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Introduction by the Organisers

The workshop Learning Theory and Approximation, organised by Kurt Jetter
(Stuttgart-Hohenheim), Steve Smale (Hong Kong) and Ding-Xuan Zhou (Hong
Kong) was held June 24–30, 2012. The meeting was well attended with 47 partic-
ipants from Asia, Europe and North America. It provided an excellent platform
for fruitful interactions among scientists from learning theory and approximation
theory.

The first part of the scientific program consisted of a few talks on learning geo-
metric structures from data. Steve Smale’s talk on mathematical foundations of
immunology demonstrated strong connections on data analysis for peptides and
amino acid chains among the research fields of computational biology and geom-
etry, learning theory and approximation theory. Nat Smale presented a Hodge
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theory for Alexandrov spaces with curvature bounded above including Riemann-
ian manifolds, Riemannian manifolds with boundary and singular spaces such as
simplicial complexes whose faces have constant curvature, and Titz buildings. The
described Hodge decomposition can be applied to data analysis and processing.
Modelling data by manifolds reflects many important aspects of realistic data
and provides a direct connection with differential geometry. In particular, man-
ifold learning algorithms based on graph Laplacians constructed from data have
received considerable attention both in practical applications and theoretical anal-
ysis. Belkin discussed the behavior of graph Laplacians at points at or near bound-
aries, intersections and edges, and showed that the behavior of graph Laplacians
near these singularities is quite different from that in the interior of the manifolds.
Jost spoke about the topic of geometric structures on the space of probability
measures in the area of information geometry, and introduced a sufficient statis-
tic for a parametrized family of measures under which the Fisher metric and the
Amari-Chentsov tensors remain invariant. Von Luxburg talked about the problem
of density estimation from unweighted k-nearest neighbor graphs, and connections
to graph learning algorithms like spectral clustering or semi-supervised learning.
Lim gave a talk on principal components of cumulants, discussing the geome-
try underlying cumulants and examining two ways to their principal components
analysis, decomposing a homogeneous form into a linear combination of powers of
linear forms, and decomposing a symmetric tensor into a multilinear combination
of points on a Stiefel manifold.

Sparsity is an important property for dimension reduction, data representa-
tion and analysis, and information retrieval. In this workshop, some statisticians
and approximation theorists discussed sparsity for various purposes and raised in-
teresting problems for approximation theory: Tsybakov introduced a compound
functional model as a nonparametric generalization of the high-dimensional lin-
ear regression model under the sparsity scenario and presented minimax rates
of convergence in terms of structural conditions of functions. Dahmen applied
deep analysis from tree-structured approximation to classification algorithms with
adaptive partitioning and analyzed their risk performance. The analysis allows
one to relax classical Hölder smoothness to weaker Besov smoothness, which leads
to interesting approximation theory problems. Sparsity was a core issue in clas-
sical support vector machines. Christmann’s talk was focussed on the question
how to draw statistical decisions based on nonparametric methods such as boot-
strap approximations of support vector machines and qualitatively robust support
vector machines. His discussions on various loss functions raised research prob-
lems for approximation theorists. Li considered the compressed sensing topic of
nonuniform support recovery via orthogonal matching pursuit from noisy random
measurements. Zhou talked about error analysis and sparsity for support vector
regression, coefficient-based regularization with ℓ1-penalty, and kernel projection
machines with ℓq-penalty.

Both approximation theory and learning theory provide useful tools for data
analysis and statistics. This is reflected by quite a few talks in this workshop.
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Wu gave a learning theory perspective on the empirical minimum error entropy
(MEE) principle developed in the fields of signal processing and data mining, and
he provided a rigorous consistency analysis of some MEE learning algorithms in
terms of approximation theory conditions on the model and hypothesis spaces.
Döring considered a regression model with a change point in the regression func-
tion and investigated the consistency with the increasing sample size of the least
squares estimates of the change point, for which the convergence rates depend
on the order of smoothness of the regression function at the change point. Minh
proposed a regularized spectral algorithm for hidden Markov models with numer-
ical stability, and gave some theoretical justification and simulations on real data
from pattern recognition. Pereverzyev applied the least squares Tikhonov regular-
ization schemes in reproducing kernel Hilbert spaces to the practical problem of
blood glucose reading, discussed intensively how to choose the hypothesis space,
and described a kernel adaptive regularized algorithm.

Kernels have been an essential part of both learning theory and approximation
theory. They form the topic of a few talks in this workshop. Plonka introduced
Prony’s method for solving inverse problems to the workshop audience, and de-
scribed her recent work on function reconstruction in terms of sparse Legendre
expansions and a new perception of Prony’s method based on eigenfunctions of
linear operators. Steinwart surveyed approximation theory properties of repro-
ducing kernel Hilbert spaces (eigenvalues, entropy numbers, interpolation spaces,
Mercer representations) and some related kernel methods for both supervised and
unsupervised learning. Schaback described some methods for explicit construc-
tions of new positive definite radial kernels, in particular kernels that are linked
to generalized Sobolev spaces. Zu Castell demonstrated some kernel-based meth-
ods for learning and approximation. For conditionally positive definite kernels,
he raised some approximation theory questions about the associated reproduc-
ing kernel Pontryagin space. Rosasco described the problem of learning the region
where a probability measure is concentrated by means of separating kernels. Some
approximation theory questions are mentioned such as the approximation of sets
under the Hausdorff distance and the existence of completely separating kernels.

Approximation theory and ideas of multiscale analysis from wavelets have been
applied in learning theory and have further potential applications. The workshop
contains quite a few talks discussing these areas and other possible connections
between learning and approximation. Kutyniok gave a survey on shearlets and
demonstrated their applications in sparse approximation and dictionary learning.
Mhaskar talked about function approximation on data dependent manifolds. The
research area of irregular sampling was described by Stöckler in his talk. Han’s
talk was on linear-phase moments in wavelet analysis and approximation theory.
Bernstein polynomials and Bernstein-Durrmeyer operators associated with gen-
eral probability measures together with their applications to learning theory were
discussed by Wu and Berdysheva in their talks. The ideas of tracking multiscale
structures by subdivision schemes and refinement algorithms together with poten-
tial applications in learning theory were discussed by Ebner and Jetter.
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The organizers acknowledge the friendly atmosphere provided by the Oberwol-
fach institute, and express their thanks to the entire staff.
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Abstracts

Mathematical foundation of immunology

Steve Smale

Large scientific and industrial enterprises are engaged in efforts to produce new
vaccines from synthetic peptides. The study of peptide binding to appropriate
alleles is a major part of this effort [2]. Our goal here [1] is to support the use of a
certain string kernel for peptide binding prediction as well as for the classification
of supertypes of the major histocompatibility complex (MHC, in humans which is
also called HLA) alleles.

Peptide binding to a fixed HLAII (and HLAI as well) molecule (or an allele)
a is a crucial step in the immune response of the human body to a pathogen
or a peptide-based vaccine. Its prediction is computed from data of the form
{(xi, yi)}mi=1 with xi ∈ Pa and yi ∈ [0, 1] where Pa is a set of peptides (i.e., chains
of amino acids or peptides of length 9 to 37, usually about 15) associated to an
HLAII allele a. The peptide binding problem occupies much research. To study
this problem we may use a symmetric function (a kernel) K : X ×X → R where
X is a finite set (Pa ⊆ X for the peptide binding problem with a single allele a).
Given an order on X , K may be represented as a matrix. Then it is assumed that
K is positive definite, and it generates a reproducing kernel Hilbert space HK .

Following regularized least squares (RLS) supervised learning [3], the main con-
struction is to compute

(1) fa = argmin
HK

{
m∑

i=1

(f(xi)− yi)
2 + λ‖f‖2K

}
.

Here λ > 0 is a regularization parameter chosen by a procedure called leave-one-
out cross validation.

There is an important generalization of the peptide binding problem where the
allele is allowed to vary [1].

The construction of our main kernel K on amino acid chains, denoted as K̂3

later, plays an essential role in our study. It is inspired by local alignment kernels
as well as an analogous kernel in vision.

Let A be the set of the 20 basic (for life) amino acids. Every protein has a
representation as a string of elements of A. Our construction of the kernel is given
in three steps [1].

Step 1. Definition of a kernel K1 : A×A → R. BLOSUM62 is a similarity (or
substitution) matrix on A frequently used in immunology [4]. In the formulation
of BLOSUM62, a kernel Q : A×A → R is defined using blocks of aligned strings
of amino acids representing proteins. We define a BLOSUM62-2 matrix, indexed
by the set A, by normalizing Q and taking a power β > 0.
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Step 2. Let A1 = A and define Ak+1 = Ak ×A recursively for any k ∈ N. We
say s is an amino acid chain (or string) if s ∈ ∪∞

k=1Ak, and s = (s1, . . . , sk) is a
k-mer if s ∈ Ak for some k ∈ N with si ∈ A. Consider

K2
k(u, v) = Πk

i=1K
1(ui, vi)

where u, v are amino acid strings of the same length k, u = (u1, . . . , uk), v =
(v1, . . . , vk); u, v are k-mers. K2

k is a kernel on the set of all k-mers.

Step 3. Let f = (f1, . . . , fm) be an amino acid chain. Denote |f | as the length
of f (so here |f | = m). Write u ⊂ f whenever u is of the form u = (fi+1, . . . , fi+k)
for some 1 ≤ i+ 1 ≤ i+ k ≤ m. Let g be another amino acid chain, then define

K3(f, g) =
∑

u ⊂ f, v ⊂ g
|u| = |v| = k
all k = 1, 2, . . .

K2
k(u, v).

We define the desired correlation kernel K̂3 by normalizing the above kernel

K̂3(x, y) =
K3(x, y)√

K3(x, x)K3(y, y)
.
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A Hodge theory for Alexandrov spaces with curvature bounded above

Nat Smale

In previous joint work with Laurent Bartholdi, Thomas Schick and Steve Smale
in [1], a Hodge theory for compact metric spaces was proposed and partially de-
veloped. A fundamental aspect of this theory, is that it describes a cohomology at
a fixed scale. Let (X, d) be a compact metric space, which we assume is endowed
with a Borel probability measure µ, and let α > 0 (the scale). For k = 1, 2, . . . ,
we define Uk+1

α ⊂ Xk+1 to be the closed α-neighborhood of the diagonal in Xk+1.
In our theory, the set of cochains of degree k, analogous to the differential k-forms
in the classical theory on a smooth manifold, is the Hilbert space of alternat-
ing functions on Uk+1

α which are in L2, denoted by L2
a(U

k+1
α ). The differential
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δ : L2
a(U

k+1
α ) → L2

a(U
k+2
α ) is the Alexander-Spanier coboundary operator

δf(x0, . . . , xk+1) =

k+1∑

i=0

(−1)i+1f(x0, . . . , x̂i, . . . , xk+1) .

It is easily seen that δ defines a bounded linear map, and that δ2 = 0, and therefore
gives rise to a cochain complex of Hilbert spaces

0 −→ L2(X)
δ0−→ L2

a(U
2
α)

δ1−→ · · · δk−1−→ L2
a(U

k+1
α )

δk−→ · · ·
We view this as analogous to the de Rham complex, and the corresponding

cohomology Hk
α,L2 = Ker δ

Imδ describes a cohomology at scale α. The adjoint δ∗ :

L2
a(U

k+2
α ) → L2

a(U
k+1
α ) is given by

δ∗f(x0, . . . , xk) = (k + 2)

∫

Sx

f(t, x) dµ(t)

where Sx = {t ∈ X : (t, x) ∈ Uk+2
α } is the slice of x = (x0, . . . , xk). The corre-

sponding Hodge Laplacian ∆ : L2
a(U

k+1
α ) → L2

a(U
k+1
α ) is given by

∆ = δδ∗ + δ∗δ .

In [1], various conditions were given on X, d, µ, α which imply that the Hodge
decomposition holds:

L2
a(U

k+1
α ) = Im δ ⊕ Im δ∗ ⊕Ker∆

and Ker∆ is isomorphic to Hk
α,L2 = Ker δ

Imδ

To be more precise, let K(X) denote the metric space of nonempty compact subsets
of X endowed with the Hausdorff metric, and define the witness function

wα : Uk+1
α → K(X)

by wα(x0, . . . , xk) = ∩iBα(xi) where Bα(xi) is the closed ball of radius α centered
at xi. It was shown that if wα was continuous, and that the radius of finite
intersections of balls of radius α+ δ (δ sufficiently small) is less than α + δ, then
the corresponding Hodge decomposition holds. In particular, it was shown that
if X was a compact Riemannian manifold, and α was sufficiently small, these
conditions hold.

Here, we extend these results to a large class of metric spaces, namely Alexan-
drov spaces with curvature bounded above. These are geodesic spaces, where
distances between nearby points are realized by the length of a path (a geodesic),
and whose geodesic triangles satisfy a certain comparison with triangles in a space
form of constant curvature K (for some fixed K ∈ R). Examples of Alexandrov
spaces with curvature bounded above include Riemannian manifolds, Riemannian
manifolds with boundary, as well as singular spaces such as simplicial complexes
whose faces have constant curvature, and Titz buildings. It is shown that if X
is a compact Alexandrov space with curvature bounded above, and α > 0 is suf-
ficiently small, then the sufficient conditions described above hold, and thus the
Hodge decomposition follows.
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Dealing with singular manifolds: theory and applications

Mikhail Belkin

(joint work with Qichao Que, Yusu Wang, Xueyuan Zhou)

An important setting for many recent algorithms and analyses in machine learning
problem has been that the underlying data lies on or near a smooth embedded
manifold. This model reflects many important aspects of realistic data and pro-
vides a direct connection with classical differential geometry.

At the same time, it can be argued that singularities and boundaries are an
important aspect of the geometry of realistic data. Boundaries occur whenever the
process generating data has a bounding constraint; while singularities appear when
two different manifolds intersect or if a process undergoes a “phase transition”,
changing non-smoothly as a function of a parameter.

In manifold learning, algorithms based on graph Laplacian constructed from
data have received considerable attention both in practical applications and the-
oretical analysis. Much of the existing work has been done under the assumption
that the data is sampled from a manifold without boundaries and singularities or
that the functions of interest are evaluated away from such points.

In this talk I will discuss the behavior of graph Laplacians at points at or near
boundaries and two main types of other singularities: intersections, where different
manifolds come together and sharp “edges”, where a manifold sharply changes
direction. We show that the behavior of graph Laplacian near these singularities
is quite different from that in the interior of the manifolds. In fact, a phenomenon
somewhat reminiscent of the Gibbs effect in the analysis of Fourier series, can be
observed in the behavior of graph Laplacian near such points. Unlike in the interior
of the domain, where graph Laplacian converges to the Laplace-Beltrami operator,
near singularities graph Laplacian tends to a first-order differential operator, which
exhibits different scaling behavior as a function of the kernel width. One important
implication is that while points near the singularities occupy only a small part of
the total volume, the difference in scaling results in a disproportionately large
contribution to the total behavior. Another significant finding is that while the
scaling behavior of the operator is the same near different types of singularities,
they are very distinct at a more refined level of analysis.

I will argue that a comprehensive understanding of these structures in addition
to the standard case of a smooth manifold can take us a long way toward better
methods for analysis of complex non-linear data and can lead to significant progress
in algorithm design.

In particular, I will describe a recent application of these methods to the prob-
lem of reconstructing a surface with sharp corners in graphics.
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Information geometry and sufficient statistics

Jürgen Jost

(joint work with Nihat Ay, Hông Vân Lê and Lorenz Schwachhöfer)

Information geometry provides a geometric structure on the space of probability
measures on a given space Ω. This space of probability measures can be seen as a
projective space for the space of all nonnegative measures, and it thereby inherits a
metric from the latter. This is the Fisher metric. Moreover, when µ0 is some base
measure, and φ ∈ L1(Ω, µ0), then µ = φµ0 is another measure whose L1-functions
f are of the form g + logφ for an L1(Ω, µ0)-function g. Since this shift by logφ
does not depend on f or g, we obtain an affine structure on the space of measures
when we consider L1(Ω, µ) as the tangent space at µ. This affine structure was
independently discovered and explored by Amari and Chentsov. There is the
problem, however, that when f ∈ L1(Ω, µ), then this does not imply that also
ef ∈ L1(Ω, µ) (the exponential is the inverse of the logarithm that appeared in the
transition from the function φ characterizing the transition between measures and
the function logφ that expressed the affine transformation between the tangent
spaces involved). Thus, certain infinitesimal deformations are obstructed.

A sufficient statistic for a parametrized family of measures on Ω is given by a
map into another measurable space Ω′ that does not loose any information about
the family parameter x. Therefore, also the Fisher metric and the Amari-Chentsov
tensors remain invariant under sufficient statistics. Conversely, Chentsov showed
that, for a finite space Ω, these tensors are uniquely characterized (up to a constant,
of course) by invariance under sufficient statistics. The extension to general spaces
Ω turned out to be difficult because of the above topological problems, and this
had remained an open problem. In our recent work, however, we found a functorial
approach to these topological aspects and could show the uniqueness of the Fisher
and Amari-Chentsov tensors for invariance under sufficient statistics for any Ω.

A Learning Theory perspective on the empirical minimum error
entropy principle

Qiang Wu

(joint work with Jun Fan, Ting Hu, and Ding-Xuan Zhou)

Information theoretical learning is an important research area in machine learn-
ing. It uses the concepts of entropies from information theory to substitute the
conventional statistical descriptors of variances and covariances. Among various
algorithms falling into this framework, the minimum error entropy (MEE) algo-
rithm was introduced for supervised learning and applicable to both regression and
classification problems. Although MEE have been successful in many applications
its mathematical foundation is far from well understood. Our purpose is a rigor-
ous consistency analysis of MEE algorithm and interpret its empirical effectiveness
from a learning theory perspective.
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We focus on MEE algorithm for regression problem where the aim is to estimate
a target function f∗ for which a set of observations z = {(xi, yi) : i = 1, . . . , n}
are obtained from a model

Y = f∗(X) + ǫ, E(ǫ|X) = 0.

MEE algorithm associated to the Rényi’s entropy of order 2 is motivated by
minimizing Rényi’s entropy of the error variable E = Y − f(X). Let p

E
denote

the probability density function of E. The Rényi’s entropy of the error variable E
is defined by

R(f) = − log (E[p
E
]) = − log

(∫

R

(p
E
(e))2 de

)
.

In practice p
E

can be estimated from the samples ei = yi − f(xi) by a kernel

density estimator. Using the Gaussian kernel Gh(t) =
1√
2πh

e−
t2

2h2 with bandwidth

parameter h, the empirical estimation of p
E
is given as

p
E,z

(e) =
1

n

n∑

j=1

Gh(e − ej) =
1

n

n∑

j=1

1√
2πh

e−
(e−ej )2

2h2 .

The empirical MEE algorithm learns fz from a set of hypothesis space H by
minimizing the empirical version of the Rényi’s entropy

Rz(f) = − log

(
1

n

n∑

i=1

p
E,z

(ei)

)
= − log


 1

n2

n∑

i,j=1

Gh(ei − ej)


 .

That is, fz = argmin
f∈H

Rz(f).

In order to study the asymptotical properties of the MEE algorithm we define
two types of consistency. The error entropy consistency refers to the convergence
of R(fz) to R∗ = infR(f) in probability as n → ∞. The regression consistency
refers to the convergence of fz plus a suitable constant adjustment to the regres-
sion function f∗ in probability. This definition is natural because the solution of
the empirical MEE algorithm is invariant to constant adjustment. Note that the
error entropy consistency ensures the learnability of minimum error entropy, as is
expected from the motivation of the empirical MEE algorithm, while the regression
function consistency enables good approximation of the regression target function
f∗. These two types of consistency, however, are not necessarily coincident.

Our main contributions are to show the incoincidence of these two types of
consistency and illustrate the complication of the regression consistency. A couple
of main results are proved under mild conditions on the model and hypothesis
space. Firstly we show that the error entropy consistency is always true by choos-
ing the bandwidth parameter h to tend to 0 at an appropriate slow rate. This
is somewhat an expected result from the motivation of MEE algorithm. Next
we studied the relation between error entropy consistency and regression consis-
tency. For homoskedastic models where the noise ǫ is independent of X , it is
proved that the error entropy consistency implies the regression consistency. As
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a corollary, the regression consistency always holds if h tends to 0 at an appro-
priate slow rate. For heteroskedastic models where the noise variable depends on
X , we presented a counter-example for which the error entropy consistency and
regression function consistency do not coincide. Lastly, we prove a quite surpris-
ing result which states that regression consistency is true for both homoskedastic
and heteroskedastic models if the bandwidth parameter tends to infinity at a slow
rate. The requirement of choosing large h was observed in some earlier empirical
work but clearly contradicts the motivation of MEE algorithms because the kernel
density estimator does not converge without h → 0. These results show that the
consistency of the empirical MEE is a very complicated issue and requires further
investigation.

Change point estimation in regression models

Maik Döring

(joint work with Uwe Jensen)

In this talk we consider a simple regression model with a change point in the
regression function. We investigate the consistency with increasing sample size
n of the least square estimates of the change point. It turns out that the rates
of convergence depend on the order of smoothness of the regression function at
the change point. In the case of a discontinuity point of a regression function
we have that the rate of convergence is n. In addition, it is shown, that for
the discontinuity case the change point estimator converges to a maximizer of a
random walk. In the case of a smooth change of a regression function the change
point estimator converges to a maximizer of a Gaussian process. The asymptotic
normality property of the change point estimator is established in a particular
case of a smooth change point. What goes beyond the results published in the
literature so far is in particular that the rate of convergence is even valid for low
degrees of smoothness of the change point.

The problem to estimate the location of a change point in a regression model
has been studied in the literature to some extent. In most cases locating a jump
discontinuity is considered and properties of the estimators are studied. Müller
[4] investigates the problem of estimating a jump change point in the derivative of
some order ν ≥ 0 of the regression function. His change point estimators are based
on one-sided kernels. This includes the case of continuous regression functions with
a change in the derivative at same point which we call smooth change point.

Let for n ∈ N the observations (X1, Y1) , . . . , (Xn, Yn) be i.i.d. R
2-valued random

variables with the same distribution as (X,Y ). We assume that the response
variables Yi are given by the following regression model with change point θ0 ∈
[0, 1]

Yi = fθ0 (Xi) + ǫi, 1 ≤ i ≤ n, n ∈ N.
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For θ ∈ [0, 1] the regression function fθ : [0, 1] → R is given by

fθ (x) := (x− θ)
q · 1[θ,1] (x) ,

where q ≥ 0 and 1A is the indicator function of a set A. Let ǫ1, · · · , ǫn be i.i.d.
real valued random variables with E (ǫ1|X) = 0 a.s. and suitably integrable. The
case q = 0, i.e. the regression function has a jump at θ, was studied in Kosorok
[3]. The case q ≥ 2 was considered by Rukhin and Vajda [5] in a fixed design
model. In a similar model an estimator for a singularity of a density function was
analyzed in the book of Ibragimov and Has’minskii [2].

In the following the focus will be on estimating the change point θ0 by the
least squares method. We assume that the regression function is known except
the change point θ0 ∈ [0, 1]. We consider the least squares error for any possible
change point. For θ ∈ [0, 1] and n ∈ N we define

Mn (θ) := − 1

n

n∑

i=1

(Yi − fθ (Xi))
2
.

For n ∈ N our estimator is defined as the maximizing point of Mn:

θ̂n := argmax
θ∈[0,1]

Mn (θ) .

To analyze the asymptotic behavior of our estimator, we use the theory of M-
estimators and empirical processes, which are described, for example, in van der
Vaart [6]. We show that our estimator is strongly consistent. It turns out that
the rates of convergence depend on the order of smoothness q of the regression
function at the change point.

rn

(
θ̂n − θ0

)
= Op (1) , where rn =





n
1

2q+1 0 ≤ q < 1
2√

n · ln(n) q = 1
2√

n 1
2 < q <∞.

In addition, it is shown, that for the discontinuity case the change point estimator
converges to a maximizer of a random walk. In the case of a smooth change of
a regression function the change point estimator converges to a maximizer of a
Gaussian process. The asymptotic normality property of the change point esti-
mator is established for q ≥ 1

2 . What goes beyond the results published in the
literature so far is in particular that the rate of convergence is even valid for low
degrees of smoothness of the change point.
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Shearlets: sparse approximation and dictionary learning

Gitta Kutyniok

(joint work with Jakob Lemvig, Wang-Q Lim)

Many important problem classes in applied mathematics are governed by aniso-
tropic features such as singularities on lower dimensional embedded manifolds.
Examples are shock fronts in solutions of transport dominated equations or edges
in images. Shearlet analysis might by now be considered the most versatile and
successful methodology to efficiently represent such features, in particular, because
it allows a unified treatment of the continuum and digital realm. For a survey on
shearlets we refer to [2]. However, although compact support is often required to
achieve superior spatial localization, most research had so far focussed on band-
limited shearlets.

About two years ago, an extensive theory of compactly supported shearlets was
introduced in [1]. In [3], those shearlets could in fact also be shown to provide
optimally sparse approximations of anisotropic features within the model situation
of what are typically coined cartoon-like functions, i.e., coarsely speaking functions
supported on the unit square which are C2 apart from a closed C2 discontinuity
curve. Very recently, this theory was extended in [4] in two ways: First, it was
generalized to the 3D setting, which is the first setting in which anisotropic features
appear in two different dimensions. Second, the model class was extended by
allowing the function as well as the curve to (independently) have a regularity
of Cα with 1 < α ≤ 2. The second extension required a generalization coined
hybrid shearlets of classical shearlet systems. Those new systems can be regarded
as a parameterized family of systems which range from shearlets, i.e., parabolically
scaled systems, to wavelets, i.e., isotropically scaled systems.

An essential problem when utilizing systems for sparse recovery is the design
of such. For this task, systems can be categorized in two classes: One class are
specifically designed systems such as wavelets and shearlets, whereas the other
class are data adapted systems which are learned from given test data by dictionary
learning algorithms. The problem with systems belonging to the second class lies
in the missing structure, which typically prevents a rigorous mathematical analysis
of their properties. Hybrid shearlets are one possible way to bridge this gap by
providing a family of functions dependent on one parameter, which can be learned.
The difference to customarily exploited dictionary learning algorithms lies in the
fact that the learned system is then still highly structured and, for instance, frame
properties as well as sparse approximation results are known.
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Approximation by k-sparse sums of eigenfunctions of linear operators

Gerlind Plonka

(joint work with Thomas Peter)

In signal analysis, there often is some a priori knowledge about the underlying
structure of the wanted signal. Thus, one is faced with the problem of extracting
a certain number of parameters from the given signal measurements. Considering
for example a structured function of the form

f(ω) =

k∑

j=1

cj e
ωTj

with complex parameters cj and Tj, j = 1, . . . , k, and assuming that −π < ImT1 <
. . . < ImTk < π, one aims to reconstruct cj and Tj from a given small amount
of (possibly noisy) measurement values f(ℓ). Using Prony’s method or one of its
stabilized variants, one is able to reconstruct f with only 2k function values f(ℓ),
ℓ = 0, . . . , 2k − 1. The solution of this problem involves the determination of a
so-called “Prony polynomial”

Λ(z) =
k∏

j=1

(z − eTj ) =
k∑

ℓ=0

αℓz
ℓ

with αk = 1. Using the structure of f , a short computation yields

(1)

k∑

ℓ=0

f(ℓ+m)αℓ = 0, m = 0, 1, . . . .

The homogenous Hankel system (1) provides the coefficients αℓ of the Prony poly-
nomial Λ(z), and the unknown parameters Tj can now be extracted from the zeros
of Λ(z). Afterwards, the coefficients cj are obtained by solving a linear system.

In recent years, the Prony method has been successfully applied to different
inverse problems as e.g. for analysis of ultrasonic signals or for the approximation
of Green functions in quantum chemistry or fluid dynamics, see e.g. [2, 3]. The
renaissance of Prony’s method originates from some modifications of the corre-
sponding algorithm that considerably stabilize the original approach, [4, 7].

Searching the literature, one finds different further reconstruction methods that
are closely related to Prony’s method at second glance. In spectral analysis the
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annihilating filter method is frequently applied. This idea has also been used
already long ago for the construction of cyclic codes, [8]. For a given signal S[n],
the FIR filter A[n] is called annihilating filter of S[n], if

(A ∗ S)(n) =
∑

j∈Z

A[j]S[n− j] = 0.

Using the z-transform A(z) =
∑k

n=0A[n]z
−n and comparing this equation to (1),

we observe that zkA(z) undertakes the task of the Prony-polynomial.
In computer algebra, one is faced with the computation and processing of mul-

tivariate polynomials of high order. But if the polynomial f is k-sparse, i.e.,

f(x1, . . . , xn) =

k∑

j=1

cjx
dj1

1 x
dj2

2 · · ·xdjn
n

with c1, . . . , ck ∈ C and with k pairwise different vectors (dj1 , . . . , djn) ∈ N
n, the

polynomial can be completely recovered using only 2k suitably chosen function
values. Here again, the number of needed evaluations does not depend on the
degree of the polynomial f but on the number k of active terms. The correspond-
ing algorithm goes back to Ben-Or and Tiwari [1], and has recently been shown
to be closely related to the Prony method. In [6], we considered the function
reconstruction problem for sparse Legendre expansions of order N of the form

f(x) =

k∑

j=1

cjPnj
(x)

with 0 ≤ n1 < n2 . . . < nk = N , where k ≪ N , aiming at a generalization of
Prony’s method for this case. We succeeded to derive a reconstruction algorithm
involving the function and derivative values f (ℓ)(1), ℓ = 0, . . . , 2k − 1. The re-
construction is based on special properties of Legendre polynomials and does not
provide an idea for further generalization of the method to other orthogonal poly-
nomial bases or to other function systems apart from exponentials and monomials.

Just recently, we developed a new perception of Prony’s method based on eigen-
functions of linear operators, see [5]. This new insight gives us a tool for unification
of all Prony-like methods on the one hand and for an essential generalization of the
Prony approach on the other hand. This generalization will open a much broader
field of applications of the method.
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Principal components of cumulants

Lek-Heng Lim

(joint work with Jason Morton)

Gian-Carlo Rota famously said that “Even today, the statistical theory of cumu-
lants wears a halo of mystery that we still are a long way from dispelling. We
do not hesitate to predict that cumulants will soon be inserted in the mainstream
of mathematics.” That was in 1986 and Rota’s prediction did not materialize —
cumulants are still as mysterious as they were a quarter century ago.

We would like to propose an explanation for this: Too much has been focussed
on the combinatorics of cumulants and too little on its geometry. In this talk, we
would like to discuss the geometry underlying cumulants and examine two unusual
ways to analyze cumulants akin to principal components analysis: (i) decompos-
ing a homogeneous form into a linear combination of powers of linear forms; (ii)
decomposing a symmetric tensor into a multilinear combination of points on a
Stiefel manifold. In the latter, one may identify ‘principal cumulant components’
via optimization over a Grassmannian.

Why might such principal components be useful? Multivariate Gaussian data
are completely characterized by their mean and covariance but higher-order cumu-
lants are unavoidable in non-Gaussian data. For univariate data, these are well-
studied via skewness and kurtosis but for multivariate data, these cumulants are
tensor-valued — higher-order analogs of the covariance matrix capturing higher-
order dependence in the data. We argue that multivariate cumulants may be
studied via these principal components, defined in a manner analogous to the
usual principal components of a covariance matrix. It is best viewed as a subspace
selection method that accounts for higher-order dependence the way PCA obtains
varimax subspaces. A variant of stochastic gradient descent on the Grassmannian
permits us to estimate principal components of cumulants of any order in excess
of 10, 000 dimensions readily on a laptop computer.
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A regularized spectral algorithm for Hidden Markov Models

Hà Quang Minh

(joint work with Marco Cristani, Alessandro Perina, Vittorio Murino)

Hidden Markov Models (HMM) are among the most important and widely used
techniques in statistical learning, with numerous applications in various domains
involving sequence modeling, including speech recognition, computer vision and
pattern recognition, and bioinformatics. Traditionally, algorithms for learning
HMMs have mainly employed Expectation Minimization (EM) [1]. While powerful
and widely used, the main problem of EM methods is that they are prone to local
minima. The quest for algorithms which are free of local minima and which are
statistically consistent has been the focus of much research in the last decade. Two
recent generalizations of HMMs, which are closely related, are Observable Operator
Models (OMMs) [3] and Predictive State Representations (PSRs) [5]. Instead of
the structure of unknown hidden states and emission probabilities, these models
focus entirely on observation quantities and express sequence trajectories using
linear operators, thus transforming probabilistic problems into linear algebraic
ones.

Two recent algorithms implementing OMMs are [2, 4]. The main problem of
these algorithms is that they are not very stable numerically. While they return
exact results on exact observation statistics, on empirical observation statistics,
which are what we have in practice, they often return probabilities which are
negative or greater than one. This is due to their use of the Singular Value
Decomposition and the pseudo-inverse operations.

Our contributions

To overcome numerical instability, we propose a regularized spectral algorithm.
Specifically, let n be the number of possible symbols emitted by the HMM. Con-
sider P1 ∈ Rn, P2,1 ∈ Rn×n, P3,x,1 ∈ Rn×n, which are defined by:

(1) (P1)i = P(x1 = i),

(2) (P2,1)ij = P(x2 = i, x1 = j),

(3) (P3,x,1)ij = P(x3 = i, x2 = x, x1 = j),

for 1 ≤ x ≤ n. We approximate the probability

(4) P(X1 = x1, . . . , Xt = xt)

by a sequence of matrix multiplications

(5) bT∞Bxt
. . . Bx1b1,

where

(6) b∞ = (UTP2,1P
T
2,1U + γI)−1(UTP2,1P1),

(7) Bx = (UTP3,x,1P
T
2,1U)(UTP2,1P

T
2,1U + γI)−1,
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(8) b1 = UTP1,

for some regularization parameter γ > 0. Here U is a randomly chosen matrix of
size n× k, such that rank(UTP2,1P

T
2,1U) = rank(P2,1) = k.

Compared to [2, 4], our algorithm

(1) is guaranteed to produce probability values that are always physically
meaningful, that is between 0 and 1;

(2) on synthetic mathematical models, produces probability values that ap-
proximate very well true theoretical values;

(3) places no restriction on the number of symbols and the number of states.
The theoretical justification for this case is significantly different from the
case the number of states is smaller than or equal to the number of symbols.

Our algorithm has been tested on various real data sets in pattern recogni-
tion, showing significant improvements over classical HMMs, in both accuracy
and speed.
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Can we estimate the density from an unweighted, random k-nearest
neighbor graph?

Ulrike von Luxburg

Setting. Assume we draw a set of points X1, ..., Xn i.i.d. from some nice density
p on Rd. We build the k-nearest neighbor graph on this sample: its vertices corre-
spond to the data points and Xi is connected to Xj by an undirected, unweighted
edge whenever Xi is among the k nearest neighbors of Xj . Let A be the adjacency
matrix of the graph.

The problem. Consider the following open problems:

• Can we estimate the density p(Xi) at the data points (up to constant
factors), just by looking at the adjacency matrix A?

• Can we approximately reconstruct the point locations X1, ..., Xn (up to
translation, rotation, rescaling) when we just know the adjacency matrix
A and n is large enough?
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I believe that an answer to this problem is important for machine learning.
Graph learning algorithms like spectral clustering or semi-supervised learning are
often applied to unweighted kNN-graphs. If it turned out that the adjacency
matrix of this graph is not informative enough about the underlying density, then
we could not expect the machine learning algorithms to find the correct answers.

Techniques. The two problems stated above are closely related to each other in
the sense that a solution to one of them implies a solution to the other one. In
my talk I am going to discuss various, very diverse ideas and approaches to tackle
the problem, but won’t give final answers yet.

Just to make everybody curious, here are a couple of keywords that are relevant
to the question:

• Mathematical geometry: sphere-preserving maps and Möbius maps
• Computational geometry: arrangements of hyperplanes
• Statistics: non-metric multidimensional scaling; ranking
• Analysis: completely monotonic functions

Answers? I don’t have firm answers yet, just a couple of conjectures. Perhaps,
the joint expertise of the participants would help to crack the nut!

Function approximation on data defined manifolds

Hrushikesh Mhaskar

We give a brief survey of our recent work on approximation of functions of un-
structured, high dimensional data sets. One can assume that the data set is a
sample from an unknown low dimensional manifold. While diffusion maps have
been used to study the geometry of this manifold, we have developed a theory
of wavelet-like representation of functions on the unknown manifold based on the
eigenfunctions of the heat kernel. In turn, the heat kernel can be approximated
using the data set, as is well knwon from the theory of Laplacian eigenmaps and
diffusion maps. We describe also some applications of this theory to the analysis
of some practical data sets.

Statistical inference in compound functional models

Alexandre B. Tsybakov

(joint work with Arnak S. Dalalyan, Yuri Ingster)

Assume that we observe a real-valued Gaussian process Y = {Y (φ) : φ ∈ L2([0, 1]d)}
such that

Ef [Y (φ)] =

∫

[0,1]d
f(x)φ(x) dx, Covf (Y (φ), Y (φ′)) = ε2

∫

[0,1]d
φ(x)φ′(x) dx,

for all φ, φ′ ∈ L2([0, 1]d), where Ef and Covf are the expectation and covariance
signs and ε is some positive number. Our aim is to estimate the unknown function
f ∈ L2([0, 1]d).
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We denote by L2
0([0, 1]

d) the subset of L2([0, 1]d) containing all the functions
f such that

∫
[0,1]d

f(x) dx = 0. Let ‖ · ‖2 denote the L2([0, 1]d)-norm. For every

s ∈ {1, . . . , d} and m ∈ N, we define Vd
s =

{
V ⊆ {1, . . . , d} : |V | ≤ s

}
and

Bd
s,m =

{
η ∈ {0, 1}Vd

s : |η|1 = m
}
where |V | is the cardinality of V and |η|1 is the

number of ones in η. For a vector v, we denote by supp(v) its support, that is the
set of indices of its non-zero components.

In order to circumvent the curse of dimensionality when estimating f , it is
necessary to impose some a priori structural conditions on f . In the present work,
we introduce a new type of structural assumption that has the following form.
Compound functional model. There exists an integer s ∈ {1, . . . , d}, a binary
sequence η ∈ Bd

s,m and a set of functions {fV ∈ L2
0([0, 1]

|V |)}V ∈Vd
s
such that

f(x) = f̄ +
∑

V ∈Vd
s

fV (xV )ηV = f̄ +
∑

V ∈supp(η)

fV (xV ), ∀x ∈ R
d,

where f̄ =
∫
[0,1]d f(x) dx.

In addition to this structural condition, we will also assume that the components
fV are smooth. Thus, given a collection Σ = {ΣV }V ∈Vd

s
of subsets of L2

0([0, 1]
s),

we define the classes

Fs,m(Σ) =
⋃

η∈B̃
Fη(Σ),

where B̃ is a given subset of Bd
s,m and

Fη(Σ) =
{
f : Rd → R : ∃{fV ∈ ΣV } such that f = f̄ +

∑

V

fV ηV

}
.

The compound model is described by three main parameters. These are the dimen-
sionm that we call the macroscopic parameter, which characterizes the complexity
of possible structure vectors η, the dimension s that we call the microscopic pa-
rameter, which is responsible for the complexity of individual functions in the
compound, and the complexity of functional class Σ. The latter can be described
by entropy numbers of Σ in convenient norms. We consider the case of Sobolev
classes, ΣV = WV (β, L) characterized by the smoothness β > 0 and the radius
L > 0. We define the Sobolev class WV (β, L) by

WV (β, L) =

{

g ∈ L
2
0([0, 1]

d) : g =
∑

j∈Zd:supp(j)⊆V

θj [g]ϕj and
∑

j∈Zd

|j|2β∞ θj [g]
2 ≤ L

}

where {ϕj}j∈Zd is a system of functions satisfying the appropriate conditions (for
example, it can be the tensor-product trigonometric basis), θj [f ] = 〈f, ϕj〉 where
〈·, ·〉 denotes the inner product in L2([0, 1]d), and |j|∞ denotes the ℓ∞ norm of
j ∈ Z

d.
The integers m and s are “effective dimension” parameters. As soon as they

grow, the structure becomes less pronounced and the compound model approaches
the global nonparametric regression in dimension d, which is known to suffer from
the curse of dimensionality already for moderate d. Therefore, an interesting case
is the sparsity scenario where s and/or m are small.
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We establish non-asymptotic upper and lower bounds on the minimax risk

inf
f̂

sup
f∈Fs,m(W (β,L))

Ef [‖f̂ − f‖22],

where inf f̂ denotes the minimum over all estimators, and

W (β, L) = {WV (β, L)}V ∈Vd
s
.

We prove that, up to a multiplicative constant, the minimax risk behaves itself as

max

{
mLs/(2β+s)ε4β/(2β+s), msε2 log

(
d

sm1/s

)}
(1)

(we assume here d/(sm1/s) > 1, otherwise a constant factor should be inserted
under the logarithm, see below). For the particular case s = 1, i.e., for the additive
regression model, [1] provides a lower bound on the minimax risk that matches (1)
but an upper bound that departs from the lower one by a logarithmic factor. That
paper assumes β to be known. We demonstrate that the rate (1) can be achieved
for general s and in an adaptive way, that is without the knowledge of β, s, and
m.

If m = 1, i.e., f(x) = fV (xV ) for some unknown V ⊆ {1, . . . , d} with |V | ≤ s,
then the compound model reduces to a single atom model. For s≪ d, this can be
viewed as a nonparametric generalization of the high-dimensional linear regression
model under the sparsity scenario. The minimax rate of convergence (1) is then

max

{
Ls/(2β+s)ε4β/(2β+s), sε2 log

(
d

s

)}
.(2)

These rates account for two effects, namely, the accuracy of nonparametric es-
timation of f for fixed macroscopic structure parameter η, cf. the first term ∼
ε4β/(2β+s), and the complexity of the structure itself (irrespective to the nonpara-
metric nature of the atoms fV (xV )). In particular, the second term ∼ sε2 log(d/s)
in (2) coincides with the optimal rate of prediction in linear regression model under
the standard sparsity assumption. It is important to note that the optimal rates
depend only logarithmically on the ambient dimension d. Thus, even if d is large,
the rate optimal estimators achieve nice performance under the sparsity scenario
when s and m are small.
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On approximations of the finite sample distribution of Support Vector
Machines

Andreas Christmann

(joint work with Mat́ıas Salib́ıan-Barrera, Stefan Van Aelst, Robert Hable)

The finite sample distribution of many nonparametric methods from statistical
learning theory is unknown because the distribution P from which the data were
generated is unknown and because there are often only asymptotical results on the
behaviour of such methods known. The talk is focussed on the question how to
draw statistical decisions (like confidence regions, prediction intervals, tolerance
intervals or statistical tests) based on such nonparametric methods.

The first goal of this talk is to show that bootstrap approximations [8] of an
estimator which is based on a continuous operator from the set of Borel probability
distributions defined on a compact metric space into a complete separable metric
space is qualitatively robust in the sense of robust statistics. As a special case
it is shown that bootstrap approximations of (general) support vector machines
(SVM) based on a Lipschitz continuous shifted loss function and a bounded kernel
are qualitatively robust, both for the risk functional and for the SVM operator
itself, if some relatively mild conditions are satisfied. Details of our results are
given in [2] and can be interpreted as generalizations of theorems derived by [6].

The second goal of this talk is to show that bootstrap approximations of qual-
itatively robust support vector machines converge in outer probability, if some
weak assumptions are satisfied. This result is unpublished.

(General) support vector machines based on some shifted loss function L⋆ and
some reproducing kernel Hilbert space (RKHS) H – which is often specified via
the corresponding kernel k – are defined by

(1) fL⋆,P,λ := arg inf
f∈H

EPL
⋆(X,Y, f(X)) + λ‖f‖2H ,

where P denotes the unknown distribution and L : X ×Y ×R→ [0,∞) is convex
with respect to its third argument. The shifted version of a loss function is given
by L⋆(x, y, t) := L(x, y, t) − L(x, y, 0) for all (x, y) ∈ X × Y. Given a data set
D = ((x1, y1), . . . , (xn, yn)) ∈ (X × Y)n, the empirical SVM is of course defined
by fL⋆,D,λ, where D denotes the empirical distribution defined by D.

This class of statistical methods based on minimizing a regularized risk with
the special regularizing term λ‖f‖2H over an RKHS plays an important role in
statistical machine learning. The original SVM approach by [1] was derived from
the generalized portrait algorithm invented earlier by [15]. Considering regularized
empirical (least squares) risks over reproducing kernel Hilbert spaces is a relatively
old idea, see, e.g., [10] and [16] and the references therein.

Obviously, the definition of (general) SVMs given in (1) covers many specific
loss functions as special cases, e.g., the hinge loss function for binary classification,
the ǫ-insensitive loss function for regression, the check loss function (which is also
called pinball loss function) for quantile regression, and the logistic loss functions
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for classification and for regression. Note that these five loss functions are even
Lipschitz continuous, and many authors have shown that the combination of a
Lipschitz continuous loss function and a bounded and continuous kernel (e.g., a
Gaussian RBF kernel or a Wendland kernel, see [17]) yields statistically robust
(general) SVMs for classification and for regression purposes, see e.g. [9], [3], [11],
and [4]. In general, this is not true for (general) SVMs based on a non-Lipschitz
continuous loss function, if the output space Y is unbounded.
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Nonuniform support recovery from noisy random measurements by
orthogonal matching pursuit

Song Li

This talk considers nonuniform support recovery via Orthogonal Matching Pursuit
(OMP) from noisy random measurements. Given m admissible random measure-
ments (of which subgaussian measurements is a special case) of a fixed s-sparse
signal x in Rn corrupted with additive noise, we show that under a condition on
the minimum magnitude of the nonzero components of x, OMP can recover the
support of x exactly after s iterations with overwhelming probability provided that
m = O(s log n). This extends the results of J. A. Tropp and A. C. Gillert to the
case with noise. It is a real improvement over previous results in the noisy case,
which are based on mutual incoherence property or restricted isometry property
analysis and which require O(s2 logn) random measurements.

In addition, this talk also considers sparse recovery from noisy random frequency
measurements via OMP. Similar results can be obtained for the partial random
Fourier matrix via OMP provided that m = O(s(s + log(ns))). Thus, for some
special cases, this answers the open question raised by J .A. Tropp and H. Rauhut.

Learning in variable RKHSs with application to the blood glucose
reading

Sergei V. Pereverzyev

(joint work with V. Naumova, S. Sivananthan)

In this talk we consider the problem of a reconstruction of a real-valued function
f : X → R, X ⊂ R

d, from a given data set

z = {(xi, yi)}ni=1 ⊂ X × R,

where it is assumed that yi = f(xi) + ξi, and ξi = {ξi}ni=1 is a noise vector. The
reconstruction problem can be considered in two aspects: (i) interpolation – to

evaluate the value of a function f(x) for x ∈ co{xi}, (ii) extrapolation – to predict

the value of f(x) for x /∈ co{xi}.
In both aspects the reconstruction problem is ill-posed and one of the classi-

cal ways to solve it is the use of a Tikhonov-type method, which in the present
context consists in constructing a regularized solution fλ(x) as a minimizer of the
functional

(1) Tλ(f ;H, z) =
1

|z|

|z|∑

i=1

(yi − f(xi))
2 + λ||f ||2H,

where |z| is the cardinality of the set z, i.e., |z| = n, and λ is a regularization
parameter.

The Tikhonov method (1) raises two main issues that should be clarified before
use of this scheme. One of them is how to choose a regularization parameter λ.
This problem has been extensively discussed [1, 2, 3, 5, 11]. Another one, which
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is even more important, is how to choose the space H, whose norm is used for a
penalization. Despite its significance, the second issue is much less studied. Note
there are still no general principles to advise a choice and only in a few papers
[2, 8, 9, 12] some methods for finding an appropriate space for the regularization
of ill-posed problems have been proposed. Keeping in mind that a Sobolev space
H =W r

2 traditionally used in (1) is a particular example of a Reproducing Kernel
Hilbert Space (RKHS), the above mentioned issue is about the choice of a kernel
K for an RKHS H = HK .

In this talk we describe a novel approach [10], so-called kernel adaptive regular-
ized (KAR) algorithm, where the choice of the kernel and regularization parame-
ter is governed by several conditions, which allow to achieve a good performance
within the regularization procedure. In short, the proposed approach is based on
splitting of a given data set z and is oriented towards extrapolation.

To be more specific, the kernel K is chosen from the set of admissible kernels
K as the minimizer of the following functional
(2)
Qµ(K,λ(K), z) = µTλ(K)(fλ(K)(·;K, zT ),HK , zT ) + (1− µ)P (fλ(K)(·;K, zT ),K, zP ),

where

zT ∪ zP = z, co{xi : (xi, yi) ∈ zT } ∩ {xi : (xi, yi) ∈ zP } = ∅,
µ ∈ [0, 1] is the parameter that can be seen as a performance regulator on the
sets zP and zT , and fλ(·;K, zT ) is the minimizer of the Tikhonov-type functional
Tλ(f ;HK , zT ).

At the same time, the functional P is used to measure the performance of the
regularization estimator fλ(x;K, zT ), constructed with the use of the data set zT ,
on the rest of a given data zP .

For a rather general form of the set K and parameter choice rule λ = λ(K) we
justify the existence of the kernel K0 ∈ K that minimizes the functional (2).

The last part of the talk is concerned with the practical application of the
proposed approach. Namely, we consider how the approach based on the mini-
mization of the functional (2) can be adapted to a problem of diabetes therapy
management, to be more specific, reading blood glucose (BG) concentration of
diabetic patients from electrical signals in the interstitial fluid (ISF), measured
by commercially available devices, Continuous Glucose Monitoring (CGM) sys-
tems. We illustrate the results of the numerical experiments with real clinical
data and show advantages of this new approach, by comparing the performance of
the constructed blood glucose estimators with the performance of the commercially
available CGM-systems.

Finally, we discuss the versatility and effectiveness of the proposed approach
for other applications from diabetes therapy management.
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Eigenvalues, entropy numbers, and Mercer representations for RKHSs

Ingo Steinwart

Reproducing kernel Hilbert spaces (RKHSs) play an important role in many mod-
ern machine learning methods including both supervised methods such as support
vector machines (SVMs) and related regularized kernel methods, and unsuper-
vised methods such as kernel PCA and some manifold techniques. In the analysis
of these learning algorithms one frequently needs to quantify the approximation
properties of these spaces, e.g. in terms of eigenvalues, entropy numbers, or inter-
polation spaces.

For example, one of the currently sharpest techniques to bound the estimation
error of SVMs and related methods uses a localized ansatz together with Tala-
grand’s inequality, symmetrization, peeling, and Dudley’s entropy integral. Since
the latter can be equivalently expressed in terms of entropy numbers, it turns out
that expected entropy numbers of the form

ED∼νnei
(
id : H → L2(D)

)

need to be considered in order to bound the estimation error. Here ν is the
marginal distribution of the data generating distribution P , ei denotes the ith
(dyadic) entropy number, H is the considered RKHS, and L2(D) is the Lebesgue
space with respect to the empirical measure defined by the data D = (x1, . . . , xn).
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For general Banach spaces, bounding such expected entropy numbers directly is
known to be extremely difficult, and hence one usually resorts to bounding

ED∼νnei
(
id : H → ℓ∞(X)

)
,

instead. The first part of the talk, which is based on [2], shows that for RKHSs
this crude approach can often be improved. To be more precise, assume that we
have a constant c such that

(1) ei
(
Ik : H → L2(ν)

)
≤ c i−

1
2p , i ≥ 1 ,

where Ik : H → L2(ν) denotes the “inclusion” that maps an f ∈ H to its equiva-
lence class [f ]∼ in L2(ν). Then there exists another constant Kp only depending
on p such that

ED∼νnei
(
id : H → L2(D)

)
≤ Kp c i

− 1
2p , i ≥ 1, n ≥ 1 .

Moreover, (1) is shown to be equivalent to

(2) λi(Tk) ≤ C i−
1
p , i ≥ 1 ,

where C is some constant independent of i and Tk : L2(ν) → L2(ν) is the integral
operator associated to the kernel k of the RKHS H . As a consequence of these
results one can easily describe the “capacity” of the RKHS H in terms of the
eigenvalues of Tk for most regularized kernel methods.

Apart from various tools of functional analysis, the proof relies on the decom-
position

L2(ν) L2(ν)

H

✲
❅
❅
❅
❅❘ �

�
�
�✒

Tk

I∗k Ik

where the adjoint I∗k of Ik is “integral” operator

Sk : L2(ν) → H

f 7→
∫

X

k(x, · )f(x) dν(x)

This decomposition is also used in the second part of the talk, in which the
classical Mercer series representation for continuous kernels on compact domains
is extended to almost arbitrary kernels. To be more precise, Mercer’s classical
theorem yields the representation

(3) k(x, x′) =
∑

i∈I

λiei(x)ei(x
′) ,

where λi is the ith eigenvalue of the integral operator Tk and (ei) is a corresponding
ONS of eigenfunctions. Here the convergence of the series above is both absolute
and pointwise. It is well-known that with the help of (3) one can describe the
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RKHS H of k, and in turn this description makes it possible to describe e.g. the
approximation properties of H in terms of interpolation spaces.

Now, we have shown in [3] that, for separable RKHSs H , there exists ν-zero set
N ⊂ X such that

k(x, x′) =
∑

i

λiei(x)ei(x
′) , x, x′ ∈ X \N,

where λi and ei are as above. A first consequence of this result is that for separable
RKHSs one can use a Mercer representation for νn-almost all Gram matrices
(k(xi, xj))

n
i,j=1, which in one or the other form is the basis of most kernel-based

learning algorithms. A second consequence is that the images of the fractional

powers T
β/2
k of Tk can be exactly described by the interpolation spaces

[
L2(ν), [H ]∼

]
β,2

of the real method, where [H ]∼ denotes the image of Ik in L2(ν). The latter result

extends and clarifies a similar description of T
β/2
k in [1], which is important to

describe the approximation properties of H .
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Methods of kernel construction

Robert Schaback

Kernels provide an important link between Approximation and Learning Theory.
For a survey on kernel applications, see [8]. This talk focuses on certain methods
for explicit constructions of new positive definite kernels, in particular kernels that
are linked to generalized Sobolev spaces.

1. Introduction

Since the talk has no time to consider kernels based on expansions and special
kernels connected to Partial Differential Equations (see the survey [2] for some
cases), it focuses on radial kernels on R

d (a.k.a. radial basis functions), i.e.

K : R
d × R

d → R, K(x, y) = φ(r), r := ‖x− y‖2 for all x, y ∈ R
d.

If kernels are positive semidefinite, they are in one–to–one correspondence to “na-
tive” Hilbert spaces in which they are reproducing. In contrast to Machine Learn-
ing, where kernels arise from feature maps and the corresponding Hilbert spaces
stay in the background, Numerical Analysis and Approximation Theory start with
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Hilbert spaces and look for their reproducing kernels. In all cases, the construction
of useful kernels is of extreme significance.

The most important Hilbert spaces for Numerical Analysis are Sobolev spaces
Wm

2 (Rd). Spaces on bounded Lipschitz domains can be handled by restriction (see
10.7 of [11]). The global versions can be defined via the weight function (1+ r2)m

in the Fourier domain, and thus their reproducing kernels are the inverse d–variate
Fourier transforms of (1 + r2)−m, i.e. the Whittle–Matérn kernels

(1) Mν(r) := rνKν(r), r ≥ 0, ν = m− d/2

where the Kν are the Bessel functions of second kind. The index ν can be real,
and thus one can handle cases of fractional order and dimension.

We shall focus here on Hilbert spaces which are norm–equivalent to Sobolev
spaces and construct their reproducing kernels.

2. Fractional derivatives of radial kernels

But beforehand we describe how to take fractional derivatives of radial kernels.
This is particularly useful for programming purposes [6]. Using tools from [9] one
can verify

Observation 1. All standard classes of radial kernels are closed under fractional
derivatives, tf their elements φ are written in f–form f(s) := φ(

√
2s).

The f–form is well–known from the correspondence between positive definite
and completely monotone functions. The fractional derivatives considered here
are real powers of the differential operator D : f 7→ −f ′, and the classes are of
the form {fα := Dαf0}α∈A⊂R for some fixed function f0. This makes ideal trial
spaces for solving fractional differential equations. Furthermore, the identity

F−1
d′ ◦ Fd = D(d′−d)/2

holds if Fd is the radial Fourier transform in Rd (see [9], written without knowing
Matheron’s work [4]). Thus closedness under forward–backward Fourier transfor-
mation in different fractional dimensions is equivalent to closedness under frac-
tional derivatives.

Simple examples are

• Gaussians: φ(r) = exp(−r2/2), f(s) = exp(−s), Dαf = f ,

• Whittle–Matérn Kernels (1): fν(s) = (
√
2s)νKν(

√
2s) with Dαfν = fν−α,

• Wendland kernels φd,k(r) with fd,k(s) = φd,k(
√
2s) andDαfd,k = fd+2α,k−α

for certain ranges of α, but, until recently, the Wendland functions φd,k(r) were
only defined for integer d and k. We turn to this now.

3. Generalized Wendland functions

To generalize the compactly supported Wendland [10] functions φd,k for inte-
ger d ≥ 1 and integer k ≥ 0 which are positive definite in Rd and polynomials
of degree ⌊d/2⌋ + 3k + 1 and reproducing in Hilbert spaces norm–equivalent to
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W
⌊d/2⌋+k+1/2
2 (Rd), one can use the formula φd,k = ψ⌊d/2⌋+k+1,k and the represen-

tation

(2) ψµ,α(x) =

∫ 1

x

r(1 − r)µ
(r2 − x2)α−1

+

Γ(k)2α−1
dr for all µ ≥ 0, α > 0, 0 ≤ x ≤ 1

which yields polynomials for integer µ and α. In [7], the cases generating the
“missing” integer order Sobolev spaces were added, i.e. the functions φd,k with
half–integer k. The first interesting case is d = 2, k = 1/2 with

φ2,1/2(x) =

√
2

3
√
π

(
3x2 log

(
x

1 +
√
1− x2

)
+ (2x2 + 1)

√
1− x2

)

It is a reproducing kernel in a norm–equivalent space to W 2
2 (R

2).

Theorem 1. [7]
All Wendland functions with k being a half–integer are linear combinations of even

polynomials with factors log

(
x

1 +
√
1− x2

)
and

√
1− x2.

The paper [7] conjectures that hypergeometric functions might provide the full
solution for arbitrary µ ≥ 0 and α ≥ 0.

This problem was recently solved by Simon Hubbert [3] in terms of Associate
Legendre functions

P
−(α+µ)/2
α (z)

= 1
Γ(1+(α+µ)/2)

(
1 + z

1− z

)−(α+µ)/4

2F1 (−α, α+ 1; 1 + (α+ µ)/2; (1− z)/2)

as

ψµ,α(r) = Γ(µ+ 1)(1− r2)(µ+α)/2rαP−(α+µ)
α

(
1

r

)
, µ > −1, α > 0.

By direct inspection of (2) one gets

Theorem 2. In f–form fµ,α(s) = ψµ,α(
√
2s), this class is closed under fractional

derivatives:

Dβfµ,α = fµ,α−β

as far as the application of the operators is well–defined.

4. Generalized Whittle–Matérn kernels

The Fourier weight of the classical Sobolev spaces can be slightly generalized
to (κ2 + ‖ω‖22)m to get the scaled version

(3) φκ(r) =
21−m

(m− 1)!

( r
κ

)m−d/2

=
21−m

(m− 1)!
κd−2mMm−d/2(κr).

of (1) as a reproducing kernel of a space norm–equivalent to Wm
2 (Rd). The cor-

responding Fourier transform is (κ2 + ‖ω‖22)−m, but a considerably more difficult



Learning Theory and Approximation 1927

problem is the Fourier inversion of the radial function

(4)

m∏

j=1

(κ2j + r2)

for different κj instead. This would yield a norm–equivalent Hilbert space to
Wm

2 (Rd) again, if all κj are positive. Using the divided difference [. . .]z with
respect to a variable z the result is

Theorem 3. [1] If all κj are nonzero, the d–variate radial Fourier transform of
(4) is

φ(r) = 2−m+1(−1)m−1[κ21/2, . . . , κ
2
m/2]z

(
r√
2z

)1−d/2

K1−d/2(r
√
2z),

and it equals (3) for a variable scale κ(r) between κ1, . . . , κm.

The proof uses the relation

(−1)m−1
m∏

j=1

(s+ tj)
−1 = [t1, . . . , tm]z(s+ z)−1

and relies heavily on the second section on fractional derivatives otherwise.
In case that k > d/2 of the κj vanish, the resulting kernel can be shown [1] to

contain polyharmonic splines

r2k−d d odd,
r2k−d log r d even.

This forces to consider conditionally positive definite kernels and generalized Fourier
transforms. The associated native Hilbert spaces should be some crossover between
Sobolev and Beppo–Levi spaces, but are not yet investigated.

5. Open problem

The talk closes with my favourite problem in kernel construction:

Find an explicit formula for a radial, positive definite, compactly supported
and infinitely differentiable kernel.

Such kernels must exist by simple convolution arguments, and a good example
would be the refinable up–function [5] if it were explicitly known. A multivariate
analogon could result as the inverse Fourier transform of an infinite product of
squares of Bessel functions. Any progress would be much appreciated.
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Kernel based methods in Learning and Approximation

Wolfgang zu Castell

(joint work with Georg Berschneider)

Efficient learning builds upon the proper choice of an a priori model on the space
of structures to be learned. This so-called inductive bias can be suitable mod-
elled using kernels and their associated reproducing kernel spaces. The resulting
mathematical model can then be framed within the context of regularization net-
works. Within this framework, the goal is to determine a hypothesis from a given
hypothesis space H minimizing the emprical risk

Re[f ] =
1

N

N∑

j=1

c(xj , yj, f(xj)) + λp(|f |H),

where {(xj , yj) ∈ X × Y : 1 ≤ j ≤ N} is some given data, c : X ×X × Y → R+ a
loss function and p : R → R a monotonically increasing penalty function.

If K : X ×X → L(W ) is a positive definite, operator-valued kernel (cf. [2, 3]),
where L(W ) denotes the space of bounded, linear operators on a Hilbert spaceW ,
and H is chosen to be the associated reproducing kernel Hilbert space ofW -valued
functions on X , then the so-called representer theorem guarantees that there is a
solution of the optimization problem which can be represented in the from

f(x) =

N∑

j=1

K(x, xj)wj .

This is a more or less straight-forward consequence of the reproducing property
and Pythagoras’ Theorem.

If K is conditionally positive definite with respect to a given finite-dimensional
space U of W -valued functions on X , there is an associated reproducing kernel
Pontryagin space Π = H ⊕ U with maximal negative subspace U (cf. [1, 3]).

According to the decomposition of the Pontryagin space, every function f ∈ Π
can be written as f = f1+f2, where f1 ∈ H and f2 ∈ U . For the interesting case of
the regularization problem the penalty is applied to the norm of the component f1
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(e.g., the smoothing spline problem). For this situation, there is again a representer
theorem, i.e., there exists a solution of the form

f(x) =

N∑

j=1

K(x, xj)wj + u(x),

where u is an appropriate function in U , and

N∑

j=1

〈g(xj), wj〉W = 0

for all g ∈ U .
Using the geometric structure of the Pontryagin space, the proof can be referred

back to the Hilbert space version of the theorem.
The method of proof can further be extended to the infinite-dimensional case,

i.e., where Π is a Krĕın space.
An extended version of this contribution is given in [4].
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Classification algorithms using adaptive partitioning

Wolfgang Dahmen

(joint work with Peter Binev, Albert Cohen, Ronald DeVore)

Algorithms for binary classification based on adaptive partitioning are formulated
and analyzed for both their risk performance and their friendliness to numerical
implementation, see [3]. The algorithms can be viewed as generating a set approx-
imation to the Bayes set and thus fall into the general category of set estimators.
A general theory is developed to analyze the risk performance of set estimators
with the goal of guaranteeing performance with high probability rather than in ex-
pectation. Convergence rates in expectation can easily be derived from the given
estimates in probability. The analysis decouples the approximation and estima-
tion effects on the risk. The estimation errors are dealt with by introducing a
new modulus. Its relevance and usefulness hinges among other things on certain
functions of measurable sets bounding the deviation of the estimation error from
its empirical counterpart with high probability.
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A crucial tool for controlling the involved uniform deviations is Talagrand’s
concentration inequality, see e.g. [1]. Studying the relation of the modulus to
margin conditions (see e.g. [4]) leads to concrete bounds for the estimation error.
Furthermore, bounds are given for the approximation error (bias) based on the
smoothness of the regression function and margin conditions. When these approx-
imation results are combined with the estimation error bounds, an estimate of risk
performance is obtained. A simple model selection is used to optimally balance the
approximation and estimation error bounds. This general theory is then applied
to algorithms based on adaptive partitioning. Results are formulated for the risk
performance of these algorithms in terms of Besov smoothness of the regression
function and margin conditions. Adaptivity allows one to relax classical Hölder
smoothness (smoothness in L∞) to weaker Besov smoothness (smoothness in Lp)
[5]. In particular, this increases the compatibility range for margin conditions and
the order of smoothness of the regression function.

The results of this paper are related to the work of Scott and Nowak [6] on
tree based adaptive methods for classification, however, with several important
distinctions. In particular, our model selection utilizes a validation sample to
avoid identifying suitable penalty terms. This allows us to employ wedge decorated
trees that yield higher order performance. Finally, it is briefly indicated how to
accommodate plug-in estimators in this framework. The desired bounds with high
probability would then follow from corresponding bounds in probability (rather
than in expectation) for the regression function. However, such bounds for general
measures do not hold for higher order piecewise polynomial estimators (see [2])
while the above approach does allow us to obtain higher order performance with
high probability.
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Learning sets with separating kernels

Lorenzo Rosasco

(joint work with Ernesto De Vito, Alessandro Toigo)

The setting we consider is described by a probability space (X, ρ) and a measurable
reproducing kernel K on the set X [1]. The data are independent and identically
distributed (i.i.d.) samples x1, . . . , xn, each one drawn from X with probability ρ.
The reproducing kernel K reflects some prior information on the problem and, as
we discuss in the following, will also define the geometry of X . The goal is to use
the sample points x1, . . . , xn to estimate the region where the probability measure
ρ is concentrated.

To fix some ideas, the space X can be thought of as a high-dimensional Eu-
clidean space and the distribution ρ as being concentrated on a region Xρ, which is
a smaller – and potentially lower dimensional – subset of X (e.g. a linear subspace
or a manifold). In this example, the goal is to build from data an estimator Xn

which is, with high probability, close to Xρ with respect to a suitable metric.
We first note that a precise definition of Xρ requires some care. If ρ is assumed

to have a density with respect to some fixed reference measure (for example, the
Lebesgue measure in the Euclidean space), then the regionXρ can be easily defined
to be the set of points where the density function is non-zero (or its closure).
Nevertheless, this assumption would prevent considering the situation where the
data are concentrated on a “small”, possibly lower dimensional, subset of X . Note
that, if the set X were endowed with a topological structure and ρ were defined
on the corresponding Borel σ-algebra, it would be natural to define Xρ as the
support of the measure ρ, i.e. the smallest closed subset of X having measure one.
However, since the set X is only assumed to be a measurable space, no a priori
given topology is available. Here we also remark that the definition of Xρ is not
the only point where some further structure on X would be useful. Indeed, when
defining a learning error, a notion of distance between the set Xρ and its estimator
Xn is also needed and hence some metric structure on X is required.

Now, the idea is to use the properties of the reproducing kernel K to induce a
metric structure – and consequently a topology – on X . Indeed, under some mild
technical assumptions on K, the function

dk(x, y) =
√
K(x, x) +K(y, y)− 2ReK(x, y) ∀ x, y ∈ X

defines a metric on X , thus making X a topological space. Then, it is natural
to define Xρ to be the support of ρ with respect to such metric topology. Note
that the metric dk also provides us with a notion of distance between closed sets,
namely the corresponding Hausdorff distance dH .

The problem we are interested in can now be restated in the following way: we
want to learn from data an estimatorXn of Xρ, such that limn→∞ dH(Xn, Xρ) = 0
almost surely. While Xρ is now well defined, it is not clear how to build an estima-
tor from data. A main result in the paper provides a new analytic characterization
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of Xρ, which immediately suggests a new computational solution for the corre-
sponding learning problem. To derive and state this result, we introduce a new
notion of reproducing kernels, called separating kernels, that, roughly speaking,
captures the sense in which the reproducing kernel and the probability distribu-
tion need to be related. We say that a reproducing kernel Hilbert space H (or
equivalently its kernel) separates a subset C ⊂ X , if, for any x 6∈ C, there exists
f ∈ H such that

f(x) 6= 0 and f(y) = 0 ∀y ∈ C.

If K separates all possible closed subsets in X , we say that it is completely sepa-
rating.

Our main theorem states that, if either K is completely separating, or at least
separates Xρ, then Xρ is the level set of a suitable distribution dependent con-
tinuous function Fρ. More precisely, let H be the reproducing kernel Hilbert
space associated to K [1], T : H → H the integral operator with kernel K, and
denote by T † its pseudo-inverse. If we consider the function Fρ on X , defined
by Fρ(x) = 〈T †TKx,Kx〉 ∀x ∈ X, and K separates Xρ, then we prove that
Xρ = {x ∈ X | Fρ(x) = 1}, (where for simplicity we are assuming K(x, x) = 1 for
all x ∈ X).

The above result is crucial since the integral operator T can be approximated
with high probability from data (see [3] and references therein). However, since the
definition of Fρ involves the pseudo-inverse of T , the support estimation problem
is ill-posed and regularization techniques are needed to ensure stability. With this
in mind, we propose and study a family of spectral regularization techniques which
are classical in inverse problems and have been considered in supervised learning
in [2]. We define an estimator by

Xn = {x ∈ X | Fn(x) ≥ 1− τn},
where Fn(x) = (1/n)K∗

x
gλn

(Kn/n)Kx, with (Kn)i,j = K(xi, xj), Kx is the col-

umn vector whose i-th entry is K(xi, x), and K∗
x
is its conjugate transpose. Here

gλn
(Kn/n) is a matrix defined via spectral calculus by a spectral filter function

gλn
that suppresses the contribution of the eigenvalues smaller than λn. Examples

of spectral filters include Tikhonov regularization and truncated singular values
decomposition, to name only a few. The error analysis for this class of methods
can be derived in a unified framework and is done both in terms of asymptotic
convergence, and stability to random sampling by means of finite sample bounds.
Indeed, we prove that, if X is compact1, then

lim
n→∞

sup
x∈X

|Fρ(x) − Fn(x)| = 0 almost surely,

provided that limn→∞ λn = 0 and supn≥1(Lλn
log n)/

√
n < +∞, where Lλn

is the
Lipshitz constant of the function rλn

(σ) = σgλn
(σ) . Moreover

lim
n→∞

dH(Xn, Xρ) = 0 almost surely,

1If X is not compact, these results hold replacing X with the intersection X ∩ C for any
compact subset C.
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provided that limn→∞ τn = 0 and

lim sup
n→∞

supx∈X |Fn(x)− Fρ(x)|
τn

≤ 1 almost surely.

Note that, if Xρ is separated by K, then the convergence of Fn to Fρ can be
proved without further assumptions on the problem. On the contrary, in order
to have convergence of Xn to Xρ we need to choose a sequence τn satisfying the
condition above, and this requires knowledge of the convergence rate of Fn to Fρ.
The latter is a property of the couple (ρ,K), not only of K. If the couple is such
that supx∈X ‖T−sKx‖ < ∞, with 0 < s ≤ 1, and the eigenvalues of the (compact

and positive) operator T satisfy σj ∼ j−1/b for some 0 < b ≤ 1, then we prove
that, for n ≥ 1 and δ > 0, we have

sup
x∈X

|Fn(x) − Fρ(x)| ≤ Cs,b,δ

(
1

n

) s
2s+b+1

with probability at least 1 − 2e−δ, for λn = n−1/(2s+b+1) and a suitable constant
Cs,b,δ which does not depend on n.

Finally, we remark that our construction relies on the assumption that the kernel
K separates the support Xρ. The question then arises whether there exist kernels
that can separate a large number of, and perhaps all, closed subsets, namely kernels
that are completely separating. The answer is affirmative, and for translation
invariant kernels on Rd, indeed a sufficient condition for a kernel to be completely
separating can be given in terms of its Fourier transform. As a consequence, the
Abel kernel K(x, y) = e−‖x−y‖/σ on the Euclidean space X = Rd is completely

separating. Interestingly, the Gaussian kernel K(x, y) = e−‖x−y‖2/σ2

, which is
very popular in machine learning, is not.
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Irregular sampling in subspaces of L2(R)

Joachim Stöckler

(joint work with Karlheinz Gröchenig)

The sampling theorem of Whittaker and Shannon states that a band-limited func-
tion f ∈ L2(R) is uniquely determined by its function values f |Z, in terms of the
cardinal series

f(t) =
∑

k∈Z

f(k)
sinπ(t− k)

π(t− k)
.
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Moreover, the identity ‖f‖22 =
∑

k∈Z
|f(k)|2 holds. We present new results on the

reconstruction of functions from a reproducing kernel Hilbert space V ⊂ L2(R),
which can be a shift-invariant space of spline functions, or the image set of a
bounded linear projection, or the linear span of irregular shifts of a given function.
The given data are obtained by sufficiently dense nonuniform sampling; more
precisely, we give conditions on the set X ⊂ R of sampling sites, such that the
norm equivalence ‖f‖22 ∼∑x∈X |f(x)|2 is satisfied. In this case, X is called a set
of sampling for V .

Typical geometric conditions on the set X require that the maximal gap

max
y∈R

min
x∈X

|y − x|

should be small as compared to some underlying structure of the space V . For
example, if the functions in V satisfy a Bernstein-type inequality, then the method
of “norming sets” can be applied in order to give sufficient conditions for X being
a set of sampling. Only for very particular cases of shift-invariant spline spaces
V , Aldroubi and Gröchenig [1] gave almost sharp conditions for X being a set of
sampling. We extend these results to subspaces V ⊂ L2(R) which are spanned by
irregular shifts of totally positive functions of finite type. This class of functions
appears in the work of Schoenberg [2].
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Linear-phase moments in wavelet analysis and approximation theory

Bin Han

Approximation order of a shift invariant space generated by a single generating
function is linked to the Strang-Fix condition, while the order of linear-phase mo-
ments of the generating function controls how the polynomials are exactly repro-
duced by the integer shifts of the generating function. We say that a compactly
supported function φ ∈ L1(R

d) has the linear-phase moments of order m with
phase cφ if

φ̂(ξ) = e−icφ·ξ +O(‖ξ‖m), ξ → 0.

By Πm−1 we denote the space of all d-variate polynomials of total degree no more
than m− 1. Then p ∗ φ :=

∑
k∈Zd p(k)φ(· − k) = p(· − c) for all p ∈ Πm−1 if and

only if φ has the linear-phase moments of order m with phase c and φ satisfies the
Strang-Fix condition:

∂µφ̂(2πk) = 0, ∀|µ| < m, k ∈ Z
d\{0}.
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The notion of linear-phase moments appeared initially but implicitly in [5] and
has been formally introduced in [3, 4]. It has been further discussed for orthog-
onal wavelets and tight framelets in [2]. It turns out that linear-phase moments
also play an interesting role in wavelet analysis. In this talk we discuss three ap-
plications of linear-phase moments in wavelet analysis: (1) Subdivision schemes
with linear-phase moments which produce nearly shifted interpolatory subdivision
schemes, (2) Role of linear-phase moments in the construction of symmetric tight
framelets, (3) Linear-phase moments in the design of orthogonal filters used the
Dual-Tree Complex Wavelet Transform (DT-CWT), which significantly outper-
forms the commonly used tensor product wavelets in signal and image processing.

Let M denote a d × d integer matrix and a : Zd → C be a finitely supported
sequence, called a filter. Define â(ξ) :=

∑
k∈Zd a(k)e−ik·ξ. We say that a filter a

has linear-phase moments of order m with phase ca ∈ R
d if

â(ξ) = e−ica·ξ +O(‖ξ‖m), ξ → 0.

The subdivision operator Sa,M is defined to be

[Sa,Mv](m) := | det(M)|
∑

k∈Zd

v(k)a(m−Mk), m ∈ Z
d.

Let a : Zd → C, c ∈ Rd, and m be an integer. Then it has been shown in [2, 5]
that Sa,Mp = p(M−1(· − c)) for all p ∈ Πm−1 if and only if

(1) a has order m sum rules: â(ξ + 2πω) = O(‖ξ‖m) as ξ → 0 for all 0 6= ω ∈
ΩM := ((MT )−1Zd) ∩ [0, 1)d.

(2) a has the linear-phase moments of order m with phase c:

â(ξ) = e−ic·ξ +O(‖ξ‖m), ξ → 0.

Define a⋆(k) := a(−k) for all k ∈ Z
d and the convolution [a⋆ ∗ a](n) :=∑

k∈Zd a⋆(n − k)a(k) for n ∈ Zd. The order of linear-phase moments of a⋆ ∗ a
is directly connected to the vanishing moments and therefore the frame approxi-
mation order of a tight framelet filter bank. The role of the linear-phase moments
for symmetric tight framelet filters follows from the following fact. Suppose that
a filter a has symmetry: a(ca − k) = a(k) for k ∈ Zd with ca ∈ Zd. Then the
correlation filter a⋆ ∗a has linear-phase moments of order m if and only if the filter
a has the linear-phase moments of order m.

At the end of the talk, we shall also provide two other approaches for achieving
directional representation. In the first approach, we show that using tensor product
and using univariate complex-valued tight framelets we can obtain a 2D tight
framelet with 4 directions: 0 degree, 45 degree, 90 degree, and 135 degree. For the
second approach, we provide a tight framelet filter bank having an associated filter
bank and having increasing number of directional obeying the hyperbolic rule. See
[1] for more details. Such new directional tight framelets in 2D are expected to
have applications in image processing.
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Sampling scattered data with Bernstein polynomials: stochastic and
deterministic error estimates

Zongmin Wu

(joint work with Xingping Sun, Limin Ma)

As an example to study the approximation of density functions, we first discuss
different kinds of uniformly distributed points, including the classical uniformly
distributed points, the quasi uniformly distributed points, the discrepancy, and
the random uniformly distributions. The relations among them are studied. Es-
pecially, we have the following result.

Proposition. The following two statements are equivalent.

(1) The discrepancy Dn satisfies

Dn = O(
1

nβ
).

(2) The following inequality

|xnj − j

n
| = O(

1

nβ
)

holds true for each j.

Therefore, the random uniformly distributed points cannot be dominated by
any discrepancy, since the inequality in the above item (2) will not be valid.

Viewing the classical Bernstein polynomials as sampling operators, we study a
generalization by allowing the sampling operation to take place at scattered sites.
We utilize both stochastic and deterministic approaches. On the stochastic side,
we consider the sampling sites as random variables that obey some naturally de-
rived probabilistic distributions, and obtain Chebyshev type estimates. On the
deterministic side, we incorporate the theory of uniform distribution of point sets
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(within the framework of Weyl’s criterion) and the discrepancy method. We es-
tablish convergence results and error estimates under practical assumptions on the
distribution of the sampling sites.

Theorem 1. Let {Bn
j (x) = n!

j!(n−j)!x
j(1 − x)n−j}nj=0 be the Bernstein basis,

and ω be the modulus of continuity of a continuous function f ∈ C([0, 1]). If
5
2ω(

1√
n
) < ǫ/2, then the generalized quasi-interpolation that the data sampled on

uniform random numbers

B∗∗
n f(x) =

n∑

j=0

f(xnj )B
n
j (x)

converges to f in probability on [0, 1], and the error can be bounded by

P{‖B∗∗
n f(x)− f(x)‖∞ > ǫ} ≤ 16/ǫ4n3ω(1/

√
n)4 ≤ 16/ǫ4n.

The Bernstein basisBn
j can be replaced by

√
nW (

√
n(x−xnj )), with any function

satisfying
√
nW (

√
n(x− t)) → δ(x− t). e.g.

Theorem 2. If {xnj } are quasi uniform distributed points with the discrepancy

|xnj − j/n| < 1/nβ, then

|
∑

f(xnj )
√
nW (

√
nx− j/

√
n)− f(x)|

= O(1/
√
n) + ω(1/

√
n) + ω(1/nβ)

Theorem 3. Assume 5
2ω(

1√
n
) < ǫ/2. Then the generalized quasi-interpolation

that the data sampled on uniform random numbers

M∗∗
n f(x) =

n∑

j=0

f(xnj )
∑

f(xnj )
√
nW (

√
nx− j/

√
n)

converges to f in probability on [0, 1], and the error can be bounded by

P{|M∗∗
n f(x)− f(x)‖∞ > ǫ} ≤ 16/ǫ4n3ω(1/

√
n)4 ≤ 16/ǫ4n.

We can generalize the above results to other domains with non classical standard
uniformly distributed points, such as the surface of a ball and the disc. Similar
results on error analysis are valid.

Furthermore we can discuss the approximation of density functions and prob-
ability distribution functions using statistical distances. The statistical distance
is defined to minimize the energy cost to move the earth of one density function
to another. Since the statistical distance for the univariate problem is equivalent
to the L1-norm of the inverse function of the probability distribution function, a
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Bernstein scheme to approximate the inverse function of the probability distribu-
tion function is given in [1]. Error estimates for the statistical distance of such
kind of approximation are given, which yield

Theorem 4. For random points {xnj } drawn according to the unknown proba-

bility distribution function F , let x = G(y) be the inverse function of F , then the
Bernstein like scheme G∗(y) =

∑
xnjB

n
j (y) converges in probability to G. This

concludes that it converges in probability with respect to the statistical distance.
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Bernstein-Durrmeyer operators with arbitrary weight functions

Elena E. Berdysheva

Let ρ be a non-negative bounded (regular) Borel measure on the simplex

S
d := {x = (x1, . . . , xd) ∈ R

d : 0 ≤ x1, . . . , xd ≤ 1, x1 + · · ·+ xd ≤ 1}.
We assume that supp ρ\∂Sd 6= ∅. The Bernstein basis polynomials of degree n ∈ N

are defined by

Bα(x) :=
n!

α0!α1! · · ·αd!
(1 − x1 − · · · − xd)

α0 xα1
1 · · ·xαd

d ,

where α0, α1, . . . , αd ∈ N ∪ {0} and α0 + α1 + · · · + αd = n. We introduce the
Bernstein-Durrmeyer operator with weight ρ

(1) Mn,ρ f :=
∑

α0+···+αd=n

∫
Sd
f Bα dρ∫

Sd
Bα dρ

Bα

for f ∈ Lq(Sd, ρ), 1 ≤ q < ∞, or f ∈ C(Sd). The operator Mn,ρ is linear
and positive, and it reproduces constant functions. It generalizes the well-known
Bernstein-Durrmeyer operators with Jacobi weights. A motivation for this gener-
alization comes from learning theory: K. Jetter and D.-X. Zhou [3] have applied
the univariate Bernstein-Durrmeyer operators of type (1) to bias-variance esti-
mates for support vector machine classifiers. To our knowledge, [1] is the first
paper where operators (1) in full generality were systematically investigated.

In the talk, we concentrate on discussing convergence of the operator Mn,ρ. As
a first step in studying convergence, we consider uniform convergence. We give
necessary and sufficient conditions that guarantee uniform convergence on Sd for
each function continuous on Sd. Recall that a measure ρ on Sd is called strictly
positive if ρ(A ∩ Sd) > 0 for every open set A ⊂ Rd such that A ∩ Sd 6= ∅. This is
equivalent to the fact that supp ρ = Sd.
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Theorem 1. [2] Let ρ be a non-negative bounded Borel measure on S
d such that

supp ρ \ ∂Sd 6= ∅. Then

lim
n→∞

‖f −Mn,ρ f‖C(Sd) = 0 for every f ∈ C(Sd)

if and only if ρ is strictly positive on Sd.

A further natural question is about rates of convergence. The method used
in [2] for arbitrary measures does not lead to estimates for rates of convergence.
In [1], Jetter and the author obtained estimates for rates of convergence for the
so-called Jacobi-like measures, i.e., for absolutely continuous measures ρ of the
form

dρ(x) = w(x) dx

such that

a (1−x1−· · ·−xd)ν0 xν11 · · ·xνdd ≤ w(x) ≤ A (1−x1−· · ·−xd)µ0 xµ1

1 · · ·xµd

d , x ∈ S
d,

with some ν = (ν0, ν1, . . . , νd), µ = (µ0, µ1, . . . , µd), where νi, µi > −1, i =
0, 1, . . . , d, and 0 < a,A <∞. Obviously, Jacobi-like measures are strictly positive.
The following statement follows from results of [1].

Theorem 2. Let ρ be a Jacobi-like measure with |ν| − |µ| < 1. Let f ∈ C(Sd).
Then

‖f −Mn,ρ f‖C(Sd) ≤ C ω
(
f, n− 1−(|ν|−|µ|)

4

)
,

where ω(f, δ) = sup {|f(x)− f(t)| : ‖t− x‖2 < δ} denote the modulus of continuity
of f .

As a next question, we study convergence of Mn,ρ in case when ρ is not strictly
positive. We consider pointwise convergence on the support of the measure.

Theorem 3. Let x ∈ (supp ρ)◦. Let f be bounded on supp ρ and continuous at x.
Then

lim
n→∞

|f(x)−Mn,ρ f(x)| = 0.

Recently, Bing-Zheng Li proved a statement about convergence of Mn,ρ in the
spaces Lq(Sd, ρ).

Theorem 4. [4] Let ρ be a non-negative bounded Borel measure on S
d such that

supp ρ \ (∂Sd) 6= ∅. Let 1 ≤ q <∞. Then

lim
n→∞

‖f −Mn,ρ f‖Lq(Sd,ρ) = 0

for every f ∈ Lq(Sd, ρ). Moreover, for the functions ϕi = xi, i = 1, . . . , d, we have

‖Mn,ρ(|ϕi(·)− ϕi(x)|)‖Lq(Sd,ρ) ≤
1√
n
, q = 1, 2.

Using a modification of her method, we can show that

‖Mn,ρ(|ϕi(·)− ϕi(x)|)‖Lq(Sd,ρ) ≤
C√
n
, 1 ≤ q <∞.
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It follows that for f ∈ Lq(Sd, ρ) we have ‖f − Mn,ρ f‖Lq(Sd,ρ) ≤ 2Kp

(
f, C√

n

)
,

where Kp(f, t) = inf {‖f − g‖Lq(Sd,ρ) + t maxi=1,...,d ‖∂ig‖C : g ∈ C1(Sd)}.
Part of the results was obtained jointly with Kurt Jetter.
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Error analysis and sparsity of some learning algorithms

Ding-Xuan Zhou

Sparsity is a classical topic in support vector machines of learning theory and is re-
lated to other research areas such as LASSO in statistics and compressed sensing.
In this talk we discuss error analysis and sparsity for three kernel-based learn-
ing algorithms in a regression setting: support vector regression, coefficient-based
regularization with ℓ1-penalty, and kernel projection machines with ℓq-penalty.

Let X be a compact metric space (input space), Y = R (output space) and ρ
be a probability measure on Z = X × Y . Take a random sample z = {(xi, yi)}mi=1

independently drawn from ρ. The regression function fρ is defined by fρ(x) =∫
Y
ydρ(y|x) where ρ(·|x) is the conditional distribution of ρ at x ∈ X .
We consider some learning algorithms for regression based on a Mercer kernel

K : X × X → R which is a continuous, symmetric and positive semi-definite
function generating a reproducing kernel Hilbert space (RKHS) (HK , ‖ · ‖K) by
fundamental functions {Kx = K(·, x) : x ∈ X}.

The first learning algorithm we discuss is the support vector regression [1] de-
fined by

(1) fSVR
z

= arg min
f∈HK

{
1

m

m∑

i=1

ψǫ(f(xi)− yi) + λ‖f‖2K

}
,

where ψǫ : R → R+ is the ǫ-insensitive loss defined for ǫ ≥ 0 by

ψǫ(u) = max{|u| − ǫ, 0} =

{
|u| − ǫ, if |u| ≥ ǫ,
0, otherwise.

The original motivation for the insensitive parameter ǫ > 0 is to balance the
approximation ability and sparsity of the algorithm. The parameter changes with
the sample size and usually ǫ = ǫ(m) → 0 as the sample size m increases.

Algorithm (1) learns the median function fρ, 12 on X which is defined by

ρ({y ∈ Y : y ≤ fρ, 12 (x)}|x) ≥
1

2
, ρ({y ∈ Y : y ≥ fρ, 12 (x)}|x) ≥

1

2
.
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The following learning rate is given in [2] for the output function fSVR
z

after
projecting the values onto the interval [−M,M ] under a noise condition given in
[3]. Denote ρX as the marginal distribution ρ on X .

Theorem 1. Let X ⊂ Rn and K ∈ C∞(X ×X). Assume fρ, 12 ∈ HK , |y| ≤M

almost surely, and ρ has a median of p-average type 2 for some p ∈ (0,∞]. Take

λ = m− p+1
p+2 and ǫ = m−β with p+1

p+2 ≤ β ≤ ∞. Let 0 < η < p+1
2(p+2) . Then with

p∗ = 2p
p+1 > 0, with confidence 1− δ, we have

∥∥∥πM (fSVR
z

)− fρ, 12

∥∥∥
Lp∗

ρX

≤ C̃ log
3

δ
mη− p+1

2(p+2) ,

where C̃ is a constant independent of m or δ. Here the condition that ρ has
a median of p-average type 2 means there exist ax ∈ (0, 2], bx > 0 such that
the function 1

bxax
lies in Lp

ρX
and for each u ∈ [0, ax], the ρ(·|x) measures of

(fρ, 12 (x) − u, fρ, 12 (x)) and (fρ, 12 (x), fρ,
1
2
(x) + u) are both at least bxu.

The second algorithm we discuss is the coefficient-based regularization with
ℓ1-penalty defined as fz,λ =

∑m
k=1 α

z

λ,kKxk
, where αz

λ = (αz

λ,k)
m
k=1 is given by

(2) αz

λ = arg min
α∈Rm





1

m

m∑

i=1

(
m∑

k=1

αkKxk
(xi)− yi

)2

+ λ‖α‖1



 .

It is motivated by linear programming support vector machines and ridge regres-
sion [4]. Difficulty in error analysis caused by the sample dependence nature of the
algorithm was estimated by local polynomial reproduction techniques developed
in the literature of scattered data interpolation. The following learning rate can
be found in [5]. Define an integral operator LK on L2

ρX
by LKf =

∫
X Kuf(u)dρX .

Theorem 2 Assume that X ⊂ Rn has piecewise smooth boundary and satisfies
an interior cone condition. Suppose ρX satisfies condition Lτ :

ρX (B(x, r)) ≥ Cτ r
τ ∀x ∈ X, 0 < r ≤ 1

for some τ > 0 and Cτ > 0, K ∈ C∞(X ×X) and fρ lies in the range of L2
K . Let

0 < ǫ < 1
2 and λ = mǫ− 1

2 . Then for any 0 < δ < 1, with confidence 1− δ, we have

‖fz,λ − fρ‖2L2
ρX

≤ C̃ǫ

{
log(m+ 1) + log

2

ǫδ

} 8
ǫ2

+ 8n
τǫ2

mǫ− 1
2 ,

where C̃ǫ is a constant independent of m or δ.
The last algorithm we discuss is kernel projection machines with ℓq-penalty

(0 < q ≤ 1). Here we regard LK as an integral operator on HK with normalized
eigenpairs {(λi, φi)}. Its empirical version Lx

K : HK → HK is defined by

Lx

Kf =
1

m

m∑

i=1

f(xi)Kxi
=

1

m

m∑

i=1

〈f,Kxi
〉KKxi

.

Denote its normalized eigenpairs as {(λxi , φxi )}. Then the kernel projection ma-
chine with ℓq-penalty for regression [6] produces the output function fz =

∑∞
i=1 c

z

iφ
x

i
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with cz = (czi )
∞
i=1 given by

(3) cz = argmin
c∈ℓ2





1

m

m∑

i=1




∞∑

j=1

cjφ
x

j (xi)− yi




2

+ γ‖c‖qq




, γ > 0.

The optimization problem (3) can be reduced to minimization of univariate

functions. Denote aq = (1− q)1−q (2/(2− q))
2−q

and Sz

i = 1
mλx

i

∑m
j=1 yjφ

x

i (xj), if

λxi > 0, and Sz

i = 0 otherwise.
Theorem 3 (a) czi = argminc∈R

{
λxi (c− Sz

i )
2 + γ|c|q

}
, ∀i.

(b) If aqλ
x

i |Sz

i |2−q < γ, then czi = 0.

If aqλ
x

i |Sz

i |2−q = γ, then czi = 0 or 2−2q
2−q S

z

i .

If aqλ
x

i |Sz

i |2−q > γ, then czi is uniquely defined, has the same sign as Sz

i

and satisfies |Sz

i | − (γ/λxi )
1/(2−q) < |czi | < |Sz

i |. In the case q = 1, we have

czi = Sz

i − sgn(Sz

i )
γ

2λxi
.

(c) czi = 0 if λxi = 0.
The following analysis [6] shows that sparsity of the algorithm improves while

its learning ability is weakened as q decrease to 0.
Theorem 4 Assume D1i

−α1 ≤ λi ≤ D2i
−α2 for every i, where D1, D2 > 0

and α1 ≥ α2 > 2−q
2(q(1+r)−1) . Let 0 < δ < 1, ξ = q

2α1+2α2(q(1+r)−1) < 1, and

γ = C1

(
(λ⌈mξ⌉)

q(r+1) +
(
log 4

δ

)q(1+r)
m− q

2

)
. We have with confidence 1− δ that

czi = 0, ∀mξ + 1 ≤ i ≤ m(4)

and

(5) ‖fz − fρ‖K ≤ C∗
(
log

4

δ

)1+r

m−θ,

where C1, C
∗ are constants and

(6) θ =
q (2α2(q(1 + r) − 1)− (2− q))

2(2− q) (2α1 + 2α2(q(1 + r)− 1))
> 0.
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Stochastic aspects of nonlinear refinement algorithms

Oliver Ebner

Linear subdivision schemes of the form

(1) Sxi =
∑

j∈Zs

ai−2jxj ,

with (ai)i∈Zs a finitely supported mask of nonnegative coefficients, are well-studied
means to iteratively construct continuous functions from discrete data samples
from a linear space. Loosely speaking, Snx gives a processed version of the input
data x ∈ ℓ∞(R), which, interpreted as a function on 2−nZs, should uniformly
approximate a continuous function S∞x : Rs → R. In the linear case, convergence
and smoothness properties of subdivision schemes are well-understood. However,
amounting to a deluge of data structurally confined to manifolds or, more gener-
ally, metric spaces, there has been a recent interest in the generalization of these
kinds of refinement algorithms to the nonlinear setting. As uniform convergence
of a subdivision scheme implies that

∑
j∈Zs ai−2j = 1 for i ∈ Zs, a sensible gener-

alization of (1) to metric spaces is given by

(2) Sxi = argmin
( ∑

j∈Zs

ai−2jd
2(xj , ·)

)
.

This type of refinement algorithm is referred to as barycentric subdivision
scheme. It can be shown that barycentric schemes are well-defined on any simply
connected, complete Alexandrov space of nonpositive curvature. On this class
of metric spaces, referred to as Hadamard spaces, the subdivision rule (2)
may be interpreted stochastically as follows. Note that the subdivision ma-
trix (ai−2j)i,j∈Zs is row-stochastic and thus gives rise to a Markov chain Xn with
transition probabilities P(Xn+1 = j | Xn = i) = ai−2j . As a consequence of a
nonlinear Markov property, the subdivision semigroup coincides with the Markov
semigroup associated to Xn. More precisely, it holds that

Snx ◦X0 = E(x(Xn)|||(Fk)k≥0),

where E( · |||(Fk)k≥0) denotes the filtered conditional expectation introduced
by K.-T. Sturm. This observation, together with a nonlinear version of Jensen’s
inequality, paves the way for the a ‘linear equivalence’-type theorem, stating that
a barycentric refinement scheme converges on arbitrary Hadamard spaces if and
only if it converges for real-valued input data, see [2].
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Non-negative subdivision and Markov chains

Kurt Jetter

(joint work with Xianjun Li)

Recent work by X. L. Zhou, see [7] and the references there, has settled a long-
standing question of characterizing uniform convergence of non-negative, univari-
ate subdivision schemes with finitely supported masks. In a proper setting, going
back to the seminal paper [5] of Micchelli and Prautzsch, convergence can be stud-
ied through properties of a related non-homogeneous Markov chain. We reprove
and extend the existent convergence results for non-negative subdivision, in the
multivariate version, by using the Anthonisse-Tijms result on convergence of such
Markov chains.

Their analysis is based on the notion of SIA matrices, as introduced in [6], and
on sign patterns of products of row stochastic matrices (or equivalently, properties
of their directed graphs). Also, Hajnal’s τ -coefficient of ergodicity, see [3] proves
to be useful for studying the convergence of infinite products from a finite family
of row stochastic matrices.

For scalar-valued subdivision, this approach to non-negative subdivsion can be
found in the recent paper [4]. Beyond that, some of the ideas can be applied to
matrix subdivision in a straightforward way.

Concerning the application of non-negative subdivision in spaces of Hadamard
type, see O. Ebner’s talk in this workshop, [2].
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