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Introduction by the Organisers

Since its introduction in 1998, the Lifting Method grew to be one of the most
powerful and fruitful methods to study Hopf algebras. Over the years, the method
showed strong relationship with other areas of mathematics such as quantum
groups, non-commutative differential geometry, knot theory, combinatorics of root
systems and Weyl groups, Lyndon words, cohomology of flag varieties, projective
representations, conformal field theory. The influence of the method was corrobo-
rated by the “New Hot Paper” award of Essential Science IndicatorsSM, Thomson
Reuters, May 2011, for

N. Andruskiewitsch and H.-J. Schneider, On the classification of finite-dimensional
pointed Hopf algebras, Ann. Math. 171 (2010), 375–417.

The heart of the Lifting Method is formed by the structure theory of Nichols
algebras. Nichols algebras are connected graded braided Hopf algebras gener-
ated by primitive elements, all primitive elements having degree one. They were
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first studied by Nichols and were re-discovered by Lusztig, Woronowicz and oth-
ers. A major problem, which has been open since the introduction of the Lifting
Method, is the classification of finite-dimensional Nichols algebras over groups.
This problem was completely solved for finite abelian groups when the base field
is algebraically closed of characteristic 0; the solution uses Lie theoretic structures,
in particular the very flexible notion of the Weyl groupoid. A generalization of
this theory to arbitrary groups is possible and opens new research directions. On
the other hand, Weyl groupoids can be and are investigated for their own sake, for
example in relation with Coxeter groups, simplicial arrangements, cluster algebras
and toric varieties.

The purpose of this meeting was to bring together experts in Nichols algebras
and Weyl groupoids, to analyze the present state-of-the-art and elaborate new
strategies to further deepen our knowledge of these mathematical objects with
a view towards applications in the classification program and the areas evoked
above, with emphasis in the cohomological aspects. At this place we would like to
thank MFO for providing us with an NSF grant with which we could invite Julia
Pevtsova to our mini-workshop. At the mini-workshop, talks were given by N. An-
druskiewitsch, I. Angiono, M. Cuntz, F. Fantino, J. Pevtsova, V. Kharchenko,
A. Lochmann, M. Rosso, H.-J. Schneider, Ø. Solberg, L. Vendramin, V. Welker,
S. Witherspoon, and H. Yamane.

On the first day of the mini-workshop there were two three-hour introduc-
tory talks on Nichols algebras (by H.-J. Schneider and I. Angiono) and on Weyl
groupoids (by M. Cuntz), respectively. With these talks we tried to compensate
the large differences in the backgrounds and main research interests of the par-
ticipants. The introductory talks were attributed by all participants to be very
helpful and professional to create a common starting point.

Starting with Tuesday we tried to keep the number of talks per day on a low
level to allow intensive discussions between and after the talks. So we had four
talks on Tuesday and Thursday, two on Wednesday and three on Friday. On
Wednesday afternoon we made a trip to St. Roman which we enjoyed very much.

We planned as a highlight the talk of H.-J. Schneider, which brought together
the two topics in the title of the mini-workshop. However, we indeed had many
excellent talks, so at the end of the meeting it was hard to say that one particular
talk should be called the highlight. In the talks the speakers often mentioned
questions and conjectures; in a problem session at the end of the meeting we
were discussing possible ways to attack these problems and directions of further
research.

Concluding the above, all organizers and all participants agreed that the mini-
workshop was an extremely effective and enjoyable meeting which helped to get an
overview on the recent developments of the field, to initiate discussions between
experts of various fields, to motivate each other to think sometimes differently,
and to discuss possible perspectives.

We strongly believe that the subject of our mini-workshop also has the potential
for a successful half-size workshop which we would like to organize in the future.
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Abstracts

Introduction to Nichols algebras

Hans-Jürgen Schneider

Let H be a Hopf algebra with comultiplication ∆ : H → H ⊗ H and bijective
antipode S : H → H . A left Yetter-Drinfeld module V over H (or a YD-module)
is a vector space V which is a left H-module and a left H-comodule with comodule
structure map δ : V → H ⊗ V such that

δ(hv) = h(1)v(−1)S(h(3))⊗ h(2)v(0), for all h ∈ H, v ∈ V.

Here the symbolic notation δ(v) = v(−1)⊗v(0) and (∆⊗idH)∆(h) = h(1)⊗h(2)⊗h(3)

is used. The YD-modules form a category where morphisms are left H-linear and
H-colinear maps. This category is monoidal: if V,W are YD-modules, then so is
their tensor product V ⊗W over the ground field with diagonal action and coaction
of H . And it is braided: the braiding is given by

cV,W : V ⊗W → W ⊗ V, v ⊗ w 7→ v(−1)w ⊗ v(0).

Let V be a YD-module. Then the tensor algebra T (V ) is a Yetter-Drinfeld mod-
ule, and T (V ) becomes a Hopf algebra in the braided monoidal category of YD-
modules, where the comultiplication is the algebra map with

∆T (V ) : T (V ) → T (V )⊗ T (V ), v 7→ v ⊗ 1 + 1⊗ v.

Here the algebra structure on T (V )⊗ T (V ) is the braided, that is

(a⊗ b)(c⊗ d) = a(b(−1) · c)⊗ b(0)d, a, b, c, d ∈ T (V ).

The Nichols algebra B(V ) is defined by B(V ) = T (V )/I(V ), where I(V ) is the
largest coideal of T (V ) contained in

⊕
n≥2 T

n(V ). The Nichols algebra is a graded

quotient Hopf algebra of T (V ) whose primitive elements are exactly the elements
in V . A special case of a Nichols algebra is U+

q (g), g a semisimple Lie algebra, see
[2]; the YD-modules in this case is defined over the group algebra H = kΓ of a
free abelian group of finite rank Γ. The relations of the Nichols algebra can be
described by the braided symmetrizer maps Sn : T n(V ) → T n(V ), n ≥ 2. Thus
B(V ) can be defined for any vector space with a braiding c : V ⊗ V → V ⊗ V .
Important early papers on the subject are [3], [5]. There is a dual description as
a subalgebra of the braided shuffle algebra [4]. Nichols algebras arise naturally
in the classification of pointed Hopf algebras as subalgebras of the graded Hopf
algebra associated to the coradical filtration of a pointed Hopf algebra [1].

References

[1] N. Andruskiewitsch, H.-J. Schneider, On the classification of finite-dimensional pointed
Hopf algebras, Ann. Math. 171 (2010), 375–417.

[2] G. Lusztig, Introduction to Quantum Groups, Birkhäuser, 1993.
[3] W. Nichols, Bialgebras of type one, Comm. Algebra 6 (1978), 1521–1552.
[4] M. Rosso, Quantum groups and quantum shuffles, Invent. Math. 133 (1998), 399–416.
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[5] S. L. Woronowicz, Differential calculus on compact matrix pseudogroups (quantum groups),
Comm. Math. Phys. 122 (1989), 125–170.

Nichols algebras of diagonal type

Iván Angiono

A PBW basis of an algebra A is understood as a basis whose elements are products
of elements of a totally ordered subset of A. The Poicaré-Birkhoff-Witt Theorem
establishes the existence of such basis for the enveloping algebra of a Lie algebra,
where the ordered set is any ordered basis of the Lie algebra

The existence of PBW bases for more general algebras was a frequent topic of
study. Several combinatorics methods were discovered to show that some families
of algebras have this property, see for example [1] as a pioneer reference. One of
these methods involve the Lyndon words and it is applied to show the existence
of such PBW bases for braided connected Hopf algebras obtained as quotients of
a tensor algebra, with an extra element, a function controlling the height of the
generators. One sufficient condition about the braiding is that it should be of
diagonal type [3, 4], or more generally of triangular type [5]. This result is an
important tool to show the existence of the Weyl groupoid associated to a Nichols
algebra of diagonal type [2].

In this talk we recall the definition of Lyndon words, their properties and the
hyperwords related with the braiding. We state the main results from [3, 4, 5]
describing the following elements:

• the braided bracket and the comultiplication of hyperwords on the tensor
algebra, and the existence of a family of coideal subalgebras,

• the definition of some PBW generators for a given quotient by a braided
Hopf ideal and the height function,

• a proof that they give a PBW basis of such quotient, and an necessary
condition of an element to have finite height.

References

[1] M. Hall, A basis for free Lie rings and higher commutators in free groups, Proc. Am. Math.
Soc. 1 (1950), 575-581.

[2] I. Heckenberger, The Weyl groupoid of a Nichols algebra of diagonal type, Invent. Math.
164 (2006), 175–188.

[3] V. Kharchenko, A quantum analog of the Poincare-Birkhoff-Witt theorem, Algebra and
Logic 38 (1999), 259–276.

[4] M. Rosso, Lyndon words and Universal R-matrices, talk at MSRI, October 26, 1999, avail-
able at http://www.msri.org; Lyndon basis and the multiplicative formula for R-matrices,
preprint (2003).

[5] S. Ufer, PBW bases for a class of braided Hopf algebras, J. Alg. 280 (2004), 84–119.
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Introduction to Weyl groupoids

Michael Cuntz

Reflections appear in many areas of mathematics. For instance, certain groups
generated by involutions may be investigated by representing them as reflection
groups. In particular, the Weyl groups belong to this class. They appear naturally
inside semisimple algebraic groups and are fundamental for their classification. In
their reflection representation, the Weyl groups are in fact subgroups of GL(Zr)
for some r. This integrality is a very strong and important restriction; reflection
groups with this property are also called crystallographic.

Closely related to the algebraic group is another important structure, the Lie
algebra. Lie algebras arise in nature as vector spaces of linear transformations,
for example differential operators. It turns out that finite dimensional semisimple
complex Lie algebras decompose into a direct sum labeled by roots and a Cartan
subalgebra. These roots are (up to signs) the normal vectors defining the reflection
hyperplanes of a Weyl group. Again, we have an integrality property for the roots.
Let A be the real hyperplane arrangement given by the orthogonal complements
of the roots. Then this is a simplicial arrangement and for each chamber K, the
roots labeling the walls of K form a simple system ∆, and in particular all other
roots are integer linear combinations of the roots in ∆.

So apparently the combinatorics of root systems and Weyl groups play an im-
portant role in mathematics and moreover, a certain integrality is an essential
feature of these structures. Recent results on Nichols algebras have led to a new
symmetry structure, the Weyl groupoid. Again one has vectors called “roots”, but
this time the object acting on the roots is in general a groupoid and not a group
anymore. A remarkable fact is that even in this much more general setting, the
above integrality still plays a crucial role.

If the real roots of a Weyl groupoid form a finite root system, then we will
say that the Weyl groupoid is finite. As for root systems from Coxeter groups, a
finite Weyl groupoid W defines a hyperplane arrangement: Fix an object a and
its set of positive roots Ra

+. The arrangement associated to W and a is the set
of orthogonal complements of the elements of Ra

+ in Rr. It turns out that these
arrangements are simplicial (see [10]). Moreover, it turns out that in terms of
simplicial arrangements the axioms of a finite Weyl groupoid reduce to one single
integrality property (see [7]). We call simplicial arrangements satisfying this axiom
crystallographic arrangements.

Among other things, this explains why the class of arrangements obtained from
Weyl groupoids is so large. In fact this class is so large that for example in
rank three, 53 of the 67 known sporadic simplicial arrangements (see [9] and [8])
over Q are crystallographic. Like reflection arrangements, all crystallographic
arrangements are free [1]. They could provide examples or counterexamples in
geometry or topology, especially since they may also be viewed as compact smooth
toric varieties (see [6]).
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Our lecture on finite Weyl groupoids was divided into three talks. We first gave
the definitions of Cartan schemes, Weyl groupoids, and crystallographic arrange-
ments. Then we explained the relations between these notions, and finally we
sketched various results (see [3], [2], [5], [4]) needed for the classification of finite
Weyl groupoids.

The following open problems were formulated during the lecture.

(1) Are all finite Weyl groupoids invariants of Nichols algebras?
(2) Classify simplicial arrangements.
(3) Extend the connection between reflection groupoids and cluster algebras.
(4) Elaborate the connection to toric varieties.
(5) Understand the structure of the sporadic finite Weyl groupoids.
(6) Deduce the classification of finite dimensional Nichols algebras of diagonal

type from the classification of finite Weyl groupoids.

References

[1] M. Barakat, M. Cuntz, Coxeter and crystallographic arrangements are inductively free,
Adv. Math. 229 (2012), 691–709.

[2] M. Cuntz, I. Heckenberger, Weyl groupoids of rank two and continued fractions, Alge-
bra & Number Theory 3 (2009), 317–340.

[3] , Weyl groupoids with at most three objects, J. Pure Appl. Algebra 213 (2009),
1112–1128.

[4] , Finite Weyl groupoids, arXiv:1008.5291v1 (2010), 35 pp.
[5] , Finite Weyl groupoids of rank three, Trans. Amer. Math. Soc. 364 (2012),

1369–1393.
[6] M. Cuntz, Y. Ren, G. Trautmann, Strongly symmetric smooth toric varieties, Kyoto

J. Math. 52 (2012), 597–620.
[7] M. Cuntz, Crystallographic arrangements: Weyl groupoids and simplicial arrange-

ments, Bull. London Math. Soc. 43 (2011), 734–744.
[8] , Simplicial arrangements with up to 27 lines, Discrete Comput. Geom. 48

(2012), 682–701.
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Some problems on Nichols algebras

Nicolás Andruskiewitsch

Most of the open problems about Nichols algebras fit into the general question:

Main Problem. Classify all the braided vector spaces (V, c) (in a class C) such
that the corresponding Nichols algebras B(V ) = T (V )/I(V ) have finite dimension,
or finite GK dimension, or finite growth. For the resulting (V, c), give an optimal
set of defining relations of I(V ).

Although the Nichols algebra B(V ) depends only on the braiding c, we are
interested in realizations of (V, c) as a Yetter-Drinfeld module over a Hopf algebra
H . In the next Table we summarize some problems related with some kind of
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Hopf algebras, their finite-dimensional Yetter-Drinfeld modules. Here Γ denotes a
group, and Applications means Applications to the classification of Hopf algebras...

Table 1. Some problems on Nichols algebras

Shape H Shape c Problem Applications

H = kΓ, Γ Diagonal dimB(V ) < ∞ pointed over abelian
finite abelian type groups, finite dim.
H = kΓ, Γ Triangular GKdimB(V ) < ∞ pointed over abelian
abelian type groups, finite GK dimension
H = kΓ, kΓ Rack dimB(V ) < ∞ pointed and copointed,
Γ finite type finite dimension
H semisimple Unknown dim < ∞ Chevalley type, finite dim.
H finite dim., Unknown dim < ∞ all finite dimensional
generated by
the coradical

Now we describe advances and open questions for some particular problems.

1. Diagonal type, finite dimension

Let us briefly comment the main results in this setting.

◦ Each Nichols algebra B(V ) has a PBW basis [10, 12] formed by some hyperletters
called roots.

◦ The definition of the Weyl groupoid of B(V ) with finite set of roots [8].

◦ The classification of all matrices (qij) with a finite set of roots [9].

◦ The complete set of relations for each (qij) in Heckenberger’s list [6].

As we see, there are many important results about the Nichols algebras of this
class of braidings; but there are still some open questions. To state them, let us
divide the list of indecomposable matrices in [9] in three families:

◦ Standard braidings: the Cartan matrices of all the braidings with the same
Weyl groupoid coincide. This Cartan matrix should be of finite type. It includes
properly the family of braidings of Cartan type [4]

◦ Braidings of super type: the Weyl groupoid behaves as the one for some contra-
gredient Lie superalgebra. It intersects the family of standard braidings.

◦ Unidentified braidings: a finite family with braidings of rank ≤ 7.

Question 1. Deduce the classification in [9] from the classification of Cartan
schemes [7].

There are some objects in the list in [7] that do not appear in the list in [9].
Are they related to Lie algebras in positive characteristic?

Question 2. Characterize the braidings of super type.

Question 3. Identify the unidentified braidings.
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2. Triangular type, finite GK-dimension

We recall that a braiding is triangular if there exists a basis x1, . . . , xθ, non-zero
scalars qij , 1 ≤ i, j ≤ θ, and vectors vkij ∈ V , 1 ≤ i, j, k ≤ θ, j < k such that

c(xi ⊗ xj) = qijxj ⊗ xi +
∑

k>j

xk ⊗ vkij , 1 ≤ i, j ≤ θ

An example of a braiding of triangular type is the Jordanian quantum plane. Any
diagonal braiding is of course triangular with vkij = 0 always. About the problem
of Nichols algebras with finite GK-dimension in this context, we know:

◦ The Nichols algebra (V, c) has a PBW basis [13].

◦ If the braiding is of diagonal type, qii is not a root of unity, B(V ) is a domain
with finite GK dimension, then the braiding is of finite Cartan type [4, 1].

3. Rack type, finite dimension

Given a (finite) rack X and a cocycle q : X×X → GL(n, k), there is a braiding
in the vector space kX⊗kn; the corresponding Nichols algebra is denoted B(X, q).
One seeks to classify all pairs (X, q) such that dimB(X, q) < ∞. There are two
different kind of contributions to this problem:

(1) Determination of families of racks that collapse (see below).
(2) Computation by hand, or by computer, some specific examples.

As the computation of all cocycles for a given rack X is hard, it is nice to have
tools that guarantee that dimB(X, q) = ∞ for all cocycles q. For shortness, we
say that X collapses if this happens. The main features are:

◦ A rack is of type D if there exists a subrack Y ofX , which admits a decomposition
of subracks Y = R ∐ S, an elements r ∈ R, s ∈ S such that r ⊲ (s ⊲ (r ⊲ s))) 6= s.

◦ A rack of type D collapses.

◦ The list of all finite simple racks is known [3, 11].

◦ If X is of type D and we have a surjective map of racks W → X , then W is of
type D. Also, any rack has a simple quotient. Therefore it is natural to ask:

Question 4. Classify all simple racks of type D.

For instance, (twisted) conjugacy classes of finite simple groups are simple racks
and most of them are of type D. See [2] for details and references for the alternating
and sporadic groups (for groups of Lie type, this is work in progress). An exception:

Question 5. Determine dimB(On
2 ,−1), n ≥ 6. Is this Nichols algebra quadratic?

Here OΓ
x is the conjugacy class of x in Γ, with abbreviation On

1n1 ,2n2 ,... when
Γ = Sn and x is of type (1n1 , 2n2 , . . . ). As for the list of all pairs (X, q) with
dimB(X, q) < ∞ (in char 0), see [2, Table 6]. However the real reason for the finite-
dimensionality of these Nichols algebras is yet to be understood. It would also be
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interesting to compute a few more examples of Nichols algebras dimB(X, q), e. g.
when (X, q) is one of the following (where ω is a primitive cubic root of 1):

(OA4

3 , ω), (O3
2, q), q 6= −1, (O5

2,2,− 1).
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Fomin-Kirillov algebras

Leandro Vendraḿın

For an integer n ≥ 3 denote by En the algebra (of type An−1) with generators
x(ij), where 1 ≤ i < j ≤ n, and relations

x2
(ij) = 0, for 1 ≤ i < j ≤ n,

x(ij)x(jk) = x(jk)x(ik) + x(ik)x(ij), for 1 ≤ i < j < k ≤ n,

x(jk)x(ij) = x(ik)x(jk) + x(ij)x(ik), for 1 ≤ i < j < k ≤ n,

x(ij)x(kl) = x(kl)x(ij), for any distinct i, j, k, l.

The algebras En are graded by deg(x(ij)) = 1. Of course, it is natural to ask if
En is finite-dimensional. It is known that En is finite-dimensional if n ≤ 5. It has
been conjectured that dim En = ∞ for n ≥ 6.

Example 1. The algebra E3 has dimension 12. The Hilbert series H3(t) of E3 is
a polynomial of degree 4: H3(t) = (2)2t (3)t, where (k)t = 1 + t+ · · ·+ tk−1.

Example 2. Computer calculations yield dim E4 = 576. The Hilbert series H4(t)
of E4 is a polynomial of degree 12: H4(t) = (2)2t (3)

2
t (4)

2
t .
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Example 3. Computer calculations yield dim E5 = 8294400. The Hilbert series
H5(t) of E5 is a polynomial of degree 40: H5(t) = (4)4t (5)

2
t (6)

4
t .

Example 4. The Hilbert series H6(t) of E6 cannot be written as a product of
t-numbers. Further,

H6(t) = 1 + 15t+ 125t2 + 765t3 + 3831t4 + 16605t5 + 64432t6 + 228855t7 + · · ·

In [3], Fomin and Kirillov introduced the algebras En as a new model for the
Schubert calculus of a flag manifold. They proved that En contains a commutative
subalgebra isomorphic the cohomology ring of the flag manifold. In [1], Bazlov
proved that Nichols algebras provide the correct setting for this model of Schubert
calculus. But what is the relation between the algebras En and Nichols algebras?

Let Vn be the vector space with basis {v(ij) | 1 ≤ i < j ≤ n} and consider the
map c ∈ GL(Vn ⊗ Vn) defined by

c(vσ ⊗ vτ ) = χ(σ, τ)vστσ−1 ⊗ vσ, χ(σ, τ) =

{
1 if σ(i) < σ(j),

−1 otherwise,

where σ and τ are transpositions, and τ = (i j) with i < j. Since (Vn, c) is a
braided vector space, it is possible to consider the Nichols algebra B(Vn). Bazlov
proved that B(Vn) contains a commutative subalgebra isomorphic to the coho-
mology ring of the flag manifold.

It is known that B(Vn) = En if 3 ≤ n ≤ 5; this was proved by Milinski and
Schneider for n ≤ 4, and by Graña for n = 5. It has been conjectured that B(Vn)
is quadratic and B(Vn) = En; see for example [5] and [1].

There are many others interesting conjectures about Fomin–Kirillov algebras.
In [5], Majid wrote that it might be possible to find a relation between Fomin–
Kirillov algebras and the representation theory of preprojective algebras.

Let Λ be the preprojective algebra of a quiver of type An−1. It is known that
the number of indecomposable modules over Λ is 4 if n = 3, 12 if n = 4, and 40
if n = 5. Further, Λ is of infinite representation type if n ≥ 6. Majid noticed
that the number of indecomposable modules over Λ is equal to the degree of the
Hilbert series of En, at least for 3 ≤ n ≤ 5. Majid’s conjecture does not have a
precise formulation, but it states that this numerology is not an accident.

To conclude, we restate Majid’s observation in terms of cluster algebras. Let
n ≥ 2, G = SLn, and N be the subgroup of upper triangular matrices with ones
in the diagonal. In [2], Berenstein, Fomin and Zelevinski proved that C[N ], the
coordinate ring of N , has a cluster algebra structure. Furthermore, the number of
clusters of C[N ] is given by the following table:

Lie type of G Number of clusters
A2 4
A3 12
A4 40

others ∞

Geiss, Leclerc and Schröer established a relation between the number of clusters
of C[N ] and the number of indecomposable modules over the preprojective algebra
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Λ, see for example [4]. This implies that Majid’s observation can be translated
into the combinatorial language of cluster algebras.
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On racks of type D

Fernando Fantino

In the context of the Lifting Method, the study of the classification of finite-
dimensional pointed Hopf algebras with non-abelian group leads to the study of
finite-dimensional Nichols algebras B(X, q) associated with pairs (X, q), where X
is a rack an q a 2-cocycle of racks.

Since the computation of the dimension of B(X, q) is a hard task, it is useful to
determine those racks X such that dimB(X, q) = ∞ for all q. A family of racks
with this property is the class of racks of type D. We say that a rack X is of type
D if it contains a decomposable subrack Y = R

∐
S and elements r ∈ R, s ∈ S

such that r ⊲ (s ⊲ (r ⊲ s)) 6= s.
Another property of the racks of type D is the following: if Z → X is an

epimorphism of finite racks and X is of type D, then Z is of type D. On the other
hand, any rack has a projection onto a simple rack and the classification of finite
simple racks is known, see [1] and [6]. For that reasons, it is an important:

Problem: to classify all finite simple racks of type D.

By [1], a finite simple rack belongs to one of the following classes:

(a) simple affine racks,
(b) non-trivial conjugacy classes of non-abelian finite simple groups,
(c) twisted conjugacy classes of non-abelian finite simple groups,
(d) simple twisted homogeneous racks.

In this talk I will show the present state of the classification of racks of type D
in the list above. For the families of racks (b), (c) and (d) our approach uses the
classification of finite simple non-abelian groups. For the class of racks in (b), the
problem if finished for the alternating groups [2, 4] and the sporadic simple groups
except 19 conjugacy classes of the Monster group [3]. For the class of racks in
(c), the problem if finished for the alternating groups [2] and the sporadic simple
groups [5]. There are works in progress considering the finite groups of Lie type.
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Finally, I will mention how the results obtained in the previous paragraph are
used to obtain the classification of finite-dimensional pointed Hopf algebras over
some families of non-abelian (simple) groups.
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Harish-Chandra type theorem of Drinfeld doubles

Hiroyuki Yamane

(joint work with Punita Batra)

Let K be an algebraically closed field, and K× be K \ {0}. Let I be a non-empty

finite set. Let qij ∈ K× for i, j ∈ I. Let Ũ be an associative unital K-algebra

defined by the generators K̃i, K̃
−1
i , L̃i, L̃

−1
i , Ẽ+

i , Ẽ−
i (i ∈ I), and the relations

X̃Ỹ = Ỹ X̃, X̃, Ỹ ∈ {K̃±1
i , L̃±1

i |i ∈ I}, K̃iK̃
−1
i = L̃iL̃

−1
i = 1,

K̃iẼ
±
j = q±1

ij Ẽ±
j K̃i, L̃iẼ

±
j = q∓1

ji Ẽ±
j L̃i,

Ẽ+
i Ẽ−

j − Ẽ−
j Ẽ+

i = δij(−K̃i + L̃i).

Let A be a free Z-module with a basis {αi|i ∈ I}, so rank(A) = Card(I). Let

A+ := {
∑

i∈I miαi|mi ∈ Z≥0(i ∈ I)}. Regard Ũ as an A-graded K-algebra with

degK̃±1
i = degL̃±1

i = 0, and degẼ±
i = ±αi. Let Ũ± be the unital K-subalgebras

of Ũ generated by Ẽ±
i ’s. Let Ũ0 be the unital K-subalgebra of Ũ generated by

K̃±1
i ’s and L̃±1

i ’s. Let Ĩ± be the K-subspaces of Ũ± spanned by the homogeneous

elements X̃± with degX̃± /∈ {0} ∪ {±αi|i ∈ I} such that for every i,

X̃±Ẽ∓
i − Ẽ∓

i X̃± = X̃±,′K̃i + X̃±,′′L̃i

for some X̃±,′, X̃±,′′ ∈ Ĩ±. Let J̃ := Span
K
(Ĩ−Ũ0Ũ+ + Ũ−Ũ0Ĩ−). Then J̃ is

an ideal of Ũ . Let U := Ũ/J̃ , and π : Ũ → U be the canonical map. Let

U± := π(Ũ±), and U0 := π(Ũ0).

For λ =
∑

i∈I miαi, µ =
∑

i∈I liαi ∈ A withmi, li ∈ Z, let χ(λ, µ) :=
∏

ij q
milj
ij ,

and ord(λ) := Card({χ(kλ, λ) ∈ K× | k ∈ Z }). Assume that there exist a positive
integer n and an injection ϕ : {1, . . . , n} → A+ satisfying the conditions:

(1) ord(ϕ(k)) ≥ 2 for all 1 ≤ k ≤ n.
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(2) There exist homogeneous elements Ē±
1 , . . . , Ē±

n ∈ U±, degĒ±
k = ±ϕ(k),

such that (Ē±
1 )r1 · · · (Ē±

n )rn (0 ≤ rk < ord(ϕ(k))) form K-bases of U±.

Let {KλLµ|λ, µ ∈ A} be the K-basis of U0 such thatKλLµ·Kλ′Lµ′ = Kλ+λ′Lµ+µ′ ,

K±αi
L0 = π(K̃±1

i ), K0L±αi
= π(L̃±1

i ). We have U ∼= U−⊗U0⊗U+ as a K-linear
space. Let R+ := {βk ∈ A|1 ≤ k ≤ n}. By the Kharchenko’s PBW theorem, R+

is unique. We call R := R+ ∪ −R+ the root system of U .

Let E±
i := π(Ẽ±

i ). Define the K-linear map Sh : U → U0 by ∪i∈I(Sh(UE+
i ) ∪

Sh(E−
i U)) = {0} and Sh|U0 = idU0 . We call Sh the Shapovalov map of U . Let U0

be the K-subalgebra of U of all homogeneous zero-degree elements. Then U0 ⊂ U0,
U0 6= U0. Let Ω : A → K× be a multiplicative character. Let ZΩ(U) := {X ∈
U0 |E

±
i X = Ω(αi)

±1XE±
i (i ∈ I) }. We call ZΩ(U) the Ω-skew graded center of

U . We call HCΩ := Sh|ZΩ(U) the Ω-Harish-Chandra map of U . We can prove that

HCΩ is injective. Define the multiplicative character ρ̂ : A → K× by ρ̂(αi) := qii.

Theorem. In the following, let h := ord(β) and ω := Ω(β) · χ(β,µ)
χ(λ,β) . Let Z =∑

λ,µ∈A aλ,µKλLµ ∈ U0, where aλ,µ ∈ K. Then Z ∈ ImHCΩ if and only if Z

satisfies the following conditions for all β ∈ R+ and all (λ, µ) ∈ A×A.

(e1) If h = ∞ and ω = χ(β, β)t for some t ∈ Z \ {0}, then

aλ+tβ,µ−tβ = ρ̂(β)t · aλ,µ.

(e2) If h = ∞ and ω 6= χ(β, β)t for all t ∈ Z \ {0}, then aλ,µ = 0.
(e3) If h < ∞ and ω = χ(β, β)t for some t ∈ {1, . . . , h− 1}, then

∞∑

k=−∞

aλ+(hk+t)β,µ−(hk+t)β · ρ̂(β)−(hk+t) =

∞∑

k=−∞

aλ+hkβ,µ−hkβ · ρ̂(β)−hk.

(e4) If h < ∞ and ω 6= χ(β, β)s for all s ∈ Z, then for all t ∈ {1, . . . , h− 1},
∞∑

k=−∞

aλ+(hk+t)β,µ−(hk+t)β · ρ̂(β)−(hk+t) =

∞∑

k=−∞

aλ+hkβ,µ−hkβ · ρ̂(β)−hk.

Cohomology of Hopf algebras and Nichols algebras

Sarah Witherspoon

About 50 years ago, Golod [6], Venkov [11], and Evens [3] proved that the cohomol-
ogy ring of a finite group is finitely generated, thus opening the door to a study
of its representations using geometric methods. Within the past two decades,
analogous results for various classes of finite dimensional Hopf algebras have been
proven. For example, Friedlander and Suslin [4] generalized the result to finite
dimensional cocommutative Hopf algebras. Ginzburg and Kumar [5] proved that
the (noncocommutative) small quantum groups have finitely generated cohomol-
ogy, using techniques that Friedlander and Parshall had used for restricted Lie
algebras. Similarly Gordon [7] proved that cohomology of finite quantum function
algebras is finitely generated.
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Etingof and Ostrik [2] conjectured much more generally that the cohomology
of any finite tensor category is finitely generated, which would imply in particu-
lar that the cohomology of any finite dimensional Hopf algebra is finitely gener-
ated. With Mastnak, Pevtsova, and Schauenburg [8], we proved the conjecture
for pointed Hopf algebras with abelian groups of group-like elements, under some
conditions. The proof used the recent classification result of Andruskiewitsch and
Schneider [1], in particular the structure of such Hopf algebras and their Nichols
algebras.

Specifically, let A be any augmented algebra, that is an algebra over a field k
with algebra homomorphism ε : A → k, for example, A could be a Hopf algebra
or a Nichols algebra. The cohomology of A is

H∗(A) := Ext∗A(k, k),

defined for example by choosing a projective resolution

. . . → Pn → Pn−1 → · · · → · · ·P1 → P0 → k → 0

of k as an A-module, applying HomA(·, k), and taking homology. The resulting
graded vector space H∗(A) becomes a k-algebra under multiplication given by
Yoneda composition.

If A is a Hopf algebra, then its cohomology H∗(A) is graded commutative (see
e.g. [10]), while if A is a Nichols algebra, then H∗(A) is braided graded commutative
[8]. If A = R#H is the bosonization of a Nichols algebra R with a semisimple
Hopf algebra H , then there is an action of H on the cohomology H∗(R) of R for
which the cohomology H∗(A) of A is isomorphic to (H∗(R))H , the subalgebra ofH-
invariants of H∗(R). More generally, if H is not necessarily semisimple, a spectral
sequence yields a relationship between the cohomology of A and the cohomology
of R. In either case, in order to understand the cohomology of the Hopf algebra
A, it is necessary to understand that of the Nichols algebra R.

In the case that A is a pointed Hopf algebra with abelian group of group-like
elements, under the conditions in the classification result of Andruskiewitch and
Schneider [1], in [8] we adapted the techniques of Friedlander and Parshall, and
of Ginzburg and Kumar, to prove finite generation of cohomology. Knowing the
structure of the Nichols algebras involved is crucial in the proof. An outline of
this approach is: (1) A is filtered with associated graded algebra R#kG for some
Nichols algebra R. A spectral sequence for a filtered algebra is used to reduce the
question of finite generation to that for H∗(R#kG) ∼= H∗(R)G. (2) The Nichols
algebra R is filtered, has a PBW basis, and its associated graded algebra grR
is a Nichols algebra of type A1 × · · · × A1. A spectral sequence for a filtered
algebra is used to reduce the question of finite generation to that for H∗(grR). (3)
The cohomology H∗(grR) is computed explicitly, using a resolution adapted from
Benson and Green; the cohomology is finitely generated.

We remark that each proof of finite generation of cohomology of a class of Hopf
algebras uses the structure of the specific type of Hopf algebra in crucial ways.

The problem remains open: Prove or find a counterexample to the conjecture
of Etingof and Ostrik. More specifically, do this first for some known classes of
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Hopf algebras, such as the following. (1) The remaining pointed Hopf algebras
with abelian groups of group-like elements in characteristic 0, or more generally
the bosonizations of Nichols algebras of diagonal type. Existence of PBW bases
for some classes may mean that existing techniques can be adapted. In particular,
the general result of Shroff [9] on quotients of PBW algebras may apply to some
of the classes of examples. (2) Pointed Hopf algebras with nonabelian groups of
group-like elements, and pointed Hopf algebras in positive characteristic (with any
group of group-like elements having nonsemisimple group algebra). There are no
such examples of H∗(A) known at this time.
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Computational aspects of projective resolutions

Oyvind Solberg

The main focus behind this talk was to understand the 12-dimensional Nichols
algebra

R = k〈a, b, c〉/(a2, b2, c2, ab+ bc+ ca, ac+ ba+ cb)

with respect to the cohomology ring H∗(R) = ⊕i≥0Ext
n
R(k, k), where k is a field

and k also denotes the trivial R-module. The cohomology ring is important, among
other things, since it gives rise to support varieties of modules given certain finite
generation conditions. See the talk of Sarah Witherspoon for further details and
background.

One way of trying to understand the cohomology ring H∗(R) is to compute a
projective resolution of the trivial module k and then compute the Yoneda algebra
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H∗(R). One projective resolution of an R-module is the so called Bongartz-Butler-
Gruenberg resolution: Let M be a finitely generated R-module, where R = kQ/I
for a field k, a quiver Q and an admissible ideal I in the path algebra kQ. Given
a projective presentation

η : 0 → P1 →֒ P0 → M → 0

of M as a kQ-module, it is known that the sequence of submodules of P0,

· · · ⊆ P1I
4 ⊆ P0I

4 ⊆ P1I
3 ⊆ P0I

3 ⊆ P1I
2 ⊆ P0I

2 ⊆ P1I ⊆ P0I ⊆ P1 ⊆ P0,

modulo the ideal I induces a projective resolution of M as a R-module. This
resolution can be analyzed using right Gröbner basis theory, and in [3] it is shown
that knowing a finite set of equations this projective resolution and the Yoneda
algebra Ext∗R(M,M) can be computed for any finitely generated R-module. In
general this resolution is far from minimal. For the above example one can show
that the number of indecomposable projective summands in n-th projective in the

resolution is 25
n
2 and 3 · 25

n−1

2 , when n is even and odd, respectively (and given
a certain Gröbner basis). The minimal projective resolution has a linear growth.

A more efficient projective resolution is described in [2, 1]. It takes the Bongartz-
Butler-Gruenberg resolution as a starting point, but makes adjustments along the
way. For instance, it can be shown that

0 → P0I →֒ P1 → Ω1
R(M) → 0

is a kQ-projective presentation of a first syzygy of M over R. The projective
module P1 can be written as ∐t

i=1wikQ for some wi in P0. If wi is in P0I, then it
will be mapped to zero in Ω1

R(M). Hence, consider only those wi which is not in
P0I. Denote this set by T1 ⊆ {w1, w2, . . . , wt}. Then

0 → P0I ∩ ∐w∈T1
wkQ →֒ ∐w∈T1

wkQ → Ω1
R(R) → 0

is an exact sequence. We now use this sequence as η was used above. This gives
rise to the projective resolutions described in [2, 1], where [1] explains in some
detail the algorithm for constructing the resolution.

Using the software package QPA (see http://sourceforge.net/projects/

quiverspathalg/), the structure of H∗(R) has been computed up to degree 40.
The dimension of Hn(R) for n = 0, 1, 2, . . . , 40 is the following:

1, 3, 5, 6, 7, 9, 11, 12, 13, 15, 17, 18, 19, 21, 23, 24, 25, . . . .

which is all positive integers congruent to {0, 1, 3, 5} according to the On-Line
Encyclopedia of Integer Sequences (oeis.org). If the dimension of Hn(R) is given

by this sequence, the Hilbert series for H∗(R) is (1+t)(1+t+t2)
(1−t)(1−t4) . This indicates that

H∗(R) has generators in degrees 1 and 4 as an algebra over H0(R). Again using
the software package QPA, one can calculate that it has three generators in degree
1 and one generator in degree 4, as an algebra over the degree zero part. We hope
to unravel the structure of the cohomology ring through an explicit knowledge of
a projective resolution of k.
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Weyl groupoid and root system of Nichols algebras

Hans-Jürgen Schneider

(joint work with István Heckenberger)

Let H be a Hopf algebra with bijective antipode, θ ≥ 2, and M = (M1, . . . ,Mθ)
a tuple of finite-dimensional irreducible Yetter-Drinfeld modules Mi over H . A
fundamental problem for Nichols algebras is to understand the Nichols algebra

B(M) = B(M1 ⊕ · · · ⊕Mθ).

In the case of B(M) = U+
q (g), the Mi are all one-dimensional, and their Nichols

algebra is simply a polynomial algebra in one variable, but B(M) is given by the
complicated braided Serre relations. In general the computation of B(M) is very
difficult or out of reach. The Weyl groupoid and the generalized root system
of B(M) are important combinatorial invariants of the Nichols algebra. These
invariants are used in all the deeper results on Nichols algebras. In the diagonal
case the Weyl groupoid was introduced by Heckenberger [2]. He used Kharchenko’s
PBW-basis of the Nichols algebra to define the root system. In the general case
of a semisimple Yetter-Drinfeld module, the Weyl groupoid was defined in [1].
The existence of root systems of B(M) was established in [3], and in [4] with a
new proof in the case of a finite Weyl groupoid. In our new work we describe
the i-th reflection operator defining the Weyl groupoid in a completely new way
by a more general and natural approach. The basic result is a braided monoidal
equivalence between the categories of left Yetter-Drinfeld modules over B(Mi)#H
and of B(Mi

∗)#H , where M∗
i is the dual Yetter-Drinfeld module over H .
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Primitively generated braided Hopf algebras

Vladislav Kharchenko

The braided Hopf algebras appeared firstly in the famous paper by Milnor and
Moore [6] as graded Hopf algebras, and then as universal enveloping algebras of
colored super-algebras [7]. A more general concept of “generalized Lie algebra” re-
lated to an involutive braiding (a symmetry) has been introduced by Gurevich [3]
and appeared later in the categorical context in the paper by Manin [5]. The uni-
versal enveloping algebra construction then provided a new class of braided Hopf
algebras. More generally, braided Hopf algebras are Hopf algebras in braided ten-
sor categories. A standard way to obtain a braided tensor category is to consider
all modules over a quasitriangular Hopf algebra or all comodules over coquasitri-
angular Hopf algebra.

We discuss possible generalizations of the Cartier—Kostant theorem for braided
Hopf algebras. By definition a connected braided coalgebra C is cosymmetric if
the image of the linearization map defined by M. Sweedler is contained in the
Nichols algebra defined by the braided space of primitive elements. We show that
a connected braided Hopf algebra H is cosymmetric if and only if it is strictly
generated by the primitive elements: Hn = Hn

1 , [4]. Additionally all Hopf subal-
gebras of H and all homomorphic images of H in the related tensor category are
cosymmetric, while all biideals are generated by the primitive elements, provided
that the braiding is diagonal or the category is the category of left comodules over
coquasitriangular cosemisimple bialgebra. The latter statement somehow defines
a category equivalence to some algebraic structure on the space of primitive el-
ements, which is naturally to consider as a ”quantum Lie algebra”. From this
point of view, we discuss approaches of S. L. Woronowicz [8] and Ardizzoni [1],
and consider in more detail the case of involutive braiding.
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Nichols algebras of diagonal type and convex orders

Iván Angiono

An important and difficult question about Nichols algebras is to obtain a set of
defining relations for I(V ), where B(V ) = T (V )/I(V ) denotes the Nichols algebra
associated to a braided vector space (V, c). It is divided in two parts: first, to
obtain some relations; second, to prove that our set generates I(V ). For the
second part, a main tool is the existence of PBW bases in the diagonal case [7].
But a problem about them is that we do not know neither the PBW generators
explicitly nor the relations between them.

Fix a braided vector space of diagonal type with matrix (qij)1≤i,j≤θ and χ the
bicharacter on Zθ given by χ(αi, αj) = qij , (αi) the canonical basis on Zθ. Assume
that the associated set of roots ∆χ is finite. Using the Weyl groupoid [3] we can
know the Zθ-degrees of the generators and that all of them are different, because
all the roots are real. Therefore the order on the PBW generators induces a total
order on the positive roots. An interesting property of these PBW bases is that
they generate a chain of coideal subalgebras when we admit ordered products up
to each generator. Therefore we can relate them with the classification of Nθ-
graded coideal subalgebras of B(V ) [6]. We deduce that the previous order on ∆χ

+

is convex : if α < β ∈ ∆χ
+ are such that α + β ∈ ∆χ

+, then α < α + β < β. This
notion generalizes the previous one for classical root systems in [8].

From this point we obtain recursively the set of Lyndon words giving the PBW
generators, and prove that the PBW basis is orthogonal for the non-degenerate
bilinear form existing when the matrix (qij) is symmetric. The orthogonality on
the PBW basis gives a family of relations generating the ideal I(V ) in every case,
i. e. not only for symmetric matrices, see [1].

We consider now the classification of diagonal braidings with a finite root system
[4] and the Lusztig isomorphisms [5], in order to obtain a minimal set of relations
for each braidings from the previous one [2]. It contains the classical power root
vectors, quantum Serre relations and generalizations of this last family. Using this
minimal representation we can answer positively in the diagonal case a conjecture
made by Andruskiewitsch and Schneider:

Theorem. [2] Let R = ⊕n≥0Rn be a finite-dimensional connected graded braided
Hopf algebra such that R1 = V is a braided vector space of diagonal type generating
R as an algebra. Then R = B(V ).
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Geometric combinatorics of Weyl groupoids

Volkmar Welker

(joint work with István Heckenberger)

In [1] we extend properties of the weak order on finite Coxeter groups to Weyl
groupoids admitting a finite root system. We do so by adapting the usual defini-
tion of the weak order to the set of morphisms with a fixed target object in the
category underlying the Weyl groupoid using the length function for morphisms in
Weyl groupoids. We exhibit examples that show that the isomorphism type of the
weak order can depend on the chosen object. Combinatorially, the weak orders of
Weyl groupoids are graded posets that have the structure of ortho-complemented
lattices. In addition, we exhibit examples of Weyl groupoids where the posets oc-
curring for this Weyl groupoid do not resemble all of the nice structural properties
shared by the weak orders of finite Coxeter groups. In particular, the rank gener-
ating function of the weak order of a Weyl groupoid does not factor into factors
of type 1 + t+ · · ·+ tl.

The main geometric result for weak orders of Weyl groupoids states.

Theorem. Let a be an object in a Weyl groupoid and let u, v be two morphisms
with target a such that u is smaller than v in the weak order. Then either the
order complex of the open interval (u, v) is contractible or homotopy equivalent to
a sphere.

Using the definition of a descent set for morphisms in Weyl groupoids we can
provide conditions on which the two cases occurs and the dimension of the sphere.

1. Coxeter complex

We show that to each object in a Weyl groupoid there is an associated simplicial
arrangement of hyperplanes defined by the root system in that object. The ar-
rangements for different objects are linearly isomorphic and induce a triangulation
of the sphere that is as an abstract simplicial complex isomorphic to the simplicial
complex of cosets of parabolic subgroups. This is the usual way to introduce the
Coxeter complex for an abstract Coxeter group. Thus we can speak of the Cox-
eter complex of a Weyl groupoid. Combinatorially the Coxeter complexes of Weyl
groupoids are shown to contain elements that do not occur for Coxeter groups.
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Classifying Nichols algebras by their Hilbert series

Andreas Lochmann

(joint work with István Heckenberger, Leandro Vendramı́n)

The classification of finite dimensional Nichols algebras has been solved in the
abelian case by Heckenberger. In the non-abelian case, a description of Nichols
algebras in terms of racks was developed, see e.g. [1], but their classification is
still an open problem and of large interest to the study of pointed Hopf algebreas.
In [2], Graña, Heckenberger and Vendramin classified finite dimensional Nichols
algebras which satisfy a certain factorization property for their Hilbert series. We
present a continuation to this work, which allows for more general Hilbert series,
but restricts on the type of racks to be used:

Theorem. [3] Let B be a Nichols k-algebra over an indecomposable faithful braided
quandle X. Assume the Hilbert series of B is of the form

(1) HB(t) = (α1)t · · · (αn)t · (β1)t2 · · · (βm)t2 ,

where (n)t := 1+ t+ t2+ · · ·+ tn−1. Then, for each field k, B is one of 10 possible
Nichols algebras (11 if k is of characteristic 2).

Conjecture. Let V be an absolutely irreducible Yetter-Drinfeld module over a
group G. Assume that G is generated by the support of V . If the Nichols algebra
B(V ) is finite-dimensional, then it is one of the Nichols algebras in Theorem , or
one of the two known Nichols algebras over an affine rack with five elements.

As a necessary input to the theorem, we need the special factorization in equa-
tion (1). All known examples so far satisfy this factorization. Surprisingly enough,
it is possible to deduce some factors of the Hilbert series of a Nichols algebra with-
out knowing much about it. The Nichols-Zoeller-Theorem states as a corollary,
that any Nichols algebra B is isomorphic to the tensor product ker ∂t ⊗ k[xt]/x

m
t

for some m ∈ N. From this follows (m)t | HB(t). We demonstrate a slight improve-
ment on this:

Theorem. Let B be a finite-dimensional Nichols algebra over an indecomposable
rack X and a 2-cocycle χ with diagonal elements of order m. Let X ′ be a non-
empty proper subrack of X and B′ its corresponding Nichols sub-algebra of B. Then
the Hilbert series HB(t) is divisible by (m)t · HB′(t).

Assume that the degree of X divides m. Assume further that X \X ′ still gen-
erates InnX. Then #InnX · dimB′ divides dimB.

The proof uses a similar idea as has been used in [4], and combines it with
Graña’s Freeness Theorem. We conjecture that each finite dimensional Nichols
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algebra satisfies equation (1), and hope to further extend the above theorem in
the near future.
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Beyond Nichols algebras, and back to quantum groups

Marc Rosso

(joint work with Xin Fang)

We give the general construction of all Hopf algebra structures on the cotensor
algebra TC

H (M), the subalgebra generated by H and M being a natural gener-
alization of Nichols algebra. A particular example are quantum quasi-symmetric
algebras.

We show that we can reconstruct the whole quantum group Uq(g), as such an
algebra, and one can realize all highest weight irreducible representations in this
framework. It also provides a systematic way to construct simple modules over
the quantum double of a quantum group.

Cohomology and support varieties

Julia Pevtsova

This talk was an introduction to the theory of support varieties for modules which
complemented S. Witherspoon’s talk on finite generation of cohomology at the
same mini-workshop.

For a finite group G and a field k of characteristic p, dividing the order of
G, the cohomology ring H∗(G, k) is a graded commutative algebra over k. It
had been shown by Golod, Venkov, and Evens in 1959-1961 that the cohomology
algebra was finitely generated. This finite generation result was a precursor of the
celebrated “stratification theorem” of Quillen [5], which gives a beautiful geometric
description of the ringH∗(G, k) in terms of the elementary abelian subgroups of G.
Work of several prominent group theorists followed to employ Quillen’s geometric
techniques to study representation theory of G. The power of those techniques is
one of the main driving forces behind the search for finite generation results for
cohomology of other types of algebraic structures.

The central geometric invariant that appeared in the works of Alperin-Evens
and Carlson in the 1980’s is the support variety of a module.
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Definition. Let M be a kG-module. The support variety of M , denoted VG(M), is
the closed subset of SpecH∗

red(G, k) defined by the ideal AnnH∗

red
(G,k)Ext

∗
G(M,M).

Support varieties satisfy a number of good properties:

Theorem. Let M , M1, M2, M3 be kG-modules.

(1) VG(M1 ⊕N1) = VG(M1) ∪ VG(N1).
(2) VG(M) = VG(ΩM), where ΩM is the syzygy of M .

(3) If 0 // M1
// M2

// M3
// 0 is a short exact sequence then

VG(Mi) ⊂ VG(Mj) ∪ VG(Mℓ) for any permutation {i, j, ℓ} of {1, 2, 3}.
(4) Dimension of VG(M) is the complexity of M (i.e., the growth of the min-

imal projective resolution of M).
(5) “Tensor product theorem” VG(M1 ⊗M2) = VG(M1) ∩ VG(M2).

The proof of the last property involves a different characterization of the support
variety, the “rank variety”, conjectured by Carlson ([2]) and proved by Avrunin-
Scott [1] for elementary abelian p-groups. The theory of rank and support varieties
had been subsequently developed for restricted Lie algebras [3], Frobenius kernels
[6], and finite group schemes. A suitable analogue of the Avrunin-Scott theorem
holds in all those cases which, in turn, allows one to prove Theorem .5 for any
finite group scheme.

Support varieties have been considered for other Hopf and augmented algebras.
These include (but are not limited to) small quantum groups, general self-injective
algebras (via Hochschild cohomology), Lie superalgebras, reduced enveloping al-
gebras, complete intersections, quantum elementary abelian groups and truncated
polynomial algebras.

In this talk we concentrate on the case of a finite-dimensional cocommutative
Hopf algebra H (equivalently, a finite group scheme), describing the theory of π-
points developed in [4]. We also discuss one application: classification of thick
tensor ideals in the stable module category of H .
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Université Paris VII
175, rue du Chevaleret
75013 Paris
FRANCE

Prof. Dr. Istvan Heckenberger

Fachbereich Mathematik
Universität Marburg
Hans-Meerwein-Str.
35043 Marburg
GERMANY

Prof. Dr. Vladislav K. Kharchenko

UNAM
Primero de Mayo
s/n, CIT, Campo 1
54769 Cuautitlan Izcalli
MEXICO

Dr. Andreas Lochmann

Fachbereich Mathematik
Universität Marburg
Hans-Meerwein-Str.
35043 Marburg
GERMANY

Prof. Dr. Bernhard M. Mühlherr
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