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Introduction by the Organisers

The rough path theory, initiated be T. Lyons (workshop participant) in the nineties
has had a profound influence on stochastic analysis; its single most important re-
sults is that solutions to stochastic differential equations can be solved pathwise
and that the solution map is continuous (even locally Lipschitz) in rough path
metric. This continuity property has since become the key in many striking ap-
plications, ranging from the Stroock-Varadhan support theorem in its as-of-yet
strongest form to a new understanding of Hörmander’s theory without Markov-
ian structure. Much of this has been summarized in a recent monograph of Friz
(workshop organizer). By applying and extending rough paths ideas to (stochas-
tic) partial differential equations, a fruitful connection was established between
the stability of (stochastic) flows in rough path sense and the stability properties
of viscosity solutions to PDEs. In particular, large classes of SPDEs are reduced
to (deterministic) partial differential equations driven by rough signals. This is
closely related to the (essentially pathwise) Lions-Souganidis theory of stochastic
viscosity solution. Souganidis was a participant at the workshop. A related set of
new ideas is to introduce rough path stability in the context of backward (doubly)
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stochastic differential equations (BSDEs); in a sense this amounts to non-linear
Feynman-Kac formulae for rough partial differential equations. BSDEs have been
introduce in the eighties by another workshop participant, Shige Peng. Another
important application: stochastic filtering is concerned with the estimation of the
conditional law of a Markov process, given observations of some function of it.
Using the tools provided by rough paths one can show that is essential to measure
not just the observation process but also its associated area process. In other
words, filtering has now become an outlet for rough paths developments. The fol-
lowing workshop participants are active in this area Diehl, Oberhauser, Friz and
Crisan. Lastly, rough paths theory has had an importance influence in the area of
numerical approximations of solutions of PDEs deterministic as well as stochastic.
Litterrer, Lyons and Crisan work on this topic.

The Mathematisches Forschungsinstitut Oberwolfach offered the ideal environ-
ment to enhance the synergy between the participant experts working in these
related areas.
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Abstracts

Geometric Structure of the Reachability set

Youness Boutaib

(joint work with Terry Lyons)

In the seventies, mathematicians working on Control Theory (e.g. [1], [2]) studied
the geometric structure of the reachability set (the formal definition of which we
give later) associated to different families of controlled differential equations in
order to get sufficient conditions for (bang-bang) controllability. More specifically,
given an initial condition ξ ∈ E, where E is a (finite-dimensional) vector space,
and a set of controls Ω, one looks at the problem of controllabity associated to the
differential equations:

{
dyt = A(yt, ut, xt)dt , ∀t ∈ [0, T ], u ∈ Ω
y0 = ξ

We use the same idea (studying the geometric structure of the reachability set) in
the case of the following rough differential equation:

(1)

{
dyt =

∑d
i=1 A

i(yt)dx
i
t , ∀t ∈ [0, T ]

y0 = ξ

where d is a positive integer, T > 0, A1, . . . , Ad are γ-Lipschitz vector fields on E
(with γ > 1) and x := (x1, . . . , xd) is a geometric p-rough path in Rd (with p < γ
so that (1) makes sense). Before developping more on the problems we seek to
solve, let us first give a formal definition of the reachability set:

Definition 1 (Reachability set). Let G be a family of geometric p-rough paths. We
call the reachability set associated with the family of rough differential equations
(1) defined by the vector fields A := (A1, . . . , Ad), the initial condition ξ and the
set of controls G the set:

R(ξ, A,G) = {yT (x)|x ∈ G}
With the example of the signature of paths and Chow-Rashevskii’s theorem

in mind (see for example [3] and [4] (chapter 2)), we ask ourselves the question
whether the reachability set defined by all p-rough paths is the same as the one
defined by all lattice paths. The idea is to endow the latter with “enough” smooth
structure for (1) to make sense.
In [5], the authors develop a theory of Lipschitz manifolds on which rough paths
and rough differential equations make sense and which is consistent with the clas-
sical theory when the manifold in question is a finite-dimensional vector space.
Now smooth manifolds look locally like Lipschitz manifolds and one could locally
make sense (and solve) rough differential equations on them. It would be then
enough to use the existing work (e.g. [1]) to state that under suitable conditions
on the vector fields A1, . . . , Ad, the reachability set defined by lattice paths is
a smooth manifold on which (1) locally makes sense and is therefore the same
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as the reachability set defined by all geometric p-rough paths. If one thinks of
the truncated signature as a solution to a particular rough differential equation,
it is known then that the reachability set defined by all rough paths is the free
nilopotent group (which is a Lie group and therefore a smooth manifold) and the
terminal value of the truncated signature of a rough path, by Chow-Rashevskii’s
theorem, corresponds to the terminal value of the truncated signature of a lattice
path.
A more interesting question to ask though is to quantify the p-variation of the
lattice path which gives the same terminal value of the solution to (1) driven by
a given geometric p-rough paths. It is for this purpose that we seek to put more
structure on the reachability set defined by lattice paths. This structure turns
out to be exactly a structure of a Lipschitz manifold given that the vector fields
A1, . . . , Ad satisify a “non-degeneracy” condition in addition to the UFG condi-
tion (see for example [6]) or the locally of finite type condition (see [1]) necessary
to obtain the smooth structure discussed above. This opens the door to more
interesting results like a quantitative mean value theorem in the case of rough
paths.
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[1] C. Lobry, Contrôlabilité des systèmes linéaires, SIAM J. Control 8 (1970), 573–605.
[2] H. Sussmann, Orbits of families of vector fields and integrability of distributions, Transac-

tions of the American Mathematical Society. 180 (1973), 171–188.
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Smoothness of the density for solutions to Gaussian RDEs

Thomas Cass

(joint work with Martin Hairer, Chrisitan Litterer, Samy Tindel)

This abstract is based on the introduction to the recent preprint [7].
Over the past decade our understanding of stochastic differential equations

(SDEs) driven by Gaussian processes has evolved considerably. As a natural
counterpart to this development, there is now much interest in investigating the
probabilistic properties of solutions to these equations. Consider an SDE of the
form

(1) dYt = V (Yt)dXt + V0 (Yt) dt, Y (0) = y0 ∈ Re,

driven by an Rd-valued continuous Gaussian process X along C∞b -vector fields
V0 and V = (V1, . . . , Vd) on Re. Once the existence and uniqueness of Y has
been settled, it is natural to ask about the existence of a smooth density of Yt for
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t > 0. In the context of diffusion processes, the theory is classical and goes back to
Hörmander [23] for an analytical approach, and Malliavin [28] for a probabilistic
one.

For the case where X is fractional Brownian motion, this question was first ad-
dressed by Nualart and Hu [24], where the authors show the existence and smooth-
ness of the density when the vector fields are elliptic, and the driving Gaussian
noise is fractional Brownian motion (fBM) for H > 1/2. Further progress was
achieved in [1] where, again for the regime H > 1/2, the density was shown to be
smooth under Hörmander’s celebrated bracket condition. Rougher noises are not
directly amenable to the analysis put forward in these two papers. Additional in-
gredients have since gradually become available with the development of a broader
theory of (Gaussian) rough paths (see [26], [9], [13]). The papers [6] and [5] used
this technology to establish the existence of a density under fairly general assump-
tions on the Gaussian driving noises. These papers however fall short of proving
the smoothness of the density, because the proof demands far more quantitative
estimates than were available at the time.

More recently, decisive progress was made on two aspects which obstructed the
extension of this earlier work. First, the paper [8] established sharp tail estimates
on the Jacobian of the flow JX

t←0(y0) driven by a wide class of (rough) Gaussian
processes. The tail turns out to decay quickly enough to allow to conclude the
finiteness of all moments for JX

t←0(y0). Second, [22] obtained a general, determin-
istic version of the key Norris lemma (see also [25] for some recent work in the
context of fractional Brownian motion). The lemma of Norris first appeared in [30]
and has been interpreted as a quantitative version of the Doob-Meyer decompo-
sition. Roughly speaking, it ensures that there cannot be too many cancellations
between martingale and bounded variation parts of the decomposition. The work
[22] however shows that the same phenomenon arises in a purely deterministic
setting, provided that the one-dimensional projections of the driving process are
sufficiently and uniformly rough. This intuition is made precise through the notion
of the “modulus of Hölder roughness”. Together with an analysis of the higher or-
der Malliavin derivatives of the flow of (1), also carried out in [22], these two results
yield a Hörmander-type theorem for fractional Brownian motion if H > 1/3.

In this paper we aim to realise the broader potential of these developments
by generalising the analysis to a wide class of Gaussian processes. This class in-
cludes fractional Brownian motion with Hurst parameterH ∈ (14 ,

1
2 ], the Ornstein-

Uhlenbeck process, and the Brownian bridge. Instead of focusing on particular
examples of processes, our approach aims to develop a general set of conditions on
X under which Malliavin-Hörmander theory still works.

The probabilistic proof of Hörmander’s theorem is intricate, and hard to sum-
marise in a few lines, see [19] for a relatively short exposition. However, let us
highlight some basic features of the method in order to see where our main con-
tributions lie:

(i) At the centre of the proof of Hörmander’s theorem is a quantitative es-
timate on the non-degeneracy of the Malliavin covariance matrix CT (ω).
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Our effort in this direction consists in a direct and instructive approach,
which reveals an additional structure of the problem. In particular, the
conditional variance of the process plays an important role, which does
not appear to have been noticed so far. More specifically, following [6] we
study the Malliavin covariance matrix as a 2D Young integral against the
covariance function R (s, t). This provides the convenient representation:

vTCt (ω) v =

∫

[0,t]×[0,t]

fs (v;ω) fr (v;ω) dR (s, r) ,

for some γ-Hölder continuous f (v;ω), which avoids any detours via the
fractional calculus that are specific to fBM. Compared to the setting of
[5] we have to impose some additional assumptions on R (s, t), but our
more quantitative approach allows us in return to relax the zero-one law
condition required in this paper.

(ii) An essential step in the proof is achieved when one obtains some lower
bounds on vTCtv in terms of |f |∞;[0,t]. Towards this aim we prove a novel
interpolation inequality, which lies at the heart of this paper. It is explicit
and also sharp in the sense that it collapses to a well-known inequality for
the space L2([0, T ]) in the case of Brownian motion. Furthermore, this
result should be important in other applications in the area, for example
in establishing bounds on the density function (see [2] for a first step in
this direction) or studying small-time asymptotics.

(iii) Hörmander’s theorem also relies on an accurate analysis and control of
the higher order Malliavin derivatives of the flow JX

t←0(y0). This turns
out the be notationally cumbersome, but structurally quite similar to the
technology already developed for fBm. For this step we therefore rely
as much as possible on the analysis performed in [22]. The integrability
results in [8] then play the first of two important roles in showing that the
flow belongs to the Shigekawa-Sobolev space D∞(Re).

(iv) Finally, an induction argument that allows to transfer the bounds from the
interpolation inequality to the higher order Lie brackets of the vector fields
has to be set up. This induction requires another integrability estimate for
JX

t←0(y0), plus a Norris type lemma allowing to bound a generic integrand
A in terms of the resulting noisy integral

∫
AdX in the rough path context.

This is the content of our second main contribution, which can be seen as
a generalisation of the Norris Lemma from [22] to a much wider range of
regularities and Gaussian structures for the driving processX . Namely, we
extend the result of [22] from p-rough paths with p < 3 to general p under
the same “modulus of Hölder roughness” assumption. It is interesting to
note that the argument still only requires information about the roughness
of the path itself and not its lift.

Let us further comment on the Gaussian assumptions allowing the derivation
of the interpolation inequality briefly described in Step (ii) above. First, we need
a standing assumption that regards the regularity of R(s, t) (expressed in terms
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of its so called 2D ρ-variation, see [13]) and complementary Young regularity of
X and its Cameron-Martin space. This is a standard assumption in the theory of
Gaussian rough paths. The first part of the condition guarantees the existence of a
natural lift of the process to a rough path. The complementary Young regularity
in turn is necessary to perform Malliavin calculus, and allows us to obtain the
integrability estimates for JX

t←0(y0) in [8].
In order to understand the assumptions on which our central interpolation in-

equality hinges, let us mention that it emerges from the need to prove lower bounds
of the type:

(2)

∫

[0,T ]×[0,T ]

fsft dR (s, t) ≥ C |f |aγ;[0,T ] |f |
2−a
∞;[0,T ] ,

for some exponents γ and a, and all γ-Hölder continuous functions f . After view-
ing the integral in (2) along a sequence of discrete-time approximations to the
integral, relation (2) relies on solving a sequence of finite dimensional partially
constrained quadratic programming (QP) problems. These (QP) problem involve
some matricesQ whose generic element can be written asQij = E[X1

ti,ti+1
X1

tj ,tj+1
],

where X1
ti,ti+1

designates the increment X1
ti+1

−X1
ti of the first component of X .

Interestingly enough, some positivity properties of Schur complements computed
within the matrix Q play a prominent role in the resolution of the aforementioned
(QP) problems. In order to guarantee these positivity properties, we shall make
two non-degeneracy type assumptions on the conditional variance and covariance
structure of our underlying process X1. This is obviously quite natural, since
Schur complements are classically related to conditional variances in elementary
Gaussian analysis. We also believe that our conditions essentially characterise the
class of processes for which we can quantify the non-degeneracy of CT (ω) in terms
of the conditional variance of the process X .
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[19] Hairer, M.: Malliavin’s proof of Hörmander’s theorem. Bull. Math. Sci. 135 (2011), no 6-7,

pp. 650–666
[20] Hairer, M., Mattingly, J.: A theory of hypoellipticity and unique ergodicity for semilinear

stochastic PDEs.
[21] Hairer, M., Pillai N.S.: Ergodicity of hypoelliptic SDEs driven by fractional Brownian mo-
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Solving semilinear partial differential equations using the cubature
method

Dan Crisan

(joint work with J-F Chassaneux and K. Manolarakis)

Let (Ω,F ,P) be a complete probability space endowed with a filtration {Ft}t≥0
satisfying the usual conditions and W = {Wt, t ≥ 0} be an Ft-adapted Brownian
motion defined on (Ω,F ,P). Let T be a fixed time horizon which we fix hence-
forth and consider the triplet (X,Y, Z) = {(Xt, Yt, Zt) , t ∈ [0, T ]} of Ft-adapted
stochastic processes satisfying the following system of equations

(1)

{
dXt = V0(Xt)dt+

∑d
j=1 Vj(Xt) ◦ dW j

t

−dYt = f(t,Xt, Yt, Zt)dt− ZtdWt
.

The system (1) is called a forward-backward stochastic differential equation (FB-
SDE). The process X , called the forward component of the FBSDE, is a d-
dimensional diffusion satisfying an SDE with coefficients Vi : Rd → Rd, i =
0, 1, ..., d with all entries belonging to C∞b (Rd), the space of bounded infinitely
differentiable functions with all partial derivatives bounded. The notation “◦” in-
dicates that the stochastic term in the equation satisfied by X is a Stratonovitch
integral. The process Y , called the backward component of the SDE is a one-
dimensional stochastic process with final condition YT = Φ(XT ), where Φ :
Rd → R is a continuous function and the function f : [0, T ]× Rd × R × Rd → R

referred to as “ the driver”, is Lipschitz.
In [1] and [2], it is shown that these processes provide a Feynman-Kac repre-

sentation for solutions of semilinear partial differential equations (PDEs) which
appear in many applications in the field of Mathematical Finance. In particular,
let u be the solution of the final value Cauchy problem

(2)

{
∂tu = Lu+ f (t, x, u, V1u, ..., Vdu) , t ∈ (0, T ], x ∈ Rm

u(0, x) = Φ(x), x ∈ Rm ,

where L is the second order differential operator

(3) Lϕ = V0ϕ+
1

2

d∑

i=1

V 2
i ϕ.

In particular, if d = m and Vi = ∂xi
, i = 1, ..., d and V0 = 0, then (2) becomes

∂tu =
1

2
∆u+ f (t, x, u,∇u) .

Then the solution of the PDE (2) admits the Feynman-Kac representation

(4) u(t, x) = Y T−t,x
T−t = E

[
Φ(XT−t,x(T )) +

∫ T

T−t

f(s,Xt,x
s , Y t,x

s , Zt,x
s )ds

]
,

where (Xr,x, Y r,x, Zr,x) is the ‘stochastic flow’ associated to the FBSDE. We de-
duce from the Feynman-Kac representation (4) that there exists Λ′t,x : CRm [0, T ] →
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R such that

u(t, x) = E [Λt,x (W )] =

∫

ω∈C([0,∞),Rd)

Λt,x(ω)dPW (ω).

We exploit this property to construct a numerical approximation of the solution
of the semilinear PDE that involves the following three procedures:

• replacing PW with PW̃ = 1
n

∑n
i=1 δωi

- W̃ approximates the signature of W .

• approximating Λt,x with an explicit/simple version Λ̃t,x.
• controlling the computational effort (using the Tree Based Branching Algorithm).

Let us define

ũδ(0, x) =

∫

ω∈C([0,∞),Rd)

Λ̃t,x(ω)dPW̃ (ω) = Λ̃t,x(ωi).

We prove (under additional assumptions on the coefficients of the PDE) that

sup
x∈Rd

E[|ũδ(0, x)− u(0, x)|] ≤ C

(
δk + δ

m−1

2 +
1√
N

)
,

where δ is the mesh of the discretizing partition of Λt,x, k is discretization order,
m is the level of approximation of the signature of W (m = 3, 5, ...) and N is the
size of the computational effort.
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Convolutional rough paths

Aurélien Deya

The talk will consist in a brief survey on the method introduced by Gubinelli
and Tindel ([1]) to study evolution equations with perturbation driven by non-
differentiable paths. We will review some of the basic principles of this approach,
as well as a few stochastic applications derived from it.
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Controlled rough differential equations and applications to stochastic
control

Joscha Diehl

(joint work with P. Friz, P. Gassiat)

We study controlled rough differential equations (controlled RDEs) of the form

dXs,x,ν
t = b(Xs,x,ν

t , νt)dt+ σ(Xs,x,ν
t )dηt, Xs,x,ν

s = x,(1)

for some geometric rough path η ∈ C0,p−var([0, T ], G[p](Rd). Here ν ∈ M, the
class of all measurable functions on [0, T ] taking values in some control set U .
Existence, uniqueness and stability follow easily from the general theory (which is
exposed for example in [7]), by defining the vector-field valued path of bounded

variation Bt :=
∫ t

0 b(·, νr)dr and solving

dX = XdB + σ(X)dη.

We study the related (finite time horizon) optimal control problem and define
the value function

v(t, x) := sup
ν

{∫ T

t

f(r,Xt,x,ν
r , νr)dr + g(Xt,x,ν

T )

}
.

It turns out, that v is the solution to the rough HJB equation.

−dv(t, x)−H(x,Dv)dt − 〈σ(x), Dv(t, x)〉dηt .(2)

There are several approaches to make sense of equations of this type ([2, 1, 3]). We
follow the viscosity solution-setting of [8] and say that v solves (2) if it is the limit
of viscosity solutions vn to (2) whith η beeing replaced by smooth approximations
(in rough path metric).

At this points it is still an open question whether solutions to such equations
can be intrinsically characterised; say analogously to classical viscosity theory by
using “touching test functions“ (but see [1] for results in this directions).

As described just now, the approach of dynamic programming (which corre-
sponds to the HJB equation in the infinitesimal) works for controlled RDEs as it
does for classical controlled ODEs. We currently investigate whether a maximum
principle does also hold.

Consider now the stochastic optimal control problem

V (t, x) := sup
u

E[

∫ T

t

f(r,Xt,x,u
r , ur)dr + g(Xt,x,u

T )],

where the supremum is taken over all progressively measurable controls u and X
solves the stochastic differential equation

dXs,x,u
t = b(Xs,x,u

t , ut)dt+ σ(Xs,x,u
t )dBt, Xs,x,u

t = x,

driven by some d-dimensional Brownian motion B.
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In the literature there exist several ideas to use pathwise optimization (e.g.
fixing a realization ω and then performing optimization) in order to obtain duality
formulas, see e.g. [4, 5, 6].

Using rough path theory one avoids technical difficulties in the continuous time
setting, and we obtain immediately the following result.

Theorem 1. Let p ∈ (2, 3). Let η ∈ C0,p−var([0, T ],Rd) be a rough path. Let
γ > p. Let b : Re × U → Re be continuous and let b(·, u) ∈ Lip1(Re) uniformly in
u ∈ U . Let σ1, . . . , σd ∈ Lipγ(Re). Let g ∈ BUC(Re). Let f : [0, T ]×Re ×U → R

be bounded, continuous and locally uniformly continuous in t, x, uniformly in u.
Let ZF be the class of all mappings z : C0,p−var([0, T ],Rd)×M → Rd such that

• z is measurable
• E[z(B, u)] ≥ 0, if u is adapted

Let B be the rough-path lift of the Brownian motion B.
Then

V (t, x) = inf
z∈ZF

E[ sup
ν∈M

{∫ T

t

f(r,Xt,x,ν,η
r , ur)dr + g(Xt,x,ν,η

T ) + z(η, ν)

}∣∣∣∣∣
η=B(ω)

].

This general statement can be specialized to obtain the duality result in [5] as
well as the (continuous time analogue) of a a result in [4]. We are currently looking
for other variants, especially ones that could be used for competitive numerical
methods.
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Holomorphic functions and subelliptic heat kernels over Lie groups

Bruce Driver

(joint work with Len Gross, Laurent Sallof-Coste)

A Hermitian form q on the dual space, g∗, of a Lie algebra, g, of a Lie group,
G, determines a Laplacian, ∆, on G. Assuming Hörmander’s condition for hypoel-
lipticity, the subelliptic heat semigroup, et∆/4, is given by convolution by a C∞

probability density ρt. Analogous to earlier work in the strongly elliptic case, we
are able to show that if G is complex, connected, and simply connected then the
Taylor expansion defines a unitary map from the space of holomorphic functions
in L2 (G, ρt) onto (a subspace of) the dual of the universal enveloping algebra in
the norm induced by q. This work is related to an extension of the bosonic Fock
space to the noncommutative Lie group setting.
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Examples from physics and economics where rough paths matter

Peter K. Friz

1. Phyiscal Brownian motion in a magnetic field as rough path,

joint with P. Gassiat

Newton’s second law for a particle in R3 with mass m, and position z = z (t) ,
(for simplicity: constant) frictions α1, α2, α3 > 0 in the coordinate axis, subject
to a (3-dimensional) white noise ξ = ξ (t) reads

(1) mz′′ = −Az′ + ξ

where A = diag (α1, α2, α3). Orthonormal change of coordinates implies that the
”correct” assumption for A is to be symmetric with strictly positive spectrum,

σ (A) ⊂ (0,∞) .

σ (A). The process z (t) describes what is known as physical Brownian motion. Let
us now assume that our particle (with position z, velocity z′) carries an electric
charge q 6= 0 and moves in a (for simplicity, constant) magnetic field B. Recall that
such a particle experiences a sideways force (”Lorentz force”) that is proportional
to the strength of the magnetic field, the component of the velocity that is perpen-
dicular to the magnetic field and the charge of the particle, FLorentz = qz′ × B..
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When B is constant, which we assume for simplicity, the Lorentz force experi-
enced by the particle (at time t) can be written as as linear function of z′ = z′ (t),
namely qBz′ for some anti-symmetric matrix B. In other words,

mz′′ = −Az′ + qBz′ + ξ

≡ −Mz′ + ξ.

Observe that for zero mass (m = 0), and M = A − qB, the process Mz is a
bona fide 3-dimensional Brownian motion. We want to study the limit m → 0.

Set m = ε2 and rewrite the above differential equations as evolution in phase
space, introducing moment p := εy := mz′. Since mz′′ = εy′ anbd z′ = εy/m =
y/ε, it follows that εy′ = −Mε−1y + ξ and hence we are led to the 6-dimensional
SDE, a special case of which was studied in [4] with multiscale methods,

dY ε = −ε−2MY εdt+ ε−1dW

dZε = ε−1Y εdt.

We can then show the following result. As ε → 0, MZε ∈ C1 with its canonical
area converges to a Brownian rough path, where the area (over time [0, t]) is equal
to Lévy’s area if and only if qB = 0, that is in the case of absence of a magnetic
field or in the case that the particle carries no charge. Extensions to (friction resp.
magnetic) vector fields non constant in space, and also situations with fractional
noise, are currently under investigation.

2. A multi-dimensional asset model under presence of

infinitesimally delayed market reaction

Consider an IID sequence (ξ) of standard d-dimensional Gaussians, ξi ∼ N
(
0, Id

)
.

A simple discrete asset price model (under the market measure; here we are not
interested in hedging, risk-neutral pricing, completeness of the market etc.) is

Xi+1 −Xi = αXiξi+1 + δXi

where α = (αj), δ ∈ Rn×n, such as to model n assets, X =
(
X1, . . . , Xn

)
. One

may interprete this equation in saying that exogenous randomness (”information”),
modelled by (ξ), trigger market moves modelled by α. (Of course, there are many
ways to enrich this model but the simple, linear model given above already has all
the structure which leads to the phenomena described below.)

It is rather obvious that not all market participants react to new information
at same speed; although most do try to act quickly. We can incorporate this in
the discrete model via

Xi+1 −Xi = {αXiξi+1 + βXiξi + γXiξi−1 + ....}+ δXi

where (in some sense) α >> β >> γ >> .... Here, β models the (bulk) behaviour
of market participants - let us call them β agents - which react one time unit
later than α agents. One may regard α agents as ”fast investors” with immediate
reaction modelled by α. In this spirit, β agents may be regarded as ”not-so-fast
investors” (but far from lazy); in fact, hegde funds which deliberatly try to take
advantage of market overreactions caused by the α agents (and their algorithmic
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trading systems) may - at least partially - act as β-agents. And so on. To keep
things simple, we take γ = 0 and all further dots above to be zero (somewhat
ignoring effects due to medium - very lazy investors; extensions are possible of
course) and consider

Xi+1 −Xi = {αXiξi+1 + βXiξi}+ δXi.

Since new information arrives in continuous time, as are the reactions of the
market participants, there is every reason to switch to continuous time and we
shall consider in the same spirit

dX (t) = αXdW (t) + βXdW (t− ε) + δXdt

in the ε → 0 regime. (This is not a simple scaling limit of the discrete model, but
at least with ε = 1, the standard Euler-scheme with step-size 1 will bring us back
to the discrete equation.) One may be tempted to believe that, in this limit, the
effective behaviour simply reduces to

dX (t) = αXdW (t) + βXdW (t) + δXdt

= (α+ β)XdW (t) + δXdt;

which amounts to a superposition principle for the behaviour of α- and β-agents.
Curiously enough this is false, and the asset prices (in the small delay limit) is
affected by a non-linear interplay between α and β. In essence, the reason is that
Brownian motion and its delay (in the small delay limit) produce a non-trivial
rough path; as was first understood in [2].
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Spatial rough path lifts of stochastic convolutions

Benjamin Gess

(joint work with Peter Friz, Archil Gulisashvili, Sebastian Riedel)

The lack of spatial regularity of solutions to SPDE often causes serious obstacles
concerning well-posedness and stability. As a basic example of such effects one may
consider vector-valued stochastic Burgers type equations of the form

(1) dX i
t = ∆X i

t +
n∑

j=1

gij(Xt)∂xX
j
t dt+ dW i

t , i = 1, ..., d,
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where gij : Rd → R are smooth functions and Wt is space-time white noise. Even

when gij ≡ 0, the solutions to such equations are known to be spatially only β-

Hölder continuous for every β < 1
2 . Therefore, the term ∂xX

j
t is not rigorously

defined and a weak formulation has to be used instead. However, as long as gij
are not of gradient type one cannot just rely on partial integration in order to
pass to a weak formulation. Recently, an alternative approach to (1) based on
the theory of rough paths has been developed and successfully applied in order to
prove well-posedness and stability (cf. [1, 8]). Closely related, instability of spatial
discretizations of (1) and the occurrence of correction terms has been observed in
[2, 4, 7]. The crucial step in the formulation of a weak notion of solution to (1)
is the construction of geometric rough paths lifting strictly stationary solutions to
the stochastic heat equation in their space variable. I.e., considering

dΨi
t = (∆− 1)Ψi

tdt+ dW i
t , i = 1, ..., d,

one needs to construct rough paths x 7→ Ψ(t, x) lifting x 7→ Ψ(t, x). In the special
case of stochastic heat equations with space-time white noise on the one dimen-
sional torus, the existence of a corresponding rough path has been shown in [1].
However, the reasoning strongly relied on the simple structure of the equation and
on explicit calculations that break down for fractional stochastic heat equations or
colored noise. Similar constructions are also fundamental for the recent progress
on the KPZ equation [3], again on the one dimensional torus.

We provide a general sufficient condition for the existence of a rough path lift
of centered, continuous Gaussian processes with stationary increments and convex
or concave variance function. As applied to fractional stochastic heat equations,
i.e.

(2) dΨi
t = (−(−∆)α − 1)Ψi

tdt+ dW i
t , α ≤ 1, i = 1, ..., d,

with possibly colored noise this proves the existence of a geometric rough path,
lifting x 7→ Ψ(t, x) for all t ≥ 0 under suitable assumptions on the diffusion
coefficients.

The study of vector-valued Burgers equations of the form (1) is motivated by
path sampling problems. More precisely, let Z be the solution to a linear SDE

(3) dZu = AZudu + CdBu, in Rd,

on [0, 2π], where B denotes standard Brownian motion in Rd. In the simplest case
A ≡ 0, C ≡ Id, Z(0) = 0, the covariance of Z is given by RZ(u, v) = (u ∧ v)
Id, which is the fundamental solution to (−∆,D(−∆)) with D(−∆) := {f ∈
H2([0, 2π];Rd)| f(0) = 0, d

duf(2π) = 0}. In other words, the covariance operator

of the Gaussian measure L(Z) on L2([0, 2π];Rd) is given by (−∆)−1. On the other
hand, the invariant measure µ corresponding to the SPDE

dXt = ∆Xtdt+ dWt, on [0, 2π],

with W being space-time white noise and D(−∆) as before, is known to be Gauss-
ian with covariance operator (−∆)−1. Hence, µ = L(Z).
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In the general case, in [6] the covariance operator of the solution Z to (3)

has been identified as RZ =
(
−(∂u +A∗)(CC∗)−1(∂u −A)

)−1
with analogous

boundary conditions.
One then aims to solve the corresponding bridge sampling problem, i.e. to

sample from the distribution µ of Z conditioned on

Z0 = z0, Z1 = z1.

In [6] it has been shown, that µ equals the unique ergodic invariant measure of
the SPDE

dΨt = −R−1Z Ψdt+ dWt, ∀(t, u) ∈ R+ × (0, 2π)

Ψ(t, 0) = z0, Ψ(t, 2π) = z1, ∀t ∈ R+,
(4)

where RZ is given as before endowed with inhomogeneous Dirichlet boundary
conditions. Since the speed of convergence of solutions Ψt to (4) to the invariant
measure µ is exponential, efficient sampling algorithms for µ may be based on
solving (4).

The case of linear SDE (3) has subsequently been extended in [5, 1] to non-linear
SDE of the form

dZu = AZudu+ f(Zu)du + CdBu, in Rd,

with non-linear f : Rd → Rd. At least informally, this leads to an SPDE of the
form (1) if we set A ≡ 0, C ≡ Id and drop lower order terms for simplicity. In the
gradient case (i.e. f = ∇F ), this has been rigorously worked out in [5], based on
standard SPDE methods. The non-gradient case presented a substantial difficulty
as the non-linearity in the SPDE could not be made meaningful with classical
methods, as it has been outlined above. In [1], Hairer resolved this problem by
constructing a suitable spatial rough path to the linear stochastic heat equation,
so that the nonlinearity gij(Xt)∂xX

j
t makes sense after pairing with a Schwartz

test function ϕ as a rough integral
∫ 2π

0 ϕ(u)gij(Xt(u))dX
j
t (u).

It is tempting to try a similar approach in the fractional case; that is, to sample
the law of

(5) dZu = AZudu+ f(Zu)du + CdBH
u , in Rd,

conditional on its endpoints, via the stationary solution of a suitable fractional
SPDE. However, combining the heuristics found in [5], notably the relation to
Onsager-Machlup functionals, and the known form of these functionals in the
fractional case [9], suggests an SPDE of the form (2) with appropriate boundary
conditions and with an additional non-local, nonlinear term1. For the linear case
we give a heuristic derivation below. It is not difficult to make this case rigorous,
but since many questions remain open in the non-linear case we shall return to
this in its own right. We believe, that the solution of the resulting SPDE will
rely on the construction of a suitable (spatial) rough path associated to the linear
problem much as in Hairer’s work.

1Here BH is Fourier fractional Brownian motion with Hurst parameter 2H = α.
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We will now give a heuristic derivation of the SPDE associated to the sampling
problem for (5) at least in the linear case, i.e. for A, f ≡ 0, B ≡ Id. Let BH

is Fourier fractional Brownian motion (cf. [10]) with Hurst parameter H ∈ (0, 1),
that is BH is a continuous, centered Gaussian process starting at 0 with covariance

RH(s, t) =
∑

k∈N

sin((k + 1
2 )s) sin((k + 1

2 )t)

(k + 1
2 )

4H
.

Note that for H = 1
2 we recover standard Brownian motion.

If we consider ∆ on L2([0, 2π];Rd) with domain

D(∆) := {f ∈ H2([0, 2π];Rd)| f(0) = 0,
d

du
f(2π) = 0},

then an orthonormal basis of −∆ is given by {ek(·) := sin((k + 1
2 )·)}k∈N with

eigenvalues λ2
k := (k + 1

2 )
2. Hence, the corresponding fractional Laplace operator

(−∆)α is given by

(−∆)αf(t) =
∑

k∈N

(
k +

1

2

)2α

fk sin

(
(k +

1

2
)t

)
,

with fk :=
∫ 2π

0 f(s) sin((k+ 1
2 )s)ds and α ∈ (0, 1]. The covariance operator of BH

on L2([0, 2π];Rd) is given by

RHf(t) =

∫ 2π

0

RH(s, t)f(s)ds

=
∑

k∈N

∫ 2π

0

sin((k + 1
2 )s) sin((k + 1

2 )t)

(k + 1
2 )

4H
f(s)ds

= (−∆)−αf,

with α = 2H and domain of definition D(∆) given as above. Suppose α > 1
2 . As

in the case α = 1, the invariant measure µ of the SPDE

dΨt = −(−∆)αΨdt+ dWt, ∀(t, x) ∈ R+ × (0, 2π)

Ψ(t, 0) = 0,
d

dx
Ψ(t, 2π) = 0, ∀t ∈ R+,

(6)

is a Gaussian measure with covariance operator (−∆)−α on L2([0, 2π];Rd). Hence,
µ = L(BH) and the path sampling problem for BH may be approached by con-
sidering Ψt for large values of t.
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A theory of controlled distributions

Massimiliano Gubinelli

(joint work with P. Imkeller, N. Perkowski)

If (Xt)t≥0 and (Yt)t≥0 are two independent d-dimensional Brownian motions it
is well known that it is, in general, not possible to give a meaning analytically to the
point-wise product Yt∂tXt of the continuous path Yt with the distribution ∂tXt.
Itô theory of integration exploits probabilistic independence to give sense to the

Riemmann-like integral Zt =
∫ t

0 YsdXs as a substitute to the point wise quantity
Yt∂tXt: formally ∂tZt = Yt∂tXt. In Lyons’ theory of rough paths [5, 6, 7, 3] an
appropriate candidate for the integral Z (the cross integral of Y and X) allows to

define integrals of the form
∫ t

0
FsdXs for a large class of paths F which ”locally”

behave like Y (it is controlled by Y , see [3]), in the sense that Ft − Fs ≃ F ′s(Yt −
Ys) modulo a small remainder. Euristically, the local information contained in
Z is enough to reconstruct the product Fs∂sXs at least as a distribution. The
probabilistic structure takes part only in the definition of Z but the construction

of the integral
∫ t

0
FsdXs from the data (X,Y, Z, F ′) is analytic and does not rely

on any special probabilistic structure. Inspired by these results we sketched in [1] a
general approach to the analysis of products of distributions which are a-priori not
well defined. Essentially we take the controlled path idea and apply it to the multi
scale development of the distributions, instead of their parameter dependence.
In this way we can easily generalize rough path theory to the multi-parameter
setting. (en passant: this idea seems also fruitful for stochastic integration theory,
which in the many parameters setting, for example w.r.t. the Brownian sheet,
looses its simplicity). Let us explain our construction in the particular case of
giving a meaning to the quantity Ft∂tXt for a large class of functions F . Consider
standard Littlewood-Paley projectors {∆i}i≥−1 on S ′(R) (the space of Schwartz
distributions on R). A distribution f belongs to the Hölder-Besov space Cγ =
Bγ
∞,∞ iff ‖∆if‖L∞(R) . 2−iγ for all i ≥ −1 (see e.g. [2] for details on Besov spaces

and the L-P decomposition). It is easy to show that (upon suitable localization)
X ∈ Cγ for any γ < 1/2 and so that ∂tX ∈ Cγ−1. If F ∈ Cρ then the product
F∂tX is well defined only if γ + ρ− 1 > 0 which is the standard Young condition
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in this setting. If we want to allow a larger range of ρ (for example for SDEs we
would need ρ = γ) we proceed by decomposing the product over all the relevant
scales and partitioning the sum into three terms:

F∂tX =
∑

i<j−1

∆iF∂t∆jX +
∑

i>j+1

∆iF∂t∆jX +
∑

|i−j|≤1

∆iF∂t∆jX

The first two terms in this decomposition are well defined whatever the value of ρ
is. In particular

π<(F, ∂tX) =
∑

i<j−1

∆iF∂t∆jX ∈ Cγ−1

and

π>(F, ∂tX) =
∑

i>j+1

∆iF∂t∆jX ∈ Cγ+ρ−1

The diagonal term in the double sum is the origin of the difficulties: only oscilla-
tions on almost the same scale give problems when trying to point-wise multiply
distributions. At this point the key observation come from defining a suitable class
of controlled functions, so we say that F is controlled by Y off

F = π<(F
′, Y ) + F ♯

where F ′ ∈ Cδ and F ♯ ∈ Cρ+δ with δ > 0. This definition implies for example that
∆iF ≃ F ′∆iY modulo smoother correction terms. As we see we just transposed
the controlled path definition on the multiscale expansion. With this assumption
we can show that

∑

|i−j|≤1

∆iF∂t∆jX ≃ F ′
∑

|i−j|≤1

∆iY ∂t∆jX

modulo a term belonging to Cγ+δ+ρ−1. In other terms we reduced the prob-
lem of the definition of the product F∂X to that of the product Y ∂X for all F
controlled by Y . As in rough path theory, this last piece of data can be syn-
thesized using probabilistic arguments: almost surely there exists a version of∑
|i−j|≤1 ∆iY ∂t∆jX living in Cγ+ρ−1. This completes the construction.

Suitable commutator estimates and results on paralinearization of maps of
Besov functions allow to show the continuity of this product under a suitable
”controlled” topology and set up fixed-point arguments to solve rough differential
equations and more general problems.

To exemplify the applicability of our ideas, in [1] we consider two SPDEs for
which previously it was not known how to describe solutions:

(1) A Burgers type SPDE driven by time-space white noise on the d-dimensional
torus Td = [−π, π]d with periodic boundary conditions:

∂tu(t, x) = −Au(t, x) + g(u(t, x))Du(t, x) + ξ(t, x),

where u : R+ × Td → Rn is a vector valued function, −A = −(−∆)σ

is the fractional Laplacian with σ > 1/2, ξ is a space-time white noise
taking values in Rn and D denotes the spatial derivative. Moreover g :
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Rn → L(Rn;Rn) is a smooth field of linear transformations of Rn. Here
our results complement the results of [4].

(2) A non-linear heat equation with rough space dependence:

∂tu(t, x) = ∆u(t, x) + f(u(t, x))ξ(x)

where x ∈ Tn, n = 2, 3, ξ is a space white-noise which does not depend on
time and f : R → R is a regular function.

In both cases we are able to exibith a space of controlled distribution where the
equations are well-posed (in a suitable sense) and admit a local solution.

During the workshop we become aware of a different but related approach devel-
oped by M. Hairer to treat non-linear operation on distributions. In his approach,
instead of imposing some control on the multi-scale decomposition, he prescribe
the local behavior of the distributions and then reconstruct the global object using
a generalization of the one-dimensional sewing map considered in [3].

All these developments hint to a new territory which become suddenly more
amenable to exploration along rough paths.
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Modelled distributions and the KPZ equation

Martin Hairer

In [1], we introduce a novel robust concept of solution to the KPZ equation
which is shown to extend the classical Cole-Hopf solution. Similarly to what can
be shown in the context of the “rough paths” approach to the solution to controlled
ODEs, this new notion provides a solution map which is jointly locally Lipschitz
continuous as a function of the initial condition and the driving noise. The price to
pay is that the space containing the driving noise is not a classical Banach space,
but rather a genuinely nonlinear metric space X .

The Cole-Hopf solution then factorises into a “universal” measurable map from
the probability space into X , composed with the new solution map. The advantage
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of such a formulation is that it essentially provides a pathwise notion of a solution,
together with a very detailed approximation theory. In particular, our construc-
tion completely bypasses the Cole-Hopf transform, thus laying the groundwork for
proving that the KPZ equation describes the fluctuations of systems in the KPZ
universality class.

As a corollary of our construction, we obtain very detailed new regularity results
about the solution, as well as its derivative with respect to the initial condition.
Other byproducts of the proof include an explicit approximation to the station-
ary solution of the KPZ equation, a well-posedness result for the Fokker-Planck
equation associated to a particle diffusing in a rough space-time dependent po-
tential, and a new periodic homogenisation result for the heat equation with a
space-time periodic potential. One ingredient in our construction is an example
of a non-Gaussian rough path such that the area process of its natural approxi-
mations needs to be renormalised by a diverging term for the approximations to
converge.

At a technical level, our construction extends and sharpens the tools developed
in [4, 3] in the context of the analysis of a class of “Burgers-type” equations.
However, it can also be interpreted as an instance of a much more general theory
of “modelled distributions” [2]. The idea of this theory is essentially to describe
a function (or distribution) f by a kind of “local Taylor expansion” or “germ”
F (x) at every (space-time) point x. Here, the function F takes values in a vector
space T that encodes the coefficients of the expansion. The twist is that, unlike in
the case of the classical Taylor expansion, we do not in general assume that the
basis functions of the expansion are given by polynomials. In particular, our basis
functions are allowed to contain irregular functions and / or distributions. The
main additional structure required in the theory is the action of a Lie group G
onto T , which “translates” the coefficients of an expansion around a given point
into the coefficients of the expansion around a different point. In other words, if
Πx : T → D, where D is some space of distributions, is the linear map that, to a
given set of coefficients a, associates the corresponding expansion around x (think
of it as giving the polynomial with coefficients a based at x), then there exists a
function (x, y) 7→ Γxy ∈ G such that

ΓxyΓyz = Γxz , Πy = ΠxΓxy .

Under natural analytic conditions on Π and Γ, we can then construct a “reconstruc-
tion map” R which, to a given “modelled distribution” F : x 7→ F (x) associates
a unique Schwartz distribution RF such that, for every x, RF ≈ ΠxF (x) near x.
Furthermore, the reconstruction map R is continuous both as a function of F and
as a function of the model (Γ,Π). The natural condition for this to be the case is
that

(1) ‖ΓxyF (y)− F (x)‖α ≤ C|x − y|γ−α ,

for some γ > 0, where ‖·‖α denotes the norm of the component in Tα. If we define
an abstract product ⋆ on T , one can then define the product between two modelled
distributions F and F̄ by

(
F ⋆ F̄

)
(x) = F (x) ⋆ F̄ (x). We can give explicit and
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natural conditions on ⋆ which ensure that a bound of the type (1) is again satisfied
for F ⋆ F̄ , thus allowing to define a product between classes of distributions that
one could not classically multiply. In particular, the solution to the KPZ equation
can be described as such a modelled distribution, and its nonlinearity is given by
a particular instance of the structure just described.
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The signature of a path of bounded variation

Ben Hambly

(joint work with Terry Lyons)

We consider the signature X[0,T ] of a bounded variation path {Xt; 0 ≤ t ≤ T },
taking values in Rd, d > 1, that is the element of the tensor algebra over Rd

consisting of the sequence of all the iterated integrals of the path over a fixed time
T . This can be viewed as a non-commutative transform of the path and we address
the question of whether or not the signature uniquely determines the path. That is
we seek an analogue of the result that the Fourier coefficients determine integrable
functions on the circle up to Lebesgue null sets. The key idea is to identify those
paths which have a null signature and for this we introduce the idea of a tree-like
path.

Definition 2. {Xt, t ∈ [0, T ]} is a tree-like path in Rd if there exists a positive
real valued continuous function h defined on [0, T ] such that h (0) = h (T ) = 0 and
such that

‖Xt −Xs‖ ≤ h (s) + h (t)− 2 inf
u∈[s,t]

h (u) .

The function h is called a height function for X.

With this notion our main theorem, published in [1], is

Theorem 1. A path of bounded variation has X[0,T ] = 0 = (1, 0, 0, . . . ) if and
only if the path {Xt; 0 ≤ t ≤ T } is tree-like.

As a result we see that the signatures of paths are unique up to tree-like pieces
and we can use the signature to define an equivalence relation on bounded variation
paths. Within each equivalence class there is a path of minimal length which
contains no tree-like pieces. We call this the tree reduced path associated with the
signature X[0,T ] and such tree reduced paths form a group under concatenation.

Two open problems are:
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(1) to extend this result to the case of paths with finite p-variation for p > 1.
That is are such paths determined up to tree-like pieces by their signatures.
The result is known for Brownian paths almost surely from work of Le Jan
and Qian [2].

(2) to reconstruct the path given its signature. There is work on this problem
which is solved efficiently in the case of lattice paths by Lyons and Xu [3].
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Large deviation principle of Freidlin-Wentzell type for pinned diffusion
measures

Yuzuru Inahama

Summary: Since T. Lyons invented rough path theory, one of its most success-
ful applications is a new proof of Freidlin-Wentzell’s large deviation principle for
diffusion processes. In this talk we extend this method to the case of pinned diffu-
sion processes under a mild ellipticity assumption. Besides rough path theory, our
main tool is quasi-sure analysis, which is one of the deepest theories in Malliavin
calculus. (A preprint of this work can be found on ArXiv math).

For the canonical realization of d-dimensional Brownian motion (wt)0≤t≤1 and
the vector fields Vi : R

n → Rn (1 ≤ i ≤ d) with sufficient regularity, let us consider
the following Stratonovich-type stochastic differential equation (SDE):

dyt =

d∑

i=1

Vi(yt) ◦ dwi
t with y0 = a ∈ Rn.

For simplicity of explanation, no drift term is added, but modification is easy.
The correspondence w 7→ y is called the Itô map and denoted by y = Φ(w). It is
well-known that the Itô map is not continuous as a map from the Wiener space.
Now, introduce a small positive parameter ε ∈ (0, 1] and consider

dyεt =
d∑

i=1

Vi(y
ε
t ) ◦ εdwi

t with yε0 = a ∈ Rn.

Formally, yε = Φ(εw). The process (yεt )0≤t≤1 takes its values in Rn and its
law is a diffusion measure associated with the starting point a and the generator

Lε = (ε2/2)
∑d

i=1 V
2
i .

A classic result of Freidlin and Wentzell states the laws of (yεt )0≤t≤1 satisfies
a large deviation principle as ε ց 0. The proof was not so easy. If Φ were
continuous, we could use contraction principle and the proof would be immediate
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from Schilder’s large deviation principle for the laws of (εw)0≤t≤1. However, it
cannot be made continuous in the framework of the usual stochastic analysis.

Ten years ago, Ledoux, Qian, and Zhang [3] gave a new proof by means of rough
path theory. Roughly speaking, a rough path is a couple of a path itself and its
iterated integrals. Lyons established a theory of line integrals along rough paths
and ordinary differential equation (ODE) driven by rough paths. The Itô map in
the rough path sense is deterministic and is sometimes called the Lyons-Itô map.
The most important result in the rough path theory could be Lyons’s continuity
theorem (also known as the universal limit theorem), which states that the Lyons-
Itô map is continuous in the rough path setting. Brownian motion (wt) admits a
natural lift to a random rough path W , which is called Brownian rough path. If we
put W or εW into the Lyons-Itô map, then we obtain the solution of Storatonovich
SDE (yt) or (y

ε
t ), respectively. Ledoux, Qian, and Zhang proved that the laws of

εW satisfy a large deviation principle of Schilder type with respect to the topology
of the rough path space. Large deviation principle of Freidlin-Wentzell type for
the laws of (yεt ) is immediate from this, since the contraction principle can be used
in this framework. Since then many works on large deviation principle on rough
path space have been published.

There arises a natural question; can one obtain a similar result for pinned
diffusion processes with this method, too? More precisely, does the family of
measures {Qε

a,a′}ε>0 satisfy a large deviation principle as ε ց 0? Here, Qε
a,a′

is the pinned diffusion measure associated with Lε, which starts at a at time
t = 0 and ends at a′ at time t = 1. Heuristically, Qε

a,a′ is the law of yε1 under

the conditional probability measure P( · |yε1 = a′), where P stands for the Wiener
measure.

The aim of this talk is to answer this question affirmatively under a certain
mild ellipticity assumption for the coefficient vector fields. Besides rough path
theory, our main tool is quasi-sure analysis, which is a sub-field of Malliavin calcu-
lus. It deals with objects such as Watanabe distributions (i.e., generalized Wiener
functionals) and capacities associated with Gaussian Sobolev spaces. Recall that
motivation for developing this theory was to analyse the pullbacks of pinned dif-
fusion measures on the Wiener space.

In 1993, Takanobu and Watanabe [4] presented this kind of large deviation
principle under a hypoellipticity assumption for coefficient vector fields. This
result seems very general and nice, but they gave no proof. Their tool are Malliavin
calculus, and in particular, quasi-sure analysis. Recall that rough path theory did
not exist, then. Presumably, they computed Besov norm of the solution of SDE,
but details are unknown.

Since we use rough path theory, we will compute, not the output, but the
input of the (Lyons-)Itô map. Here, the input means (wt) itself and its iterated
Storatonovich stochastic integrals. So, we believe that our proof via rough paths is
probably simpler. Extending our method to the hypoelliptic case is an interesting
and important future task.
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Now we give a precise setting and state our main result. Let (wt)0≤t≤1 be the
canonical realization of d-dimensional Brownian motion. We consider the following
Rn-valued Stratonovich-type SDE;

dyεt =
d∑

i=1

Vi(y
ε
t ) ◦ εdwi

t + V0(ε, y
ε
t )dt with yε0 = a ∈ Rn.

Here, ε ∈ [0, 1] is a small parameter and Vi ∈ C∞b (Rn,Rn) for 1 ≤ i ≤ d and
V0 ∈ C∞b ([0, 1]×Rn,Rn). (A function is said to be of class C∞b if it is a bounded,
smooth function with bounded derivatives of all order.) For each ε, (yεt ) is a

diffusion process with its generator Lε = (ε2/2)
∑d

i=1 V
2
i + V0(ε, · ).

We assume everywhere ellipticity:

(A1): For all a ∈ Rn, the set of vectors {V1(a), . . . , Vd(a)} linearly spans Rn.

Under this assumption, the pinned diffusion measure Qε
a,a′ associated with Lε

exists for any ε > 0, the starting point a and the terminal point a′. This measure
sits on

Cα
a,a′([0, 1],Rn) = {x ∈ C([0, 1],Rn) | α-Hölder conti. and x0 = a, x1 = a′. }

for any α ∈ (1/3, 1/2).
Let H be Cameron-Martin space for (wt). For h ∈ H , we denote by φ = φ(h)

be a unique solution of the following ODE;

dφt =

d∑

i=1

Vi(φt)dh
i
t + V0(0, φt)dt with φ0 = a.

We set Ka,a′

= {h ∈ H | φ(h)1 = a′}, which is not empty under (A1).

Define a good rate function I : Cα−H
a,a′ ([0, 1],Rn) → [0,∞] by

I(y) = inf{‖h‖
2
H

2
| h ∈ Ka,a′

with y = φ(h)} −min{‖h‖
2
H

2
| h ∈ Ka,a′}

if y = φ(h) for some h ∈ Ka,a′

and define I(y) = ∞ if no such h ∈ Ka,a′

exists.
Now we state our main result in this paper.

Theorem 2. Let 1/3 < α < 1/2 and assume (A1). The family {Qε
a,a′}ε>0

of probability measures on Cα
a,a′([0, 1],Rd) satisfies a large deviation principle as

ε ց 0 with a good rate function I.

A rough sketch of our proof is as follows. (1) Brownian motion (wt) admits a
lift, not only almost surely, but aslo quasi-surely. See [1, 2] for instance.

(2) By Sugita’s theorem, a positiveWatanabe distribution δa′(yε1) = δa′(yε(1, a))
is actually a finite Borel measure on the Wiener space. We can think of its push-
forward measure µε

a,a′ of δa′(yε1) by the lift map. Notice that the pushforward
measure of µε

a,a′ by the Lyons-Itô map is the pinned diffusion measure in question.

(3) We prove large deviation for {µε
a,a′} as ε ց 0 on the geometric rough path

space. (In fact, we need to assume ellipticity only at the starting point a.) Three
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key facts in this part are as follows; (i) large deviation estimate for capacities,
not for measures, on geometric rough path space, (ii) integration by parts formula
in the sense of Malliavin calculus for Watanabe distributions, (iii) uniform non-
degeneracy of Malliavin covariance matrix for solutions of the shifted scaled SDE.
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Perturbation of linear rough differential equations and applications

Antoine Lejay

(joint work with Laure Coutin)

Although linear Rough Differential Equations may be considered as a particular
case of Rough Differential Equations (RDE), they could also be studied as objects
with their own properties.

A linear RDE could be defined from a resolvent (As,t)0≤s≤t≤T where the As,t

are linear applications on a Banach space V satisfying

‖As,t − Id‖ ≤ Cω(s, t)1/p for 0 ≤ s ≤ t ≤ T,(1)

As,r = Ar,tAs,r for 0 ≤ s ≤ r ≤ t ≤ T,(2)

for some p ≥ 1, C ≥ 0 and a super-additive function ω : {0 ≤ s ≤ t ≤ T } → R+

which is continuous on its diagonal.
Such a family may be constructed from a family (Bs,t)0≤s≤t≤T satisfying (1)

but where (2) is replaced by

‖Bs,t −Br,tBs,r‖ ≤ Kω(s, t)θ, K ≥ 0, θ > 1.

This construction is strongly inspired by the work of D. Feyel et al. [5]. The
construction of (As,t)0≤s≤t≤T from (Bs,t)0≤s≤t≤T is similar to the one which allows
one to pass from a Chen series living in a truncated tensor algebra to a Chen series
in the full tensor algebra R⊕Rd⊕ (Rd)⊗2⊕ · · · (See e.g. [7]). Indeed, Chen series
are solutions to linear differential equations [1].

If 1 ≤ p < 2 and A : [0, T ] → L(V,V) is a path of finite p-variation, then a
resolvent (As,t)0≤s≤t≤T may be constructed from the family Bs,t = Id +At −As

or Bs,t = exp(At −As) for 0 ≤ s ≤ t ≤ T . This is why we write a linear RDE as

(3) dYt = dAtYt.
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In this case, Yt = As,tYs for any 0 ≤ s ≤ t ≤ T . Of course, when p ≥ 2, knowing A
is no longer sufficient to define (3) and a lift of A is needed.

In [2], we give several results on linear RDE which are extension of properties
known in smooth case: convergence of Magnus/Chen-Strichartz series in small
time, development in Dyson series, ...

We study also perturbations of linear RDE for 1 ≤ p < 3. By this, we mean
solutions to

dYt = dAtYt + dbt

for a path b of finite p-variation with values in V. For 1 ≤ p < 2, this could be
understood for example as

|Yt − Ys −As,tYs − (bt − bs)| ≤ Dω(s, t)θ for any 0 ≤ s ≤ t ≤ T

for some constant D ≥ 0 and θ > 1. When 2 ≤ p < 3, the path b needs to be
lifted, in a way which depends on (As,t)0≤s≤t≤T . With proper extensions of the
notion of integral, Duhamel/Variation of constant principle could be given.

Finally, in [3], perturbed linear RDE are used to study differentiability and flow
properties of the Itô map in its full generalities, while such results are generally
proved using geometric rough paths and approximation by smooth paths (See [6, 8]
for example) without relying to (p, p/2)-rough paths. Let us consider

I : a ∈ V 7→ y with yt = a+

∫ t

0

f(ys) dxs

for a rough path x of finite p-variation, 2 ≤ p < 3 and a smooth enough vector
field f , so that y is well defined and I is continuous. Then I is differentiable in
the sense of Fréchet. Besides, for some 0 < β ≤ 1 and C ≥ 0,

‖I(a+ ǫ)− I(a)−∇I(a) · ǫ‖p ≤ C(a)|ǫ|1+β ,

for a, ǫ ∈ V. In addition, ∇I is itself Hölder continuous. The main idea is to
study the difference between I(a + ǫ) − I(a) and Yt · ǫ where Y is a family of

linear operators solution to Yt = Id +
∫ t

0
∇f(ys)Ys dxs which is indeed equal to

∇I(a)t. This difference may then be written as a perturbed linear RDE for which
estimates are provided. With our construction and the notion of solution in the
sense of A.M. Davie [4], we are not bound in using the iterated integrals of Y .

Similar results hold for other perturbations, such as perturbation of the vector
field and perturbation of a driving rough path x by a path of finite q-variation
with 1/p+ 1/q > 1.
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Integrability and Tail Estimates for Gaussian Rough Differential
Equations

Christian Litterer

(joint work with Thomas Cass and Terry Lyons)

We study stochastic differential equations of the form

(1) dYt = V (Yt)dXt, Y (0) = y0,

driven by a Gaussian process X . Over the past decade extensive progress has been
made understanding the behaviour of solutions to such equations. In particular,
for the case of fBm with Hurst parameter H > 1/4 the work of Cass and Friz [2]
shows the existence of the density for (1) under Hörmander’s condition; Hairer et
al. [1], [7] have shown the smoothness of this density and established ergodicity
under the regime H > 1/2.

If we consider the flow UX

t←0 (y0) ≡ Yt of the RDE (1) under sufficient regu-
larity on V, the map UX

t←0 (·) is a differentiable function and its derivative (”the
Jacobian”):

JX

t←0(y0) ≡ DUX

t←0 (·) |·=y0

satisfies path-by-path an RDE of linear growth driven by X.

In the diverse applications in [1], [7] a surprisingly generic common obstacle
to the extensions of such results to the rough path regime emerges in the need
for sharp estimates on the integrability of the Jacobian of the flow JX

t←0(y0) of an
RDE. Cass, Lyons [4] and Inahama [9] establish such integrability for the Brownian
rough path but only by using the independence of the increments; for more general
Gaussian processes a more careful analysis is needed.

Our results allow us to deduce the existence of moments of all orders for
Jx

t←0(y0) for RDEs driven by a class of Gaussian processes (including, but not
restricted to, fBm with Hurst index H > 1/4). In fact, we show that the log-
arithm of the Jacobian has a tail that decays faster than an exponential: More
precisely,

(2) P
(
log
[∣∣JX

·←0 (y0)
∣∣
p−var;[0,T ]

]
> x

)
. exp (−xr) ,

for any r < r0 ∈ (1, 2], where the constant r0 is described in terms of the regularity
properties of the Gaussian path.

Our results are relevant to a number of important problems. First, they are a
necessary ingredient if one wants to extend the work of [6] and [7] on the ergodicity



2524 Oberwolfach Report 41/2012

of non-Markovian systems. Second, they allow one to achieve an analogue of
Hörmander’s Theorem on the smoothness of the density for Gaussian RDEs in
conjunction with a suitable version of Norris’s Lemma (see [3] and [8]).
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A conjecture on the optimal approximation of the fractional Lévy area

Andreas Neuenkirch

Let (Bt)t≥0 = (B
(1)
t , B

(2)
t )t≥0 be a two-dimensional fractional Brownian motion

with Hurst parameter H ∈ (1/4, 1). The stochastic differential equation

dY
(1)
t = dB

(1)
t , t ≥ 0, Y

(1)
0 = 0,

dY
(2)
t = Y

(1)
t dB

(2)
t , t ≥ 0, Y

(2)
0 = 0,

is the prototype example of a stochastic differential equation driven by fractional
Brownian motion with non-commutative noise. Here, the first component of the

solution is simply (B
(1)
t )t≥0, while the second component of the solution is given

by

Y
(2)
t =

∫ t

0

B(1)
s dB(2)

s , t ≥ 0.

The process (Y
(2)
t )t≥0 is usually denoted as fractional Lévy area (in a slight abuse

of notation, see e.g. [2] for the precise notion of a Lévy area).

For the case of Brownian motion, i.e. H = 1/2, a well known result of Cameron
and Clark ([1]) states that the best possible mean square approximation of XT =

Y
(2)
T given BT/n, B2T/n, . . . , BT , i.e.

X
n

T = E(XT |BT/n, B2T/n, . . . , BT ),
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satisfies

(E|XT −X
n

T )|2)1/2 =
T

2
· n−1/2.

Here, X
n

T coincides in fact with the trapezoidal rule

X̃n
T =

1

2

n−1∑

i=0

(B
(1)
iT/n +B

(1)
(i+1)T/n)(B

(2)
(i+1)T/n −B

(2)
iT/n).

In the general case, i.e. H 6= 1/2, the conditional expectation of XT given
BT/n, B2T/n, . . . , BT does not coincide with the trapezoidal rule, in particular since
fractional Brownian motion does not have independent increments for H 6= 1/2.
It has been shown in [3] that

(E|XT −X
n

T )|2)1/2 ≤ (E|XT − X̃n
T )|2)1/2 ≤ CH · T 2H · n−2H+1/2.

We strongly suppose that the trapezoidal scheme and the conditional expecta-
tion have exact root mean square convergence rate n−2H+1/2. In other words, we
conjecture that there exists a constant 0 < cH < CH such that

(E|XT −X
n

T )|2)1/2 ≥ cH · T 2H · n−2H+1/2.

This is supported by the fact that no construction of the Lévy area for H = 1/4
based on the interpolation of point evaluations of B seems to be possible, which
corresponds to the zero convergence rate in the above conjecture for H → 1/4.
(For constructions of a fractional Lévy area for H ≤ 1/4, see e.g. [5, 4].)
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Expected signature of stochastic processes

Hao Ni

(joint work with Prof. Terry Lyons)

The signature of the path provides a top down description of a path in terms of
its effects as a control (see [1]). It is a group-like element in the tensor algebra
and is an essential object in rough path theory. When the path is random, the
linear independence of the signatures of different paths leads one to expect, and
it has been proved in simple cases, that the expected signature would capture the
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complete law of this random variable. It becomes of great interest to be able to
compute examples of expected signatures. In this presentation, we explain how
to compute the expected signature of various stochastic processes by solving one
PDE system, which fully characterise the expected signature. We consider the
case for an Itô diffusion process up to a fixed time, and the case for the Brownian
motion up to the first exit time from a domain(see [2]). We manage to derive
the PDE of the expected signature for both cases, and find that this PDE system
could be solved recursively. Some specific examples are discussed in this talk as
well, e.g. Ornstein-Uhlenbeck (OU) processes, Brownian motion, and Brownian
motion coupled with its Lévy area.
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A new semi-closed form solutions to some financial problems: a note
on Bayer-Friz-Loeffen’s work

Syoiti Ninomiya

(joint work with Yusuke Kubo, Tokyo Institute of Technology)

Recently some algorithms that solve the higher-order weak approximation of SDEs
following the theory of Kusuoka [Kus01] and the theory of Cubature on Wiener
space by Lyons and Victoir [LV04] are found in [NV08] and [NN09] and they have
been generalized to various directions [OTV12][Fuj06][JS09] etc. Their practical
efficiencies also have been demonstrated there.

When one weakly approximates an SDE following those algorithms, he draws
a set of ODEs per one simulation. If all these drawn ODEs have closed form
solutions, the algorithm is called semi-closed form solution to the SDE [BFL10].
In [BFL10], Bayer, Friz and Loeffen construct semi-closed form solutions to de-
rivative pricing problems under generalized SABR models by transforming the
higher-order algorithm presented by Ninomiya and Victor[NV08].

Inspired by Bayer-Friz-Loeffen’s work, the authors obtain new semi-closed form
solutions to some finance problems. In this presentation, the authors show new
semi-closed form solutions to the problems of derivative pricing under Heston and
SABR models. The new solutions are obtained by generalization of Bayer-Friz-
Loeffen’s technique and the other higher-order algorithm presented by Ninomiya
and Ninomiya [NN 2009]. The newly obtained semi-closed form solution to the
Heston model also gives a new positive simulation scheme for CIR type processes
[Alf10].
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Rough path robustness in nonlinear filtering

Harald Oberhauser

(joint work with Dan Crisan, Joscha Diehl, Peter Friz)

Nonlinear filtering is concerned with the estimation of a Markov process based
on some observation of it; e.g. consider the classic case when the Markov process
(X,Y ) takes values in RdX+dY and

dXt = µ (Xt) dt+ V (Xt) dBt + σ (Xt) dB̃t(1)

dYt = h (Xt) dt+ dB̃t

with B and B̃ independent, multidimensional Brownian motions. The goal is to
compute for a given real-valued function ϕ

πt (ϕ) = E [ϕ (Xt) |σ (Yr, 0 ≤ r ≤ t)] .

From basic measure theory it follows that there exists a measurable map

φϕ
t : C

(
[0, T ] ,RdY

)
→ R

such that

(2) φϕ
t

(
Y |[0,t]

)
= πt (ϕ) P− a.s.

As was first pointed out by Clark [3], this classic formulation is not justified in
practice since only discrete observations of Y are available and the functional φϕ

t
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is only defined up to nullsets on pathspace (which includes the observed, bounded
variation path); further the model choosen for the observation process might only
be close in law to the “real-world” observation process. Clark showed ([3]; a com-
plete proof was given in [4]) that in the uncorrelated noise case (σ ≡ 0 in (1))

there exists a unique φ
ϕ

t : C ([0, T ] ,Rn) → R which is continuous in uniform norm
and fulfills (2), thus providing a “robust” version of the conditional expectation
πt (ϕ) which resolves above mentioned problems. Unfortunately in the correlated
noise case this is no longer true (it is easy to construct counterexamples)! Nev-
ertheless, we show that one can also for the correlated case construct a version
of πt (ϕ) which is a robust functional of the observation process seen as a rough
path — combined with well-known approximation results of rough path lifts of
semimartingales this solves above mentioned problems; further it suggests that it
is natural to include the Levy area in the observation process.

0.1. Robustness via the Kallianpur–Striebel functional [5]. Applying Gir-
sanov to transform Y into a Brownian motion under a measure P0 in combination
with the conditional Bayes formula leads to the classic Kallianpur–Striebel repre-
sentation

πt (ϕ) =
ρt (ϕ)

ρt (1)
, ρt (ϕ) = EP0

[ϕ (Xt)Wt|σ (Yr : 0 ≤ r ≤ t)]

where Wt = exp
(∫ t

0 h (X) · dY − 1
2

∫ t

0 h
2 (X)dr

)
. Such a representation suggests

to find functionals

ρ1, ρf : C0,p−var
(
[0, T ] , G2

dY

)
→ R

(as usual C0,p−var
(
[0, T ] , G2

dY

)
denotes the set of geometric p-rough paths, p ∈

(2, 3)) s.t.

πt (ϕ) =
ρf
(
Y |[0,t]

)

ρ1
(
Y |[0,t]

)

This was carried out in [5]: under the right assumptions on the vector fields
appearing in (1) (see [5] for details) we have

Theorem 2. The map

C0,p−var
(
[0, T ] , G2

dY

)
∋ • 7→ ρf (•)

ρ1 (•)
∈ R

is locally uniformly continuous (under stronger assumptions on the coefficients in
(1) even locally Lipschitz). Further,

πt (ϕ) =
ρf
(
Y |[0,t]

)

ρ1
(
Y |[0,t]

) P− a.s.

where Y denotes the canonical rough path lift of the semimartingale Y .
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0.2. Robustness via the Zakai–SPDE [6]. Under well-known conditions [1], πt

has a density. Using this density in unnormalized form leads to the representation

(3) πt (ϕ) =

∫

R
dX

ϕ (x)
ut (x)∫
ut (x̃) dx̃

dx

where ut ∈ L1 (Rn) a.s. and (ut) is the L2-solution of the so-called (dual) Zakai
SPDE

dut =

(
G⋆ +

1

2

∑

k

NkNk

)
utdt+

∑

k

Nkut ◦ dY k
t

with G denoting the generator of the diffusion X , Y a Brownian motion under a
measure change and

(4) (Nku) (t, x) = σi
k (t, x) ∂iut (x) + h (t, x) .ut (x) .

Hence, Clark’s robustness problem is related to the robustness of linear, parabolic
SPDEs. In [2] an approach to parabolic SPDE based on ideas of rough path theory
and work of Lions–Souganidis on viscosity solutions of SPDEs [7] was started. In
more recent work [6] linear SPDEs with affine linear rough noise were studied.
In the Theorem below, L denotes a (semi-)linear, (possibly degenerate) elliptic
operator of the form

L (t, x, r, p,X) = −Tr [A (t, x) ·X ] + b (t, x) · p+ c (t, x, r)

and Λ a collection of first order different operators Λk = Λk (t, x, r, p) which are
affine linear in r, p, that is,

(5) Λk (t, x, r, p) = p · σk (t, x) + r νk (t, x) + gk (t, x) , k = 1, . . . , d.

Under the right regularity assumptions (see [6]) the following result holds:

Theorem 3. Let p ≥ 1, u0 ∈ BUC (Rn) and z be a geometric p-rough path.
Then there exists a unique u = uz ∈ BUC ([0, T ]× Rn) such that for any sequence
(zǫ)ǫ ⊂ C1

(
[0, T ] ,Rd

)
such that zε → z in p-rough path sense, the viscosity solu-

tions (uε) ⊂ BUC ([0, T ]× Rn) of

u̇ε + L
(
t, x, uε, Duε, D2uε

)
=

d∑

k=1

Λk (t, x, u
ε, Duε) żk;εt , uǫ (0, ·) = u0 (·) ,

converge locally uniformly to uz. We write formally,

du + L
(
t, x, u,Du,D2u

)
dt = Λ (t, x, u,Du) dzt, u (0, ·) = u0 (·) .

Moreover, we have the contraction property

sup
(t,x)∈Rn×[0,T ]

|uz (t, x)− ûz (t, x)| ≤ eCT sup
x∈Rn

|u0 (x)− û0 (x)|

and continuity of the solution map (z,u0) 7→ uz

C0,p-var
(
[0, T ] , G[p]

(
Rd
))

× BUC (Rn) → BUC ([0, T ]× Rn) .
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When applied to Brownian motion enhanced with Levy area one can show
thata above solution coincides with the classic variational solution (resp. the dual
Zakai SPDE in the filtering context) due to Pardoux, Krylov, Rozovoski et. al.
To apply it to derive a robust representation of (3) it only remains to show that
uz

t (.) ∈ L1 (Rn) for every z ∈ C0,p−var
(
[0, T ] , G2

d

)
– an easy way is to use the

results in [5], another way is to directly work with the RPDE. We finish by noting
that the gradient term in the noise Nku as in (4) explains rather intuitively why
— in the general, correlated noise case of Clark’s robustness problem — rough
path metrics are required: as toy example consider L ≡ 0 and h ≡ 0; then solving
(0.2) for the case of σ ≡ 0 reduces via the method of characteristics to solving
an SDE with commuting vector fields which is well-known to be robust under
approximations of the driving signal (i.e. the observation Y ) in uniform norm,
hence explains why in the uncorrelated case robustness in uniform norm holds but
why in the general case rough path metrics are necessary.
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Likelihood construction for discretely observed rough differential
equations

Anastasia Papavasiliou

Let Y be the solution of

(1) dYt = a(Yt; θ)dZt + b(Yt; θ)dXt, Y0 = y0,

where (X,Z) is a geometric rough path.
We develop a methodology for constructing the likelihood and consequently per-

forming statistical inference for differential equation (1) driven by any geometric
rough path (Z,X), assuming that we know Z and the distribution of X . In partic-
ular, we are interested in estimating parameter θ in (1), given that we discretely
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observe a realization of the solution Y (ω). Our methodology can be summarized
as follows:

(i) first, we solve the inverse problem, i.e. given (Y, Z)(ω) and a θ ∈ Θ, we

construct X̂(θ)(ω) such that (Y, Z)(ω) solves

(2) dY (ω)t = a(Y (ω)t; θ)dZ(ω)t + b(Y (ω)t; θ)dX̂(θ)(ω)t, Y0 = y0.

(ii) then, instead of writing down the likelihood of observing a given realization

of Y (ω), we write down the likelihood of the corresponding X̂(θ) being a
realization of X .

Note that in addition to the standard assumptions of the Universal Limit The-
orem needed to make sense of (1), we make the following assumptions:

(a) Y and X are both n-dimensional;
(b) for each θ ∈ Θ, b−1(·, θ) exists and is also Lip(γ);

It is straight forward to see that the solution of the inverse problem will be
given by

(3) X̂(θ)s,t =

∫ t

s

b−1(Yu; θ)dYu −
∫ t

s

(b−1a)(Yu; θ)dZu.

Constructing X̂(θ) requires integration with respect to the rough path (Y, Z). This
cannot be done exactly since we only observe Y discretely but we can approximate
the integrals using appropriate Taylor expansions of the integrands, assumed to
be Lip(γ) and approximations to the higher iterated integrals appearing in the

approximation. Let us denote by X̃(θ) our approximation to X̂θ.
Then, we define the approximate likelihood by

(4) L̃D(θ) =
dPD

dµ
(X̃(θ)1D).

where D is a partition of [0, T ] corresponding to observation times and PD is the
distribution of the increments of X on the partition D, which is assumed to be
absolutely continuous with respect to some measure µ. Finally, X̃(θ)1D are the

increments of X̃(θ) on the partition.
This problem has only be considered for specific rough paths X , such as Brow-

nian motion fractional Brownian motion [1].
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An upper bound for the distance between the signatures of two
Gaussian processes and applications

Sebastian Riedel

(joint work with Christian Bayer, Peter Friz, John Schoenmakers, Weijun Xu)

Let X = (X1, . . . , Xd) : [0, T ] → Rd be a centered, continuous Gaussian process
with independent components. Using the results of Friz and Victoir [6], we can lift
the sample paths X(ω) to geometric rough paths X(ω) in a natural way, provided
the covariance function RX : [0, T ]2 → Rd×d fulfills a certain regularity condition;
namely has finite two-dimensional ρ-variation for some ρ < 2. This covers, for
instance, fractional Brownian motion with Hurst parameter H > 1/4. Natural in
this context means that for suitable approximations Xε of the process X we have
convergence of the respective rough paths lifts, i.e.

|̺p−var(X,Xε)|Lq(P) → 0(1)

for ε → 0 where ̺p−var denotes the inhomogeneous rough paths metric and
p > 2ρ. Our main result (cf. [5]) gives a quantitative upper bound for the dis-
tance between two Gaussian lifts X and Y: If (X,Y ) is jointly Gaussian and
|R(X,Y )|ρ−var;[0,T ]2 ≤ K, then for every δ > 0 there is a p = pδ > 2ρ and a
constant CK,δ such that

|̺p−var(X,Y)|Lq(P) ≤ Cq,K,δ sup
t∈[0,T ]

E

[
|Xt − Yt|2

]1− ρ
2
−δ

(2)

for all q > 0. The choice of p can be made explicit and increases for δ ց 0.
This result has various implications which we list below:

1. Almost sure Wong-Zakai convergene rates. Assume that t 7→ Xε
t has

bounded variation for ε > 0 and consider the Riemann-Stieltjes ODEs

dY ε
t =

d∑

i=1

Vi(Y
ε
t ) dX

i;ε
t ≡ V (Y ε

t ) dX
ε
t ; Y ε

0 = Y0 ∈ Rm.(3)

For simplicity, assume that X(ω)εn is the piecewise-linear approximation of X(ω)

at the time points {0 < 1
n < . . . < ⌊Tn⌋

n ≤ T }. Using a Borell-Cantelli argument
and the Lipschitz property of the Itō-Lyons map, (2) implies that for V sufficiently
smooth

|Y − Y εn |∞;[0,T ] ≤ C

(
1

n

) 1
ρ
− 1

2
−δ

a.s. for all δ > 0 and n ∈ N where Y solves the random rough differential equation

dY = V (Y ) dX; Y0 ∈ Rm.(4)

In particular, the Wong-Zakai approximations for fractional Brownian motion con-
verge with a rate of (almost) 2H−1/2 and we find the well-known rate of (almost)



Rough Paths and PDEs 2533

1/2 in the Brownian case.

2. Convergence rates for implementable Milstein schemes. Milstein
schemes (of higher order) and rough paths are closely connected, see e.g. [3].
Replacing the (hard-to-simulate) iterated integrals in this scheme by an (easy-
to-simulate) product of increments of the driving Gaussian process leads to a
numerical scheme which is much easier to implement (see [4] for a first result in
the context of fractional Brownian motion). The convergence rates of this scheme
coincide with the Wong-Zakai convergence rates. This answers a conjecture stated
in [4].

3. Lq-rates. In general, the Lipschitz constant from the Itō-Lyons map enjoys
very bad integrability properties which is a serious obstacle when passing from al-
most sure to Lq convergence rates for the schemes above. However, improving the
estimate slightly and using the results of [2] this can be done, see the forthcoming
article [1]. As a corollary we obtain strong convergence rates in the classical sense
which opens the door to a multilevel Monte Carlo approach for evaluating the
quantity E[f(YT )], Y being the solution of (4), which can reduce the computa-
tional complexity significantly; see [7].

4. Optimal time regularity for rough SPDEs. Hairer realized that it can
be useful to consider the solution of certain stochastic partial differential equations
as an evolution in a rough paths space, see e.g. [8]. It turns out that our estimate
(2) can be used to derive the optimal time regularity of the solution, see [9] for
details in this direction.
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Exponential bounds for solutions to rough differential equations
driven by fractional Brownian motion

Samy Tindel

(joint work with F. Baudoin, M. Besalú, A. Kohatsu, E. Nualart, C. Ouyang)

Let B = (B1, . . . , Bd) be a d dimensional fractional Brownian motion with
Hurst parameter H > 1/4, defined on a complete probability space (Ω,F ,P).

Recall that it means that the components Bj are i.i.d, satisfy the relation E[(Bj
t −

Bj
s)

2] = (t − s)2H , and that each Bj admits a representation of Volterra type,
namely

(1) Bj
t =

∫ t

0

K(t, u) dW j
u , j = 1, . . . , d,

for a d-dimensional Wiener process W and a kernel K such that K(t, ·) ∈ L2([0, 1])
for any t ∈ [0, 1].

We are concerned here with the following class of equations driven by B:

(2) Xx
t = x+

∫ t

0

V0(X
x
s )ds+

d∑

i=1

∫ t

0

Vi(X
x
s )dB

i
s,

where x is a generic initial condition and {Vi; 0 ≤ i ≤ d} is a collection of smooth
and bounded vector fields of Rm. The unique solution to equation (2) is understood
thanks to the rough paths theory [6, 7, 10].

Once equations like (2) are solved, it is natural to wonder how the density of
the random variable Xt behaves for an arbitrary strictly positive t. Theorems
concerning existence and smoothness of those densities can be found in [1, 8] for
H > 1/2 and in [3, 4, 5] for the rough case 1/4 < H < 1/2. However, results
concerning Gaussian type estimates for those densities are scarce, and the only
effort we are aware of in this direction is contained in [2], in a special skew-
symmetric case.

Our report thus focuses on upper and lower Gaussian bounds for solutions
to (2), under two types of elliptic hypothesis: the first one is considered as the
standard elliptic assumptions, and states that

(3) V (z)V ∗(z) ≥ ǫ idn, for all z ∈ Rn,

where V stands for the matrix (V 1, . . . , V d). The second assumption is more
clumsy, and can be stated as follows:

(4)
1

2
[V (z1)V

∗(z2) + V (z2)V
∗(z1)] ≥ ǫ idn, for all z1, z2 ∈ Rn.

Under those hypothesis, we are able to prove the following lower bound:

Theorem 3. Let B be a d-dimensional fBm, X the solution to (2) and V a smooth
and bounded coefficient satisfying relation (3). Then if H > 1/2 and t ∈ (0, 1] the
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density pt(z) of yt satisfies

pt(z) ≥
c1
tnH

exp

(
−c2 |z − a|2

t2H

)
,

for two strictly positive constants c1, c2 depending on n, d, V,H.

The upper bound we have obtained is the following:

Theorem 4. Let B be a d-dimensional fBm, X the solution to (2) and V a smooth
and bounded coefficient satisfying relation (4). Then if H > 1/4 and t ∈ (0, 1] the
density pt(z) of yt satisfies

pt(z) ≤
c3
tnH

exp

(
−c4 |z − a|(2H+1)∧2

t2H

)

for two strictly positive constants c3, c4 depending on n, d, V,H.

Let us make a few remarks on the results:

• Up to constants and for H > 1/2, our bounds seem to be optimal in
the sense that they mimic the Gaussian behavior of the underlying fBm
itself. This is not true anymore for H < 1/2, where an exponential decay
|z − a|2H+1 shows up in the upper bound.

• Our methods of proof all rely on Gaussian analysis combined with rough
paths techniques. Specifically for the lower bound we rely on the tech-
niques introduced in [9], for which we have to express the solution to
equation (2) in terms of the underlying Wiener processW appearing in (1).

• Relation (4) is needed only to retrieve the term tnH in front of the expo-
nential term in our upper bound. If we do not wish to achieve optimality
for this coefficient, we can work under relation (3) as well.

• Generalizations of our lower bound to the case H < 1/2 do not seem to be
out of reach, but would certainly require a tremendous additional technical
effort.
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Approximating rough stochastic PDEs

Jan Maas and Hendrik Weber

(joint work with M. Hairer)

We study a class of vector-valued equations of Burgers type driven by a multi-
plicative space-time white noise. These equations are of the form

(1) ∂tu = ν ∂2
xu+ F (u) +G(u)∂xu+ θ(u) ξ ,

where the function u = u(t, x;ω) ∈ Rn is vector-valued. We assume that the
functions F : Rn → Rn and G, θ : Rn → Rn×n are smooth and the products in
the terms G(u)∂xu as well as in θ(u)ξ are to be interpreted as matrix vector
multiplication. The noise term ξ denotes an Rn-valued space-time white noise and
the multiplication should be interpreted in the sense of Itô integration against an
L2-cylindrical Wiener process.

In the case where G is the gradient of a function G the equation (1) is classi-
cally well-posed. The definition of weak solutions and their construction uses the
conservation law structure of (1): The nonlinearity is rewritten as

G(u)∂xu = ∂xG(u),
and the derivative can be treated by integration by parts. However, several seem-
ingly natural approximation schemes fail to produce solutions of (1), but converge
to different limit equations in which extra terms may appear.

In the case where G is not a total derivative it is not even clear how to make
sense of (1). The solution does not have the regularity required to make sense of
the nonlinearity. We use rough path theory to resolve this issue. Weak solutions
can be defined by testing against a smooth test function ϕ and defining the term

∫ π

−π

ϕ(x)G(u(t, x))∂xu(t, x)dx

as a rough integral.
We study approximations to (1) of the form

duε =
(
ν∆εuε + F (uε) +G(uε)Dεuε

)
dt+ θ(uε)HεdW,

for a large class of regularisations ∆ε, Dε, and Hε. We show that the uε converge
to a process ū that solves an equation similar to (1) with an extra term

−Λ θ(u)∇G(u) θT (u).

This term is the local spatial cross variation of u and G(u) and can be interpreted
as a spatial Itô-Stratonovich correction. The constant Λ depends on the specific
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choice of the approximations and can be calculated explicitly. We obtain a rate of
convergence of ε1/6.
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Universitätsstr. 25
33615 Bielefeld

Prof. Dr. Massimiliano Gubinelli

CEREMADE
Universite Paris Dauphine
Place du Marechal de Lattre de
Tassigny
75775 PARIS Cedex 16
FRANCE

Prof. Dr. Martin Hairer

Mathematics Institute
University of Warwick
Gibbet Hill Road
COVENTRY CV4 7AL
UNITED KINGDOM



Rough Paths and PDEs 2539

Prof. Dr. Ben Hambly

Mathematical Institute
Oxford University
24-29 St. Giles
OXFORD OX1 3LB
UNITED KINGDOM

Ni Hao

Mathematical Institute
Oxford University
24-29 St. Giles
OXFORD OX1 3LB
UNITED KINGDOM

Prof. Dr. Yuzuru Inahama

Graduate School of Mathematics
Nagoya University
Chikusa-ku, Furo-cho
NAGOYA 464-8602
JAPAN

Prof. Dr. Antoine Lejay

Institut Elie Cartan
-Mathematiques-
Universit de Lorraine
Boite Postale 70239
54506 VANDOEUVRE-LES-NANCY
Cedex
FRANCE

Dr. Christian Litterer

Department of Mathematics
Imperial College of Science,
Technology and Medicine
LONDON SW7 2BZ
UNITED KINGDOM

Prof. Dr. Terence J. Lyons

Mathematical Institute
Oxford University
24-29 St. Giles
OXFORD OX1 3LB
UNITED KINGDOM

Dr. Jan Maas

Institut für Angewandte Mathematik
Universität Bonn
Endenicher Allee 60
53115 Bonn

Prof. Dr. Andreas Neuenkirch

Fakultät für Mathematik und
Informatik
Universität Mannheim
Seminargebäude A 5
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