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Introduction by the Organisers

The workshop Low-Dimensional Topology and Number Theory, organised by Paul
E. Gunnels (Amherst), Walter Neumann (New York), Don Zagier (Bonn) and
Adam S. Sikora (New York) was held August 26th – September 1st, 2012. This
meeting was a part of a long-standing tradition of collaboration of researchers in
these areas. The preceeding meeting under the same name took place in Oberwol-
fach two years ago. At the moment the topic of most active interaction between
topologists and number theorists are quantum invariants of 3-manifolds and their
asymptotics. This year’s meeting showed significant progress in the field.

The workshop was attended by many researchers from around the world, at
different stages of their careers – from graduate students to some of the most
established scientific leaders in their areas. The participants represented diverse
backgrounds. There were 22 talks ranging from 30 to 50 minutes intertwined with
informal discussions.
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Abstracts

Quantum hyperbolic invariants of cusped manifolds and their
asymptotical behaviour

Stéphane Baseilhac

(joint work with Riccardo Benedetti, Charles Frohman)

Let M be a cusped hyperbolic 3-manifold; it is diffeomorphic to the interior of
a compact 3-manifold V with torus boundary. Denote by X(V ) the variety of
augmented PSL(2,C)-characters of V , and by res : X(V )→ X(∂V ) the restriction
map. In this talk we have presented the relations between:

• The PSL(2,C)-Chern-Simons theory ofM , embodied in the Chern-Simons
line bundle L → X(∂V ) and the Chern-Simons section sV of the pull-back
bundle : res∗L → X(V );
• The quantum hyperbolic invariants HN (M), defined in [1] for each odd

integer N ≥ 3 as scalars associated to M equipped with its hyperbolic
holonomy, and extended in [2] as regular functions on a tower of covering
spaces of degree N2 of the geometric component of X(M).

Roughly, the functions HN (M) are defined on a sequence of finite approximations
of a subdomain of sV . This leads us to formulate questions regarding the expo-
nential growth rate of the sequence (HN (M))N , like its finiteness, continuity, and
relation with the volume and Chern-Simons invariants of PSL(2,C)-characters of
M (”volume conjecture” type problem).

References

[1] S. Baseilhac, R. Benedetti, Classical and quantum dilogarithmic invariants of flat
PSL(2,C)-bundles over 3-manifolds, Geom. Topol. 9 (2005) 493–570
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Asymptotics of invariants of 3-manifolds and topological recursion

Gaëtan Borot

(joint work with Bertrand Eynard)

We push forward the general idea that a non-perturbative version of the topo-
logical recursion, applied to the A-polynomial of a 3-manifold with 1 cusp, should
be identified to asymptotic series of knot invariants. In this text, I explain the no-
tions involved in this statement, and give a precise conjecture for the asymptotics
of the colored Jones polynomial. The presentation is based on [1]. I thank all the
participants for questions and discussions that helped improving this abstract.
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1. Topological recursions

We call spectral curve, the data of a compact Riemann surface Σg of genus g,
a symplectic basis of cycles (Aj ,Bj)j , and a couple (x, y) of analytic functions on
Σg. These functions may have singularities, and we require for simplicity that dx
has only simple zeroes, denoted ai ∈ Σg. The topological recursion (TR) is an
algorithm which computes, for any spectral curve, a sequence of numbers (Fh)h≥0

and for any k ≥ 1 a sequence (ωh
k (p1, . . . , pk))h≥0, where pi are points on Σg and

ωh
k is a 1-form with respect to each pi, which is symmetric in all variables. It is

natural to repackage them in formal generating series: we define the perturbative
partition function

Zpert
~ = exp

(∑

h≥0

~2h−2 Fh
)
,

and for any n ≥ 1, the perturbative wave functions :

ψpert
~,n (p1, q1; . . . ; pn, qn) = exp

(∑

k≥1

∑

h≥0

~2h−2+k

k!

∫

•
· · ·
∫

•
ωh
k

)
,

which depend on 2n points pi, qi ∈ Σg, and where
∫
• stands for

∑n
i=1

∫ pi

qi
. The

Fh and ωh
n have been introduced in [2] so that Zpert

~ is a power series solution to

Virasoro-type constraints satisfying some analyticity requirements, and ωh
k encode

the kth-order derivatives of Fh with respect to deformation parameters of the
spectral curve. The full definition (not given here) is recursive, and involves only
algebraic geometry on the curve Σg: ωh

n can be written as a sum over residues at

ai, of a certain 1-form build out of ωh′

k′ for which 2 − 2h′ − k′ > 2 − 2h− k. The
initial values for the recursion are ω0

1 = ydx, ω0
2 = fundamental bidifferential of

the 2nd kind normalized on the A-cycles.
The non-perturbative topological recursion (n.p.TR) is another algorithm which,

to any spectral curve and an extra data µ, ν ∈ Cg, associates a non-perturbative
partition function Z~, and for any n ≥ 1 a non-perturbative wave function ψn,~.
These are formal generating series in powers of ~ (as before), whose coefficients
themselves depend on ~ but are either constant, or do not have an expansion in
powers of ~. They are defined as follows:

Z~ = Zpert
~

{∑

r≥1

∑

hj≥0, kj≥1
2hj−2+kj>0

~
∑

j 2hj−2+kj

r!

r⊗

j=1

kj︷ ︸︸ ︷∮

B

· · ·

∮

B

ω
hj

kj

(2iπ)kjkj !
· ϑ(

∑
j kj)

}
,

ψ~,n = exp
(
~−1

∫

•
ydx+

1

2

∫

•

∫

•
ω0
2

)ϑ•
ϑ

×
{∑

r≥0

∑

hj ,lj≥0, kj≥1
2hj−2+kj+lj>0

~
∑

j 2hj−2+kj+lj

r!

r⊗

j=1

kj︷ ︸︸ ︷∮

B
· · ·

∮

B

lj︷ ︸︸ ︷∫

•
· · ·

∫

•
ω
hj

kj+lj

(2iπ)kj kj ! lj !
·
ϑ
(
∑

j kj)
•

ϑ•

}
.
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Some explanations are needed to read this formula: we denote da, the vector of
holomorphic 1-forms on Σg dual to the A-cycles, and τ =

∮
B da the g×g matrix of

periods ; we consider ϑ(k)(w|τ), the tensor of kth-order derivatives with respect to
w, of the theta function of characteristics (µ, ν) ; we denote ζ = 1

2iπ

∮
B−τA y dx ;

then, we use the notations ϑ(k) = ϑ(k)(~−1ζ|τ) and ϑ
(k)
• = ϑ(k)(~−1ζ+

∫
• da|τ). Z~

is a special solution of Virasoro constraints introduced in [3]. It is an interesting
object per se, because it is modular covariant under change of basis of cycles
(it transforms like a theta function of characteristics (µ, ν), cf. [4]), and it is
conjecturally the Tau function of an integrable system:

Conjecture 1. [5] Z~ satisfies formally Hirota equations with respect to an infinite
number of deformation parameters of the spectral curve.

This was checked to first subleading order. The non-perturbative effects (the
oscillations when ~ → 0 encoded in the theta functions) arise from multiple con-
nectedness of the spectral curve. Such a phenomenon is indeed observed in large
matrix integrals and solutions of integrable equations (like Korteweg-de Vries) in
the small dispersion limit. The intuition behind the n.p. TR comes from these
topics.

2. Spectral curves from A-polynomials

For any 3-manifold M with 1-cusp, the SL2(C)-character variety is essentially
the zero locus C of a polynomial AM (m, l) ∈ Z[m, l], where m and l denote lon-
gitude and meridian holonomies along the cusp [6]. In general, C has several
irreducible components Ci, and each of them is a singular curve. Besides, when
M is a knot complement in a homology sphere, AM is even in m and we want
also to mod out this double covering. In this way, we obtain a smooth Riemann
surface Σg of genus g, with two functions x = lnm and y = ln l defined on it, and
we choose (arbitrarily) (A,B) cycles. This defines a spectral curve. We remark
that it carries an involution ι : (m, l)→ (1/m, 1/l), since reversing meridian and
longitude simultaneously for a given SL2(C) representation lead to a conjugate
representation. A-polynomials are very special from the K- theoretical viewpoint
(they define torsion elements in the K2 group of the curve), but we will not discuss
it here, see [6, 9, 1]. To give an example, the geometric component of the figure
8-knot is isomorphic to the elliptic curve 15A8, which can be put in the form
Y 2 +XY + Y = X3 +X2, and it admits 4 ramification points.

We have observed that for many knots with low number of crossings, the quo-
tient C/ι has genus gι = 0. This happens for the figure 8-knot, and 821 is the
simplest knot we found for which it is not the case. When this property holds
true, the n.p. TR becomes much simpler: it yields power series in ~ involving only
derivatives of Thetanullwerten with respect to their matrix of periods. The knot-
theoretical interpretation of gι = 0 thus becomes an interesting (open) question.
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3. Asymptotics of the colored Jones polynomial

The A-polynomial has an irreducible component Cgeom, and there is a choice of
branch pu ∈ Cgeom, such that

∫ pu

o ln l d lnm is closely related to the complexified
volume ofM for uncomplete hyperbolic metrics onM parametrized by u [7]. When
M is a hyperbolic knot complement in S3, according to the generalized volume
conjecture [9, 12], the Jones polynomial of the knot behaves as

JN (q) ∼ ~δ/2 exp
(1

~

∫ pu

o

ln l d lnm+
∑

χ≥0

~χ χ(u)
)
,

with identifications q = e2~, u = N~ /∈ iπQ\{1} fixed and close enough to iπ (this
point correspond to the complete hyperbolic metrics on M), in the limit N →∞,
~ → 0. Dijkgraaf, Fuji and Manabe proposed that this series can be computed
from TR, and their conjecture can be reformulated as:

Conjecture 2. [10] If M is a hyperbolic 3-manifold, there exists a choice of base-
point o, a function B(u) independent of ~, such that, within the assumption of the
generalized volume conjecture:

JN (q) ∼ B(u)
[
ψpert
~,2 (pu, o; ι(pu), ι(o))

]1/2
,

This conjecture was actually wrong, but computing the first orders for the 8-
knot complement and the once-punctured torus bundle L2R, they could match
the left-hand side from TR by inserting to all orders renormalizations by certain
rational numbers. We explain those discrepancies by proposing:

Conjecture 3. [1] Keeping the previous notations, there exists a choice of char-
acteristics (probably among even-half integer characteristics) such that

JN (q) ∼ B̃(u)
[
ψ~,2(pu, o; ι(pu), ι(o))

]1/2
,

Notice that we have to exclude the case where ~ = iπ/k with k integer 6=
N , because the behavior of the colored Jones polynomial is special at roots of
unity. We checked that Conjecture 3 agrees with the results of [13] for the 8-knot
complement up to o(~3). We retrieve the subleading terms known in the expansion
of the Kashaev invariant of the figure-eight knot by specializing at u = iπ:

JN (q = e
2iπ
N ) = 3−1/4N3/2 e

N
2π Vol(41)

(
1 +

11

12
ǫ+

697

288
ǫ2 +

724351

51840
ǫ3 + o(ǫ3)

)
,

where ǫ = iπ
3
√−3N

→ 0. Such an expansion has been proved with help of numerics

in [13]. This non-trivial check supports the general idea that n.p. TR of the A-
polynomial for any M should be compared to asymptotics of the corresponding
manifold invariants.

When gι 6= 0, ψ~,2 is no more a power series in ~, and if Conjecture 3 is trusted
in general, it predicts that new asymptotic phenomena should be discovered for
the colored Jones. Asymptotics for knots having gι 6= 0 are numerically under
investigation.



Low-Dimensional Topology and Number Theory 2549

The relevance of Virasoro-type constraints in quantum topology is quite unex-
pected and mysterious up to now. The relationship between manifold invariants
and integrable systems through Conjecture 1 might be related to the existence of
integrable perturbations of the Wess-Zumino-Witten conformal field theory which
underlies Chern-Simons theory. The generalization of our conjecture to asymp-
totics of Wilson loops for large representation in other gauge groups, and of asymp-
totics of refined and categorified invariants [11], still need to be explored.
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Non-Abelian Cohen-Lenstra Heuristics

Nigel Boston

(joint work with Michael R. Bush, Farshid Hajir)

Let p be an odd prime and consider how the p-class group Clp(K) varies as K
runs through imaginary quadratic fields of increasing absolute discriminant. In
1983, Cohen and Lenstra proposed the heuristic that a particular abelian p-group
A should occur with frequency proportional to 1/|Aut(A)|. By Class Field Theory,



2550 Oberwolfach Report 42/2012

Clp(K) is isomorphic to the Galois group of the maximal unramified abelian p-
extension of K and we might ask how often a group G arises as the corresponding
Galois group (the “p-class tower group”) when the word “abelian” is removed.

In our first joint paper [1], we came up with a heuristic, which informally says
that the relations in a (pro-p) presentation of G have a particular form and the
frequency with which G arises should be proportional to the number of ways of
picking such relations. Formally, G is a Schur σ-group, which means that its
generator rank d(G) equals its relation rank r(G), its abelianization is finite, and
it has an automorphism σ of order 2 acting as inversion on this abelianization. If F
is the free pro-p group on x1, ..., xg, which has automorphism σ sending xi 7→ x−1

i ,
then any Schur σ-group G with d(G) = g is presented by picking g relations from
X := {u−1σ(u) | u ∈ Φ(F )}.

In [1], we computed the Haar measure of the subset of Xg consisting of g-
tuples of relations that present a given finite p-group G. The upshot is that the
frequency with which G should arise as a p-class tower group is proportional to
1/|Autσ(G)|, where Autσ(G) is the centralizer of σ in Aut(G). We obtained much
computational evidence and many consequences of this heuristic. In particular, it
generalizes and implies the original Cohen-Lenstra heuristic. We also obtained a
refinement concerning the maximal unramified p-extension of a given p-class.

We next considered the case of real quadratic fields in [2]. The main difference
here is that, for the groups G that arise, r(G) equals d(G) or d(G) + 1. The
heuristic now is to see how often g + 1 relations picked from X present G. Once
again, we obtained a formula for the measure of the subset of Xg+1 consisting of
(g + 1)-tuples that present a given finite p-group G, this time giving a frequency
proportional to 1/(|G||Autσ(G)|), and gave a refinement for fixed p-class. One
new phenomenon here is that a group can arise both as a p-class tower group
and as a proper p-class quotient of a p-class tower group, and so the refinement is
important in sorting this out.

A convenient way to express the original Cohen-Lenstra heuristics for imaginary
quadratic fields is via their equivalent moments version. This says that if A is
any abelian p-group, then the average number of unramified A-extensions of an
imaginary quadratic field K, as K varies, should be 1. We can ask the same
question if A is replaced by any finite p-group G and so deduce an equivalent
moments version of our non-abelian Cohen-Lenstra heuristics.

In work with Daniel Ross and Melanie Matchett Wood, we have computed a
formula for the average number of unramified G-extensions of imaginary quadratic
fields. It turns out always to be an integer, namely the value of the a(G)th Rogers-
Szëgo polynomial evaluated at pd(G), where a(G) is an invariant of G (which
equals 0 if G is abelian). This then is an equivalent form of the main heuristics
of [1]. Jordan Ellenberg, Akshay Venkatesh, and Craig Westerland have made
much progress in proving the moments version of Cohen-Lenstra in the function
field case and Ross is working to extend this to our new heuristics. One interesting
point is that the above integer should equal the number of components of a related
Hurwitz space.
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L-spaces, left-orderability and foliations

Steven Boyer

(joint work with Cameron Gordon and Liam Watson; with Michel Boileau; and
with Adam Clay)

In this talk we discussed relations between three measures of “largeness” for a
closed, connected, orientable prime 3-manifold W :

• CTF: W admits a co-oriented, taut foliation (a topological condition).
• NLS: W is not a Heegaard-Floer L-space (an analytic condition).
• LO: π1(W ) is a left-orderable group (a group theoretic condition).

We say that W is CTF, NLS, or LO when it possesses the corresponding property.
If W has positive first Betti number, it is CTF ([Ga, Theorem 55, page 477])

and LO ([BRW, Theorem 1.1(1)]). It is NLS by the definition of an L-space ([OSz3,
Definition 1.1]). Thus we restrict our attention to the case that W is a rational
homology sphere.

Ozsváth and Szabó have shown that if W is CTF, it is NLS ([OSz1, Theorem
1.4]) and have asked whether the converse holds. Calegari and Dunfield applied
Thurston’s universal circle construction to show that if W is an atoroidal CTF ra-
tional homology sphere, then the commutator subgroup of π1(W ) is left-orderable
([CD, Corollary 7.6]). Hence W has an |H1(W )|-fold abelian cover which is LO.
Levine and Lewallen have shown that the fundamental groups of strong L-spaces
are not left-orderable [LL].

Our first result deals with the case that W is either Seifert fibred or a Sol
manifold. Equivalently, W is a non-hyperbolic geometric 3-manifold.

Theorem 1. ([BGW]) Let W be a non-hyperbolic geometric 3-manifold. Then W
is CTF if and only if it is NLS, and if and only if it is LO.

Important components of the proof are contained in the work of Eisenbud, Hirsch
and Neumann ([EHN]) on horizontal foliations in Seifert manifolds, in the work
of Lisca and Stipsicz ([LS]) concerning L-spaces which are Seifert manifolds with
base orbifold S2(a1, . . . , an), and in the work of Boyer, Rolfsen and Wiest ([BRW])
which characterised the Seifert and Sol manifolds which are LO. The new com-
ponents found in [BGW] were the proofs that Seifert rational homology 3-spheres
with base orbifold P 2(a1, . . . , an) and Sol manifolds rational homology 3-spheres
are L-spaces. Verification of the latter necessitated the use of bordered Heegaard-
Floer theory.
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Clay, Lidman and Watson proved that the fundamental groups of Z-homology
3-sphere graph manifolds other than S3 and the Poincaré homology sphere are left-
orderabilty ([CLW]). Their result is also a consequence of the following theorem.

Theorem 2. ([BB]) Let W be a Z-homology 3-sphere graph manifold other than
S3 and the Poincaré homology 3-sphere. Then W is CTF. In fact, W admits a
horizontal foliation. Hence W is NLS and LO.

The left-orderability of the fundamental group of a graph manifold with a co-
oriented horizontal foliation follows by combining [BRW, Theorem 1.1(1)] with
Brittenham’s result that such foliations are R-covered ([Br, Proposition 7]).

Ozsváth and Szabó have conjectured that a prime Z-homology 3-sphere is an
L-space if and only if it is the 3-sphere or the Poincaré homology sphere. (See
[Sz, Problem 11.4 and the remarks which follow it].) Hedden and Watson verified
the conjecture for manifolds obtained by Dehn surgery on knots in the 3-sphere
([HW, Proposition 5]). Work of Rachel Roberts ([Ro1], [Ro2], [Ro3]) shows that
Z-homology 3-spheres obtained by surgery on many knots in the 3-sphere are CTF,
and therefore LO by [CD]. See also [BGW, Proposition 1] and the discussion which
follows it.

Work in progress of the speaker and Adam Clay ([BC]) indicates that the con-
ditions CTF and LO are equivalent for graph manifolds and suggests that they
are equivalent to NLS.

Infinite families of hyperbolic rational homology 3-spheres for which the condi-
tions CTF, NLS and LO are equivalent are given by the next result.

Theorem 3. Let L be a non-split alternating link and Σ(L) its 2-fold branched
cover.
(1) ([OSz2, Proposition 3.3]) Σ(L) is an L-space. Hence it is not CTF.
(2) ([BGW, Theorem 4]) π1(Σ(L)) is not left-orderable.

Here are two corollaries of the second part of this theorem which are of independent
interest.

Corollary 4. ([BGW, Corollary 2]) Let K be an alternating knot and ρ : π1(S3 \
K) → Homeo+(S1) a homomorphism. If ρ(µ2) = 1 for some meridional class
µ ∈ π1(S3 \K), then the image of ρ is either trivial or isomorphic to Z/2.

Corollary 5. ([BGW, Corollary 3]) Suppose that K is an alternating knot and
let OK(2) denote the orbifold with underlying set S3 and singular set K with cone
angle π. Suppose further that OK(2) is hyperbolic. If the trace field of π1(OK(2))
has a real embedding, then it must determine a PSU(2)-representation. In other
words, the quaternion algebra associated to π1(OK(2)) is ramified at that embed-
ding.

Many other examples of hyperbolic manifolds for which the conditions CTF,
NLS and LO are equivalent are known ([Pe], [BGW, Proposition 2], [CW1], [CW2],
[LW]). These examples and the results above suggest the following conjecture.

Conjecture 6. ([BGW]) Let W be a closed, connected, orientable, prime 3-
manifold. Then W is LO if and only if it is NLS.
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Nathan Dunfield has explored this conjecture through a computer-assisted search
of over 10,000 hyperbolic rational homology 3-spheres W in the Hodgson-Weeks
census. To date he has verified it in all cases for which it can be determined
whether W is NLS or not NLS, and whether W is LO or not LO.
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Hyperbolic and Seifert volume of three-manifolds

Pierre Derbez

(joint work with Shicheng Wang)

1. Introduction

Let (G,X) be either PSL(2;C) with homogeneous space X = H3 or IsoeS̃L2(R)

with X = S̃L2(R). Denote by ωX the corresponding G-invariant volume form.
Let M be an oriented closed 3-manifold. To each representation ρ : π1M → G

one can associate a developing map Dρ : M̃ → X from the universal covering of
M to X and a volume volG(M,ρ) can be defined as the absolute value of D∗

ρωX

integrated over M . In both cases Reznikov [9] and Goldman-Brooks [2], [3] proved
that the set vol (M,G) of volumes of all representations ρ : π1M → G, where M is
a closed oriented three-manifold, is finite. One can therefore define the hyperbolic,
resp. Seifert, volume of M by HV (M), resp. SV (M), as the maximal value of
vol (M,G).

Question 1. For which M are these volume positive?

2. the volumes of geometric manifolds

The answer to this question is known for geometric manifolds.

Theorem 2. [[9], [2], [3]] Let M be a closed oriented and geometric 3-manifold.
If M is hyperbolic then HV (M) = volPSL(2;C)(M,ρ) iff ρ is a discrete and

faithful representation and HV (M) = volH3(M).

If M supports an S̃L2(R)-geometry the same statement is true and SV (M) =
vol

S̃L2(R)
(M) = 4π2χ2(OM )/|e(M)|, where OM is the base 2-orbifold of M with

rational Euler characteristic χ and where e(M) denotes the rational Euler number
of the Seifert fibration M → OM .

If M supports any of the six remaining geometries then HV (M) = SV (M) = 0.

Example 3. SupposeM supports the S̃L2(R)-geometry and that its base 2-orbifold
has a positive genus g. Using [6] and [2] one can compute

vol
(
M, IsoS̃L2(R)

)
=





4π2

|e(M)|

(
r∑

i=1

(
ni

ai

)
− n

)2


 ⊂ 4π2Q

where n1, ..., nr, n are integers such that
r∑

i=1

xni/aiy− n ≤ 2g − 2,

r∑

i=1

pni/aiq− n ≥ 2− 2g

and a1, ..., ar are the indices of the singular points of the orbifold of M and where
xay and paq, for a ∈ R, denote resp. the greatest integer ≤ a and the least integer
≥ a. Moreover, choosing ni = kiai+(ai−1) for i = 1, ..., r we retrieve the maximal
volume SV (M).
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3. The Seifert volume of graph manifolds

In [4] we answer Question 1 for graph manifolds with non-trivial geometric
decomposition.

Theorem 4. Any closed non-geometric graph manifold has a virtually positive
Seifert volume.

Remark 5. Since we still don’t know if there are non-geometric graph manifolds
with zero Seifert volume it is unclear whether the condition ”virtual” is necessary.

Remark 6. The geometric pieces of a non-geometric graph manifold are either
Euclidean or H2×R and therefore they cannot contribute individually to the Seifert
volume of M . It turns out that the volume of M is positive rather because the
geometric pieces are glued along their boundary in such a way that their geometry
do not extend. Accordingly it can be proved, see [5], that there exists a finite

covering M̃ of M such that the set vol(M̃, IsoeS̃L2(R)) contains the informations
of the gluing involution when M is made of two Seifert pieces with connected
boundary.

4. The hyperbolic volume of three-manifolds

By a result of Reznikov stated in [9] HV (M) ≤ µ3‖M‖, where ‖.‖ denotes
the Gromov simplicial volume defined in [7]. Therefore the condition ‖M‖ > 0 is
necessary in Question 1 for the hyperbolic volume. We conjecture that a closed
3-manifold has a virtually positive hyperbolic volume iff its Gromov simplicial
volume is positive. In this statement the virtual condition cannot be dropped:

Proposition 7. There are (infinitely many) 3-manifolds M with ‖M‖ > 0 but
HV (M) = 0.

On the other hand we found out that the manifolds constructed in Proposition
7 have all a virtually positive hyperbolic volume.

One can check the conjecture in particular when the dual graph of M is a tree
(therefore when M is a rational homology sphere) and when M is a virtual surface
bundle. Notice that this latter point can be related with [1, conjecture 9.1].

Besides one can construct a finite covering M̃ of M such that the informa-
tions of the gluing involution can be estimated, using [8], by the elements of

vol(M̃,PSL(2;C)) when M is made of two geometric pieces with connected bound-
ary, one of them being hyperbolic.

The proofs of these results use the Chern Simons gauge theory with structural

Lie groups PSL(2;C) and Isoe(S̃L2(R)) as well as specific properties and results of
Seifert and hyperbolic geometry developed resp. in [6] and [10].
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Galois action on knots

Hidekazu Furusho

In my talk, I discussed the following topics:

Absolute Galois action on profinite braids: I recalled the definitions of

the profinite braid group B̂n (n ≥ 2), the absolute Galois group GQ :=

Gal(Q/Q) of the rational number field Q and the profinite Grothendieck-

Teichmüller group ĜT . The last one is the group suggested implicitly by
Grothendieck [G] and constructed explicitly by Drinfel’d [Dr]. I reviewed

a method to calculate explicitly the action of GQ and ĜT on B̂n (cf.
Drinfel’d [Dr], Ihara-Matsumoto [IM]) and explained that GQ is mapped

to ĜT (cf. Drinfel’d [Dr], Ihara [I]). I noted that the map is injective by
Bely̆ı’s result [Be].

Motivic Galois action on proalgebraic braids: I introduced the proal-
gebraic braid group Bn(Q) (n ≥ 2) and recalled the definition of the proal-
gebraic Grothendieck-Teichmüller group GT (Q) ([Dr]). I reviewed my
result [F10] on defining equations of GT (Q), which reduces two hexagon
equations into one pentagon equation. Then it was explained that the mo-
tivic Galois group GalM(Z)(Q) (:the tannakian Galois group of the cate-
goryMTM(Z)Q of unramified mixed Tate motives in Deligne-Goncharov
[DeG]) is mapped to GT (Q). I noted that the results of Brown [Ba] and
of Zagier [Z] imply that the map is injective.

Motivic Galois action on proalgebraic knots: I introduced the space

Q̂K of proalgebraic knots by taking completion of the Q-vector space QK
generated by all oriented knots with respect to the singular knot filtration.
Then I explained a method to construct GT (Q)-action there by following
the ideas in Bar-Natan [Ba], Kassel-Turaev [KT] and Le-Murakami [LM].
By the embedding from GalM(Z)(Q) into GT (Q), an action of the motivic

Galois group GalM(Z)(Q) on Q̂K is obtained. It implies that the space

Q̂K of proalgebraic knots carries a structure of unramified mixed Tate
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motive. I noted that a result of Le-Murakami [LM] leads that this action
factors through Gm, that means, a proalgebraic knot admits a non-trivial
decomposition into Tate motives. One of my results in [F12], an explicit
formula of the first term of this decomposition, was presented.

Absolute Galois action on profinite knots: My definition [F12] of profi-
nite knots was introduced. It is defined to be finite ‘consistent’ products
of ‘annihilations’, ‘creations’ and oriented profinite braids modulo a profi-

nite analogue of the Turaev moves. They form a topological monoid K̂. I

explained my construction [F12] of an action of ĜT on the group GK̂ of

profinite knots (which is defined to be the group of fraction of K̂). It was
noted that one of important consequences of my construction is that the

absolute Galois group GQ acts continuously on the group GK̂ of profinite
knots. Various properties of this Galois action and its related questions
were discussed. Particularly, related to Bely̆ı’s result in the profinite braids
setting and Brown’s result in the proalgebraic braids setting, a question
whether this action is faithful or not was emphasized.
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The 3D index of a cusped hyperbolic manifold

Stavros Garoufalidis

1. Introduction

1.1. The 3D index of Dimofte-Gaiotto-Gukov. The goal of the talk given in
Oberwolfach August 28, 2012 is to discuss the index IT of an ideal triangulation T ,
a remarkable collection of Laurent series in q1/2 with integer coefficients introduced
by Dimofte-Gaiotto-Gukov [5, 6]. The talk reports on recent work of the author
[9] and joint work in progress with Hodgson-Rubinstein-Segerman [10]. Explitily,

• In [9] we give necessary and sufficient conditions for the existence of the
index IT of an ideal triangulation in terms of the existence of an index
structure of T . The later is a weakened version of a strict-angle structure
and can be checked efficiently given the gluing equation matrix of T .
• In [9] we show that if T and T ′ are relatex by a 2-3 move and both admit

an index structure, then IT = IT ′ .
• In [10] we show that T admits an index structure if and only if it is 1-

efficient [13, 12]. Apart from the rather unexpected connection between
the index of an ideal triangulation (a recent quantum object) and the
classical theory of normal surfaces, Theorem 2 places restrictions in the
topology of M ; see Remark 3 below.
• In [10] we use triangulations of the canonical Epstein-Penner ideal cell de-

composition of a cusped hyperbolic 3-manifold to show that the invariant
of ideal triangulations can be promoted to an invariant of cusped hyper-
bolic 3-manifolds.

Let us point out that normal surfaces were also used in [8] in an attempt to con-
struct topological invariants of 3-manifolds, in the style of a Turaev-Viro TQFT.
Recently strict angle structures (a stronger form of an index structure) were used
in [1] to prove convergence of state-integral invariants of ideal triangulations which
are also expected to give analytic invariants of cusped hyperbolic 3-manifolds that
generalize the Kashaev invariant [15]. The q-series of Theorem 6 below are q-
holonomic, of Nahm-type and apart from a meromorphic singulatity at q = 0,
admit analytic continuation in the punctured unit disk.

Before we get to the details, the reader should keep in mind that the origin of
the 3D index is the exciting work of Dimofte-Gaiotto-Gukov [5, 6] in mathematical
physics, where they studied 3-dimensional gauge theories with N = 2 supersym-
metry that are associated to an ideal triangulation T of an oriented 3-manifold M
with r cusps. The low-energy limit of these theories is a partially defined function
(the so-called 3D index)

(1)
I : {ideal triangulations} −→ Z((q1/2))Z

r×Zr

,

T 7→ IT (m1, . . . ,mr, e1, . . . , er) ∈ Z((q1/2))

for integers mi and ei, which is invariant under some partial 2-3 moves. The
above gauge theories are in a sense an analytic continuation of the colored Jones
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polynomial and play an important role on Chern-Simons perturbation theory and
in categorification. Although the gauge theory depends on the ideal triangulation
T , and the 3D index in general may not converge, physics predicts that the gauge
theory ought to be a topological invariant of the underlying 3-manifold M . Recall
that every two ideal triangulations of a cusped 3-manifold are related by a sequence
of 2-3 moves [16, 17, 18]. In [9] the following was shown. For a definition of an
index structure.

Theorem 1. (a) IT is well-defined if and only if T admits an index structure.
(b) If T and T ′ are related by a 2-3 move and both admit an index structure, then
IT = IT ′ .

1.2. Index structures and 1-efficiency.

Theorem 2. T admits an index structure if and only if T is 1-efficient.

The above theorem has some consequences for our goal of constructing topo-
logical invariants.

Remark 3. 1-efficiency of T implies restrictions on the topology of M : it follows
that M is irreducible and atoroidal. It follows by the Geometrization Theorem in
dimension 3 that M is hyperbolic or small Seifert-fibered.

Remark 4. If K is the connected sum of 41 with the 52 knot, or K ′ is the White-
head double of the 41 knot and T is any ideal triangulation of the complement of
K or K ′, then T is not 1-efficient, thus IT never exists. On the other hand, the
(colored) Jones polynomial, the Kashaev invariant and the PSL(2,C)-character
variety of K and K ′ happily exist; see [14, 15, 3].

Remark 5. If T admits a semi-angle structure (in particular, a taut or a strict
angle structure) and M is atoroidal then T is 1-efficient [?, Thm.2.6], thus IT
exists.

1.3. Regular ideal triangulations. In view of Remark 3, we will restrict our
goal to construct the index of a hyperbolic 3-manifoldM . All we need is a canonical
set XM of 1-efficient ideal triangulations of M such that every two triangulations
are related by 2-3 moves within XM . Every cusped hyperbolic 3-manifold M has
a canonical cell decomposition [7] where the cells are convex ideal polytopes in H3.
The cells can be triangulated into ideal tetrahedra, with flat ones inserted when
the triangulations of their faces do not match. Unfortunately, it is not known
whether any two triangulations of a 3-dimensional polytope are related by 2-3
moves; the corresponding result trivially holds in dimension 2 and nontrivially
fails in dimension 5; [4, 19]. Nontheless, it was shown by Gelfand-Kapranov-
Zelevinsky that any two regular triangulations of a polytope in Rn are related by a
sequence of geometric bistellar flips; [11]. Using the Klein model of H3, we define
the notion of a regular ideal triangulation of an ideal polytope and observe that
every two regular ideal triangulations are related by a sequence of geometric 2-2
and 2-3 moves. This allows us to define a finite set XEP

M of ideal triangulations
of a cusped hyperbolic manifold M such that any two are related by a sequence
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of 2-3 moves within XEP
M . Combining Theorems 1 and 2 we obtain a topological

invariant of cusped hyperbolic 3-manifolds M .

Theorem 6. If M is a cusped hyperbolic 3-manifold, and T ∈ XEP
M we have

IM := IT is well-defined.

Remark 7. If M has r ≥ 1 cusps, then the Epstein-Penner cell decomposition is
well-defined once we choose a scale vector c1 > c2 · · · > cr > 0 for the relative size
of the cusps. The scale vector is well-defined up to multiplication by a positive real
number.
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Generalized Volume Conjecture: Categorified

Sergei Gukov

(joint work with Hiroyuki Fuji, Piotr Su lkowski)

The generalized volume conjecture states that “color dependence” of the colored
Jones polynomial is governed by an algebraic variety, the zero locus of the A-
polynomial (for knots) or, more generally, by character variety (for links or higher-
rank quantum group invariants). This relation, based on SL(2, C) Chern-Simons
theory, explains known facts and predicts many new ones.

In particular, since the colored Jones polynomial can be categorified to a doubly-
graded homology theory, one may wonder whether the generalized (or quantum)
volume conjecture admits a natural categorification. In this talk, I argue that the
answer to this question is “yes” and introduce a two-parameter deformation of
the A-polynomial that describes the “color behavior” of the HOMFLY homology,
much like the ordinary A-polynomial does it for the colored Jones polynomial.
This deformation, called the super-A-polynomial, is strong enough to distinguish
mutants, and its most interesting properties include relation to knot contact ho-
mology and knot Floer homology. This talk is based on a joint work with Hiroyuki
Fuji and Piotr Sulkowski [1, 2].
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Fundamental groups of number fields

Farshid Hajir

In this mostly expository lecture aimed at low-dimensional topologists, I out-
lined some basic facts and problems of algebraic number theory. My focus was
on one particular aspect of the rich set of analogies between number fields and
3-manifolds dubbed Arithmetic Topology. Namely, I discussed the role played in
number theory by “fundamental groups” of number fields, and related some of the
history of the subject over the past fifty years, since the unexpected discovery by
Golod and Shafarevich of number fields with infinite fundamental group; see the
monograph of Neukirch, Schmidt, Wingberg [10] for a comprehensive account. A
conjecture of Fontaine and Mazur [3] has been influential in stimulating work on
the structure of these infinite fundamental groups in recent years. I presented a for-
mulation of this conjecture as it relates to the asymptotic growth of discriminants
[6]. This discussion then served as motivation for a question about non-compact,
finite-volume, 3-manifolds inspired by the following dictionary.
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Topology Arithmetic
M non-compact, finite-volume K a number field

hyperbolic 3-manifold or, more precisely, X = SpecOK

universal cover M̃ K̃ = max. unramified extension of K

fundamental group π1(M) Gal(K̃/K) ≈ πet
1 (X)

Klein-bottle cusps of M Real (“unoriented”) places of K
Torus cusps of M Complex (“oriented”) places of K

r1 = # Klein-bottle cusps of M r1 = # Real places of K
r2 = # Torus cusps of M r2 = # Complex places of K
r = r1 + r2 = # cusps of M r = r1 + r2 = # places of K at ∞

n = r1 + 2r2 = weighted # cusps n = r1 + 2r2 = [K : Q]
vol(M) = volume of M log |dK |, dK = discriminant of K

There are multiple accounts of the dictionary of arithmetic topology; these in-
clude Reznikov [12], Ramachandran [11], Deninger [2], Morin [9], and Morishita

[8]. For the subtle distinction between Gal(K̃/K) and the étale fundamental
group of Spec OK when K is not “orientable,” i.e. r1(K) 6= 0, see Ramachandran
[11]. I hit upon the analogy between cusps and infinite places as well as be-
tween volumes and discriminants during several conversations with Champanekar
and Dunfield at the 2010 Oberwolfach meeting on Low-dimensional topology and
number theory, and wish to thank them both for their patient explanations to a
non-specialist. For Ramachandran’s justification of the cusps-places analogy, see
section 2 of Deninger [2]. As justification for drawing a parallel between volumes
for hyperbolic 3-manifolds (or more generally Gromov norms of 3-manifolds) with
logarithmic discriminants for number fields, I limit myself here to appealing to the
“Riemann-Hurwitz genus formula for number fields,”

log |dL| = [L : K] log |dK |+ log |NK/QdL/K |

where dL/K is the relative discriminant of L/K. Thus, when L/K is a covering,
i.e. is unramified, the volume scales up by a factor of [L : K], just as with coverings
of manifolds. The relative discrimiant dL/K is made up of a “wild” component
corresponding to prime ideals of K that divide a prime divisor of [L : K] and a
“tame” component. While the latter is easy to compute, the former can be quite
intricate.

The Riemann-Hurwitz formula relates the existence of coverings to the rate
of growth of discriminants. It was this fact which led Minkowski to create his
“geometry of numbers” for the purpose of proving the following conjecture of

Kronecker: Q̃ = Q. Minkowski actually showed much more, namely that the
discriminant grows exponentially with the degree. For this reason, we define a

normalized discriminant for number fields ν(K) := log |dK |
[K:Q] , called the logarithmic

root discriminant. This quantity remains constant in unramified extensions and
remains bounded for extensions which are tamely ramified at a finite number of
primes.
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In his proof that discriminants grow exponentially with the degree, Minkowski
found that real and complex places give different contributions. Namely, he found
constants A > B > 0 such that log |dK | ≥ Ar1 +Br2− δ(n), where δ(n) is a small
error term that is in o(n) as n = r1 + 2r2 →∞. To reformulate this type of bound
in the language of normalized discriminants, we introduce the parameter t = r1/n.
The best known values of A,B come from the study of Dedekind zeta functions
of number fields. If we admit the Generalized Riemann Hypothesis for these zeta
functions, we have

(1) ν(K) ≥ log(8π) + γ + tπ/2− ε(n)

with an explicit error term ε(n) that tends to 0 with n = [K : Q].
If we follow the analogy introduced in the table above, we are led to the question:

does the volume of an r-cusped hyperbolic 3-manifold grow linearly with r? The
answer is yes. Indeed, we have the following theorem of Adams [1]: If M is an
r-cusped hyperbolic 3-manifold, then vol(M) ≥ v3r where v3 is the volume of the
regular ideal tetrahedron.

We note that Adams’ proof relies on Minkowski’s geometry of numbers. Even
without this fact as a provocation, it is natural for a number-theorist to wonder
whether Adams’ theorem can similarly be refined for contributions from torus
cusps and Klein-bottle cusps. A somewhat vague form of the question is: What
are the optimal values of positive constants v1 and v2 such that every hyperbolic 3-
manifold having r1 Klein-bottle and r2 torus cusps satisfies vol(M) ≥ r1v1 + r2v2?
To make the question more precise, let us define, for an r-cusped 3-manifold M
with r1 Klein bottle cusps and r− r1 = r2 torus cusps, the orientation type t of M
to be t = r1/r and its normalized volume to be ν(M) := vol(M)/r. It is clear that
we intend ν(M) to be a reasonable analogue of the logarithmic root discriminant
for number fields.

In number theory, the estimate (1) is of great importance; in particular, an
interesting problem to determine whether the constants in the linear function
bounding the normalized discriminant from below are optimal; this is measured
by a function defined by Martinet (see [7] and also [5]). As an analogue of the
Martinet function, we define a function A (t) as follows: For a rational number
t ∈ [0, 1], define

A (t) = inf
M of type t

ν(M),

the infimum being taken over all hyperbolic 3-manifolds of orientation type t.
The question then is to determine (upper and lower bounds for) A (t). If for

no other reason than for the analogy with asymptotic problems of this type in
number theory and many other contexts (graph theory, coding theory, curves over
finite fields etc., see [4]), it would be very interesting if it can be established that
A (t) is a linear function, or that it meets a fixed linear lower bound for many
values of t.
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Decomposition of Elliptic Genera in terms of Superconformal
Characters

Kazuhiro Hikami

(joint work with Tohru Eguchi)

Study of the elliptic genus by use of representation theory of the superconformal
algebras was initiated in [9]. For instance, the elliptic genus of the K3 surface is
a weak Jacobi form with weight 0 and index 1, and we have

2φ0,1(z; τ) = 24 chh= 1
4 ,ℓ=0(z; τ) +

∞∑

n=0

A(n) chh=n+ 1
4 ,ℓ=

1
2
(z; τ)

Here we use the N = 4 superconformal character chh,ℓ(z; τ) with central charge
c = 6, conformal weight h, and isospin ℓ. It is known [3, 4] that we have

−2 +

∞∑

n=1

A(n) qn = 8
∑

w= 1
2 ,

τ
2 ,

1+τ
2

µ(z; τ),
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where µ(z; τ) is a mock modular form studied in detail in [11]

µ(z; τ) =
i eπiz

θ11(z; τ)

∑

n∈Z

(−1)n
q

1
2n(n+1) e2πinz

1− qne2πiz .

It was observed [8] that the integral Fourier coefficients A(n) are related to the
dimensions of the irreducible representations of the largest Mathieu group M24.
This “Mathieu moonshine” still remains mysterious, though known is that the
non-abelian automorphism group on K3 is a subgroup of M24 [10].

A generalization of Mathieu moonshine is proposed in [1]. Therein a piece of
elliptic genus of 2k-dimensional hyper-Kähler manifold is studied by use of N = 4
superconformal algebra with central charge c = 6k following a method developed
in [5]. In case of 4-dimension, we have

1

12
[φ0,1(z; τ )]

2 − 1

12
E4(τ ) [φ−2,1(z; τ )]

2 = 12chN=4
k=2,h= 2

4
,ℓ=0(z; τ )

+ q−
1
12

(

−2 + 32 q + 110 q2 + 288 q3 + 660 q4 + 1408 q5 + 2794 q6 + · · ·
)

BN=4
2,1 (z; τ )

− q−
1
3
(

20 q + 88 q2 + 220 q3 + 560 q4 + 1144 q5 + 2400 q6 + · · ·
)

BN=4
2,2 (z; τ ).

Here the BPS characters chN=4
k=2,h= 2

4 ,ℓ=0(z; τ) is a mock modular form, and bases

of the non-BPS characters BN=4
2,a (z; τ) = [θ11(z;τ)]

2

[η(τ)]3
chi1,a−1

2
(z; τ) are modular. Ob-

served is another moonshine that the Fourier coefficients of the non-BPS characters
are related to the dimensions of irreducible representations of 2.M12. See [1], where
other moonshine phenomena are suggested for higher dimensional case.

We propose another possibility [7]. Ordinally theN = 4 superconformal algebra
describes the geometry of hyper-Kähler manifolds, while the N = 2 superconfor-
mal algebra is for Calabi–Yau manifolds. We employ the N = 2 superconformal
characters chN=2

D,h,Q(z; τ) for central charge c = 3D, conformal weight h, and U(1)
charge Q, to decompose a weak Jacobi form as a piece of elliptic genus of Calabi–
Yau manifolds [6]. In the case of 4-dimension, the above weak Jacobi form is
decomposed as

1

12
[φ0,1(z; τ)]2 − 1

12
E4(τ) [φ−2,1(z; τ)]2 = 12chN=2

D=4,h= 4
8 ,Q=0(z; τ)

+ q−
1
24

(
−2 + 10 q + 20 q2 + 42 q3 + 62 q4 + 118 q5 + 170 q6 + · · ·

)
BN=2

4,1 (z; τ)

+ q−
3
8

(
12 q + 36 q2 + 60 q3 + 120 q4 + 180 q5 + 312 q6 + · · ·

)
BN=2

4,2 (z; τ),

where the BPS character chN=2
D=4,h= 4

8 ,Q=0(z; τ) is mock modular, while bases of the

non-BPS characters BN=2
D,Q (z; τ) are modular. Mathematically the decomposition

in terms of N = 4 (resp. N = 2) superconformal characters such as () (resp. ())
corresponds to a theta expansion of weak Jacobi forms of integral weight (resp.
half-odd integral weight). Remarkable is that the integral Fourier coefficients are
related to the dimensions of the irreducible representations of SL2(11) ∼= 2.L2(11).
It is well known that the group L2(11) is closely related to M12, and that it plays
a crucial role in the ternary Golay code [2]. It is expected [7] that there might
exist similar moonshine phenomena for higher D.
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Currently the real origin of these moonshine phenomena remains mysterious.
We hope that geometrical meaning of the character decompositions of elliptic genus
will be clarified in near future.
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Small dilatation pseudo-Anosov mapping classes

Eriko Hironaka

This report outlines some recent work and open questions surrounding the mini-
mum dilatation problem for pseudo-Anosov mapping classes on oriented surfaces
of finite type. Using the geometry of 3-manifolds and results of Thurston [13, 14],
Fried [4] and McMullen [11], we study deformations of mapping classes within the
space P of all pseudo-Anosov mapping classes. We also give two general construc-
tions of convergent sequences of dilatation mapping classes, which conjecturally
can be used to describe all pseudo-Anosov mapping classes with bounded normal-
ized dilatation.

1. Minimum dilatation problem

Let φ : S → S be a pseudo-Anosov mapping class on an oriented surface
S = Sg,n of genus g and n punctures. The dilatation λ(φ) is the expansion factor
of φ along the stable transverse measured singular foliation associated to φ, and
is a Perron algebraic unit greater than one. The set of dilatations for a fixed S is
discrete [14].
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Let P(S) be the set of all pseudo-Anosov mapping classes on S, and let δ(S)
be the minimum dilatation for φ ∈ P(S).

The minimum dilatation problem (cf. [12, 11, 2]) can be stated as follows.

Problem 1 (Minimum Dilatation Problem I). What is the behavior of δ(Sg,n) as
a function of g and n?

The exact value of δ(Sg,n) is not known except for very small cases (for example,
for closed surfaces, the answer is only known for g = 2 [5]). However, more is
known about the asymptotic behavior of δ(Sg,n) as a function of g and n, and the
topological Euler characteristic χ(Sg,n).

Let P =
⋃

S P(S). For (S, φ) ∈ P , the normalized dilatation is defined by

L(S, φ) = λ(φ)|χ(S)|.

For ℓ > 1, we say φ is ℓ-small if L(φ) ≤ ℓ. Let P(ℓ) be the set of ℓ-small pseudo-
Anosov maps.

The current smallest known accumulation point of the image of L is

ℓ0 =

(
3 +
√

5

2

)2

.(1)

(See [7, 1, 10].)

Problem 2 (Assymptotic Minimum Dilatation Problem). Is there an accumula-
tion point for the image of L that is smaller than ℓ0?

One can also formulate the minimum dilatation problem from a geometric rather
than numerical standpoint.

Problem 3 (Minimum Dilatation Problem II). What do small dilatation mapping
classes look like?

We approach these three problems from two fronts. One is to study deforma-
tions of pseudo-Anosov mapping classes using Thurston’s theory of fibered faces.
The other is to explictly construct mapping classes with small dilatations.

2. Deformations of pseudo-Anosov mapping classes.

By a result of Thurston[14], a mapping class is hyperbolic if and only if the
mapping class is pseuod-Anosov. Thus, P partitions into sets of monodromies
Φ(M) of hyperbolic 3-manifolds M . The Φ(M) partition further into subsets
Φ(M,F ) that are in one-to-one correspondence with rational points on fibered face
F in such a way that the topological Euler characteristic of S is the denominator
of the corresponding rational point for (S, φ) ∈ Φ(M). Each fibered face F is a
top dimensional face of the Thurston norm ball in H1(M ;Z), a convex polyhedron
that is the convex hull of integral points. Thus P can be identified with the set of
rational points on a disjoint union of open Euclidean polyhedra ⊔αFα.

The following is a consequence of results of Fried [4] and McMullen [11].
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Theorem 4. The normalized dilatation function L is continuous on P and extends
to a locally convex function on ⊔αFα.

Corollary 5. The normalized dilatation function L is bounded on any compact
subset of ⊔αFα.

A partial converse to this statement also holds. Consider the subcollection
P0 ⊂ P consisting of elements (S, φ) whose stable and unstable foliations have no
interior singularities. Let P0(ℓ) be the set of pseudo-Anosov mapping classes with
normalized dilatation less than or equal to ℓ.

Theorem 6 (Farb-Leininger-Margalit [3]). Given ℓ > 1, there is a finite set of
3-manifolds M1, . . . ,Mr so that

P0(ℓ) ⊂
r⋃

i=1

Φ(Mi).

It follows from Theorem 6 that to understand the shape of all ℓ-small dilata-
tion mapping it suffices to understand how mapping classes vary on small open
neighborhoods in P .

3. Nearly periodic mapping classes with small dilatation.

It is reasonable to guess that small dilatation mapping classes should be “nearly”
periodic. We consider two descriptions of sequences of mapping classes that are
of this form.

Penner-type sequences. Let (S, φ, τ) be such that (S, φ) ∈ P and (τ, ∂τ) ⊂
(S, ∂S) is a simple closed multi-curve relative to the boundary. Assume that
φ = δ ◦ η, where η leaves τ point-wise fixed, and δ is a Dehn twist on a simple-
closed curve γ ⊂ S whose algebraic intersection with τ is zero.

Theorem 7 ([9]). There is a sequence (Sk, φk) ∈ P such that

(1) the Euler characteristic of Sk is mk for some m < 0,

(2) φk = rkφ̂, where φ̂ has support on a subsurface of Sk whose homeomor-
phism type is independent of k and rk is periodic of period k, and

(3) (Sk, φk) converge to (S, φ) in P.
The sequence (Sk, φk) generalize Penner-sequence, and by continuity of L the

sequence of normalized dilatations L(Sk, φk) converges to L(S, φ),
Twisted mapping classes. Let Pm be a closed 2m-gon with alternate sides

removed. Let (S1, φ1) and (S2, φ2) be two mapping classes with proper embeddings
Pm ⊂ Si, for i = 1, 2. Then the Murasugi sum of (S1, φ1) and (S2, φ2) equals (S, φ),
where S is the result of gluing S1 and S2 along the corresponding mages of Pm

and φ is the composition of the extensions of φ1 and φ2 by the identity on S.
In [8], we show the following.

Lemma 8. For each m, there is a family of mapping classes (Σk, σk) so that

(1) σmk
k is a composition of Dehn twists centered at boundary components of

Σk,
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(2) there exist mk disjoint embedded copies of Pm in Σk, and
(3) the mapping tori of (Σk, σk) are independent of k.

The surfaces Σk constructed in [8] come with a distinguished proper embedding
of Pm. Let (S0, φ0) be any mapping class with a proper embedding of Pm in S0.
Let (Sk, φk) be the mapping classes obtained by Murasugi sum of (S0.φ0) with
(Σk, σk) along Pm.

Lemma 9. For any choice of (S0, φ0), the mapping classes (Sk, φk) correspond to
a convergent sequence on a fibered face (possibly converging to the boundary).

Theorem 10 ([8]). There exists (S0, φ0) so that (Sk, φk) are orientable pseudo-
Anosov mapping classes with unbounded genus that converge to a point in the
interior of a fibered facem and whose normalized dilatations converge to ℓ0.
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Small covolume and growth of hyperbolic Coxeter groups

Ruth Kellerhals

Consider a hyperbolic n-orbifold, that is, a quotient of Hn by a discrete group of
isometries of Hn. Simplest examples are orbit spaces of hyperbolic Coxeter groups
which are groups generated by finitely many reflections with respect to hyperplanes
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in Hn. In the case of few generators, such groups as well as their fundamental poly-
topes are most conveniently represented by their Coxeter graph ([5], for example).
We are interested in describing hyperbolic n-orbifolds of finite volume, compact or
non compact, arithmetically defined or not, by means of characteristic invariants
such as volume, Euler characteristic, growth rate of the fundamental group, length
of a shortest closed simple geodesic, small eigenvalues of the Laplacian, and so on.

For small n, minimal volume hyperbolic n-orbifolds are identified. For example,
by a well-known result of C. L. Siegel, the quotient of H2 by the triangle group
(2, 3, 7) has minimal volume among all hyperbolic 2-orbifolds. The 1-cusped quo-
tient space H3/G∞, where G∞ is the tetrahedral Coxeter group (3, 3, 6) with
Coxeter graph

•–——•–——•—
6
–——• ,

has minimal volume among all non-compact hyperbolic 3-orbifolds [7]. For cor-
responding results about minimal volume cusped hyperbolic n-orbifolds with 4 ≤
n ≤ 9, see [2] and [3]. Recently, Gehring, Marshall and Martin [6] (see also [1])
completed their work proving that the oriented double cover of the quotient of H3

by the Z2-extension of the Coxeter group (3, 5, 3) with graph

•–——•—
5
–——•–——•

has minimal volume among all oriented hyperbolic 3-orbifolds which was known
before in the arithmetic case, only.

Due to the apparent importance of hyperbolic Coxeter groups with few gen-
erators and finite covolume, we study these groups with respect to some of their
relevant algebraic features. More specifically, consider a cofinite hyperbolic Cox-
eter group G = (G,S) generated by a finite set S of reflections. Its growth series
is given by

fS(x) = 1 + |S|x+
∑

k≥2

akx
k ,

where ak is the number of words in G of S-length k, and which is the series
expansion of a rational function p(x)/q(x) with coprime polynomials p, q defined
over Z. Notice that the value 1/fS(1) is proportional to the Euler characteristic
χ(G), and proportional to the covolume of G ⊂ Isom(Hn) if n is even. The growth
rate τG is given by the reciprocal of the radius of convergence R of fS(x). It is
known that τG > 1 is a root of maximal absolute value of q(x) and an algebraic
integer. As such τG is an interesting object and closely related to Salem numbers,
Pisot numbers and Perron numbers. Recently, in [5], we proved the following
result.

Theorem. Among all hyperbolic Coxeter groups with non-compact fundamental
polyhedron of finite volume in H3, the tetrahedral group G∞ = (3, 3, 6) has minimal
growth rate, and as such the group is unique.

The above result completes the picture of growth rate minimality for cofinite
hyperbolic Coxeter groups in three dimensions. Indeed, in collaboration with A.
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Kolpakov [4], we showed that the growth rate of the Coxeter group (3, 5, 3) is
minimal among all growth rates (being Salem numbers) of Coxeter groups acting
cocompactly on H3.
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On homology growth of finite covering

Thang Lê

1. Torsion Growth and volume

1.1. Sequence of subgroups and limits. Suppose π is a finitely presented
group. Any finite set S = {s1, . . . , sn} of generators of π defines a metric on
π. For a subgroup G of π, let

dS(G) := min{ℓS(x), x ∈ G \ {1}},

where ℓS is the word length of x in the metric defined by S.
Suppose that f is a function defined on a set D of subgroups of π. We say that

lim
G→∞,G∈D

f(G) = L

if for some finite set of generators S one has

(1) lim
dS(G)→∞,G∈D

f(G) = L.

It is easy to see that (1) holds if and only if it holds when S is replaced by any
other finite set of generators. One define lim supG→∞,G∈D f(G) similarly.

Note that if limk→∞ dSGk = ∞ then ∩Gk = {1}, i.e. {Gk} is co-final. The
converse is not true (true if Gk is nested).
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1.2. A volume conjecture. Let X be an irreducible, orientable 3-manifold with
boundary either empty or union of tori. By the JSJ decomposition and Thurston-
Perelman geometrization, one can cut X along some embedded tori such that the
result consists of several pieces, each is either Seifert fibered or hyperbolic. Defined
Vol(K) as the sum of the hyperbolic volumes of the hyperbolic pieces. Another
way to define Vol(K) is to use the Gromov norm.

Let π = π1(X), the fundamental group. For a finite-index normal subgroups of
G of π let XG be the of X corresponding to G. We are interested in the asymptotics
of the homology of XG when G → ∞. It follows from a result of Kazhdan and
Lück [Lu] that

lim
G→∞,|π:G|<∞

b1(XG)

[π : G]
= 0.

Here b1 is the rank of H1(XG,Z). Hence we will look at the torsion:

t(X,G) := |TorH1(XG,Z)|.
Theorem 1. One has

lim sup
G→∞,|π:G|<∞

t(X,G)1/[π:G] ≤ exp(
1

6π
Vol(X)).

We suggest the following conjecture (circa 2007).

Conjecture 2 (See also [Le2]). One has

lim sup
G→∞,|π:G|<∞

t(X,G)1/[π:G] = exp(
1

6π
Vol(X)).

Theorem 1 says that the left hand side is less than or equal to the right hand
side. It follows that Conjecture 2 holds true if Vol(X) = 0, i.e. when X is a graph
manifold.

Remark 3. Similar, slightly different, conjectures were also formulated by Lück
and Begeron-Venkatesh.

2. Abelian case

Let C be a finite free complex over the ring Λ = Λn := Z[Zn] ≡ Z[t±1, . . . , t±n].
For a finite index subgroup G < Zn let

tj(G) = |TorZ (Hj(C ⊗Λ Z[Zn/G])) |.
Suppose f(t±1

1 , . . . , t±1
n ) ∈ C[Zn] ≡ C[t±1

1 , . . . , t±1
n ]. Assume f 6= 0. The Mahler

measure of f is defined by

Mah(f) :=

∫

T n

log |f |dσ
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where T n = {(z1, . . . , zn) ∈ Cn | |zi| = 1}, the n-torus, and dσ is the invariant
measure normalized so that

∫
T n dσ = 1.

For a finitely generated Λ-module M with a presentation

Λk A−→ Λl
։M → 0,

where A is an k × l matrix with entry in Λ, let ∆j(M) be the greatest common
divisor of all (l − j)× (l − j) minor of A. Then ∆j+1|∆j , and

∆j+r(M) = ∆j(TorΛ(M)),

where r = rk(M), the dimension of M ⊗Λ F (Λ) over the fractional field F (Λ) of
Λ. Moreover, ∆0(M) 6= 0 if and only if M is a torsion module, and ∆j(M) = 0
for j < r. Let ∆(M) := ∆r(M) = ∆0(TorΛ(M)), which is known as the first
non-trivial Alexander polynomial of M .

Since Hj(C), for each j ≥ 0, is a Λ-module, one can define ∆(Hj(C)).

Theorem 4. One has

lim sup
G→∞,G<Zn,|Zn:G|<∞

ln tj(G)

|Zn : G| = Mah(∆(Hj(C))).

If n = 1, then one can replace lim sup by the ordinary lim.

For the case when X is the complement of a link in S3 this proved a conjecture
of Silver and Williams [SW], who proved a similar result for the case when the
first Alexander polynomial of the link is non-zero.

The special case j = 0 of Theorem 4 can be reformulated as follows.

Theorem 5. Suppose M is a finitely generated Λ-module. Then

lim sup
G→∞,G<Zn,|Zn:G|<∞

ln |TorZ(M ⊗Λ Z[Zn/G])

|Zn : G| = Mah(∆(M)).

Theorem 5 was formulated as a conjecture by K. Schmidt [Sch], in another
language. Schmidt proved Theorem 5 in the case when M is a Λ-torsion module,
using tools from symbolic dynamical system.

There is no known direct proof of Theorem 5, even in the case when M is a
torsion module. In our proof, we use Bourbaki’s pseudo-isomorphism theory and
a Manin-Mumford principle for sets of torsion points on algebraic sets (a result of
Laurent), to reduce the case of general M to the case of Λ-torsion modules.

For n = 1, one can replace lim sup by the ordinary lim. One can replace lim sup
by the ordinary lim in Theorems 4 and 5 for every n if one can prove the following
conjecture.

Conjecture 6. Let f ∈ Z[t1, . . . , tn]. There exists a positive constant E such that
for every roots of unity z1, . . . , zn of order ≤ d, either f(z1, . . . , zn) = 0, or

f(z1, . . . , zn) >
1

dE
.
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When n = 1, the conjecture holds true, due to Gelfond-Baker theory.
The conjecture can be easily reduced to the case when f is a linear polynomial

(by increasing the number of variables), and is eventually equivalent to the fol-
lowing conjecture. Suppose Cd = {exp(2pik/d) | k ∈ Z} be the set of all roots
of unity of orders dividing d. Let (Cd)#m be the Minkowski sum of m copies of
Cd, i.e. (Cd)#m = {x1 + · · · + xm | xj ∈ Cd}. For a finite subset A ⊂ C let
min0(A) = minx∈A\{0} |x|.
Conjecture 7. For a fixed positive integer m, there is a constant E = E(m) such
that as d→∞,

min0((Cd)#m) >
1

dE
.
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[Lu] W. Lück, L2-invariants: theory and applications to geometry and K-theory, Ergebnisse der
Mathematik und ihrer Grenzgebiete. 3. Folge, 44, Springer-Verlag, Berlin, 2002.

[SW] D. Silver and S. Williams, Mahler measure, links and homology growth, Topology 41
(2002), 979–991.

[Sch] K. Schmidt, Dynamical systems of algebraic origin, Progress in Mathematics, 128
Birkhauser Verlag, Basel, 1995.

Homological growth and L2-invariants

Wolfgang Lück

Let G be a group together with an inverse system {Gi | i ∈ I} of normal
subgroups of G directed by inclusion over the directed set I such that [G : Gi]
is finite for all i ∈ I and

⋂
i∈I Gi = {1}. Let K be a field. We denote by d the

minimal number of generators, by ρZ the integral torsion, by b
(2)
n the n-th L2-Betti

number, and by ρ(2) the L2-torsion. The starting point of this talk is the following
result by Lück [11]).

Theorem: Let X be a finite connected CW -complex and let X → X be a
G-covering. Then

b(2)(X) = lim
i→∞

bn(Gi\X;Q)

[G : Gi]
.

The analogous result for signatures and η-invariants has been proved by Lück-
Schick [15].

Meanwhile the question has occurred whether a result like this is true also
for characteristic p. Then the theory of von Neumann algebras is not available
anymore. A partial result is given by Linnell-Lück-Sauer [10].

Theorem: Let X be a finite connected CW -complex and let X → X be a
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G-covering. Suppose that G is torsionfree and elementary amenable. Then one
can assign to a FpG-module M its Ore dimension dimOre and one has

dimOre

(
Hn(X;Fp)

)
= lim

i→∞
bn(Gi\X;Fp)

[G : Gi]
;

The following result is taken from Bergeron-Lück-Sauer [2] which also follows
from the methods in Calegari-Emerton [4].

Theorem: Let X be a finite connected CW -complex and let X → X be a
G-covering. Let p be a prime, let n be a positive integer, and let φ : G→ GLn(Zp)
be an injective homomorphism. The closure of the image of φ, which is denoted
by Γ, is a p-adic analytic group admitting an exhausting filtration by open normal
subgroups Γi = ker

(
Γ→ GLn(Z/piZ)

)
. Let d = dim(Γ). Set Gi = φ−1(Γi).

Then, for any integer n we have

bn(X/Gi) = βn(X,Γ)[Γ : Γi] +O
(

[Γ : Γi]
1−1/d

)
,

where βn(X,Γ) is a certain Betti number defined in terms of the Iwasawa algebra
K[[Γ]].

The case n = 1 is of special interest for group theory. For instance the following
conjecture is open.

Conjecture: Let G be finitely presented. Then the limit limi∈I
b1(Gi;K)
[G:Gi]

exist for

all systems (Gi)i∈I with
⋂

i∈I Gi = {1} and fields K and is independent of the
choice of (Gi)i∈I and K.

Abért-Nikolov [1, Theorem 3] have shown for a finitely presented residually finite
group G which contains a normal infinite amenable subgroup that the conjecture
above is true in these cases.

The conjecture above is not true if we drop the condition that the system
{Gi | i ∈ I} has non-trivial intersection, as an example by Lück [13] shows. It
also fails if we weaken the condition “finitely presented” to “finitely generated”,
see Lück-Osin [14] and Ershof-Lück [5]

The questions above is related to questions of Gaboriau (see [6, 7, 8]), whether
every essentially free measure preserving Borel action of a group has the same
cost, and whether the difference of the cost and the first L2-Betti number of a
measurable equivalence relation is always equal to 1.

The following two conjectures are motivated by [3, Conjecture 1.3] and [12,
Conjecture 11.3 on page 418 and Question 13.52 on page 478].

Conjecture: (Approximation Conjecture for L2-torsion)
Let X be a finite connected CW -complex and let X → X be a G-covering.

(1) If the G-CW -structure on X and for each i ∈ I the CW -structure on
Gi\X come from a given CW -structure on X , then

ρ(2)(X) = lim
i→∞

ρ(Gi\X)

[G : Gi]
;
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(2) If X is a closed Riemannian manifold and we equip Gi\X and X with the
induced Riemannian metrics, one can replace the torsion in the equality
appearing in (1) by the analytic versions;

(3) If b
(2)
n (X ;N (G)) vanishes for all n ≥ 0, then

ρ(2)(X ;N (G)) = lim
i→∞

ρZ(Gi\X)

[G : Gi]
.

Conjecture (Homological growth and L2-torsion for aspherical closed manifolds)
Let M be an aspherical closed manifold of dimension d and fundamental group
G = π1(M). Then

(1) For any natural number n with 2n 6= d we have

b(2)n (M ;N (G)) = lim
i→∞

bn(Gi\M̃ ;Q)

[G : Gi]
= 0.

If d = 2n is even, we get

b(2)n (M ;N (G)) = lim
i→∞

bn(Gi\M̃ ;Q)

[G : Gi]
= (−1)n · χ(M) ≥ 0;

(2) For any natural number n with 2n+ 1 6= d we have

lim
i∈I

ln
(∣∣tors

(
Hn(Gi\M)

)∣∣)

[G : Gi]
= 0.

If d = 2n+ 1, we have

lim
i∈I

ln
(∣∣tors

(
Hp(Gi\M)

)∣∣)

[G : Gi]
= (−1)n · ρ(2)

(
M ;N (G)

)
≥ 0.

Some evidence for the two conjectures above comes from results of Koch-Lück [9]
for graphs and the the following result of Lück [13].

Theorem Let M be an aspherical closed manifold with fundamental group
G = π1(X). Suppose that M carries a non-trivial S1-action or suppose that G
contains a non-trivial elementary amenable normal subgroup. Then we get for

all n ≥ 0 that the sequences bn(Gi\M̃ ;K)
[G:Gi]

,
mg
(
Hn(Gi\M)

)
[G:Gi]

,
ln
(∣∣tors

(
Hn(Gi\M)

)∣∣)
[G:Gi]

,

ρ(2)
(
Gi\X;N ({1})

)
[G:Gi]

, and
ρZ

(
Gi\X

)
[G:Gi]

converge to zero, and we have b
(2)
n (M̃ ;N (G)) =

ρ(2)(M̃ ;N (G)) = 0.
In particular the two conjectures above are true.
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All finite groups are involved in the Mapping Class Group

Gregor Masbaum

(joint work with Alan W. Reid)

Let Γg denote the orientation-preserving Mapping Class Group of the genus g
closed orientable surface.

A group H is involved in a group G if there exists a finite index subgroup
K < G and an epimorphism K ։ H . The question as to whether every finite
group is involved in Γg was raised by U. Hamenstädt in her talk at the 2009
Georgia Topology Conference. This was known to be the case in genus g = 1 and
g = 2, but in genus g ≥ 3 Hamenstädt’s question was open. The main result of
our joint work [9] is the following.

Theorem 1 ([9]). For all g ≥ 1, every finite group is involved in Γg.

When g = 1, Γ1
∼= SL(2,Z) and in this case the result follows since SL(2,Z)

contains free subgroups of finite index (of arbitrarily large rank). For the case of
g = 2, it is known that Γ2 is large [6]; that is to say, Γ2 contains a finite index
subgroup that surjects a free non-abelian group, and again the result follows. In
genus g ≥ 3, one cannot argue in this way, as it is not known whether Γg is large.
In fact, if g ≥ 3, it is not even known whether Γg contains a finite index subgroup
that surjects Z.
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Let us assume g ≥ 3 from now on. Although Γg is well-known to be residually
finite [5], and therefore has a rich supply of finite quotients, apart from those finite
quotients obtained from

Γg ։ Sp(2g,Z) ։ Sp(2g,Z/NZ)

very little seems known explicitly about what finite groups can arise as quotients
of Γg (or of subgroups of finite index). Note that one cannot expect to prove
Theorem 1 simply using the subgroup structure of the groups Sp(2g,Z/NZ). The
reason for this is that since Sp(2g,Z) has the Congruence Subgroup Property [1],
it is well-known that not all finite groups are involved in Sp(2g,Z) (see [8] Chapter
4.0 for example).

Our main new idea to prove Theorem 1 and thus to answer Hamenstädt’s
question, was to exploit the unitary representations of mapping class groups arising
in Topological Quantum Field Theory (TQFT) first constructed by Reshetikhin
and Turaev [11]. We actually use the so-called SO(3)-TQFT following the skein-
theoretical approach of [2] and its Integral TQFT refinement [4].

Using these TQFT representations, we prove the following result which gives
many new finite simple groups of Lie type as quotients of Γg. Let Fq denote a
finite field of order q.

Theorem 2 ([9]). For each g ≥ 3, there exist infinitely many N such that for each
such N , there exist infinitely many primes q such that Γg surjects PSL(N,Fq).

Theorem 1 follows easily from Theorem 2 (see [9]).
In addition we show that Theorem 2 also holds for the Torelli group (with

g ≥ 2).
A proof of these results was also given by Funar [3].
We briefly indicate the strategy of the proof of Theorem 2. The unitary repre-

sentations that we consider are indexed by primes p congruent to 3 modulo 4. For
each such p we use Integral SO(3)-TQFT [4] to exhibit a group ∆g which is the

image of a certain central extension Γ̃g of Γg and satisfies

∆g ⊂ SL(Np,Z[ζp]) ,

where ζp is a primitive p-th root of unity, and Z[ζp] is the ring of integers in Q(ζp).
Moreover, the dimension Np → ∞ as we vary p. In fact, Np is the dimension of
the SO(3)-TQFT vector space (with quantum parameter q = ζp) associated to the
genus g surface.

The key part of the proof is the following. We use strong approximation in
the form proved by Weisfeiler [12] (see also Nori [10]) and a density result for
the SO(3)-TQFT-representations due to Larsen and Wang [7] to exhibit infinitely
many rational primes q, and prime ideals q̃ ⊂ Z[ζp] satisfying

Z[ζp]/q̃ ≃ Fq ,

for which the reduction homomorphism

SL(Np,Z[ζp]) ։ SL(Np,Fq)
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(induced by the isomorphism Z[ζp]/q̃ ≃ Fq) restricts to a surjection

∆g ։ SL(Np,Fq) .

From this, it is then easy to get surjections

Γg ։ PSL(Np,Fq) ,

which will complete the proof of Theorem 2.
For more details about how all this is achieved, see [9].
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Johnson maps in non-Abelian Iwasawa theory

Masanori Morishita

1. Introduction. This is the joint work with Yuji Terashima. We propose an
approach to non-Abelian Iwasawa theory, following the idea of Johnson maps in
low dimensional topology.

We fix an odd prime number p throughout this report. Let k∞ := Q( p∞
√

1) be
the field obtained by adjoining all p-power roots of unity to the rationals Q and
let k̃ be the maximal pro-p extension of k∞ which is unramified outside p. A basic
problem of non-Abelian Iwasawa theory is then to study the conjugate action of
Γp := Gal(k∞/Q) on Fp := Gal(k̃/k∞), while the classical Iwasawa theory deals
with the action of Γp on the Abelianization F ab

p = H1(Fp,Zp). In terms of the
standard algebraic geometry, one has the tower of étale pro-finite covers
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(1.1) X̃p := Spec(Ok̃[1/p]) → X∞
p := Spec(Z[ p∞

√
1, 1/p]) → Xp := Spec(Z[1/p])

with Galois groups

(1.2) Γp = Gal(X∞
p /Xp), Fp = Gal(X̃p/X

∞
p ).

Now, based on the analogy between a knot and a prime ([Ms])

knot ←→ prime

K : S1 = K(Z, 1) →֒ R3 Spec(Fp) = K(Ẑ, 1) →֒ Spec(Z),

the topological counterpart of (1.1) and (1.2) may be the tower of covers

(1.3) X̃K → X∞
K → XK := R3 \K

and Galois groups

(1.4) ΓK := Gal(X∞
K /XK), FK := Gal(X̃K/X

∞
K ),

where X∞
K is the infinite cyclic cover of XK and X̃K is the universal cover of XK .

To push our idea further, suppose K is fibered so that XK is the mapping torus of
the monodromy φ : S → S, S being the Seifert surface of genus g. The mapping
class φ, a generator of ΓK , induces the automorphism φ∗ of FK = π1(S). The
theory of Johnson maps provides a framework to describe this action ([J], [Ka],
[Ki], [Mt]).

In the following, we shall introduce arithmetic analogues of the Johnson maps
and use them for non-Abelian Iwasawa theory.

2. Pro-p Johnson maps. Let F be a free pro-p group on x1, . . . , xr , and let
H = F ab = Zr

p be the Abelianization of F . We let [f ] := f mod [F, F ]. Let

T = T (H) be the complete tensor algebra on H , T =
∏

m≥0H
⊗m, which is

identified with the Zp-algebra Zp〈〈X1, . . . , Xr〉〉 of non-commutative power series,
where Xj = [xj ] (1 ≤ j ≤ r). Let Tn :=

∏
m≥nH

⊗m be the two-sided ideal of T
made up by power series of degree≥ n. A Zp-algebra automorphism ϕ of T is called

filtration-preserving if ϕ(Tn) = Tn for all n ≥ 0 and we denote by Autfil(T ) the

group of filtration-preserving Zp-algebra automorphisms of T . Each ϕ ∈ Autfil(T )
induces a Zp-module automorphism of H = T1/T2, by which we denote [ϕ]. Note

that the homomorphism Autfil(T ) niϕ 7→ [ϕ] ∈ GL(H) splits. (The splitting

ι : GL(H) → Autfil(T ) is given by ι([ϕ])(tm) = ([ϕ]⊗m(tm)) (tm ∈ H⊗m).) Set

IA(T ) := Ker(Autfil(T )→ GL(H)).

Lemma 2.1. (1) One has an isomorphism Autfil(T ) ≃ IA(T ) ⋊ GL(H) given by
ϕ 7→ (ϕ ◦ [ϕ]−1, [ϕ]).
(2) One has a bijection IA(T ) ≃ Hom(H,T2) given by ϕ 7→ ϕ|H − idH .

Let Zp[[F ]] be the complete group algebra of F over Zp with augmentation ideal
I. The Magnus expansion θ : F →֒ T× defined by θ(xj) = 1 + Xj is extended to

a Zp-algebra isomorphism θ̂ : Zp[[F ]]
∼→ T , which satisfies θ̂(In) = Tn for all n.
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Now, let φ ∈ Aut(F ). Then φ induces a Zp-algebra automorphism φ̂ of Zp[[F ]])

satisfying φ̂(In) = In. We then define the extended pro-p Johnson homomorphism
by

(2.2) τ̂ : Aut(F ) −→ Autfil(T ); τ̂ (φ) := θ̂ ◦ φ̂ ◦ θ̂−1.

Noting [θ̂ ◦ φ̂ ◦ θ̂−1] = [φ], we let (τ(φ), [φ]) be the pair in IA(T ) ⋊ GL(H) which
corresponds to τ̂ (φ) under the isomorphism of Lemma 2.1 (1). Thus we have a
map

(2.3) τ : Aut(F ) −→ IA(T )

which we call the pro-p Johnson map. Composing τ with IA(T )
∼→ Hom(H,T2)→

Hom(H,H⊗) (m ≥ 2), where the 1st map is the bijection of Lemma 2.1 (2) and
the second is the map induced by the projection T2 → H⊗m, we have the m-th
pro-p Johnson map

(2.4) τm : Aut(F ) −→ Hom(H,H⊗m) (m ≥ 2).

Let F = F1 ⊃ · · · ⊃ Fm := [Fm−1, F ] ⊃ · · · be the lower central series of F ,
and let Autm(F ) := Ker(Aut(F )→ Aut(F/Fm)) for m ≥ 2.

Proposition 2.5. The restriction of τm to Autm(F ) is a homomorphism given
by τm(φ)([f ]) = θ(φ(f)f−1) mod Tm+1 for f ∈ F .
3. Non-Abelian Iwasawa theory. Let k be a number field of finite degree over
Q. Let k∞ be the cyclotomic Zp-extension of k with Γ := Gal(k∞/k) = 〈γ〉 ≃
Zp. Let M/k∞ be a subextension of the maximal, unramified outside p, pro-p

extension k̃ of k∞ such that M/k is a Galois extension. Set F := Gal(M/k∞)
and G := Gal(M/k). Take a section (lift) Γ → G and then Γ acts on F via
conjugation, Γ → Aut(F ); γ 7→ φγ . Now we suppose that F is a free pro-p group
on x1, . . . , xr in order to apply the tools in Section 2. This assumption is satisfied
in the following cases:
• k is totally real and M = k̃ with the Iwasawa µ-invariant µ(F ab) = 0 ([W1]).

• k ∋ p
√

1 and M is the maximal, unramified outside S, positively ramified over
Sp, pro-p extension of k, where S is a finite set of primes of k containing properly
the set Sp of primes over p. The Iwasawa µ-invariant of k∞ is assumed to be 0
([W2], [S]).

Now, let τ̂ : Aut(F ) → Autfil(T ) be the extended pro-p Johnson map and let
τm : Aut(F ) → Hom(H,H⊗m) be the m-th pro-p Johnson map (m ≥ 2). We
propose the following arithmetic invariants derived from Johnson maps.

(3.1) Let [φγ ]n be the Zp-module automorphism of Tn/Tn+1 induced by τ̂ (φγ)
for n ≥ 1. We then define the n-th Iwasawa polynomial by

Ln(T ) := det(1 + T − [φγ ]n | (Tn/Tn+1)⊗Qp).

Note that L1(T ) is nothing but the classical Iwasawa polynomial (p-adic L-function).
(3.2) For f ∈ F and m ≥ 2, we write

τm(φγ)([f ]) =
∑

1≤i1,...,im≤r

τ(i1 · · · im; [f ])Xi1 · · ·Xim .
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Similarly, denoting by τ̂m(φγ)([f ]) the degree m-part of τ̂ (φγ)([f ]), we write

τ̂m(φγ)([f ]) =
∑

1≤i1,...,im≤r

τ̂(i1 · · · im; [f ])Xi1 · · ·Xim .

These coefficients τ(i1 · · · im; [f ]), τ̂(i1 · · · im; [f ]) ∈ Zp are numerical datum en-
coded in the Johnson maps.

We may write G = 〈x1, . . . , xr, y|Rj := [xj , y]φγ(xj)x
−1
j (1 ≤ j ≤ r)〉 where

the word y corresponds to (a lift of) γ. Let ηj be a homology class in H2(G,Zp)
corresponding to the relator Rj and let x∗j ’s are cohomology class in H1(G,Zp)
dual to xj ’s.

Theorem 3.3. One has

τ̂ (i1 · · · im; [xj ]) = τ(i1 · · · im; [xj ]) + τ(i1 · · · im; [φγ(xj)x
−1
j ])

≡ 〈x∗i1 , . . . , x∗im〉(ηj) mod ∆(i1 · · · im−1j),

where 〈x∗i1 , . . . , x∗im〉 stands for the Massey product and ∆(i1 · · · im−1j) is the ideal

of Z generated by the Magnus coefficient of φγ(xj)x
−1
j at Xi1 · · ·Xim−1 .

This theorem may be regarded as a generalization of Kitano’s result [Ki, Theorem
4.1] in the context of non-Abelian Iwasawa theory.
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On the growth of the first Betti number of arithmetic hyperbolic
3-manifolds

Joachim Schwermer

1. Arithmetically defined hyperbolic 3-manifolds

Every orientable hyperbolic 3–manifold is isometric to the quotient H3/Γ of
hyperbolic 3–space H3 by a discrete torsion free subgroup Γ of the group Iso(H3)0

of orientation – preserving isometries of H3. The latter group is isomorphic to the
(connected) group PGL2(C), the real Lie group SL2(C) modulo its center {±Id}.
Hyperbolic 3-space can be realized in various models. In the given framework
H3 is best described as the symmetric space attached to the real Lie group G =
SL2(C), that is, H3 = K\G where K denotes a maximal compact subgroup in
SL2(C). By definition, a Kleinian group Γ is a discrete subgroup of the group
Iso(H3)0 of orientation – preserving isometries of H3. The group Γ is said to have
finite covolume if H3/Γ has finite volume, and is said to be cocompact if H3/Γ is
compact. If the Kleinian group Γ has torsion, then H3/Γ is an orbifold (that is,
it locally looks like the quotient of a Euclidean space by a finite group), otherwise
it is a manifold.

Among hyperbolic 3–manifolds, the ones originating with arithmetically defined
Kleinian groups form a class of special interest. These arithmetic Kleinian groups
fall naturally into two classes, according to whether H3/Γ is compact or not.
However, this quotient always has finite volume with respect to the hyperbolic
metric.

Let Γ be a discrete subgroup of PGL2(C). Then Γ is said to be arithmetically
defined if there exist an algebraic number field k/Q with exactly one complex
place w (that is, t = 1 in the usual enumeration of the places of an algebraic
number field), an arbitrary (but possibly empty) set T of real places, a k–form
G of the algebraic group PGL2/k such that G(kv) is compact for v ∈ T and an
isomorphism

PGL2(C) →̃ G(kw), w the complex place

which maps Γ onto an arithmetic subgroup of G(k) naturally embedded into
G(kw).1

1We briefly describe all k–forms of the algebraic group PGL2 (or SL2) over an algebraic
number field k. By definition, a linear algebraic group G defined over k is a k–form of the
k–group PGL2 (or SL2) if there exists a field extension k′/k such that G is isomorphic as a
k′–group to PGL2/k′ (or SL2/k′).

The k-forms in question can be described in the following way. Let A be a quaternion
algebra over the field k, that is, A is a central simple algebra over k of degree 2. Let GL(A)
be the algebraic group defined over k whose rational points over an extension k′/k equal the
group of invertible elements in the k′–algebra A ⊗k k

′. The reduced norm defines a surjective
homomorphism Nrd : GL(A) → Gm of GL(A) into the multiplicative group Gm over k. The
kernel of the morphism Nrd is a semisimple, simply connected algebraic group over k, to be
denoted SL1(A). The k–group GL(A) has a one–dimensional center, and its derived group is
SL1(A). Then the quotient G of GL(A) by its center is a k–form of PGL2/k. This construction

exhausts all possible k–forms of PGL2/k.
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First, the case of Bianchi groups is subsumed under this construction. Given
an imaginary quadratic extension k of Q, that is, k is of the form Q(

√
d), d < 0, d

a square free integer, G is the split form PGL2/k itself, that is, T is the empty set
and the choice of A = M2(k) is equivalent to the specification that the ramification
set Ram(A) = ∅. Then a subgroup Γ of the group G(k) is arithmetically defined
(or an arithmetic group) if it is commensurable with the group Γd := PGL2(Od),
where Od denotes the ring of integers of k. As early as 1892 L. Bianchi studied
this class of groups, today named after him. These groups and all their subgroups
of finite index have finite covolume but are not cocompact.

Second, there are groups originating with orders in division algebras. Given an
algebraic number field k with exactly one complex place and an arbitrary non-
empty set T of real places we consider a k–form G of PGL2/k which is of the form
SL1(D) where D is a division quaternion algebra over k which ramifies (at least)
at all real places v ∈ T . Then an arithmetically defined subgroup Γ originates
with an order Λ in D. By definition, an order Λ in D is a subring of D containing
the unit element 1D which is a finitely generated Ok-module with kΛ = D. The
latter condition characterizes a full Ok-lattice in D. Then any subgroup Γ of G(k)
which is commensurable with GΛ gives rise to a compact hyperbolic 3-manifold
H3/Γ. This latter construction exhausts all possible types of arithmetically defined
subgroups of PGL2(C) that give rise to a compact hyperbolic 3-manifold H3/Γ.

Examples. We discuss some families of examples. Suppose that the defining field k
(which has exactly one complex place) contains a subfield k′ such that the degree
[k : k′] of the extension k/k′ is 2. Due to the assumption on k, k′ is a totally real
extension field of Q. Let Gal(k/k′) = {Idk, c} denote its Galois group.

Let D be a quaternion division algebra over k underlying a given inner form
G′/k of G/k = PGL2/k so that the finite set S of places v ∈ V where G′(kv) is not
isomorphic to G(kv) contains T . As a quaternion division algebra D is isomorphic
to its opposite algebra, the class of D is of order 2 in the Brauer group Br(k) of k.
In our situation at hand, given a central simple k-algebra A of degree deg(A) there
is the associated central simple k′-algebra Nk/k′ (A) of degree deg(A)2, to be called
the norm of the k-algebra A. This construction induces a group homomorphism

Nk/k′ : Br(k) −→ Br(k′), [A] 7→ [Nk/k′(A)],

of the respective Brauer groups In our context we have to distinguish the two cases

(I) The class [Nk/k′ (D)] has order 1 in Br(k′)
(II) The class [Nk/k′ (D)] has order 2 in Br(k′).

In case (I), the class of the k′-algebra Nk/k′ (D) of degree 4 is the unit element in
Br(k′). As a consequence, Nk/k′ (D) is isomorphic to the matrix algebra M4(k′),
that is, the algebra splits over k′. In such a case, by using results of Albert, the
quaternion algebra D posseses an involution τ of the second kind of a particular
type. There exists a unique quaternion k′-subalgebra D0 ⊂ D such that D =
D0⊗k′ k and τ is of the form τ = γ0⊗ c where γ0 is the quaternionic conjugation.

In case (II), the k′-algebra Nk/k′ (D) of degree 4 is (up to isomorphism) of the
form M2(Q) where Q is a quaternion division algebra over k′.
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2. Construction of (co)-homology classes

In this subsection we discuss various approaches to construct non-trivial classes
in the (co)-homology of an arithmetically defined hyperbolic 3-manifold.

Bianchi Groups. From the geometric point of view, the arithmetically defined
non-compact hyperbolic 3 - manifolds of Bianchi type admit totally geodesic sub-
manifolds. In particular, totally geodesic hypersurfaces arise as 2-dimensional
components F (γ) of the set of fixed points under the involution induced by the
non-trivial Galois automorphism of the underlying imaginary quadratic extension
k/Q. Their existence made possible the construction of non-bounding cycles and
eventually lead to non-vanishing results for the cohomology of Bianchi groups (see
e.g. [2] [6])

Betti numbers in the compact case. A fundamental conjecture in 3-manifold
theory, stated by Waldhausen in 1968, says: Given an irreducible 3-manifold M
with infinite fundamental group there exists a finite cover M ′ of M which is Haken,
that is, it is irreducible and contains an embedded incompressible surface. One
knows that 3-manifolds which are virtually Haken are geometrizable. This so
called virtual Haken conjecture is the source for the (even stronger) virtual positive
Betti number conjecture which states within the class of hyperbolic 3-manifolds
M = H3/Γ that there exists a finite cover M ′ with non-vanishing first Betti
number b1(M ′). The following result confirms this conjecture in a specific case.

Theorem Let H3/Γ = M be a compact arithmetically defined hyperbolic 3-
manifold. Suppose that the defining field k contains a subfield k′ so that the field
extension k/k′ has degree two. Then there exists a finite covering N of M with
non-vanishing first Betti number b1(N).

We refer to [9] and [10] for an overview over the various approaches (which are
substantially different in nature) which lead to a proof of this result in spedific
cases. However, within the realm of the theory of automorphic forms, there is a
unified approach to the non-vanishing result ([5, Section 6]).

3. On the Growth of the first Betti number

Investigating the first Betti number, it is quite natural to consider its growth
rate in a nested sequence (Γi)i∈N of finite index (normal) subgroups Γi ⊂ Γ (whose
intersection is the identity) for a given arithmetically defined Kleinian group Γ.
One defines the first Betti number gradient which is the limit of the ratio of the
first Betti number b1(Γi) by the index [Γ : Γi]. This is a special case of a general
concept: Let Γ be a lattice in a semi-simple real Lie group G. If (Γi)i∈N is a
nested sequence of finite index normal subgroups Γi ⊂ Γ (whose intersection is the
identity) one can form the quotients

βj(Γi) =
dimHj(Γi,C)

[Γ : Γi]
.
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It is known by a result of Lück [7] that the βj(Γi) converge to the j-th L2-Betti
number of Γ, that is, the limit limi βj(Γi) exists for each j. The limit is non-zero
if and only if the rank G of G equals the rank K of a maximal compact subgroup
K ⊂ G and j = 1

2 dim(G/K).
However, in the situation of arithmetically defined hyperbolic 3-manifolds, that

is, G is the group PGL2(C) one has rank G 6= rank K, thus, limi βj(Γi) = 0. In
particular, this assertion is valid for j = 1. As a consequence, the sequence of
first Betti numbers b1(Γi) grows sub-linearly as a function of the index [Γ : Γi]
whenever (Γi)i∈N is a decreasing sequence of finite index normal subgroups in
an arithmetically defined group Γ ⊂ PGL2(C). Recently there has been some
progress on improved upper bounds for the growth of Betti numbers, e.g. in [1].
Our objective in joint work with Steffen Kionke is to obtain lower bounds for the
growth of the first Betti number.

The main new result concerns a specific class of compact arithmetically defined
hyperbolic 3-manifolds which originate with orders in suitable division quaternion
algebras D defined over some number field E. Given an arithmetic subgroup in
the algebraic group SL1(D) we show that there are a positive real number κ and a
nested sequence (Γi)i∈N of finite index subgroups Γi ⊂ Γ (whose intersection is the
identity) such that the first Betti number of the compact hyperbolic 3-manifold
H/Γi corresponding to Γi satisfies the inequality b1(Γi) ≥ κ[Γ : Γi]

1/2 for all
indices i ∈ N. One obtains a similar result in the case of Bianchi groups, that is,
the corresponding manifold is non-compact. In this case one can construct nested
sequences such that the first Betti number grows at least as fast as [Γ : Γi]

2/3 up
to a factor.

Theorem (joint with S. Kionke, [3]) Let F be a totally real algebraic number
field, and let E be a quadratic extension field of F so that E has exactly one
complex place. Let Γ be an arithmetic subgroup in the algebraic group SL1(D)
where D is a quaternion division algebra over E which belongs to case (I). Then
there are a positive number κ > 0 and a nested sequence (Γi)i∈N of torsion-free,
finite index subgroups Γi ⊂ Γ (whose intersection is the identity) such that the
first Betti number of the compact hyperbolic 3-manifold H/Γi corresponding to Γi

satisfies the inequality

b1(Γi) ≥ κ[Γ : Γi]
1/2

for all indices i ∈ N. Further, Γi is normal in Γ1 for all i ∈ N.
The proof of this result relies on the following methodological approach which

goes back to the work of Rohlfs [8]: The non-trivial Galois automorphism σ of
the extension E/F induces an orientation-reversing involution on the hyperbolic
3-manifold H/Γ, whenever Γ is σ-stable. In the case the extension E/F is un-
ramified over 2 one can determine the Lefschetz number L(σ,Γ) of the induced
homomorphism in the cohomology of H/Γ where Γ is a suitable congruence sub-
group in SL1(D). In the general case, one gets the analogous value as a lower
bound for L(σ,Γ). This bound is given up to sign and some power of two as

π−2dζF (2)|dF |3/2∆(D0)× [K0 : K0(a)],
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where ζF (2) denotes the value of the zeta-function of F at 2, |dF | denotes the abso-
lute value of the discriminant of F , [K0 : K0(a)] denotes a global index attached to
the congruence subgroup of level a ⊆ OF , and ∆(D0) =

∏
p0∈Ramf (D0)

(NF/Q(p0)−
1) depends on the set of finite places of F in which the quaternion division algebra
D0 ramifies. In turn, this bound can be used to give a lower bound for the first
Betti number of the hyperbolic 3-manifold in question. This result implies that
the first Betti number becomes arbitrarily large when we vary over the congruence
condition since the term [K0 : K0(a)] is unbounded.
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On the cusp shape of hyperbolic knots

Yoshiyuki Yokota

Let K be a hyperbolic knot in S3. Then, we can suppose that the holonomies
of the meridian and longitude of K are

(
1 1
0 1

)
,

(
1 c
0 1

)

respectively. The cusp shape of K is nothing but this c. A nice table for c−1 can
be found in [1]. In the previous meeting, the author reported the following result,
which is related to the leading term of the asymptotic expansion of the Kashaev
invariant of knots.

Theorem 1([2]). Let K be a hyperbolic knot in S3. Then, we can construct a
potential function V (x1, . . . , xn) to an appropriate diagram D of K, such that the
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hyperbolicity equations of M are given by

xν
∂V

∂xν
= 2π

√
−1 rν , rν ∈ Z.

Furthermore, if xν = zν is the geometric solution, the complex volume of M is

V (z1, . . . , zn)− 2π
√
−1

n∑

ν=1

rν log zν mod π2.

This result continued to the following new result, which should be related to the
sub-leading term of the asymptotic expansion of the Kashaev invariant of knots.

Theorem 2. Under the same assumption as in Theorem 1, there exists a natural
deformation V (x1, . . . , xn;m) of the potential function such that the cusp shape
of K is given by

−2




∣∣∣∣∣∣∣

V11 · · · V1n
...

. . .
...

Vn1 · · · Vnn

∣∣∣∣∣∣∣




−1
∣∣∣∣∣∣∣∣∣

V00 V01 · · · V0n
V10 V11 · · · V1n

...
...

. . .
...

Vn0 Vn1 · · · Vnn

∣∣∣∣∣∣∣∣∣
,

where we put x0 = m2 and

Vij =

(
xjxi

∂2V

∂xj∂xi

)
(z1, . . . , zn; 1).

Remark. V (x1, . . . , xn;m) is related to an incomplete hyperbolic structure of M ,
where the holonomies of the meridian and longitude become

(
m 1
0 m−1

)
,

(
ℓ (ℓ− ℓ−1)/(m−m−1)
0 ℓ−1

)
.

Example. Suppose K is represented by the following diagram.

x

m

/m /m /m /m

m

x x

Then, the potential function V (x1, x2, x3;m) is given by

− Li2(1/mx1) + Li2(x1/m)− Li2(x1/x2) + Li2(m/x2)

− Li2(mx2) + Li2(x2/x3)− Li2(1/mx3)− Li2(mx3) + π2/3

+ 2 logm ( log 1/m− log x3 + log 1/m− logm+ log x1

− log 1/m+ logm− log x2 + log 1/m),
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where the dilogarithm part is defined as in [2]. The logarithm part consists of the
following terms which correspond to the edges of the diagram.

x x

–2 log x log m2 log x log m

The partial derivatives of V (x1, x2, x3; 1) with respect to x1, x2, x3 are

x1
∂V

∂x1
= − log

(
1− 1

x1

)
− log (1− x1) + log

(
1− x1

x2

)
,

x2
∂V

∂x2
= log

(
1− 1

x2

)
− log

(
1− x1

x2

)
+ log(1− x2)− log

(
1− x2

x3

)
,

x3
∂V

∂x3
= − log

(
1− 1

x3

)
+ log

(
1− x2

x3

)
− log(1 − x3),

and the hyperbolicity equations for an ideal triangulation of M are given by

1− x1/x2
(1 − 1/x1)(1 − x1)

=
(1 − 1/x2)(1 − x2)

1− x1/x2
=

1− x2/x3
(1− 1/x3)(1− x3)

= 1

due to Theorem 1, where the moduli of the tetrahedra in the triangulation are

x1,
x2
x1
,

1

x2
,
x2
x3
, x3,

1

x3
.

The solutions to the equations above are given by





x1

x2

x3



 =





0.629714
0.517119
−0.482881



 ,





0.87122 ∓ 1.107662
√
−1

2.20635 ± 0.340852
√
−1

1.20635 ± 0.340852
√
−1



 ,





−0.186078 ∓ 0.874646
√
−1

0.0350866 ± 0.621896
√
−1

−0.964913 ± 0.621896
√
−1



 ,

each of which satisfies that

x1,
x2
x1
,

1

x2
,
x2
x3
, x3,

1

x3
6∈ {0, 1,∞},

and the values of V (x1, x2, x3; 1) at these solutions are

−0.888787, −2.96077∓ 1.53058
√
−1, 2.58269∓ 4.40083

√
−1

respectively. Therefore, the geometric solution (z1, z2, z3) is the fifth one, and the
complex volume of M is given by

2.58269 + 4.40083
√
−1 mod π2



2590 Oberwolfach Report 42/2012

due to Theorem 1, see [2] for detail. Furthermore, by Theorem 2, the cusp shape
of K is given by

−2 ·

∣∣∣∣∣∣∣∣∣∣

1
4 · 1+z1

1−z1
− 1

4 · 1+z2
1−z2

− 7
4

3
2 − 1

2 − 1
2

3
2

1+z1
1−z1

+ 1
1− z2

z1

− 1
1− z2

z1

0

− 1
2 − 1

1− z2
z1

1
1− z2

z1

− 1+z2
1−z2

− 1
1− z3

z2

1
1− z3

z2

− 1
2 0 1

1− z3
z2

1
1− z2

z3

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

1+z1
1−z1

+ 1
1− z2

z1

− 1
1− z2

z1

0

− 1
1− z2

z1

1
1− z2

z1

− 1+z2
1−z2

− 1
1− z3

z2

1
1− z3

z2

0 1
1− z3

z2

1
1− z2

z3

∣∣∣∣∣∣∣∣

which is numerically equal to

−6.74431 + 3.49859
√
−1.
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Gluing equations for PGL(n,C)-representations

Christian Zickert

(joint work with Stavros Garoufalidis, Matthias Goerner, Dylan Thurston)

Thurston’s gluing equations were developed to explicitly compute a hyperbolic
structure on a compact 3-manifold M with a topological ideal triangulation T .
The gluing equations have the form

(1)
∏

j

z
Aij

j

∏

j

(1− zj)Bij = 1,

where A and B are matrices whose columns are parametrized by the simplices
of T . Each variable zj may be thought of as an assignment of an ideal simplex
shape to a simplex of T . The gluing equations have many interesting properties
including

(a) The symplectic property of the exponent matrix (A|B) of the gluing equa-
tions due to Neumann and Zagier [4].

(b) The link to PGL(2,C) representations via a developing map

V2(T )→ {ρ : π1(M)→ PGL(n,C)}
/

Conj

where V2(T ) denotes the affine variety of solutions in C \ {0, 1} to the
gluing equations.
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In [2] we define shape coordinates for PGL(n,C)-representations that satisfy gluing
equations of a form similar to (1). Both properties above still hold. Among the
interesting new features of the higher gluing equations are

• They give rise to new quantum invariants.
• There is remarkable duality between the shape coordinates and the Ptolemy

coordinates of Garoufalidis, D. Thurston and Zickert [3].

The shape, and Ptolemy coordinates are inspired by the X and A coordinates
on higher Teichmüller spaces due to Fock and Goncharov [1]. Their coordinates
parametrize representations of surfaces, whereas ours parametrize representations
of 3-manifold groups. The duality property above may be a 3-diamensional aspect
of a Langlands duality discussed by Fock and Goncharov.
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Identities related to Nahm’s conjecture

Sander Zwegers

(joint work with Masha Vlasenko (partially))

Let r ≥ 1 be a positive integer, A a real positive definite symmetric r × r-matrix,
B a vector of length r, and C a scalar. We are interested in the q-series

FA,B,C(q) :=
∑

n=(n1,...,nr)∈(Z≥0)r

q
1
2n

TAn+nTB+C

(q)n1 . . . (q)nr

.

which converges for |q| < 1. Here we use the notation (q)n =
∏n

k=1(1 − qk) for
n ∈ Z≥0. We are concerned with the following problem due to Werner Nahm
(see [2]): describe all such A,B and C with rational entries for which FA,B,C is
a modular form (q = e2πiτ ). The first (non-trivial) example is for A = 2, where
modularity is obtained from the Rogers-Ramanujan equation (slightly rewritten)

F2,0,− 1
60

(q) =

∑
k∈Z(−1)kq

5
2 (k+

1
10 )

2

η(τ)
.

Nahm’s conjecture states that for given A: there is a B and C such that FA,B,C

is modular if and only if all solutions of Nahm’s equation 1− x = xA give torsion
elements in the Bloch group.
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Nahm’s conjecture is known to hold for r = 1 (see [4]). In this talk we present
several counterexamples to Nahm’s conjecture for r ≥ 2 (see [3]), like

A =

(
3
2

1
2

1
2

3
2

)
.

In these counterexamples, not all solutions of Nahm’s equation give torsion ele-
ments in the Bloch group, but there do exist B and C such that FA,B,C is modular.
The modularity is obtained from explicit identities also presented in the talk.

Further we consider the family of matrices of the form A = C(X) ⊗ C(X ′)−1

where C(X) and C(X ′) are on of A, D, E, T Cartan matrices. It has been shown
by Lee (see [1]) that for these matrices, all solutions of Nahm’s equation give
torsion elements in the Bloch group, so we expect the corresponding q-series to
be modular (since Nahm’s conjecture still seems to hold in this direction). In this
talk we discuss several examples of identities for q-series for matrices belonging to
this family and show that

FC(E8)−1,0,− 1
33

(q) =

∑
k∈Z(−1)kq

11
2 (k+ 1

22 )
2

η(τ)
,

by making repeated use of

1

(q)m(q)n
=

∑

r,s,t
r+t=m
s+t=n

qrs

(q)r(q)s(q)t
.

In general, this identity can be used to relate the q-series for a given matrix, to
that for a matrix in rank one higher. In terms of the Bloch group this corresponds
to the five term relation.
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