the coor-
dinate direction k.

3D system with fields assigned to elementary squares. This 3D system can be
called the symmetric discrete Darboux system, since it is a special case (symmetric
reduction) xij = xji of the general discrete Darboux system, given by

(3) Tkxij =
xij + xikxkj√

1− xikxki
√
1− xkjxjk

.

System (3) is well known in the theory of discrete integrable systems of geometric
origin. It describes the so called rotation coefficients of discrete conjugate nets
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f : Z3 → RP
n, i.e., nets with planar elementary quadrilaterals, see [1, p. 42]. It

seems to have appeared for the first time in [4, eq. (7.20)]. Its symmetric reduction
xij = xji is used for the description of the so called symmetric conjugate nets and
discrete Egorov nets, see [2]. The symmetric discrete Darboux system is a close
relative of the discrete CKP system, see [6]. Thus, symmetric discrete Darboux
system admits an novel interpretation in terms of spherical triangles. Recall [1]
that integrability of discrete 3D systems is synonymous with their 4D consistency.

Theorem 3. Symmetric discrete Darboux system is 4D consistent.

Our new interpretation leads also to a new proof of this (previously known)
result. It consists in considering various geometric quantities within a spherical
tetrahedron, which combinatorially corresponds to a 4D cube.

Second interpretation of the spherical cosine law as an integrable sys-
tem. In the second interpretation, we consider the dynamical system generated
by (iterations) of map (2) between open subsets of R3. It can be considered as a
time discretization of the famous Euler top, described by the following system of
differential equations:

(4) ẋij = xikxjk .

The latter system is integrable in the Liouville-Arnold sense, is bi-Hamiltonian and
admits integrals of motion Ii = x2ij−x2ik, two of which are functionally independent.
Discretization (2) of the Euler top turns out to inherit integrability.

Theorem 4. The map (2) is bi-Hamiltonian and admits integrals of motion

(5) Ei =
1− x2ik
1− x2ij

,

two of which are functionally independent. It has an invariant volume form

(6) ω =
dx12 ∧ dx13 ∧ dx23

ϕ(x)
,

where ϕ(x) is any of the functions (1− x2ij)
2.

Integrals of motion (5) express nothing but the sine law for spherical trian-
gles. An unpleasant non-algebraic nature of discretization (2) is cured in a rather
unexpected way.

Theorem 5. On the subset of R3 where the second iterate of map (2) is defined,
this second iterate is a birational map x 7→ x̃ given by the (unique) solutions of
the following system of equations:

(7) x̃ij − xij = x̃ikxjk + xikx̃jk,

which constitute the Hirota-Kimura discretization of the Euler top [3], [5].
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Cosine law for spherical tetrahedra as an integrable system. Similarly to
the case of spherical triangles, we can consider a dynamical system generated by
the map x 7→ y between open subsets of R6, where xij = cosαij , yij = cos ℓij , and
αij and ℓij are (opposite) dihedral angles and edges, respectively, of a spherical
tetrahedron. This map is given again by the corresponding cosine law. It can be
considered as a time discretization of the following system of ordinary differential
equations:

(8) ẋij = xikxjk + ximxjm.

Here (i, j, k,m) stands for an arbitrary permutation of (1, 2, 3, 4). This 6-dimensional
system turns out to consist of two linearly coupled copies of the Euler top. As a
consequence, equations (8) are integrable in the Liouville-Arnold sense, with four
independent integrals of motion which can be chosen as

x212 + x234 − x213 − x224, x213 + x224 − x223 − x214,

x12x34 − x13x24, x13x24 − x23x14.

Theorem 6. The map x 7→ y defined by the cosine law for spherical tetrahedra
admits four independent integrals of motion

(9)
(1 − x213)(1 − x224)

(1 − x212)(1 − x234)
,

(1− x223)(1− x214)

(1− x212)(1− x234)
,

(10)
x12x34 − x13x24√
(1 − x212)(1 − x234)

,
x13x24 − x23x14√
(1− x212)(1− x234)

.

It has an invariant volume form

(11) ω =
dx12 ∧ dx13 ∧ dx23 ∧ dx14 ∧ dx24 ∧ dx34

ϕ(x)
,

where ϕ(x) is any of the functions (1− x2ij)
5/2(1− x2km)5/2.

Again, integrals of motion express nothing but the sine law for spherical tetra-
hedra.

References

[1] A.I. Bobenko, Yu.B. Suris, Discrete Differential Geometry. Integrable Structure. Graduate
Studies in Mathematics 98, AMS, 2008.

[2] A. Doliwa, The C-(symmetric) quadrilateral lattice, its transformations and the algebro-
geometric construction, J. Geom. Phys. 60 (2010), 690–707.

[3] R. Hirota, K. Kimura, Discretization of the Euler top. J. Phys. Soc. Japan, 69 (2000),
627-630.

[4] B. G. Konopelchenko, W. K. Schief, Three-dimensional integrable lattices in Euclidean
spaces: conjugacy and orthogonality. Proc. R. Soc. Lond. A 454 (1998), 3075–3104.

[5] M. Petrera, Yu.B. Suris, On the Hamiltonian structure of Hirota-Kimura discretization of
the Euler top. Math. Nachr. 283 (2011), 1654-1663.

[6] W. K. Schief, Lattice Geometry of the Discrete Darboux, KP, BKP and CKP Equations.
Menelaus’ and Carnot’s Theorems. J. Nonlin. Math. Phys. 10 (2003), 194–208.

[7] E.B. Vinberg (Ed.), Geometry II. Encyclopaedia of Mathematical Sciences 29, Springer-
Verlag 1993.



Discrete Differential Geometry 2125

Higher pentagram maps, directed weighted networks, and cluster
algebras

Serge Tabachnikov

This is a report on a joint work in progress with M. Gekhtman, M. Shapiro and
A. Vainstein [3].

Given a convex n-gon P in the projective plane, let T (P ) be the convex hull
of the intersection points of consecutive shortest diagonals of P . The map T
commutes with projective transformations and hence defines a map on the moduli
space of projective equivalence classes of polygons. This map was defined by R.
Schwartz [13]; it is called the pentagram map. The pentagram map is also defined
on a larger class of twisted polygons, that is, polygons with monodromy that is a
projective transformation.

The pentagram map has attracted much interest in the recent years; see [14,
15, 9, 10, 16] for a sampler. The main result is that it is a discrete completely
integrable system. It was observed by M. Glick [4] that the pentagram map is
closely related with the emerging theory of cluster algebras. The goal of our
work was to extend the pentagram map to other dimensions and to establish its
complete integrability using the techniques of weighted directed networks [11, 2].
Let us mention different approaches to higher dimensional pentagram maps and
related systems, developed in [5], in [6, 7], and in [8].

Glick interpreted the pentagram map is a sequence of mutations associated
with a special homogeneous bipartite quiver. We generalized Glick’s quiver to
a family of quivers embedded in the torus. The dual graph of this quiver is a
certain weighted directed network on the torus, and the mutations are realized as a
sequence of Postnikov moves on this network, followed by a gauge transformations
of the respective variables. This results in the family of rational maps Tk:

x∗i = xi−r−1
xi+r + yi+r

xi−r−1 + yi−r−1
, y∗i = yi−r

xi+r+1 + yi+r+1

xi−r + yi−r
, k even,

x∗i = xi−r−2
xi+r + yi+r

xi−r−2 + yi−r−2
, y∗i = yi−r−1

xi+r+1 + yi+r+1

xi−r−1 + yi−r−1
, k odd.

where r = [k/2]− 1, k ≥ 2. The map T3 is the pentagram map.
The maps Tk are completely integrable. All the ingredients needed for complete

integrability (invariant Poisson bracket, integrals in involution, zero curvature rep-
resentation) are provided by the “technology” of weighted directed networks, as
described in [2]. Specifically, Tk has an invariant Poisson bracket (for n ≥ 2k− 1):

{xi, xi+l} = −xixi+l, 1 ≤ l ≤ k − 2; {yi, yi+l} = −yiyi+l, 1 ≤ l ≤ k − 1;

{yi, xi+l} = −yixi+l, 1 ≤ l ≤ k − 1; {yi, xi−l} = yixi−l, 0 ≤ l ≤ k − 2.

The functions
∏
xi and

∏
yi are Casimir. If n is even and k is odd, one has four

Casimir functions:
∏

i even

xi,
∏

i odd

xi,
∏

i even

yi,
∏

i odd

yi.
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The integrals come from the boundary measurement matrix of the respective
network. Namely, for k ≥ 3, let

Li =




0 0 0 . . . xi xi + yi
λ 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . 1 1



,

and for k = 2,

Li =

(
λxi xi + yi
λ 1

)
.

The boundary measurement matrix is M(λ) = L1 · · ·Ln. The characteristic poly-
nomial

det(M(λ) − z) =
∑

Iij(x, y)z
iλj .

is Tk-invariant, and the integrals Iij are in involution.
A geometric interpretation of the maps Tk is as follows.
Let k ≥ 3, and denote by Pk,n the space of projective equivalence classes of

generic twisted n-gons in RPk−1. Let P 0
k,n ⊂ Pk,n consist of the polygons with

the following property: for every i, the vertices Vi, Vi+1, Vi+k−1 and Vi+k span
a projective plane. These are called corrugated polygons. The consecutive k −
1-diagonals of a corrugated polygon intersect. The resulting polygon is again
corrugated. One gets a pentagram-like k − 1-diagonal map on P 0

k,n. For k = 3,
this is the pentagram map.

Lift the vertices Vi of a corrugated polygon to vectors Ṽi in Rk so that the
linear recurrence holds

Ṽi+k = yi−1Ṽi + xiṼi+1 + Ṽi+k−1,

where xi and yi are n-periodic sequences. These are coordinates in P 0
k,n. In these

coordinates, the map is identified with Tk.
The geometric interpretation is different for k = 2. Consider the space Sn of

pairs of twisted n-gons (S−, S) in RP1 with the same monodromy. Consider the
projectively invariant projection φ to the (x, y)-space:

xi =
(Si+1 − S−

i+2)(S
−
i − S−

i+1)

(S−
i − Si+1)(S

−
i+1 − S−

i+2)

yi =
(S−

i+1 − Si+1)(S
−
i+2 − Si+2)(S

−
i − S−

i+1)

(S−
i+1 − Si+2)(S

−
i − Si+1)(S

−
i+1 − S−

i+2)
.

Then xi, yi are coordinates in Sn/PGL(2,R).
Define a transformation (S−, S) 7→ (S, S+), where S+ is given by the following

local “leapfrog” rule: given points Si−1, S
−
i , Si, Si+1, the point S+

i is obtained by
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the reflection of S−
i in Si in the projective metric on the segment [Si−1, Si+1]. The

projection φ conjugates this leapfrog map with with T2. In formulas:

1

S+
i − Si

+
1

S−
i − Si

=
1

Si+1 − Si
+

1

Si−1 − Si
,

or, equivalently,
(S+

i − Si+1)(Si − S−
i )(Si − Si−1)

(S+
i − Si)(Si+1 − Si)(S

−
i − Si−1)

= −1.

Over the field of complex numbers, these formulas can be interpreted as a circle
pattern studied by O. Schramm [12]; see also [1].
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Design of Self-supporting Surfaces

Etienne Vouga

(joint work with Mathias Höbinger, Johannes Wallner, Helmut Pottmann)

Vaulted masonry structures are among the simplest and at the same time most
elegant solutions for creating curved shapes in building construction. For this
reason they have been an object of interest since antiquity, and continue to be an
active topic of research today.

We study the combined geometry and statics of self-supporting masonry, and
develop a tool for the interactive modeling of freeform self-supporting structures.
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Here “self-supporting” means that the structure is in static equilibrium under its
own weight. This analysis is based on the following classic [8] assumptions: 1)
masonry has no tensile strength, and infinite compressive strength; and 2) (The
Safe Theorem) if a system of forces can be found which is in equilibrium with the
load on the structure and which is contained within the masonry envelope then
the structure will also carry the loads. A more detailed account of what follows is
available in [12].

1. Modeling Self-supporting Surfaces

We model masonry as a surface given by a height field s(x, y) and assume a
load density F (x, y) over the top view. The surface is in static equilibrium when
there exists a field of symmetric positive-definite matrices M(x, y) satisfying

div(M∇s) = F, divM = 0,

where the divergence operator acts on the columns of a matrix [5, 6].
We discretize self-supporting surfaces as a thrust network [2]: a mesh S =

(V,E, F ) with loads FiAi on vertices vi. Stresses are carried by the edges of the
mesh: the force exerted on vi by the edge connecting vi,vj is given by

wij(vj − vi), where wij = wji ≥ 0.

The nonnegativity of the individual weights expresses the compressive nature of
forces. Equilibrium at vertices is then given by balance of stresses and loads.

Invoking the safe theorem, a masonry structure is self-supporting if we can
find a thrust network with compressive forces which is entirely contained within
the structure. Finding a self-supporting surface near one that is not amounts
to solving for a simultaneous solution in vi and wij . We develop an interactive
tool for efficiently finding such a solution: we iteratively alternate between fixing
positions and solving for weights wij that best minimize the least-square error
in equilibrium, and fixing the weights and solving for displacements to vi that
likewise decrease the error. To prevent the surface from drifting too far away from
the input shape specified by the user, we regularize the latter step by introducing
terms to the objective that penalize total and normal displacement of the vertices.

2. Geometrization of Equilibrium

In both the continuous and discrete settings, static equilibrium of the surface
can be formulated in terms of several geometric structures, each with rich connec-
tions to discrete differential geometry:

2.1. Stress Laplacian. The smooth equilibrium equations can be written in
terms of an elliptic Laplace-like operator ∆M = divM∇. Likewise, the weights
wij define a graph Laplacian ∆w on the top view (projection onto the plane) of
the thrust network. This discrete Laplacian is perfect in the sense of [13].
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2.2. Airy Stress Potential. Symmetry of M together with divM = 0 are inte-
grability conditions on the components of M , so that M is locally determined by
the Hessian of a convex real-valued function φ (the Airy stress potential) [7].

Horizontal equilibrium of the discrete thrust network implies existence of an
orthogonal dual to the top view S ′, the reciprocal diagram [2]. From this dual
we construct a convex “Airy stress polyhedron” Φ with planar faces and top view
S ′ [1]: the gradient jump between two adjacent faces of the stress polyhedron is
equal to the edge vector on the reciprocal diagram dual to their shared edge. (If S ′

is not simply connected, Φ exists locally.) This Airy stress polyhedron can also be
constructed as the finite element discretization of the continuous Airy function [5].

Formulating equilibrium in terms of the Airy stress potential allows us to find
PQ remeshings of self-supporting quad meshes where naively introducing a pla-
narity constraint to the optimization fails: the top view of a PQ remeshing must
simultaneously admit a PQ remeshing of the stress surface. This can be assured
by finding the unique curve networks simultaneously conjugate on φ and s [9],

given by tracing the eigenvectors of ∇2φ
−1∇2s.

2.3. Isotropic Curvature Relations. Equilibrium of the surface can be phrased
in terms of purely geometric curvature measures of s and φ by passing to dual
isotropic geometry: 2KφH

rel
s = F , where Kφ is dual-isotropic Gaussian curvature

(with respect to the Maxwell paraboloid) and Hrel
s is dual-isotropic relative mean

curvature. An identical relationship, in terms of mixed-area formulas for discrete
curvature [11, 3, 10], holds for discrete thrust networks. As a consequence of
this relationship, we can construct special families of self-supporting surfaces, by
adding to the dual of a Koenigs mesh [4] a multiple of its Christoffel dual.
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Open problems in Discrete Differential Geometry

Collected by Klaus Hildebrandt

Problem 1 (B. Benedetti). Let C be a convex simplicial complex. Is it true that
the barycentric subdivision of C is shellable?

So far we can prove a weaker claim: if a complex is convex and d-dimensional,
then after at most d+ 2 consecutive barycentric subdivisions it becomes shellable
(see my preprint with Karim Adiprasito, arXiv:1202.6606).

Glossary: A simplicial complex is called convex if it has a geometric real-
ization in some Rk that is convex. In other words, a convex complex is a linear
triangulation of some convex polytope. A triangulated ball B is called shellable if
its facets can be labeled 1, . . . , N , so that the subcomplex determined by the first
i facets is a ball (for each i ≤ N).

History: A connection between shellability and convexity has been known
since 1852: The boundary of every convex polytope is shellable. (See e.g. Ziegler,
Lectures on Polytopes.) In 1958 Mary E. Rudin found an unshellable subdivision
of a tetrahedron; so, not every convex complex is shellable. However, the first
barycentric subdivision of Rudin’s ball is shellable.

Problem 2 (U. Brehm). For a given non-trivial isotopy type of knots (or links)
find (approximate numerically) a 2-dimensional branched surface M (standard
spine, possibly with 1-dimensional parts) of minimal area having the following
property: There exists a knot (or link) K ⊆ R

3 of the given isotopy type such that

(1) d(M,K) = 1
(2) M is a deformation retract of R3\K.

Exercise: The following should be true and not difficult to show: There exists
a pair (M,K) (as specified above) minimizing area(M) and such anM contains an
open dense subset consisting of pieces of minimal surfaces and points with distance
1 from K.

Problem 3 (Dmitry Chelkak). Let Γ and Γ∗ be two dual planar graphs embedded
in the plane so that corresponding dual edges are orthogonal. In this setup, one
can naturally introduce discrete ∂ and ∂ operators acting on functions defined

on Λ = Γ ∪ Γ∗, and the (cotangent-weight) Laplacian ∆ = 4∂∗∂ = 4∂
∗
∂ which

(independently) acts on functions defined on Γ and Γ∗.
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Under some mild assumptions on Γ and Γ∗ (like “no big faces and no thin
angles”) prove the following uniform asymptotics of the free Green’s function

G(u;u0) =
1

2π
log |u− u0|+O(1), u, u0 ∈ Γ,

and the Cauchy kernel

K(v; z0) = O(|v − z0|−1), v ∈ Λ, z0 ∈ ♦ = Λ∗.

If Λ is a rhombic lattice (and Γ,Γ∗ are isoradial graphs), those asymptotics are
known with much higher precision, so the question is how to derive the weaker
statement in the more general setup, where no “integrability approach” is avail-
able. If proven, the first result would yield most of the “discrete complex analysis
toolbox” reported on this workshop, while the second, in particular, would imply
the uniform Lipshitzness of discrete harmonic functions (which, as far as we know,
remains annoyingly unknown in this case).

Problem 4 (Ivan Izmestiev). Let M be a metrically complete non-compact Eu-
clidean surface with finitely many cone singularities of negative curvature. Is it
true that for every point x ∈M there exists a geodesic ray starting from x, missing
all singular points and escaping to infinity?

Motivation: Joseph O’Rourke posed at the last workshop the problem whether
a point in the plane can be shaded by straight segment mirrors. By gluing together
two copies of the plane cut along those segments (the left side of each slit to the
left, the right to the right), one obtains a Euclidean cone-surface of the kind de-
scribed above. A light-ray trajectory on the plane is a geodesic on the surface.
Thus a positive answer to the question would imply that mirrors cannot shade a
point.

Problem 5 (Rick Kenyon). Let T1, T2 be two independent and uniformly random
triangulations of an n-gon (without internal vertices). Glue these triangulations
together along the boundary n-gon to form a triangulation (in the generalized
sense) of the 2-sphere. What is the typical or expected diameter of the resulting
graph (in the graph metric)? It is conjectured to be of order n1/4+o(1).

Problem 6 (Jürgen Richter-Gebert). This problem comes from characterizing
when 10 points in the projective plane lie on a common cubic. In the formulation
below it can be considered independent from this geometric interpretation. To
formulate the problem we first need a little preparation. We start by considering
the following set of ordered triples

A := {(0, 1, 2), (0, 3, 4), (0, 5, 6), (1, 3, 7), (2, 4, 7) ,
(1, 5, 8), (2, 6, 8), (3, 5, 9), (4, 6, 9), (7, 8, 9)}

The combinatorics of these triples comes from the triples of a Desargues configu-
ration. For a permutation π ∈ S10 we denote the set of permuted ordered triples
by

π(A) := {(π(i), π(j), π(k)) | (i, j, k) ∈ A}
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and the set of corresponding sets by

π(A) := {{π(i), π(j), π(k)} | (i, j, k) ∈ A}
Since the automorphism group of Desargues configuration has order 120 the set

{π(A) | π ∈ S10} contains 10!/5! = 30240 elements. Finally let X ⊂ S10 be a
collection of permutations with

{π(A) | π ∈ X} = {π(A) | π ∈ S10}
and |X | = 30240.

Now we consider 10 points p0, . . . , p9 in the projective plane presented by ho-
mogeneous coordinates. The following is a fact (that is not too difficult to prove):
The points p0, . . . , p9 are on a common conic if and only if

f :=
∑

π∈X


sign(π) ·

∏

(i,j,k)∈π(A)

det(pi, pj , pk)




vanishes
The expression f is well defined since it turns out that for any two permutations

π1, π2 ∈ S10 with π1(A) = π2(A) we have

sign(π1) ·
∏

(i,j,k)∈π1(A)

det(pi, pj , pk) = sign(π2) ·
∏

(i,j,k)∈π2(A)

det(pi, pj, pk).

Question: Is there a proper subset X ′ ⊂ X such that

∑

π∈X′


sign(π) ·

∏

(i,j,k)∈π(A)

det(pi, pj , pk)




is a factor of f .

Problem 7 (Serge Tabachnikov). An equilateral plane n-gon V1V2 . . . Vn is called
a bicycle (n, k)-gon if, for all i, the quadrilateral ViVi+1Vi+kVi+k+1 is an isosceles
trapezoid: ViVi+k+1 is parallel to Vi+1Vi+k and |ViVi+k| = |Vi+1Vi+k+1| (here
2 ≤ k ≤ n/2). In terms of the discrete Darboux transformation [3], a bicycle
polygon coincides with its Darboux image, up to a cyclic relabeling. A regular
n-gon is a bicycle (n, k)-gon for all k.

The problem is to describe bicycle (n, k)-gons. In particular, for which pairs
(n, k) is the regular polygon the only solution to the problem? For example, in
the following cases every bicycle (n, k)-gon is regular [4]:
1) n arbitrary and k = 2;
2) n odd and k = 3;
3) k arbitrary and n = 2k + 1;
4) k arbitrary and n = 3k.

On the other hand, for k odd and n even, there exists a 1-parameter family
of non-congruent bicycle (n, k)-gons. They are constructed by erecting median
perpendiculars of the same length to the sides of a regular n/2-gon; the resulting
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n-gon has dihedral symmetry so, for odd k, its k-diagonals are congruent. One
can prove that every bicycle (4n, n)-gon is obtained this way.

A regular n-gon is infinitesimally flexible, as a bicycle (n, k)-gon, if and only if

tan
(
kr
π

n

)
tan

(π
n

)
= tan

(
k
π

n

)
tan

(
r
π

n

)

for some 2 ≤ r ≤ n − 2 ([4]). This equation has the following solutions ([1]):
assuming that r ≤ n/2, one has k+ r = n/2 and n|(k− 1)(r− 1). The solutions to
this equation that are not covered by the examples from the previous paragraph
are second-order flexible but third-order rigid ([2]). Thus one conjectures that
these examples are the only examples of bicycle (n, k)-gons with k < n/2 (bicycle
(2n, n)-gons have a considerable flexibility).

The problem has a continuous version that justifies the terminology. The prob-
lem is to describe pairs of closed plane curves, the rear and front bicycle tracks,
such that one cannot tell which way the bicycle went; a pair of concentric circles
provides a trivial example. This problem is equivalent to the 2-dimensional version
of Ulam’s problem: which uniform bodies float in equilibrium in all positions? See
[4] and [5] and the references therein.
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