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Introduction by the Organisers

The workshop Singularity Theory that was held in September 2012 was the con-
tinuation of a long sequence of workshops on the subject that over the years took
place at Oberwolfach. It was organized by A. Némethi (Budapest), D. van Straten
(Mainz) and V. A. Vassiliev (Moscow). It was attended by 53 participants with a
broad geographic representation. Funding from the Marie Curie Program of the
EU provided complementary support for young researchers and PhD students.
The schedule of the meeting followed more of less the standard format of three
morning and two afternoon talks of one hour each. An exception was the first
thursday morning slot, which was used for three shorter presentations by younger
participants. On three evenings additional presentations and forum-discussions
took place, so that, taking the traditional wednesday afternoon hike into account,
a total of 28 talks were given. From the abstracts it is clearly visible that a broad
spectrum of topics in singularity theory was covered, showing that the field is vi-
brant as ever.



2800 Oberwolfach Report 46/2012

New questions are keeping the theory of singularities very much alive. N. A’Campo
gave a new approach to the description of the monodromy of plane curve singulari-
ties in terms of flips of triangulated surfaces. This takes up the ideas around cluster
algebras and Fock-Goncharov coordinates. The conjectured relationship between
Hilbert-schemes of curve singularities, the compactified Jacobian and Severi-strata
in the versal base on the one hand, and knot invariants of the link on the other
hand, were subject of talks by A. Oblomkov, E. Gorsky and V. Shende. These ex-
citing new developments hold much promise for the future and underline how much
more there is to be learned about the simplest class of plane curve singularities.
The theory of normal surface singularities lost one famous conjecture, but aquired
an exciting new one: J. de Bobadilla (joint with M. Pe Pereira) presented their
recent proof of the Nash-conjecture for surfaces, and J. Stevens gave a conjectural
characterisation of all simple normal surface singularities.
Several talks were related to mirror symmetry and categorical structures related
to singularities. R. Buchweitz gave an overview of non-commutative singularity
theory, where spaces and resolutions are described by appropriate categories. A.
Ishii reported on crepant resolutions of cones over lattice polytopes determined
by dimer-models, K. Ueda spoke about mirror symmetry and categorifications
around Arnol’ds strange duality, and in the talk of W. Ebeling strange duality
was generalised to the orbifold setting. C. Sevenheck reported on work (joint with
T. Reichelt) that aims at giving a more precise description of the now classical cases
of mirror symmetry (as isomorphism of A- and B- model Frobenius manifolds) on
the level of D-modules and GKZ-systems. The talk by A. Varchenko explained how
the axiomatics of master functions give rise to Frobenius-like structures associated
to arrangements. B. Pike and M. Schulze presented some new results around free
divisors.
In the realm of symplectic singularity theory, M. Garay explained how the per-
spective of singularity theory can be used in the analysis of hamiltonian systems,
which results in a proof of the Herman conjecture. Y. Namikawa presented his
proof of the classification of symplectic homogeneous complete intersections.
There were also a number of talks that represented beginnings of new theory. E.
Faber described a new notion of transversality of singular varieties, H. D. Nguyen
described the first steps in the study of right equivalence in characteristic p and
D. Kerner described an attempt to define equisingularity discriminants. The talk
of K. Saito about A 1

2∞ and D 1
2∞, the simplest transcendental curves, opened up

a whole new field of exploration. A. Libgober reported on the recently discovered
link between the fundamental group of cuspidal curve complements and Mordell-
Weil groups of elliptic curves over function fields.
Furthermore, there were talks of a general nature: H. Hauser gave an overview of
approximation theorems and how to prove them, J. Christophersen formulated a
new general comparison theorem in deformation theory and B. Teissier explored
the connections between toric geometry and resolutions.
In the global theory of singularities and Thom-polynomials there were talks by M.
Kazarian, describing a new topological recursion for Hurwitz numbers and A. Szűcs
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presented a striking new result on the impossibility to describe homology classes
by manifolds with mild singularities. The meeting was closed by J. Schürmann,
who showed how his formalism of homological Chern-classes can effectively be used
to study characteristic numbers of Hilbert-schemes.

To summarize, we think the meeting was a great succes: old and new conjectures
were presented by older and younger participants. Old and new friendships were
celebrated, old and new collaborations were started or continued. The organisers
thank the Oberwolfach staff for their efficient handling of the boundary conditions,
which helped to create the unique Oberwolfach atmosphere.
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Abstracts

Monodromy and Flips

Norbert A’Campo

Introduction.
The geometric monodromy of an isolated complex hypersurface singularity is a

mapping class of a relatif diffeomorphism of the local nearby fiber. A representatif
is constructed as follows. Let the hypersurface X ⊂ Cn+1, n > 0, be the zero
level of the polynomial mapping f : Cn+1 → C and let 0 ∈ X be an isolated
singularity of f . For 0 < δ << ǫ << 1 the differentiable manifold with boundary
(F, ∂F ) := {p ∈ Cn+1 | ||p|| ≤ ǫ&f(p) = δ} does not depend up to diffeomorphism
on δ and ǫ. With a partition of unity one constructs a vector field V tangent to the
tube Xδ := {||f || = δ} such that one has (Df)p(V ) = 2πif(p), p ∈ Xδ. Moreover,
one asks that V is tangent to the boundary of Xδ and that all flow lines of V in
the boundary of Xδ close at time 1. The flow of V with stopping time 1 defines a
representatif of the geometric monodromy. A basic fact is that no representatif of
the geometric monodromy preserves a complex structure on F , except if there is
no singularity at 0, i.e. (Df)0 6= 0. Our far away aim is the study of the action of
the geometric monodromy on the Teichmueller space TF of marked complex struc-
tures on F . This aim is indeed far away since no workable Teichmueller theory nor
computation of geometric monodromy in complex dimensions greater 1 is available.

In dimension n = 1, i.e. for plane curve singularities, tools are available.

We will work with the enhanced Teichmueller theory developped by Rinat
Kashaev, Vladimir Fock, Alexander Goncharov and Bob Penner, see [4], [5], [6],
[7]. It turns out that the discription of the nearby fiber and of the geometric
monodromy by real morsification gives a method for reaching the above aim.

Teichmueller Theory.

First we explain briefly enhanced Teichmueller Theory. Let (F, ∂F ) be an ori-
ented, connected surface with non empty boundary and non positif Euler charac-
teristic. A marking is a labelled system of embedded, and pairwise disjoint relative
arcs a1, a2, · · · , aN that cut the surface F into hexagons. A relatif arc in F is an
embedded copy of the interval (I, ∂I, I = [0, 1], in F with ∂I ⊂ ∂F . Using a sys-
tem of N = 6g− 6 + 3r arcs one can cut the surface Sg,r in 4g− 4 + 2r hexagons.
Each hexagon H has three sides that belong to the boundary of F , the remaining
three sides consist of arcs of the cutting system. The boundary ∂H of a hexagon
H is defined to be the union of its three boundary sides. Observe, that H \ ∂H
is homeomorphic to an ideal hyperbolic triangle. Let (F, ∂F, σ) be a triple, such
that σ is a marking for (F, ∂F ). A σ-marked hyperbolic structure on (F, ∂F ) is a
hyperbolic structure on F \ ∂F such that all arcs of σ are geodesics and such that
for each hexagon H the induced hyperbolic structure on H \∂H is isometric to an
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ideal hyperbolic triangle. It is important to notice, that the hyperbolic structure
on F \∂F is not required to be complete. Let Tσ(F ) be the space of σ-marked hy-
perbolic structures on (F, ∂F ). The topology of this space can be defined by using
the Gromov-Hausdorff distance between metrical completions. Here an important
result of this Teichmueller Theory.

Theorem 1. Let F be the surface Sg,r, r > 0, 2g− 2− r < 0. Let σ be a marking.
Then the space Tσ(F ) is homeomorphic to R6g−6+3r.

More precisely, for each arc a of the system σ one defines a coordinate function
fa : Tσ(F ) → R on Tσ(F ) as follows: Let (∆,∆′) be a pair of ideal hyperbolic
triangles that are glued along the arc a. Let O∆ be the centrum of the incercle
of ∆, let M∆ be the point of intersection of the incercle of ∆ with the arc a, and
finally let M∆′ be the the point of intersection of the incercle of ∆′ with the arc
a. Consider the broken geodesic O∆,M∆,M∆′ which can be turning left or right
at the point M∆ and which depends on the given σ-marked hyperbolic stucture
t ∈ Tσ(F ). One defines the value fa(t) = ±|M∆M∆′ | ∈ R where the sign ± is
+ if the broken geodesic turns right at M∆. Here, |M∆M∆′| = |fa(t)| denotes
the hyperbolic length of the segment M∆M∆′ on a. It is important to observe
that the value fa(t) does not depend on the ordering of the pair triangles (∆,∆′)
that meet along a. Putting all coordinate function fa together one obtains a map
fσ : Tσ(F )→ R6g−6+3r . The Theorem states that this map is a homeomorphism.

One can also use as coordinate map cσ : Tσ(F ) → R
6g−6+3r
>0 given by putting

ca(t) = e2fa(t). The value ca(t) is a crossratio of the 4 points at infinity of a lift of
the union of the two triangles (∆,∆′).

A flip is an elementary change of marking: an arc ai belonging to the marking
σ on F defines an ideal quadrilateral with diagonal ai. The flip (about ai) changes
the marking σ to the marking σ′ by replacing ai with the other diagonal bi, again la-
belled by i, of the ideal quadrilateral. The tautological map τσ,σ′ : Tσ(F )→ Tσ′(F )

induces a coordinate change map cσ′ × c−1
σ : R6g−6+3r

>0 → R
6g−6+3r
>0 which is of

cluster type.

Two markings are related by a sequence of flips. By composing the above coordi-
nate changes we get for two markings σ, σ′ a coordinate change cσ′,σ : R6g−6+3r

>0 →

R
6g−6+3r
>0 .

Topology of isolated plane curve singularities by divides.

Now we explain how to cut by an arc system the local nearby fiber of an isolated
plane curve singularity in hexagons as above, see [1], [2], [3]. Here the singularity
A1 is an exception since the Euler caracteristic of the fiber is 0. Without making
any topological restriction, we may assume that all local branches admit a real
parametrization. We perturb the parametrizations in order to get a divide P for
the singularity. The divide is a system of generic relative embeddings of the union
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of r copies of the interval I in the euclidean unit disk D. We consider this divide
as a planar 4-valent graph, which we modify as follows:

– at each double point, we replace the double point by a cercle with four points
of valency 3, exactly as modifying a street crossing by a turnabout. The result is
a 3-valent planar graph.

– we remove all edges that run to the boundary of the D, but keep the endpoint
that is in the interior of D as a 2-valent vertex. The result is a 2, 3-valent graph
with 2r 2-valent vertices.

– thicken the graph with a framing that does each along edge NOT coincides
with the planar framing. We obtain a 3-valent ribbon surface F = FP . The
surface FP is orientable since every edge cycle of the graph has an even number
of edges. The divide link LP is naturally oriented. We orient its (Seifert-)surface
FP consistently. Observe that the number of ribbons is 2r less then the number
of edges in the previous 2, 3-valent graph. In fact, the number of ribbons is given
by N = 6g − 6 + 3r where g is the genus of the ribbon surface.

– label the ribbons from 1 to N and cut the i-th ribbon with an arc ai. The
system σP = a1, a2, · · · , aN is a marking for the ribbon surface FP .

The oriented ribbon surface FP with marking σP is a topological model for
the nearby fiber of the plan curve singularity. The monodromy mapping class is
obtained as follows. Each double point of P contributes in FP with an annulus.
Let δ. be system of core curves of these annuli. The complementairy region in D of
P are signed. Each + or −-region also contributes in FP with an annulus. Let δ+
and δ+ be the systems of corresponding core curves. The geometric monodromy
is represented by the mapping class TP obtained by composing the right Dehn
twists about these curves: first do the twists about the curves in δ+ next about
the curves in δ. and finally about the curves in δ−. The monodromy TP is the
composition of three multi-twists T− ◦ T. ◦ T+.

Two core curves δ, δ′ of the same type +, . or − are disjoint and also disjoint
in the following stronger sense: No arc a of the system σP intersects both δ and
δ′. Moreover, a core curve δ and an arc a intersect transversely in at most one
point. It follows that we can compute rather easily the system TP (P ) by applying
a sequence of flips to the system P .

Our main result is:

Theorem 2. The triple (FP , σP , TP ) describes the action of the geometric mon-
odromy on the Teichmueller space TσP

(FP ). More precisely, a structure t ∈
TσP

(FP ) with coordinates cσ(t) is mapped by TP to the structure s ∈ TσP
(FP )

with coordinates cσ(s) = cTP (σ),σ(cσ(t)).

A more conformal information can be obtained by the following trick. Let σP
be a marking of FP as above. We double FP by making a boundary connected
sum of two copies of FP . The boundary connected sum is along open intervals in
each boundary component of FP . These open intervals are chosen to have closures
that are disjoint from the arcs of the marking σP . The resulting surface GP is
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again with non empty boundary and marked by the arcs of the markings σP in the
copies together with the gluing intervals. On both sides of each gluing interval ap-
pear two quadrilaterals, which we triangulate by adding diagonals. We denote this
marking again by σP . We let on one copy act the monodromy TP and on the other
its inverse T−1

P . We denote by SP this mapping class of GP . Let t ∈ TσP
(GP )

by a structure such that the length of the boundary components with respect to
metric completion of t is zero. Hence we may think the boundary components as
punctures of GP and the surface GP as a complete hyperbolic surface and hence
also as a conformal surface. Important is to notice that the image structure of t
by GP is also such a punctured surface. The mapping class SP acts on usual Te-
ichmueller space of GP and preserves the boundary connected sum decomposition
of GP . Also this action can be computed as a composition of flips.

Our future project is to compute asymptotics. For instance, let c be an isotopy
class of a closed curve in FP ⊂ GP and let t be a structure on GP . Compute the
growth rate of the length with respect to t of T n

P (c) as n → ∞. We speculate,
that growth rate gives a filtration on the linear space of multi-curves in FP , and
hence also on the spaces of regular functions of the representation spaces of the
fundamental group of FP into SL(2,C) by using the theorem of Josef Przytycki
and Adam Sikora [8]. From this filtration we speculate to get new insight in non
abelian Hodge Theory of plane curve singularities.
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Noncommutative Singularity Theory - A Survey

Ragnar-O. Buchweitz

In two talks we explained recently obtained extensions of the classical McKay-
correspondence in the context of representations of algebras (over fields of charac-
teristic 0). First we reported on work of Amiot, Iyama, and Reiten [1]:
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Theorem 1. Let A be a graded bimodule-d-Calabi–Yau algebra of Gorenstein in-
variant a ∈ Z, in that A is of finite projective dimension over its enveloping algebra
Aop ⊗A and further

RHomAop⊗A(A,A
op ⊗A) ∼= A[−d](a)

in the derived category of A–bimodules. Assume e ∈ A is an idempotent such that
A = A/AeA is finite-dimensional and eA(1− e) = 0.

If A is noetherian, then R = eAe is (Iwanaga–)Gorenstein and the stable cate-
gory of graded maximal Cohen–Macaulay R–modules is equivalent to the bounded
derived category Db(A).

Forgetting the grading, the stable category MCM(R) of maximal Cohen–Mac-
aulay R–modules becomes equivalent to Cd−1(A), the (d−1) cluster category of the
artinian algebra A.

The classical McKay correspondence is a rather special case of this result when
d = 2: If ∆̃ is an extended Coxeter-Dynkin diagram, then its preprojective algebra
A = Π∆̃, Morita equivalent to the twisted group algebra S∗G; see [5]; satisfies the
hypotheses.

Here G 6 SL(2,C) is the finite group corresponding to ∆̃, and S = C [u, v]

with the induced G-action. Taking for e ∈ Π∆̃ the idempotent corresponding to
the trivial representation of G, one finds R = SG, the ring of the corresponding
Kleinian surface singularity, and A = Π∆̃/(e) ∼= Π∆, the preprojective algebra of
the Coxeter-Dynkin diagram itself.

One knows that the derived category of the minimal resolution of singularities
of SpecR is equivalent to that of S∗G or Π∆̃ by [12]; see also [15] for the case of
three dimensional quotient singularities with crepant resolutions of singularities.

The statement on graded maximal Cohen-Macaulay R-modules then recovers
results by Kajiura–Saito–Takahashi [8, 9] and Lenzing–de la Peña [13], as well
as Ueda [17] in the surface case. In [1], Amiot, Iyama, and Reiten extend these
results to some three dimensional cyclic quotient singularities.

It is interesting to note that the preprojective algebra of an extended Coxeter-
Dynkin diagram made its first entrance into singularity theory through the differ-
ential geometric work of Kronheimer; see [4] for a survey of that point of view and
how one obtains both semi–universal deformation and simultaneous resolution of
Kleinian singularities as moduli spaces of representations of that algebra.

A further application of the above theorem to singularity theory arises from
Bridgeland’s [2] “rolled-up helix algebras” for Fano varieties with tilting object
(ongoing joint work with L. Hille). Here R is the homogenous coordinate ring of
the anti-canonical embedding of the Fano variety, while A is the endomorphism
algebra of a tilting object pulled back to the canonical bundle.
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In the second talk, we used Kalck’s recent presentation at ICRA 2012 in Biele-
feld, available at [10], to explain work by Iyama–Kalck–Wemyss–Yang [7], based on
earlier work of these authors, e.g. [11], as well as Burban–Kalck [3], De Thanhoffer
de Völcsey–Van den Bergh [16], and others, on the “relative singularity category”,

the triangulated category obtained as the Verdier quotient Db(X̃)/π∗ perf(X),
where perf(X) is the category of perfect complexes on the singular space X and

π : X̃ → X is a resolution of singularities.

If Db(X̃) ∼= Db(A) for an algebra A, then A represents a noncommutative
desingularization of X ; see [6, 14, 18] for surveys of that theory. Similar to the
above, one finds an exact equivalence of triangulated categories

MCM(R) ∼=
Db(A)/ perf(R)

Db(A)

in case the local ring R = OX,x of the isolated singularity is Gorenstein. Here
A = EndR(R ⊕M) is the endomorphism ring of the direct sum of the ring with
a suitable maximal Cohen–Macaulay R–module M , the idempotent e is given by
the projection onto the direct summand R, and A = A/AeA identifies with the
stable endomorphism ring of M over R.

These results extend to “special” maximal Cohen-Macaulay modules on (rings
of) rational surface singularities, such as quotient singularities by finite subgroups
G 6 GL(2,C), and the so obtained stable categories correspond to partial desin-
gularizations.

Last, but not least, I want to thank Susanne Müller for her excellent and much
appreciated support in preparing this extended abstract!
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Hilbert schemes of points on planar curves and knot homology of their

link

Alexei Oblomkov

(joint work with J. Rasmussen and V. Shende)

Hilbert scheme of points on planar singular curves and knot invari-

ants. An algebraic knot is constructed from a plane curve singularity by inter-
secting the curve with a small three sphere surrounding the singularity (see for
example [2] for an introduction). The new formula for the HOMFLY-PT invariant
is written in terms of the Euler characteristics of the Hilbert scheme of points on
the singular curve. These Hilbert schemes appear naturally in the recent studies
of the BPS states [12]. The geometric (or more precisely gauge theoretic) inter-
pretation of the knot invariants was a starting point for the topological vertex
theory which is an ancestor of the GW/DT correspondence conjecture. We hope
that while exploring this simple case of algebraic knots we will achieve a better
understanding of the recent physical conjectures on quantum invariants of knots
[17].

Let C = {E(x, y) = 0} ⊂ C2 be a planar curve. Then C [n] stands for the
Hilbert scheme of n points on C, that is, the set of ideals I ⊂ C[x, y] that con-
tain E and have codimension n. If C is smooth, the Hilbert scheme is the n-th
symmetric power of the curve; for the singular curve it is a partial resolution of

the symmetric power. If we assume that E(0, 0) = 0, then C
[n]
(0,0) is the punctual

Hilbert scheme (i.e. the moduli space of ideals defining a fat point supported at
(0, 0)): algebraically, it is the set of ideals from C [n] that contains xN , yN for some
N . Motivated by the construction of Nakajima and Yoshioka [9], we introduce the
following nested Hilbert scheme:

C
[l]
(0,0) × C

[l+m]
(0,0) ⊃ C

[l, l+m]
(0,0) := {(I, J)|I ⊃ J ⊃ I · (x, y)}
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When m = 0 we get back the Hilbert scheme: in general, C
[l+m]
(0,0) maps to C

[l]
(0,0),

with smooth fibers that are constant over the locus of ideals, with a fixed minimal
number of generators. It is therefore possible to restate our conjecture in terms
of Euler characteristics of loci with a fixed minimal number of generators [11].
Let us fix notations for the knot invariants. We use the normalization for the
HOMFLY-PT polynomials of the link L from the paper [4]:

a P̄ ( )− a−1 P̄ ( ) = (q − q−1) P̄ ( ), a− a−1 = (q − q−1)P̄ (unknot)

The links LC,(0,0) that constitute the intersection of the curve C with the small
3-sphere around (0, 0) are called algebraic. When E = xn − ym, the link is called
a torus link Tm,n.

Conjecture 1. [11] Let µ = dimC[[x, y]]/(∂E∂x ,
∂E
∂y ) be the Milnor number of the

singularity at (0, 0). Then,

P̄ (LC,(0,0)) = (a/q)µ−1
∑

l,m

q2l(−a2)mχ(C
[l, l+m]
(0,0) )

Theorem 2. [11] The conjecture holds in the following cases:

• a = −1 and C is any planar curve
• C = {xn = ym}, and C = {(t4, t6 + t7)}.

The first case of the theorem is closely related to the main result of [1]. Let
us discuss possible strategies for the proof of the conjecture. It is known that
an algebraic link is obtained by iterative application of cabling to the unknot:
(s, r)-cabling Kr

s of a knot K is a knot that travels r times along K and s times
along the meridian of the torus surrounding K. For example, the link of the curve
(t4, t6 + t7) is obtained by (2, 13) cabling of the trefoil, and Tm,n is the (m,n)-
cabling of the unknot. The HOMFLY-PT invariant of Kr

s can be expressed in
terms of colored invariants of the knot K (see below). Interestingly, the cabling
procedure is in many regards similar to the procedure of ’thickening‘ of an algebraic
curve C. Furthermore, the Hilbert schemes of points on the thickened curve are
conjecturally related to the colored HOMFLY-PT invariants. These observations
present a clear path to the proof of the conjecture, as discussed below.

Cabling for knot invariants. The specialization to a = qn of the colored
HOMFLY-PT knot invariant Pλ(L) ∈ Q(q, a) is constructed by means of R-matrix
R ∈ End(Vλ, Vλ) [15] where Vλ is an irreducible finite-dimensional representation
of Uq(sl(n)). Its value on the unknot is fixed to be the q-dimension of Vλ, and
the usual HOMFLY-PT knot invariant corresponds to the case λ = (1). The
arguments from the paper [16], where the case a = q2 was treated, can be extended
to the general case:

Theorem 3. Let (r, s) = 1. The HOMFLY-PT invariant of (r, s)-cabling of a
knot K can be expressed as follows:

P̄ν(K
r
s )(q, a) =

∑

µ

q
r
s
c(µ)−rsc(ν)a−r(s−1)|ν|Cs;ν

µ P̄µ(K)(q, a)
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Here c(λ) =
∑

(i,j)∈λ i− j and Cs;ν
µ are given by the Schur function expansion:

sν(x
s
1, x

s
2, . . .) =

∑

µ

Cs;ν
µ sµ(x1, x2 . . .)

Colored invariants and PT-spaces. When one searches for a moduli space
that would match with the colored knot P̄λ invariant, the first guess would be the
moduli space of the ideals on the thick curve in C3

Cλ = {Eλ1(x, y) = 0, zEλ2(x, y) = 0, . . . }

that has a fat point of shape λ as a generic cross-section. As it turns out, this
moduli space doesn’t quite do the job, but the following close cousin passes nu-
merical tests. The moduli space PT λ

n (mC)(0,0) consists of pairs of a pure sheaf F
with support on C and map s surjective outside (0, 0) such that:

[OC3
s
−→ F ] ∈ PT λ

n (mC)(0,0) iff Ker(s) = (Eλ1 , zEλ2 , . . . ).

This moduli space appears naturally in the study of moduli spaces of pairs
[12]: when one counts curves on a Calabi-Yau threefold that are homologous to
β ∈ H2(Y ), it is generally expected (and shown in some cases [13]) that the count is
given in terms of so-called BPS states, which mathematically manifest themselves
as topological invariants of the moduli spaces of sheaves on the singular curves
that are homologous to β.

In the case when λ = (m) we deal with sheaves on the fat but still planar curve

mC. Thus Appendix B to [12] contains the proof of PT
(m)
n (C)(0,0) = (C

[n]
(m))(0,0)

where C(m) is a planar curve Em = 0, i.e. m-fattening of C. On the other hand,
if λ = (1m), then one immediately sees the match with the m-step nested Hilbert
scheme; and the case of general partition is a hybrid of these cases.

From the cabling formula, we see that for algebraic knot K there are unique
powers f(λ,K), g(λ,K) such that qf(λ,K)ag(λ,K)P̄λ(K)|a=q=0 = 1. We define the
sl(∞) invariant by

P̄∞
λ (K) := qf(λ,K)ag(λ,K)P̄λ(K)|a=0.

Conjecture 4 (Oblomkov, Shende). If LC,(0,0) be a link of singularity of C at
(0, 0), then

P̄∞
ν (K) =

∑

n

χ(PT ν
n (C)(0,0))q

2n.

One- and two-leg PT-vertex theory [14, 8] implies the conjecture for the unknot
case and T2,2 (Hopf link). In the case when C is given by xm = yn we have
C∗ action on P ν

n (C)(0,0). I can show that the C∗-fixed locus is a union of linear
spaces: thus computation of the χ(P ν

n (C)) is purely combinatorial. Meanwhile, we
have an explicit formula for the colored invariants of torus knots and it should be
possible to relate these combinatorial procedures. To prove the cabling formula for
PT moduli spaces we need to understand how the topology of the moduli spaces
changes when we vary curve in the family with the central element of the family
being non-reduced curve.
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Homological version of the conjecture. In this section we discuss the

Poincaré polynomial of the triply graded HOMFLY homology H
i,j,k

(K) of Kho-
vanov and Rozansky [7] of links of singularities of planar curves. We write their
graded dimension as

P(K) =
∑

i,j,k

aiqjtkH
i,j,k

(K).

The specialization to the generating series of the Euler characteristics reproduces
HOMFLY-PT invariant P = P|t=−1. In other words the Khovanov-Rozansky
homology is a much stronger isotopy invariant of the knot than the HOMFLY-PT
invariant, in the same way as the homology of a topological space is a much richer
invariant than the Euler characteristics. Notice, in particular, the very impressive
recent result of Mrowka and Kronheimer [5] stating that the Khovanov homology
[6] distinguishes the unknot. Besides being a stronger isotopy invariant, the knot
homology satisfies various functorial properties.

Using the same convention as in our HOMFLY-PT conjecture, we have

Conjecture 5. [10]

(a/q)µ−1
∑

l,m

q2la2mtm
2

P vir(C
[l,l+m]
C,(0,0) ) = P(LC,(0,0)),

where P vir is a virtual Poincaré polynomial.1

In the case when the curve admits a C∗-action, we have derived a combinatorial
formula for the algebro-geometric side of the conjecture [10]. The combinatorics of
the Hilbert scheme is much easier then the combinatorics of the homological alge-
bra underlying the definition of the Khovanov-Rozansky homology. In particular,
programming an algorithm for the computation of the Khovanov-Rozansky ho-
mology of torus knots appears to be problematic and no guess for the P(Tm,n) for
n > 3 was available at the moment of appearance of our conjecture. On the other
hand, we produce an explicit combinatorial formula for the knot invariant. Thus
we were able to check our conjecture for knots T2,n, T3,n, and a few other torus
knots Tm,n where m,n are small and knot invariant computations are available.
The conjecture above leads us to a conjecture relating representation theory of
rational DAHA to the theory of the Khovanov-Rozansky homology of torus links
[10, 3].
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Compactified Jacobians and q, t-Catalan numbers

Evgeny Gorsky

(joint work with Mikhail Mazin)

Consider the plane curve singularity with one Puiseux pair (m,n). Its compactified
Jacobian JC is defined (e.g. [1],[2]) as the moduli space of rank 1 degree 0 torsion
free sheaves on a complete rational curve with this unique singularity. It has been
shown in [8] that JC admits a pavement by the affine cells, and the dimensions of
these cells were computed.

The combinatorics of this cell decomposition was studied in [6] and [7]. The
cells Σ(D) can be naturally labelled by the Young diagrams D in the m × n
rectangle located below the diagonal, and the dimension of the Σ(D) can be written
combinatorially in terms of D. In particular, the Euler characteristic of JC equals
to the number of such diagrams, which is known to be equal to the generalized

Catalan number (m+n−1)!
m!n! .

Let

cm,n(q, t) =
∑

D

qδ−|D|tδ−dimΣ(D),
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where δ = (m− 1)(n− 1)/2. It is proved in [6] that for m = n+1, the polynomial
cn,n+1(q, t) coincides with the q, t-Catalan number cn(q, t) introduced by A. Garsia
and M. Haiman in [3] (see also [4],[5]). In particular, it is symmetric in q and t.
In [7] we conjecture that the symmetry

(1) cm,n(q, t) = cm,n(t, q)

holds for all coprime m and n. We also study the weaker form of this identity:

(2) cm,n(q, 1) = cm,n(1, q).

We prove that (1) holds for min(m,n) ≤ 3 and in the case m = n+1 described
above, and (2) holds for m = kn± 1. As a corollary from (2), for m = kn± 1 we
prove a surprisingly easy formula for the Poincaré polynomial of the compactified
Jacobian:

PJC(t) =
∑

D

t2|D|,

where the summation is made over the Young diagrams D in m × n rectangle
located below the diagonal.
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Some aspects of the connection between toric geometry and resolution

of singularities

Bernard Teissier

We know from [2] that normal toric varieties over a field admit (non embedded) res-
olutions of singularities described by the regular refinements of their fan. The toric
embedded resolution of singularities for affine toric varieties over an algebraically
closed field k was proved in [3] and [5]. The combinatorics works as follows:
an affine toric variety X0 ⊂ AN (k) over k is defined by a prime binomial ideal

I0 = (um
ℓ

−λℓu
nℓ

)ℓ∈L in k[u1, . . . , uN ]. The monomial um corresponds to a point
m in the lattice M ≃ ZN , and λℓ ∈ k

∗. The vectors mℓ − nℓ ∈M determine dual
hyperplanes Hℓ in the real vector space NR generated by the dual lattice N ≃ ŽN
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of M . The intersections with the first quadrant of these hyperplanes determine a
fan Σ0 subdividing the fan whose maximal cone is the first quadrant. The strict
transform of X0 by the corresponding birational map π(Σ0) : Z(Σ0) → AN (k) of
normal toric varieties is the normalization of X0. The strict transform of X0 by
a birational toric map π(Σ): Z(Σ) → AN (k) corresponding to a regular fan Σ
subdividing Σ0 is non singular and transversal to the toric boundary. Such subdi-
visions provide embedded pseudo1 resolutions of X0. The fan Σ can be chosen so
as to contains the regular faces of the weight cone β = RN

≥0 ∩ (
⋂

ℓHℓ), and then

π(Σ) is an embedded resolution.
One may wonder whether such toric maps also (pseudo) resolve the spaces

obtained by suitable deformations of the binomial equations. This question comes
from the basic observation of [5]: Given a local integral domain R with maximal
ideal m and a rational valuation of R corresponding to an inclusion R ⊂ Rν of
R in a valuation ring Rν of its field of fractions, such that mν ∩ R = m and
R/m → Rν/mν is an isomorphism, we have a faithfully flat specialization of
SpecR to the affine toric variety (which may be of infinite embedding dimension)
corresponding to the associated graded ring grνR =

⊕
φ∈Φ Pφ/P

+
φ of R with

respect to the filtration associated to ν, where Pφ = {x ∈ R|ν(x) ≥ φ}, P+
φ =

{x ∈ R|ν(x) > φ}. The fact that ν is a rational valuation implies that grνR is a
k-algebra and each homogeneous component is a vector space of dimension 1 over

k. There is therefore a presentation grνR = k[(Ui)i∈I ]/(U
mℓ

− λℓU
nℓ

)ℓ∈L where
Um denotes a monomial, λℓ ∈ k

∗, the sets I and L may be infinite, but countable.
We note that the degrees which actually appear in the graded algebra are the

valuations of the elements of R, which form a subsemigroup of the semigroup
Φ+∪{0} = (Rν\{0})

mult./{units} of non negative elements of the (totally ordered)
value group Φ of ν. In fact grνR is isomorphic to the semigroup algebra over k of
the semigroup Γ = ν(R \ {0}). If R is noetherian the semigroup Γ is well ordered
and therefore has a unique minimal system of generators, indexed by an ordinal,
which is at most ωh where h is the (archimedian, or real) rank of the value group.
By transfinite induction one defines γi+1 as the smallest non zero element of Γ
which is not in the semigroup generated by the previous ones.

Let us concentrate on the case where the semigroup Γ is finitely generated and R
is a local equicharacteristic and complete noetherian domain with an algebraically
closed residue field k. Pick and fix a field of representatives k ⊂ R. Then R
appears as an overweight deformation of its associated graded ring, in the sense
of [6]: there is a continuous and surjective map of k-algebras

k[[u1, . . . , uN ]]
π
−→ R, determined by ui 7→ ξi,

for any choice of elements ξi ∈ R whose valuations are the minimal generators of
the semigroup Γ or equivalently are such that their initial forms minimally generate
the k-algebra grνR. Giving to ui the weight γi = ν(ξi) ∈ Γ ⊂ Φ+∪{0} determines a
weight w on k[[u1, . . . , uN ]], with its filtration by weight and the associated graded
ring grwk[[u1, . . . , uN ]] ≃ k[U1, . . . , UN ], now graded by the weight: degUi = γi.

1This means that the restriction over the non singular part is not necessarily an isomorphism.
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Moreover the valuation ideals of R are the images by π of the weight ideals of
k[[u1, . . . , uN ]] and so the map π induces a surjection of graded k-algebras

k[U1, . . . , UN ]
grwπ
−→ grνR, determined by Ui 7→ inνξi,

whose kernel is a binomial ideal (um
ℓ

−λℓu
nℓ

)ℓ∈L; it is essentially the presentation
of the semigroup algebra of Γ over k which corresponds to an affine toric variety

X0. By flatness the kernel of π is generated by series Fℓ = um
ℓ

−λℓu
nℓ

+
∑

p c
(ℓ)
p up

with c
(ℓ)
p ∈ k, w(up) > w(um

ℓ

) = w(un
ℓ

), for ℓ ∈ L, a finite set. Let us call X the
formal subspace of AN (k) defined by the ideal I = (Fℓ)ℓ∈L; it is an overweight
deformation of the affine toric variety X0.

For a regular fan Σ with support the first quadrant of ŘN , the corresponding
birational toric map Z(Σ)→ AN (k) is described in each chart Z(σ) corresponding
to a maximal cone σ = 〈a1, . . . , aN 〉 of Σ, where aj ∈ N , by

u1 = y
a1
1

1 . . . y
aN
1

N

. .

. .

. .

uN = y
a1
N

1 . . . y
aN
N

N

and the valuation ν ofR picks a point in the strict transform ofX . A combinatorial
argument explained in [8] shows that one can find regular fans Σ subdividing
the fan Σ0 corresponding to the initial binomials of the Fℓ, and such that for
appropriate σ ∈ Σ the transforms of the Fℓ can be written

Fℓ ◦ π(σ) =

y
〈a1,nℓ〉
1 . . . y

〈aN ,nℓ〉
N (y

〈a1,mℓ−nℓ〉
1 . . . y

〈aN ,mℓ−nℓ〉
N − λℓ +

∑
p
c
(ℓ)
p y

〈a1,p−nℓ〉
1 . . . y

〈aN ,p−nℓ〉
N ).

The point is to find fans for which the inequalities w(up) > w(un
ℓ

) induce in-
equalities 〈ai, p − nℓ〉 > 0. The largest torus-invariant charts of Z(Σ) in which
the strict transform meets the toric boundary correspond to cones σ of Σ whose
intersection with the weight cone β is of maximal dimension r = dimR. The vari-
ables yij , 1 ≤ j ≤ r corresponding to the vectors aji ∈ β do not appear in the

transformed binomials y
〈a1,mℓ−nℓ〉
1 . . . y

〈aN ,mℓ−nℓ〉
N − λℓ and can be taken as local

coordinates on the strict transform of X . In fact, at the point picked by the valua-
tion, this strict transform is a deformation of the strict transform of X0 and hence
non singular. In summary:

Theorem 1. Given a rational valuation ν on a complete equicharacteristic local
domain R with an algebraically closed residue field k, if the semigroup of values
ν(R \ {0}) is finitely generated, say by N generators, there is a continuous surjec-

tion k[[u1, . . . , uN ]]
π
−→ R such that some of the toric modifications of AN (k) in

the coordinates ui which resolve the singularities of the toric variety corresponding
to grνR also produce an embedded local uniformization of the valuation ν on the
space X ⊂ AN (k) corresponding to R.
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In the situation of the theorem, by flatness of the deformation, the valua-
tion ν is Abhyankar, which means in this case that the Abhyankar inequality
dimgrνR ≤ dimR (see [5]) is an equality. Since local uniformization for Abhyankar
valuations of algebraic function fields has been proved by Knaf and Kuhlmann in
[4], it is natural to ask whether in general the Abhyankar condition implies that the
semigroup Γ is finitely generated. An attempt to prove this is in progress. Com-
bined with the theorem above it would have as consequence that the Abhyankar
valuations are exactly the quasi-monomial ones, a fact proved by Cutkosky for
valuations of rank one using embedded resolution of singularities (see [1], Prop.
2.8).
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The Nash problem for surfaces

Javier Fernández de Bobadilla

(joint work with Maŕıa Pe Pereira)

1. Introduction

Nash problem [10] was formulated in the sixties (but published later) in the
attempt to understand the relation between the structure of resolution of singu-
larities of an algebraic variety X over a field of characteristic 0 and the space of
arcs (germs of parametrized curves) in the variety. He proved that the space of
arcs centred at the singular locus (endowed with an infinite-dimensional algebraic
variety structure) has finitely many irreducible components and proposed to study
the relation of these components with the essential irreducible components of the
exceptional set of a resolution of singularities.
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An irreducible component Ei of the exceptional divisor of a resolution of singu-
larities is called essential, if given any other resolution the birational transform of
Ei to the second resolution is an irreducible component of the exceptional divisor.
Nash defined a mapping from the set of irreducible components of the space of
arcs centred at the singular locus to the set of essential components of a resolution
as follows: he assigns to each component W of the space of arcs centred at the
singular locus the unique component of the exceptional set which meets the lifting
of a generic arc of W to the resolution. Nash established the injectivity of this
mapping. For the case of surfaces it seemed plausible for him that the mapping
is also surjective, and posed the problem as an open question. He also proposed
to study the mapping in the higher dimensional case. Nash resolved the question
positively for the surface singularities of type Ak. As a general reference for Nash
problem the reader may look at [10] and [6].

Ishii and Kollar showed in [6] a 4-dimensional example with non-bijective Nash
mapping. Very recently there have appeared 3-dimensional counterexamples as
well. The first ones are due to T. de Fernex [1]. Later J. Kollar showed even
simpler counterexamples [7]: even the A4-threefold singularity, defined by the
equation x2 + y2 + z2 + w5 = 0 is a counterexample. In the same paper he
proposes a revised higher dimensional conjecture.

On the positive side, recently, the author of this report and M. Pe Pereira have
resolved affirmatively Nash question for surfaces [4]:

Main Theorem. Nash mapping is bijective for any surface defined over an alge-
braically closed field of characteristic 0.

The core of the result is the case of normal surface singularities. After settling
this case it is not so difficult to deduce from it the general surface case.

The proof is based on the use of convergent wedges and topological methods. A
wedge is a uniparametric family of arcs. The use of wedges in connection to Nash
problem was proposed by M. Lejeune-Jalabert [8].

2. Sketch of the proof

The idea of our proof is as follows: let (X,O) be a normal surface singularity
and

π : X̃ → (X,O)

be the minimal resolution of singularities. Let E = ∪iEi its decomposition in
irreducible components.

Given any irreducible component Ei we define by NEi
the Zariski closure in the

arc space of X of the set of non-constant arcs whose lifting to the resolution is
centered at Ei. We say that there is an adjacency from Ej to Ei in NEi

⊂ NEj
.

Nash conjecture consists in proving that there are no non-trivial adjacencies.
A wedge is a morphism

α : Spec(C[[t, s]])→ (X,O).
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Its special arc is

α(t, 0) : Spec(C[[t]])→ (X,O),

and its generic one is alpha itself, but viewed as

α : Spec(C((S))[[t]])→ (X,O).

A wedge realises an adjacency NEi
⊂ NEj

if its generic arc belongs to Ej and its
special one lifts to the resolution trasversely to Ei at a non singular point of Ei.

The starting point of the proof of Nash conjecture for surfaces is the following
Theorem, which is the implication “ (1) ⇒ (a) ” of Corollary B of [3]:

Theorem 1 ([3]). An essential divisor Ei is in the image of the Nash mapping
if there is no other essential divisor Ej 6= Ei such that there exists a convergent
wedge realizing an adjacency from Ej to Ei.

As in [11], taking a suitable representative we may view α as a uniparametric
family of mappings

αs : Us → (X,O)

from a family of domains Us to X with the property that each Us is diffeomorphic
to a disk. For any s we consider the lifting

α̃s : Us → X̃

to the resolution. Notice that α̃s is the normalization mapping of the image curve.
On the other hand, if we denote by Ys the image of α̃s for s 6= 0, then we may

consider the limit divisor Y0 in X̃ when s approaches 0. This limit divisor consists
of the union of the image of α̃0 and certain components of the exceptional divisor
of the resolution whose multiplicities are easy to be computed. We prove an upper
bound for the Euler characteristic of the normalization of any reduced deformation
of Y0 in terms of the following data: the topology of Y0, the multiplicities of its
components and the set of intersection points of Y0 with the generic member Ys
of the deformation. Using this bound we show that the Euler characteristic of the
normalization of Ys is strictly smaller than one. This contradicts the fact that the
normalization is a disk.

The proof of Theorem 1 has two parts. The first consists of proving that if
there is an adjacency then there exists a formal wedge

α : Spec(C[[t, s]])→ (X,O)

realising the adjacency. For that, firstly it is used a Theorem of A. Reguera [12]
which produces wedges defined over large fields. Then a specialisation argument
is performed to produce a wedge defined over the base field C. This was done
independently in [9]. The second part is an argument based on D. Popescu’s
Approximation Theorem, which produces the convergent wedge from the formal
one. In [5] the author of the report and M. Pe Pereira paper give an alternative
proof of the first part giving in one step a formal wedge defined over C.
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Dimer models and crepant resolutions

Akira Ishii

(joint work with Kazushi Ueda)

1. Dimer models and moduli spaces

Let T = R2/Z2 be a real two-torus equipped with an orientation. A dimer
model on T consists of

• a finite set B ⊂ T of black nodes,
• a finite set W ⊂ T of white nodes, and
• a finite set E of edges, consisting of embedded closed intervals e on T

such that

• one boundary of an edge belongs to B, and the other boundary belongs
to W ,
• two edges intersect only at the boundaries,
• every node is contained in at least two edges, and
• every connected component of T \ ∪e∈Ee is simply connected.
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1.1. Lattice polygon from a dimer model. Suppose a dimer model (B,W,E)
is given. There is a lattice polygon associated with (B,W,E) constructed as
follows.

Definition 1. A perfect matching is a subset D ⊂ E such that for every node,
there is a unique edge in D containing it.

We can measure the distance of two perfect matchings as follows. Consider
the orientation of an edge which goes from black to white. If we regard a perfect
matching as a 1-chain on T , then the difference of two perfect matchings becomes
a 1-cycle. The height change of two perfect matchings D,D′ is defined as

h(D,D′) := [D −D′] ∈ H1(T,Z) ∼= H1(T,Z) ∼= Z2.

We fix a reference perfect matching D0 and let ∆ be the convex hull of the set

{h(D,D0) | D is a perfect matching} ⊂ R2.

Put ∆ in R2×{1} ⊂ R3 and take the cone C(∆) over ∆. Then we can consider
the Gorenstein affine toric variety XC(∆) associated with C(∆).

1.2. Quiver with relations from a dimer model. We can also construct a
quiver with relations from (B,W,E). This is done by taking the dual: The set
V of vertices is the set of connected components of T \ ∪e∈Ee. The set A of
arrows is the set E of edges of the dimer model, where the oriention of an arrow
is determined so that the white node is on the right of the arrow.

The relations of the quiver are described as follows: For an arrow a ∈ A, there
exist two paths p+(a) and p−(a) from t(a) to s(a), the former going around the
white node connected to a ∈ E = A clockwise and the latter going around the
black node connected to a counterclockwise. Then the ideal of the path algebra is
generated by p+(a)− p−(a) for all a ∈ A.

We consider the moduli space of representations of this quiver with relations
with respect to the dimension vector (1, 1, . . . , 1). The moduli space depends on
a stability parameter θ and is denoted byMθ.

1.3. Non-degenerate dimer models.

Definition 2. A dimer model is non-degenerate if for every edge e ∈ E, there
exists a perfect matching D which contains e.

A stability parameter θ is generic if θ-stability coincides with θ-semistability.

Theorem 3 ([7]). If a dimer model is consistent and θ is generic, then Mθ is a
crepant resolution of XC(∆).

Example 4. Suppose that a dimer model is given by a tesselation of T by regular
hexagons of the same size. Then the associated polygon ∆ is a triangle and we have
XC(∆)

∼= C3/G, where G is a finite abelian subgroup of SL(3,C). The associated
quiver is the McKay quiver for G, whose path algebra modulo relations is Morita
equivalent to G#C[x, y, z]. The moduli spaceMθ coindides with the Hilbert scheme
of G-orbits for a suitable choice of the stability parameter θ. The above theorem
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is a generalization of Nakamura’s theorem which states that G-Hilb is a crepant
resolution of C3/G for a finite abelian subgroup of SL(3,C) [12].

2. Derived equivalences

2.1. Consistent dimer models. In the McKay case, we have a derived equiva-
lence Db(cohMθ) ∼= Db(G#modC[x, y, z]) established by Bridgeland, King and
Reid[2]. For a dimer model, non-degeneracy is not enogh to generalize this result
and we need the notion of consistency.

We need some space to state the definition of consistency ([9], [1]) and we omit
the precise definition here. We note that it is equivalent to the non-degeneracy
plus the cancellation property of the path algebra modulo the relations.

Theorem 5 ([8]). If a dimer model is consistent, it is non-degenerate and the
universal representation induces an equivalence

(1) Db(cohMθ) ∼= Db(modCΓ)

where CΓ is the path algebra of the quiver modulo the relations.

See also [11], [3] and [5]. Note that Gulotta[6] constructs a consistent dimer
model for an arbitrary convex lattice polygon ∆.

2.2. Induction on ∆. The basic strategy in [8] uses an induction on the lattice
polygon. If ∆ is a basic triangle, then we can see that Mθ

∼= C3 and CΓ ∼=
C[x, y, z], where (1) is trivial. This is the first step of the induction. Suppose that
∆ is not a basic triangle. Take a vertex D of the polygon ∆ (which we call a
corner) and consider the convex hull of ∆∩Z2 \D. We can regard D as a perfect
matching of G and we can choose a subset S of D such that G′ = (B,W,E \ S) is
a consistent dimer model which determines ∆′. Here, we use the special McKay
correspondence of Wunram-Riemenschneider [13] to choose the subset S ⊂ D.
Moreover, we can show

Proposition 6. We can choose generic stability parameters θ for G and θ′ for G′

so that the equivalence (1) holds for G and θ if and only if it holds for G′ and θ′.

2.3. Variation of moduli spaces. To make Proposition 6 work as the induction
step, we show

Theorem 7 ([10]). Let G be a consistent dimer model. If (1) holds for one generic
stability parameter, it holds for any generic stability parameter.

This follows from arguments of [2] but we can directly prove this by looking at
the chamber structure for the parameter space. As a corollary of the arguments,
we can also prove the following generalization of [4].

Theorem 8 ([10]). Let G be a consistent dimer model and ∆ the associated lattice
polygon. Then for any projective crepant resolution Y of XC(∆), there is a genreric
stability parameter θ such that Y ∼=Mθ.
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B9, Res. Inst. Math. Sci. (RIMS), Kyoto, 2008, pp. 127–141, MR MR2509696.

[8] , Dimer models and the special McKay correspondence, arXiv:0905.0059.
[9] , A note on consistency conditions on dimer models, Higher dimensional algebraic
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Topological recursion for the genus zero descendant Hurwitz potential

Maxim Kazarian

(joint work with Sergey Lando, Dmitry Zvonkine)

The Hurwitz numbers enumerate the number of possible ways to represent a given
permutation as the product of a given number of transpositions. In topological
terms, they describe the number of topologically distinct meromorphic functions
on a Riemann surface of given genus with prescribed critical values and prescribed
behavior at poles. In the case when the surface has genus zero, a closed formula
for these numbers was proposed by Hurwitz a century ago. His arguments were
algebraic and based on the study of combinatorics of the permutation group.

We propose a new recursion for Hurwitz numbers which has topological origin:
it is derived form the cohomological information contained in the stratification of
the Hurwitz space by the multisingularity types possessed by the functions. It
appeared as a result of our research project developed in [1, 2, 3]. We expect that
variations of this approach could be adopted to other families of Hurwitz numbers
for which closed formulas are not known at the moment.

The compactification of the space of genus zero meromorphic functions is smooth
(in contrast with the case of higher genera). The local singularities of functions
provide a stratification of the space of functions which can be studied by the
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methods of singularity theory: the classification of possible singularities has its
own adjacencies, normal forms, versal deformations etc. The new feature com-
paring with the classical classifications in singularity theory is the appearance of
nonisolated singularities that have to be included into the classification of possible
local degenerations — these singularities are attained on singular curves if the
function is constant on one of its components.

The information about ajacencies of singularity strata is converted to the coho-
mological relations between the classes represented by these strata which, in turn,
can be reformulated as a relation between the corresponding Hurwitz numbers.

All the obtained relations between the studied numbers are written as a partial
differential equation on the generating function for these numbers. The generat-
ing function is denoted by Y. It is an infinite power series in an infinite number
of variables q and tλ,ν , λ ≥ 0, ν ≥ 0. The Taylor coefficient of the monomial
qntλ1,ν1 . . . tλℓ,νℓ is a certain cohomological invariant (the so called degree) associ-
ated to the space of degree n rational functions with n simple marked poles having
zeroes of order λ1, . . . , λℓ at another ℓ marked points, and νi’s are the powers of
the so called ψ-classes attached to these points (the adjective ‘descendant’ in the
name of the potential refers to the presence of these ψ-classes).

Theorem. The series Y obeys the following differential equations valid for any
m ≥ 0 and s ≥ 0:

∂Y

∂tm,s+1
=

∂Y

∂tm,s
+ s

∂Y

∂tm+1,s
−

∞∑

ℓ=1

1

ℓ!

∑

σ1,...,σℓ

∂Ψℓ,|σ|−s

∂tm,0

ℓ∏

i=1

σi
∂Y

∂t0,σi

,

where Ψℓ,a is the explicitly given series

Ψℓ,a =

∞∑

k=0

1

k!

∑

ν1+···+νk=ℓ+k−3
λ1+···+λk=a

(
|ν|

ν1, . . . , νk

) k∏

i=1

tνi,λi
.

As long as we can see, these kind of equations has never appeared before. It
would be an interesting problem to relate it to some known equations of integrable
hierarchies appearing in modern mathematical physics.
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Comparison theorems for deformation functors

Jan Arthur Christophersen

(joint work with Jan Kleppe)

This is work in progress regarding comparisons of deformations of algebras to de-
formations of schemes via invariant theory. We generalize comparison theorems of
Kleppe and Schlessinger for projective schemes. We consider deformation functors
for a scheme X which is a good quotient of a quasi-affine scheme X ′ by a lin-
early reductive group G and compare them to invariant deformations of any affine
G-scheme containing X ′ as an open invariant subset.

Given a projective scheme X defined by equations f1, . . . , fm ∈ k[x0, . . . , xn],
perturbing the equations in a flat manner so that they remain homogeneous induce
deformations of X . In practice this is often the only way to construct examples
of deformations. In more stringent terms we have a map between the degree 0
embedded deformations of the affine cone C(X) and deformations of X in Pn. If
we take into account trivial deformations we get a map to the deformations of X
as scheme. The question is when do we get all deformations this way.

In terms of deformation functors on Artin rings, if R = k[x0, . . . , xn] and S =
R/(f1, . . . , fm) then the above describes maps Def0S/R → HilbX/Pn where Def0S/R
is the functor of degree 0 deformations of S as R-algebra and Def0S → DefX where

Def0S is the functor of degree 0 deformations of S as k-algebra. In [1] the second
author gave exact conditions for when these maps are isomorphisms. The goal
of our research is to generalize these to other situations where one can compare
deformations of algebras to deformations of schemes.

The comparison map for projective schemes factors through deformations of the
open subset of C(X) where the vertex {0} is removed. Thereafter one compares
deformations to X = (C(X) \ {0})/k∗ via the quotient map. We generalize this
to schemes X which are good quotients of a quasi-affine scheme X ′ by a linearly
reductive group G.

We assume that X ′ ⊆ SpecS and that G acts on S inducing the action on
X ′. We can then compare DefGS to DefX where DefGS is the functor of invariant
deformations of S. If this situation is embedded in another one we can compare
with the local Hilbert functor as well. The main examples are closed subschemes of
toric varieties corresponding to ideals in the Cox ring, but the group need not be by
a quasi-torus. Thus many moduli constructions serve as examples. This generality
allows us also to say something about affine schemes like quotient singularities as
well.

Linearly reductive groups have many properties coming from the Reynolds oper-
ator which make it possible to prove things, e.g. taking invariants is exact. Another
reason to work with them is that the functor of invariant deformations is well de-
fined and has the usual nice properties of a good deformation theory. This was
proven by Rim in [2].

Our main result on the local Hilbert functor is too technical to state here but
we introduce depth conditions along the complement of X ′ in SpecS and along
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the locus where the quotient map is not a G-bundle that imply that the above
comparison maps are isomorphisms. As corollaries we have precise statements for
subschemes of toric varieties and weighted projective space.

For the abstract deformation functor DefX the results are not as exact due
to the presence of infinitesimal automorphisms. It is not clear what the correct
assumptions should be but we found it useful to use results of Altmann regarding
rigidity of Q-Gorenstein toric singularities as a guide. We get depth conditions
as above but also along the locus where the isotropy groups are not finite. An
important ingredient are what we call a set of Euler derivations coming from the
Lie algebra of G. This was explained to us by Dmitry Timashev and made it
possible to work with general groups and not just tori which we had originally
studied.

We can apply these results to rigidity questions for toric varieties. All though
we are at the moment only able to reprove known results of Altmann and Totaro
we believe the techniques will lead to new applications.
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Towards transversality of singular varieties: splayed divisors

Eleonore Faber

In this talk we present a natural generalization of transversally intersecting smooth
hypersurfaces in a complex manifold: hypersurfaces, whose components intersect
in a transversal way but may be themselves singular. We call these hypersurfaces
“splayed” divisors. Splayed divisors are characterized by certain properties of their
Jacobian ideals. They can also be characterized in terms of K. Saito’s logarithmic
derivations. As applications we consider the relation of splayed divisors with free
and normal crossing divisors and consider certain properties of their Chern classes.
This talk contains joint work with Paolo Aluffi (Florida State University).

The geometric idea for the generalization is that two singular hypersurfaces D1

and D2 in a complex manifold S intersect “transversally” at a point p if their
“tangent spaces” fill out the whole space and the ideal of their intersection is
reduced. The notion of tangent space for singular hypersurfaces can be made
precise by means of K. Saito’s logarithmic derivations [11]: if a divisor D in a
complex manifold S of dimension n is locally at a point p = (x1, . . . , xn) given by
D = {f(x) = 0}, then the OS,p-module of logarithmic derivations (along D) is
defined as

DerS,p(logD) = {δ ∈ DerS,p : δ(f) ∈ (f)OS,p}.

We say that two divisors D1 and D2 are splayed at p if their equations may be
written in terms of disjoint sets of analytic coordinates at that point. Denote by
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D = D1 ∪ D2 their union. Then D is called a splayed divisor if D1 and D2 are
splayed at any point of their intersection. For an example of a splayed divisor D
in a threedimensional S, see fig. 1.

Figure 1. D = {x(y2 − z3) = 0} (left) is splayed and D′ =
{x(x+ y2 − z3) = 0} (right) is not splayed.

We show that being splayed is equivalent to the fact that the logarithmic deriva-
tions along D1 and D2 satisfy the equation

DerS,p(logD1) + DerS,p(logD2) = DerS,p,

which corresponds to the definition of transversal intersection of two submanifolds
of S (see [7, Prop. 15]).

Several other characterizations of splayed divisors are discussed, see [7, 4]: con-
sider the Jacobian ideals (the ideals generated by the partial derivatives of the
defining equations) of D1 = {g(x) = 0}, D2 = {h(x) = 0} and D = {gh(x) = 0},
which are denoted by Jg, Jh and Jgh, respectively. It is clear that for a splayed D,
the Jacobian ideal satisfies

(gh, Jgh) = g(h, Jh) + h(g, Jg),

when the defining equations g and h are chosen in separated variables. We show
that this Leibniz property already characterizes splayed divisors.

Further, given two divisors D1, D2 meeting at a point p and without common
components, there is a natural monomorphism

DerS,p
DerS,p(− log(D1 ∪D2))

→֒
DerS,p

DerS,p(− log(D1))
⊕

DerS,p
DerS,p(− log(D2))

involving quotients of modules of logarithmic derivations. The divisors D1 and D2

are splayed at p if and only if this monomorphism is an isomorphism (Theorem 2.4
of [4]). We also mention an analogous statement involving sheaves of logarithmic
differentials (Theorem 2.12 of [4]) giving a partial answer to a question raised
in [7], but only subject to the vanishing of an Ext module: D1 and D2 are splayed
at a point p if the natural inclusion

(1) Ω1
S,p(logD1) + Ω1

S,p(logD2) ⊆ Ω1
S,p(logD)
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is an equality and Ext1O(Ω
1
S,p(logD),O) = 0. Thus, if D is free at p, then D1

and D2 are splayed at p if and only if the two modules in (1) are equal. In general
this condition alone does not imply splayedness, as the example of the union of a
cone and a plane in three-space shows.
We also mention an intrinsic characterization of splayedness by M. Schulze (see
[13] or Remark 2.17 in [4]) in terms of logarithmic residues.

Finally we give some applications of splayed divisors (see [7, 8]): first we com-
ment on the relationship between splayed divisors and free divisors. Free divisors
are a generalization of normal crossing divisors and appear frequently in different
areas of mathematics, e.g., in deformation theory as discriminants or in combi-
natorics as free hyperplane arrangements, see e.g. [1, 10, 5, 9, 6, 12] for more
examples. Then we give a partial answer to a question of H. Hauser about the
characterization of normal crossing divisors by their Jacobian ideals: it is shown
that if D =

⋃n
i=1Di is locally the union of smooth irreducible components then

D has normal crossings if and only if D is locally free and its Jacobian ideal is
radical. We briefly sketch that the Hilbert–Samuel polynomial χD,p of a splayed
divisor (D, p) = (D1, p) ∪ (D2, p) satisfies the natural additivity condition

χD,p(t) = χD1,p(t) + χD2,p(t)− χD1∩D2,p(t).

As another application in the direction of transversal intersection, one can con-
sider implications for different notions of Chern classes associated with divisors:
the characterizing conditions for splayed divisors in terms of their logarithmic
derivations globalize nicely, and give conditions on morphisms of sheaves of log-
arithmic derivations and differentials characterizing splayedness at all points of
intersection of two divisors. These conditions imply identities involving Chern
classes for these sheaves (Corollary 2.20 of [4]). For curves on surfaces these iden-
tities actually characterize splayedness. Also, there is a different notion of ‘Chern
class’ that can be associated with a divisor D in a nonsingular variety V , namely
the Chern-Schwartz-MacPherson (cSM ) class of the complement V rD. In previ-
ous work, P. Aluffi has determined several situations where this cSM class equals
the Chern class c(DerV (− logD)) of the sheaf of logarithmic differentials, see [2, 3].
It is then natural to expect that cSM classes of complements of splayed divisors,
and more general subvarieties, should satisfy a similar type of relations as the
one obtained for ordinary Chern classes of sheaves of derivations. One can show
that for subvarieties defined by pullbacks from the factors of a product, joins of
projective varieties and in the case of curves, the corresponding expected relation
of cSM classes does hold, see [4]. We hope to prove the validity of this relation for
arbitrary splayed subvarieties in the future.
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Simple surface singularities

Jan Stevens

Simple hypersurface singularities were classified by Arnol’d in the famous ADE
list. In the surface case these are exactly the rational double points. In Giusti’s
list of simple isolated complete intersection singularities no surface singularities
occur. In the classification of simple determinantal codimension two singularities
by Frühbis-Krüger and Neumer [2] the surface singularities are the rational triple
points.

Here we address the question:

Question 1. What are the simple normal surface singularities?

As there is no obvious group action in the problem of classifying singularities
of arbitrary embedding dimension, we take simple to mean that there occur only
finitely many isomorphism classes in the versal deformation.

We conjecture the following answer:

Conjecture 1. Simple normal surface singularities are exactly the rational singu-
larities, whose resolution graph can be obtained from the graphs of rational double
points and rational triple points by making (some) vertex weights more negative.

Without normality there are more simple singularities. The standard example
of a nonnormal isolated singularity, two planes in 4-space meeting transversally in
one point, has no nontrivial deformations at all, so is certainly simple. It is an old
unsolved question whether rigid normal surface singularities (or rigid reduced curve
singularities) exist. If they do, they are rather special. Our conjecture includes
the statement that there are no rigid normal surface singularities, and even more,
that there are no singularities for which infinitesimal deformations exist, but they
all are obstructed.
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The singularities in the conjecture make up the parts I, II and III in Laufer’s list
of taut singularities [3]: the graphs with at most one vertex of valency three and no
higher valencies. As the graphs in question are star-shaped, all these singularities
are quasi-homogeneous.

The problem in studying rational singularities of multiplicity at least four is that
their deformation space has (in general) many components, and for only one, the
Artin component, one has good methods to study adjacencies: it suffices to look
at deformations of the resolution; in the case of almost reduced fundamental cycle
there is even a complete description of the adjacencies [4]. Using deformations on
the Artin component we can show:

Proposition 1. A rational singularity, whose graph is not obtainable from a dou-
ble or triple point graph by making vertex weights more negative, is not simple.
It deforms into a singularity with a modulus in the exceptional divisor, with (un-
weighted) graph of the form

✈ ✈✈

✈

✈ .

It follows that every non-simple rational singularity is adjacent to such a sin-
gularity.

For the following classes of rational singularities it is known or we can prove
that they are simple:

• quotient singularities [1],
• singularities with reduced fundamental cycle, occurring in the conjecture,
• rational quadruple points, occurring in the conjecture.
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Mirror symmetry for Calabi-Yau manifolds and mirror symmetry for

singularities

Kazushi Ueda

(joint work with Masahiro Futaki, Masanori Kobayashi, Makiko Mase and Yuichi
Nohara)

The lattice of vanishing cycles equipped with the intersection form is called the
Milnor lattice, which is one of the central objects in singularity theory. The Milnor
lattice admits a categorification called the Fukaya-Seidel category, which is an A∞-
category whose objects are vanishing cycles and whose spaces of morphisms are
Lagrangian intersection Floer complexes.

Fukaya-Seidel categories appear in homological mirror symmetry for Fano man-
ifolds. If we take the projective space Pn as an example, then the mirror is given
by the Laurent polynomial

W = x1 + · · ·+ xn +
1

x1 · · ·xn

defining a regular map W : (C×)n → C, and one has an equivalence

Db cohPn ∼= Db FukW(1)

of triangulated categories [7, 2].
Fukaya-Seidel categories also appear in homological mirror symmetry for sin-

gularities. If we take a Brieskorn-Pham polynomial

f = xp1

1 + · · ·+ xpn
n

as an example, then the mirror is the Brieskorn-Pham singularity

R = C[x1, . . . , xn]/(f)

equipped with a grading by the abelian group

L = Z~x1 ⊕ · · · ⊕ Z~xn ⊕ Z~c/(p1~x1 − ~c, . . . , pn~xn − ~c)

of rank one, and one has an equivalence

Db Fuk f ∼= Db
sing(grR)(2)

of triangulated categories [3]. Here, the category on the right hand side is the
stable derived category, defined as the quotient category Db(grR)/Dperf(grR) of
the bounded derived category of finitely-generated L-graded R-modules by the
full subcategory consisting of bounded complexes of projective modules. Similar
result has been proved also for arbitrary Sebastiani-Thom sum of singularities of
types A and D [1].

Now assume that the Milnor fiber of f can be compactified to a Calabi-Yau
manifold Y . A typical example is the case when n = 3 and f = x2 + y3 + z7,
which defines one of Arnold’s 14 exceptional unimodal singularities called the
E12-singularity. The mirror Calabi-Yau manifold Y̌ of Y is obtained as (a crepant
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resolution of) the quotient of Y by a suitable abelian group, and one expects an
equivalence

Db FukY ∼= Db coh Y̌(3)

of triangulated categories [5]. The Fukaya-Seidel category Fuk f is a directed sub-
category of FukY , and the stable derived categoryDb

sing(grR) is a directed subcate-

gory of Db coh Y̌ [11], so that it is natural to expect the existence of a commutative
diagram

Db Fuk f Db FukY

Db
sing(grR) Db coh Y̌

∼ ∼

where horizontal arrows are embeddings of directed subcategories and vertical
arrows are homological mirror symmetry. This helps, for instance, to understand
strange duality for Arnold’s 14 exceptional unimodal singularities in the context
of mirror symmetry for K3 surfaces [4].

On the other hand, the compatibility

Db FukW Db FukY

Db cohPn Db coh Y̌

∼ ∼

of homological mirror symmetry for the projective space and that for its Calabi-
Yau hypersurface is known by [8, 9, 10, 6], and it is an interesting problem to
generalize this to, say, complete intersections in toric stacks.
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The vanishing cycles of types A 1

2
∞

and D 1

2
∞

Kyoji Saito

We introduce two real entire functions fA 1
2
∞

and fD 1
2
∞

in two variables, having

only two critical values 0 and 1. Associated maps C2 → C define topologically
locally trivial fibrations overC\{0, 1}. The critical points over 0 and 1 are ordinary
double points, whose associated vanishing cycles in the generic fiber span its middle
homology group and their intersection diagram forms the bi-partite decomposition
of quivers of type A 1

2∞ and D 1
2∞, respectively (see the diagram below). Coxeter

element of type A 1
2∞ and D 1

2∞ are introduced as the product of the monodromies

of the fibrations around 0 and 1, which acts also on the Hilbert space obtained
by completing the middle homology group. Then the spectra (“logarithm” of the
eigenvalues of the) Coxeter element is absolutely continuous on the interval (− 1

2 ,
1
2 )

(except at 0 for the type D 1
2∞). This should give the datum of the good section

for the construction of the primitive form associated with the function.

ΓA 1
2
∞

: γ
(1)
A,1 −→ γ

(1)
A,0 ←− γ

(2)
A,1 −→ γ

(2)
A,0 ←− γ

(3)
A,1 −→ γ

(3)
A,0 ←− · · ·

γ+D,0

տ
ΓD 1

2
∞

: γ
(1)
D,1 −→ γ

(1)
D,0 ←− γ

(2)
D,1 −→ γ

(2)
D,0 ←− γ

(3)
D,1 −→ · · ·

ւ
γ−D,0

On the Artin Approximation Theorem

Herwig Hauser

Let x = (x1, . . . , xn) and y = (y1, . . . , ym) be variables and let f ∈ C{x, y}p be a
vector of convergent power series in x and y. Let c be a natural integer. Artin’s
Approximation Theorem [1] asserts that whenever y(x) is a formal power series
solution of f = 0, say

f(x, y(x)) = 0,

there exists a convergent power series solution ỹ(x), say

f(x, ỹ(x)) = 0,

which approximates y(x) up to degree c,
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ỹ(x) ≡ y(x) modulo (x)c+1.

This result has many variations and extensions, e.g. the passage from approxi-
mate solutions to formal exact solutions, or the difficult nested subring case. In the
talk, which represents joint work with Guillaume Rond from Marseille, we address
the more general question of how to describe the entire solution set of f(x, y) = 0
inside the infinite dimensional spaces of formal or convergent power series.

Defining a natural partition of this set by locally open sets, one tries to construct
isomorphisms of formal power series spaces (to be defined suitably) which map each
stratum of the solution set to a cartesian product of a finite dimensional singular
variety with an infinite dimensional smooth variety. Such a product decomposition,
if it can be proven to exist, would globalize the theorem of Grinberg-Kazhdan
and Drinfeld [2], [3] on the local factorization of arc spaces and extend it to the
multivariate case. Similarly, it would generalize Denef-Loeser’s fibration theorem
[4]. At the same time, it would yield a quite conceptual understanding of the proof
of the approximation theorem.

In the talk we indicate some of the key steps and problems in carrying out this
program.
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Right simple singularities in positive characteristic

Hong Duc Nguyen

(joint work with Gert-Martin Greuel)

We classify isolated hypersurface singularities f ∈ m2 ⊂ K[[x1, . . . , xn]], K an
algebraically closed field of characteristic p > 0, which have no moduli (modality
0) w.r.t. right equivalence, meaning that there are only finitely many right equiv-
alence classes. These singularities are called right simple, following Arnol’d, who
classified right simple singularities for K = R and C (cf. [1]). He showed that the
simple singularities are exactly the ADE-singularities, i.e. the two infinite series
Ak, k ≥ 1, Dk, k ≥ 4, and the three exceptional singularities E6, E7, E8. It turned
out later that the ADE-singularities of Arnol’d are also exactly those of modal-
ity 0 for contact equivalence. In the late eighties, Greuel and Kröning showed in
[2] that the contact simple singularities over a field of positive characteristic are
again exactly the ADE-singularities but with a few more normal forms in small
characteristic.
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A classification w.r.t. right equivalence in positive characteristic however, was
never considered so far. A surprising fact of our classification is that for any fixed
p > 0 there exist only finitely many right simple singularities. For example, if
p = 2 and n is even, there is just one right simple hypersurface,

x1x2 + x3x4 + . . .+ xn−1xn,

while for n odd no right simple singularity exists. A table with normal forms for
any n ≥ 1 and any p > 0 is given (see also [4]):

Let p = char(K) > 2.

(i) A plane curve singularity f ∈ m2 ⊂ K[[x, y]] is right simple if and only if
it is right equivalent to one of the following forms

Name Normal form
Ak x2 + yk+1 1 ≤ k ≤ p− 2

Dk x2y + yk−1 4 ≤ k < p
E6 x3 + y4 3 < p
E7 x3 + xy3 3 < p
E8 x3 + y5 5 < p

Table (a)

(ii) A hypersurface singularity f ∈ m2 ⊂ K[[x]] = K[[x1, . . . , xn]], n ≥ 3, is
right simple if and only if it is right equivalent to one of the following
forms

Normal form
g(x1, x2) + x23 + . . .+ x2n g is one of the singularities in Table (a)

Table (b)

Let p = char(K) = 2. A hypersurface singularity f ∈ m2 ⊂ K[[x]]
= K[[x1, . . . , xn]] with n ≥ 2, is right simple if and only if n is even and if it
is right equivalent to

A1 : x1x2 + x3x4 + . . .+ xn−1xn.

The problem is even interesting for univariate power series (n = 1) where we
give a complete classification (see [3], [4]). Moreover we show that:

If f(x) ∈ K[[x]] is a univariate power series such that its Milnor number µ :=
µ(f) is finite. Then

R-mod(f) = [µ/p], the integer part of µ/p.

A major point of this paper is the clarification of the notion of modality and its
relations to formal deformation theory. We give a precise definition of the number
of moduli (modality) for families of power series parametrized by an algebraic
variety. In fact, we give two definitions of G-modality, both related to the action
of an algebraic group G on a variety X and show that they coincide, a result which
is valid in any characteristic.
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Moreover, we prove that the G-modality is upper semicontinuous for G the right
resp. the contact group.

We introduce the notion of G-completeness which suffices to determine the
modality and show that the usual semiuniversal deformation with section of an
isolated hypersurface singularity is complete. In contrast to the complex analytic
case the semiuniversal deformation is not sufficient to determine the modality; we
have to consider versal deformations with section.
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The number of components of a linear free divisor

Brian Pike

A free divisor is a germ of a complex hypersurface with the property that its
module of logarithmic vector fields is a free module. These hypersurfaces are of
significant interest because, for example, the discriminants of versal unfoldings of
isolated complete intersection singularities are always free divisors. Though the
definition dates from 1980 ([10]), these objects remain mysterious. For instance,
it is not completely understood which hyperplane arrangements are free divisors.

In the last few years many have studied linear free divisors, free divisors where
the module of logarithmic vector fields is generated by ‘linear’ (homogeneous of
degree 0) vector fields. Every linear free divisor arises from a rational representa-
tion ρ : G→ GL(V ) of a connected complex linear algebraic group G on a complex
vector space V which has a Zariski open orbit Ω. Moreover, dim(G) = dim(V ),
the linear free divisor (X, 0) is simply V \ Ω, and (X, 0) is defined by a reduced
homogeneous polynomial of degree dim(G). This overlap of singularity theory and
representation theory has proven to be very fertile. Connections have been found
between these linear free divisors and representations of quivers ([2]), F-manifolds
([3]), versions of Grothendieck’s comparison theorem (e.g., [5]), Bernstein-Sato
polynomials ([7]), etc. The linear free divisors in dimensions ≤ 4 have been clas-
sified ([5]), although it seems that the difficulty of classification increases dramat-
ically with dimension. Nontrivial infinite families of linear free divisors (each in
a different ambient space) have been exhibited ([4]), along with several nontrivial
ways of constructing linear free divisors from existing linear free divisors ([9, 6, 1]).

Representations having open orbits have been studied before under a differ-
ent name (see e.g., [11]). A prehomogeneous vector space ρ : G → GL(V ) is
a rational representation of a connected complex linear algebraic group G on
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a finite-dimensional vector space V , having a (Zariski) open orbit Ω. When
dim(G) > dim(V ), the complement X of Ω may not be of pure dimension. Even
so, the hypersurface components of X are closely related to the group X1(G) of
multiplicative characters χ : K → Gm ≃ C∗, where Gv0 is the isotropy subgroup
at some v0 ∈ Ω and K = G/([G,G] · Gv0); for instance, X1(G) is a free abelian
group with rank(X1(G)) equal to the number of irreducible hypersurface com-
ponents of X . Since K is a abelian connected complex linear algebraic group,
K ≃ (Gm)k × (Ga)

ℓ, where Ga ≃ (C,+), and k is the number of irreducible hy-
persurface components of X . The number ℓ may be detected as the dimension of
the vector space A(G) of additive functions, rational homomorphisms K → Ga.

In ongoing work ([8]), we investigate the additive functions of prehomogeneous
vector spaces. In the special case where ρ : G → GL(V ), dim(G) = dim(V ),
produces a linear free divisor X = V \Ω, then we prove that there are no nontrivial
additive functions; hence ℓ = 0, and the number of irreducible components of X
is exactly

dimC(g/[g, g]),

where g may be interpreted as either the Lie algebra of G or as the ‘linear’ loga-
rithmic vector fields of X . A key step in the proof is the use of a criterion, due
to Michel Brion (published in [6]), for X to be a linear free divisor. This result
simplifies and unifies many previous results.

A natural question for further research is whether any similar results hold for
arbitrary free divisors.

References

[1] R.-O. Buchweitz and A. Conca, A note on free divisors, In preparation.
[2] R.-O. Buchweitz and D. Mond, Linear free divisors and quiver representations, Singularities

and computer algebra, London Math. Soc. Lecture Note Ser., vol. 324, Cambridge Univ.
Press, Cambridge, 2006, pp. 41–77. MR 2228227 (2007d:16028)

[3] I. de Gregorio, D. Mond, and C. Sevenheck, Linear free divisors and Frobenius manifolds,
Compos. Math. 145 (2009), no. 5, 1305–1350. MR 2551998 (2011b:32049)

[4] J. Damon and B. Pike, Solvable Groups, Free Divisors and Nonisolated Matrix Singularities
I: Towers of Free Divisors, arXiv:1201.1577.

[5] M. Granger, D. Mond, A. Nieto-Reyes and M. Schulze, Linear free divisors and the global
logarithmic comparison theorem, Ann. Inst. Fourier (Grenoble) 59 (2009), no. 2, 811–850.
MR 2521436 (2010g:32047)

[6] M. Granger, D. Mond and M. Schulze, Free divisors in prehomogeneous vector spaces, Proc.
Lond. Math. Soc. (3) 102 (2011), no. 5, 923–950. MR 2795728 (2012h:14052)

[7] M. Granger and M. Schulze, On the symmetry of b-functions of linear free divisors, Publ.
Res. Inst. Math. Sci. 46 (2010), no. 3, 479–506. MR 2760735 (2011k:14014)

[8] B. Pike, The number of irreducible components of a linear free divisor, In preparation.

[9] , Singular milnor numbers of non-isolated matrix singularities, ProQuest LLC,
Ann Arbor, MI, 2010, Thesis (Ph.D.)–The University of North Carolina at Chapel Hill.
MR 2782347

[10] K. Saito, Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci.
Univ. Tokyo Sect. IA Math. 27 (1980), no. 2, 265–291. MR 586450 (83h:32023)

[11] Mikio Sato, Theory of prehomogeneous vector spaces (algebraic part)—the English transla-
tion of Sato’s lecture from Shintani’s note, Nagoya Math. J. 120 (1990), 1–34, Notes by
Takuro Shintani, Translated from the Japanese by Masakazu Muro. MR 1086566 (92c:32039)



2840 Oberwolfach Report 46/2012

Discriminant of transversal singularity type and further stratification

of the singular locus

Dmitry Kerner

(joint work with Maxim Kazarian, András Némethi)

Let X be an analytic space with non-isolated singularity, let Z be a connected
component of the singular locus. Assume Z is locally complete intersection, while
X is a strict locally complete intersection (i.e. its tangent cone at each point is a
complete intersection).

The (topological) transversal type of X along Z is generically constant but at
some points of Z it degenerates. We introduce the discriminant of the transversal
type, the subscheme of Z that reflects these degenerations. The scheme structure
is imposed by various compatibility properties and is often non-reduced.

In the global case, Z being compact, we compute the class of the discriminant
in the Picard group Pic(Z). Further, we define the natural stratification of the
singular locus and compute the classes of the simplest strata.
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On the structure of homogeneous symplectic varieties of complete

intersection

Yoshinori Namikawa

A normal complex algebraic variety X is a symplectic variety if there is a holo-
morphic symplectic 2-form ω on the regular part Xreg of X and ω extends to a

(possibly degenerate) holomorphic 2-form on a resolution f : X̃ → X .

Example: Let g be a semisimple complex Lie algebra and let G be its adjoint
group. Let us consider the adjoint quotient map χ : g→ g//G. If rank(g) = r, then
g//G is isomorphic to the r-dimensional affine space ∼= Cr. The nilpotent variety
N is, by definition, the set of all nilpotent elements of g and we have N = χ−1(0).
The nilpotent variety decomposes into the disjoint union of (finite number of)
nilpotent orbits. There is a unique nilpotent orbit Oreg that is open dense in N ,

which we call the regular nilpotent orbit. Then N = Oreg. The regular nilpotent
orbit Oreg coincides with the regular part of N and it admits a holomorphic
symplectic form ωKK so called the Kostant-Kirillov 2-form. Then (N,ωKK) is
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a symplectic variety. Moreover N ⊂ g is defined as a complete intersection of r
homogeneous polynomials (with respect to the standard C∗-action on g).

In this talk I characterize the nilpotent varieties of semisimple Lie algebras
among affine symplectic varieties.

Let (X,ω) be a singular affine symplectic variety of dimension 2n embedded in
an affine space C2n+r as a complete intersection of r homogeneous polynomials.
Assume that ω is also homogeneous, i.e. there is an integer l such that t∗ω = tl ·ω
for t ∈ C∗.

Main Theorem: One has (X,ω) ∼= (N,ωKK), where N is the nilpotent variety
of a semisimple Lie algebra g together with the Kostant-Kirillov 2-form ωKK .
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The Herman conjecture

Mauricio Garay

Consider the space R2n with coordinates (q1, . . . , qn, p1, . . . , pn) and let U ⊂ R2n

be an open subset. The interior product with the symplectic form
∑n

i=1 dqi ∧ dpi
induces an isomorphism of sheaves between vector fields and differential one-forms.
Given an analytic function H : U → R, , called the hamiltonian, the vector field
associated to the one-form dH is called the hamiltonian vector field of H .

In simple examples, hamiltonian dynamical systems are easily integrated. This
is the case for instance for the Kepler problem but already for the next case in
difficulty, where two heavy bodies attract a smaller one, classically known as the
problem of the moon or in a less poetic way as the restricted three body problem,
the situation turns out to be incredibly complicated. For this reason Poincaré
turned towards the qualitative theory of differential equations [13].

In the fifties, Kolmogorov discovered the existence of hamiltonian systems car-
rying invariant n-dimensional tori which persist under small perturbations. These
n-dimensional tori are the closure of dense trajectories of the dynamical system,
but only those which fill the tori sufficiently fast, define such robust tori. This
rate can be given explicitly in the following technical terms.

Linear trajectories on a torus (R/Z)n are defined by a single vector α ∈ Rn,
called the frequency. The frequency α is called (C, τ)-diophantine if one has the
estimate |(α, i)| ≥ C

‖i‖τ for any vector i ∈ Zn \ {0}. The set of such vectors is

denoted by ΩC,τ .
For any constants C, τ , the diophantine trajectories define persistent tori under

perturbation provided that a second condition calledKolmogorov’s non-degeneracy
is satisfied. This condition says that, in first approximation, the tori are smoothly
parametrised by the frequency of the hamiltonian motion [9].
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In the sixties, Arnold proved, under Kolmogorov’s conditions, the existence
of a positive measure set of invariant tori for perturbed integrable systems and
Moser extended the theory to the differentiable case [2, 12]. The new-born KAM –
acronym for Kolmogorov-Arnold-Moser– theory was used by Arnold in the problem
of the moon but he rapidly discovered that, due to the symmetries of the problem,
Kolmogorov’s non-degeneracy condition is not fulfilled. Nevertheless, by a real
”tour de force”, he proved the existence of a positive measure of robust tori, and
eventually pointed out that his proof could be adapted to the N -body problem [3].

Then together with Piartly, he proposed to study diophantine approximation
in the more general context of manifolds in euclidean space and this was later
developped as a subject in itself by Margulis and his school.

In the nineties, Herman started his investigation on the N -body problem and
discovered that Arnold’s claim was incorrect : new difficulties appear in the N -
body problem [1]. The computations for non-degeneracy conditions turned out
to be so difficult that Herman proposed an acronym BLC meaning ”Bonjour les
calculs” in order to point out each time there were awful computations. In 1998,
during his ICM lecture, he made the following striking conjecture for discrete time
hamiltonian systems [8] :

In the neighbourhood of a diophantine elliptic fixed point, a real analytic sym-
plectomorphism has a positive measure set of invariant tori.

The conjecture seemed odd, since it was known, after the work of Katok, that
the absence of non-degeneracy condition is responsible for chaotic motions [10].
Nevertheless :

Theorem 1 ([7]). The Herman conjecture is true.

Katok’s theorem seems to contradict the possibility of more general conjectures,
it does not : the subtle point is that the neighbourhood in which KAM theory
applies is prescribed by the perturbation, so that one may approach any such sys-
tem by a chaotic one. In some sense, there is an unexpected problem of quantifier
between the size of the perturbation and the existence of chaotic motions, and this
was a major source of our misunderstanding of KAM theory. In fact, there exists
a KAM theorem without any kind of non-degeneracy condition [7].

The proof of the Herman conjecture is based on group actions in infinite di-
mensional spaces, an idea which goes back to Moser. Symplectomorphisms act
by change of variables on the space of hamiltonians and KAM theory can be in-
terpreted as the relation between this action and its linearisation. Indeed, the
invariant tori form the fibres of some map π : U → ΩC,τ . The graph of this map
defines a family of lagrangian manifolds which ideal sheaf we denote by I. As the
family is lagrangian, its conormal sheaf I/I2 gets identified with its tangent sheaf.
Thus, in this abstract form, we study the orbit of our hamiltonian function H
under the action of the group of symplectomorphism modulo I2.

So the situation is very similar to that of versal deformation theory and finite
determinacy theorems but... there are important differences. The action involves
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differential operators, thus the usual methods of commutative algebra do not ap-
ply in this context. Moreover, solving infinitesimal condition introduces small
denominators which turn out to be responsible for the presence of unbounded op-
erators. Fortunately, Kolmogorov and Arnold overcame this difficulty and their
method can be put in abstract form, in a way similar to what Sergeraert, Hamilton
and Zehnder did for Moser’s proof. In fact, due to the analytic context, one can
go much further than implicit function theorems and begin to construct a whole
theory of versal deformation in direct limits of Banach spaces. Here is a simple
example. We denote by OCn,0 the algebra of germs of holomorphic functions at
the origin in Cn and byMCn,0 its maximal ideal.

Theorem 2 ([5]). Let f ∈ MCn,0 be a map germ, G a closed subgroup of automor-
phism of the algebra OCn,0 and g ⊂ Der(OCn,0,MCn,0) a closed vector space such
that eg ⊂ G. Assume that the ”infinitesimal action” ρ : g→M, v 7→ v(f) admits
a bounded right inverse then, in the neighbourhood of f , the space f +M2

Cn,0 is
locally a G-homogeneous space.

For the definition of a bounded map in this context see [4, 5]. Then a second
difficulty arises : the base ΩC,τ which parametrises the invariant tori is not at all a
smooth manifold. After base change, this set might behave wildly and one might
expect that the pre-image of a set of positive measure consists of a single point.
This is confirmed by the recent discovery of Eliasson, Fayad and Krikorian who
constructed examples of curves which pass through only one point of some ΩC,τ ,
so the situation seems lost !

In fact, using Dani-Kleinbock-Margulis techniques (see [11]), one can prove a
base change property for which such pathologies do not occur, namely :

Theorem 3 ([6]). For any l-curved mapping f : Rd ⊃ U → Rn, f(0) = α ∈ ΩC,τ

the density of the set f−1(ΩC,τ ′) at the origin is equal to 1 where

τ ′ := kn+ kl(n+ 1) + kdl(n+ 1)2 + (n+ 1)τ.

Here l-curved means that the image is contained in an affine space whose asso-
ciated vector space is spanned by the partial derivatives of f of order at most l, at
each point. So, we can indeed integrate base changes in KAM theory and formulate
a generalisation of the KAM theorem as an abstract theorem on group actions ;
then repeating Martinet’s original proof of the versal deformation theorem, we
prove the Herman conjecture.
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On realizing homology classes by maps of restricted complexity

András Szűcs

(joint work with Mark Grant)

We show that in every codimension greater than one there exists a mod 2 homol-
ogy class in some closed manifold (of sufficiently high dimension) which cannot be
realized by an immersion of closed manifolds. The proof gives explicit obstructions
(in terms of cohomology operations) for realizability of mod 2 homology classes by
immersions. We also prove the corresponding result in which the word ‘immersion’
is replaced by ‘map with some restricted set of multi-singularities’.

Let f : Mn−k → Nn be a continuous map of codimension k between closed
manifolds (all manifolds and maps between them are assumed smooth, unless
stated otherwise). Then f is said to realize both the mod 2 singular homology class
z = f∗[M ] ∈ Hn−k(N ;Z2) (where [M ] ∈ Hn−k(M ;Z2) is the fundamental class
of the domain manifold) and its Poincaré dual cohomology class x ∈ Hk(N ;Z2).
We address the following questions. When can a (co)homology class be realized
by an immersion? When can a (co)homology class be realized by a map whose
complexity is restricted by prescribing some finite set of allowed multi-singularity
types?

Theorem 1. For any k > 1 there exists a closed manifold Nk and cohomology
class xk ∈ H

k(Nk;Z2) which cannot be realized by an immersion. The manifold
Nk can be chosen to have dimension 4k + 3 if k is even, and 4k + 15 if k is odd.

The proof of Theorem 1 makes use of the following explicit obstructions to
realizability by immersions, in terms of stable cohomology operations.

Theorem 2. Let k > 1 and let I be an admissible sequence of excess e(I) = k,
i.e. I = (i1, . . . , ir), where i1, . . . , ir are natural numbers such that ij ≥ 2ij+1 and
e(I) =

∑
(ij − 2ij+1) = k. Let SqI = Sqi1 . . . Sqir be the corresponding monomial
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in the Steenrod algebra. If the cohomology class x ∈ Hk(N ;Z2) is realizable by an
immersion, then SqI(x) is the reduction mod 2 of an integral class.

In particular, if k is even and β(x2) is nonzero (where β is the Bockstein asso-
ciated to reduction mod 2) then x cannot be realized by an immersion.

The obstruction β(x2) in the case k even is very natural:

Claim 3. β(x2) is the integer cohomology class realized by the singular set of any
generic map realizing x.

Now we turn to non-realizability of homology classes by singular maps. Let τ
be a finite set of codimension k multi-singularities. A multi-singularity is a finite
multiset of stable local singularities. Recall [2] that a stable map f : Mn−k → Nn

is called a τ-map if at each point y ∈ N the pre-image f−1(y) ⊆ M is finite and
the local singularities of f at the pre-image points, counted with multiplicity, form
an element of τ .

Theorem 4. Let k > 1, and let τ be any finite set of multi-singularities in
codimension k. Then there exists a closed manifold Nk and cohomology class
xk ∈ H

k(Nk;Z2) which cannot be realized by a τ-map.

Theorems 1 and 4 should be contrasted with the well known fact that any one-
dimensional cohomology class x ∈ H1(N ;Z2) in a closed manifold is realizable by
an embedding of a closed manifold.

History of the question realizing homology classes by manifolds. It is somewhat
surprising that a result such as Theorem 1 has not found its way into the litera-
ture before now. Ever since Poincaré and the birth of homology, basic questions
concerning realization of homology classes by maps from closed manifolds have
had a profound effect on the development of Algebraic Topology. Thom showed
in his landmark paper [6] that every mod 2 homology class in a finite polyhe-
dron can be realized by a continuous map, thus giving an affirmative answer to
a problem posed by Steenrod. In its original formulation [1], Steenrod’s question
was about realizing integral homology classes by maps from oriented manifolds,
and Thom also gave negative results in this direction, by constructing examples
of non-realizable integral homology classes in dimensions 7 and above.

Thom’s method was to reduce Steenrod’s problem to the related question con-
cerning realizability of homology classes by embeddings. The key insight which
allowed him to solve this problem was that a homology class in the compact man-
ifold N can be realized by a codimension k embedding if and only if its Poincaré
dual cohomology class is induced from the Thom class by a map from N/∂N into
the Thom space of the universal k-dimensional bundle. In other words, the Thom
space of the universal k-dimensional bundle is the classifying space for codimen-
sion k embeddings. One can use this result to find homology classes which cannot
be realized by embeddings, in two closely related ways.

The first is constructive, in that it gives specific obstructions to realizability.
Namely, one shows that some expression P involving cup products and cohomology
operations vanishes on the Thom class. If the dual of a cohomology class x is to be
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realizable, that same expression must also vanish on x (this approach was taken
by Thom [6, Chapitre II]).

The second approach is less constructive, but equally valid. One compares
the graded rank of the mod 2 cohomology of the Thom space of the universal k-
dimensional bundle with that of the corresponding Eilenberg-Mac Lane space. In
high degrees the latter is larger, and so this approach shows that in all dimensions
k > 1 there exists a mod 2 cohomology class in some closed manifold of sufficiently
high dimension which cannot be realized by an embedding (Thom says that this
argument, outlined on page 46 of [6], was patterned after a remark of J.P. Serre).

We used the (generalization of the) first method to prove Theorem 1 and the
second one for proving Theorem 4. In the latter case we had to use instead of the
Thom space (which is the classifying space for embeddings) a classifying space for
τ-maps (i.e. maps with a prescribed set of allowed multisingularities) constructed
in papers [3], [4], [5], [2].

Finally I give a sketch of the proof of Claim 3 (that I failed to give in the talk).

Proof of Claim 3. Sketch. If a generic map f : Mn−k → Nn realizes a k-dimen-
sional cohomology class x, then the cohomology class realized by the singularity
locus of f can be identified with f!(Wk+1(νf )), where νf is the virtual normal
bundle of f and Wk+1 is the twisted integer Stiefel–Whitney class. (This is al-
most the definition of the class Wk+1.) It remained to show that f!(Wk+1(νf )) =
β(x2) = β(Sqkx). Composing f with the embedding Nn →֒ Nn ×Dq, where q is
big, and Dq is a ball we reduce the statement to the case when the map is an em-
bedding. Now we can consider the universal embedding BO(m) →֒MO(m). The
mod 2 reductions of the two sides are equal in this case by the well-known formula
Sqk+1Um = wk+1Um for any k+1 < m, where Um is the Thom class. The integer
case follows from the fact that all the torsion part in H∗(MO(m);Z) is 2-torsion,
hence the reduction mod 2 is injective. The case of arbitrary embeddings follows
by pulling back the obtained formula from the universal embedding. �

The paper is to appear in Bull. London Math. Soc.
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[4] A. Szűcs, Immersions in bordism classes, Math. Proc. Cambridge Phil. Soc. 103 (1989),
No. 1, 89–95.
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Fundamental groups and Mordell-Weil groups

Anatoly Libgober

Let C be an irreducible algebraic curve in C2, transversal to the line at infinity.
In this talk I discussed the following problem: which polynomials can appear as
the Alexander polynomials of the fundamental group π1 = π1(C

2 − C).
The Alexander polynomial can be defined as the characteristic polynomial of

the generator of the abelianization π1/π
′
1 (which is a cyclic group) acting on the

abelianization of the commutator: π′
1/π

′′
1⊗Q (cf. [1]). The roots of this polynomial

∆C(t) are the roots of unity of degree degC and it satisfies the following divisibility
relation: if ∆P (t) denotes the Alexander polynomial of the link of a singularity
P of the curve C then ∆C divides ΠP∆P where the product is taken over all
singularities P of C (cf. [1]).

For curves with nodes and ordinary cusps as the only singularities this implies
that ∆C(t) = (t2 − t + 1)s, (s ≥ 0) and 6|degC. The largest known value of
s at the moment is s = 4 (cf. Cogolludo-Libgober, [2]). The goal of this talk
was to describe the relationship between the problem of finding a bound on s for
curves with nodes and cusps and arbitrary degree and the problem of finding upper
bounds for Mordell-Weil ranks of elliptic curves over the field of rational functions
C(x, y).

Let Ef be (isotrivial) elliptic curve over C(x, y) given by the equation:

u2 = v3 + f(x, y)

where f is the equation of C and singularities as above.

Theorem 1. (J.I.Cogolludo-A.Libgober, [2]) . The rank of Mordell-Weil group of
Ef is equal to 2s.

This extends the results of Hulek-Kloosterman whose results imply Theorem 1
in the case when degC = 6.

The key step in the proof of this theorem (explaining the topological nature of
the Mordell Weil rank in this case) is the following:

Theorem 2. (J.I.Cogolludo-A.Libgober, [2]) Let Vf be a smooth projective model
of the surface z6 = f(x, y). Then the Albanese variety of Vf is isogenous to Es

0

where E0 is the elliptic curve with j-invariant zero.

Theorems 1 and 2 can be extended to results connecting the Alexander polyno-
mial of plane curves with singularities in certain class, called the singularities of
CM type, and the Mordell Weil ranks of certain families of abelian varieties over
C(x, y).

To define the singularities of CM type one first defines what we call the local
Albanese variety of a plane curve singularity. This is the abelian part of the 1-
motif (introduced by Deligne) of the limit mixed Hodge structure corresponding
to a singularity of a plane curve.

Definition 3. (cf. [3]) A singularity is called a singularity of CM-type if the local
Albanese variety is an abelian variety with complex multiplication.
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Theorem 4. (cf. [3]) 1. Uni-branched plane curve singularities have CM type.
2. If the characteristic polynomial of the monodromy of a plane curve singularity

does not have multiple roots then it has CM type.

On the other hand, ordinary multiple point with multiplicity greater than 3
generally does not have CM type.

Theorem 5. (cf. [3]) Let C be a plane curve with equation f(x, y) = 0 and with
singularities of CM type. Let VC be a smooth projective model of affine surface
zdegC = f(x, y). Then Albanese variety of VC is isogenous to a product of abelian
varieties of CM type corresponding to cyclotomic fields.

This theorem leads to the relation between the factors of the Alexander poly-
nomial of ∆C and the Mordell-Weil ranks of abelian varieties over C(x, y).

Theorem 6. Let A be an smooth projective model of an isotrivial abelian variety
over field C(x, y), π : A → P2 and A be its generic fiber. Let ∆ ⊂ P2 be the
discriminant of π and let G ⊂ AutA be the holonomy group of A. Assume that:

a) the holonomy group G of isotrivial fibration over the complement to the
discriminant ∆ is a cyclic group of order d and has no fixed points outside of the
zero of the generic fiber A.

b) The singularities of ∆ have CM type and ∆ is irreducible.
Then
1. the rank of the Mordell-Weil group of A is zero, unless the generic fiber

of π is an abelian variety of CM-type with endomorphism algebra containing a
cyclotomic field.

2. Assume that generic fiber A of π is a simple abelian variety of CM type
corresponding to the field Q(ζd) Let s be the multiplicity of the factor Φd(t) of the
Alexander polynomial of π1(P

2 −∆) where Φd(t) is the cyclotomic polynomial of
degree d. Then:

rkMW (A,C(x, y)) ≤ s · φ(d) (∗)

(here φ(d) = degΦd(t) is the Euler function).
3. Let A be an abelian variety as in 2. If d is the order of the holonomy of A

and the Albanese variety Alb(Xd) of the d-fold cover Xd of X ramified over ∆ has
A is its direct summand with multiplicity s then one has equality in (*).

As example of this result we obtain that for the Jacobian of the curve over
C(x, y) given in (u, v) plane by the equation

up = v2 + (xp + yp)2 + (y2 + 1)p

one has rkMW = p− 1.
Details of these results appear in [3].
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Arrangements and Frobenius like structures

Alexander Varchenko

There are three places, where a flat connection depending on a parameter ap-
pears:
• KZ equations,

κ
∂I

∂zi
(z) = Ki(z)I(z), z = (z1, . . . , zn), i = 1, . . . , n.(1)

Here κ is a parameter, I(z) a V -valued function, where V is a vector space from
representation theory, Ki(z) : V → V are linear operators, depending on z. The
connection is flat for all κ.
• Quantum differential equations,

κ
∂I

∂zi
(z) = pi ∗z I(z), z = (z1, . . . , zn), i = 1, . . . , n.(2)

Here p1, . . . , pn are generators of some commutative algebra H with quantum
multiplication depending on z. These equations are part of the Frobenius structure
on the quantum cohomology of a variety.
• Differential equations for hypergeometric integrals associated with a family of
weighted arrangements with parallelly translated hyperplanes,

κ
∂I

∂zi
(z) = Ki(z)I(z), z = (z1, . . . , zn), i = 1, . . . , n.(3)

It is well known that KZ equations are closely related with the differential
equations for hypergeometric integrals. According to [6] the KZ equations can
be presented as equations for hypergeometric integrals for suitable arrangements.
Thus (1) and (3) are related. Recently it was realized that in some cases the KZ
equations appear as quantum differential equations, see [1] and [4], and therefore
the KZ equations are related to the Frobenius structures. On Frobenius structures
see, for example, [2, 3, 5]. Hence (1) and (2) are related. The goal of this project
is to explain how a Frobenius like structure may appear on the base of a family of
weighted arrangements, in particular, the goal is to make equations (3) related to
Frobenius structures.

The main ingredients of a Frobenius structure are a flat connection depending on
a parameter, a constant metric, a multiplication on tangent spaces. In our case, the
connection comes from the differential equations for the associated hypergeometric
integrals, the flat metric comes from the contravariant form on the space of singular
vectors and the multiplication comes from the multiplication in the algebra of
functions on the critical set of the master function. To illustrate the constructions
I consider the family of points on the line and a family of generic arrangements of
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lines on plane. I describe the associated Frobenius like structures. In particular,
the potentials of second kind of these structures are

P̃ (z1, . . . , zn) = −
1

2

∑

0<i<j<n+1

aiaj (zi − zj)
2 log(zi − zj)

for the family of arrangements of n points on line and

P̃ (z1, . . . , zn) =
1

4!

∑

0<i<j<k<n+1

aiajak
d2i,jd

2
j,kd

2
k,i

×

× (zidj,k + zjdk,i + zkdi,j)
4 log(zidj,k + zjdk,i + zkdi,j)

for the family of arrangements of n generic lines on plane. The variables z1, . . . , zn
are parameters of the families, a1, . . . , an are weights, |a| = a1 + · · · + an, the
number dk,ℓ is the oriented area of the parallelogram generated by the normal
vectors to the k-th and ℓ-th lines, see [7].
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Normal crossings in codimension one

Mathias Schulze

(joint work with Michel Granger)

In [3], Kyoji Saito introduced logarithmic differential forms and their resiudes.
If D = {h = 0} ⊂ (Cn, 0) is a reduced complex analytic hypersurface germ, then
any logarithmic differential form ω ∈ Ωp(logD) ⊂ Ωp(D) can be written as

gω =
dh

h
∧ ξ + η

where g ∈ OS induces a non-zero divisor in OD and ξ ∈ Ωp−1
S and η ∈ Ωp

S are

forms without pole. With this notation ρD(ω) := ξ
g is a well-defined meromorphic

(p − 1)-form on D, or on the normalization π : D̃ → D of D. One can see easily
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that the image σ0
D of the 1st residue map ρ1D contains the ring OD̃ of weekly

holomorphic functions.
Saito proved the implications (1) ⇒ (2) ⇒ (3) among the following conditions:

(1) The local fundamental groups of the complement S\D are abelian.
(2) Outside a codimension-2 subset of D, D has at most normal crossing

singularities. We say that “D is normal crossing in codimension one”.
(3) Every logarithmic one form has a weakly holomorphic residue, that is,

σ0
D = OD̃.

The reverse implication (1) ⇐ (2) is the Lê–Saito Theorem [1] which general-
izes the Zariski conjecture for complex plane projective nodal curves proved by
Fulton [4] and Deligne [5]. Saito proved (2) ⇐ (3) for plane curves leaving the
general case open.

Joint with Michel Granger [2], I introduce a dual logarithmic residue map. If
D is a free divisor, this allows us to translate condition (3) into: equality

(4) The Jacobian ideal JD equals the conductor CD̃/D.

Applying a result by Piene [6] (see also [7]), this leads to a proof of the missing
implication (2) ⇐ (3) for general D. For free D, we obtain another equivalent
condition

(5) The Jacobian ideal JD of D is reduced.

For free D with smooth normalization D̃, we can show that D must be normal
crossing if it satisfies one/any of the above conditions (1) – (5). This is related to
a conjecture of Eleonore Faber [8]: If D is free and the ideal Jh ⊂ OS of partials
of h is reduced then D must be normal crossing.
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Toric geometry, hypergeometric D-modules and mirror symmetry

Christian Sevenheck

(joint work with Thomas Reichelt)

In this talk, we describe a version of mirror symmetry for smooth toric vari-
eties with numerically effective anticanonical bundle (e.g. toric Fano manifolds)
and also for nef complete intersections in toric varieties. The correspondence is
expressed as an equivalence of filtered D-modules. On the A-side of the mirror
picture, this is the so-called quantum D-module of the variety XΣ, that is, a
family (parameterized by the space H∗(XΣ,C)) of trivial vector bundles on P1

equipped with an integrable connection with poles along {0,∞}×H∗(XΣ,C). It
is well-known that this object is basically equivalent to the quantum cohomology
on H∗(XΣ,C). On the B-side, we consider the Landau-Ginzburg model in the
sense of [1] and [3], that is, a family of Laurent polynomials parameterized by the
Kähler moduli space of XΣ. The precise definition is as follows.

Definition 1. Let Σ be a smooth complete n-dimensional fan defining a smooth
projective Fano variety XΣ. Let A = (a1| . . . |am) be the matrix with columns the
primitive integral generators of the rays of Σ. Define

ϕ : S × Λ := (C∗)n × Cm −→ Ct × Λ

(y1, . . . , yn), (λ1, . . . , λm) 7−→
(∑m

i=1 λiy
a
i , λ1, . . . , λm

)

where yai :=
∏n

k=1 y
aki

k . This is called the generic family of Laurent polynomials
associated to Σ (actually, it depends only on Σ(1)). On the other hand, there is an
(non-canonical) embedding g : KXΣ →֒ Λ, where KXΣ denotes the complexified

Kähler moduli space of XΣ. KXΣ is an m−n-dimensional torus, and a specific
choice of a basis of H2(XΣ,Z) (this choice depends on Σ, not only on Σ(1)) yields
an identification KXΣ

∼= (C∗)m−n. Then we call the family of Laurent polynomials

W := ϕ ◦ (idS × g) : S ×KXΣ → Ct ×KXΣ

the Landau-Ginzburg model of XΣ.

Consider the matrix Ã = (ã0, ã1, . . . , ãm) ∈ Mat((n + 1) × (m + 1),Z) where
ãi := (1, ai) ∈ Zn+1 for i = 1, . . . ,m and ã0 := (1, 0). Then for any β ∈ Zn+1,

letMβ

Ã
be the Gelfand-Kapranov-Zelevinsky-hypergeometric DCt×Λ-module (see,

e.g., [2]).

Theorem 2 ([6]). There is an exact sequence in MHMCt×Λ (the abelian category
of mixed Hodge modules on Ct × Λ)

0→ Hn−1(S,C)⊗OCt×Λ → H
0ϕ+OS×Λ →M

(0,0)

Ã
→ Hn(S,C)⊗OCt×Λ → 0

For any holonomic DC×Λ-moduleM, we denote by FL(M) the DCz×Λ-module
obtained by applying a partial Fourier-Laplace transformation (sending t to z2∂z
and ∂t to z−1) to M[∂−1

t ] := C[t, λ1, . . . , λm]〈∂t, ∂
−1
t , ∂λ0 , . . . , ∂λm

〉 ⊗DC×Λ
M.



Singularities 2853

Then we have the following corollary of the above result, which can actually be
shown independently (and with a considerably simpler proof).

Corollary 3 ([7]). There is an isomorphism of holonomic DCz×Λ-modules

FL(H0ϕ+OS×Λ) ∼= FL(M
(0,0)

Ã
) =: M̂

(0,0)

Ã
.

From these results we can easily deduce a corresponding statement for the
Landau-Ginzburg model.

Corollary 4. There is an isomorphism of holonomic DCz×KXΣ
-modules

FL(H0W+OS×KXΣ
) ∼= (idCz

× g)+M̂
(0,0)

Ã
,

and the latter module can be explicit described as a cyclic module (i.e., as quotient
of DCz×KXΣ

).

In order to lift these results into the category of filtered D-modules, we consider

the filtration F• on Mβ

Ã
induced by the order filtration on D. This induces a

filtration G• on M̂
β

Ã
, defined as GkM̂

β

Ã
:=
∑

i≥0 ∂
−i
t Fk+iM

β

Ã
. In order to simplify

the next statements, we restrict from now on to the case where XΣ is Fano. For
nef varieties, the results are basically the same, but slightly more complicated to
state.

Theorem 5. (1) There is an isomorphism of OCz×KXΣ
-modules with connec-

tion

G0M̂
(1,0)

Ã
∼= Hn(Ω•[z], zd− dW1) =: G0,

where W1 is the first component of the map W from above. Notice that
the right hand side is usually called twisted de Rham cohomology.

(2) The module G0M̂
(1,0)

Ã
(and hence also the module G0 = Hn(Ω•[z], zd −

dϕ1)) is OCz×KXΣ
-free, and equipped with a connection operator with poles

of Poincaré rank 1 along {0} × KXΣ and no other singularities.

In order to express the mirror correspondence as an isomorphism of Frobenius
manifolds, one needs to extend the above objects to a family of trivial vector
bundles over P1

z, such that the connection acquires a logarithmic pole at z = ∞.
This is known as a good basis or a solution to the Birkhoff problem (see [10] and
also [9]). The result in the present setup is as follows.

Proposition 6. Let XΣ smooth toric and Fano. Consider the Landau-Ginzburg
model W : S × KXΣ → Ct × KXΣ and the OCz×KXΣ

-locally free module G0 from

above. Let KMXΣ = Cm−n be the natural partial compactification of KXΣ induced
by the choice of coordinates (i.e., by the identification KXΣ

∼= (C∗)m−n defined
by the choice of a basis of H2(XΣ,Z)). There is an extension G0 → P1

z × U of
(G0)|Cz×U , where U ⊂ KMXΣ is Zariski open and contains the origin. G0 has the
following properties:

(1) It is fibrewise trivial, i.e. p∗p∗G0
∼= G0 if p : P1

z×U → U is the projection.
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(2) The connection extends with a logarithmic pole along the normal crossing
divisor ({∞} × U) ∪

(
P1 × (U\KXΣ)

)
.

From this, we deduce the following construction theorem of Frobenius manifolds.

Theorem 7. Put µ := dimCH
∗(XΣ,C). There is a germ of a canonical Frobenius

structure on Cµ−(m−n) × U associated to W , which has logarithmic poles (in the
sense of [5]) along Cµ−(m−n) × (KMXΣ\U). It is isomorphic to the big quantum
cohomology of XΣ.

In the case of a nef complete intersection Y ⊂ XΣ (i.e., XΣ is toric smooth
projective as before and Y is the zero locus of a generic section of a split vec-
tor bundle E = ⊕c

j=1Lj → XΣ where Lj ∈ Pic(XΣ) are ample and such that

−KXΣ −
∑c

j=1 c1(Lj) is nef), we can construct a non-affine Landau-Ginzburg
model, which is a projective morphism Π : Z → Cz×KXΣ from a quasi-projective
variety Z (which is not smooth in general). Then the result is as follows.

Theorem 8 ([8]). Let (XΣ,L1, . . . ,Lc) define a nef complete intersection Y in
XΣ. Consider the ambient (or reduced) quantum D-module QDM(XΣ, E := ⊕c

j=1Lj)
of Y , as defined in [4]. Then we have
(
FL
(
H0DR−1(RΠ∗ICZ)

))
|Cz×Bε

∼= (idCz
×Mir)∗QDM(XΣ, E)(∗{0}×KXΣ)|Cz×Bε

,

where ICZ is the intersection complex of Z, DR−1 denotes a complex of D-modules
corresponding to a given constructible complex via the Riemann-Hilbert correspon-
dence, Bε is a small ball in KXΣ around the origin in KMXΣ and Mir is Givental’s
mirror map.
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Strange duality of orbifold Landau-Ginzburg models

Wolfgang Ebeling

(joint work with A. Takahashi, S. M. Gusein-Zade)

Arnold discovered a strange dualityX ↔ X∨ between the 14 exceptional unimodal
singularities. There are two main features of this duality (for functions in three
variables):

1. The Dolgachev numbers of X are the Gabrielov numbers of X∨ and vice
versa.

2. K. Saito observed that there is a duality between the characteristic poly-
nomials (reduced zeta functions) of the monodromy such that, if d is the
(quasi)degree of a weighted homogeneous equation of X and

(1) φ(t) =
∏

m|d
(1− tm)sm , sm ∈ Z,

is the characteristic polynomial of X , then

(2) φ∨(t) =
∏

m|d
(1− td/m)−sm

is the corresponding polynomial of X∨.

The object of this talk is to show that these features generalize to a mirror
symmetry between certain orbifold Landau-Ginzburg models. An orbifold Landau-
Ginzburg model is a pair (f,G) where f is a non-degenerate invertible polynomial,
i.e. a weighted homogeneous polynomial

f(x1, . . . , xn) =

n∑

i=1

ai

n∏

j=1

x
Eij

j , ai ∈ C∗, E := (Eij) invertible over Q,

with an isolated singularity at the origin, and

G ⊂ Gf = {(λ1, . . . , λn) ∈ (C∗)n : f(λ1x1, . . . , λnxn) = f(x1, . . . , xn)}

is a subgroup of its (finite) maximal group of diagonal symmetries. The Berglund-
Hübsch-Henningson transpose (fT , GT ) with

fT (x1, . . . , xn) :=

n∑

i=1

ai

n∏

j=1

x
Eji

j , GT := Hom(Gf/G,C
∗),

is conjectured to define a mirror dual model. Let G0 be the subgroup of Gf

generated by the exponential grading operator g0 := (e2π
√
−1w1 , . . . , e2π

√
−1wn),

where w1, . . . , wn are the (rational) weights of f .
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1. Mirror symmetry between orbifold curves and cusp singularities

with group action

Let n = 3 and (f,G) a pair with G0 ⊂ G ⊂ Gf . Let Ĝ be the extension of C∗

by G and consider the orbifold curve (Deligne-Mumford stack)

C(f,G) :=
[
f−1(0)\{0}

/
Ĝ
]
.

The Dolgachev numbers A(f,G) = (α1, . . . , αr) of the pair (f,G) are defined to
be the orders of the isotropy groups of G. The genus of the underlying smooth
projective curve C(f,G) is denoted by g(f,G). Let

est(C(f,G)) :=
∑

p,q∈Q≥0

(−1)p−q dimCH
p,q
st (C(f,G))

be the stringy Euler number of the orbifold curve C(f,G), whereH
p,q
st (C(f,G)) denotes

the (p, q)th Chen-Ruan orbifold cohomology group of C(f,G).

The dual pair (fT , GT ) satisfies GT
f = {1} ⊂ GT ⊂ GT

0 = GfT ∩ SL3(C). If f
T

is not simple or simple elliptic then fT (x, y, z)− xyz is right equivalent to a cusp
singularity

F (x, y, z) = xγ
′
1 + yγ

′
2 + zγ

′
3 − axyz for some a ∈ C∗

which is GT -invariant. We use this to define Gabrielov numbers Γ(fT ,GT ) =

(γ1, . . . , γs) for the pair (f
T , GT ). Let µ(F,GT ) be the G

T -equivariant Milnor num-
ber of F defined by Wall. For an element g ∈ SL3(C) of order r, there is a

basis of eigenvectors such that g = diag(e2π
√
−1a1/r, e2π

√
−1a2/r, e2π

√
−1a3/r) with

0 ≤ ai < r. Following Ito and Reid, the number 1
r (a1 + a2 + a3) is called the age

of g. Let jGT be the number of elements g ∈ GT of age 1 which only fix the origin.
We have the following results:

Theorem 1 (—, Takahashi [2]). We have

A(f,Gf ) = Γ(fT ,{1}), A(fT ,G
fT ) = Γ(f,{1}).

The 14 exceptional unimodal singularities can be defined by suitable non-
degenerate invertible polynomials with G0 = Gf . Therefore, Arnold’s strange
duality is a special case of Theorem 1.

Theorem 2 (—, Takahashi [3]). Let G0 ⊂ G ⊂ Gf . Then we have

A(f,G) = Γ(fT ,GT ), est(C(f,G)) = µ(F,GT ), g(f,G) = jGT .

As a special case, we obtain the extension of Arnold’s strange duality by the
author and Wall.

2. Equivariant Saito duality

Now let n be arbitrary. We introduce some general notions. Let G be a finite
group. A G-set is a set with an action of the group G. The Grothendieck ring
K0(f.G -sets) of finite G-sets (also called the Burnside ring of G) is the (abelian)
group generated by the isomorphism classes of finite G-sets modulo the relation
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[A∐B] = [A] + [B] for finite G-sets A and B. The multiplication in K0(f.G -sets)
is defined by the cartesian product.

Let f be a weighted homogeneous polynomial of degree d with an isolated
singularity at the origin. The Milnor fibre Vf = f−1(1) of f can be regarded as a
Zd-set. A function of the form (1) corresponds to the element

∑
m|d sm[Zd/Zd/m]

of the Burnside ringK0(f.Zd -sets). Let G be a subgroup of the symmetry groupGf

of f containing the monodromy transformation. The G-equivariant zeta function
of f is the element

ζGf =
∑

H⊂G

χ(V
(H)
f /G)[G/H ]

of the Burnside ring K0(f.G -sets), where V
(H)
f denotes the set of points of the

Milnor fibre Vf with isotropy group H . The reduced G-equivariant zeta function

of f is ζ
G

f = ζGf − 1.

For a finite abelian group G, denote by G∗ = Hom(G,C∗) its group of charac-
ters. The reason for the minus sign in formula (2) is connected with the fact that
it was originally formulated only for functions in n = 3 variables. If we neglect the
sign then Saito’s duality can be expressed in terms of Burnside rings as follows:

a =
∑

H⊂Zd

sH [Zd/H ] ∈ K0(f.Zd -sets) 7→ â =
∑

H⊂Zd

sH [Z∗
d/H

T ] ∈ K0(f.Z
∗
d -sets).

This leads to the following definition of an equivariant Saito duality:

DG : K0(f.G -sets) → K0(f.G
∗ -sets)

a =
∑

H⊂G sH [G/H ] 7→ â = DGa =
∑

H⊂G sH [G∗/HT ]
.

The isomorphismDG can be regarded as a Fourier transformation fromK0(f.G -sets)
to K0(f.G

∗ -sets).
Now let f be an invertible polynomial in n variables and G = Gf be its maximal

group of symmetries. Then G∗ = G∗
f = GfT is the maximal group of symmetries

of the transpose fT . We have the following result:

Theorem 3 (—, Gusein-Zade [1]). The reduced equivariant zeta functions ζ
G

f and

ζ
G∗

fT of the polynomials f and fT respectively are (up to the sign (−1)n) Saito dual
to each other:

ζ
G∗

fT = (−1)nDGζ
G

f .

Since for the 14 exceptional unimodal singularities n = 3 and Gf = G0 = Zd,
we obtain Saito’s original duality as a special case.
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Characteristic classes of Hilbert schemes of points via symmetric

products

Jörg Schürmann

(joint work with S. Cappell, L. Maxim, T. Ohmoto and S. Yokura)

We are considering the complex algebraic context with X a smooth quasi-
projective variety of pure dimension d as in the following cartesian diagram:

(HilbnX)red =: X [n] ←−−−− HilbnX,x ≃ Hilb
n

Cd
,0

πn

y
y

Xn/Sn =: X(n) dn

←−−−− X ⊃ {x},

with πn the proper Hilbert-Chow morphism from the (reduced) Hilbert scheme
X [n] of n points on X to the symmetric product X(n). Then πn is a nice stratified
map, whose fiber over a point x in the deepest stratum X (diagonally embedded
by dn) is given by the punctual Hilbert scheme HilbnX,x. This fiber is independent
of the choice of the smooth manifold X of dimension d so that HilbnX,x ≃ Hilb

n

C
d
,0
.

S.M.Gusein-Zade, I.Luengo and A.Melle-Hernández [3] introduced the notion of
a power structure on a (semi-)ring R giving sense to an expression fm for m ∈ R
and f ∈ 1 + tR[[t]] a normalized formal power series with coefficients from R,
satisfying seven expected rules like

(iii) (f · g)m = fm · gm, (v) fn·m = (fn)m and (vii) f(tk)m = fm|t7→tk .

Moreover, they proved the formula

(1) 1 +
∑

n≥1

[X [n]] · tn =


1 +

∑

n≥1

[
Hilbn

C
d
,0

]
· tn




[X]

∈ S0(var/C)[[t]]

in the motivic semi-ring S0(var/C) of complex algebraic varieties. Here for

A(t) = 1 +

∞∑

i=1

[Ai]t
i ∈ S0(var/C)[[t]] and [X ] ∈ S0(var/C) ,

the following expression defines geometrically a power structure on S0(var/C):

(2) (A(t))
[X]

:= 1 +

∞∑

n=1





∑
∑

iki=n

[(
(
∏

i

Xki) \∆

)
×
∏

i

Aki

i /
∏

i

Ski

]
 · t

n,

where ki ∈ N0, ∆ is the large diagonal in X
∑

i
ki , and the symmetric group Ski

acts by permuting the corresponding ki factors in
∏

iX
ki ⊃ (

∏
iX

ki) \∆ and the
spaces Ai simultaneously. The Kapranov zeta function

λt([X ]) := (1 − t)−[X] := (1 + t+ t2 + · · · )[X] = 1 +

∞∑

n=1

[
X(n)

]
· tn
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defines a pre-lambda structure on the associated Grothendieck ring K0(var/C) of
complex algebraic varieties. And a pre-lambda structure λt(·) =: (1 − t)−(·) on
a ring R determines algebraically a power structure on R, since a power series
A(t) = 1 +

∑∞
i=1 ait

i ∈ 1 + tR[[t]] admits a unique Euler product decomposition

(3) A(t) =

∞∏

k=1

(1 − tk)−bk =

∞∏

k=1

(
(1− t)−bk |t7→tk

)

with bk ∈ R (see also [2]). Then a power structure on R can be uniquely defined
by using (iii) and (vii).

In [4] we extended the geometric definition of the motivic power structure to
a motivic exponentation with values in the motivic Pontrjagin semi-ring. Let F
be a functor to the category of abelian (semi-)groups defined on complex quasi-
projective varieties, covariantly functorial for all (proper) morphisms. Assume
F is also endowed with a commutative, associative and bilinear cross-product ⊠
commuting with (proper) push-forwards (−)∗ (or (−)!), with a unit 1 ∈ F (pt).
Our main examples for F (X) are the relative motivic Grothendieck (semi-)group
K0(var/X) or S0(var/X) and the Borel-Moore homology H∗(X) := HBM

even(X)⊗
Q[y]. We define the commutative Pontrjagin (semi-)ring (PF (X),⊙) by

PF (X) :=
∞∑

n=0

F (X(n)) · tn :=
∞∏

n=0

F (X(n)),

with product ⊙ induced via

⊙ : F (X(n))× F (X(m))
⊠
→ F (X(n) ×X(m))

(−)∗
→ F (X(n+m)),

and unit 1 ∈ F (X(0)) = F (pt). It is easy to see that, if f : X → Y is a (proper)
morphism, then we get an induced (semi-)ring homomorphism

f∗ := (f
(n)
∗ )n : PF (X)→ PF (Y ),

with f (n) : X(n) → Y (n) the corresponding (proper) morphism on the n-th sym-

metric products. The k-th power operation Pk =
(
p
(n)
k∗

)
: PF (X) → PF (X)

for k ≥ 1 is the (semi-)ring homomorphism defined by the push forwards p
(n)
k∗

for the natural maps p
(n)
k : X(n) → X(nk) induced by the diagonal embed-

dings Xn → (Xn)k ∼= Xnk. Viewing the coefficients of tn in (2) as elements
of S0(var/X

(n)), one gets for X fixed a motivic exponentation:

(4) (−)X : 1 + tS0(var/(C)[[t]]→ PS0(var/X) :=
∑

n≥0

S0(var/X
(n)) · tn.

This satisfies rules like (iii′) (A(t) ·B(t))
X

= (A(t))
X
⊙ (B(t))

X
,

(v’) π!

(
(A(t))X

′×X
)
=
(
(A(t))

[X′]
)X

, for π : X ′ ×X → X the projection,

(vii’)
(
A(tk)

)X
= Pk((A(t))

X
), with Pk the k-th power operation.
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Let X be a smooth and pure d-dimensional complex quasi-projective variety. Then

(5) 1 +
∑

n≥1

[X [n] πn→ X(n)] · tn =


1 +

∑

n≥1

[
Hilbn

Cd
,0

]
· tn




X

.

The un-normalized Hirzebruch class of J.-P.Brasselet, J.Schürmann and S.Yokura
[1] is the unique natural transformation

Ty∗ : K0(var/X)→ H∗(X) := HBM
even(X)⊗Q[y]

commuting with push-forward for proper morphisms, satisfying for X smooth the
normalization:

Ty∗(X) := Ty∗([idX ]) =
∑

i≥0

(
ch∗(Ωi

X) · td∗(X) ∩ [X ]
)
· yi .

Here ch∗ is the Chern character and td∗ the Todd-class. For X = pt one gets the
χy-genus. Moreover, Ty∗ also commutes with the cross-products ⊠, so that one
gets a functorial ring homomorphism of Pontrjagin rings Ty∗(−) : PK0(var/X)→
PH∗(X) commuting with the power operations Pk. In this way one finally gets
from (5) the following (see [4]):

Theorem 1. Let X be a smooth complex quasi-projective variety of pure dimension
d. Then the following generating series formula for the push-forwards under the
Hilbert-Chow morphisms of the un-normalized Hirzebruch classes T(−y)∗(X

[n]) of

Hilbert schemes holds in the Pontrjagin ring PH∗(X):

(6)

∞∑

n=0

πn∗T(−y)∗(X
[n]) · tn =

∞∏

k=1

(1− tk · dk∗)
−χ−y(αk)·T(−y)∗

(X),

where the αk ∈ K0(var/C) are the coefficients appearing in the Euler product of
(1) for the geometric power structure on the pre-lambda ring K0(var/C).

Here we use the group homomorphisms

(1− t · d∗)
−(·) := exp

( ∞∑

r=1

Ψrd
r
∗(·)

tr

r

)
:
(
HBM

even(X)⊗Q[y],+
)
→ (PH∗(X),⊙)

and (1− tk ·dk∗)
−(·) := Pk ◦

(
(1− t · d∗)−(·)), with Pk the k-th power operation and

Ψr : HBM
2k (−) ⊗ Q[y] → HBM

2k (−) ⊗ Q[y] the r-th homological Adams operation
defined by multiplying with 1/rk on HBM

2k (−;Q) together with Ψr(y) = yr.
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