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Introduction by the Organisers

This workshop was the 4th round of the series “Geometric group theory, hyperbolic
dynamics and symplectic geometry”. The workshop demonstrated an impressive
number of significant results. The list of topics included

• Geometric group theory (Belolipetskii, Fujiwara, I. Kapovich, Ledrappier);
• Algebra, geometry and dynamics in the context of diffeomorphism groups
(Calegari, M. Kapovich, Karlsson, Kedra, Sandon, Usher, Witte Morris);

• Hamiltonian dynamics and symplectic rigidity (Abbondandolo, Bramham,
Butler, Cornea, Humiliere, Schlenk);

• Riemannian geometry (Bangert, Burns, Courtois, Sambusetti);
• Restrictions on fundamental groups of manifolds in various categories
(Panov/Petrunin, Py, Sapir);
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• Applications of group theory, dynamics and geometry to mathematical
physics (Knauf, Nemirovskii, Siburg).

A speciality of the workshop justifying its “multi-disciplinary” nature was the
interaction between the speedily developing fields of mathematics mentioned in
its title. Many of the talks manifested this interaction, often in a quite unex-
pected way. To indicate some of them, Panov (with Petrunin) and M. Kapovich
reported on striking applications of hyperbolic geometry and geometric group the-
ory to symplectic topology, Bramham talked on applications of powerful methods
of modern symplectic topology to classical problems of two-dimensional dynamics,
while the talk of Py linked together topology of Kähler manifolds, lattices and
infinite-dimensional hyperbolic geometry. Several talks had a flavor of a fusion
between a research talk and a survey which was greatly appreciated by other par-
ticipants and was indispensable for the success of the workshop. For instance,
Humilière gave a survey of C0-symplectic topology, while the talk of Courtois con-
tained an extensive introduction to Poincare inequalities on Riemannian manifolds
accessible for non-experts.

The workshop witnessed many informal discussions between the participants
and exchange by questions and conjectures. In particular we continued the tradi-
tion of running open problem sessions which was moderated this time by Danny
Calegari. A remarkable feature of the workshop which reflects another facet of the
above-mentioned interaction was that a number of questions posed on previous
conferences of this series have been eventually resolved by participants. In partic-
ular, Ledrappier reported on a solution of a question raised by Erschler in 2010,
while M. Kapovich talked on the solution of a problem posed in 2006.

The workshop caused a considerable interest among mathematicians all over
the world working in all three fields entering the title of the conference. The list of
participants included world renowned mathematicians as well as graduate students
and postdocs. The young generation made a significant contribution to discussions
and informal talks.

Let us finally mention that about one third of talks were delivered by the
participants who never took part in the previous workshops of this series. They
brought new fresh ideas, insights and research directions of high common interest.
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Abstracts

The Spectrum of an Adelic Markov Operator

Andreas Knauf

The Dirichlet series and Euler product

(1) Z(s) :=
ζ(s− 1)

ζ(s)
=
∏

p∈P

1− p−s

1− p1−s
=

∞∑

n=1

ϕ(n)n−s

(with Euler’s ϕ–function) converge in the half-plane ℜ(s) > 2. On the abelian
group G :=

⊕
N(Z/2Z) one defines h : G→ N by h(0) := 1 and

h(g1, . . . , gn−1, 1, 0, . . .) := h(g1, . . . , gn−1, 0, . . .) + h(1 − g1, . . . , 1− gn−1, 0, . . .).

As an example, one obtains for the subgroup (Z/2Z)3

g 000 001 010 011 100 101 110 111
h(g) 1 4 3 5 2 5 3 4

.

Then Z(s) =
∑

g∈G h(g)
−s.

We twist the Euler product of Z in (1) to obtain a Dirichlet series

(2) Z̃(s) :=
∏

p∈P

1 + p−s

1 + p1−s
=

∞∑

n=1

λ(n)ϕ(n)n−s =
ζ(s) ζ

(
2(s− 1)

)

ζ(s− 1) ζ(2s)

(
ℜ(s) > 2

)

with the Liouville function, given by λ(pa1

1 · . . . · pak

k ) = (−1)a1+...+ak for pi ∈ P.
This has the following properties:

• Of the four zeta functions appearing in (2), only ζ(s− 1) is not absolutely
convergent for ℜ(s) > 3/2.

• The pole of ζ at s = 1 gives rise to Z̃(2) = 0.

• The non-trivial zeros of ζ, shifted by 1 for Z, now turn into poles of Z̃.
• Z̃ has an additional pole at 3/2.

So the Dirichlet series Z̃ converges in the half-plane {s ∈ C | ℜ(s) > s0 + 1} if
and only if there are no zeros of ζ with real part larger than s0 ≥ 1/2. We look at
the convergence for k → ∞ of

(3) Z̃k(s) :=
∑

g∈(Z/2Z)k

λ ◦ h(g) h(g)−s (k ∈ N).

A heuristic reason for such a supposed convergence is to compare the terms λ◦h(g)
appearing in (3) to i.i.d. random variables which take the values ±1 with equal
probability 1

2 . For the case of 1/ζ(s) =
∑∞

n=1 µ(n)n
−s a similar heuristic goes

back to Denjoy (1931), and is described in Section 12.3 of Edwards [Ed].
Although that is obviously absurd in the literal sense, we show in the forthcom-

ing article that there is some truth to the argument.

Example. To convey the idea, we ask about the divisibility properties of the
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ensemble hk(g) (g ∈ (Z/2Z)k) of integers. For division by 3 a statistic is as
follows.

k 0 1 2 3 4 5 6 7 8 9 10
# 0 0 2 2 2 10 18 26 66 138 242

#− E − 1
4 − 1

2 1 0 −2 2 2 −6 2 10 −14

2k/2 1
√
2 2 2

√
2 4 4

√
2 8 8

√
2 16 16

√
2 32

Here # denotes the number of g ∈ (Z/2Z)k with 3|hk(g).
In the third row the expectation value E = 1

42
k was subtracted.

Last row, for comparison: 2k/2, the square root of |(Z/2Z)k|.
Both the expectation value E and the scaling of # − E are explained by the

following Markov chain for addition (mod 3):

Out[1]=

H0,1L

H0,2L H1,0L

H1,1L

H1,2L

H2,0L
H2,1L

H2,2L

The spectrum of Markov transition matrix equals
{
1 , 1

4

(
− 1 + i

√
7
)
, 1

4

(
− 1− i

√
7
)
, 1

2 ,
1
2 ,

1
2 , 0 , 0

}
.

So the spectral radius (except Perron-Frobenius eigenvalue 1) is 1/
√
2, and we get

∣∣∣
∣∣{g ∈ (Z/2Z)k | hk(g) = 0 (mod 3)

}∣∣− 1
42

k
∣∣∣ ≤ c 2k/2 (k ∈ N)

for the deviation from the mean. ♦

We widely generalize that kind of Markov estimate, to gain control on joint
divisibility properties of the values of h. Such a control is clearly necessary for
estimating the function λ ◦ hk appearing in (3).

The natural language for this question is the one of adeles.
Given a unitary representation of SL(2,Z) on a Hilbert space H, left and right

addition

L,R ∈ SL(2,Z) , L(ℓ, r) := (ℓ + r, r) , R(ℓ, r) := (ℓ, ℓ+ r),

give rise to unitary operators L and R on H. We are to analyze the operators

T ∈ B(H) , T := 1
2 (L+R).

Independent of the representation, their restriction T+ to the (relevant) inversion-
symmetric subspace satisfies the following
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Proposition 1. spec
(
T+
)
⊆ C ∪ I, with the circle C :=

{
c ∈ C | |c| = 1/

√
2
}

and I := [−1,− 1
2 ] ∪ [ 12 , 1].

The radius 1/
√
2 of C corresponds to the above-mentioned probabilistic para-

digm. Whether there is additional spectrum in the real intervals I, depends on
the representation. For example, we have for the regular representation

Proposition 2. spec(T+
SL) = {− 1

2 ,
1
2} ∪C. The spectrum of T+

SL on the circle C
is absolutely continuous.

The estimates for adelic representations are a bit too involved to be presented
here, but in all cases lead to spectral radii strictly smaller than one. In the proof
we relate T+ to expander graphs.

References
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Some implications of weak integrability & symmetry

Leo T. Butler

(joint work with Alfonso Sorrentino)

This talk reports on work in [2].
Tonelli Hamiltonians are naturally encountered in Riemannian geometry (ki-

netic energy), Finsler geometry (12F
2 where F is the Finsler norm), mechanics

(kinetic plus potential energies) and many other areas. Solutions to Hamilton’s
equations naturally obey the Least-Action Principle over short time intervals. One
goal, or result, of Mather theory has been to clarify the applicability of the Least-
Action Principle over infinite time intervals.

Let M be a closed (i.e. compact and boundary-less) smooth manifold and
H ∈ C2(T ∗M) be a twice-differentiable Hamiltonian on the cotangent bundle of
M .

Definition 1. H is a Tonelli Hamiltonian iff

(1) H is fibre-wise strictly convex;
(2) H grows super-linearly along each fibre.
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Condition (i) is equivalent to the positive-definiteness of the matrix ∂2H
∂pi∂pj

,

where p1, . . . , pn is a system of local linear coordinates on the fibres of T ∗M .
Condition (ii) is equivalent to the hypothesis that limλ→∞H(x, λp)/λ = ∞ for all
p 6= 0.

In addition to the Least-Action Principle, Tonelli Hamiltonians enjoy the geo-
metric property that their flows satisfy Hamilton’s equations:

q̇i = {H, qi} =
∂H

∂pi
ṗi = {H, pi} = −∂H

∂qi
,

where {, } is the canonical Poisson structure on T ∗M and (q1, . . . , qn, p1, . . . , pn)
is a canonical local system of coordinates.

A classical theorem in Hamiltonian mechanics characterizes the typical dynam-
ics of Tonelli Hamiltonian which has sufficiently many scalar conserved quantities
that are in involution:

Theorem 1.[Liouville-Arnol′d] Let F = (H = f1, . . . , fn) ∈ C∞(T ∗Mn). Assume

(1) {fi, fj} ≡ 0 for all i, j;
(2) df1 ∧ · · · ∧ dfn 6= 0 a.e.

Then, if T ⊂ T ∗M is a component of a regular level of F :
(1) T is a Lagrangian n-torus Tn;
(2) There is a neighbourhood U ⊃ T with coordinates (θ, c) : U → Tn × O

where O ⊂ H1(Tn) such that

ω =

n∑

i=1

dci ∧ dθi, fi = fi(c), and

Xfi =

n∑

i=1

∂fi
∂ci

∂

∂θi
.

The coordinates θi are classically called “angle” coordinates, the ci are called
“actions” and the theorem is summarised by saying that a completely integrable
system possesses angle-action coordinates. The flow of the Hamiltonian vector
field XH of H is by 1-parameter subgroups of the torus Tn.

Sorrentino [4] introduced the notion of weak-integrability, which generalizes the
definition of complete integrability from the Liouville-Arnol′d Theorem.

Definition 2. A Tonelli Hamiltonian H = f1 is weakly integrable if it enjoys n
a.e. independent first integrals f1, . . . , fn.

We prove the following analogue to the Liouville-Arnol′d Theorem:

Theorem 2. ([2]) Let H ∈ C∞(T ∗M) be a weakly-integrable Tonelli Hamiltonian
with first integral map F . Assume that for some c ∈ H1(M), Mc ⊂ Reg(F ). Then

(1) Mc = Λc is a smooth Lagrangian graph;
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(2) There is an open neighbourhood O ∋ c such that for all c′ ∈ O, Mc′ = Λc′

is a smooth Lagrangian graph;
(3) Λc is aT

d-bundle over a compact parallelisable baseBn−d (d = dimH1(M));
(4) The Hamiltonian flow of H on Λc acts as a 1-parameter subgroup of Td;
(5) Mather’s α function is C1 on O.

The setMc is the so-called Mather set associated to the 1-dimensional cohomol-
ogy class c. Roughly speaking, this set consists of orbits which globally minimize
the shifted action functional. Mather proved that this set is a Lipschitz graph over
its projection to M [3].

We also obtain a second analogue. The setup is as follows

(1) G is a connected, simply-connected Lie group;
(2) Γ < G a lattice subgroup;
(3) For a bi-invariant 1-form φ on G, let Λφ = Γ ·Graph(φ) ⊂ T ∗(Γ\G).

Theorem 3. Let G be amenable and H a left-invariant Tonelli Hamiltonian
on T ∗G, M = Γ\G. Then

(1) For all c ∈ H1(M ;R), Mc = Λφ where [φ] = c
(2) The flow of XH |Λc is generated by a 1-parameter subgroup of G acting on

the right
(3) Mather’s α function is as smooth as H .

In this theorem, one can think of the cohomology group H1(M ;R) as being the
space of action coordinates and the group G provides the “angle” coordinates. An
unusual aspect here is that right-translations on solvmanifolds can have positive
topological entropy. The geodesic flow in [1] is an example of this: the positive-
entropy subsystem Bolsinov & Taŭımanov discover is an instance of the above
theorem.
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Two extensions of Thurston’s spectral theorem for surface
diffeomorphisms

Anders Karlsson

Let M be an oriented closed surface of genus g ≥ 2. Let S denote the isotopy
classes of simple closed curves on M not isotopically trivial. For a Riemannian
metric ρ on M , let lρ(β) be the infimum of the length of curves isotopic to β.

In a seminal preprint from 1976, Thurston classified surface diffeomorphisms as
being isotopic either to a periodic one, or else reducible or pseudo-Anosov. Using
the theory of foliation of surfaces, this lead him to the following non-linear spectral
theorem; the proof is worked out in exposé 11 of [FLP79]:

Theorem 1. ([T88, Theorem 5])For any diffeomorphism f of M , there is a finite
set 1 ≤ λ1 < λ2 < ... < λK of algebraic integers such that for any α ∈ S there is
a λi such that for any Riemannian metric ρ,

lim
n→∞

lρ(f
nα)1/n = λi.

The map f is isotopic to a pseudo-Anosov map iff K = 1 and λ1 > 1.

This statement is analogous to the dynamical behaviour of linear maps A of finite

dimensional vector spaces: the limits lim ‖Anv‖1/n exist for every vector v. We
obtain two extensions of Theorem 1. First:

Theorem 2. Let fn = gngn−1...g1 be a product of random diffeomorphisms of M
(more precisely, fn is an integrable ergodic cocycle). Then almost surely there are a
constant λ ≥ 1 and a (random) measured foliation µ such that for any Riemannian
metric ρ,

lim
n→∞

lρ(fnα)
1/n = λ

for any α ∈ S such that i(µ, α) > 0.

Kaimanovich-Masur [KM96] studied the case of random walks on mapping class
groups. Using their work we get:

Corollary. Let fn = gngn−1...g1 be a random product of diffeomorphism where gi
are chosen independently and distributed with a measure that generates a subgroup
that contains two independent pseudo-Anosov maps. Then there is a number λ > 1
such that a.s. for any α ∈ S and metric ρ

lim
n→∞

lρ(fnα)
1/n = λ.

This can be viewed as analogous to a well-known theorem of Furstenberg and to
Oseledets multiplicative ergodic theorem for random products of matrices.
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Let T be the Teichmuller space of M , and let Extx(α) denote the extremal
length of the curve α for x ∈ T . The mapping class group, with some lower genus
exceptions, is isomorphic to the complex automorphism group of T (M). Thus the
following provides a second extension of Theorem 1:

Theorem 3. Let f : T → T be a holomorphic map and x ∈ T . Then there is a
number λ ≥ 1 and a point P in the Gardiner-Masur compactification such that for
all n ≥ 1 and any curve β ∈ S,

Extfnx(β) ≥
(
inf
α

Ext
1/2
x (α)

EP (α)

)2

EP (β)
2λn

and, provided that the extremal length EP (β) > 0,

Extfnx0
(β)1/n → λ.

The following can be seen as a weak extension of the Nielsen-Thurston classifica-
tion of mapping classes to general holomorphic self-maps of Teichmuller spaces:

Theorem 4. Let f : T → T be a holomorphic map. Then either every orbit in T
is bounded, or every orbit leaves every compact set and there are associated points
P in the Gardiner-Masur boundary . If P is uniquely ergodic, then it is unique
and every orbit converges to this point, and for some λ ≥ 1 and any x ∈ T (M)

inf
α

Ext
1/2
f(x)(α)

EP (α)
≥ λ inf

α

Ext
1/2
x (α)

EP (α)
.

This is reminiscent of the Wolff-Denjoy theorem in complex dynamics that, to-
gether with a theorem of Fatou, classifies holomorphic self-maps of the unit disk.
Examples of important holomorphic self-maps of T beyond the automorphisms
are the Thurston skinning map in three-dimensional topology and the Thurston
pull-back maps in complex dynamics, see e.g. [M90].

Ingredients in the proofs are Thurston’s asymmetric metric and Teichmuller’s
metric, as well as Thurston’s and Gardiner-Masur’s respective compactifications.
For the connection between the metrics and the compactifications we use recent
works of Cormac Walsh and H.Miyachi, Lixin Liu & Weixu Su. A crucial part
for the proof of Theorem 2 is to verify that the proof of a general noncommuta-
tive ergodic theorem of Ledrappier and myself [KaL06] works also for asymmetric
metrics.
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On hyperbolicity of the free group analogues of the curve complex

Ilya Kapovich

(joint work with Kasra Rafi)

The notion of a curve complex plays a key role in the study of hyperbolic surfaces,
mapping class group and the Teichmüller space. If S is a closed oriented hyper-
bolic surface, the curve complex C(S) of S is a simplicial complex whose vertices
are isotopy classes of essential non-peripheral simple closed curves. A collection
[α0], . . . , [αn] of (n+1) distinct vertices of C(S) spans an n–simplex in C(S) if there
exist representatives α0, . . . , αn of these isotopy classes such that for all i 6= j the
curves αi and αj are disjoint. The complex C(S) is finite-dimensional but not
locally finite, and it comes equipped with a natural action of the mapping class
group Mod(S) by simplicial automorphisms. The geometry of C(S) is closely re-
lated to the geometry of the Teichmüller space T (S) and also of the mapping class
group itself. The curve complex is a basic tool in modern Teichmüller theory, and
has also found numerous applications in the study of 3-manifolds and of Kleinian
groups. A key general result of Masur and Minsky [10] says that the curve complex
C(S), equipped with the simplicial metric, is a Gromov-hyperbolic space.

The outer automorphism group Out(FN ) of a free group FN is a cousin of the
mapping class group. However the group Out(FN ) is much less well understood
and, in general, more difficult to study than the mapping class group.

Several possible analogs of the curve complex for the case of FN have been
suggested in recent years. The first of these is the free splitting complex FSN .
The vertices of FSN are nontrivial splittings of the type FN = π1(A) where A
is a graph of groups with a single edge (possibly a loop edge) and the trivial
edge group; two such splittings are considered to be the same if their Bass-Serre
covering trees are FN–equivariantly isometric. Two distinct vertices A and B of
FSN are joined by an edge if these splittings admit a common refinement, that is,
a splitting FN = π1(D) where D is a graph of groups with two edges and trivial
edge groups, such that collapsing one edge gives the splitting A and collapsing the
other edge produces the splitting B. Higher-dimensional simplices are defined in
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a similar way. For example, if FN = A ∗B ∗C, where A,B,C are nontrivial, then
the splittings FN = (A∗B)∗C and FN = A∗ (B ∗C) are adjacent in FSN . There
is a natural action of Out(FN ) on FSN by simplicial automorphisms.

A different free group analog of the curve complex is the free factor complex
FFN , originally introduced by Hatcher and Vogtmann [7]. The vertices of FFN

are conjugacy classes [A] of proper free factors A of FN . Two distinct vertices
[A], [B] are joined by an edge in FFN if there exist representatives A,B of [A], [B]
such that A ≤ B or B ≤ A. Higher-dimensional simplices are defined similarly.

The free factor complex FFN and the free splitting complex FSN are rather
different objects geometrically. There is a natural Out(FN )-equivariant Lipschitz
”multi-function” projection from τ : FSN → FFN . The map τ sends a free
splitting of FN to the set of conjugacy classes of the vertex groups for that splitting.
Thus if the graph of groups v = A is a non-loop edge, τ(v) consists of two vertices
of FFN , and if A is a loop-edge, τ(v) consists of a single vertex of FFN . In any
case it is easy to check that τ(v) has diameter ≤ 3 in FFN and that τ is Lipschitz.
In general, the distance dFFN

(τ(x), τ(y)) may be much smaller than the distance
dFSN

(x, y) for vertices x, y ∈ FSN .
Until recently, little was known about the geometry of the above complexes.

Several years ago Kapovich-Lustig [8] and Behrstock-Bestvina-Clay [1] showed that
for N ≥ 3 the complex FFN has infinite diameter. Since the multi-map τ above is
Lipschitz, this implies that FSN has infinite diameter as well. A subsequent result
of Bestvina-Feighn [2] implies that every fully irreducible element φ ∈ Out(FN )
acts on FFN with positive asymptotic translation length (hence the same is true for
the action of φ on FSN ). It is easy to see from the definitions that if φ ∈ Out(FN )
is not fully irreducible then some positive power of φ fixes a vertex of FFN , so
that φ acts on FFN with bounded orbits.

In 2011 two significant advances occurred. First, Bestvina and Feighn [3] proved
that for N ≥ 2 the free splitting complex is Gromov-hyperbolic (as noted above,
for N = 2 this essentially follows from the definition of FF2, so the main case of the
Bestvina-Feign result is forN ≥ 3). Then Handel and Mosher [6] proved that for all
N ≥ 2 the free splitting complex FSN is also Gromov-hyperbolic. The two proofs
are rather different in nature, although both are quite complicated. However, it
does appear that the Handel-Mosher proof admits significant simplifications.

Our main result shows how to derive hyperbolicity of the free factor complex
from the Handel-Mosher proof of hyperbolicity of the free splitting complex. This
gives a new proof of the Bestvina-Feighn result [3] about hyperbolicity of FFN .

We prove:

Theorem 1. Let N ≥ 3. Then the free factor complex FFN is Gromov-
hyperbolic. Moreover, there exists a constant C > 0 such that for any two vertices

x, y of FSN and any geodesic [x, y] in FS
(1)
N the path τ([x, y]) is C–Hausdorff close

to a geodesic [τ(x), τ(y)] in FF
(1)
N .

To prove Theorem 1, we first introduce a new object, called the free bases graph,
and denoted FBN . The vertices of FBN are free bases of FN , up to some natural
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equivalence. We then prove that the natural map from FBN and FFN is a quasi-
isometry. Thus to show that FFN is hyperbolic it suffices to establish hyperbolicity
of FBN . We use a hyperbolicity criterion for graphs due to Bowditch [4] and obtain
a new ”bounded projection criterion” of hyperbolicity. Roughly, it says that if
X,Y are connected graphs, with X hyperbolic and if f : X → Y is a surjective
Lipschitz graph-map with the property that if d(f(x), f(y)) is small then f([x, y])
has bounded diameter, then Y is also hyperbolic. Moreover, in this case f([x, y])
is uniformly Hausdorff-close to any geodesic [f(x), f(y)] in Y .

We then construct a surjective Lipschitz map f : FS′
N → FBN , where FS′

N

is the barycentric subdivision of FSN . The map f restricts to a natural bijection
from a subset S of V (FS′

N ), corresponding to N–roses, to the set V (FBN ) of
vertices of FBN . In [6] Handel and Mosher constructed nice paths gx,y given by
“folding sequences” between arbitrary vertices x and y of FS′

N , and proved that
these paths are quasigeodesics in FS′

N . To apply the ”bounded projection crite-
rion” to the map f : FS′

N → FBN it turns out to be enough to show that f(gx,y)
has bounded diameter if x, y ∈ S and d(f(x), f(y)) ≤ 1 in FBN . To do that we
analyze the properties of the Handel-Mosher folding sequences in this situation.
The construction of gx,y for arbitrary x, y ∈ V (FS′

N ) is fairly complicated. How-
ever, we have x, y ∈ S, so that x, y correspond to free bases of FN . In this case
the construction of gx,y becomes much easier and boils down to using standard
Stallings foldings (in the sense of [9, 11]) to get from x to y. Verifying that f(gx,y)
has bounded diameter in FBN , assuming d(f(x), f(y)) ≤ 1, becomes a much sim-
pler task. Thus we are able to conclude that FBN is Gromov-hyperbolic, and,
moreover, that f([x, y]) is uniformly Hausdorff-close to any geodesic [f(x), f(y)]
in FBN . Using the quasi-isometry between FBN and FFN , we then obtain the
conclusion of Theorem 1. Our proof of Theorem 1 also provides a fairly explicit
description of certain reparametrized quasigeodesics joining arbitrary vertices (i.e.
free bases) in FBN in terms of Stallings foldings.
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Regularity of the entropy for random walks on hyperbolic groups

François Ledrappier

Let p be a finitely supported probability measure on a group G and define induc-
tively, with p(0) being the Dirac measure at the identity e,

p(n)(x) = [p(n−1) ⋆ p](x) =
∑

y∈F

p(n−1)(xy−1)p(y).

Define the entropy hp by

hp := lim
n

− 1

n

∑

x∈F

p(n)(x) ln p(n)(x).

The entropy hp was introduced by Avez ([Av]) and is related to bounded solu-
tions of the equation on G f(x) =

∑
y∈G f(xy)p(y). Erschler and Kaimanovich

have shown that, on Gromov hyperbolic groups, the entropy depends continuously
on the probability p with finite first moment ([EK]). Here we are looking for a
stronger regularity on a more restricted family of probability measures. We fix a
finite set F ⊂ G such that ∪nF

n = G and we consider probability measures in
P(F ), where P(F ) is the set of probability measures p such that p(x) > 0 if, and
only if, x ∈ F . The set P(F ) is naturally identified with an open subset of the
probabilities on F, which is a contractible open polygonal bounded convex domain
in R|F |−1. We show:

Theorem 1. Assume G is a Gromov hyperbolic group and F is a finite subset of
G such that ∪nF

n = G. Then, with the above notation, the function p 7→ hp is
Lipschitz continuous on P(F ).

If G is the free group, with the same hypotheses, the function p 7→ hp is real
analytic on P(F ) ([L1]). If F is symmetric and PS(F ) is the set of symmetric
probabilities with support F , then p 7→ hp is a C1 function on PS(F ) ([M]).

The proof will use a formula (see below) for the entropy hp of the random walk
directed by p which is due to Kaimanovich ([K1]). Let Ω = FN be the space of
sequences of elements of F , M the product probability pN. The random walk is
described by the probability P on the space of paths Ω, the image of M by the
mapping:

(ωn)n∈Z 7→ (Xn)n≥0, where X0 = e and Xn = Xn−1ωn for n > 0.

In particular, the distribution of Xn is the convolution p(n). We have:
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Proposition 1. [An] There is a mapping X∞ : Ω → ∂G such that for M -a.e. ω,

lim
n
Xn(ω) = X∞(ω).

The action of G over itself by left multiplication extends to ∂G and naturally to
probability measures on ∂G. We say that the measure ν on ∂G is stationary if∑

x∈F (x∗ν)p(x) = ν. The image measure p∞ := (X∞)∗M is the only stationary
probability measure on ∂G and the entropy hp is given by the following formula:

(1) hp = −
∑

x∈F

(∫

∂G

ln
dx−1

∗ p∞

dp∞
(ξ)dp∞(ξ)

)
p(x).

The idea of the proof is to use formula (1) and to show that both mappings

p 7→ − dx−1
∗

p∞

dp∞
(ξ) and p 7→ p∞ are Lipschitz from a neighbourhood Øp of p in

P(F ) into respectively a space of Hölder continuous functions on ∂G and its dual

(the metric on ∂G is the Gromov metric). The function
dx−1

∗
p∞

dp∞
(ξ) will be identified

with the Martin kernel of the random walk, defined as follows: the Green function
G(x) associated to (G, p) is

G(x) :=

∞∑

n=0

p(n)(x).

For y ∈ G, the Martin kernel Ky is defined by

Ky(x) =
G(x−1y)

G(y)
.

Ancona ([An]) showed that yn → ξ ∈ ∂G if, and only if, the Martin kernels Kyn

converge towards a function Kξ called the Martin kernel at ξ. We have

(2)
dx∗p∞

dp∞
(ξ) = Kξ(x).

Consider the space Γκ of functions φ on ∂G such that there is a constant Cκ

with the property that |φ(ξ) − φ(η)| ≤ Cκ(d(ξ, η))
κ. For φ ∈ Γκ, denote ‖φ‖κ the

best constant Cκ in this definition. The space Γκ is a Banach space for the norm
‖φ‖ := ‖φ‖κ + max∂G |φ|. It is known ([INO]) that for p ∈ P(B), x ∈ F and κ
small enough, the function Φp(ξ) = − lnKξ(x) belongs to Γκ. Our main technical
result is:

Proposition 2. Fix x ∈ F . The mapping p 7→ Φ(ξ) = − lnKξ(x) is Lipschitz
continuous from P(F ) into Γκ.

In order to prove Proposition 2, we replace
G(x−1y)

G(y)
by

u(x, y)

u(e, y)
, where u(x, y)

is the probability that the random walk ever hits y when starting from x. Then,
u(x, y) is estimates by an iterative procedure, using that a path from x to y has
cross a number of ”walls” and ”obstacles”. The probabilities attached to these
geometric objects depend C∞ on p ∈ P(F ). Details of the proof are in [L2].
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By using the coding of the boundary ∂G by a subshift of finite type ([CP])
and thermodynamical formalism, we deduce from proposition 2 that the mapping
p 7→ p∞ is Lipschitz continuous from P(F ) into (Γκ)

∗. The regularity of the
entropy follows from Formula (1).
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SL(n,Q) has no volume-preserving actions on (n − 1)-dimensional
compact manifolds

Dave Witte Morris

(joint work with Robert J. Zimmer)

We show that SL(n,Q) has no nontrivial, C∞, volume-preserving action on any
compact manifold M of dimension strictly less than n. To prove this, let

Γm = SL
(
n,Z[1/m]

)
⊂ SL(n,Q).

The proof has two main ingredients:

(1) For each m, a theorem of R. J. Zimmer [3] tells us that the action of Γm

extends (a.e.) to a measurable action of the profinite completion Γ̂m.
(2) For each m, the Congruence Subgroup Property [1] tells us

Γ̂m = ×
p∤m

SL(n,Zp).

The inclusion Γ1 →֒ Γm induces a homomorphism Γ̂1 → Γ̂m, whose kernel is

×
p|m

SL(n,Zp).

This kernel acts trivially on M (a.e.). Since the union of these kernels is dense

in Γ̂1, we conclude that Γ̂1 acts trivially on M (a.e.). However, the subgroup
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Γ1 acts continuously, so it must act trivially on all of M (not just a.e.). Since
SL(n,Q) has no infinite, proper, normal subgroups, this implies that the entire
group SL(n,Q) acts trivially.

More generally, suppose G is a connected, isotropic, almost-simple algebraic
group over Q, such that the simple factors of every localization of G have rank
≥ 2. A similar proof shows that if there does not exist a nontrivial homomorphism
from G(R)◦ to GL(d,C), then every C∞, volume-preserving action of G(Q) on
any compact d-dimensional manifold must factor through a finite group. The
proof also applies to most anisotropic groups, but, in that setting, the Congruence
Subgroup Property is not yet known to be true in all cases.
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A brief introduction to C0-symplectic topology

Vincent Humilière

The goal of the talk was to give an idea of what is ”C0-symplectic topology”. It is
impossible to speak about all known results and point of views on this subject in
50 minutes so I decided to concentrate on three particular theorems, to motivate
them and to give an idea of their proof.

We will denote by (M,ω) a symplectic manifold. A Hamiltonian is a smooth
compactly supported map H : [0, 1]×M → R. Its symplectic gradient XH gener-
ates a flow denoted φtH . The poisson bracket of two smooth functions H and K is
given by the formula {H,K} = ω(XH , XK). The following theorems hold on any
symplectic manifold.

Theorem 1.[Gromov-Elishberg , see [6]] Let φk be a sequence of symplectic dif-
feomorphisms. Suppose that it converges in the C0-sense to some diffeomorphism
φ. Then, φ is symplectic.

Theorem 2.[Hofer [3], Lalonde-McDuff[5]] Let Hk be a sequence of Hamiltonians.
Suppose that

(1) φ1Hk
C0-converges to some homeomorphism h,

(2) Hk C
0-converges to 0.

Then h = Id.

Theorem 3.[Cardin-Viterbo [2]] Let Fk, Gk be sequences of Hamiltonians. Sup-
pose that
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(1) Fk and Gk C
0-converge to some smooth functions F and G,

(2) the Poisson bracket {Fk, Gk} C0-converges to 0.

Then, {F,G} = 0.

Comments, motivations, applications.

(1) First note that these results are surprising! Indeed, in Theorem 1, being a
symplectic diffeomorphism is a condition on the differential of the diffeo-
morphism. So their should be no such C0-rigidity. Similarly, the Poisson
bracket is defined only in terms of the derivatives of the functions, so in
Theorem 3 the Poisson bracket should not behave well with respect to the
C0-topology.

(2) Once we have these results, it is natural to wonder whether the right ob-
jects of symplectic topology are actually the smooth ones or whether they
are less regular. More concretely, can one define C0 counterparts to the
classical smooth symplectic objects? For example, Theorem 1 allows to
give a definition of what could be a symplectic homeomorphism: a home-
omorphism which a C0-limit of symplectic diffeomorphism. The question
of defining a C0-Hamiltonian dynamics is more subtle. We will discuss it
later on.

(3) The C0-rigidity results can also help to understand better the smooth
objects themselves. The best example of this is the recent story of the
Poisson bracket. After Theorem 3 was discovered, many papers have been
published to understand the phenomenon and improve this result. In
the end, this has lead Buhovsky, Entov and Polterovich to define new
symplectic invariants [1] and derive nice results in (smooth!) Hamiltonian
dynamics.

A word on the proofs. Amazingly the three theorems above can all be de-
duced from the following well known result. As defined by Hofer, the energy of a
Hamiltonian diffeomorphism is:

‖φ‖ = inf{
∫ 1

0

(maxHt −minHt)dt |φ = φ1H}.

Theorem 4.[Hofer [3], Lalonde-McDuff[5]] For any symplectic ball B of radius r,
if a Hamiltonian diffeomorphism φ satisfies φ(B) ∩B = ∅, then ‖φ‖ ≥ πr2.

Theorems 2 and 3 follows from that after some elementary differential calculus.
To prove Theorem 1, a method is to define the notion of a symplectic capacity
which is a way to measure the ”symplectic size” of a subset of a symplectic man-
ifold. The existence of symplectic capacities follows for example from Theorem
4. Then, one proves that a diffeomorphism is (anti-)symplectic if and only if it
preserves symplectic capacities. Since the property of preserving a capacity is
C0-closed, Theorem 1 follows. This proof is nicely exposed in [6].
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Attempts to define a continuous Hamiltonian dynamics. A first attempt
has been proposed by Müller and Oh [7]. They define a continuous Hamiltonian
isotopy as a path of homeomorphisms ht with h0 = Id and such that there exists
a sequence of Hamiltonians Hk such that

(1) φtHk
C0-converges to ht,

(2) Hk C
0-converges to some continuous function H .

A Hamiltonian homeomorphism is then any element of such an isotopy ht. It
follows from Theorem 2 that given a continuous H there is at most ont isotopy
ht such that the definition above is fullfilled. Therefore we can say that H ”gen-
erates” ht. Conversely, it is known (this is due independently to Viterbo and
Buhovsky-Seyfaddini) that given a continuous Hamiltonian isotopy ht there is a
unique possible H up to constant. These uniqueness results show that this frame-
work is a good generalization of what happens in the smooth case. Nevertheless,
the existence problem is very hard. It is unknown which continuous functions
actually generate a continuous Hamiltonian isotopy.

Another attempt (that would avoid this problem but create others) would be
to work inside the completion of the Hamiltonian group for Hofer’s distance. It
is by definition given by d(φ, ψ) := ‖ψ−1 ◦ φ‖. The map between metric spaces
(C∞([0, 1] × M), ‖ · ‖C0) → (Ham(M,ω), d), H 7→ φtH is Lipschitz. Thus, it

extends to completions giving rise to a map C0([0, 1]×M) → Ham(M,ω). Hence,
any continuous function has a flow in the completion. As before we can wonder
whether the continuous Hamiltonian is unique up to constant. This question is
answered positively on rationnal symplectic manifolds by a joint work with R.
Leclercq and S. Seyfaddini [4].

Some open problems. There are many open interesting problems in this sub-
jects. Here my favorite ones:

(1) Is the group of Hamiltonian diffeomorphisms C0-closed in the group of
symplectic diffeomorphisms? This is only known for surfaces, for the
standard 2n-torus (Hermann 83) and for a few more examples (Lalonde-
McDuff-Polterovich 97).

(2) Is the group of area preserving and compactly supported homeomorphisms
of the 2-disk a simple group? The group of Hamiltonian homeomorphisms
defined by Oh and Müller is a normal subgroup but so far no one has been
able to prove that it is proper.

(3) Which symplectic invariants are invariant under conjugation by a sym-
plectic homeomorphism? For example in the case of the Calabi invariant
it has been established by Gambaudo and Ghys that two Hamiltonian
diffeomorphisms of the 2-disk that are conjugated by an area preserving
homeomorphism have the same Calabi invariant. The analogous problem
in higher dimension is open.

(4) Understand ”symplectically” Le Calvez’s theory of area-preserving home-
omorphisms of surfaces.
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(5) Extend Aubry-Math theory to general non-convex Hamiltonians. It is
likely that one needs to consider symplectic objects (e.g., Lagrangian sub-
manifolds) having low regularity to develop such an extension.
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Asymptotically harmonic manifolds of negative curvature

A. Sambusetti

(joint work with P. Castillon)

The harmonic manifolds are Riemannian manifolds X whose geodesic spheres
have constant mean curvature; equivalently, such that the volume density function,
in normal coordinates around any point x, only depends on the distance d(x, ·).
Another equivalent condition is that the mean-value property

f(x0) =
1

volS(x0, r)

∫

S(x0,r)

f(x)dvS(x0,R)

holds for all harmonic functions f on M (cf. [3]). It is not difficult to show that
these are Einstein spaces, hence harmonic manifolds have constant curvature in
dimensions 2 and 3.

The history of harmonic manifolds begins in the thirties, when E.T. Copson
and H.S. Ruse([5], [12]) investigated the problem of finding radial solutions of
the Laplace equation ∆f = 0 on a general Riemannian manifold, and showed
that this is equivalent to asking that the density function is radial. In 1944, A.
Lichnerowicz [11] conjectured that harmonic manifolds are all flat or ROSS (Rank
One Symmetric Spaces), which was fully proved in dimension 4 by A.G. Walker
some years later [16]. A major step forward in the solution of the conjecture in
any dimension took place in 1990, when Z.I. Szabo proved it for compact simply
connected manifolds X , cf. [15]. In 1992 the first, unexpected, counterexample
arrived: E. Damek and F. Ricci showed that there exist, in dimension greater than
six, some homogeneous manifolds (two-step nilpotent groups), which are harmonic
but neither flat nor symmetric.
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Since then, several authors worked to the solution of the problem in different
settings. An asymptotic version of harmonicity was introduced in [9] by F. Ledrap-
pier for negatively curved spaces: a Cartan-Hadamard (CH, for short) manifold X
is asymptotically harmonic if its horospheres –which can be seen as metric limits of
spheres– have constant mean curvature h. This notion was mainly studied in the
cocompact case (i.e. for CH-spaces X admitting a compact quotient X0 = X/Γ),
and it turned out that this definition captures lot of the information on the dy-
namics of the harmonic manifolds, which was useful to approach the Lichnerowicz
conjecture from a new point of view. In particular, F. Ledrappier and C. Yue
showed that, for CH-manifolds X admitting cocompact quotients, asymptotical
harmonicity is equivalent to the fact that the three natural families of measures
(visual, harmonic and Patterson-Sullivan) on the boundary at infinity ∂X coincide;
asymptotical harmonicity is also equivalent to asking that the harmonic measures
for the weak stable foliations W s or for the horospherical foliation coincide with
one (and then all) of the three natural measures on the unitary tangent bundle
SX0 (Liouville, harmonic and Bowen-Margulis), see [10], [17]. In 1995, G. Besson,
G. Courtois and S. Gallot [1], also using work of P. Foulon, Y. Benoist and F.
Labourie on the geodesic flow of manifolds having smooth horospherical distribu-
tion (cf. [2], [6]), settled the problem in this class of spaces: every harmonic or
asymptotically harmonic CH-manifold of negative curvature, admitting cocompact
quotients, is necessarily a ROSS. In a different – orthogonal – setting, J. Heber
in [7] proved that flat, ROSS and Damek-Ricci spaces are the only homogeneous
harmonic (or asymptotically harmonic) manifolds.

Further steps in determining which spaces are harmonic or asymptotically har-
monic, without any curvature assumption, have been recently done by G. Knieper
(cf. [8] for manifolds without focal points), and by V. Schroeder and H. Shah (for
3-manifolds without conjugate points [14], [13]). However, in full generality, with-
out any homogeneity or cocompactness assumption, the Lichnerowicz Conjecture
(as modified by the counterexemples of Damek and Ricci) still holds open, starting
from dimensions 5 and 4, respectively, for harmonic manifolds and asymptotically
harmonic manifolds.

In the talk I presented some results from my recent work in collaboration with P.
Castillon (University of Montpellier, France). We study asymptotically harmonic
manifolds X of negative curvature, without any cocompactness or homogeneity
assumption, and we show that this condition still gives a lot of information on
the geometry. We determine the volume entropy, the spectrum and the relative
densities of visual and harmonic measures on the ideal boundary of X . Then, we
prove the asymptotic analogue of the characterization of harmonic manifolds by
radiality of the density function, and a “mean value property” for horospheres:

Theorem 1. Let X be a CH-manifold with KX ≤ −a2 < 0 and entropy E.
X is asymptotically harmonic if and only if there exists a strictly positive function
τ : SM → R such that the density function θ(u, r) is uniformly equivalent to
τ(u)e−Er for r → ∞. Moreover, if |DRX | <∞ then the function τ is constant.
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(Here, “uniformly equivalent” means that there exists a function ǫ(r), tending to

zero for r → +∞, such that
∣∣∣ θ(u,r)
τ(u)eEr − 1

∣∣∣ < ǫ(r) for all u ∈ SX.)

Theorem 2. Let X be a CH-manifold with KX ≤ −a2 < 0.
If X is asymptotically harmonic, then for any horosphere Hξ centered at ξ,
for any harmonic function on X which extends continuously on a neighbourhood
of ξ ∈ X ∪ ∂X , and for any x ∈ Hξ we have

f(ξ) = lim
rk→∞

1

V olBHξ
(x, rk)

∫

BHξ
(x,rk)

f(y)dvHξ
(y)

for a sequence of balls BHξ
(x, rk) in Hξ with radii rk → ∞.

Finally, we deduce the existence of a harmonic Margulis function, for all asymp-
totically harmonic manifolds:

Theorem 3. Let X be a CH-manifold with −b2≤KX ≤−a2< 0 and entropy
E.
If X is asymptotically harmonic, then there exists a bounded, strictly positive,
harmonic function m : M → R such that vol S(x, r) ≍ m(x)eEr for any x ∈ X
(where ≍ always means “uniformly equivalent to”).
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How large is the shadow of a symplectic ball?

Alberto Abbondandolo

(joint work with Slava Matveyev)

Let ω =
∑n

j=1 dpj ∧ dqj be the standard symplectic form on R2n, which is en-

dowed with coordinates (p1, q1, . . . , pn, qn). A symplectomorphism between open
subsets of R2n is a diffeomorphism which preserves the form ω. Symplectomor-
phisms are the natural transformations of classical mechanics. Since ωn is a mul-
tiple of the Euclidean volume form of R2n, symplectomorphisms preserve volume.

The celebrated non-squeezing theorem of Gromov states that if 0 < s < r,
then no symplectomorphism can map Br, the ball of radius r, into the cylinder
consisting of those points (p1, q1, . . . , pn, qn) such that p21 + q21 < s2. This theorem
describes a two-dimensional rigidity which is obviously not shared by volume-
preserving diffeomorphisms and which is reminiscent of the Heisenberg principle:
if the initial status of a system is known with precision r, one cannot let the sys-
tem evolve so that the knowledge of a pair of conjugate variables is simultaneously
improved, even if one is willing to loose any information on all the other vari-
ables. Since symplectomorphisms also preserve ωk, for 1 ≤ k ≤ n, it is natural
to ask whether symplectomorphisms must satisfy also some middle-dimensional
non-squeezing property.

A question in this direction concerns symplectic embeddings of polydiscs. We
denote by P (r1, . . . , rn) the polydisk consisting of points (p1, q1, . . . , pn, qn) such
that p2j + q2j < r2j for every j. If the symplectomorphism ϕ maps P (r1, . . . , rn)
into P (s1, . . . , sn), the conservation of volume implies that r1r2 . . . rn ≤ s1s2 . . . sn,
while Gromov’s non-squeezing theorem implies that min rj ≤ min sj . Therefore, it
is natural to ask whether similar inequalities for other products of the radii hold.
In the large scale, the answer to this question turns out to be no, as shown by
L. Guth in [3]: for every ǫ > 0 there exists a symplectomorphism which maps
P (ǫ, 1, 1) into P (2ǫ, 10ǫ,∞).

In this talk we address the question of the middle-dimensional squeezing versus
non-squeezing behavior of symplectomorphisms from a different point of view,
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by keeping the ball as the domain of our maps. We start by noticing that the
non-squeezing theorem can be restated as the following inequality:

area
(
P1ϕ(Br)

)
≥ πr2,

where P1 is the orthogonal projector onto R2, that is the plane spanned by the
vectors ∂

∂p1

and ∂
∂q1

. This reformulation raises the following question: if Pk is

the orthogonal projection onto R2k, that is the subspace spanned by the vectors
∂

∂p1

, ∂
∂q1

, . . . , ∂
∂pk

, ∂
∂qk

, is it true that

vol2k
(
Pkϕ(Br)

)
≥ ω2kr

2k,

for every symplectomorphism ϕ? Here ω2k denotes the volume of the unit ball in
dimension 2k. Equivalently, Pk can be replaced by the orthogonal projector onto
any complex subspace of R2n ∼= Cn ((p, q) 7→ p+ iq), or, replacing the Euclidean
2k-volume by the integral of ωk/k!, by the projection onto any symplectic 2k-
dimensional subspace along its symplectic orthogonal.

Our first result is that the answer is yes in the linear category:

Theorem 1. If Φ is a linear symplectomorphism, then vol2k
(
PkΦ(B1)

)
≥ ω2k.

Moreover, the equality holds if and only if the subspace ΦTR2k is complex.

However, the answer is no in the nonlinear category:

Theorem 2. If 1 < k < n and ǫ > 0, then there exists a symplectomorphism
ϕ : B1 →֒ R2n such that vol2k

(
Pkϕ(B1)

)
< ǫ.

The construction of this counterexample uses some lemmas from the above
mentioned paper of Guth.

Having a rigidity which holds for linear maps and does not hold for nonlinear
ones, it is natural to ask at what scale this rigidity breaks down. For instance, one
can ask whether the middle-dimensional non-squeezing property holds locally, in
the following two senses:

(i) Let ϕ : R2n → R2n be a symplectomorphism and let x ∈ R2n. Is it true that

vol2k
(
Pkϕ(Br(x))

)
≥ ω2kr

2k

for every r > 0 small enough?

(ii) Let {ϕt}t∈[0,1] be a smooth family of symplectomorphisms such that ϕ0 is
linear. Is it true that

vol2k
(
Pkϕt(B1)

)
≥ ω2k

for every t ≥ 0 small enough?

Notice that a positive answer to the second question would imply a positive
answer to the first one, by rescaling. We do not have a definite answer to this
questions yet, but we strongly believe that the answer is in both cases positive.
The two following results corroborate this conjecture.

The first result is about the first “local in space” formulation:
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Theorem 3. Let ϕ : R2n → R2n be a symplectomorphism. Then there exists an
open and dense set A ⊂ R2n and a function ρ : A → (0,+∞) such that for every
x in A there holds

vol2k
(
Pkϕ(Br(x))

)
≥ ω2kr

2k

for every 0 < r ≤ ρ(x).

The proof of this result uses some non-trivial facts from geometric measure
theory. The argument suggests a relationship between the middle-dimensional
non-squeezing property and the integrability of a certain multi-valued distribution.

In order to state the second result, which concerns the second “local in time”
formulation, we need to introduce some notation.

The symbol Gr1(Ck) denotes the Grassmannian of complex lines in Ck ⊂ Cn ∼=
R2n. This Grassmannian coincides with the complex projective space CPk−1 and
is endowed with the volume form η = ωk−1

CPk−1/(k−1)!, where ωCPk−1 is the standard

Kähler form on CPk−1.
If z : R/2πZ → R2n is a smooth loop, we denote the Dirichlet energy of z and

the symplectic area of any disk bounded by z respectively by

E(z) :=
1

2

∫ 2π

0

|z′(θ)|2 dθ, A(z) :=

∫

R/2πZ

z∗
( n∑

j=1

pjdqj

)
.

Assume, for sake of simplicity, that the smooth path of symplectomorphisms ϕt

starts at the identity and let Ht be the time-dependent generating Hamiltonian,
that is,

∂

∂t
ϕt(x) = XHt

(
ϕt(x)

)
,

where XHt
= i∇Ht denotes the Hamiltonian vector field which is associated to

Ht. Then we have the following second order expansion for the 2k-volume of the
2k-dimensional shadow of ϕt(B1):

Theorem 4. There holds

vol2k
(
Pkϕt(B1)

)
= ω2k + C(H0)t

2 +O(t3), for t→ 0,

where

C(H0) :=

∫

Gr1(Ck)

(
E(zL)−A(zL)

)
η(L),

and, for every L in Gr1(Ck), zL : R/2πZ → R2n is the loop

zL(θ) = (I − Pk)XH0

(
eiθζL

)
,

with any vector in ζL in L ∩ ∂B1.

The proof is based on an elaborate computation which uses the Lie-Cartan
formalism and fiberwise integration.

By the two-dimensional isoperimetric inequality, E(z) ≥ A(z) for every loop
z, and the identity holds if an only if z is the constant speed counterclockwise



Geometric Group Theory, Hyperbolic Dynamics and Symplectic Geometry 2165

parametrization of a circle in a complex line. Therefore, the constant C(H0) is
always non-negative and vanishes only if the vector field XH0

is very special.
Both Theorems 3 and 4 say that the local middle-dimensional non-squeezing

property holds in the generic case.
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Aspherical groups and manifolds with extreme properties.

Mark Sapir

I prove that every finitely generated group with recursive aspherical presentation
(i.e. recursive aspherical 2-dimensional K(., 1)) embeds into a finitely presented
group with a finite 2-dimensional aspherical K(., 1). Using Davis’ reflection trick
[1] one can further embed the group in the fundamental group of a closed aspherical
4-dimensional Riemannian manifold. Starting with a Olshanskii’s Tarski monster
[3]) or Gromov’s random monster [2] one can then embed such groups into the
fundamental group of a closed aspherical manifold. Therefore there exist closed
aspherical manifolds whose universal covers have infinite asymptotic dimension,
do not coarsely embed into Hilbert spaces, do not satisfy the Baum-Connes con-
jecture with coefficients, etc. The proof [4] is a version of the celebrated Higman
embedding theorem. In the talk, I briefly described Davis’ construction, sketched
a proof of the Higman embedding theorem, explained why the previous versions
of the proof do not produce aspherical presentations and gave some details of the
new construction.
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Positive topological entropy for multi-bump magnetic fields

K. F. Siburg

(joint work with A. Knauf and F. Schulz)

Consider a magnetic field in R3 whose field lines are perpendicular to the plane
R2×{0} ∼= R2. Then the motion of a particle of unit mass and unit charge in that
plane is modelled by Newton’s Second Law

(1) q̈ = B(q)Jq̇

where B : R2 → R describes the field strength and the term on the right hand
side is the Lorentz force corresponding to the magnetic field, with J being the

symplectic matrix

(
0 1
−1 0

)
. The differential equation (1) can be written as the

Hamiltonian system generated by the Hamiltonian H : T ∗R2 → R, H(q, p) =
1
2‖p‖2 on (T ∗R2, ω) with the twisted symplectic form

ω = ω0 +B(q)dq1 ∧ dq2
where ω0 = dλ = dp1 ∧dq1 + dp2 ∧dq2 stands for the standard symplectic form on
T ∗R2.

In this talk, we study the dynamics of a particle when the magnetic field consists
of n ≥ 2 disjoint bumps, i.e., when the support of B consists of n connected com-
ponents suppBk. Assuming that each component is a disc where the magnetic field
is rotationally symmetric, we show that this dynamical systems exhibits chaotic
behavior in the sense that it possesses an invariant set on which the Poincaré map
induced by its flow is semi-conjugated to the full shift in n symbols. This implies
that there are solutions visiting the different components suppBk in any prescribed
order. Moreover, we can conclude that our system has positive topological entropy
htop ≥ logn.

Cosmic censorship of smooth structures

Stefan Nemirovski

(joint work with Vladimir Chernov)

One form of the ‘strong cosmic censorship hypothesis’ proposed by Roger Penrose
asserts that physically relevant spacetimes should be globally hyperbolic (see [2]).
Using several deep results, including Perelman’s proof of the Poincaré conjecture,
we observe that global hyperbolicity imposes strong restrictions on the possible
smooth structures of the spacetime.

Theorem 1. Suppose that (X, g) is a globally hyperbolic spacetime such that the
manifold X is contractible. Then X is diffeomorphic to the standard RdimX .

In particular, exotic R4’s (that is to say, 4-manifolds homeomorphic but not dif-
feomorphic to R4) do not carry globally hyperbolic Lorentz metrics.
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More generally, it seems plausible that the smooth structure of a globally hy-
perbolic 4-dimensional spacetime is always determined by its topology. We prove
this in the case when the Cauchy surface of the spacetime is a closed orientable
3-manifold and state the following

Conjecture. If two (orientable) globally hyperbolic 4-dimensional spacetimes are
homeomorphic, then they are diffeomorphic.

Examples show that this conjecture is not true in higher dimensions (e. g., for
spacetimes homeomorphic to S7 × R).
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Area growth and rigidity of surfaces without conjugate points

V. Bangert

(joint work with P. Emmerich)

In 1942 M. Morse and G. A. Hedlund [7] conjectured that every Riemannian 2-
torus without conjugate points is flat. This was proved by E. Hopf in 1943, see [5].
The natural question, if Riemannian tori without conjugate points and of arbitrary
dimension are flat, was answered affirmatively by D. Burago and S. Ivanov [3], by
a completely new method.

Here, we apply E. Hopf’s original method to the study of complete Riemannian
planes and cylinders without conjugate points. In these cases one needs additional
assumptions to prove flatness since the plane and the cylinder admit complete
Riemannian metrics with negative Gaussian curvature (and, hence, without con-
jugate points). In this situation, conditions on the area growth are particularly
natural. For the case of the plane we prove the following optimal result.

Theorem 1. Let g be a complete Riemannian metric without conjugate points
on the plane R2. If p is a point on R2 then the area Ap(r) of the metric ball with
center p and radius r satisfies

lim inf
r→∞

Ap(r)

πr2
≥ 1

with equality if and only if g is flat.
Note that, for every ǫ > 0, one can easily find complete planes with non-positive

Gaussian curvature and conical end such that limr→∞Ap(r)/πr
2 = 1 + ǫ. These

examples show that the estimate in Theorem 1 is optimal.
To state our rigidity result for cylinders we first define what it means that an

end of a cylinder has subquadratic area growth. As usual, we denote by d the
distance induced by the Riemannian metric, and by B(p, r) the metric ball with
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center p and radius r.

Definition 1. Let S be a complete, connected Riemannian surface. An end E of
S has subquadratic area growth if there exists a neighborhood U ⊆ S of E such
that

lim inf
r→∞

A(U ∩B(p, r))

r2
= 0

for one (and hence every) point p ∈ S.

Theorem 2. Let g be a complete Riemannian metric without conjugate points
on the cylinder S1×R. If both ends of the cylinder have subquadratic area growth
then g is flat.

There is an alternative version of Theorem 1 that involves an assumption on
the growth of the lengths of shortest non-contractible loops.

Definition 2. Let C = S1×R be a complete Riemannian cylinder and, for p ∈ C,
let l(p) denote the length of a shortest non-contractible loop based at p. We say
that an end E of C opens less than linearly if there exists a sequence (pi) in C
converging to E such that

lim
i→∞

l(pi)

d(pi, p0)
= 0.

Theorem 3. Let g be a complete Riemannian metric without conjugate points
on the cylinder S1 × R. If both ends of the cylinder open less than linearly then
g is flat.

Again, simple examples of cylinders of revolution with non-positive Gausian
curvature and conical ends show that the conditions in Theorem 2 and 3 are
optimal.

Rigidity results of the type of Theorem 3 have been proved by K. Burns and
G. Knieper [2], H. Koehler [6], and by the present authors [1]. All of these involve
stronger conditions on the growth of l and additional conditions on the Gaussian
curvature. So they are far from being optimal. The basic idea, however, is the
same in all these papers: E. Hopf’s method is applied to an appropriate exhaustion
by compact sets. This introduces boundary terms that have to be controlled in the
limit and that do not appear in the case of the 2-torus treated by E. Hopf. Here the
essential difficulty is that the geometric quantities that influence these boundary
terms might oscillate dramatically in the non-compact situation. Any naive at-
tempt to control them induces unwanted additional assumptions, as present in the
previous results. To our surprise, a delicate analysis of the differential inequality
that results from E. Hopf’s method finally leads to the optimal results presented
here.

In [2] the same method is applied to complete planes without conjugate points.
The rigidity result proved in [2] assumes a strong “parallel axiom”. In connection
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with this and Theorem 1 we mention the following interesting open problem men-
tioned in [4].

Openproblem. Suppose a complete Riemannian plane P satisfies the parallel
axiom, i.e. for every geodesic c on P and every point p ∈ P not on c there exists
a unique geodesic through p that does not intersect c. Does this imply that P is
isometric to the Euclidean plane?

References

[1] V. Bangert and P. Emmerich, On the flatness of Riemannian cylinders without conjugate
points, Comm. Anal. Geom. 19 (2011), no. 4, 773–805.

[2] K. Burns and G. Knieper, Rigidity of surfaces with no conjugate points, J. Differential
Geom. 34 (1991), no. 3, 623–650.

[3] D. Burago and S. Ivanov, Riemannian tori without conjugate points are flat, Geom. Funct.
Anal. 4 (1994), no. 3, 259–269.

[4] C. Croke, A synthetic characterization of the hemisphere, Proc. Amer. Math. Soc. 136
(2008), no. 3, 1083–1086 (electronic).

[5] E. Hopf, Closed surfaces without conjugate points, Proc. Nat. Acad. Sci. U.S.A. 34 (1948),
47–51.

[6] H. Koehler, Rigidity of cylinders without conjugate points, Asian J. Math. 12 (2008), no. 1,
35–45.

[7] M. Morse and G. A. Hedlund, Manifolds without conjugate points, Trans. Amer. Math. Soc.
51 (1942), 362–386.

RAAGs in Ham

Michael Kapovich

For a graph Γ let V (Γ), E(Γ) denote the vertex and edge sets of Γ. Let Γ be
a graph with no loops and bigons, i.e., a simplicial complex of dimension ≤ 1.
Define the Right Angled Artin group (RAAG) GΓ with the Artin graph Γ by the
presentation

〈gv, v ∈ V (Γ)| [gv, gw] = 1, [vw] /∈ E(Γ) .

We note that our definition is opposite to the usual one in the theory of RAAGs,
where one imposes the relators [gv, gw] = 1 for every [vw] ∈ E(Γ). However, our
convention is in line with the notation in the theory of finite Coxeter groups and
Dynkin diagrams. We adopted this notation because it is most suitable for our
purposes, while the usual definition leads to heavy notation.

Given a symplectic manifold (M,ω) we let Ham(M,ω) denote the group of
Hamiltonian symplectomorphisms of (M,ω). Since, by Moser’s theorem, for a
closed surfaceM its symplectic structure is unique up to scaling, we will abbreviate
Ham(M,ω) to Ham(M) if M is a closed surface.

Our main result is:

Theorem 1. For every finite Γ the group GΓ embeds in Ham(S2). Moreover,
under this embedding the group GΓ fixes a closed disk in S2 pointwise.
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As corollaries of the proof of this theorem we establish the following:

Corollary 1. For every finite Γ and every symplectic manifold (M,ω), the group
GΓ embeds in Ham(M,ω).

Corollary 2. Let Λ ⊂ O(n, 1) be an arithmetic lattice of the simplest type, n ≥ 2.
Then a finite index subgroup in Λ embeds in Ham(M,ω) for every symplectic
manifold (M,ω).

Proof. According to the result of Bergeron, Haglund and Wise [HW], a finite index
subgroup in Λ embeds in some RAAG GΓ. Now, the result follows from Corollary
1. �

In contrast, suppose that M is a closed oriented surface of genus ≥ 1 with area
form ω. Then it was proven first by L. Polterovich [P] and, later, by Franks and
Handel [FH] using different methods, that every irreducible nonuniform arithmetic
group Λ of rank ≥ 2 does not embed in Ham(M,ω). Furthermore, Franks and
Handel [FH] extended this result to certain nonuniform rank 1 lattices, e.g., lattices
in PU(2, 1).

Outline of the proof. Theorem 1 is proven in three steps.
Step 1. Let M be a closed connected oriented surface to which Γ embeds. For

technical reasons, it will be convenient to assume that M is not the torus. We
first prove

Theorem 2. The group GΓ embeds in Ham(M). Moreover, each Artin generator
gv of GΓ acts on M as an “twice-iterated Double Dehn twist” Ψ(gv) supported in
a homotopically trivial annulus in M .

The key to verifying injectivity of Ψ : GΓ → Ham(M) is that the action
GΓ y M preserves a certain finite subset P ⊂ M , so that the restriction GΓ y
M ′ = M \ P projects to a faithful representation to the mapping class group of
M ′, GΓ → Map(M ′). Faithfulness of this representation follows from a special
case of a theorem of L. Funar [Fu] (similar results are established in the papers
by T. Koberda [K] and by M. Clay, C. Leininger and J. Mangahas [CLM]). This
part of our paper is similar to the arguments by J. Crisp and B. Wiest [CW].

Step 2 (Lifting). If Γ were planar, Theorem 2 would imply Theorem 1. In
general, of course, Γ need not be planar (or even admit a finite planar orbi-cover),
however, it has a planar universal cover (e.g., the disjoint union of simplicial trees).
Suppose, therefore, that M has genus ≥ 2. Then we lift the action Ψ : GΓ y M
to the universal cover M̃ of M , which we identify with the hyperbolic plane, i.e.,
the unit disk D in S2 = C ∪ {∞}. We let ω0 be the Euclidean area form on an
open disk containing D; extend ω0 smoothly to an area form ω0 on S2.

Let D′ = D−P ′ denote the punctured disk where P ′ is the preimage of P in D.
Let Ham(M,P ) denote the subgroup of Ham(M) fixing P pointwise. We have
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an (injective) homomorphism

ι : Ham(M,P ) → Ham(D,P ′)

obtained by choosing an appropriate lifting of Hamiltonian diffeomorphisms. We
thus obtain the lift Ψ̃ = ι ◦ Ψ of the homomorphism Ψ. Then we show that Ψ̃
projects injectively to the mapping class group Map(D′).

Each generator gv of GΓ acts (via Ψ̃) on D as a product of infinitely many com-
muting twice-iterated Double Dehn twists preserving the hyperbolic area form.
However, Ψ̃(GΓ), of course, does not preserve ω0. Then we modify each of the

Double Dehn twists in the product decomposition of Ψ̃(gv) to obtain a new diffeo-

morphism ρ0(gv) which is isotopic to Ψ̃(gv) on the punctured disk D′ and is the
time-2-map for the appropriately chosen function Hv : D → R with respect to ω0.
It then follows that the resulting representation

ρ0 : GΓ → Ham(D,ω0)

is again faithful. We will see that for each v, Hv extends by zero to a C1,1-
function on S2 and ρ0(gv) extends Lipschitz-continuously (by the identity) to the
entire sphere, so we can think of it as a Lipschitz Hamiltonian symplectomorphism.
However, the function Hv need not be C2-smooth and ρ0(gv) need not even be
differentiable.

Step 3 (Approximation). The last step of the proof is an approximation argu-
ment: We approximate Hv : S2 → R by a mollifier, a smooth function ηǫHv which
depends analytically on ǫ > 0 and converges to Hv uniformly on compacts in the
open disk D as ǫ→ 0. Each function ηǫHv determines its own time-2-map ρǫ(gv)
and we obtain an analytic family of representations ρǫ : GΓ → Ham(S2), ǫ > 0,
which converge to ρ0 as ǫ → 0. Then (since ρ0 is injective) we establish that the
representations ρǫ are injective for all but countably many ǫ > 0, thereby proving
Theorem 1.
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Towards categorification of Lagrangian Topology

Octav Cornea

(joint work with Paul Biran (ETH))

Cobordism has played fundamental role in the modern development of algebraic
and differential topology. In symplectic topology, Lagrangian cobordism has been
introduced by Arnold at the beginnings of the field and it has been studied by
Eliashberg and Audin who showed that without any additional restrictions it is
a very flexible notion. Later on in the middle of the ’90’s Chekanov remarked
that if additional restrictions are imposed - for instance monotonicity - then some
rigidity is present. In the paper [1] - which was the main reference for the talk
- we consider Lagrangian cobordism from a more categorical point of view: we
first notice that it is possible to define a Lagrangian cobordism category whose
objects are the Lagrangian submanifolds of a given symplectic manifold (M,ω).
The morphisms between two such objects L, L′ are horizontal isotopy classes of
Lagrangian submanifolds V ⊂ (C×M,ω0 + ω) so that V is non-compact and has
one positive end that is identified with [0, 1)×{1}×L as well as some negative ends
identified with (−∞, 0]×{1}×L1, . . . , (−∞, 0]×{k}×Lk, (−∞, 0]×{k+1}×L′

for some k ≥ 0. It is not difficult to show that this does indeed give rise to a
category that we denote by Cobpre(M).

Remark. Another category of Lagrangian cobordisms has been introduced by
Nadler and Tanaka also in an October 2011 preprint.

From now on restrict to the subcategory Cobdpre(M) of all Lagrangians that are
uniformly monotone in the sense that the Maslov morphism and the symplectic
area are proportional with the same constant, the minimal Maslov number is at
least 2 and additionally the number of J-holomorphic disks through a point is the
same for all Lagrangians (+ a condition having to do with the appropriate Novikov
ring). The morphisms in this subcategory also satisfy the same conditions. Denote
by DFukd(M) the derived Fukaya category with the same objects as those of
Cobdpre(M). The main result is that there exists a functor:

F : Cobdpre(M) → DFukd(M)

that is the identity on objects and that fits, in an appropriate sense with the tri-
angulated structure of the target. For instance, given a cobordism V as above
this compatibility implies that, in DFukd(M), L belongs to the subcategory gen-
erated by L1, L2, . . . Lk, L

′. In fact, the construction provides exact triangles in
DFukd(M): L2 → L1 → M2,. . ., Li+1 → Mi → Mi+1 (with L′ = Lk+1) and
Mk+1 ≃ L.
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Ziggurats and rotation numbers

Danny Calegari

(joint work with Alden Walker)

A reference for this material is [1].

Let F be a free group of rank 2, with generators a, b. Let Homeo+(S1)∼ denote
the universal cover of the group of orientation-preserving homeomorphisms of the
circle. There is a homogeneous quasimorphism

rot∼ : Homeo+(S1)∼ → R

called rotation number.
For w ∈ F and r, s in R, let X(w, r, s) denote the set of values of rot∼(ρ(w))

under all homomorphisms ρ : F → Homeo+(S1)∼ satisfying rot∼(ρ(a)) = r and
rot∼(ρ(b)) = s, and let R(w, r, s) denote the supremum of X(w, r, s). It is elemen-
tary that X(w, r, s) is a compact interval, with minimum equal to −R(w,−r,−s),
so knowledge of R(w, ·, ·) completely determines knowledge of X(w, ·, ·). Our in-
vestigation centers on the following:

Question: Is it true that R(w, r, s) ∈ Q for all w ∈ F and all r, s in R?

Problem: Give a practical method to compute or approximate R(w, r, s).

The question of computing X(w, r, s) for the special case w = ab was considered
in [2], with partial results.

1. positive words. A word w is positive if it is in the semigroup generated by
a and b. For such a word w we give a straightforward combinatorial algorithm
to compute R(w, r, s) whenever r and s are rational, and show in this case that
R(w, r, s) ∈ Q, and has denominator no greater than the minimum of the denomi-
nators of r and s. Moreover, R(w, ·, ·) is constant on some region [r, r+ǫ)×[s, s+ǫ)
where ǫ has order of magnitude equal to the reciprocal of this denominator.

The function R(w, ·, ·) is therefore locally constant and takes values in Q on an
open dense subset of the parameter plane. Our method allows us to reduce the
problem of computing R(w, r, s) for r, s ∈ Q to a finite combinatorial question.
This gives a very short new proof of Naimi’s theorem [3] (i.e. the conjecture of
Jankins–Neumann [2]) which was the last step in the classification of taut foliations
of Seifert fibered spaces. See [1] for details.

2. slippery points. For w positive, define R(w, r−, s−) to be the supremum of
R(w, r′, s′) over all r′ < r, s′ < s. It turns out that R(w, r−, s−) is equal to the
supremum of rot∼(ρ(w)) under all representations ρ for which ρ(a) and ρ(b) are
conjugate to rotations Rr and Rs respectively. A point (r, s) is slippery for w if
there is a strict inequality R(w, r′, s′) < R(w, r−, s−) for all r′ < r and s′ < s.

Slippery Conjecture: If (r, s) is slippery for w then R(w, r−, s−) = ha(w)r +
hb(w)s where ha and hb count the number of copies of a and b in w.

Note that R(w, r−, s−) ≥ ha(w)r+hb(w)s by definition. The Slippery Conjec-
ture implies that R(w, r−, s−) ∈ Q whenever r, s ∈ Q. It is implied by the
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Refined Slippery Conjecture: Suppose w = aα1bβ1 · · · bβm is positive. If

R(w, r, s) = p/q then there is an inequality

R(w, r, s)− ha(w)r − hb(w)s ≤ m/q

3. arbitrary words. For w arbitrary, it still makes sense to define R(w, r−, s−)
to be the supremum of rot∼(ρ(w)) over all representations ρ for which a and b are
conjugate to Rr and Rs. For r, s ∈ Q there is a positive word w′(w, r, s) and an
integer n′(w, r, s) so that

R(w, r−, s−) = R(w′, r−, s−)− n′(w, r, s)

The word w′ and the integer n′ are easily computable in terms of w, r, s. There-
fore this number may be computed quickly. The slippery conjecture would imply
that it was always rational, and the refined slippery conjecture would make fast
approximation easy.

4. the interval game. Suppose we are given a finite collection of homeomor-
phisms φ, ϕi ∈ Homeo+(S1) for 1 ≤ i ≤ m. The interval game asks whether there
is a closed interval I ⊂ S1 and a positive integer n so that φn(I+) ∈ I (where I+

denotes the rightmost point of I), but φj(I+) is not in ϕi(I) for any i and any
0 ≤ j ≤ n.

Suppose φ is a rigid irrational rotation (this might be thought of as a “generic”
case) and suppose that its rotation number satisfies a certain Diophantine con-
dition (which is generic). If all the ϕi are C1, and there is a point p such that
ϕ′
i(p) 6= 1 for all i, then we show there is an interval I satisfying the conditions

above. This gives strong evidence for the conjecture that R(w, r, s) is rational for
arbitrary w, r, s.

5. two open questions. One can restrict the analytic quality of a representa-
tion; this leads to new phenomena and new questions. Two of the most striking
phenomena are as follows.

First, consider representations ρ of F into PSL(2,R). It is a fact that for all
such representations one has

rot∼(ρ(ababaabbaBBAABABAbababaabbABBAABABAB)) = 0

This can be proved using trace identities and numerical methods.

Question: Is there a nontrivial word w ∈ F so that rot∼(ρ(w)) = 0 for every
ρ : F → Homeo+(S1)∼?

Second, one can consider real analytic representations. It is straightforward to
show that for every x in the interior of X(w, r, s) there is a real analytic repre-
sentation ρ such that rot∼(ρ(w)) = x. Moreover, if w is positive, the same result
holds even for x = R(w, r, s).

Question: Let w ∈ F be arbitrary. Is there a Cω representation ρ so that
rot∼(ρ(w)) = R(w, r, s)?
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A positive answer, together with the proposition about the interval game alluded
to above, would go a long way toward proving that R(w, r, s) ∈ Q for every w and
every r, s.
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Quasi-cocycles on free groups

K. Fujiwara

(joint work with M. Bestvina, K. Bromberg)

We prove a theorem about second bounded cohomology using our earlier construc-
tion in [1] of group actions on quasi-trees. For many groups Γ and arbitrary unitary
representation ρ of Γ in a (nonzero) uniformly convex Banach space, the vector
space H2

b (Γ; ρ) is infinite dimensional. Examples include free groups; torsion-free
and non-elementary hyperbolic groups; and non-virtually-abelian mapping class
groups of surfaces.

Definitions are in order. Quasi-trees are graphs which are quasi-isometric to
simplicial trees. For a unitary representation ρ : Γ → O(E), where E is a normed
vector space and O(E) denotes the group of norm-preserving automorphisms of
E, F : Γ → E is a quasi-cocycle if there is a constant C such that for any g, h ∈ Γ,

|F (gh)− F (g)− ρ(g)F (h)| ≤ C.

If ρ is trivial and E = R, this is a quasi-homomorphism.
Following the construction by Brooks of quasi-homomorphisms on free groups

using their actions on Cayley trees, we construct quasi-cocycles on free groups.
This construction generalizes if a group acts on a quasi-tree in a certain way,
[1]. We use that E is uniformly convex to argue that some of those cocycles are
non-trivial in H2

b (Γ; ρ).
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Kähler groups, real hyperbolic spaces and the Cremona group

P. Py

(joint work with T. Delzant)

The purpose of this talk was to explain the results of the article [4].

We recall that a Kähler group is by definition the fundamental group of a com-
pact Kähler manifold. It is a classical theorem of Carlson and Toledo [2] that a
lattice in the isometry group of the real hyperbolic space Hn

R is never isomorphic
to a Kähler group as soon as n ≥ 3. In [4], we generalize this result and give a
complete description of actions of Kähler groups on finite and infinite dimensional
real hyperbolic spaces (for the definition of the infinite dimensional real hyperbolic
space, see [1]). In the case of actions of Kähler groups on the infinite dimensional
real hyperbolic space H∞

R , our result takes the following form. In the following,
Isom(H∞

R ) denotes the isometry group of the space H∞
R .

Theorem 1. Let Γ be a Kähler group. Let ρ : Γ → Isom(H∞
R ) be a non-elementary

action of Γ on H∞
R . Assume that ρ is minimal, i.e. that H∞

R contains no nontrivial
closed ρ-invariant totally geodesic subspace. Then, one of the following two cases
happens.

(1) The representation ρ factors through a fibration onto a hyperbolic 2-
orbifold.

(2) The representation ρ can be written as ρ = Ψ ◦ θ, where θ is a homomor-
phism from Γ to PSL2(R) with dense image and Ψ : PSL2(R) → Isom(H∞

R )
is a continuous homomorphism.

We also prove that some irreducible actions of PSL2(R) on H∞
R exist: we de-

scribe a 1-parameter family of such actions coming from representation theory and
give some of their properties (see also [5] for a more detailed study and a classifica-
tion of these actions). Finally, an application is given to the study of the Cremona
group Bir(P2), i.e. the group of all birational maps from the complex projective
plane P2 to itself. Using ideas of Manin and Zariski, Cantat [3] has proved that
the Cremona group admits a faithful action on an infinite dimensional real hyper-
bolic space HP2 , called the Picard-Manin space. Using this action, he essentially
described homomorphisms from Γ to Bir(P2) when Γ is a lattice in a simple Lie
group with property T . The problem of describing all faithful homomorphisms
from lattices in the groups SO(n, 1) and SU(n, 1) to the Cremona group is open.
Concerning lattices in the group SU(n, 1), we give the following partial answer:

Theorem 2. Let Γ1 be a cocompact lattice in the group SU(n, 1) with n ≥ 2. If

ρ : Γ1 → Bir(P2)

is an injective homomorphism, then one of the following two possibilities holds:

(1) The group ρ(Γ1) fixes a point in the Picard-Manin space HP2 .
(2) The group ρ(Γ1) fixes a unique point in the boundary of the Picard-Manin

space HP2.
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This result is a particular case of a more general one which applies to all Kähler
groups.
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Flexibility and rigidity of symplectic embeddings

Felix Schlenk

(joint work with Janko Latschev and Dusa McDuff)

For a > 0 consider the open 4-dimensional ball B4(a) of capacity a = πr2 (where
r is the radius), endowed with the standard symplectic form dx1 ∧dy1+dx2∧dy2.
Given a symplectic 4-manifold (M,ω) of finite volume Vol(M,ω) := 1

2

∫
M ω ∧ ω

we can ask how much of the volume of (M,ω) can be filled by a symplectically
embedded ball. In other words, we study the packing number

p(M,ω) := sup

{
Vol(B4(a))

Vol(M,ω)

∣∣B4(a) symplectically embeds into (M,ω)

}
.

It follows from Darboux’s theorem that always p(M,ω) > 0. If p(M,ω) = 1,
one says that (M,ω) admits a full packing by one ball, and if p(M,ω) < 1, one
says that there is a packing obstruction. Notice that if we would consider volume
preserving embeddings instead, then the packing number would always be 1 (as
follows from Moser’s method). Packing obstructions thus are one way to measure
the difference between symplectic and volume preserving mappings.

Examples 1. Let (M,ω) be the complex projective plane CP2 endowed with the
usual Kähler form ωSF, normalized such that

∫
CP1 ωSF = π. Then

p(CP2, ωSF) = 1.

Indeed, B4(π) → CP2, z = (z1, z2) 7→ [
√
1− |z|2 : z1 : z2] is a symplectic embed-

ding.

2. Denote by S2(b) the two-sphere endowed with an area form of total area b. (Any
two such area forms are diffeomorphic by Moser’s method.) Then Gromov’s Non-
squeezing theorem (whose proof we sketched!) shows that p

(
S2(100) × S2(1)

)
≤
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1
200 . On the other hand, the obvious symplectic embedding B4(1) ⊂ B2(1) ×
B2(1) →֒ S2(100)× S2(1) shows the reverse inequality, so that

p
(
S2(100)× S2(1)

)
= 1

200 .

Instead of looking at symplectic packings by one ball, one may, more generally,
look at symplectic packings by k equal balls, and study the corresponding k’th
packing number pk(M,ω). For the 4-ball B4 these numbers were fully determined
by Gromov [3], McDuff–Polterovich [6] and Biran [1]:

k 1 2 3 4 5 6 7 8 ≥ 9

pk 1 1
2

3
4 1 20

25
24
25

63
64

288
289 1

In order to better understand these numbers, we look at a problem that interpo-
lates the above problem of packing by k equal balls: For 0 < a1 < a2 consider the
open ellipsoid

E(a1, a2) :=

{
(z1, z2) ∈ C2 = R4

∣∣∣∣
|z1|2
a1

+
|z2|2
a2

< 1

}

and look for the smallest ball B4(A) into which E(a1, a2) symplectically embeds.
We can assume that a1 = 1. We therefore would like to understand the function

cEB(a) := inf
{
A | E(1, a) symplectically embeds into B4(A)

}
.

Since symplectic embeddings are measure preserving, an obvious lower bound for

cEB(a) is
√
a. It is easy to see that

∐k
i=1B

4(1) symplectically embeds into E(1, k).

Therefore,
∐k

i=1 B
4(1) symplectically embeds into B4(A) whenever E(1, k) sym-

plectically embeds into B4(A). In [5], Dusa McDuff has shown that the converse is
also true. Our ellipsoid embedding problem therefore indeed interpolates the prob-
lem of packing by k equal balls. In [7] we have completely determined the function

cEB. Let τ = 1+
√
5

2 be the golden ratio. Then the graph of cEB(a) on [1, τ4] is
an infinite ladder determined by ratios of consecutive odd Fibonacci numbers (see
the figure below). For a ≥ 8 1

36 we have cEB(a) =
√
a.

A similar result has been recently obtained by David Frenkel and Dorothee Müller,
[2], for the embedding problem E(1, a) → B2(A)×B2(A).

In all the above embedding problems the obstructions to full packings come from
holomorphic spheres in (M,ω). It turns out that such spheres not only provide all
the obstructions, but can also be used to construct “maximal” embeddings. If there
are no holomorphic spheres in (M,ω), one may suspect that there are no packing
obstructions. A test case for this is the the 4-torus T 4 = R4/Z4. We have shown
in [4] that this torus (and, more generally, any 4-torus with a linear symplectic
form) can be fully packed by any given collection of balls (or ellipsoids). In the
sequel, we focus on explicitely constructing a full packing of T 4 by one ball. (All
other cases can be reduced to known packing results.) The symplectic embedding
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1

1

2

2

4 5 25
4

τ2

τ4
a

cEB(a)

5
2

B4(1) ⊂ B2(1) × B2(1) → (0, 1)2 × (0, 1)2 → T 4 shows that p(T 4) ≥ 1
2 . It was

known to some algebraic geometers that p(T 4) ≥ 8
9 . The starting point for a full

packing is to notice that B4(a) is symplectomorphic to the Lagrangian(!) product
♦(a)×�, where ♦(a) ⊂ R2(x) is the “diamond” of size a,

♦(a) :=
{
(x1, x2) ∈ R2 | |x1|+ |x2| < a

2

}
⊂ R2(x),

see Figure (I), and � ⊂ R2(y) is the square
{
(y1, y2) ∈ R2 | 0 < y1, y2 < 1

}
.

x1x1

x2x2

a
2−a

2

1
3

2
3− 2

3

(I) (II)

Let f : R → R be a smooth function, and consider the x1-shear ϕ(x1, x2) = (x1 +
f(x2), x2) of R

2. Then the diffeomorphism

ϕ̂(x1, x2, y1, y2) =
(
x1 + f(x2), x2, y1, y2 − f ′(x2) y1

)
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is a symplectomorphism of R4. Indeed, this is just the “cotangent map”

(x1, x2, y1, y2) 7→
(
ϕ(x1, x2),

(
dϕ(x1, x2))

T
)−1

(y1, y2)
)

of the shear ϕ. Now observe that if ϕ is such that ϕ(♦(a)) projects injectively
to R2(x)/Z2, then ϕ̂(♦(a) × �) projects injectively to R4/Z4. Indeed, the image
ϕ̂(♦(a) × �) fibers over ϕ(♦(a)), with fiber over ϕ(x1, x2) the sheared square
{(y1, y2 − f ′(x2)y1) | (y1, y2) ∈ �}. For instance, taking f “piecewise-linear”,
we can x1-shear the “top and bottom triangle” and x2-shear the “left and right
triangle” of ♦(43 ) as in Figure (II), proving that p(T 4) ≥ 8

9 .

To obtain a full filling of T 4 by one ball B4(
√
2) ∼= ♦(

√
2) × �, we start from a

“distorted diamond”, and shear it to the shape shown in the figure below.
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Poincaré inequalities under lower Ricci curvature bound

Gilles Courtois

(joint work with Gérard Besson and Sa’ar Hersonsky)

The following is a report on a joint work in progress with Gérard Besson and Sa’ar
Hersonsky.

A lower bound on Ricci curvature has many implications on the global geometry
and geometric analysis of a complete Riemannian manifold. For example non
negative Ricci curvature implies a “Poincaré inequality” which was a key tool in
the resolution by T. Colding and Minicozzi of a conjecture of S.T.Yau stating
that the space of harmonic functions of polynomial growth of degre d is finite
dimensional, [2].

A metric measured space (X, d, µ) is said to satisfy a p-Poincaré inequality
if there exists positive constants C and C′ such that for any Lipchitz function
u : X → R, any x ∈ X and any R > 0, we have

(1)

∫

B(x,R)

|u− uB(x,R)|pdµ ≤ CRp

∫

B(x,C′R)

|∇u|pdµ,

where B(x,R) is the ball of center x and radius R, and uB(x,R) is the mean value
of u on the ball B(x,R). When there is no Lipschitz structure on X , the gradient
|∇u| should be replaced by an “upper gradient” of u that is, any non negative
function ρ : X → R+ such that |u(x) − u(y)| ≤

∫
γx,y

ρ(γx,y(s))ds for any pair of

points x , y and any rectifiable curve γx,y joining x and y. Note that if (X, d, µ)
has no rectifiable curves, then there is no Poincaré inequality.

Examples: Rn, Zn, nilpotent Lie groups, Cayley graph of finitely generated
nilpotent groups, complete Riemannian manifolds of non negative Ricci curvature.

Non examples: Non abelian free groups, Hn.
In [1] B. Kleiner proves a general Poincaré inequality for the Cayley graph of a

finitely generated group:

(2)

∫

B(R)

|u− uB(R)|2dµ ≤ CR2V (2R)

V (R)

∫

B(C′R)

|∇u|2dµ,

where V (R) is the volume of a ball of radius R. This Poincaré inequality was an
essential step toward the B.Kleiner’s new proof of the Gromov’s theorem saying
that finitely generated group of polynomial growth are virtually nilpotent, [5]. This
inequality together with a polynomial growth assumption leads to a 2-Poincaré

inequality arguing that the ratios V (2R)
V (R) are bounded. Note that in the proof

of the above Kleiner’s inequality, the homogeneity of the space X (coming from
the transitive action of the group on its Cayley graph) is fundamental. These two
properties (homogeneity and polynomial growth) are in a way fullfilled on complete
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Riemannian manifolds of non negative Ricci curvature. This raises the question of
the existence of p-Poincaré inequalities on complete Riemannian manifolds with
Ricci curvature bounded from below and polynomial growth.

Consider an n-dimensional Riemannian manifoldX with Ricci curvature bounded
below Ric ≥ −κ2 and with α-polynomial growth volB(x,R) ≤ CRα.

Theorem 1. Let (Xn, g) be a complete Riemannian manifold with Ricci cur-
vature bounded below and α-polynomial growth. Then there exists a constant
C = C(n, κ) such that for any r0 > 0 and any p ≥ 1, there exists a constant
K = K(n, p, r0) such that for any u ∈ C1(Mn), any R ≥ r0 and any ball
B(m,R) ⊂Mn, we have

(3)

∫

B(m,R)

|u− uB(m,R)|pdx ≤ KRα+p−1

∫

B(m,CR)

|∇u|pdx.

Moreover this inequality is sharp.
The authors learnt from L. Saloff-Coste that although not stated in the litter-

ature, the theorem follows from his work with T. Coulhon cf. [3], [4].

The sharpness in this Theorem answers by the negative to the above question
and is a consequence of the following construction. Consider the planar graph G
with quadratic growth α = 2 whose vertex set is defined by V = {(m,n) /m , n ∈
Z} and whose edges are either vertical segments joining (0, n) and (0, n + 1) or
horizontal segments joining (m,n) and (m+ 1, n), m, n ∈ Z. We then embed the
graph G in R3 and for ǫ > 0 small enough the set X of points in R3 at distance
from G equal to ǫ is a complete Riemannian manifold of quadratic growth and
bounded curvature. It is easy to see that the term Rα+p−1 = Rp+1 in the above
theorem cannot be promoted to Rp and therefore no p-Poincaré inequality holds
on X .

This theorem raises a second question: under which additional assumption does
the Riemannian manifold M satisfy a p-Poincaré inequality?

One example we are particularly interested in is the following. Consider a
(n+1)-dimensional closed negatively curved manifold M . The universal cover M̃

ofM is diffeomorphic to Rn+1 and its boundary ∂M̃ , namely the set of equivalence
classes of geodesic rays staying at bounded distance of each other is homeomorphic
to the standard sphere Sn. A horosphere of M̃ is the limit of a sequence of spheres
of radius R tending to infinity and whose centers converge to a boundary point of
∂M̃ . Each horosphere is a smooth hypersurface X of M̃ which is diffeomorphic
to Rn. Endowed with the intrinsec metric each horosphere X of M̃ is a complete
Riemannian manifold which satisfies: 1) X has polynomial growth, 2) X has
bounded curvature, in particular X has Ricci curvature bounded from below.
A motivation for studying horospheres is that they are a kind of Riemannian
counterpart of the boundary ∂M̃ endowed with the “Gromov distance” dG. The
Gromov distance dG on ∂M̃ depends on the negatively curved Riemannian metric
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g lying on M . In particular, when M has dimension 3, the measured metric space
(∂M̃, dG, µ), where µ is the Hausdorff measure of dG, has no rectifiable curves and
therefore does not satisfy the 2-Poincaré inequality unless the Riemannian metric
g on M is hyperbolic, cf. [1].

The horospheres of M̃ are identified with the strong stable foliation of the
geodesic flow of the compact manifoldM and therefore inherits some homogeneity.
It then sounds reasonable to ask: do horospheres X of M̃ endowed with the induced
intrinsec Riemannian metric satisfy p-Poincaré inequalities?. And if this is the
case, are there uniform p-Poincaré inequalities on the family of all horospheres?
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On bi-invariant word metrics on groups

Jarek Kędrak

(joint work with M. Brandenbursky, Ś. Gal)

Let G be a group generated by a set S ⊂ G.
The associated word norm is defined by

‖g‖ := min{k ∈ N | g = s1 . . . sk, where si ∈ S}.
The corresponding metric is defined by d(g, h) := ‖gh−1‖. It is right-invariant

and if the set S is invariant under conjugations then it is bi-invariant. A group is
called normally generated by a set S if it is generated by the set S consisting of
elements from S and their conjugates. It is not difficult to show that if a group G
is finitely normally generated then the boundedness of the associated bi-invariant
word metric implies boundedness of any bi-invariant metric on G. In my talk I
presented two theorems, one about word metrics on some finitely generated groups
and another about autonomous metric on the group of area preserving diffeomor-
phisms of the two dimensional disc.

Finitely generated Chevalley groups.
Let OV ⊂ K be a ring of V-integers in a number field K, where V is a set of val-

uations containing all Archimedean ones. Let Gπ(Φ,OV) be the Chevalley group
associated with a faithful representation π : g → gl(V ) of a simple complex Lie
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algebra of rank at least two.

Theorem 1. (joint with Ś. Gal [1])
Let Γ be a finite extension or a supergroup of finite index of the Chevalley group

Gπ(Φ,OV). Then any bi-invariant metric on Γ is bounded.

Area preserving diffeomorphisms of the disc.
It is a well known fact that every smooth compactly supported and area-

preserving diffeomorphism of the open unit disc D2 is a composition of finitely
many autonomous diffeomorphisms. We define the autonomous metric on the
group Diff(D2, area) of smooth compactly supported area-preserving diffeomor-
phisms of the disc to be the word metric associated with the set of autonomous
diffeomorphisms.

Theorem 2. (joint with M. Brandenbursky [2])
For every natural number k ∈ N there exists an injective homomorphism Zk →

Diff(D2, area) which is bi-Lipschitz with respect to the word metric on Zk and the
autonomous metric on Diff(D2, area).

References
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Free subgroups of arithmetic 3-manifold groups

M. Belolipetsky

A group Γ is called k-free if any subgroup of Γ generated by k elements is free. We
denote the maximal k for which Γ is k-free by Nfr(Γ). In [Gr87, Section 5.3.A],
Gromov stated that Nfr(Γ) of a δ-hyperbolic group Γ is bounded below by an ex-
ponential function of the systole (or injectivity radius) of the associated quotient
space M . The details of the proof were not given in [Gr87], they can be found in
a later paper [Gr09, Section 2.4] where it is pointed out that the argument gives
only a bound of the form ǫr/ log(r), r = sys1(M). Two other proofs of the growth
of Nfr(Γ) when sys1(M) → ∞ appear in [Ar06] and [KW03], but the quantitative
bounds for Nfr(Γ) which can be deduced from these papers are weaker than the

one above: Arzhantseva gives a bound of the form cr1/3, Kapovich and Weidmann
do not present an explicit estimate but the method of their paper would not allow
to produce a considerably better bound. Thus so far Gromov’s estimate appears to
be the best available general quantitative result about Nfr(Γ). Although the dif-
ference between sub-linear and exponential growth is very large, in [Gr09, p. 763]
Gromov conjectured that the true bound should be exponential. He pointed out
that this is not known even for the fundamental groups of hyperbolic 3-manifolds.
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The main purpose of this talk is to discuss a result confirming Gromov’s conjecture
in this important special case.

Theorem 1. LetM be an arithmetic hyperbolic 3-manifold defined by a quadratic
form and Mi →M be a sequence of its congruence covers. Then

logNfr(π1(Mi)) &
1

3
sys1(Mi), as i→ ∞.

Remark. It was pointed out to me by Ilya Kapovich that the results of [KW03]
imply that the free subgroups provided by Theorem 1 are quasiconvex in π1(Mi).

The principal ingredient of the proof of the theorem is the following result of an
independent interest. Let sysg(M) denote the minimal genus of a surface subgroup
of π1(M), which we call the systolic genus of M .

Theorem 2. Let M be a closed hyperbolic 3-manifold. For any ǫ > 0, assuming
that the systole sys1(M) is sufficiently large, we have

sysg(M) ≥ e(
1
2
−ǫ)sys1(M).

In particular, given a sequence of closed hyperbolic 3-manifoldsM with sys1(M) →
∞, we have

log sysg(M) &
1

2
sys1(M).

The proof of Theorem 2 is based on Thurston’s inequality bounding the area
of a π1-injective surface in a hyperbolic 3-manifold through its genus and an im-
portant Gromov’s systolic inequality for surfaces of high genus, in which we use a
numerical value of the constant obtained by Katz–Sabourau. The application of
these ingredients is supported by the results from the theory of minimal surfaces
of Schoen–Yau and Sacks–Uhlenbeck. We refer to [Be12, Section 2] for the details
of the proof and precise references.

In order to relate Theorem 2 and Nfr(M), we recall the following result of
Baumslag and Shalen [BaSh89]:

Theorem 3. Let M be an irreducible, closed orientable 3-manifold, and let k be
a positive integer. Suppose that π1(M) has no subgroup isomorphic to π1(Sg) for
any g with 0 < g < k, and that β1(M) > k. Then π1(M) is k-free.

By the work of Xue [Xue92], ifM is an arithmetic hyperbolic 3-manifold whose
group is defined by a quadratic form and Mi →M is a sequence of its congruence
covers, then log β1(Mi) &

1
3 log vol(Mi). The analogues results about Betti num-

bers are known also for some other families of arithmetic hyperbolic 3-manifolds
and are conjectured to be true in general (see [Be12] for more details). In order
to finish the proof of Theorem 1, it remains to recall that the systole of the con-
gruence covers of an arithmetic hyperbolic 3-manifold grows at least as fast as
2
3 log vol(Mi) [KSV07] and to combine all these facts together with Theorem 2.



2186 Oberwolfach Report 35/2012

Most of the above mentioned results hold for higher dimensional hyperbolic
manifolds and their congruence covers, and we expect Theorem 1 to be true in
higher dimensions as well. The principal problem in obtaining such a generalisation
is with Theorem 3 whose proof in [BaSh89] is essentially 3-dimensional.

References

[Ar06] G. N. Arzhantseva, A dichotomy for finitely generated subgroups of word hyperbolic
groups, Contemp. Math. 394, Amer. Math. Soc., Providence, RI, 2006, 1–11.

[BaSh89] G. Baumslag, P. B. Shalen, Groups whose three-generator subgroups are free, Bull.
Austral. Math. Soc. 40 (1989), 163–174.

[Be12] M. Belolipetsky, On 2-systoles of hyperbolic 3-manifolds, arXiv:1205.5198v1 [math.GT],
to appear in GAFA.

[Gr87] M. Gromov, Hyperbolic groups, in Essays in Group Theory (S. M. Gersten, ed.), MSRI
Publications 8, Springer-Verlag, 1987, 75–265.

[Gr09] M. Gromov, Singularities, expanders and topology of maps. Part 1: Homology versus
volume in the spaces of cycles, Geom. Funct. Anal. 19 (2009), 743–841.

[KW03] I. Kapovich, R. Weidmann, Nielsen methods and groups acting on hyperbolic spaces,
Geom. Dedicata 98 (2003), 95–121.

[KSV07] M. Katz, M. Schaps, U. Vishne, Logarithmic growth of systole of arithmetic Riemann
surfaces along congruence subgroups, J. Diff. Geom. 76 (2007) 399–422.

[Xue92] X. Xue, On the Betti numbers of a hyperbolic manifold, Geom. Funct. Anal. 2 (1992),
126–136.

Coarse geometry of Hofer’s metrics on Hamiltonian diffeomorphism
groups and on spaces of submanifolds

Michael Usher

For any symplectic manifold (M,ω), the group Ham(M,ω) of time-one maps
of the Hamiltonian vector fields of compactly supported smooth functions H :
[0, 1]×M → R admits a remarkable bi-invariant metric discovered by Hofer [Ho].
Where for any such function H we denote by φ1H : M → M the corresponding
time-one map, this metric is defined by setting d(φ, ψ) = ‖φ−1 ◦ ψ‖ where in
general

‖φ‖ = inf

{∫ 1

0

(
max
M

H(t, ·)−min
M

H(t, ·)
)
dt

∣∣∣∣φ
1
H = φ

}
.

It is a rather deep result (proven for general symplectic manifolds by Lalonde
and McDuff [LM]) that this metric is nondegenerate, and to this day we have
only a rather limited understanding of its large-scale properties. For instance, it is
currently unknown whether the metric is unbounded for all closed symplectic man-
ifolds, though it follows from work of Ostrover based on Floer-theoretic spectral
invariants that the associated pseudometric on the universal cover of Ham(M,ω)
is always unbounded. Consideration of the behavior of these invariants under mon-
odromy sometimes allows one to use Ostrover’s argument to deduce unboundedness
for the original group, as has been exploited by Schwarz [S], Entov–Polterovich
[EP], and McDuff [M] on manifolds including complex projective spaces and tori.
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However McDuff’s work also made clear that this strategy would not apply to
some manifolds, such as blowups of other symplectic manifolds.

This talk discussed an application of a newer Floer-theoretic invariant devel-
oped by the speaker in [U11a], called the boundary depth, which gives a different
method of providing lower bounds for the Hofer metric. Since the boundary depth
is defined on Ham(M,ω) and not just on its universal cover, problems with mon-
odromy do not arise. One application in [U11b] asserts that if a closed symplectic
manifold admits a nontrivial Hamiltonian vector field all of whose contractible
periodic orbits are constant, then the Hofer metric is unbounded, and in fact there
are quasi-isometric monomorphisms Φ : V → Ham(M,ω) of infinite-dimensional
normed vector spaces into Ham(M,ω) with respect to the Hofer metric. A bit
more specifically, if H : M → R is a function whose Hamiltonian vector field has
the property indicated above, then such a monomorphism Φ : V → Ham(M,ω)
is obtained by setting Φ(f) = φ1f◦H , where V is a suitable vector space of smooth
functions f : R → R equipped with the uniform norm.

The Hofer metric on Ham(M,ω) induces an invariant pseudometric δ on the
orbit L(N) of any closed submanifold N under the group, by setting δ(N1, N2) =
inf{‖φ‖|φ(N1) = N2}. It is easy to see that this pseudometric vanishes if N is
a point, and a rather more subtle result of the speaker in [U12] shows that the
pseudometric vanishes for a wide class of N , including images of generic closed
embeddings of codimension at least two. On the other hand, Chekanov showed
[C] that if N is a compact Lagrangian submanifold of a tame symplectic manifold
then the pseudometric is nondegenerate. In contrast to the metric of Ham(M,ω),
which is unbounded in all known cases, the metric on L(N) for Lagrangian N can
be bounded, as observed in [U11b] in the case whenN is a circle andM is the plane.
At the other extreme, it was shown in [U11b] that if (M,ω) is a closed symplectic
manifold admitting a Hamiltonian vector field as in the previous paragraph, then
where N ⊂ (M ×M,−ω⊕ω) is the diagonal, L(N) admits quasi-isometrically em-
bedded infinite-dimensional normed vector spaces (consisting of graphs of the dif-
feomorphisms that make up the quasi-isometrically embedded infinite-dimensional
normed vector spaces that were constructed inside Ham(M,ω)).
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Telescopic actions

D. Panov

(joint work with A. Petrunin)

This talk is based on paper [3] and is motivated by the following question of
Gromov [2]:

Question. Let Mn be an arbitrary compact PL manifold without boundary.
Is there a co-compact lattice Γ in O(n, 1) such that the quotient Hn/Γ is PL
isomorphic to Mn?

Remark. It is important that Γ can have torsion, otherwise the quotient Hn/Γ
is a compact hyperbolic manifold and so can never be a sphere. On the other hand,
if Γ is allowed to have torsion, then one can get sphere in dimensions 2, 3, ..., 8.
Indeed in these dimensions there exist compact Coxeter hyperbolic polytopes and
a sphere is obtained by doubling such a polytope along its boundary.

In our work we consider a variation of Gromov’s question. We call an isometric
co-compact properly discontinuous group action H on X telescopic if for any
finitely presented group G, there exists a subgroup H ′ of finite index in H such
that G is isomorphic to the fundamental group of X/H ′. The following theorem
is our main result.
Theorem 1. The exist telescopic actions on 3 and 4 -dimensional hyperbolic
spaces.

A direct application of this theorem is the following statement:
Aitchison’s statement. Every finitely presented group G can appear as the
fundamental group of M/J , where M is a closed 3-manifold and J is an involution
which has only isolated fixed points.

Another application proven together with Joel Fine [1] is the following:
Theorem 2. For any finitely presented group G there exists a compact symlectic
six-manifold with c1 = 0 and with fundamental group equal G.
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Conjugate points and radial noninjectivity of the exponential map

K. Burns

(joint work with B. Schmidt)

Two points p and q in a Riemannian manifold M are conjugate if there is a vector
v ∈ TpM such that expp(v) = q and the derivative of expp is singular at v. It has
long been known that if D expp is singular at v, then expp is locally noninjective
at v. This means that any neighbourhood of v in TpM contains vectors v′ and v′′

such that expp(v
′) = expp(v

′′). Proofs were given by Littauer and Morse [LM32]
in the real analytic case and Savage [Sa43] in the smooth case. Warner [Wa65]
extended the results to a general class of maps that includes Riemannian and
Finslerian exponential maps.

Schmidt and I have sharpened this classical result by showing that the nonin-
jectivity of expp in the neighbourhood of a singularity at v can be observed along

the ray R+v. Thus if D expp is singular at v, then any neighbourhood of v in TpM
contains vectors v′ and v′′ such that expp(v

′) = expp(v
′′) and v′ is a multiple of

v. We call this property radial noninjectivity.
We have so far made two applications of radial noninjectivity. The first is to

the study of a conjectured characterization of the compact rank one symmetric
spaces (CROSSes). Lafont and Schmidt [LaSc07] showed that all CROSSes have
the property that if p and q are distinct points whose distance is less than the
diameter, then it is possible to find two points b1 and b2 (distinct from p and
q) with the property that every geodesic from p to q passes through b1 or b2.
They conjectured in the same paper that this property holds only for CROSSes.
Schmidt and I cannot prove this conjecture, but we have reduced it to the well
known Blaschke conjecture that the CROSSes are the only manifolds in which the
diameter is equal to the injectivity radius.

Our second application of radial noninjectivity is to show that a null homotopic
closed geodesic in a compact Riemannian manifold must have a proper chord. A
proper chord is a geodesic segment that joins two distinct points on the closed
geodesic and passes through points not on the closed geodesic. As a corollary to
this result, we are able to show that the projective plane with constant curvature is
the only compact Riemannian surface containing a closed geodesic with no proper
chords. It is conjectured that the analogous result holds in higher dimensions.
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The discriminant metric on the contactomorphism group

S. Sandon

(joint work with V. Colin)

Let
(
M, ξ = ker(α)

)
be a contact manifold, and consider a contactomorphism φ.

A point q of M is called a translated point of φ (with respect to the contact form
α) if φ(q) and q belong to the same Reeb orbit and if moreover the contact form
α is preserved at q. A translated point of φ which is also a fixed point is called a
discriminant point (in contrast to the notion of translated point, this notion does
not depend on the choice of the contact form α). As it is discussed in [S11b],
translated points seem to satisfy an analogue of the Arnold conjecture: at least in
the case of a C0-small contact isotopy {φt} (but possibly also in the general case)
every φt always has translated points, at least as many as the minimal number of
critical points of a function on M . On the other hand, discriminant points do not
necessarily exist in general. Given a contact is otopy {φt}t∈[0,1] it is thus possible,
after perturbing it in the same homotopy class with fixed endpoints, to find an
integer N and a subdivision 0 = t0 < t1 < · · · < tN−1 < tN = 1 such that for
all i = 0, · · · , N − 1 and all t ∈ [ti, ti+1] the contactomorphism φ −1

ti ◦ φt has no
discriminant points. The minimal N for which we have such a subdivision is called

the discriminant length of the element of the universal cover C̃ont0(M, ξ) of the
identity component of the contactomorphism group which is represented by the
contact isotopy {φt}t∈[0,1]. For any contact manifold (M, ξ), this notion gives rise

to a (non-degenerate) bi-invariant metric on C̃ont0(M, ξ).

The problem of understanding for which contact manifolds the discriminant met-
ric is unbounded seems to be related to other contact rigidity phenomena such
as contact non-squeezing, orderability of contact manifolds and the existence of
quasimorphisms on the contactomorphism group. Our results are that the dis-
criminant metric is bounded for the standard contact structures on the Euclidean
space R2n+1 and on the sphere S2n+1, but unbounded for the induced contact
structures on the quotients R2n × S1 and RP 2n+1. Unboundedness for R2n × S1

is proved using the spectral invariants defined in [S11a], and relies crucially on the
1-periodicity of the Reeb flow. This might suggest that the discriminant metric
should always be unbounded whenever there is a 1-periodic Reeb flow, but the
case of S2n+1, where the discriminant metric is bounded, shows that this is not
true in general. Unboundedness on RP 2n+1 is proved using generating functions
in the setting developed by Givental [Giv90], and relies on the properties of the
cohomological length of subsets of projective spaces.

Another interesting question is to understand the relation between the discrimi-
nant metric and the notion of orderability, that was introduced by Eliashberg and
Polterovich in [EP00]. Recall that a contact isotopy is called positive if it moves
every point in a direction which is positively transverse to the contact distribution.
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This notion gives rise to a relation ≤ on C̃ont0(M, ξ), which is always reflexive
and transitive but not necessarily anti-symmetric. If ≤ is also anti-symmetric, and

thus defines a partial order on C̃ont0(M, ξ), then the contact manifold (M, ξ) is
called orderable. Assuming that (M, ξ) is orderable, it is not clear to us whether
the discriminant metric is compatible with the partial order ≤. Motivated by this

question we define a second bi-invariant metric on C̃ont0(M, ξ), that we call the

oscillation metric. We first notice that every element of C̃ont0(M, ξ) can be repre-
sented by a contact isotopy {φt}t∈[0,1] which is the concatenation of a finite number
of pieces {φt}t∈[ti,ti+1], i = 0, · · · , N − 1, such that each piece is either positive or

negative and moreover for each t ∈ [ti, ti+1] the contactomorphism φ −1
ti ◦φt has no

discriminant points. We then define the oscillation length of [{φt}] to be the min-
imal number of positive pieces plus the minimal number of negative pieces. This

notion gives rise to a bi-invariant metric on C̃ont0(M, ξ), which is non-degenerate
if and only if (M, ξ) is orderable, and in this case is compatible with the partial
order ≤.

It would be important to understand the relation between the discriminant and os-

cillation metrics and the other (integer-valued) bi-invariant metrics on C̃ont0(M, ξ)
that has been recently defined in [S10] for R2n × S1, by Zapolsky [Zap12] for
T ∗B × S1 with B closed, and by Fraser, Polterovich and Rosen [FPR] and Albers
and Merry [AM] for more general classes of contact manifolds with 1-periodic Reeb
flow.
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How “mixing” can an area preserving disk map be when entropy is
zero?

Barney Bramham

Consider a C∞-smooth diffeomorphism of the closed 2-disk D = {(x, y) ∈ R2|x2+
y2 ≤ 1} with the following properties:

(1)





f ∈ Diff∞(D)

f is area preserving

f has zero topological entropy

Thus f defines a Hamiltonian dynamical system on the disk with orbit {x, f(x),
f (2)(x), . . .} for each initial condition x ∈ D. The zero entropy condition puts
strong restrictions on the “complexity” of the global orbit structure. Given this
restriction how “complex” can such a system be? For example, can f have a dense
orbit? Even without the zero entropy assumption this is not an easy question to
answer. Back in 1930 Shnirelman constructed a (non-area-preserving) homeomor-
phism of the disk with a dense orbit [10].

In the area preserving case generic conditions on an elliptic periodic point will
ensure that there exist invariant circles about this point (KAM theory). This is
potentially a delicate obstruction to orbit travel.

Nevertheless, as we will see in a moment, the answer to the question is yes.
That is, there exists a transformation f satisfying conditions (1), that has a dense
orbit on the disk. This result is due to Anosov and Katok. Infact they proved
a much stronger statement. Recall that for a transformation that is ergodic with
respect to Lebesgue measure almost every point x is the intial condition for a dense
orbit. Still stronger notions in this direction are “weak-mixing” and “mixing”
transformations (still with respect to area). We can summarize this hierarchy as
follows:{

ergodic

transformations

}
⊂
{

weak-mixing

transformations

}
⊂
{

mixing

transformations

}
.

The foundational result is the following.

Theorem 1. [Anosov-Katok, 1970, [1]] There exists an ergodic, and even weak-
mixing, C∞-smooth area preserving diffeomorphism of the closed 2-disk D =
{(x, y) ∈ R2|x2 + y2 ≤ 1} with zero topological entropy.

No mixing examples were found and their possible existence remains an open
question. For surfaces with genus mixing can occur, see [4] and references within.
The following is stated as Problem 3.1 in [4]:

Question 1. Does there exist a mixing area preserving C∞-diffeomorphism of
the closed 2-disk with zero topological entropy?

In [3] we prove a result in the direction of non-mixing for disk maps. An
interesting novelty is that we use methods from symplectic geometry.

It is helpful to first recall the developments since the work of Anosov and Katok.
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If f : D → D is a transformation satisfying the conditions in (1) and has a
dense orbit then it turns out that f must be conjugate (via a C∞-area preserv-
ing transformation) to a so called irrational pseudo-rotation1. We will therefore
restrict our attention to these maps:

Definition 1. A pseudo-rotation with rotation number α ∈ R/Z is a C∞-smooth
diffeomorphism f : D → D sharing the following properties with the rigid rotation
z 7→ e2πiαz:

(1) f preserves area,
(2) f(0) = 0,
(3) For each x ∈ D\{0} the average rotation number of the orbit {x, f(x),

f (2)(x), . . .} about the origin is α. 2

If α is irrational then f is said to be an irrational pseudo-rotation.
For a precise definition of average rotation number of an orbit see [2] or the

discussion in Le Calvez’ survey [9].

Remark. Irrational pseudo-rotations always have zero topological entropy. This
follows from Katok’s formula in [8] which bounds the entropy from above by the
exponential growth rate of periodic orbits.

Let Aα denote the set of all pseudo-rotations with rotation number α ∈ R/Z.
Whether Aα contains a transformation with “mixing” properties turns out to
be closely related to the arithmetic properties of α, in particular whether α is
Liouvillean. Recall that an irrational number α ∈ R/Z is said to be a Liouville
number if for all k ∈ N there exists (p, q) ∈ Z× N relatively prime for which

(2)

∣∣∣∣α− p

q

∣∣∣∣ <
1

qk
.

Let L ⊂ R/Z be the set of all Liouville numbers.
The Anosov-Katok construction actually showed that the set Aα contains a

weak-mixing transformation for each α in a dense subset of L. Later Herman
proved that if α /∈ L, in other words if α is Diophantine, then each element of Aα

has invariant circles near the boundary of the disk and therefore cannot even have
a dense orbit. This was unpublished but follows also from [5]. In 2005 Fayad and
Saprykina [6] generalized the Anosov-Katok theorem and established that for all
α ∈ L there exists a weak-mixing transformation in Aα, thus completely answering
the question of when Aα contains a weak-mixing element for α irrational.

1This statement does not seem to appear in the literature. Infact there are remarks in [4],
see pages 1485-1486, that suggest at least the possibility of other examples, besides irrational
pseudo-rotations, of zero entropy disk maps that are ergodic with respect to area. However recent
strong results in [7], namely Corollary (1.6), would rule out this possibility.

2In some places in the literature when discussing pseudo-rotations in the C0-category, it is
stated that the rotation number of the orbit from x may only be well defined for x almost
everywhere. However for smooth maps it is defined at every point in D\{0}; this is proven in [7]
and indeed also follows easily from the techniques used to prove theorem (3) below.



2194 Oberwolfach Report 35/2012

In [3] we show the following.

Theorem 2.[3] There exists a dense subset of the Liouville numbers L∗ ⊂ L with
the following property. If α ∈ L∗ then there is no mixing transformation in Aα.

Regarding Question 1 this reduces the search for smooth mixing Hamiltonian
disk maps with zero topological entropy to irrational pseudo-rotations in Aα for
α ∈ L\L∗. The set L∗ is explicitely defined in [3].

The proof of Theorem 3 uses techniques from symplectic geometry. Roughly
speaking pseudoholomorphic curves are used to find a sequence of periodic disk
maps fn : D → D which closely approximate any given element f ∈ Aα. This
can be done for any irrational α ∈ R/Z. Each periodic transformation fn of
course cannot be mixing. But the period of fn diverges to infinity as n → +∞
and so apriori the limit map f could have fairly “wild” behavior. However, if
additionally α satisfies a Liouville condition then the orbits of fn approximate
those of f uniformly on sufficiently growing time scales that one can conclude that
f is at least non-mixing.
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Problem Session

General Audience

The session was moderated by Danny Calegari and the problems were edited
by Strom Borman.

1. I. Kapovich

Two elements g, g′ ∈ G in a group are SLn(C)-character equivalent if and only
if trace(ρ(g)) = trace(ρ(g′)) for all homomorphisms ρ : G→ SLn(C). For the rank
2 free group F2, it is known that two elements g and g′ are conjugate if and only if
g and g′ are SLn(C)-character equivalent for all n. This motivates the following:

Question 0.1. Do there exist elements g, g′ ∈ F2 that are SL3(C)-character equiv-
alent but not conjugate?

Remark 0.1 (D. Calegari). Since the trace is a coefficient of the characteristic
polynomial, one could ask similar questions for the whole polynomial.

2. F. Le Roux

The following is with F. Beguin and S. Crovisier.

Conjecture 0.1. There does not exist a dense conjugacy class in Homeo0(S
2, area).

This conjecture is true for Homeo0(S
1) but is false for Homeo0(S

2). Proving
Conjecture 0.1 reduces to proving the following conjecture, which is true for the
group Ham(T2) ⊂ Homeo0(T2, area). For f ∈ Homeo0(S

2, area), let

A(f) := sup{area(D) : D ⊂ S2 is a topological disk and f(D) ∩D = ∅}.

Conjecture 0.2. If fn → 1 in Homeo0(S
2, area), then A(fn) → 0.

The following is with V. Humiliere and M. Khanevsky. Let B ⊂ (M,ω) be a
ball in a symplectic manifold and let γ ∈ π1(M,x0) where x0 ∈ B, then define

DB(γ) := {(ϕt) ∈ H̃am(M,ω) : ϕ1|B = 1B and [ϕt(x0)] = γ}.
Assume that DB(γ) 6= ∅ for all γ ∈ π1(M,x0), which is true in dimension 2, then

‖γ‖B = inf{‖(ϕt)‖Hofer : (ϕt) ∈ DB(γ)}
is a conjugation invariant norm on π1(M,x0).

Question 0.2. What can be said about this norm? Is it bounded? Is it equivalent
to the word length?

On M = T2 there is the bound ‖γ‖B ≤ 2max{‖(1, 0)‖B, ‖(0, 1)‖B}, as is true
for all SL2(Z) invariant norms on Z2. ForM = S1× [0, 1], if area(B) > 1

2area(M),
then ‖ · ‖B is unbounded (this is a theorem by M. Khanevsky).
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3. G. Courtois

Let (Xn+1, g) be a closed manifold with negative sectional curvature, then every

horospheres H in the universal cover (X̃n+1, g̃) is diffeomorphic to Rn.

Question 0.3. Are all the horospheres (H, g̃|H) in (X̃n+1, g̃) quasi-isometric to
each other? In the case this would be true, are they uniformly quasi-isometric?

All horospheres are known to be isometric if (X, g) is a rank 1 symmetric space.
The assumption of negative sectional curvature is needed since there are non-quasi-
isometric horospheres in H×H.

Question 0.4. In dimension 3, are the horospheres in (X̃, g̃0) and (X̃, g̃) quasi-
isometric, where g0 is the hyperbolic metric? More generally, what does a quasi-
isometry between (X̃, g̃0) and (X̃, g̃) say about their horospheres?

It is known that horospheres (H, g̃|H) have polynomial volume growth:

1
cR

α ≤ vol(B(R)) ≤ cRβ

Question 0.5. Under what conditions does α = β?

4. P. Py (with N. Monod)

Let G be a noncompact simple Lie group and let X = G/K be its associ-
ated symmetric space. All actions of G mentioned below are continuous and by
isometries. Consider the following two rigidity-type theorems.

Theorem 0.1 (Karpelevich, Mostow). If G acts on another symmetric space
X1 = G1/K1, then there exists an equivariant totally geodesic embedding X →֒ X1.

Theorem 0.2 (Caprace–Monod). If G acts cocompactly on a noncompact geodesi-
cally complete CAT(0) space Y , then Y is isometric to the symmetric space of G
(possibly after rescaling the metric).

In contrast, without the assumption of geodesic completeness, we have the
following result in the case where G is the isometry group of the n-dimensional
real hyperbolic space Hn:

Theorem 0.3 (Monod–Py). Let G = Isom(Hn). There exists a family (Ct)t∈(0,1]

of CAT(−1) spaces such that C1 is isometric to Hn, G ≃ Isom(Ct) and G acts
cocompactly on Ct for all t. The spaces Ct are pairwise non-isometric, even up to
scaling.

The spaces Ct can be taken to be minimal, i.e. without proper closed subsets
that are invariant and convex, and most likely have infinite topological dimension.

Question 0.6. Can one classify the CAT(0) or CAT(−1) spaces on which Isom(Hn)
acts cocompactly?
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5. M. Kapovich

Theorem 0.4 (Otal, Croke). Let Mi be compact surfaces with negative curva-
ture, then a homotopy equivalence f : M1 → M2 is homotopic to a isometry if f
identifies the marked length spectrums, i.e. for any closed geodesic γ in M1

lengthM1
(γ) = lengthM2

(f(γ)∗)

where f(γ)∗ is the unique closed geodesic in M2 homotopic to f(γ).

Theorem 0.5 (Thurston). Let Mi be compact hyperbolic surfaces, then a homo-
topy equivalence f : M1 → M2 is homotopic to a L-Lipschitz homeomorphism
if

sup
γ

lengthM2
(f(γ)∗)

lengthM1
(γ)

≤ L

where the supremum is taken over all closed geodesics γ in M1.

Question 0.7. Does Theorem 0.5 hold if Mi are only compact surfaces with neg-
ative curvature? This is open even if one assumes that one of the surfaces is
hyperbolic.

Theorem 0.4 has two proofs, a geometric one and a symplectic one, and they
are both very different from the proof of Theorem 0.5. It is not clear whether one
of them could be generalized in order to answer the question affirmatively.

6. J. Kędra

Let (M, ξ) be a contact manifold and let α be a contact form, i.e. ξ = ker(α).
There are two associated diffeomorphism groups, Cont0(M,α) the identity com-
ponent of diffeomorphisms preserving the contact form α, and Cont0(M, ξ) the
identity component of diffeomorphisms preserving the contact distribution.

Question 0.8. What can be said about the topology of the natural inclusion

Cont0(M,α)
j→֒ Cont0(M, ξ)

Some examples:

• If (M2n+1, α) is a prequantization space of a symplectic manifold (X2n, ω),
i.e. a principle S1-bundle π :M → X such that π∗ω = dα, then

1 → S1 → Cont0(M,α) → Ham(X,ω) → 1

is an exact sequence of groups.
• For (S1, dθ), then Cont0(S

1, dθ) = S1 and Cont0(S
1, ξ) = Diff0(S

1).
• If M = S3 with the standard contact structure, then from the sequence of
embeddings

Cont0(S
3, α) →֒ Cont0(S

3, ξ) →֒ Diff0(S
3)

and the fact that Cont0(S
3, ξ) ≃ U(2) and Diff0(S

3) ≃ SO(4), it follows
that j is a homotopy equivalence.
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Question 0.9 (L. Polterovich). What can be said about the geometry of j? In the
case of prequantization spaces there are quasi-morphisms on Cont0(M,α) coming
from Ham(X,ω), can such quasi-morphisms be extended to Cont0(M, ξ)?

Reporter: Kamil Bieder
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